code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from math import pi, sqrt def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if num <= 0: raise ValueError("""math domain error""" ) if num > 171.5: raise OverflowError("""math range error""" ) elif num - int(_A ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(_A ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def __SCREAMING_SNAKE_CASE ( ): assert gamma(0.5 ) == sqrt(_A ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase: List[Any] = 1.0 while num: UpperCAmelCase: str = float(input("""Gamma of: """)) print(F'gamma({num}) = {gamma(num)}') print("""\nEnter 0 to exit...""")
355
"""simple docstring""" from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __SCREAMING_SNAKE_CASE ( ): _lowercase : Dict = [randint(-1000 , 1000 ) for i in range(10 )] _lowercase : Tuple = randint(-5000 , 5000 ) return (arr, r) UpperCAmelCase: int = make_dataset() def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): for triplet in permutations(__UpperCAmelCase , 3 ): if sum(__UpperCAmelCase ) == target: return tuple(sorted(__UpperCAmelCase ) ) return (0, 0, 0) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): arr.sort() _lowercase : Optional[Any] = len(__UpperCAmelCase ) for i in range(n - 1 ): _lowercase , _lowercase : str = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __SCREAMING_SNAKE_CASE ( ): _lowercase : Tuple = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ _lowercase : Union[str, Any] = """ triplet_sum1(*dataset) """ _lowercase : Union[str, Any] = """ triplet_sum2(*dataset) """ _lowercase : Dict = repeat(setup=__UpperCAmelCase , stmt=__UpperCAmelCase , repeat=5 , number=10000 ) _lowercase : Any = repeat(setup=__UpperCAmelCase , stmt=__UpperCAmelCase , repeat=5 , number=10000 ) return (min(__UpperCAmelCase ), min(__UpperCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase: Any = solution_times() print(F'The time for naive implementation is {times[0]}.') print(F'The time for optimized implementation is {times[1]}.')
336
0
"""simple docstring""" import socket def __SCREAMING_SNAKE_CASE ( ): _lowercase : Optional[int] = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) _lowercase : Optional[int] = socket.gethostname() _lowercase : Dict = 12312 sock.connect((host, port) ) sock.send(B"""Hello server!""" ) with open("""Received_file""" , """wb""" ) as out_file: print("""File opened""" ) print("""Receiving data...""" ) while True: _lowercase : List[str] = sock.recv(1024 ) if not data: break out_file.write(__UpperCAmelCase ) print("""Successfully received the file""" ) sock.close() print("""Connection closed""" ) if __name__ == "__main__": main()
356
"""simple docstring""" import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE_ : Optional[int] = "BlipImageProcessor" SCREAMING_SNAKE_CASE_ : Tuple = "AutoTokenizer" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): super().__init__(UpperCAmelCase_ ,UpperCAmelCase_ ) # add QFormer tokenizer _lowercase : Optional[int] = qformer_tokenizer def __call__( self ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = True ,UpperCAmelCase_ = False ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = 0 ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): if images is None and text is None: raise ValueError("""You have to specify at least images or text.""" ) _lowercase : List[Any] = BatchFeature() if text is not None: _lowercase : List[str] = self.tokenizer( text=UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,stride=UpperCAmelCase_ ,pad_to_multiple_of=UpperCAmelCase_ ,return_attention_mask=UpperCAmelCase_ ,return_overflowing_tokens=UpperCAmelCase_ ,return_special_tokens_mask=UpperCAmelCase_ ,return_offsets_mapping=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ,return_length=UpperCAmelCase_ ,verbose=UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ,**UpperCAmelCase_ ,) encoding.update(UpperCAmelCase_ ) _lowercase : Dict = self.qformer_tokenizer( text=UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,stride=UpperCAmelCase_ ,pad_to_multiple_of=UpperCAmelCase_ ,return_attention_mask=UpperCAmelCase_ ,return_overflowing_tokens=UpperCAmelCase_ ,return_special_tokens_mask=UpperCAmelCase_ ,return_offsets_mapping=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ,return_length=UpperCAmelCase_ ,verbose=UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ,**UpperCAmelCase_ ,) _lowercase : str = qformer_text_encoding.pop("""input_ids""" ) _lowercase : int = qformer_text_encoding.pop("""attention_mask""" ) if images is not None: _lowercase : Optional[Any] = self.image_processor(UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ) encoding.update(UpperCAmelCase_ ) return encoding def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return self.tokenizer.batch_decode(*UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return self.tokenizer.decode(*UpperCAmelCase_ ,**UpperCAmelCase_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.tokenizer.model_input_names _lowercase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,**UpperCAmelCase_ ): if os.path.isfile(UpperCAmelCase_ ): raise ValueError(f"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(UpperCAmelCase_ ,exist_ok=UpperCAmelCase_ ) _lowercase : Any = os.path.join(UpperCAmelCase_ ,"""qformer_tokenizer""" ) self.qformer_tokenizer.save_pretrained(UpperCAmelCase_ ) return super().save_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): _lowercase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCAmelCase_ ,subfolder="""qformer_tokenizer""" ) _lowercase : Any = cls._get_arguments_from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) args.append(UpperCAmelCase_ ) return cls(*UpperCAmelCase_ )
336
0
"""simple docstring""" from __future__ import annotations import queue class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ): _lowercase : Optional[int] = data _lowercase : Dict = None _lowercase : Optional[Any] = None def __SCREAMING_SNAKE_CASE ( ): print("""\n********Press N to stop entering at any point of time********\n""" ) _lowercase : Tuple = input("""Enter the value of the root node: """ ).strip().lower() _lowercase : queue.Queue = queue.Queue() _lowercase : int = TreeNode(int(__UpperCAmelCase ) ) q.put(__UpperCAmelCase ) while not q.empty(): _lowercase : Optional[int] = q.get() _lowercase : int = F"""Enter the left node of {node_found.data}: """ _lowercase : Tuple = input(__UpperCAmelCase ).strip().lower() or '''n''' if check == "n": return tree_node _lowercase : List[str] = TreeNode(int(__UpperCAmelCase ) ) _lowercase : Any = left_node q.put(__UpperCAmelCase ) _lowercase : List[Any] = F"""Enter the right node of {node_found.data}: """ _lowercase : str = input(__UpperCAmelCase ).strip().lower() or '''n''' if check == "n": return tree_node _lowercase : Union[str, Any] = TreeNode(int(__UpperCAmelCase ) ) _lowercase : Any = right_node q.put(__UpperCAmelCase ) raise def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not node: return _lowercase : queue.Queue = queue.Queue() q.put(__UpperCAmelCase ) while not q.empty(): _lowercase : Any = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not node: return _lowercase : queue.Queue = queue.Queue() q.put(__UpperCAmelCase ) while not q.empty(): _lowercase : Any = [] while not q.empty(): _lowercase : Tuple = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not node: return _lowercase : list[TreeNode] = [] _lowercase : Optional[int] = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(__UpperCAmelCase ) _lowercase : Any = n.left # end of while means current node doesn't have left child _lowercase : Any = stack.pop() # start to traverse its right child _lowercase : List[str] = n.right def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not node: return _lowercase : list[TreeNode] = [] _lowercase : str = node while n or stack: while n: stack.append(__UpperCAmelCase ) _lowercase : str = n.left _lowercase : List[Any] = stack.pop() print(n.data , end=""",""" ) _lowercase : List[str] = n.right def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not node: return _lowercase : Dict = [], [] _lowercase : int = node stacka.append(__UpperCAmelCase ) while stacka: # to find the reversed order of post order, store it in stack2 _lowercase : Optional[Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__UpperCAmelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase = "" , __UpperCAmelCase=50 , __UpperCAmelCase="*" ): if not s: return "\n" + width * char _lowercase : Optional[int] = divmod(width - len(__UpperCAmelCase ) - 2 , 2 ) return F"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) UpperCAmelCase = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 50 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
357
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase: Tuple = logging.get_logger(__name__) UpperCAmelCase: List[Any] = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "trajectory_transformer" SCREAMING_SNAKE_CASE_ : Optional[int] = ["past_key_values"] SCREAMING_SNAKE_CASE_ : Tuple = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self ,UpperCAmelCase_=1_00 ,UpperCAmelCase_=5 ,UpperCAmelCase_=1 ,UpperCAmelCase_=1 ,UpperCAmelCase_=2_49 ,UpperCAmelCase_=6 ,UpperCAmelCase_=17 ,UpperCAmelCase_=25 ,UpperCAmelCase_=4 ,UpperCAmelCase_=4 ,UpperCAmelCase_=1_28 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.0006 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-12 ,UpperCAmelCase_=1 ,UpperCAmelCase_=True ,UpperCAmelCase_=1 ,UpperCAmelCase_=5_02_56 ,UpperCAmelCase_=5_02_56 ,**UpperCAmelCase_ ,): _lowercase : Dict = vocab_size _lowercase : List[str] = action_weight _lowercase : int = reward_weight _lowercase : List[Any] = value_weight _lowercase : List[str] = max_position_embeddings _lowercase : Any = block_size _lowercase : Any = action_dim _lowercase : List[str] = observation_dim _lowercase : Union[str, Any] = transition_dim _lowercase : str = learning_rate _lowercase : Tuple = n_layer _lowercase : Optional[int] = n_head _lowercase : List[str] = n_embd _lowercase : List[str] = embd_pdrop _lowercase : Optional[Any] = attn_pdrop _lowercase : List[Any] = resid_pdrop _lowercase : str = initializer_range _lowercase : Optional[Any] = layer_norm_eps _lowercase : List[Any] = kaiming_initializer_range _lowercase : List[Any] = use_cache super().__init__(pad_token_id=UpperCAmelCase_ ,bos_token_id=UpperCAmelCase_ ,eos_token_id=UpperCAmelCase_ ,**UpperCAmelCase_ )
336
0
class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Tuple = None _lowercase : Dict = None _lowercase : Any = graph self._normalize_graph(lowercase__ ,lowercase__ ) _lowercase : Optional[Any] = len(lowercase__ ) _lowercase : str = None def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): if sources is int: _lowercase : List[str] = [sources] if sinks is int: _lowercase : Union[str, Any] = [sinks] if len(lowercase__ ) == 0 or len(lowercase__ ) == 0: return _lowercase : int = sources[0] _lowercase : Optional[Any] = sinks[0] # make fake vertex if there are more # than one source or sink if len(lowercase__ ) > 1 or len(lowercase__ ) > 1: _lowercase : List[str] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) _lowercase : Union[str, Any] = len(self.graph ) + 1 for room in self.graph: room.insert(0 ,0 ) self.graph.insert(0 ,[0] * size ) for i in sources: _lowercase : Optional[Any] = max_input_flow _lowercase : str = 0 _lowercase : Union[str, Any] = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: _lowercase : str = max_input_flow _lowercase : Tuple = size - 1 def lowerCamelCase__ ( self ): if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : Dict = algorithm(self ) class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ): _lowercase : Tuple = flow_network _lowercase : List[str] = flow_network.verticesCount _lowercase : Union[str, Any] = flow_network.sourceIndex _lowercase : Optional[int] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that _lowercase : str = flow_network.graph _lowercase : List[Any] = False def lowerCamelCase__ ( self ): if not self.executed: self._algorithm() _lowercase : Optional[int] = True def lowerCamelCase__ ( self ): pass class UpperCamelCase ( lowerCamelCase__ ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ): super().__init__(lowercase__ ) # use this to save your result _lowercase : str = -1 def lowerCamelCase__ ( self ): if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class UpperCamelCase ( lowerCamelCase__ ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ): super().__init__(lowercase__ ) _lowercase : List[str] = [[0] * self.verticies_count for i in range(self.verticies_count )] _lowercase : Union[str, Any] = [0] * self.verticies_count _lowercase : str = [0] * self.verticies_count def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule _lowercase : Optional[Any] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list _lowercase : List[Any] = 0 while i < len(lowercase__ ): _lowercase : int = vertices_list[i] _lowercase : str = self.heights[vertex_index] self.process_vertex(lowercase__ ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 ,vertices_list.pop(lowercase__ ) ) _lowercase : List[Any] = 0 else: i += 1 _lowercase : Tuple = sum(self.preflow[self.source_index] ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(lowercase__ ,lowercase__ ) self.relabel(lowercase__ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Optional[int] = min( self.excesses[from_index] ,self.graph[from_index][to_index] - self.preflow[from_index][to_index] ,) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : Optional[Any] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): _lowercase : str = self.heights[to_index] if min_height is not None: _lowercase : Dict = min_height + 1 if __name__ == "__main__": UpperCAmelCase: Union[str, Any] = [0] UpperCAmelCase: List[str] = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCAmelCase: Dict = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCAmelCase: int = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCAmelCase: int = flow_network.find_maximum_flow() print(F'maximum flow is {maximum_flow}')
358
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase: Any = logging.get_logger(__name__) UpperCAmelCase: List[str] = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = "instructblip_vision_model" def __init__( self ,UpperCAmelCase_=14_08 ,UpperCAmelCase_=61_44 ,UpperCAmelCase_=39 ,UpperCAmelCase_=16 ,UpperCAmelCase_=2_24 ,UpperCAmelCase_=14 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=1E-6 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=1E-10 ,UpperCAmelCase_=True ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) _lowercase : Optional[Any] = hidden_size _lowercase : Tuple = intermediate_size _lowercase : List[Any] = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[Any] = patch_size _lowercase : Optional[Any] = image_size _lowercase : Union[str, Any] = initializer_range _lowercase : Optional[Any] = attention_dropout _lowercase : List[Any] = layer_norm_eps _lowercase : Optional[int] = hidden_act _lowercase : Tuple = qkv_bias @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): cls._set_token_in_kwargs(UpperCAmelCase_ ) _lowercase , _lowercase : List[Any] = cls.get_config_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": _lowercase : int = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = "instructblip_qformer" def __init__( self ,UpperCAmelCase_=3_05_22 ,UpperCAmelCase_=7_68 ,UpperCAmelCase_=12 ,UpperCAmelCase_=12 ,UpperCAmelCase_=30_72 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-12 ,UpperCAmelCase_=0 ,UpperCAmelCase_="absolute" ,UpperCAmelCase_=2 ,UpperCAmelCase_=14_08 ,**UpperCAmelCase_ ,): super().__init__(pad_token_id=UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : List[Any] = vocab_size _lowercase : List[Any] = hidden_size _lowercase : str = num_hidden_layers _lowercase : List[str] = num_attention_heads _lowercase : Optional[Any] = hidden_act _lowercase : int = intermediate_size _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : List[Any] = max_position_embeddings _lowercase : Tuple = initializer_range _lowercase : Optional[int] = layer_norm_eps _lowercase : Any = position_embedding_type _lowercase : Dict = cross_attention_frequency _lowercase : Optional[Any] = encoder_hidden_size @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): cls._set_token_in_kwargs(UpperCAmelCase_ ) _lowercase , _lowercase : Dict = cls.get_config_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": _lowercase : str = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "instructblip" SCREAMING_SNAKE_CASE_ : List[str] = True def __init__( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=32 ,**UpperCAmelCase_ ): super().__init__(**UpperCAmelCase_ ) if vision_config is None: _lowercase : str = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: _lowercase : Any = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: _lowercase : Optional[int] = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) _lowercase : int = InstructBlipVisionConfig(**UpperCAmelCase_ ) _lowercase : Optional[int] = InstructBlipQFormerConfig(**UpperCAmelCase_ ) _lowercase : Dict = text_config["""model_type"""] if """model_type""" in text_config else """opt""" _lowercase : str = CONFIG_MAPPING[text_model_type](**UpperCAmelCase_ ) _lowercase : str = self.text_config.tie_word_embeddings _lowercase : Union[str, Any] = self.text_config.is_encoder_decoder _lowercase : List[str] = num_query_tokens _lowercase : List[str] = self.vision_config.hidden_size _lowercase : Dict = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowercase : Union[str, Any] = 1.0 _lowercase : Dict = 0.02 @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,**UpperCAmelCase_ ,): return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**UpperCAmelCase_ ,) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowercase : int = self.vision_config.to_dict() _lowercase : Any = self.qformer_config.to_dict() _lowercase : Any = self.text_config.to_dict() _lowercase : Optional[int] = self.__class__.model_type return output
336
0
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging UpperCAmelCase: int = logging.get_logger(__name__) UpperCAmelCase: Dict = { 'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class UpperCamelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = "perceiver" def __init__( self ,UpperCAmelCase_=2_56 ,UpperCAmelCase_=12_80 ,UpperCAmelCase_=7_68 ,UpperCAmelCase_=1 ,UpperCAmelCase_=26 ,UpperCAmelCase_=8 ,UpperCAmelCase_=8 ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_="kv" ,UpperCAmelCase_=1 ,UpperCAmelCase_=1 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-12 ,UpperCAmelCase_=True ,UpperCAmelCase_=2_62 ,UpperCAmelCase_=20_48 ,UpperCAmelCase_=56 ,UpperCAmelCase_=[3_68, 4_96] ,UpperCAmelCase_=16 ,UpperCAmelCase_=19_20 ,UpperCAmelCase_=16 ,UpperCAmelCase_=[1, 16, 2_24, 2_24] ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) _lowercase : List[str] = num_latents _lowercase : Any = d_latents _lowercase : str = d_model _lowercase : Optional[int] = num_blocks _lowercase : Optional[int] = num_self_attends_per_block _lowercase : Optional[int] = num_self_attention_heads _lowercase : Optional[int] = num_cross_attention_heads _lowercase : str = qk_channels _lowercase : Optional[int] = v_channels _lowercase : str = cross_attention_shape_for_attention _lowercase : int = self_attention_widening_factor _lowercase : int = cross_attention_widening_factor _lowercase : List[str] = hidden_act _lowercase : List[str] = attention_probs_dropout_prob _lowercase : Optional[int] = initializer_range _lowercase : Optional[Any] = layer_norm_eps _lowercase : Tuple = use_query_residual # masked language modeling attributes _lowercase : int = vocab_size _lowercase : Union[str, Any] = max_position_embeddings # image classification attributes _lowercase : Union[str, Any] = image_size # flow attributes _lowercase : List[Any] = train_size # multimodal autoencoding attributes _lowercase : List[Any] = num_frames _lowercase : Union[str, Any] = audio_samples_per_frame _lowercase : List[str] = samples_per_patch _lowercase : Tuple = output_shape class UpperCamelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def lowerCamelCase__ ( self ): if self.task == "multiple-choice": _lowercase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowercase : List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] ) @property def lowerCamelCase__ ( self ): return 1E-4 def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = -1 ,UpperCAmelCase_ = -1 ,UpperCAmelCase_ = -1 ,UpperCAmelCase_ = False ,UpperCAmelCase_ = None ,UpperCAmelCase_ = 3 ,UpperCAmelCase_ = 40 ,UpperCAmelCase_ = 40 ,): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowercase : Any = compute_effective_axis_dimension( UpperCAmelCase_ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowercase : str = preprocessor.num_special_tokens_to_add(UpperCAmelCase_ ) _lowercase : int = compute_effective_axis_dimension( UpperCAmelCase_ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=UpperCAmelCase_ ) # Generate dummy inputs according to compute batch and sequence _lowercase : Dict = [' '.join(["""a"""] ) * seq_length] * batch_size _lowercase : Union[str, Any] = dict(preprocessor(UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ) ) _lowercase : List[str] = inputs.pop("""input_ids""" ) return inputs elif isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowercase : Union[str, Any] = compute_effective_axis_dimension(UpperCAmelCase_ ,fixed_dimension=OnnxConfig.default_fixed_batch ) _lowercase : Optional[int] = self._generate_dummy_images(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) _lowercase : Union[str, Any] = dict(preprocessor(images=UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ) ) _lowercase : List[Any] = inputs.pop("""pixel_values""" ) return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""" )
359
"""simple docstring""" import cva import numpy as np class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): if k in (0.04, 0.06): _lowercase : Optional[Any] = k _lowercase : Optional[Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self ): return str(self.k ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : List[str] = cva.imread(UpperCAmelCase_ ,0 ) _lowercase , _lowercase : Dict = img.shape _lowercase : list[list[int]] = [] _lowercase : int = img.copy() _lowercase : List[str] = cva.cvtColor(UpperCAmelCase_ ,cva.COLOR_GRAY2RGB ) _lowercase , _lowercase : Optional[Any] = np.gradient(UpperCAmelCase_ ) _lowercase : Optional[int] = dx**2 _lowercase : Optional[Any] = dy**2 _lowercase : Optional[Any] = dx * dy _lowercase : List[str] = 0.04 _lowercase : Optional[Any] = self.window_size // 2 for y in range(UpperCAmelCase_ ,h - offset ): for x in range(UpperCAmelCase_ ,w - offset ): _lowercase : Optional[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : Dict = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : Union[str, Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : int = (wxx * wyy) - (wxy**2) _lowercase : Union[str, Any] = wxx + wyy _lowercase : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) ,0 ) color_img.itemset((y, x, 1) ,0 ) color_img.itemset((y, x, 2) ,2_55 ) return color_img, corner_list if __name__ == "__main__": UpperCAmelCase: Optional[int] = HarrisCorner(0.04, 3) UpperCAmelCase , UpperCAmelCase: List[Any] = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
336
0
"""simple docstring""" from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration UpperCAmelCase: str = HfArgumentParser(InitializationArguments) UpperCAmelCase: Tuple = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization UpperCAmelCase: Dict = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks UpperCAmelCase: List[Any] = { """vocab_size""": len(tokenizer), """scale_attn_by_inverse_layer_idx""": True, """reorder_and_upcast_attn""": True, } # Load model config (GPT-2 large in this case) UpperCAmelCase: List[str] = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config UpperCAmelCase: Dict = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
360
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = LEDTokenizer SCREAMING_SNAKE_CASE_ : List[str] = LEDTokenizerFast SCREAMING_SNAKE_CASE_ : List[str] = True def lowerCamelCase__ ( self ): super().setUp() _lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _lowercase : List[Any] = dict(zip(UpperCAmelCase_ ,range(len(UpperCAmelCase_ ) ) ) ) _lowercase : Optional[int] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowercase : Dict = {"""unk_token""": """<unk>"""} _lowercase : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _lowercase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return "lower newer", "lower newer" @cached_property def lowerCamelCase__ ( self ): return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def lowerCamelCase__ ( self ): return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _lowercase : Any = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Tuple = tokenizer(UpperCAmelCase_ ,max_length=len(UpperCAmelCase_ ) ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) _lowercase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Dict = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIn("""input_ids""" ,UpperCAmelCase_ ) self.assertIn("""attention_mask""" ,UpperCAmelCase_ ) self.assertNotIn("""labels""" ,UpperCAmelCase_ ) self.assertNotIn("""decoder_attention_mask""" ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Dict = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Tuple = tokenizer(text_target=UpperCAmelCase_ ,max_length=32 ,padding="""max_length""" ,return_tensors="""pt""" ) self.assertEqual(32 ,targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : List[Any] = tokenizer( ["""I am a small frog""" * 10_24, """I am a small frog"""] ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual(batch.input_ids.shape ,(2, 51_22) ) @require_torch def lowerCamelCase__ ( self ): _lowercase : List[Any] = ["""A long paragraph for summarization."""] _lowercase : Dict = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Dict = tokenizer(UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : List[str] = tokenizer(text_target=UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : Union[str, Any] = inputs["""input_ids"""] _lowercase : List[str] = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : str = ["""Summary of the text.""", """Another summary."""] _lowercase : Optional[int] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _lowercase : Any = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ) _lowercase : str = [[0] * len(UpperCAmelCase_ ) for x in encoded_output["""input_ids"""]] _lowercase : Optional[int] = tokenizer.pad(UpperCAmelCase_ ) self.assertSequenceEqual(outputs["""global_attention_mask"""] ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): pass def lowerCamelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase : int = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Optional[int] = self.tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Dict = """A, <mask> AllenNLP sentence.""" _lowercase : List[Any] = tokenizer_r.encode_plus(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) _lowercase : Any = tokenizer_p.encode_plus(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) ,sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) ,sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) ,) _lowercase : str = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) _lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( UpperCAmelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( UpperCAmelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
336
0
"""simple docstring""" import math import random def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value UpperCAmelCase: Tuple = 0.02 def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Union[str, Any] = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(__UpperCAmelCase ): # Forward propagation _lowercase : Union[str, Any] = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? _lowercase : Union[str, Any] = (expected / 100) - layer_a # Error delta _lowercase : Union[str, Any] = layer_1_error * sigmoid_function(__UpperCAmelCase , __UpperCAmelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase: Optional[Any] = int(input("""Expected value: """)) UpperCAmelCase: Any = int(input("""Number of propagations: """)) print(forward_propagation(expected, number_propagations))
361
"""simple docstring""" import argparse from collections import defaultdict def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : str = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Any = f.readlines() _lowercase : Optional[int] = F"""class {class_name}(""" _lowercase : List[str] = F"""{4 * " "}def {test_name}(""" _lowercase : List[Any] = F"""{8 * " "}{correct_line.split()[0]}""" _lowercase : int = F"""{16 * " "}{correct_line.split()[0]}""" _lowercase : str = False _lowercase : Optional[Any] = False _lowercase : Union[str, Any] = False _lowercase : Any = False _lowercase : int = 0 _lowercase : Tuple = 0 _lowercase : Union[str, Any] = [] for line in lines: if line.startswith(__UpperCAmelCase ): _lowercase : List[str] = True elif in_class and line.startswith(__UpperCAmelCase ): _lowercase : str = True elif in_class and in_func and (line.startswith(__UpperCAmelCase ) or line.startswith(__UpperCAmelCase )): _lowercase : Union[str, Any] = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _lowercase : Optional[int] = True if in_class and in_func and in_line: if ")" not in line: continue else: _lowercase : Optional[Any] = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * " "}{correct_line}""" ) _lowercase : Union[str, Any] = False else: new_lines.append(__UpperCAmelCase ) with open(__UpperCAmelCase , """w""" ) as f: for line in new_lines: f.write(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=None ): if fail is not None: with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Dict = {l.strip() for l in f.readlines()} else: _lowercase : int = None with open(__UpperCAmelCase , """r""" ) as f: _lowercase : int = f.readlines() _lowercase : int = defaultdict(__UpperCAmelCase ) for line in correct_lines: _lowercase , _lowercase , _lowercase , _lowercase : int = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase: List[Any] = argparse.ArgumentParser() parser.add_argument("""--correct_filename""", help="""filename of tests with expected result""") parser.add_argument("""--fail_filename""", help="""filename of test failures""", type=str, default=None) UpperCAmelCase: Any = parser.parse_args() main(args.correct_filename, args.fail_filename)
336
0
"""simple docstring""" from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class UpperCamelCase ( UpperCamelCase_ ): """simple docstring""" def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return 0.0 def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : str = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _lowercase : int = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Optional[Any] = 512 _lowercase : Union[str, Any] = [1] + [0] * (size - 1) _lowercase : Optional[int] = [filter_type.process(__lowerCAmelCase ) for item in inputs] _lowercase : Tuple = [0] * (samplerate - size) # zero-padding outputs += filler _lowercase : str = np.abs(np.fft.fft(__lowerCAmelCase ) ) _lowercase : str = 20 * np.logaa(__lowerCAmelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds _lowercase : List[str] = get_bounds(__lowerCAmelCase , __lowerCAmelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(__lowerCAmelCase ) plt.show() def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Optional[int] = 512 _lowercase : Union[str, Any] = [1] + [0] * (size - 1) _lowercase : Union[str, Any] = [filter_type.process(__lowerCAmelCase ) for item in inputs] _lowercase : List[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowercase : str = np.angle(np.fft.fft(__lowerCAmelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(__lowerCAmelCase , -2 * pi ) ) plt.show()
362
"""simple docstring""" UpperCAmelCase: List[str] = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
336
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) def __SCREAMING_SNAKE_CASE ( *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(lowercase__ , ["""torch"""] ) def __SCREAMING_SNAKE_CASE ( *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(lowercase__ , ["""torch"""] ) def __SCREAMING_SNAKE_CASE ( *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(lowercase__ , ["""torch"""] ) def __SCREAMING_SNAKE_CASE ( *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(lowercase__ , ["""torch"""] ) def __SCREAMING_SNAKE_CASE ( *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(lowercase__ , ["""torch"""] ) def __SCREAMING_SNAKE_CASE ( *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(lowercase__ , ["""torch"""] ) def __SCREAMING_SNAKE_CASE ( *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(lowercase__ , ["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] )
363
"""simple docstring""" UpperCAmelCase: str = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ UpperCAmelCase: Any = [{"""type""": """code""", """content""": INSTALL_CONTENT}] UpperCAmelCase: int = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
336
0
"""simple docstring""" from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["image_processor"] SCREAMING_SNAKE_CASE_ : Optional[int] = "SamImageProcessor" def __init__( self ,UpperCAmelCase_ ): super().__init__(_SCREAMING_SNAKE_CASE ) _lowercase : Tuple = self.image_processor _lowercase : Optional[int] = -10 _lowercase : List[Any] = self.image_processor.size["longest_edge"] def __call__( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): _lowercase : str = self.image_processor( _SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,) # pop arguments that are not used in the foward but used nevertheless _lowercase : int = encoding_image_processor["original_sizes"] if hasattr(_SCREAMING_SNAKE_CASE ,"""numpy""" ): # Checks if Torch or TF tensor _lowercase : Union[str, Any] = original_sizes.numpy() _lowercase : int = self._check_and_preprocess_points( input_points=_SCREAMING_SNAKE_CASE ,input_labels=_SCREAMING_SNAKE_CASE ,input_boxes=_SCREAMING_SNAKE_CASE ,) _lowercase : Tuple = self._normalize_and_convert( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,input_points=_SCREAMING_SNAKE_CASE ,input_labels=_SCREAMING_SNAKE_CASE ,input_boxes=_SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ,) return encoding_image_processor def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_="pt" ,): if input_points is not None: if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): _lowercase : Any = [ self._normalize_coordinates(self.target_size ,_SCREAMING_SNAKE_CASE ,original_sizes[0] ) for point in input_points ] else: _lowercase : Tuple = [ self._normalize_coordinates(self.target_size ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) for point, original_size in zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: _lowercase : Optional[Any] = self._pad_points_and_labels(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) _lowercase : Optional[int] = np.array(_SCREAMING_SNAKE_CASE ) if input_labels is not None: _lowercase : Any = np.array(_SCREAMING_SNAKE_CASE ) if input_boxes is not None: if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): _lowercase : Optional[int] = [ self._normalize_coordinates(self.target_size ,_SCREAMING_SNAKE_CASE ,original_sizes[0] ,is_bounding_box=_SCREAMING_SNAKE_CASE ) for box in input_boxes ] else: _lowercase : str = [ self._normalize_coordinates(self.target_size ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,is_bounding_box=_SCREAMING_SNAKE_CASE ) for box, original_size in zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ] _lowercase : str = np.array(_SCREAMING_SNAKE_CASE ) if input_boxes is not None: if return_tensors == "pt": _lowercase : Any = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default _lowercase : Union[str, Any] = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": _lowercase : Dict = tf.convert_to_tensor(_SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default _lowercase : int = tf.expand_dims(_SCREAMING_SNAKE_CASE ,1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes} ) if input_points is not None: if return_tensors == "pt": _lowercase : Optional[int] = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # point batch size of 1 by default _lowercase : List[str] = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": _lowercase : Any = tf.convert_to_tensor(_SCREAMING_SNAKE_CASE ) # point batch size of 1 by default _lowercase : Optional[int] = tf.expand_dims(_SCREAMING_SNAKE_CASE ,1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points} ) if input_labels is not None: if return_tensors == "pt": _lowercase : Union[str, Any] = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # point batch size of 1 by default _lowercase : Any = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": _lowercase : int = tf.convert_to_tensor(_SCREAMING_SNAKE_CASE ) # point batch size of 1 by default _lowercase : Tuple = tf.expand_dims(_SCREAMING_SNAKE_CASE ,1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels} ) return encoding_image_processor def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Any = max([point.shape[0] for point in input_points] ) _lowercase : Dict = [] for i, point in enumerate(_SCREAMING_SNAKE_CASE ): if point.shape[0] != expected_nb_points: _lowercase : Tuple = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] ,axis=0 ) _lowercase : str = np.append(input_labels[i] ,[self.point_pad_value] ) processed_input_points.append(_SCREAMING_SNAKE_CASE ) _lowercase : Tuple = processed_input_points return input_points, input_labels def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_=False ): _lowercase : Dict = original_size _lowercase : Optional[int] = self.image_processor._get_preprocess_shape(_SCREAMING_SNAKE_CASE ,longest_edge=_SCREAMING_SNAKE_CASE ) _lowercase : int = deepcopy(_SCREAMING_SNAKE_CASE ).astype(_SCREAMING_SNAKE_CASE ) if is_bounding_box: _lowercase : Tuple = coords.reshape(-1 ,2 ,2 ) _lowercase : str = coords[..., 0] * (new_w / old_w) _lowercase : str = coords[..., 1] * (new_h / old_h) if is_bounding_box: _lowercase : List[Any] = coords.reshape(-1 ,4 ) return coords def lowerCamelCase__ ( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,): if input_points is not None: if hasattr(_SCREAMING_SNAKE_CASE ,"""numpy""" ): # Checks for TF or Torch tensor _lowercase : Dict = input_points.numpy().tolist() if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) or not isinstance(input_points[0] ,_SCREAMING_SNAKE_CASE ): raise ValueError("""Input points must be a list of list of floating points.""" ) _lowercase : Optional[int] = [np.array(_SCREAMING_SNAKE_CASE ) for input_point in input_points] else: _lowercase : Union[str, Any] = None if input_labels is not None: if hasattr(_SCREAMING_SNAKE_CASE ,"""numpy""" ): _lowercase : Any = input_labels.numpy().tolist() if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) or not isinstance(input_labels[0] ,_SCREAMING_SNAKE_CASE ): raise ValueError("""Input labels must be a list of list integers.""" ) _lowercase : Dict = [np.array(_SCREAMING_SNAKE_CASE ) for label in input_labels] else: _lowercase : Dict = None if input_boxes is not None: if hasattr(_SCREAMING_SNAKE_CASE ,"""numpy""" ): _lowercase : List[Any] = input_boxes.numpy().tolist() if ( not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0] ,_SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0][0] ,_SCREAMING_SNAKE_CASE ) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""" ) _lowercase : Dict = [np.array(_SCREAMING_SNAKE_CASE ).astype(np.floataa ) for box in input_boxes] else: _lowercase : List[Any] = None return input_points, input_labels, input_boxes @property def lowerCamelCase__ ( self ): _lowercase : Any = self.image_processor.model_input_names return list(dict.fromkeys(_SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return self.image_processor.post_process_masks(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE )
364
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL UpperCAmelCase: List[Any] = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): def constraint_to_multiple_of(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=0 , __UpperCAmelCase=None ): _lowercase : Union[str, Any] = round(val / multiple ) * multiple if max_val is not None and x > max_val: _lowercase : str = math.floor(val / multiple ) * multiple if x < min_val: _lowercase : Dict = math.ceil(val / multiple ) * multiple return x _lowercase : List[str] = (output_size, output_size) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else output_size _lowercase , _lowercase : List[Any] = get_image_size(__UpperCAmelCase ) _lowercase , _lowercase : Union[str, Any] = output_size # determine new height and width _lowercase : str = output_height / input_height _lowercase : List[Any] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _lowercase : str = scale_width else: # fit height _lowercase : int = scale_height _lowercase : List[Any] = constraint_to_multiple_of(scale_height * input_height , multiple=__UpperCAmelCase ) _lowercase : Optional[Any] = constraint_to_multiple_of(scale_width * input_width , multiple=__UpperCAmelCase ) return (new_height, new_width) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["pixel_values"] def __init__( self ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = PILImageResampling.BILINEAR ,UpperCAmelCase_ = False ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = 1 / 2_55 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) _lowercase : List[Any] = size if size is not None else {"""height""": 3_84, """width""": 3_84} _lowercase : str = get_size_dict(UpperCAmelCase_ ) _lowercase : Tuple = do_resize _lowercase : Any = size _lowercase : List[Any] = keep_aspect_ratio _lowercase : Any = ensure_multiple_of _lowercase : str = resample _lowercase : Optional[Any] = do_rescale _lowercase : List[Any] = rescale_factor _lowercase : Union[str, Any] = do_normalize _lowercase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowercase : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = False ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = PILImageResampling.BICUBIC ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): _lowercase : Optional[Any] = get_size_dict(UpperCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _lowercase : Dict = get_resize_output_image_size( UpperCAmelCase_ ,output_size=(size["""height"""], size["""width"""]) ,keep_aspect_ratio=UpperCAmelCase_ ,multiple=UpperCAmelCase_ ,) return resize(UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): return rescale(UpperCAmelCase_ ,scale=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): return normalize(UpperCAmelCase_ ,mean=UpperCAmelCase_ ,std=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = ChannelDimension.FIRST ,**UpperCAmelCase_ ,): _lowercase : Any = do_resize if do_resize is not None else self.do_resize _lowercase : List[str] = size if size is not None else self.size _lowercase : int = get_size_dict(UpperCAmelCase_ ) _lowercase : Any = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _lowercase : List[str] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _lowercase : List[str] = resample if resample is not None else self.resample _lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _lowercase : Any = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase : str = do_normalize if do_normalize is not None else self.do_normalize _lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean _lowercase : int = image_std if image_std is not None else self.image_std _lowercase : Union[str, Any] = make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _lowercase : int = [to_numpy_array(UpperCAmelCase_ ) for image in images] if do_resize: _lowercase : Union[str, Any] = [self.resize(image=UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ) for image in images] if do_rescale: _lowercase : int = [self.rescale(image=UpperCAmelCase_ ,scale=UpperCAmelCase_ ) for image in images] if do_normalize: _lowercase : str = [self.normalize(image=UpperCAmelCase_ ,mean=UpperCAmelCase_ ,std=UpperCAmelCase_ ) for image in images] _lowercase : Tuple = [to_channel_dimension_format(UpperCAmelCase_ ,UpperCAmelCase_ ) for image in images] _lowercase : int = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase_ ,tensor_type=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): _lowercase : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(UpperCAmelCase_ ): _lowercase : Tuple = target_sizes.numpy() _lowercase : Optional[Any] = [] for idx in range(len(UpperCAmelCase_ ) ): _lowercase : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode="""bilinear""" ,align_corners=UpperCAmelCase_ ) _lowercase : Optional[int] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase_ ) else: _lowercase : Union[str, Any] = logits.argmax(dim=1 ) _lowercase : Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
336
0
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Optional[Any] = len(_a ) while cur > 1: # Find the maximum number in arr _lowercase : Tuple = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi _lowercase : Optional[Any] = arr[mi::-1] + arr[mi + 1 : len(_a )] # Reverse whole list _lowercase : Union[str, Any] = arr[cur - 1 :: -1] + arr[cur : len(_a )] cur -= 1 return arr if __name__ == "__main__": UpperCAmelCase: int = input("""Enter numbers separated by a comma:\n""").strip() UpperCAmelCase: Optional[Any] = [int(item) for item in user_input.split(""",""")] print(pancake_sort(unsorted))
365
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCAmelCase: Optional[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCAmelCase: Tuple = [0, 25, 50] UpperCAmelCase: List[Any] = [25, 50, 75] UpperCAmelCase: Optional[int] = fuzz.membership.trimf(X, abca) UpperCAmelCase: Any = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCAmelCase: List[Any] = np.ones(75) UpperCAmelCase: Any = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) UpperCAmelCase: str = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) UpperCAmelCase: Optional[int] = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) UpperCAmelCase: List[Any] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) UpperCAmelCase: Optional[int] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] UpperCAmelCase: int = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) UpperCAmelCase: int = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] UpperCAmelCase: List[Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] UpperCAmelCase: int = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("""Young""") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("""Middle aged""") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("""union""") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("""intersection""") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("""complement_a""") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("""difference a/b""") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("""alg_sum""") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("""alg_product""") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("""bdd_sum""") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("""bdd_difference""") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
336
0
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = """Wav2Vec2FeatureExtractor""" SCREAMING_SNAKE_CASE_ : Tuple = """AutoTokenizer""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): super().__init__(_lowercase ,_lowercase ) _lowercase : int = self.feature_extractor _lowercase : List[Any] = False @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): try: return super().from_pretrained(_lowercase ,**_lowercase ) except OSError: warnings.warn( f"""Loading a tokenizer inside {cls.__name__} from a config that does not""" """ include a `tokenizer_class` attribute is deprecated and will be """ """removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`""" """ attribute to either your `config.json` or `tokenizer_config.json` """ """file to suppress this warning: """ ,_lowercase ,) _lowercase : str = WavaVecaFeatureExtractor.from_pretrained(_lowercase ,**_lowercase ) _lowercase : Optional[int] = WavaVecaCTCTokenizer.from_pretrained(_lowercase ,**_lowercase ) return cls(feature_extractor=_lowercase ,tokenizer=_lowercase ) def __call__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowercase ,**_lowercase ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) _lowercase : List[str] = kwargs.pop("""raw_speech""" ) else: _lowercase : Dict = kwargs.pop("""audio""" ,_lowercase ) _lowercase : List[str] = kwargs.pop("""sampling_rate""" ,_lowercase ) _lowercase : Optional[int] = kwargs.pop("""text""" ,_lowercase ) if len(_lowercase ) > 0: _lowercase : Tuple = args[0] _lowercase : str = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: _lowercase : Optional[Any] = self.feature_extractor(_lowercase ,*_lowercase ,sampling_rate=_lowercase ,**_lowercase ) if text is not None: _lowercase : Any = self.tokenizer(_lowercase ,**_lowercase ) if text is None: return inputs elif audio is None: return encodings else: _lowercase : Union[str, Any] = encodings["""input_ids"""] return inputs def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_lowercase ,**_lowercase ) _lowercase : Tuple = kwargs.pop("""input_features""" ,_lowercase ) _lowercase : Tuple = kwargs.pop("""labels""" ,_lowercase ) if len(_lowercase ) > 0: _lowercase : int = args[0] _lowercase : Dict = args[1:] if input_features is not None: _lowercase : str = self.feature_extractor.pad(_lowercase ,*_lowercase ,**_lowercase ) if labels is not None: _lowercase : List[Any] = self.tokenizer.pad(_lowercase ,**_lowercase ) if labels is None: return input_features elif input_features is None: return labels else: _lowercase : Union[str, Any] = labels["""input_ids"""] return input_features def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return self.tokenizer.batch_decode(*_lowercase ,**_lowercase ) def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return self.tokenizer.decode(*_lowercase ,**_lowercase ) @contextmanager def lowerCamelCase__ ( self ): warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) _lowercase : Optional[int] = True _lowercase : str = self.tokenizer yield _lowercase : Any = self.feature_extractor _lowercase : Optional[int] = False
366
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ): _lowercase : str = tempfile.mkdtemp() # fmt: off _lowercase : List[Any] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _lowercase : Optional[int] = dict(zip(UpperCAmelCase_ ,range(len(UpperCAmelCase_ ) ) ) ) _lowercase : Optional[int] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] _lowercase : Optional[int] = {"""unk_token""": """<unk>"""} _lowercase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _lowercase : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) _lowercase : Dict = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } _lowercase : List[Any] = os.path.join(self.tmpdirname ,UpperCAmelCase_ ) with open(self.image_processor_file ,"""w""" ,encoding="""utf-8""" ) as fp: json.dump(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPTokenizer.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPImageProcessor.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] _lowercase : Tuple = [Image.fromarray(np.moveaxis(UpperCAmelCase_ ,0 ,-1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.get_tokenizer() _lowercase : List[Any] = self.get_rust_tokenizer() _lowercase : List[Any] = self.get_image_processor() _lowercase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) _lowercase : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname ,use_fast=UpperCAmelCase_ ) _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) _lowercase : List[str] = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer ,UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : str = CLIPProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowercase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) _lowercase : Optional[int] = self.get_image_processor(do_normalize=UpperCAmelCase_ ,padding_value=1.0 ) _lowercase : int = CLIPProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=UpperCAmelCase_ ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : Optional[int] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : int = self.prepare_image_inputs() _lowercase : str = image_processor(UpperCAmelCase_ ,return_tensors="""np""" ) _lowercase : int = processor(images=UpperCAmelCase_ ,return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : Optional[Any] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : List[Any] = """lower newer""" _lowercase : Any = processor(text=UpperCAmelCase_ ) _lowercase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : str = """lower newer""" _lowercase : List[Any] = self.prepare_image_inputs() _lowercase : Optional[int] = processor(text=UpperCAmelCase_ ,images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowerCamelCase__ ( self ): _lowercase : Dict = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowercase : int = processor.batch_decode(UpperCAmelCase_ ) _lowercase : Tuple = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : Optional[Any] = """lower newer""" _lowercase : Any = self.prepare_image_inputs() _lowercase : Optional[int] = processor(text=UpperCAmelCase_ ,images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
336
0
"""simple docstring""" from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase: str = logging.get_logger(__name__) UpperCAmelCase: Optional[int] = { """nielsr/canine-s""": 2_048, } # Unicode defines 1,114,112 total “codepoints” UpperCAmelCase: Tuple = 1_114_112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py UpperCAmelCase: List[Any] = 0 UpperCAmelCase: List[Any] = 0xe0_00 UpperCAmelCase: str = 0xe0_01 UpperCAmelCase: Union[str, Any] = 0xe0_02 UpperCAmelCase: Optional[int] = 0xe0_03 UpperCAmelCase: Union[str, Any] = 0xe0_04 # Maps special codepoints to human-readable names. UpperCAmelCase: List[str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: """[CLS]""", SEP: """[SEP]""", BOS: """[BOS]""", MASK: """[MASK]""", PAD: """[PAD]""", RESERVED: """[RESERVED]""", } # Maps special codepoint human-readable names to their codepoint values. UpperCAmelCase: Dict = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class UpperCamelCase ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self ,UpperCAmelCase_=chr(_UpperCAmelCase ) ,UpperCAmelCase_=chr(_UpperCAmelCase ) ,UpperCAmelCase_=chr(_UpperCAmelCase ) ,UpperCAmelCase_=chr(_UpperCAmelCase ) ,UpperCAmelCase_=chr(_UpperCAmelCase ) ,UpperCAmelCase_=chr(_UpperCAmelCase ) ,UpperCAmelCase_=False ,UpperCAmelCase_=20_48 ,**UpperCAmelCase_ ,): _lowercase : List[Any] = AddedToken(_UpperCAmelCase ,lstrip=_UpperCAmelCase ,rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase ,_UpperCAmelCase ) else bos_token _lowercase : Optional[Any] = AddedToken(_UpperCAmelCase ,lstrip=_UpperCAmelCase ,rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase ,_UpperCAmelCase ) else eos_token _lowercase : int = AddedToken(_UpperCAmelCase ,lstrip=_UpperCAmelCase ,rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase ,_UpperCAmelCase ) else sep_token _lowercase : Optional[Any] = AddedToken(_UpperCAmelCase ,lstrip=_UpperCAmelCase ,rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase ,_UpperCAmelCase ) else cls_token _lowercase : List[Any] = AddedToken(_UpperCAmelCase ,lstrip=_UpperCAmelCase ,rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase ,_UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowercase : str = AddedToken(_UpperCAmelCase ,lstrip=_UpperCAmelCase ,rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase ,_UpperCAmelCase ) else mask_token super().__init__( bos_token=_UpperCAmelCase ,eos_token=_UpperCAmelCase ,sep_token=_UpperCAmelCase ,cls_token=_UpperCAmelCase ,pad_token=_UpperCAmelCase ,mask_token=_UpperCAmelCase ,add_prefix_space=_UpperCAmelCase ,model_max_length=_UpperCAmelCase ,**_UpperCAmelCase ,) # Creates a mapping for looking up the IDs of special symbols. _lowercase : Any = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): _lowercase : Any = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. _lowercase : Optional[int] = { codepoint: name for name, codepoint in self._special_codepoints.items() } _lowercase : str = UNICODE_VOCAB_SIZE _lowercase : Optional[Any] = len(self._special_codepoints ) @property def lowerCamelCase__ ( self ): return self._unicode_vocab_size def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return list(_UpperCAmelCase ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): try: return ord(_UpperCAmelCase ) except TypeError: raise ValueError(f"""invalid token: \'{token}\'""" ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(_UpperCAmelCase ) except TypeError: raise ValueError(f"""invalid id: {index}""" ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return "".join(_UpperCAmelCase ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): _lowercase : str = [self.sep_token_id] _lowercase : Union[str, Any] = [self.cls_token_id] _lowercase : Dict = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase ,token_ids_a=_UpperCAmelCase ,already_has_special_tokens=_UpperCAmelCase ) _lowercase : Optional[Any] = [1] + ([0] * len(_UpperCAmelCase )) + [1] if token_ids_a is not None: result += ([0] * len(_UpperCAmelCase )) + [1] return result def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): _lowercase : Union[str, Any] = [self.sep_token_id] _lowercase : int = [self.cls_token_id] _lowercase : Union[str, Any] = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): return ()
367
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int UpperCAmelCase: str = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class UpperCamelCase ( datasets.BuilderConfig ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[datasets.Features] = None def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , ): import pyspark def generate_fn(): _lowercase : List[Any] = df.select("""*""" , pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) ) for partition_id in partition_order: _lowercase : Optional[int] = df_with_partition_id.select("""*""" ).where(F"""part_id = {partition_id}""" ).drop("""part_id""" ) _lowercase : int = partition_df.collect() _lowercase : Dict = 0 for row in rows: yield F"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class UpperCamelCase ( _BaseExamplesIterable ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ,): _lowercase : Union[str, Any] = df _lowercase : List[str] = partition_order or range(self.df.rdd.getNumPartitions() ) _lowercase : Tuple = _generate_iterable_examples(self.df ,self.partition_order ) def __iter__( self ): yield from self.generate_examples_fn() def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : List[str] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(UpperCAmelCase_ ) return SparkExamplesIterable(self.df ,partition_order=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Union[str, Any] = self.split_shard_indices_by_worker(UpperCAmelCase_ ,UpperCAmelCase_ ) return SparkExamplesIterable(self.df ,partition_order=UpperCAmelCase_ ) @property def lowerCamelCase__ ( self ): return len(self.partition_order ) class UpperCamelCase ( datasets.DatasetBuilder ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = SparkConfig def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): import pyspark _lowercase : List[Any] = pyspark.sql.SparkSession.builder.getOrCreate() _lowercase : List[Any] = df _lowercase : int = working_dir super().__init__( cache_dir=UpperCAmelCase_ ,config_name=str(self.df.semanticHash() ) ,**UpperCAmelCase_ ,) def lowerCamelCase__ ( self ): # Returns the path of the created file. def create_cache_and_write_probe(UpperCAmelCase_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir ,exist_ok=UpperCAmelCase_ ) _lowercase : Union[str, Any] = os.path.join(self._cache_dir ,"""fs_test""" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(UpperCAmelCase_ ,"""a""" ) return [probe_file] if self._spark.conf.get("""spark.master""" ,"""""" ).startswith("""local""" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: _lowercase : List[str] = ( self._spark.sparkContext.parallelize(range(1 ) ,1 ).mapPartitions(UpperCAmelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( """When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" ) def lowerCamelCase__ ( self ): return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def lowerCamelCase__ ( self ,UpperCAmelCase_ ): import pyspark def get_arrow_batch_size(UpperCAmelCase_ ): for batch in it: yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} ) _lowercase : List[str] = self.df.count() _lowercase : List[str] = df_num_rows if df_num_rows <= 1_00 else 1_00 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. _lowercase : Union[str, Any] = ( self.df.limit(UpperCAmelCase_ ) .repartition(1 ) .mapInArrow(UpperCAmelCase_ ,"""batch_bytes: long""" ) .agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) ) .collect()[0] .sample_bytes / sample_num_rows ) _lowercase : List[Any] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. _lowercase : int = min(UpperCAmelCase_ ,int(approx_total_size / max_shard_size ) ) _lowercase : List[Any] = self.df.repartition(UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): import pyspark _lowercase : Union[str, Any] = ParquetWriter if file_format == """parquet""" else ArrowWriter _lowercase : List[Any] = os.path.join(self._working_dir ,os.path.basename(UpperCAmelCase_ ) ) if self._working_dir else fpath _lowercase : Any = file_format == """parquet""" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. _lowercase : Union[str, Any] = self.config.features _lowercase : Optional[int] = self._writer_batch_size _lowercase : Optional[Any] = self._fs.storage_options def write_arrow(UpperCAmelCase_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. _lowercase : Any = pyspark.TaskContext().taskAttemptId() _lowercase : List[str] = next(UpperCAmelCase_ ,UpperCAmelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,) _lowercase : List[Any] = 0 _lowercase : int = writer_class( features=UpperCAmelCase_ ,path=working_fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,writer_batch_size=UpperCAmelCase_ ,storage_options=UpperCAmelCase_ ,embed_local_files=UpperCAmelCase_ ,) _lowercase : Optional[int] = pa.Table.from_batches([first_batch] ) writer.write_table(UpperCAmelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: _lowercase , _lowercase : Optional[Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,) shard_id += 1 _lowercase : Union[str, Any] = writer_class( features=writer._features ,path=working_fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,writer_batch_size=UpperCAmelCase_ ,storage_options=UpperCAmelCase_ ,embed_local_files=UpperCAmelCase_ ,) _lowercase : Dict = pa.Table.from_batches([batch] ) writer.write_table(UpperCAmelCase_ ) if writer._num_bytes > 0: _lowercase , _lowercase : Dict = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,) if working_fpath != fpath: for file in os.listdir(os.path.dirname(UpperCAmelCase_ ) ): _lowercase : Dict = os.path.join(os.path.dirname(UpperCAmelCase_ ) ,os.path.basename(UpperCAmelCase_ ) ) shutil.move(UpperCAmelCase_ ,UpperCAmelCase_ ) _lowercase : List[str] = ( self.df.mapInArrow(UpperCAmelCase_ ,"""task_id: long, num_examples: long, num_bytes: long""" ) .groupBy("""task_id""" ) .agg( pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) ,pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) ,pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) ,pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) ,) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = "arrow" ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): self._validate_cache_dir() _lowercase : Tuple = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(UpperCAmelCase_ ) _lowercase : Optional[int] = not is_remote_filesystem(self._fs ) _lowercase : Dict = os.path.join if is_local else posixpath.join _lowercase : int = """-TTTTT-SSSSS-of-NNNNN""" _lowercase : Optional[Any] = f"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" _lowercase : Dict = path_join(self._output_dir ,UpperCAmelCase_ ) _lowercase : List[Any] = 0 _lowercase : Optional[Any] = 0 _lowercase : int = 0 _lowercase : Any = [] _lowercase : Any = [] for task_id, content in self._prepare_split_single(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Tuple = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(UpperCAmelCase_ ) _lowercase : Optional[int] = total_num_examples _lowercase : List[Any] = total_num_bytes # should rename everything at the end logger.debug(f"""Renaming {total_shards} shards.""" ) if total_shards > 1: _lowercase : List[Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. _lowercase : Union[str, Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): rename( UpperCAmelCase_ ,fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,fpath.replace("""TTTTT-SSSSS""" ,f"""{global_shard_id:05d}""" ).replace("""NNNNN""" ,f"""{total_shards:05d}""" ) ,) _lowercase : Optional[Any] = [] _lowercase : List[str] = 0 for i in range(len(UpperCAmelCase_ ) ): _lowercase , _lowercase : List[str] = task_id_and_num_shards[i] for shard_id in range(UpperCAmelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(UpperCAmelCase_ ,len(UpperCAmelCase_ ) ).map(lambda UpperCAmelCase_ : _rename_shard(*UpperCAmelCase_ ) ).collect() else: # don't use any pattern _lowercase : Tuple = 0 _lowercase : Optional[Any] = task_id_and_num_shards[0][0] self._rename( fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,fpath.replace(UpperCAmelCase_ ,"""""" ) ,) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,): return SparkExamplesIterable(self.df )
336
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase: str = logging.get_logger(__name__) UpperCAmelCase: int = '''▁''' UpperCAmelCase: str = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''} UpperCAmelCase: List[str] = { '''vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''', }, '''monolingual_vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''', }, } UpperCAmelCase: int = {'''vinai/bartpho-syllable''': 1_024} class UpperCamelCase ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : int = ["""input_ids""", """attention_mask"""] def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_="<s>" ,UpperCAmelCase_="</s>" ,UpperCAmelCase_="</s>" ,UpperCAmelCase_="<s>" ,UpperCAmelCase_="<unk>" ,UpperCAmelCase_="<pad>" ,UpperCAmelCase_="<mask>" ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): # Mask token behave like a normal word, i.e. include the space before it _lowercase : Optional[int] = AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) else mask_token _lowercase : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase ,eos_token=__lowerCamelCase ,unk_token=__lowerCamelCase ,sep_token=__lowerCamelCase ,cls_token=__lowerCamelCase ,pad_token=__lowerCamelCase ,mask_token=__lowerCamelCase ,sp_model_kwargs=self.sp_model_kwargs ,**__lowerCamelCase ,) _lowercase : int = vocab_file _lowercase : Optional[int] = monolingual_vocab_file _lowercase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCamelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _lowercase : Optional[Any] = {} _lowercase : Optional[Any] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__lowerCamelCase ) not in self.fairseq_tokens_to_ids: _lowercase : Tuple = cnt cnt += 1 with open(__lowerCamelCase ,"""r""" ,encoding="""utf-8""" ) as f: for line in f.readlines(): _lowercase : int = line.strip().split()[0] _lowercase : Any = len(self.fairseq_tokens_to_ids ) if str(__lowerCamelCase ) not in self.fairseq_tokens_to_ids: _lowercase : str = len(self.fairseq_tokens_to_ids ) _lowercase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): _lowercase : int = self.__dict__.copy() _lowercase : Optional[int] = None _lowercase : List[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self ,UpperCAmelCase_ ): _lowercase : List[str] = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): _lowercase : Dict = {} _lowercase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowercase : Union[str, Any] = [self.cls_token_id] _lowercase : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase ,token_ids_a=__lowerCamelCase ,already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): _lowercase : Any = [self.sep_token_id] _lowercase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase__ ( self ): return len(self.fairseq_ids_to_tokens ) def lowerCamelCase__ ( self ): _lowercase : Tuple = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return self.sp_model.encode(__lowerCamelCase ,out_type=__lowerCamelCase ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return self.fairseq_ids_to_tokens[index] def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : int = """""".join(__lowerCamelCase ).replace(__lowerCamelCase ,""" """ ).strip() return out_string def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowercase : Tuple = os.path.join( __lowerCamelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _lowercase : List[Any] = os.path.join( __lowerCamelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] ,) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase ,"""wb""" ) as fi: _lowercase : List[str] = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __lowerCamelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file ,__lowerCamelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__lowerCamelCase ,"""w""" ,encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f"""{str(__lowerCamelCase )} \n""" ) return out_vocab_file, out_monolingual_vocab_file
368
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase: Optional[int] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = XLNetTokenizer SCREAMING_SNAKE_CASE_ : Dict = XLNetTokenizerFast SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Union[str, Any] = True def lowerCamelCase__ ( self ): super().setUp() # We have a SentencePiece fixture for testing _lowercase : Dict = XLNetTokenizer(UpperCAmelCase_ ,keep_accents=UpperCAmelCase_ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = """<s>""" _lowercase : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) ,UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<unk>""" ) self.assertEqual(vocab_keys[1] ,"""<s>""" ) self.assertEqual(vocab_keys[-1] ,"""<eod>""" ) self.assertEqual(len(UpperCAmelCase_ ) ,10_06 ) def lowerCamelCase__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size ,10_00 ) def lowerCamelCase__ ( self ): _lowercase : int = XLNetTokenizer(UpperCAmelCase_ ,keep_accents=UpperCAmelCase_ ) _lowercase : Union[str, Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCAmelCase_ ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) ,[2_85, 46, 10, 1_70, 3_82] ) _lowercase : Any = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] ,) _lowercase : List[Any] = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,[8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) _lowercase : Optional[Any] = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] ,) def lowerCamelCase__ ( self ): _lowercase : Dict = XLNetTokenizer(UpperCAmelCase_ ,do_lower_case=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] ,) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""▁he""", """ll""", """o"""] ) def lowerCamelCase__ ( self ): _lowercase : int = XLNetTokenizer(UpperCAmelCase_ ,do_lower_case=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] ,) @slow def lowerCamelCase__ ( self ): _lowercase : Dict = XLNetTokenizer.from_pretrained("""xlnet-base-cased""" ) _lowercase : int = tokenizer.encode("""sequence builders""" ,add_special_tokens=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=UpperCAmelCase_ ) _lowercase : Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) _lowercase : Dict = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ,UpperCAmelCase_ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def lowerCamelCase__ ( self ): # fmt: off _lowercase : Union[str, Any] = {"""input_ids""": [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ ,model_name="""xlnet-base-cased""" ,revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" ,)
336
0
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , ): _lowercase : int = {} if train_file is not None: _lowercase : Dict = [train_file] if eval_file is not None: _lowercase : Any = [eval_file] if test_file is not None: _lowercase : List[str] = [test_file] _lowercase : List[str] = datasets.load_dataset("""csv""" , data_files=a__ ) _lowercase : Tuple = list(ds[list(files.keys() )[0]].features.keys() ) _lowercase : int = features_name.pop(a__ ) _lowercase : int = list(set(ds[list(files.keys() )[0]][label_name] ) ) _lowercase : Dict = {label: i for i, label in enumerate(a__ )} _lowercase : List[str] = tokenizer.model_input_names _lowercase : Dict = {} if len(a__ ) == 1: for k in files.keys(): _lowercase : Any = ds[k].map( lambda __UpperCAmelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=a__ , max_length=a__ , padding="""max_length""" ) , batched=a__ , ) elif len(a__ ) == 2: for k in files.keys(): _lowercase : Tuple = ds[k].map( lambda __UpperCAmelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=a__ , max_length=a__ , padding="""max_length""" , ) , batched=a__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: _lowercase : str = {k: v for k, v in ex.items() if k in input_names} _lowercase : int = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: _lowercase : Any = {k: v for k, v in ex.items() if k in input_names} _lowercase : Dict = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: _lowercase : List[Any] = {k: v for k, v in ex.items() if k in input_names} _lowercase : int = labelaid[ex[label_name]] yield (d, label) _lowercase : Tuple = ( tf.data.Dataset.from_generator( a__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: _lowercase : int = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) _lowercase : Optional[int] = ( tf.data.Dataset.from_generator( a__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: _lowercase : Optional[int] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) _lowercase : Dict = ( tf.data.Dataset.from_generator( a__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: _lowercase : Optional[Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid UpperCAmelCase: Optional[int] = logging.getLogger(__name__) @dataclass class UpperCamelCase : """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = field(metadata={"help": "Which column contains the label"} ) SCREAMING_SNAKE_CASE_ : int = field(default=snake_case , metadata={"help": "The path of the training file"} ) SCREAMING_SNAKE_CASE_ : List[str] = field(default=snake_case , metadata={"help": "The path of the development file"} ) SCREAMING_SNAKE_CASE_ : Tuple = field(default=snake_case , metadata={"help": "The path of the test file"} ) SCREAMING_SNAKE_CASE_ : Any = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) SCREAMING_SNAKE_CASE_ : str = field( default=snake_case , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class UpperCamelCase : """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) SCREAMING_SNAKE_CASE_ : Any = field( default=snake_case , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ : List[str] = field( default=snake_case , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ : Tuple = field(default=snake_case , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. SCREAMING_SNAKE_CASE_ : Any = field( default=snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def __SCREAMING_SNAKE_CASE ( ): _lowercase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) _lowercase , _lowercase , _lowercase : Dict = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info( F"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ F"""16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowercase : List[str] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowercase , _lowercase , _lowercase , _lowercase : List[str] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=a__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) _lowercase : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(a__ ) , labelaid=a__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="""text-classification""" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): _lowercase : List[str] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(""".bin""" in model_args.model_name_or_path ) , config=a__ , cache_dir=model_args.cache_dir , ) def compute_metrics(__UpperCAmelCase ) -> Dict: _lowercase : int = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer _lowercase : List[str] = TFTrainer( model=a__ , args=a__ , train_dataset=a__ , eval_dataset=a__ , compute_metrics=a__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _lowercase : List[str] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _lowercase : Any = trainer.evaluate() _lowercase : List[Any] = os.path.join(training_args.output_dir , """eval_results.txt""" ) with open(a__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) results.update(a__ ) return results if __name__ == "__main__": main()
369
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
336
0
"""simple docstring""" from math import log from scipy.constants import Boltzmann, physical_constants UpperCAmelCase: Dict = 300 # TEMPERATURE (unit = K) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
370
"""simple docstring""" import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : int = [] for line in lines: _lowercase : Dict = re.sub(R"""#.*""" , """""" , __UpperCAmelCase ) # remove comments if line: filtered_lines.append(__UpperCAmelCase ) _lowercase : Tuple = """\n""".join(__UpperCAmelCase ) # Make a hash from all this code _lowercase : Tuple = full_str.encode("""utf-8""" ) return shaaaa(__UpperCAmelCase ).hexdigest() # get importable module names and hash for caching UpperCAmelCase: Tuple = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions UpperCAmelCase: List[str] = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) UpperCAmelCase: Any = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name UpperCAmelCase: Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
336
0
"""simple docstring""" import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem UpperCAmelCase: List[Any] = importlib.util.find_spec("""s3fs""") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 UpperCAmelCase: List[Any] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if "://" in dataset_path: _lowercase : Any = dataset_path.split("""://""" )[1] return dataset_path def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if fs is not None and fs.protocol != "file": return True else: return False def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Union[str, Any] = not is_remote_filesystem(__UpperCAmelCase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(__UpperCAmelCase ) , fs._strip_protocol(__UpperCAmelCase ) ) else: fs.mv(__UpperCAmelCase , __UpperCAmelCase , recursive=__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( ): if hasattr(fsspec.asyn , """reset_lock""" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: _lowercase : List[str] = None _lowercase : Union[str, Any] = None _lowercase : Dict = threading.Lock()
371
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
336
0
"""simple docstring""" from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class UpperCamelCase : """simple docstring""" SCREAMING_SNAKE_CASE_ : torch.Tensor # [batch_size x 3] SCREAMING_SNAKE_CASE_ : torch.Tensor # [batch_size x 3] SCREAMING_SNAKE_CASE_ : torch.Tensor # [batch_size x 3] SCREAMING_SNAKE_CASE_ : torch.Tensor # [batch_size x 3] SCREAMING_SNAKE_CASE_ : int SCREAMING_SNAKE_CASE_ : int SCREAMING_SNAKE_CASE_ : float SCREAMING_SNAKE_CASE_ : float SCREAMING_SNAKE_CASE_ : Tuple[int] def lowerCamelCase__ ( self ): assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def lowerCamelCase__ ( self ): return torch.from_numpy(np.array([self.width, self.height] ,dtype=np.floataa ) ) def lowerCamelCase__ ( self ): return torch.from_numpy(np.array([self.x_fov, self.y_fov] ,dtype=np.floataa ) ) def lowerCamelCase__ ( self ): _lowercase : Optional[int] = torch.arange(self.height * self.width ) _lowercase : Union[str, Any] = torch.stack( [ pixel_indices % self.width, torch.div(UpperCAmelCase_ ,self.width ,rounding_mode="""trunc""" ), ] ,axis=1 ,) return coords @property def lowerCamelCase__ ( self ): _lowercase , *_lowercase : Dict = self.shape _lowercase : Any = int(np.prod(UpperCAmelCase_ ) ) _lowercase : List[Any] = self.get_image_coords() _lowercase : int = torch.broadcast_to(coords.unsqueeze(0 ) ,[batch_size * inner_batch_size, *coords.shape] ) _lowercase : Any = self.get_camera_rays(UpperCAmelCase_ ) _lowercase : str = rays.view(UpperCAmelCase_ ,inner_batch_size * self.height * self.width ,2 ,3 ) return rays def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase , *_lowercase , _lowercase : Tuple = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _lowercase : Any = coords.view(UpperCAmelCase_ ,-1 ,2 ) _lowercase : Any = self.resolution() _lowercase : int = self.fov() _lowercase : Optional[int] = (flat.float() / (res - 1)) * 2 - 1 _lowercase : List[Any] = fracs * torch.tan(fov / 2 ) _lowercase : Any = fracs.view(UpperCAmelCase_ ,-1 ,2 ) _lowercase : Optional[int] = ( self.z.view(UpperCAmelCase_ ,1 ,3 ) + self.x.view(UpperCAmelCase_ ,1 ,3 ) * fracs[:, :, :1] + self.y.view(UpperCAmelCase_ ,1 ,3 ) * fracs[:, :, 1:] ) _lowercase : List[str] = directions / directions.norm(dim=-1 ,keepdim=UpperCAmelCase_ ) _lowercase : List[str] = torch.stack( [ torch.broadcast_to(self.origin.view(UpperCAmelCase_ ,1 ,3 ) ,[batch_size, directions.shape[1], 3] ), directions, ] ,dim=2 ,) return rays.view(UpperCAmelCase_ ,*UpperCAmelCase_ ,2 ,3 ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin ,x=self.x ,y=self.y ,z=self.z ,width=UpperCAmelCase_ ,height=UpperCAmelCase_ ,x_fov=self.x_fov ,y_fov=self.y_fov ,) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : str = [] _lowercase : str = [] _lowercase : Union[str, Any] = [] _lowercase : Optional[int] = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): _lowercase : int = np.array([np.sin(lowerCamelCase__ ), np.cos(lowerCamelCase__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _lowercase : Any = -z * 4 _lowercase : Any = np.array([np.cos(lowerCamelCase__ ), -np.sin(lowerCamelCase__ ), 0.0] ) _lowercase : List[str] = np.cross(lowerCamelCase__ , lowerCamelCase__ ) origins.append(lowerCamelCase__ ) xs.append(lowerCamelCase__ ) ys.append(lowerCamelCase__ ) zs.append(lowerCamelCase__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(lowerCamelCase__ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(lowerCamelCase__ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(lowerCamelCase__ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(lowerCamelCase__ , axis=0 ) ).float() , width=lowerCamelCase__ , height=lowerCamelCase__ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(lowerCamelCase__ )) , )
350
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( ): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] UpperCAmelCase: Any = generate_large_matrix() UpperCAmelCase: Dict = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid ) assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Tuple = 0 _lowercase : List[Any] = len(__UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _lowercase : Tuple = (left + right) // 2 _lowercase : List[Any] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _lowercase : Dict = mid + 1 else: _lowercase : Dict = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Any = 0 _lowercase : Optional[int] = len(grid[0] ) for i in range(len(__UpperCAmelCase ) ): _lowercase : Union[str, Any] = find_negative_index(grid[i][:bound] ) total += bound return (len(__UpperCAmelCase ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Tuple = 0 for row in grid: for i, number in enumerate(__UpperCAmelCase ): if number < 0: total += len(__UpperCAmelCase ) - i break return total def __SCREAMING_SNAKE_CASE ( ): from timeit import timeit print("""Running benchmarks""" ) _lowercase : Tuple = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _lowercase : Dict = timeit(F"""{func}(grid=grid)""" , setup=__UpperCAmelCase , number=500 ) print(F"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
336
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase: Dict = logging.get_logger(__name__) class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["pixel_values"] def __init__( self ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = PILImageResampling.BILINEAR ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = True ,UpperCAmelCase_ = 1 / 2_55 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): super().__init__(**_snake_case ) _lowercase : Optional[Any] = size if size is not None else {"shortest_edge": 2_56} _lowercase : Optional[Any] = get_size_dict(_snake_case ,default_to_square=_snake_case ) _lowercase : Optional[Any] = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} _lowercase : Dict = get_size_dict(_snake_case ,param_name="""crop_size""" ) _lowercase : str = do_resize _lowercase : Tuple = size _lowercase : Optional[Any] = resample _lowercase : Tuple = do_center_crop _lowercase : List[str] = crop_size _lowercase : List[str] = do_rescale _lowercase : List[str] = rescale_factor _lowercase : Tuple = do_normalize _lowercase : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowercase : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = PILImageResampling.BICUBIC ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): _lowercase : int = get_size_dict(_snake_case ,default_to_square=_snake_case ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _lowercase : Optional[int] = get_resize_output_image_size(_snake_case ,size=size["""shortest_edge"""] ,default_to_square=_snake_case ) return resize(_snake_case ,size=_snake_case ,resample=_snake_case ,data_format=_snake_case ,**_snake_case ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): _lowercase : Optional[Any] = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(_snake_case ,size=(size["""height"""], size["""width"""]) ,data_format=_snake_case ,**_snake_case ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ): return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): return normalize(_snake_case ,mean=_snake_case ,std=_snake_case ,data_format=_snake_case ,**_snake_case ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = ChannelDimension.FIRST ,**UpperCAmelCase_ ,): _lowercase : Tuple = do_resize if do_resize is not None else self.do_resize _lowercase : str = size if size is not None else self.size _lowercase : List[Any] = get_size_dict(_snake_case ,default_to_square=_snake_case ) _lowercase : List[str] = resample if resample is not None else self.resample _lowercase : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _lowercase : List[Any] = crop_size if crop_size is not None else self.crop_size _lowercase : Optional[int] = get_size_dict(_snake_case ,param_name="""crop_size""" ) _lowercase : Tuple = do_rescale if do_rescale is not None else self.do_rescale _lowercase : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize _lowercase : Dict = image_mean if image_mean is not None else self.image_mean _lowercase : List[Any] = image_std if image_std is not None else self.image_std _lowercase : Optional[Any] = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _lowercase : Any = [to_numpy_array(_snake_case ) for image in images] if do_resize: _lowercase : List[Any] = [self.resize(image=_snake_case ,size=_snake_case ,resample=_snake_case ) for image in images] if do_center_crop: _lowercase : List[Any] = [self.center_crop(image=_snake_case ,size=_snake_case ) for image in images] if do_rescale: _lowercase : str = [self.rescale(image=_snake_case ,scale=_snake_case ) for image in images] if do_normalize: _lowercase : Optional[Any] = [self.normalize(image=_snake_case ,mean=_snake_case ,std=_snake_case ) for image in images] _lowercase : Union[str, Any] = [to_channel_dimension_format(_snake_case ,_snake_case ) for image in images] _lowercase : List[Any] = {"pixel_values": images} return BatchFeature(data=_snake_case ,tensor_type=_snake_case ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): _lowercase : str = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_snake_case ) != len(_snake_case ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(_snake_case ): _lowercase : int = target_sizes.numpy() _lowercase : Dict = [] for idx in range(len(_snake_case ) ): _lowercase : Union[str, Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode="""bilinear""" ,align_corners=_snake_case ) _lowercase : int = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_snake_case ) else: _lowercase : Optional[int] = logits.argmax(dim=1 ) _lowercase : Optional[int] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
351
"""simple docstring""" import re from filelock import FileLock try: import nltk UpperCAmelCase: List[str] = True except (ImportError, ModuleNotFoundError): UpperCAmelCase: int = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): re.sub("""<n>""" , """""" , __UpperCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__UpperCAmelCase ) )
336
0
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase = 1000 ): _lowercase : Any = 2**power _lowercase : Optional[Any] = str(UpperCamelCase__ ) _lowercase : Union[str, Any] = list(UpperCamelCase__ ) _lowercase : Optional[int] = 0 for i in list_num: sum_of_num += int(UpperCamelCase__ ) return sum_of_num if __name__ == "__main__": UpperCAmelCase: str = int(input("""Enter the power of 2: """).strip()) print("""2 ^ """, power, """ = """, 2**power) UpperCAmelCase: Any = solution(power) print("""Sum of the digits is: """, result)
352
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=0.9_9_9 , __UpperCAmelCase="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCAmelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCAmelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _lowercase : str = [] for i in range(__UpperCAmelCase ): _lowercase : Any = i / num_diffusion_timesteps _lowercase : int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ) , __UpperCAmelCase ) ) return torch.tensor(__UpperCAmelCase , dtype=torch.floataa ) class UpperCamelCase ( snake_case , snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [e.name for e in KarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE_ : str = 2 @register_to_config def __init__( self ,UpperCAmelCase_ = 10_00 ,UpperCAmelCase_ = 0.00085 ,UpperCAmelCase_ = 0.012 ,UpperCAmelCase_ = "linear" ,UpperCAmelCase_ = None ,UpperCAmelCase_ = "epsilon" ,UpperCAmelCase_ = "linspace" ,UpperCAmelCase_ = 0 ,): if trained_betas is not None: _lowercase : str = torch.tensor(UpperCAmelCase_ ,dtype=torch.floataa ) elif beta_schedule == "linear": _lowercase : Optional[Any] = torch.linspace(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowercase : Any = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,UpperCAmelCase_ ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowercase : Any = betas_for_alpha_bar(UpperCAmelCase_ ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) _lowercase : Tuple = 1.0 - self.betas _lowercase : Dict = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ): if schedule_timesteps is None: _lowercase : Optional[int] = self.timesteps _lowercase : Union[str, Any] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _lowercase : Optional[Any] = 1 if len(UpperCAmelCase_ ) > 1 else 0 else: _lowercase : Dict = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep _lowercase : List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCamelCase__ ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,): _lowercase : str = self.index_for_timestep(UpperCAmelCase_ ) if self.state_in_first_order: _lowercase : Optional[Any] = self.sigmas[step_index] else: _lowercase : Dict = self.sigmas_interpol[step_index] _lowercase : Optional[int] = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,): _lowercase : List[str] = num_inference_steps _lowercase : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _lowercase : Dict = np.linspace(0 ,num_train_timesteps - 1 ,UpperCAmelCase_ ,dtype=UpperCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _lowercase : Union[str, Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : str = (np.arange(0 ,UpperCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _lowercase : str = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : Optional[int] = (np.arange(UpperCAmelCase_ ,0 ,-step_ratio )).round().copy().astype(UpperCAmelCase_ ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _lowercase : Union[str, Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _lowercase : Optional[Any] = torch.from_numpy(np.log(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) _lowercase : List[str] = np.interp(UpperCAmelCase_ ,np.arange(0 ,len(UpperCAmelCase_ ) ) ,UpperCAmelCase_ ) _lowercase : int = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _lowercase : Any = torch.from_numpy(UpperCAmelCase_ ).to(device=UpperCAmelCase_ ) # interpolate sigmas _lowercase : List[str] = sigmas.log().lerp(sigmas.roll(1 ).log() ,0.5 ).exp() _lowercase : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _lowercase : Tuple = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(UpperCAmelCase_ ).startswith("""mps""" ): # mps does not support float64 _lowercase : Tuple = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ,dtype=torch.floataa ) else: _lowercase : str = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ) # interpolate timesteps _lowercase : int = self.sigma_to_t(UpperCAmelCase_ ).to(UpperCAmelCase_ ,dtype=timesteps.dtype ) _lowercase : Union[str, Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) ,dim=-1 ).flatten() _lowercase : str = torch.cat([timesteps[:1], interleaved_timesteps] ) _lowercase : List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _lowercase : Optional[Any] = defaultdict(UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): # get log sigma _lowercase : Optional[Any] = sigma.log() # get distribution _lowercase : Optional[int] = log_sigma - self.log_sigmas[:, None] # get sigmas range _lowercase : Tuple = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _lowercase : List[Any] = low_idx + 1 _lowercase : int = self.log_sigmas[low_idx] _lowercase : Any = self.log_sigmas[high_idx] # interpolate sigmas _lowercase : Any = (low - log_sigma) / (low - high) _lowercase : Dict = w.clamp(0 ,1 ) # transform interpolation to time range _lowercase : List[str] = (1 - w) * low_idx + w * high_idx _lowercase : Optional[int] = t.view(sigma.shape ) return t @property def lowerCamelCase__ ( self ): return self.sample is None def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = True ,): _lowercase : Optional[int] = self.index_for_timestep(UpperCAmelCase_ ) # advance index counter by 1 _lowercase : str = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _lowercase : Any = self.sigmas[step_index] _lowercase : Any = self.sigmas_interpol[step_index + 1] _lowercase : Tuple = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _lowercase : Union[str, Any] = self.sigmas[step_index - 1] _lowercase : int = self.sigmas_interpol[step_index] _lowercase : Tuple = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _lowercase : Any = 0 _lowercase : int = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _lowercase : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : Optional[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _lowercase : str = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _lowercase : List[str] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _lowercase : Any = sigma_interpol - sigma_hat # store for 2nd order step _lowercase : List[Any] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _lowercase : Optional[Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _lowercase : Optional[Any] = sigma_next - sigma_hat _lowercase : Any = self.sample _lowercase : Optional[int] = None _lowercase : str = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): # Make sure sigmas and timesteps have the same device and dtype as original_samples _lowercase : int = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCAmelCase_ ): # mps does not support float64 _lowercase : str = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) _lowercase : Any = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: _lowercase : List[Any] = self.timesteps.to(original_samples.device ) _lowercase : Union[str, Any] = timesteps.to(original_samples.device ) _lowercase : List[Any] = [self.index_for_timestep(UpperCAmelCase_ ,UpperCAmelCase_ ) for t in timesteps] _lowercase : Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _lowercase : List[Any] = sigma.unsqueeze(-1 ) _lowercase : int = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
336
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase: List[Any] = logging.get_logger(__name__) class UpperCamelCase ( _lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = ["pixel_values"] def __init__( self ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = PILImageResampling.BILINEAR ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = True ,UpperCAmelCase_ = 1 / 2_55 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) _lowercase : List[Any] = size if size is not None else {"""shortest_edge""": 2_56} _lowercase : Any = get_size_dict(UpperCAmelCase_ ,default_to_square=UpperCAmelCase_ ) _lowercase : Dict = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} _lowercase : Dict = get_size_dict(UpperCAmelCase_ ) _lowercase : List[str] = do_resize _lowercase : List[Any] = size _lowercase : Optional[int] = resample _lowercase : Dict = do_center_crop _lowercase : Dict = crop_size _lowercase : Dict = do_rescale _lowercase : Any = rescale_factor _lowercase : Optional[int] = do_normalize _lowercase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowercase : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = PILImageResampling.BICUBIC ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): _lowercase : str = get_size_dict(UpperCAmelCase_ ,default_to_square=UpperCAmelCase_ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _lowercase : Any = get_resize_output_image_size(UpperCAmelCase_ ,size=size["""shortest_edge"""] ,default_to_square=UpperCAmelCase_ ) return resize(UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): _lowercase : List[Any] = get_size_dict(UpperCAmelCase_ ) return center_crop(UpperCAmelCase_ ,size=(size["""height"""], size["""width"""]) ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ): return rescale(UpperCAmelCase_ ,scale=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): return normalize(UpperCAmelCase_ ,mean=UpperCAmelCase_ ,std=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = ChannelDimension.FIRST ,**UpperCAmelCase_ ,): _lowercase : List[str] = do_resize if do_resize is not None else self.do_resize _lowercase : Dict = size if size is not None else self.size _lowercase : Union[str, Any] = get_size_dict(UpperCAmelCase_ ,default_to_square=UpperCAmelCase_ ) _lowercase : Optional[int] = resample if resample is not None else self.resample _lowercase : Any = do_center_crop if do_center_crop is not None else self.do_center_crop _lowercase : Tuple = crop_size if crop_size is not None else self.crop_size _lowercase : Any = get_size_dict(UpperCAmelCase_ ) _lowercase : Tuple = do_rescale if do_rescale is not None else self.do_rescale _lowercase : int = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase : Tuple = do_normalize if do_normalize is not None else self.do_normalize _lowercase : Union[str, Any] = image_mean if image_mean is not None else self.image_mean _lowercase : Optional[int] = image_std if image_std is not None else self.image_std _lowercase : Any = make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _lowercase : Optional[int] = [to_numpy_array(UpperCAmelCase_ ) for image in images] if do_resize: _lowercase : List[str] = [self.resize(image=UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ) for image in images] if do_center_crop: _lowercase : Any = [self.center_crop(image=UpperCAmelCase_ ,size=UpperCAmelCase_ ) for image in images] if do_rescale: _lowercase : List[Any] = [self.rescale(image=UpperCAmelCase_ ,scale=UpperCAmelCase_ ) for image in images] if do_normalize: _lowercase : Union[str, Any] = [self.normalize(image=UpperCAmelCase_ ,mean=UpperCAmelCase_ ,std=UpperCAmelCase_ ) for image in images] _lowercase : Optional[Any] = [to_channel_dimension_format(UpperCAmelCase_ ,UpperCAmelCase_ ) for image in images] _lowercase : Dict = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase_ ,tensor_type=UpperCAmelCase_ )
353
"""simple docstring""" import pprint import requests UpperCAmelCase: Tuple = """https://zenquotes.io/api""" def __SCREAMING_SNAKE_CASE ( ): return requests.get(API_ENDPOINT_URL + """/today""" ).json() def __SCREAMING_SNAKE_CASE ( ): return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": UpperCAmelCase: int = random_quotes() pprint.pprint(response)
336
0
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCamelCase ( datasets.BuilderConfig ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = None class UpperCamelCase ( datasets.ArrowBasedBuilder ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = PandasConfig def lowerCamelCase__ ( self ): return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _lowercase : Tuple = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCAmelCase_ ,(str, list, tuple) ): _lowercase : List[Any] = data_files if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowercase : str = [dl_manager.iter_files(UpperCAmelCase_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN ,gen_kwargs={"""files""": files} )] _lowercase : Optional[int] = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Optional[int] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowercase : Tuple = [dl_manager.iter_files(UpperCAmelCase_ ) for file in files] splits.append(datasets.SplitGenerator(name=UpperCAmelCase_ ,gen_kwargs={"""files""": files} ) ) return splits def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowercase : List[str] = table_cast(UpperCAmelCase_ ,self.config.features.arrow_schema ) return pa_table def lowerCamelCase__ ( self ,UpperCAmelCase_ ): for i, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase_ ) ): with open(UpperCAmelCase_ ,"""rb""" ) as f: _lowercase : str = pa.Table.from_pandas(pd.read_pickle(UpperCAmelCase_ ) ) yield i, self._cast_table(UpperCAmelCase_ )
354
"""simple docstring""" from __future__ import annotations from typing import TypedDict class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str SCREAMING_SNAKE_CASE_ : int def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(__UpperCAmelCase ) )] def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _lowercase : Tuple = all_rotations(__UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _lowercase : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__UpperCAmelCase ), } return response def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _lowercase : Optional[Any] = int(__UpperCAmelCase ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(__UpperCAmelCase ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _lowercase : int = [""""""] * len(__UpperCAmelCase ) for _ in range(len(__UpperCAmelCase ) ): for i in range(len(__UpperCAmelCase ) ): _lowercase : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": UpperCAmelCase: Optional[int] = """Provide a string that I will generate its BWT transform: """ UpperCAmelCase: int = input(entry_msg).strip() UpperCAmelCase: List[str] = bwt_transform(s) print( F'Burrows Wheeler transform for string \'{s}\' results ' F'in \'{result["bwt_string"]}\'' ) UpperCAmelCase: Union[str, Any] = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' ' F'we get original string \'{original_string}\'' )
336
0
"""simple docstring""" from manim import * class UpperCamelCase ( snake_case ): """simple docstring""" def lowerCamelCase__ ( self ): _lowercase : Any = Rectangle(height=0.5 ,width=0.5 ) _lowercase : Union[str, Any] = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) _lowercase : Union[str, Any] = [mem.copy() for i in range(6 )] _lowercase : Union[str, Any] = [mem.copy() for i in range(6 )] _lowercase : int = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ ,buff=0 ) _lowercase : Dict = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ ,buff=0 ) _lowercase : List[str] = VGroup(lowerCamelCase_ ,lowerCamelCase_ ).arrange(lowerCamelCase_ ,buff=0 ) _lowercase : List[str] = Text("""CPU""" ,font_size=24 ) _lowercase : Optional[Any] = Group(lowerCamelCase_ ,lowerCamelCase_ ).arrange(lowerCamelCase_ ,buff=0.5 ,aligned_edge=lowerCamelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase_ ) _lowercase : List[str] = [mem.copy() for i in range(1 )] _lowercase : int = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ ,buff=0 ) _lowercase : List[str] = Text("""GPU""" ,font_size=24 ) _lowercase : str = Group(lowerCamelCase_ ,lowerCamelCase_ ).arrange(lowerCamelCase_ ,buff=0.5 ,aligned_edge=lowerCamelCase_ ) gpu.align_to(lowerCamelCase_ ,lowerCamelCase_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCamelCase_ ) _lowercase : List[str] = [mem.copy() for i in range(6 )] _lowercase : List[str] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ ,buff=0 ) _lowercase : List[Any] = Text("""Model""" ,font_size=24 ) _lowercase : List[str] = Group(lowerCamelCase_ ,lowerCamelCase_ ).arrange(lowerCamelCase_ ,buff=0.5 ,aligned_edge=lowerCamelCase_ ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCamelCase_ ,run_time=1 ) ,Create(lowerCamelCase_ ,run_time=1 ) ,Create(lowerCamelCase_ ,run_time=1 ) ,) _lowercase : int = MarkupText( f"""First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.""" ,font_size=24 ,) _lowercase : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowercase : List[str] = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model""" ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase_ ,run_time=2.5 ) ,Write(lowerCamelCase_ ) ,Write(lowerCamelCase_ ) ) self.add(lowerCamelCase_ ) _lowercase : Any = [] _lowercase : int = [] _lowercase : int = [] for i, rect in enumerate(lowerCamelCase_ ): _lowercase : List[Any] = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase_ ,opacity=0.7 ) cpu_target.move_to(lowerCamelCase_ ) cpu_target.generate_target() _lowercase : List[Any] = 0.46 / 4 _lowercase : Optional[Any] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=lowerCamelCase_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target ,direction=lowerCamelCase_ ,buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=lowerCamelCase_ ,buff=0.0 ) cpu_targs.append(lowerCamelCase_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase_ ) ) second_animations.append(MoveToTarget(lowerCamelCase_ ,run_time=1.5 ) ) self.play(*lowerCamelCase_ ) self.play(*lowerCamelCase_ ) self.wait()
355
"""simple docstring""" from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __SCREAMING_SNAKE_CASE ( ): _lowercase : Dict = [randint(-1000 , 1000 ) for i in range(10 )] _lowercase : Tuple = randint(-5000 , 5000 ) return (arr, r) UpperCAmelCase: int = make_dataset() def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): for triplet in permutations(__UpperCAmelCase , 3 ): if sum(__UpperCAmelCase ) == target: return tuple(sorted(__UpperCAmelCase ) ) return (0, 0, 0) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): arr.sort() _lowercase : Optional[Any] = len(__UpperCAmelCase ) for i in range(n - 1 ): _lowercase , _lowercase : str = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __SCREAMING_SNAKE_CASE ( ): _lowercase : Tuple = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ _lowercase : Union[str, Any] = """ triplet_sum1(*dataset) """ _lowercase : Union[str, Any] = """ triplet_sum2(*dataset) """ _lowercase : Dict = repeat(setup=__UpperCAmelCase , stmt=__UpperCAmelCase , repeat=5 , number=10000 ) _lowercase : Any = repeat(setup=__UpperCAmelCase , stmt=__UpperCAmelCase , repeat=5 , number=10000 ) return (min(__UpperCAmelCase ), min(__UpperCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase: Any = solution_times() print(F'The time for naive implementation is {times[0]}.') print(F'The time for optimized implementation is {times[1]}.')
336
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase: Optional[int] = logging.get_logger(__name__) UpperCAmelCase: List[Any] = { 'sail/poolformer_s12': 'https://huggingface.co/sail/poolformer_s12/resolve/main/config.json', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class UpperCamelCase ( _lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = "poolformer" def __init__( self ,UpperCAmelCase_=3 ,UpperCAmelCase_=16 ,UpperCAmelCase_=16 ,UpperCAmelCase_=3 ,UpperCAmelCase_=4.0 ,UpperCAmelCase_=[2, 2, 6, 2] ,UpperCAmelCase_=[64, 1_28, 3_20, 5_12] ,UpperCAmelCase_=[7, 3, 3, 3] ,UpperCAmelCase_=[4, 2, 2, 2] ,UpperCAmelCase_=[2, 1, 1, 1] ,UpperCAmelCase_=4 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=True ,UpperCAmelCase_=1E-5 ,UpperCAmelCase_=0.02 ,**UpperCAmelCase_ ,): _lowercase : Tuple = num_channels _lowercase : int = patch_size _lowercase : Union[str, Any] = stride _lowercase : Dict = padding _lowercase : str = pool_size _lowercase : List[str] = hidden_sizes _lowercase : Tuple = mlp_ratio _lowercase : Tuple = depths _lowercase : List[str] = patch_sizes _lowercase : Tuple = strides _lowercase : Tuple = num_encoder_blocks _lowercase : List[Any] = drop_path_rate _lowercase : Optional[int] = hidden_act _lowercase : List[str] = use_layer_scale _lowercase : Optional[Any] = layer_scale_init_value _lowercase : Dict = initializer_range super().__init__(**lowercase_ ) class UpperCamelCase ( _lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = version.parse("1.11" ) @property def lowerCamelCase__ ( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase__ ( self ): return 2E-3
356
"""simple docstring""" import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE_ : Optional[int] = "BlipImageProcessor" SCREAMING_SNAKE_CASE_ : Tuple = "AutoTokenizer" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): super().__init__(UpperCAmelCase_ ,UpperCAmelCase_ ) # add QFormer tokenizer _lowercase : Optional[int] = qformer_tokenizer def __call__( self ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = True ,UpperCAmelCase_ = False ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = 0 ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): if images is None and text is None: raise ValueError("""You have to specify at least images or text.""" ) _lowercase : List[Any] = BatchFeature() if text is not None: _lowercase : List[str] = self.tokenizer( text=UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,stride=UpperCAmelCase_ ,pad_to_multiple_of=UpperCAmelCase_ ,return_attention_mask=UpperCAmelCase_ ,return_overflowing_tokens=UpperCAmelCase_ ,return_special_tokens_mask=UpperCAmelCase_ ,return_offsets_mapping=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ,return_length=UpperCAmelCase_ ,verbose=UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ,**UpperCAmelCase_ ,) encoding.update(UpperCAmelCase_ ) _lowercase : Dict = self.qformer_tokenizer( text=UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,stride=UpperCAmelCase_ ,pad_to_multiple_of=UpperCAmelCase_ ,return_attention_mask=UpperCAmelCase_ ,return_overflowing_tokens=UpperCAmelCase_ ,return_special_tokens_mask=UpperCAmelCase_ ,return_offsets_mapping=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ,return_length=UpperCAmelCase_ ,verbose=UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ,**UpperCAmelCase_ ,) _lowercase : str = qformer_text_encoding.pop("""input_ids""" ) _lowercase : int = qformer_text_encoding.pop("""attention_mask""" ) if images is not None: _lowercase : Optional[Any] = self.image_processor(UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ) encoding.update(UpperCAmelCase_ ) return encoding def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return self.tokenizer.batch_decode(*UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return self.tokenizer.decode(*UpperCAmelCase_ ,**UpperCAmelCase_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.tokenizer.model_input_names _lowercase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,**UpperCAmelCase_ ): if os.path.isfile(UpperCAmelCase_ ): raise ValueError(f"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(UpperCAmelCase_ ,exist_ok=UpperCAmelCase_ ) _lowercase : Any = os.path.join(UpperCAmelCase_ ,"""qformer_tokenizer""" ) self.qformer_tokenizer.save_pretrained(UpperCAmelCase_ ) return super().save_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): _lowercase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCAmelCase_ ,subfolder="""qformer_tokenizer""" ) _lowercase : Any = cls._get_arguments_from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) args.append(UpperCAmelCase_ ) return cls(*UpperCAmelCase_ )
336
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class UpperCamelCase ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = 'gpt_neox' def __init__( self ,UpperCAmelCase_=5_04_32 ,UpperCAmelCase_=61_44 ,UpperCAmelCase_=44 ,UpperCAmelCase_=64 ,UpperCAmelCase_=2_45_76 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.25 ,UpperCAmelCase_=1_00_00 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=20_48 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-5 ,UpperCAmelCase_=True ,UpperCAmelCase_=0 ,UpperCAmelCase_=2 ,UpperCAmelCase_=False ,UpperCAmelCase_=True ,UpperCAmelCase_=None ,**UpperCAmelCase_ ,): super().__init__(bos_token_id=lowerCamelCase__ ,eos_token_id=lowerCamelCase__ ,**lowerCamelCase__ ) _lowercase : int = vocab_size _lowercase : Optional[int] = max_position_embeddings _lowercase : List[Any] = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : Optional[Any] = num_attention_heads _lowercase : int = intermediate_size _lowercase : Union[str, Any] = hidden_act _lowercase : Optional[int] = rotary_pct _lowercase : Dict = rotary_emb_base _lowercase : int = attention_dropout _lowercase : Tuple = hidden_dropout _lowercase : str = classifier_dropout _lowercase : Tuple = initializer_range _lowercase : Optional[Any] = layer_norm_eps _lowercase : Tuple = use_cache _lowercase : Union[str, Any] = tie_word_embeddings _lowercase : List[Any] = use_parallel_residual _lowercase : Any = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( """The hidden size is not divisble by the number of attention heads! Make sure to update them!""" ) def lowerCamelCase__ ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling ,lowerCamelCase__ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"""got {self.rope_scaling}""" ) _lowercase : List[Any] = self.rope_scaling.get("""type""" ,lowerCamelCase__ ) _lowercase : Any = self.rope_scaling.get("""factor""" ,lowerCamelCase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowerCamelCase__ ,lowerCamelCase__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
357
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase: Tuple = logging.get_logger(__name__) UpperCAmelCase: List[Any] = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "trajectory_transformer" SCREAMING_SNAKE_CASE_ : Optional[int] = ["past_key_values"] SCREAMING_SNAKE_CASE_ : Tuple = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self ,UpperCAmelCase_=1_00 ,UpperCAmelCase_=5 ,UpperCAmelCase_=1 ,UpperCAmelCase_=1 ,UpperCAmelCase_=2_49 ,UpperCAmelCase_=6 ,UpperCAmelCase_=17 ,UpperCAmelCase_=25 ,UpperCAmelCase_=4 ,UpperCAmelCase_=4 ,UpperCAmelCase_=1_28 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.0006 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-12 ,UpperCAmelCase_=1 ,UpperCAmelCase_=True ,UpperCAmelCase_=1 ,UpperCAmelCase_=5_02_56 ,UpperCAmelCase_=5_02_56 ,**UpperCAmelCase_ ,): _lowercase : Dict = vocab_size _lowercase : List[str] = action_weight _lowercase : int = reward_weight _lowercase : List[Any] = value_weight _lowercase : List[str] = max_position_embeddings _lowercase : Any = block_size _lowercase : Any = action_dim _lowercase : List[str] = observation_dim _lowercase : Union[str, Any] = transition_dim _lowercase : str = learning_rate _lowercase : Tuple = n_layer _lowercase : Optional[int] = n_head _lowercase : List[str] = n_embd _lowercase : List[str] = embd_pdrop _lowercase : Optional[Any] = attn_pdrop _lowercase : List[Any] = resid_pdrop _lowercase : str = initializer_range _lowercase : Optional[Any] = layer_norm_eps _lowercase : List[Any] = kaiming_initializer_range _lowercase : List[Any] = use_cache super().__init__(pad_token_id=UpperCAmelCase_ ,bos_token_id=UpperCAmelCase_ ,eos_token_id=UpperCAmelCase_ ,**UpperCAmelCase_ )
336
0
class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ): _lowercase : int = len(lowercase_ ) _lowercase : Dict = [0] * len_array if len_array > 0: _lowercase : str = array[0] for i in range(1 ,lowercase_ ): _lowercase : List[Any] = self.prefix_sum[i - 1] + array[i] def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : Tuple = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowercase_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
358
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase: Any = logging.get_logger(__name__) UpperCAmelCase: List[str] = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = "instructblip_vision_model" def __init__( self ,UpperCAmelCase_=14_08 ,UpperCAmelCase_=61_44 ,UpperCAmelCase_=39 ,UpperCAmelCase_=16 ,UpperCAmelCase_=2_24 ,UpperCAmelCase_=14 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=1E-6 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=1E-10 ,UpperCAmelCase_=True ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) _lowercase : Optional[Any] = hidden_size _lowercase : Tuple = intermediate_size _lowercase : List[Any] = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[Any] = patch_size _lowercase : Optional[Any] = image_size _lowercase : Union[str, Any] = initializer_range _lowercase : Optional[Any] = attention_dropout _lowercase : List[Any] = layer_norm_eps _lowercase : Optional[int] = hidden_act _lowercase : Tuple = qkv_bias @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): cls._set_token_in_kwargs(UpperCAmelCase_ ) _lowercase , _lowercase : List[Any] = cls.get_config_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": _lowercase : int = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = "instructblip_qformer" def __init__( self ,UpperCAmelCase_=3_05_22 ,UpperCAmelCase_=7_68 ,UpperCAmelCase_=12 ,UpperCAmelCase_=12 ,UpperCAmelCase_=30_72 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-12 ,UpperCAmelCase_=0 ,UpperCAmelCase_="absolute" ,UpperCAmelCase_=2 ,UpperCAmelCase_=14_08 ,**UpperCAmelCase_ ,): super().__init__(pad_token_id=UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : List[Any] = vocab_size _lowercase : List[Any] = hidden_size _lowercase : str = num_hidden_layers _lowercase : List[str] = num_attention_heads _lowercase : Optional[Any] = hidden_act _lowercase : int = intermediate_size _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : List[Any] = max_position_embeddings _lowercase : Tuple = initializer_range _lowercase : Optional[int] = layer_norm_eps _lowercase : Any = position_embedding_type _lowercase : Dict = cross_attention_frequency _lowercase : Optional[Any] = encoder_hidden_size @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): cls._set_token_in_kwargs(UpperCAmelCase_ ) _lowercase , _lowercase : Dict = cls.get_config_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": _lowercase : str = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "instructblip" SCREAMING_SNAKE_CASE_ : List[str] = True def __init__( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=32 ,**UpperCAmelCase_ ): super().__init__(**UpperCAmelCase_ ) if vision_config is None: _lowercase : str = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: _lowercase : Any = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: _lowercase : Optional[int] = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) _lowercase : int = InstructBlipVisionConfig(**UpperCAmelCase_ ) _lowercase : Optional[int] = InstructBlipQFormerConfig(**UpperCAmelCase_ ) _lowercase : Dict = text_config["""model_type"""] if """model_type""" in text_config else """opt""" _lowercase : str = CONFIG_MAPPING[text_model_type](**UpperCAmelCase_ ) _lowercase : str = self.text_config.tie_word_embeddings _lowercase : Union[str, Any] = self.text_config.is_encoder_decoder _lowercase : List[str] = num_query_tokens _lowercase : List[str] = self.vision_config.hidden_size _lowercase : Dict = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowercase : Union[str, Any] = 1.0 _lowercase : Dict = 0.02 @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,**UpperCAmelCase_ ,): return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**UpperCAmelCase_ ,) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowercase : int = self.vision_config.to_dict() _lowercase : Any = self.qformer_config.to_dict() _lowercase : Any = self.text_config.to_dict() _lowercase : Optional[int] = self.__class__.model_type return output
336
0
"""simple docstring""" import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=13 ,UpperCAmelCase_=7 ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,UpperCAmelCase_=False ,UpperCAmelCase_=True ,UpperCAmelCase_=99 ,UpperCAmelCase_=32 ,UpperCAmelCase_=5 ,UpperCAmelCase_=4 ,UpperCAmelCase_=37 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=16 ,UpperCAmelCase_=2 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=3 ,UpperCAmelCase_=4 ,UpperCAmelCase_=None ,): _lowercase : int = parent _lowercase : Any = batch_size _lowercase : Optional[Any] = seq_length _lowercase : Tuple = is_training _lowercase : List[Any] = use_input_mask _lowercase : int = use_token_type_ids _lowercase : Optional[Any] = use_labels _lowercase : Any = vocab_size _lowercase : str = hidden_size _lowercase : int = num_hidden_layers _lowercase : str = num_attention_heads _lowercase : Optional[Any] = intermediate_size _lowercase : str = hidden_act _lowercase : int = hidden_dropout_prob _lowercase : List[Any] = attention_probs_dropout_prob _lowercase : int = max_position_embeddings _lowercase : Any = type_vocab_size _lowercase : Any = type_sequence_label_size _lowercase : str = initializer_range _lowercase : List[str] = num_labels _lowercase : int = num_choices _lowercase : Optional[int] = scope def lowerCamelCase__ ( self ): _lowercase : Any = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowercase : Union[str, Any] = None if self.use_input_mask: _lowercase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Optional[int] = None if self.use_token_type_ids: _lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _lowercase : List[Any] = None _lowercase : Optional[int] = None _lowercase : str = None if self.use_labels: _lowercase : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _lowercase : Dict = ids_tensor([self.batch_size] ,self.num_choices ) _lowercase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self ): return LlamaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__A ,initializer_range=self.initializer_range ,) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Optional[Any] = LlamaModel(config=__A ) model.to(__A ) model.eval() _lowercase : Optional[int] = model(__A ,attention_mask=__A ) _lowercase : Any = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): _lowercase : List[str] = True _lowercase : str = LlamaModel(__A ) model.to(__A ) model.eval() _lowercase : int = model( __A ,attention_mask=__A ,encoder_hidden_states=__A ,encoder_attention_mask=__A ,) _lowercase : List[Any] = model( __A ,attention_mask=__A ,encoder_hidden_states=__A ,) _lowercase : List[str] = model(__A ,attention_mask=__A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): _lowercase : int = LlamaForCausalLM(config=__A ) model.to(__A ) model.eval() _lowercase : Tuple = model(__A ,attention_mask=__A ,labels=__A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): _lowercase : int = True _lowercase : List[Any] = True _lowercase : Tuple = LlamaForCausalLM(config=__A ) model.to(__A ) model.eval() # first forward pass _lowercase : Union[str, Any] = model( __A ,attention_mask=__A ,encoder_hidden_states=__A ,encoder_attention_mask=__A ,use_cache=__A ,) _lowercase : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _lowercase : int = ids_tensor((self.batch_size, 3) ,config.vocab_size ) _lowercase : Any = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and _lowercase : List[str] = torch.cat([input_ids, next_tokens] ,dim=-1 ) _lowercase : Union[str, Any] = torch.cat([input_mask, next_mask] ,dim=-1 ) _lowercase : List[Any] = model( __A ,attention_mask=__A ,encoder_hidden_states=__A ,encoder_attention_mask=__A ,output_hidden_states=__A ,)["""hidden_states"""][0] _lowercase : List[str] = model( __A ,attention_mask=__A ,encoder_hidden_states=__A ,encoder_attention_mask=__A ,past_key_values=__A ,output_hidden_states=__A ,)["""hidden_states"""][0] # select random slice _lowercase : Union[str, Any] = ids_tensor((1,) ,output_from_past.shape[-1] ).item() _lowercase : int = output_from_no_past[:, -3:, random_slice_idx].detach() _lowercase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A ,__A ,atol=1E-3 ) ) def lowerCamelCase__ ( self ): _lowercase : List[Any] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : int = config_and_inputs _lowercase : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( snake_case , snake_case , snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : List[str] = (LlamaForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : Optional[int] = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : Any = False def lowerCamelCase__ ( self ): _lowercase : Tuple = LlamaModelTester(self ) _lowercase : str = ConfigTester(self ,config_class=__A ,hidden_size=37 ) def lowerCamelCase__ ( self ): self.config_tester.run_common_tests() def lowerCamelCase__ ( self ): _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCamelCase__ ( self ): _lowercase : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowercase : Any = type self.model_tester.create_and_check_model(*__A ) def lowerCamelCase__ ( self ): _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : Optional[Any] = 3 _lowercase : List[Any] = input_dict["""input_ids"""] _lowercase : Union[str, Any] = input_ids.ne(1 ).to(__A ) _lowercase : Optional[Any] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) _lowercase : Union[str, Any] = LlamaForSequenceClassification(__A ) model.to(__A ) model.eval() _lowercase : Any = model(__A ,attention_mask=__A ,labels=__A ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase__ ( self ): _lowercase , _lowercase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : Dict = 3 _lowercase : List[Any] = """single_label_classification""" _lowercase : str = input_dict["""input_ids"""] _lowercase : Union[str, Any] = input_ids.ne(1 ).to(__A ) _lowercase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) _lowercase : Optional[int] = LlamaForSequenceClassification(__A ) model.to(__A ) model.eval() _lowercase : Dict = model(__A ,attention_mask=__A ,labels=__A ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase__ ( self ): _lowercase , _lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : Union[str, Any] = 3 _lowercase : Optional[Any] = """multi_label_classification""" _lowercase : Optional[int] = input_dict["""input_ids"""] _lowercase : List[str] = input_ids.ne(1 ).to(__A ) _lowercase : str = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) _lowercase : Tuple = LlamaForSequenceClassification(__A ) model.to(__A ) model.eval() _lowercase : Dict = model(__A ,attention_mask=__A ,labels=__A ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def lowerCamelCase__ ( self ): pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase , _lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : List[str] = ids_tensor([1, 10] ,config.vocab_size ) _lowercase : List[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _lowercase : Optional[int] = LlamaModel(__A ) original_model.to(__A ) original_model.eval() _lowercase : int = original_model(__A ).last_hidden_state _lowercase : Tuple = original_model(__A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _lowercase : Tuple = {"""type""": scaling_type, """factor""": 10.0} _lowercase : int = LlamaModel(__A ) scaled_model.to(__A ) scaled_model.eval() _lowercase : List[Any] = scaled_model(__A ).last_hidden_state _lowercase : Optional[Any] = scaled_model(__A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__A ,__A ,atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__A ,__A ,atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__A ,__A ,atol=1E-5 ) ) @require_torch class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def lowerCamelCase__ ( self ): _lowercase : List[str] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] _lowercase : Dict = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" ,device_map="""auto""" ) _lowercase : Optional[Any] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 _lowercase : Union[str, Any] = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) ,__A ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off _lowercase : Optional[int] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,__A ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def lowerCamelCase__ ( self ): _lowercase : Optional[int] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] _lowercase : Any = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" ,device_map="""auto""" ) _lowercase : Union[str, Any] = model(torch.tensor(__A ) ) # Expected mean on dim = -1 _lowercase : Union[str, Any] = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) ,__A ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off _lowercase : Tuple = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,__A ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] _lowercase : List[str] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ,device_map="""auto""" ) _lowercase : int = model(torch.tensor(__A ) ) # Expected mean on dim = -1 _lowercase : Tuple = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) ,__A ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off _lowercase : List[Any] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) ,__A ,atol=1E-2 ,rtol=1E-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def lowerCamelCase__ ( self ): _lowercase : Dict = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] _lowercase : List[Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" ,device_map="""auto""" ) _lowercase : Optional[Any] = model(torch.tensor(__A ) ) _lowercase : Dict = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] ,dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) ,__A ,atol=1E-2 ,rtol=1E-2 ) # fmt: off _lowercase : Optional[Any] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,__A ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip("""Model is curently gated""" ) @slow def lowerCamelCase__ ( self ): _lowercase : Any = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" _lowercase : int = """Simply put, the theory of relativity states that """ _lowercase : List[str] = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) _lowercase : Union[str, Any] = tokenizer.encode(__A ,return_tensors="""pt""" ) _lowercase : List[str] = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" ,device_map="""sequential""" ,use_safetensors=__A ) # greedy generation outputs _lowercase : Optional[int] = model.generate(__A ,max_new_tokens=64 ,top_p=__A ,temperature=1 ,do_sample=__A ) _lowercase : List[str] = tokenizer.decode(generated_ids[0] ,skip_special_tokens=__A ) self.assertEqual(__A ,__A )
359
"""simple docstring""" import cva import numpy as np class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): if k in (0.04, 0.06): _lowercase : Optional[Any] = k _lowercase : Optional[Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self ): return str(self.k ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : List[str] = cva.imread(UpperCAmelCase_ ,0 ) _lowercase , _lowercase : Dict = img.shape _lowercase : list[list[int]] = [] _lowercase : int = img.copy() _lowercase : List[str] = cva.cvtColor(UpperCAmelCase_ ,cva.COLOR_GRAY2RGB ) _lowercase , _lowercase : Optional[Any] = np.gradient(UpperCAmelCase_ ) _lowercase : Optional[int] = dx**2 _lowercase : Optional[Any] = dy**2 _lowercase : Optional[Any] = dx * dy _lowercase : List[str] = 0.04 _lowercase : Optional[Any] = self.window_size // 2 for y in range(UpperCAmelCase_ ,h - offset ): for x in range(UpperCAmelCase_ ,w - offset ): _lowercase : Optional[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : Dict = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : Union[str, Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : int = (wxx * wyy) - (wxy**2) _lowercase : Union[str, Any] = wxx + wyy _lowercase : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) ,0 ) color_img.itemset((y, x, 1) ,0 ) color_img.itemset((y, x, 2) ,2_55 ) return color_img, corner_list if __name__ == "__main__": UpperCAmelCase: Optional[int] = HarrisCorner(0.04, 3) UpperCAmelCase , UpperCAmelCase: List[Any] = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
336
0
"""simple docstring""" import os from collections.abc import Iterator def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase = "." ): for dir_path, dir_names, filenames in os.walk(__UpperCAmelCase ): _lowercase : List[Any] = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__UpperCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(__UpperCAmelCase , __UpperCAmelCase ).lstrip("""./""" ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return F"""{i * " "}*""" if i else "\n##" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : List[str] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__UpperCAmelCase ) or old_parts[i] != new_part) and new_part: print(F"""{md_prefix(__UpperCAmelCase )} {new_part.replace("_" , " " ).title()}""" ) return new_path def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase = "." ): _lowercase : Union[str, Any] = """""" for filepath in sorted(good_file_paths(__UpperCAmelCase ) ): _lowercase : Any = os.path.split(__UpperCAmelCase ) if filepath != old_path: _lowercase : Optional[int] = print_path(__UpperCAmelCase , __UpperCAmelCase ) _lowercase : str = (filepath.count(os.sep ) + 1) if filepath else 0 _lowercase : Optional[int] = F"""{filepath}/{filename}""".replace(""" """ , """%20""" ) _lowercase : Optional[int] = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(F"""{md_prefix(__UpperCAmelCase )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md(""".""")
360
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = LEDTokenizer SCREAMING_SNAKE_CASE_ : List[str] = LEDTokenizerFast SCREAMING_SNAKE_CASE_ : List[str] = True def lowerCamelCase__ ( self ): super().setUp() _lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _lowercase : List[Any] = dict(zip(UpperCAmelCase_ ,range(len(UpperCAmelCase_ ) ) ) ) _lowercase : Optional[int] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowercase : Dict = {"""unk_token""": """<unk>"""} _lowercase : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _lowercase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return "lower newer", "lower newer" @cached_property def lowerCamelCase__ ( self ): return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def lowerCamelCase__ ( self ): return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _lowercase : Any = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Tuple = tokenizer(UpperCAmelCase_ ,max_length=len(UpperCAmelCase_ ) ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) _lowercase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Dict = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIn("""input_ids""" ,UpperCAmelCase_ ) self.assertIn("""attention_mask""" ,UpperCAmelCase_ ) self.assertNotIn("""labels""" ,UpperCAmelCase_ ) self.assertNotIn("""decoder_attention_mask""" ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Dict = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Tuple = tokenizer(text_target=UpperCAmelCase_ ,max_length=32 ,padding="""max_length""" ,return_tensors="""pt""" ) self.assertEqual(32 ,targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : List[Any] = tokenizer( ["""I am a small frog""" * 10_24, """I am a small frog"""] ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual(batch.input_ids.shape ,(2, 51_22) ) @require_torch def lowerCamelCase__ ( self ): _lowercase : List[Any] = ["""A long paragraph for summarization."""] _lowercase : Dict = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Dict = tokenizer(UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : List[str] = tokenizer(text_target=UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : Union[str, Any] = inputs["""input_ids"""] _lowercase : List[str] = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : str = ["""Summary of the text.""", """Another summary."""] _lowercase : Optional[int] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _lowercase : Any = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ) _lowercase : str = [[0] * len(UpperCAmelCase_ ) for x in encoded_output["""input_ids"""]] _lowercase : Optional[int] = tokenizer.pad(UpperCAmelCase_ ) self.assertSequenceEqual(outputs["""global_attention_mask"""] ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): pass def lowerCamelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase : int = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Optional[int] = self.tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Dict = """A, <mask> AllenNLP sentence.""" _lowercase : List[Any] = tokenizer_r.encode_plus(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) _lowercase : Any = tokenizer_p.encode_plus(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) ,sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) ,sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) ,) _lowercase : str = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) _lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( UpperCAmelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( UpperCAmelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
336
0
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __SCREAMING_SNAKE_CASE ( ): raise RuntimeError("""CUDA out of memory.""" ) class UpperCamelCase ( nn.Module ): """simple docstring""" def __init__( self ): super().__init__() _lowercase : Optional[Any] = nn.Linear(3 ,4 ) _lowercase : List[Any] = nn.BatchNormad(4 ) _lowercase : List[str] = nn.Linear(4 ,5 ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return self.lineara(self.batchnorm(self.lineara(lowerCamelCase_ ) ) ) class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ): _lowercase : Any = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(UpperCAmelCase_ ): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCamelCase_ ,[1_28, 64, 32, 16, 8] ) def lowerCamelCase__ ( self ): _lowercase : List[str] = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(UpperCAmelCase_ ,UpperCAmelCase_ ): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga _lowercase , _lowercase : Union[str, Any] = mock_training_loop_function("""hello""" ) self.assertListEqual(lowerCamelCase_ ,[1_28, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] ,[8, """hello"""] ) def lowerCamelCase__ ( self ): @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(UpperCAmelCase_ ): pass with self.assertRaises(lowerCamelCase_ ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" ,cm.exception.args[0] ) def lowerCamelCase__ ( self ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(UpperCAmelCase_ ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCamelCase_ ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" ,cm.exception.args[0] ) def lowerCamelCase__ ( self ): @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCamelCase_ ) as cm: mock_training_loop_function(1_28 ,"""hello""" ,"""world""" ) self.assertIn("""Batch size was passed into `f`""" ,cm.exception.args[0] ) self.assertIn("""`f(arg1='hello', arg2='world')""" ,cm.exception.args[0] ) def lowerCamelCase__ ( self ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(UpperCAmelCase_ ): raise ValueError("""Oops, we had an error!""" ) with self.assertRaises(lowerCamelCase_ ) as cm: mock_training_loop_function() self.assertIn("""Oops, we had an error!""" ,cm.exception.args[0] ) @require_cuda def lowerCamelCase__ ( self ): _lowercase : int = torch.cuda.memory_allocated() _lowercase : Dict = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() ,lowerCamelCase_ ) _lowercase : Any = release_memory(lowerCamelCase_ ) self.assertEqual(torch.cuda.memory_allocated() ,lowerCamelCase_ )
361
"""simple docstring""" import argparse from collections import defaultdict def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : str = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Any = f.readlines() _lowercase : Optional[int] = F"""class {class_name}(""" _lowercase : List[str] = F"""{4 * " "}def {test_name}(""" _lowercase : List[Any] = F"""{8 * " "}{correct_line.split()[0]}""" _lowercase : int = F"""{16 * " "}{correct_line.split()[0]}""" _lowercase : str = False _lowercase : Optional[Any] = False _lowercase : Union[str, Any] = False _lowercase : Any = False _lowercase : int = 0 _lowercase : Tuple = 0 _lowercase : Union[str, Any] = [] for line in lines: if line.startswith(__UpperCAmelCase ): _lowercase : List[str] = True elif in_class and line.startswith(__UpperCAmelCase ): _lowercase : str = True elif in_class and in_func and (line.startswith(__UpperCAmelCase ) or line.startswith(__UpperCAmelCase )): _lowercase : Union[str, Any] = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _lowercase : Optional[int] = True if in_class and in_func and in_line: if ")" not in line: continue else: _lowercase : Optional[Any] = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * " "}{correct_line}""" ) _lowercase : Union[str, Any] = False else: new_lines.append(__UpperCAmelCase ) with open(__UpperCAmelCase , """w""" ) as f: for line in new_lines: f.write(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=None ): if fail is not None: with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Dict = {l.strip() for l in f.readlines()} else: _lowercase : int = None with open(__UpperCAmelCase , """r""" ) as f: _lowercase : int = f.readlines() _lowercase : int = defaultdict(__UpperCAmelCase ) for line in correct_lines: _lowercase , _lowercase , _lowercase , _lowercase : int = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase: List[Any] = argparse.ArgumentParser() parser.add_argument("""--correct_filename""", help="""filename of tests with expected result""") parser.add_argument("""--fail_filename""", help="""filename of test failures""", type=str, default=None) UpperCAmelCase: Any = parser.parse_args() main(args.correct_filename, args.fail_filename)
336
0
"""simple docstring""" from collections.abc import Sequence def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase = False ): if not arr: return 0 _lowercase : List[Any] = 0 if allow_empty_subarrays else float("""-inf""" ) _lowercase : Dict = 0.0 for num in arr: _lowercase : List[Any] = max(0 if allow_empty_subarrays else num , curr_sum + num ) _lowercase : Optional[Any] = max(__lowerCAmelCase , __lowerCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase: Any = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"""{max_subarray_sum(nums) = }""")
362
"""simple docstring""" UpperCAmelCase: List[str] = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
336
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCamelCase__ ( self ): _lowercase : Any = 1 _lowercase : str = 3 _lowercase : Any = (32, 32) _lowercase : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(lowerCAmelCase__ ) return image @property def lowerCamelCase__ ( self ): torch.manual_seed(0 ) _lowercase : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def lowerCamelCase__ ( self ): torch.manual_seed(0 ) _lowercase : Dict = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def lowerCamelCase__ ( self ): torch.manual_seed(0 ) _lowercase : int = RobertaSeriesConfig( hidden_size=32 ,project_dim=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=50_06 ,) return RobertaSeriesModelWithTransformation(lowerCAmelCase__ ) @property def lowerCamelCase__ ( self ): def extract(*UpperCAmelCase_ ,**UpperCAmelCase_ ): class UpperCamelCase : """simple docstring""" def __init__( self ): _lowercase : Dict = torch.ones([0] ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): self.pixel_values.to(lowerCAmelCase__ ) return self return Out() return extract def lowerCamelCase__ ( self ): _lowercase : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator _lowercase : Any = self.dummy_cond_unet _lowercase : Any = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) _lowercase : str = self.dummy_vae _lowercase : List[Any] = self.dummy_text_encoder _lowercase : Union[str, Any] = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) _lowercase : List[str] = 77 _lowercase : List[str] = self.dummy_image.to(lowerCAmelCase__ ) _lowercase : int = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _lowercase : str = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ ,scheduler=lowerCAmelCase__ ,vae=lowerCAmelCase__ ,text_encoder=lowerCAmelCase__ ,tokenizer=lowerCAmelCase__ ,safety_checker=lowerCAmelCase__ ,feature_extractor=self.dummy_extractor ,) _lowercase : Optional[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor ,do_normalize=lowerCAmelCase__ ) _lowercase : Tuple = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _lowercase : Dict = "A painting of a squirrel eating a burger" _lowercase : Union[str, Any] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _lowercase : List[str] = alt_pipe( [prompt] ,generator=lowerCAmelCase__ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,image=lowerCAmelCase__ ,) _lowercase : Tuple = output.images _lowercase : Union[str, Any] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _lowercase : List[str] = alt_pipe( [prompt] ,generator=lowerCAmelCase__ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,image=lowerCAmelCase__ ,return_dict=lowerCAmelCase__ ,)[0] _lowercase : List[Any] = image[0, -3:, -3:, -1] _lowercase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowercase : List[Any] = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.dummy_cond_unet _lowercase : Dict = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) _lowercase : List[Any] = self.dummy_vae _lowercase : Tuple = self.dummy_text_encoder _lowercase : str = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) _lowercase : List[Any] = 77 _lowercase : Tuple = self.dummy_image.to(lowerCAmelCase__ ) # put models in fp16 _lowercase : Optional[int] = unet.half() _lowercase : int = vae.half() _lowercase : Optional[Any] = bert.half() # make sure here that pndm scheduler skips prk _lowercase : Dict = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ ,scheduler=lowerCAmelCase__ ,vae=lowerCAmelCase__ ,text_encoder=lowerCAmelCase__ ,tokenizer=lowerCAmelCase__ ,safety_checker=lowerCAmelCase__ ,feature_extractor=self.dummy_extractor ,) _lowercase : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor ,do_normalize=lowerCAmelCase__ ) _lowercase : str = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _lowercase : List[Any] = "A painting of a squirrel eating a burger" _lowercase : Optional[Any] = torch.manual_seed(0 ) _lowercase : Union[str, Any] = alt_pipe( [prompt] ,generator=lowerCAmelCase__ ,num_inference_steps=2 ,output_type="""np""" ,image=lowerCAmelCase__ ,).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def lowerCamelCase__ ( self ): _lowercase : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) # resize to resolution that is divisible by 8 but not 16 or 32 _lowercase : str = init_image.resize((7_60, 5_04) ) _lowercase : Dict = "BAAI/AltDiffusion" _lowercase : List[str] = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ ,safety_checker=lowerCAmelCase__ ,) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() _lowercase : str = "A fantasy landscape, trending on artstation" _lowercase : str = torch.manual_seed(0 ) _lowercase : Any = pipe( prompt=lowerCAmelCase__ ,image=lowerCAmelCase__ ,strength=0.75 ,guidance_scale=7.5 ,generator=lowerCAmelCase__ ,output_type="""np""" ,) _lowercase : Optional[Any] = output.images[0] _lowercase : List[str] = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) _lowercase : Dict = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self ): _lowercase : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _lowercase : Optional[int] = init_image.resize((7_68, 5_12) ) _lowercase : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" ) _lowercase : List[str] = "BAAI/AltDiffusion" _lowercase : List[str] = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ ,safety_checker=lowerCAmelCase__ ,) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() _lowercase : Union[str, Any] = "A fantasy landscape, trending on artstation" _lowercase : Optional[Any] = torch.manual_seed(0 ) _lowercase : str = pipe( prompt=lowerCAmelCase__ ,image=lowerCAmelCase__ ,strength=0.75 ,guidance_scale=7.5 ,generator=lowerCAmelCase__ ,output_type="""np""" ,) _lowercase : str = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
363
"""simple docstring""" UpperCAmelCase: str = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ UpperCAmelCase: Any = [{"""type""": """code""", """content""": INSTALL_CONTENT}] UpperCAmelCase: int = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
336
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase: Dict = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: List[Any] = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: List[Any] = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: Optional[Any] = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys UpperCAmelCase: Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
364
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL UpperCAmelCase: List[Any] = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): def constraint_to_multiple_of(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=0 , __UpperCAmelCase=None ): _lowercase : Union[str, Any] = round(val / multiple ) * multiple if max_val is not None and x > max_val: _lowercase : str = math.floor(val / multiple ) * multiple if x < min_val: _lowercase : Dict = math.ceil(val / multiple ) * multiple return x _lowercase : List[str] = (output_size, output_size) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else output_size _lowercase , _lowercase : List[Any] = get_image_size(__UpperCAmelCase ) _lowercase , _lowercase : Union[str, Any] = output_size # determine new height and width _lowercase : str = output_height / input_height _lowercase : List[Any] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _lowercase : str = scale_width else: # fit height _lowercase : int = scale_height _lowercase : List[Any] = constraint_to_multiple_of(scale_height * input_height , multiple=__UpperCAmelCase ) _lowercase : Optional[Any] = constraint_to_multiple_of(scale_width * input_width , multiple=__UpperCAmelCase ) return (new_height, new_width) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["pixel_values"] def __init__( self ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = PILImageResampling.BILINEAR ,UpperCAmelCase_ = False ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = 1 / 2_55 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) _lowercase : List[Any] = size if size is not None else {"""height""": 3_84, """width""": 3_84} _lowercase : str = get_size_dict(UpperCAmelCase_ ) _lowercase : Tuple = do_resize _lowercase : Any = size _lowercase : List[Any] = keep_aspect_ratio _lowercase : Any = ensure_multiple_of _lowercase : str = resample _lowercase : Optional[Any] = do_rescale _lowercase : List[Any] = rescale_factor _lowercase : Union[str, Any] = do_normalize _lowercase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowercase : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = False ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = PILImageResampling.BICUBIC ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): _lowercase : Optional[Any] = get_size_dict(UpperCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _lowercase : Dict = get_resize_output_image_size( UpperCAmelCase_ ,output_size=(size["""height"""], size["""width"""]) ,keep_aspect_ratio=UpperCAmelCase_ ,multiple=UpperCAmelCase_ ,) return resize(UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): return rescale(UpperCAmelCase_ ,scale=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): return normalize(UpperCAmelCase_ ,mean=UpperCAmelCase_ ,std=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = ChannelDimension.FIRST ,**UpperCAmelCase_ ,): _lowercase : Any = do_resize if do_resize is not None else self.do_resize _lowercase : List[str] = size if size is not None else self.size _lowercase : int = get_size_dict(UpperCAmelCase_ ) _lowercase : Any = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _lowercase : List[str] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _lowercase : List[str] = resample if resample is not None else self.resample _lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _lowercase : Any = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase : str = do_normalize if do_normalize is not None else self.do_normalize _lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean _lowercase : int = image_std if image_std is not None else self.image_std _lowercase : Union[str, Any] = make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _lowercase : int = [to_numpy_array(UpperCAmelCase_ ) for image in images] if do_resize: _lowercase : Union[str, Any] = [self.resize(image=UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ) for image in images] if do_rescale: _lowercase : int = [self.rescale(image=UpperCAmelCase_ ,scale=UpperCAmelCase_ ) for image in images] if do_normalize: _lowercase : str = [self.normalize(image=UpperCAmelCase_ ,mean=UpperCAmelCase_ ,std=UpperCAmelCase_ ) for image in images] _lowercase : Tuple = [to_channel_dimension_format(UpperCAmelCase_ ,UpperCAmelCase_ ) for image in images] _lowercase : int = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase_ ,tensor_type=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): _lowercase : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(UpperCAmelCase_ ): _lowercase : Tuple = target_sizes.numpy() _lowercase : Optional[Any] = [] for idx in range(len(UpperCAmelCase_ ) ): _lowercase : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode="""bilinear""" ,align_corners=UpperCAmelCase_ ) _lowercase : Optional[int] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase_ ) else: _lowercase : Union[str, Any] = logits.argmax(dim=1 ) _lowercase : Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
336
0
"""simple docstring""" import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() UpperCAmelCase: Optional[int] = { """bart""": ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), """bert""": ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-base-cased-finetuned-mrpc""": ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """dpr""": ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), """gpt2""": ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlnet""": ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlm""": ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlm-roberta""": ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """transfo-xl""": ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """openai-gpt""": ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """roberta""": ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """layoutlm""": ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), """roberta-large-mnli""": ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """camembert""": ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """flaubert""": ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """distilbert""": ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """distilbert-base-distilled-squad""": ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """lxmert""": ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """lxmert-visual-feature-encoder""": ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """ctrl""": ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """albert""": ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """t5""": ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """electra""": ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """wav2vec2""": ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True ): if model_type not in MODEL_CLASSES: raise ValueError(F"""Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.""" ) _lowercase , _lowercase , _lowercase , _lowercase : int = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: _lowercase : Dict = cached_file(snake_case__ , snake_case__ , force_download=not use_cached_models ) _lowercase : str = config_class.from_json_file(snake_case__ ) _lowercase : List[str] = True _lowercase : Tuple = True print(F"""Building TensorFlow model from configuration: {config}""" ) _lowercase : List[Any] = model_class(snake_case__ ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): _lowercase : List[str] = cached_file( snake_case__ , snake_case__ , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: _lowercase : List[Any] = load_pytorch_checkpoint_in_tfa_model(snake_case__ , snake_case__ ) if compare_with_pt_model: _lowercase : int = tf_model(tf_model.dummy_inputs , training=snake_case__ ) # build the network _lowercase : Optional[int] = torch.load(snake_case__ , map_location="""cpu""" ) _lowercase : List[Any] = pt_model_class.from_pretrained( pretrained_model_name_or_path=snake_case__ , config=snake_case__ , state_dict=snake_case__ ) with torch.no_grad(): _lowercase : int = pt_model(**pt_model.dummy_inputs ) _lowercase : int = pto[0].numpy() _lowercase : int = tfo[0].numpy() _lowercase : Optional[int] = np.amax(np.abs(np_pt - np_tf ) ) print(F"""Max absolute difference between models outputs {diff}""" ) assert diff <= 2E-2, F"""Error, model absolute difference is >2e-2: {diff}""" # Save pytorch-model print(F"""Save TensorFlow model to {tf_dump_path}""" ) tf_model.save_weights(snake_case__ , save_format="""h5""" ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False , ): if args_model_type is None: _lowercase : str = list(MODEL_CLASSES.keys() ) else: _lowercase : str = [args_model_type] for j, model_type in enumerate(snake_case__ , start=1 ): print("""=""" * 100 ) print(F""" Converting model type {j}/{len(snake_case__ )}: {model_type}""" ) print("""=""" * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(F"""Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.""" ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : List[Any] = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: _lowercase : Any = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: _lowercase : Union[str, Any] = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(snake_case__ , snake_case__ ) , start=1 ): print("""-""" * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F""" Skipping finetuned checkpoint {model_shortcut_name}""" ) continue _lowercase : Optional[Any] = model_shortcut_name elif only_convert_finetuned_models: print(F""" Skipping not finetuned checkpoint {model_shortcut_name}""" ) continue print( F""" Converting checkpoint {i}/{len(snake_case__ )}: {model_shortcut_name} - model_type {model_type}""" ) print("""-""" * 100 ) if config_shortcut_name in aws_config_map: _lowercase : Tuple = cached_file(snake_case__ , snake_case__ , force_download=not use_cached_models ) else: _lowercase : Optional[int] = config_shortcut_name if model_shortcut_name in aws_model_maps: _lowercase : List[Any] = cached_file(snake_case__ , snake_case__ , force_download=not use_cached_models ) else: _lowercase : Optional[Any] = model_shortcut_name if os.path.isfile(snake_case__ ): _lowercase : Tuple = """converted_model""" convert_pt_checkpoint_to_tf( model_type=snake_case__ , pytorch_checkpoint_path=snake_case__ , config_file=snake_case__ , tf_dump_path=os.path.join(snake_case__ , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=snake_case__ , ) if remove_cached_files: os.remove(snake_case__ ) os.remove(snake_case__ ) if __name__ == "__main__": UpperCAmelCase: List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_dump_path""", default=None, type=str, required=True, help="""Path to the output Tensorflow dump file.""" ) parser.add_argument( """--model_type""", default=None, type=str, help=( F'Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and ' """convert all the models from AWS.""" ), ) parser.add_argument( """--pytorch_checkpoint_path""", default=None, type=str, help=( """Path to the PyTorch checkpoint path or shortcut name to download from AWS. """ """If not given, will download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--config_file""", default=None, type=str, help=( """The config json file corresponding to the pre-trained model. \n""" """This specifies the model architecture. If not given and """ """--pytorch_checkpoint_path is not given or is a shortcut name """ """use the configuration associated to the shortcut name on the AWS""" ), ) parser.add_argument( """--compare_with_pt_model""", action="""store_true""", help="""Compare Tensorflow and PyTorch model predictions.""" ) parser.add_argument( """--use_cached_models""", action="""store_true""", help="""Use cached models if possible instead of updating to latest checkpoint versions.""", ) parser.add_argument( """--remove_cached_files""", action="""store_true""", help="""Remove pytorch models after conversion (save memory when converting in batches).""", ) parser.add_argument("""--only_convert_finetuned_models""", action="""store_true""", help="""Only convert finetuned models.""") UpperCAmelCase: List[str] = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
365
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCAmelCase: Optional[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCAmelCase: Tuple = [0, 25, 50] UpperCAmelCase: List[Any] = [25, 50, 75] UpperCAmelCase: Optional[int] = fuzz.membership.trimf(X, abca) UpperCAmelCase: Any = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCAmelCase: List[Any] = np.ones(75) UpperCAmelCase: Any = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) UpperCAmelCase: str = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) UpperCAmelCase: Optional[int] = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) UpperCAmelCase: List[Any] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) UpperCAmelCase: Optional[int] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] UpperCAmelCase: int = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) UpperCAmelCase: int = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] UpperCAmelCase: List[Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] UpperCAmelCase: int = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("""Young""") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("""Middle aged""") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("""union""") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("""intersection""") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("""complement_a""") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("""difference a/b""") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("""alg_sum""") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("""alg_product""") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("""bdd_sum""") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("""bdd_difference""") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
336
0
"""simple docstring""" import argparse from collections import defaultdict import yaml UpperCAmelCase: List[Any] = 'docs/source/en/_toctree.yml' def a ( __UpperCAmelCase ): _lowercase : Optional[int] = defaultdict(lowerCAmelCase__ ) _lowercase : Tuple = [] _lowercase : List[Any] = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} ) else: new_doc_list.append(lowerCAmelCase__ ) _lowercase : Tuple = new_doc_list _lowercase : Tuple = [key for key, value in counts.items() if value > 1] _lowercase : Tuple = [] for duplicate_key in duplicates: _lowercase : Tuple = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} ) if len(lowerCAmelCase__ ) > 1: raise ValueError( F"""{duplicate_key} is present several times in the documentation table of content at """ """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] ) _lowercase : Optional[int] = sorted(lowerCAmelCase__ , key=lambda __UpperCAmelCase : s["title"].lower() ) # "overview" gets special treatment and is always first if len(lowerCAmelCase__ ) > 1: raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" ) overview_doc.extend(lowerCAmelCase__ ) # Sort return overview_doc def a ( __UpperCAmelCase=False ): with open(lowerCAmelCase__ , encoding="""utf-8""" ) as f: _lowercase : List[str] = yaml.safe_load(f.read() ) # Get to the API doc _lowercase : List[str] = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowercase : Any = content[api_idx]["""sections"""] # Then to the model doc _lowercase : int = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _lowercase : Optional[Any] = api_doc[scheduler_idx]["""sections"""] _lowercase : Any = clean_doc_toc(lowerCAmelCase__ ) _lowercase : str = False if new_scheduler_doc != scheduler_doc: _lowercase : str = True if overwrite: _lowercase : Tuple = new_scheduler_doc if diff: if overwrite: _lowercase : Union[str, Any] = api_doc with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(lowerCAmelCase__ , allow_unicode=lowerCAmelCase__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) def a ( __UpperCAmelCase=False ): with open(lowerCAmelCase__ , encoding="""utf-8""" ) as f: _lowercase : List[str] = yaml.safe_load(f.read() ) # Get to the API doc _lowercase : Tuple = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowercase : Dict = content[api_idx]["""sections"""] # Then to the model doc _lowercase : Optional[Any] = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _lowercase : List[Any] = False _lowercase : Union[str, Any] = api_doc[pipeline_idx]["""sections"""] _lowercase : str = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _lowercase : Dict = pipeline_doc["""section"""] _lowercase : Optional[int] = clean_doc_toc(lowerCAmelCase__ ) if overwrite: _lowercase : Dict = new_sub_pipeline_doc new_pipeline_docs.append(lowerCAmelCase__ ) # sort overall pipeline doc _lowercase : int = clean_doc_toc(lowerCAmelCase__ ) if new_pipeline_docs != pipeline_docs: _lowercase : Any = True if overwrite: _lowercase : Any = new_pipeline_docs if diff: if overwrite: _lowercase : Union[str, Any] = api_doc with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(lowerCAmelCase__ , allow_unicode=lowerCAmelCase__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": UpperCAmelCase: List[str] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") UpperCAmelCase: Tuple = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
366
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ): _lowercase : str = tempfile.mkdtemp() # fmt: off _lowercase : List[Any] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _lowercase : Optional[int] = dict(zip(UpperCAmelCase_ ,range(len(UpperCAmelCase_ ) ) ) ) _lowercase : Optional[int] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] _lowercase : Optional[int] = {"""unk_token""": """<unk>"""} _lowercase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _lowercase : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) _lowercase : Dict = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } _lowercase : List[Any] = os.path.join(self.tmpdirname ,UpperCAmelCase_ ) with open(self.image_processor_file ,"""w""" ,encoding="""utf-8""" ) as fp: json.dump(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPTokenizer.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPImageProcessor.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] _lowercase : Tuple = [Image.fromarray(np.moveaxis(UpperCAmelCase_ ,0 ,-1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.get_tokenizer() _lowercase : List[Any] = self.get_rust_tokenizer() _lowercase : List[Any] = self.get_image_processor() _lowercase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) _lowercase : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname ,use_fast=UpperCAmelCase_ ) _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) _lowercase : List[str] = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer ,UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : str = CLIPProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowercase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) _lowercase : Optional[int] = self.get_image_processor(do_normalize=UpperCAmelCase_ ,padding_value=1.0 ) _lowercase : int = CLIPProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=UpperCAmelCase_ ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : Optional[int] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : int = self.prepare_image_inputs() _lowercase : str = image_processor(UpperCAmelCase_ ,return_tensors="""np""" ) _lowercase : int = processor(images=UpperCAmelCase_ ,return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : Optional[Any] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : List[Any] = """lower newer""" _lowercase : Any = processor(text=UpperCAmelCase_ ) _lowercase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : str = """lower newer""" _lowercase : List[Any] = self.prepare_image_inputs() _lowercase : Optional[int] = processor(text=UpperCAmelCase_ ,images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowerCamelCase__ ( self ): _lowercase : Dict = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowercase : int = processor.batch_decode(UpperCAmelCase_ ) _lowercase : Tuple = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : Optional[Any] = """lower newer""" _lowercase : Any = self.prepare_image_inputs() _lowercase : Optional[int] = processor(text=UpperCAmelCase_ ,images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
336
0
"""simple docstring""" import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=13 ,UpperCAmelCase_=30 ,UpperCAmelCase_=2 ,UpperCAmelCase_=3 ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,UpperCAmelCase_=32 ,UpperCAmelCase_=5 ,UpperCAmelCase_=4 ,UpperCAmelCase_=37 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=10 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=None ,UpperCAmelCase_=2 ,): _lowercase : Any = parent _lowercase : Optional[int] = batch_size _lowercase : Union[str, Any] = image_size _lowercase : Tuple = patch_size _lowercase : Optional[int] = num_channels _lowercase : Any = is_training _lowercase : List[str] = use_labels _lowercase : str = hidden_size _lowercase : Optional[Any] = num_hidden_layers _lowercase : List[str] = num_attention_heads _lowercase : List[Any] = intermediate_size _lowercase : Dict = hidden_act _lowercase : int = hidden_dropout_prob _lowercase : Dict = attention_probs_dropout_prob _lowercase : List[str] = type_sequence_label_size _lowercase : Optional[Any] = initializer_range _lowercase : Dict = scope _lowercase : List[str] = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowercase : Optional[Any] = (image_size // patch_size) ** 2 _lowercase : Tuple = num_patches + 1 def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase : Optional[int] = None if self.use_labels: _lowercase : int = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowercase : List[str] = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self ): return ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=UpperCamelCase__ ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Dict = ViTModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _lowercase : str = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Optional[Any] = ViTForMaskedImageModeling(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _lowercase : Tuple = model(UpperCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowercase : Tuple = 1 _lowercase : List[Any] = ViTForMaskedImageModeling(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _lowercase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowercase : List[Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Dict = self.type_sequence_label_size _lowercase : str = ViTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _lowercase : Any = model(UpperCamelCase__ ,labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowercase : Dict = 1 _lowercase : List[str] = ViTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _lowercase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowercase : Optional[int] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.prepare_config_and_inputs() ( _lowercase ) : Optional[Any] = config_and_inputs _lowercase : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : Dict = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Optional[int] = True SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : Tuple = False def lowerCamelCase__ ( self ): _lowercase : List[Any] = ViTModelTester(self ) _lowercase : Any = ConfigTester(self ,config_class=UpperCamelCase__ ,has_text_modality=UpperCamelCase__ ,hidden_size=37 ) def lowerCamelCase__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def lowerCamelCase__ ( self ): pass def lowerCamelCase__ ( self ): _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : List[str] = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _lowercase : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ ,nn.Linear ) ) def lowerCamelCase__ ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : str = model_class(UpperCamelCase__ ) _lowercase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : Union[str, Any] = [*signature.parameters.keys()] _lowercase : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,UpperCamelCase__ ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCamelCase__ ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase__ ) def lowerCamelCase__ ( self ): _lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def lowerCamelCase__ ( self ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : str = ViTModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def __SCREAMING_SNAKE_CASE ( ): _lowercase : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase__ ( self ): return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def lowerCamelCase__ ( self ): _lowercase : Dict = ViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ).to(UpperCamelCase__ ) _lowercase : Optional[int] = self.default_image_processor _lowercase : List[str] = prepare_img() _lowercase : Union[str, Any] = image_processor(images=UpperCamelCase__ ,return_tensors="""pt""" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): _lowercase : str = model(**UpperCamelCase__ ) # verify the logits _lowercase : Dict = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape ,UpperCamelCase__ ) _lowercase : List[str] = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,UpperCamelCase__ ,atol=1E-4 ) ) @slow def lowerCamelCase__ ( self ): _lowercase : str = ViTModel.from_pretrained("""facebook/dino-vits8""" ).to(UpperCamelCase__ ) _lowercase : Dict = ViTImageProcessor.from_pretrained("""facebook/dino-vits8""" ,size=4_80 ) _lowercase : str = prepare_img() _lowercase : Optional[Any] = image_processor(images=UpperCamelCase__ ,return_tensors="""pt""" ) _lowercase : Tuple = inputs.pixel_values.to(UpperCamelCase__ ) # forward pass with torch.no_grad(): _lowercase : Tuple = model(UpperCamelCase__ ,interpolate_pos_encoding=UpperCamelCase__ ) # verify the logits _lowercase : List[Any] = torch.Size((1, 36_01, 3_84) ) self.assertEqual(outputs.last_hidden_state.shape ,UpperCamelCase__ ) _lowercase : Any = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,UpperCamelCase__ ,atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def lowerCamelCase__ ( self ): _lowercase : List[Any] = ViTModel.from_pretrained("""facebook/dino-vits8""" ,torch_dtype=torch.floataa ,device_map="""auto""" ) _lowercase : List[str] = self.default_image_processor _lowercase : Optional[Any] = prepare_img() _lowercase : Dict = image_processor(images=UpperCamelCase__ ,return_tensors="""pt""" ) _lowercase : Tuple = inputs.pixel_values.to(UpperCamelCase__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _lowercase : Dict = model(UpperCamelCase__ )
367
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int UpperCAmelCase: str = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class UpperCamelCase ( datasets.BuilderConfig ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[datasets.Features] = None def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , ): import pyspark def generate_fn(): _lowercase : List[Any] = df.select("""*""" , pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) ) for partition_id in partition_order: _lowercase : Optional[int] = df_with_partition_id.select("""*""" ).where(F"""part_id = {partition_id}""" ).drop("""part_id""" ) _lowercase : int = partition_df.collect() _lowercase : Dict = 0 for row in rows: yield F"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class UpperCamelCase ( _BaseExamplesIterable ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ,): _lowercase : Union[str, Any] = df _lowercase : List[str] = partition_order or range(self.df.rdd.getNumPartitions() ) _lowercase : Tuple = _generate_iterable_examples(self.df ,self.partition_order ) def __iter__( self ): yield from self.generate_examples_fn() def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : List[str] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(UpperCAmelCase_ ) return SparkExamplesIterable(self.df ,partition_order=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Union[str, Any] = self.split_shard_indices_by_worker(UpperCAmelCase_ ,UpperCAmelCase_ ) return SparkExamplesIterable(self.df ,partition_order=UpperCAmelCase_ ) @property def lowerCamelCase__ ( self ): return len(self.partition_order ) class UpperCamelCase ( datasets.DatasetBuilder ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = SparkConfig def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): import pyspark _lowercase : List[Any] = pyspark.sql.SparkSession.builder.getOrCreate() _lowercase : List[Any] = df _lowercase : int = working_dir super().__init__( cache_dir=UpperCAmelCase_ ,config_name=str(self.df.semanticHash() ) ,**UpperCAmelCase_ ,) def lowerCamelCase__ ( self ): # Returns the path of the created file. def create_cache_and_write_probe(UpperCAmelCase_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir ,exist_ok=UpperCAmelCase_ ) _lowercase : Union[str, Any] = os.path.join(self._cache_dir ,"""fs_test""" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(UpperCAmelCase_ ,"""a""" ) return [probe_file] if self._spark.conf.get("""spark.master""" ,"""""" ).startswith("""local""" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: _lowercase : List[str] = ( self._spark.sparkContext.parallelize(range(1 ) ,1 ).mapPartitions(UpperCAmelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( """When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" ) def lowerCamelCase__ ( self ): return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def lowerCamelCase__ ( self ,UpperCAmelCase_ ): import pyspark def get_arrow_batch_size(UpperCAmelCase_ ): for batch in it: yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} ) _lowercase : List[str] = self.df.count() _lowercase : List[str] = df_num_rows if df_num_rows <= 1_00 else 1_00 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. _lowercase : Union[str, Any] = ( self.df.limit(UpperCAmelCase_ ) .repartition(1 ) .mapInArrow(UpperCAmelCase_ ,"""batch_bytes: long""" ) .agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) ) .collect()[0] .sample_bytes / sample_num_rows ) _lowercase : List[Any] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. _lowercase : int = min(UpperCAmelCase_ ,int(approx_total_size / max_shard_size ) ) _lowercase : List[Any] = self.df.repartition(UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): import pyspark _lowercase : Union[str, Any] = ParquetWriter if file_format == """parquet""" else ArrowWriter _lowercase : List[Any] = os.path.join(self._working_dir ,os.path.basename(UpperCAmelCase_ ) ) if self._working_dir else fpath _lowercase : Any = file_format == """parquet""" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. _lowercase : Union[str, Any] = self.config.features _lowercase : Optional[int] = self._writer_batch_size _lowercase : Optional[Any] = self._fs.storage_options def write_arrow(UpperCAmelCase_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. _lowercase : Any = pyspark.TaskContext().taskAttemptId() _lowercase : List[str] = next(UpperCAmelCase_ ,UpperCAmelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,) _lowercase : List[Any] = 0 _lowercase : int = writer_class( features=UpperCAmelCase_ ,path=working_fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,writer_batch_size=UpperCAmelCase_ ,storage_options=UpperCAmelCase_ ,embed_local_files=UpperCAmelCase_ ,) _lowercase : Optional[int] = pa.Table.from_batches([first_batch] ) writer.write_table(UpperCAmelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: _lowercase , _lowercase : Optional[Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,) shard_id += 1 _lowercase : Union[str, Any] = writer_class( features=writer._features ,path=working_fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,writer_batch_size=UpperCAmelCase_ ,storage_options=UpperCAmelCase_ ,embed_local_files=UpperCAmelCase_ ,) _lowercase : Dict = pa.Table.from_batches([batch] ) writer.write_table(UpperCAmelCase_ ) if writer._num_bytes > 0: _lowercase , _lowercase : Dict = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,) if working_fpath != fpath: for file in os.listdir(os.path.dirname(UpperCAmelCase_ ) ): _lowercase : Dict = os.path.join(os.path.dirname(UpperCAmelCase_ ) ,os.path.basename(UpperCAmelCase_ ) ) shutil.move(UpperCAmelCase_ ,UpperCAmelCase_ ) _lowercase : List[str] = ( self.df.mapInArrow(UpperCAmelCase_ ,"""task_id: long, num_examples: long, num_bytes: long""" ) .groupBy("""task_id""" ) .agg( pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) ,pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) ,pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) ,pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) ,) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = "arrow" ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): self._validate_cache_dir() _lowercase : Tuple = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(UpperCAmelCase_ ) _lowercase : Optional[int] = not is_remote_filesystem(self._fs ) _lowercase : Dict = os.path.join if is_local else posixpath.join _lowercase : int = """-TTTTT-SSSSS-of-NNNNN""" _lowercase : Optional[Any] = f"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" _lowercase : Dict = path_join(self._output_dir ,UpperCAmelCase_ ) _lowercase : List[Any] = 0 _lowercase : Optional[Any] = 0 _lowercase : int = 0 _lowercase : Any = [] _lowercase : Any = [] for task_id, content in self._prepare_split_single(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Tuple = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(UpperCAmelCase_ ) _lowercase : Optional[int] = total_num_examples _lowercase : List[Any] = total_num_bytes # should rename everything at the end logger.debug(f"""Renaming {total_shards} shards.""" ) if total_shards > 1: _lowercase : List[Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. _lowercase : Union[str, Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): rename( UpperCAmelCase_ ,fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,fpath.replace("""TTTTT-SSSSS""" ,f"""{global_shard_id:05d}""" ).replace("""NNNNN""" ,f"""{total_shards:05d}""" ) ,) _lowercase : Optional[Any] = [] _lowercase : List[str] = 0 for i in range(len(UpperCAmelCase_ ) ): _lowercase , _lowercase : List[str] = task_id_and_num_shards[i] for shard_id in range(UpperCAmelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(UpperCAmelCase_ ,len(UpperCAmelCase_ ) ).map(lambda UpperCAmelCase_ : _rename_shard(*UpperCAmelCase_ ) ).collect() else: # don't use any pattern _lowercase : Tuple = 0 _lowercase : Optional[Any] = task_id_and_num_shards[0][0] self._rename( fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,fpath.replace(UpperCAmelCase_ ,"""""" ) ,) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,): return SparkExamplesIterable(self.df )
336
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer UpperCAmelCase: int = logging.get_logger(__name__) UpperCAmelCase: List[str] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart UpperCAmelCase: str = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } UpperCAmelCase: Tuple = { "facebook/bart-base": 1_024, "facebook/bart-large": 1_024, "facebook/bart-large-mnli": 1_024, "facebook/bart-large-cnn": 1_024, "facebook/bart-large-xsum": 1_024, "yjernite/bart_eli5": 1_024, } class UpperCamelCase ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Tuple = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : List[Any] = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE_ : Any = BartTokenizer def __init__( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_="replace" ,UpperCAmelCase_="<s>" ,UpperCAmelCase_="</s>" ,UpperCAmelCase_="</s>" ,UpperCAmelCase_="<s>" ,UpperCAmelCase_="<unk>" ,UpperCAmelCase_="<pad>" ,UpperCAmelCase_="<mask>" ,UpperCAmelCase_=False ,UpperCAmelCase_=True ,**UpperCAmelCase_ ,): super().__init__( UpperCAmelCase_ ,UpperCAmelCase_ ,tokenizer_file=UpperCAmelCase_ ,errors=UpperCAmelCase_ ,bos_token=UpperCAmelCase_ ,eos_token=UpperCAmelCase_ ,sep_token=UpperCAmelCase_ ,cls_token=UpperCAmelCase_ ,unk_token=UpperCAmelCase_ ,pad_token=UpperCAmelCase_ ,mask_token=UpperCAmelCase_ ,add_prefix_space=UpperCAmelCase_ ,trim_offsets=UpperCAmelCase_ ,**UpperCAmelCase_ ,) _lowercase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" ,UpperCAmelCase_ ) != add_prefix_space: _lowercase : Union[str, Any] = getattr(UpperCAmelCase_ ,pre_tok_state.pop("""type""" ) ) _lowercase : Tuple = add_prefix_space _lowercase : Union[str, Any] = pre_tok_class(**UpperCAmelCase_ ) _lowercase : List[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowercase : Tuple = 'post_processor' _lowercase : Union[str, Any] = getattr(self.backend_tokenizer ,UpperCAmelCase_ ,UpperCAmelCase_ ) if tokenizer_component_instance: _lowercase : int = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowercase : Optional[Any] = tuple(state["""sep"""] ) if "cls" in state: _lowercase : str = tuple(state["""cls"""] ) _lowercase : Tuple = False if state.get("""add_prefix_space""" ,UpperCAmelCase_ ) != add_prefix_space: _lowercase : Optional[int] = add_prefix_space _lowercase : Optional[Any] = True if state.get("""trim_offsets""" ,UpperCAmelCase_ ) != trim_offsets: _lowercase : List[str] = trim_offsets _lowercase : List[str] = True if changes_to_apply: _lowercase : Optional[int] = getattr(UpperCAmelCase_ ,state.pop("""type""" ) ) _lowercase : Optional[Any] = component_class(**UpperCAmelCase_ ) setattr(self.backend_tokenizer ,UpperCAmelCase_ ,UpperCAmelCase_ ) @property def lowerCamelCase__ ( self ): if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : Union[str, Any] = AddedToken(UpperCAmelCase_ ,lstrip=UpperCAmelCase_ ,rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) else value _lowercase : Union[str, Any] = value def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): _lowercase : str = kwargs.get("""is_split_into_words""" ,UpperCAmelCase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): _lowercase : Any = kwargs.get("""is_split_into_words""" ,UpperCAmelCase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ """to use it with pretokenized inputs.""" ) return super()._encode_plus(*UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): _lowercase : Union[str, Any] = self._tokenizer.model.save(UpperCAmelCase_ ,name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ): _lowercase : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): _lowercase : Dict = [self.sep_token_id] _lowercase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
368
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase: Optional[int] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = XLNetTokenizer SCREAMING_SNAKE_CASE_ : Dict = XLNetTokenizerFast SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Union[str, Any] = True def lowerCamelCase__ ( self ): super().setUp() # We have a SentencePiece fixture for testing _lowercase : Dict = XLNetTokenizer(UpperCAmelCase_ ,keep_accents=UpperCAmelCase_ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = """<s>""" _lowercase : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) ,UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<unk>""" ) self.assertEqual(vocab_keys[1] ,"""<s>""" ) self.assertEqual(vocab_keys[-1] ,"""<eod>""" ) self.assertEqual(len(UpperCAmelCase_ ) ,10_06 ) def lowerCamelCase__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size ,10_00 ) def lowerCamelCase__ ( self ): _lowercase : int = XLNetTokenizer(UpperCAmelCase_ ,keep_accents=UpperCAmelCase_ ) _lowercase : Union[str, Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCAmelCase_ ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) ,[2_85, 46, 10, 1_70, 3_82] ) _lowercase : Any = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] ,) _lowercase : List[Any] = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,[8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) _lowercase : Optional[Any] = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] ,) def lowerCamelCase__ ( self ): _lowercase : Dict = XLNetTokenizer(UpperCAmelCase_ ,do_lower_case=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] ,) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""▁he""", """ll""", """o"""] ) def lowerCamelCase__ ( self ): _lowercase : int = XLNetTokenizer(UpperCAmelCase_ ,do_lower_case=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] ,) @slow def lowerCamelCase__ ( self ): _lowercase : Dict = XLNetTokenizer.from_pretrained("""xlnet-base-cased""" ) _lowercase : int = tokenizer.encode("""sequence builders""" ,add_special_tokens=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=UpperCAmelCase_ ) _lowercase : Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) _lowercase : Dict = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ,UpperCAmelCase_ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def lowerCamelCase__ ( self ): # fmt: off _lowercase : Union[str, Any] = {"""input_ids""": [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ ,model_name="""xlnet-base-cased""" ,revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" ,)
336
0
"""simple docstring""" class UpperCamelCase : # Public class to implement a graph """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Any = row _lowercase : Union[str, Any] = col _lowercase : List[str] = graph def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : str = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order _lowercase : int = [-1, 0, 1, -1, 1, -1, 0, 1] _lowercase : str = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] ,j + col_nbr[k] ,UpperCamelCase__ ): self.diffs(i + row_nbr[k] ,j + col_nbr[k] ,UpperCamelCase__ ) def lowerCamelCase__ ( self ): # And finally, count all islands. _lowercase : Dict = [[False for j in range(self.COL )] for i in range(self.ROW )] _lowercase : Any = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ) count += 1 return count
369
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
336
0
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCAmelCase: Dict = logging.get_logger(__name__) UpperCAmelCase: str = Dict[str, Any] UpperCAmelCase: Union[str, Any] = List[Prediction] @add_end_docstrings(_lowerCAmelCase ) class UpperCamelCase ( _lowerCAmelCase ): """simple docstring""" def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): super().__init__(*_lowercase ,**_lowercase ) if self.framework == "tf": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self ,"""vision""" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): _lowercase : str = {} if "threshold" in kwargs: _lowercase : Tuple = kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return super().__call__(*_lowercase ,**_lowercase ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : Tuple = load_image(_lowercase ) _lowercase : List[str] = torch.IntTensor([[image.height, image.width]] ) _lowercase : str = self.image_processor(images=[image] ,return_tensors="""pt""" ) if self.tokenizer is not None: _lowercase : Union[str, Any] = self.tokenizer(text=inputs["""words"""] ,boxes=inputs["""boxes"""] ,return_tensors="""pt""" ) _lowercase : List[Any] = target_size return inputs def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : Optional[Any] = model_inputs.pop("""target_size""" ) _lowercase : int = self.model(**_lowercase ) _lowercase : Tuple = outputs.__class__({"""target_size""": target_size, **outputs} ) if self.tokenizer is not None: _lowercase : Optional[Any] = model_inputs["""bbox"""] return model_outputs def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=0.9 ): _lowercase : Optional[int] = model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. _lowercase , _lowercase : Any = target_size[0].tolist() def unnormalize(UpperCAmelCase_ ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 10_00), (height * bbox[1] / 10_00), (width * bbox[2] / 10_00), (height * bbox[3] / 10_00), ] ) ) _lowercase , _lowercase : Optional[Any] = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) _lowercase : List[Any] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] _lowercase : Union[str, Any] = [unnormalize(_lowercase ) for bbox in model_outputs["""bbox"""].squeeze(0 )] _lowercase : str = ["""score""", """label""", """box"""] _lowercase : Optional[int] = [dict(zip(_lowercase ,_lowercase ) ) for vals in zip(scores.tolist() ,_lowercase ,_lowercase ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel _lowercase : Tuple = self.image_processor.post_process_object_detection(_lowercase ,_lowercase ,_lowercase ) _lowercase : List[str] = raw_annotations[0] _lowercase : Any = raw_annotation["""scores"""] _lowercase : Optional[Any] = raw_annotation["""labels"""] _lowercase : Any = raw_annotation["""boxes"""] _lowercase : Optional[Any] = scores.tolist() _lowercase : Any = [self.model.config.idalabel[label.item()] for label in labels] _lowercase : Tuple = [self._get_bounding_box(_lowercase ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] _lowercase : str = ["""score""", """label""", """box"""] _lowercase : int = [ dict(zip(_lowercase ,_lowercase ) ) for vals in zip(raw_annotation["""scores"""] ,raw_annotation["""labels"""] ,raw_annotation["""boxes"""] ) ] return annotation def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if self.framework != "pt": raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" ) _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = box.int().tolist() _lowercase : List[Any] = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
370
"""simple docstring""" import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : int = [] for line in lines: _lowercase : Dict = re.sub(R"""#.*""" , """""" , __UpperCAmelCase ) # remove comments if line: filtered_lines.append(__UpperCAmelCase ) _lowercase : Tuple = """\n""".join(__UpperCAmelCase ) # Make a hash from all this code _lowercase : Tuple = full_str.encode("""utf-8""" ) return shaaaa(__UpperCAmelCase ).hexdigest() # get importable module names and hash for caching UpperCAmelCase: Tuple = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions UpperCAmelCase: List[str] = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) UpperCAmelCase: Any = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name UpperCAmelCase: Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
336
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase: Optional[int] = logging.get_logger(__name__) UpperCAmelCase: Optional[Any] = { """uclanlp/visualbert-vqa""": """https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json""", """uclanlp/visualbert-vqa-pre""": """https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json""", """uclanlp/visualbert-vqa-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-vcr""": """https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json""", """uclanlp/visualbert-vcr-pre""": """https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json""", """uclanlp/visualbert-vcr-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-nlvr2""": """https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-pre""": """https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json""" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class UpperCamelCase ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = """visual_bert""" def __init__( self ,UpperCAmelCase_=3_05_22 ,UpperCAmelCase_=7_68 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=12 ,UpperCAmelCase_=12 ,UpperCAmelCase_=30_72 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=2 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-12 ,UpperCAmelCase_=False ,UpperCAmelCase_=True ,UpperCAmelCase_=1 ,UpperCAmelCase_=0 ,UpperCAmelCase_=2 ,**UpperCAmelCase_ ,): super().__init__(pad_token_id=__lowerCAmelCase ,bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowercase : List[Any] = vocab_size _lowercase : Optional[Any] = max_position_embeddings _lowercase : Dict = hidden_size _lowercase : str = visual_embedding_dim _lowercase : List[str] = num_hidden_layers _lowercase : Union[str, Any] = num_attention_heads _lowercase : Optional[int] = intermediate_size _lowercase : Optional[Any] = hidden_act _lowercase : Optional[int] = hidden_dropout_prob _lowercase : str = attention_probs_dropout_prob _lowercase : Union[str, Any] = initializer_range _lowercase : Tuple = type_vocab_size _lowercase : Tuple = layer_norm_eps _lowercase : str = bypass_transformer _lowercase : Optional[int] = special_visual_initialize
371
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
336
0
"""simple docstring""" from __future__ import annotations def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : list[list[int]] = [] _lowercase : list[int] = [] _lowercase : Dict = 0 _lowercase : Any = sum(__a ) create_state_space_tree(__a , __a , __a , __a , __a , __a ) return result def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): if sum(__a ) > max_sum or (remaining_nums_sum + sum(__a )) < max_sum: return if sum(__a ) == max_sum: result.append(__a ) return for index in range(__a , len(__a ) ): create_state_space_tree( __a , __a , index + 1 , [*path, nums[index]] , __a , remaining_nums_sum - nums[index] , ) UpperCAmelCase: List[Any] = [3, 34, 4, 12, 5, 2] UpperCAmelCase: List[Any] = 9 UpperCAmelCase: Optional[Any] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
350
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( ): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] UpperCAmelCase: Any = generate_large_matrix() UpperCAmelCase: Dict = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid ) assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Tuple = 0 _lowercase : List[Any] = len(__UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _lowercase : Tuple = (left + right) // 2 _lowercase : List[Any] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _lowercase : Dict = mid + 1 else: _lowercase : Dict = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Any = 0 _lowercase : Optional[int] = len(grid[0] ) for i in range(len(__UpperCAmelCase ) ): _lowercase : Union[str, Any] = find_negative_index(grid[i][:bound] ) total += bound return (len(__UpperCAmelCase ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Tuple = 0 for row in grid: for i, number in enumerate(__UpperCAmelCase ): if number < 0: total += len(__UpperCAmelCase ) - i break return total def __SCREAMING_SNAKE_CASE ( ): from timeit import timeit print("""Running benchmarks""" ) _lowercase : Tuple = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _lowercase : Dict = timeit(F"""{func}(grid=grid)""" , setup=__UpperCAmelCase , number=500 ) print(F"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
336
0
"""simple docstring""" import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=2 ,UpperCAmelCase_=32 ,UpperCAmelCase_=16 ,UpperCAmelCase_=3 ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,UpperCAmelCase_=32 ,UpperCAmelCase_=4 ,UpperCAmelCase_=[0, 1, 2, 3] ,UpperCAmelCase_=4 ,UpperCAmelCase_=37 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=3 ,UpperCAmelCase_=[1, 3_84, 24, 24] ,UpperCAmelCase_=True ,UpperCAmelCase_=None ,): _lowercase : Dict = parent _lowercase : List[str] = batch_size _lowercase : Optional[Any] = image_size _lowercase : Tuple = patch_size _lowercase : Optional[int] = num_channels _lowercase : Optional[int] = is_training _lowercase : Dict = use_labels _lowercase : int = hidden_size _lowercase : Tuple = num_hidden_layers _lowercase : Dict = backbone_out_indices _lowercase : Tuple = num_attention_heads _lowercase : List[Any] = intermediate_size _lowercase : Optional[Any] = hidden_act _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : List[Any] = initializer_range _lowercase : str = num_labels _lowercase : Optional[int] = backbone_featmap_shape _lowercase : Tuple = scope _lowercase : int = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) _lowercase : Optional[int] = (image_size // patch_size) ** 2 _lowercase : str = num_patches + 1 def lowerCamelCase__ ( self ): _lowercase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase : Union[str, Any] = None if self.use_labels: _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) _lowercase : Any = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self ): _lowercase : Any = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [96, 1_92, 3_84, 7_68], """num_groups""": 2, } return DPTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,backbone_out_indices=self.backbone_out_indices ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=UpperCAmelCase_ ,initializer_range=self.initializer_range ,is_hybrid=self.is_hybrid ,backbone_config=UpperCAmelCase_ ,backbone_featmap_shape=self.backbone_featmap_shape ,) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Optional[int] = DPTModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _lowercase : List[str] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : str = self.num_labels _lowercase : str = DPTForDepthEstimation(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _lowercase : int = model(UpperCAmelCase_ ) self.parent.assertEqual(result.predicted_depth.shape ,(self.batch_size, self.image_size, self.image_size) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Tuple = self.num_labels _lowercase : Optional[Any] = DPTForSemanticSegmentation(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _lowercase : int = model(UpperCAmelCase_ ,labels=UpperCAmelCase_ ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowerCamelCase__ ( self ): _lowercase : Any = self.prepare_config_and_inputs() _lowercase : Optional[int] = config_and_inputs _lowercase : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : Tuple = ( { "depth-estimation": DPTForDepthEstimation, "feature-extraction": DPTModel, "image-segmentation": DPTForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : int = False def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = DPTModelTester(self ) _lowercase : Tuple = ConfigTester(self ,config_class=UpperCAmelCase_ ,has_text_modality=UpperCAmelCase_ ,hidden_size=37 ) def lowerCamelCase__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def lowerCamelCase__ ( self ): pass def lowerCamelCase__ ( self ): _lowercase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : List[str] = model_class(UpperCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _lowercase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ ,nn.Linear ) ) def lowerCamelCase__ ( self ): _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : int = model_class(UpperCAmelCase_ ) _lowercase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : List[str] = [*signature.parameters.keys()] _lowercase : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase_ ) def lowerCamelCase__ ( self ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : Optional[int] = True if model_class in get_values(UpperCAmelCase_ ): continue _lowercase : Tuple = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.train() _lowercase : Dict = self._prepare_for_class(UpperCAmelCase_ ,UpperCAmelCase_ ,return_labels=UpperCAmelCase_ ) _lowercase : Optional[int] = model(**UpperCAmelCase_ ).loss loss.backward() def lowerCamelCase__ ( self ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : str = False _lowercase : Any = True if model_class in get_values(UpperCAmelCase_ ) or not model_class.supports_gradient_checkpointing: continue _lowercase : List[str] = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.gradient_checkpointing_enable() model.train() _lowercase : Optional[int] = self._prepare_for_class(UpperCAmelCase_ ,UpperCAmelCase_ ,return_labels=UpperCAmelCase_ ) _lowercase : Optional[Any] = model(**UpperCAmelCase_ ).loss loss.backward() def lowerCamelCase__ ( self ): _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : str = _config_zero_init(UpperCAmelCase_ ) for model_class in self.all_model_classes: _lowercase : Optional[int] = model_class(config=UpperCAmelCase_ ) # Skip the check for the backbone _lowercase : Dict = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": _lowercase : Optional[Any] = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() ,[0.0, 1.0] ,msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" ,) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase__ ( self ): pass @slow def lowerCamelCase__ ( self ): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: _lowercase : Dict = DPTModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def lowerCamelCase__ ( self ): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type _lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : Dict = """add""" with self.assertRaises(UpperCAmelCase_ ): _lowercase : Tuple = DPTForDepthEstimation(UpperCAmelCase_ ) def __SCREAMING_SNAKE_CASE ( ): _lowercase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) _lowercase : Optional[int] = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(UpperCAmelCase_ ) _lowercase : Tuple = prepare_img() _lowercase : Dict = image_processor(images=UpperCAmelCase_ ,return_tensors="""pt""" ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): _lowercase : List[str] = model(**UpperCAmelCase_ ) _lowercase : Dict = outputs.predicted_depth # verify the predicted depth _lowercase : Tuple = torch.Size((1, 3_84, 3_84) ) self.assertEqual(predicted_depth.shape ,UpperCAmelCase_ ) _lowercase : Any = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_00 ,UpperCAmelCase_ ,atol=1E-4 ) )
351
"""simple docstring""" import re from filelock import FileLock try: import nltk UpperCAmelCase: List[str] = True except (ImportError, ModuleNotFoundError): UpperCAmelCase: int = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): re.sub("""<n>""" , """""" , __UpperCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__UpperCAmelCase ) )
336
0
"""simple docstring""" import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class UpperCamelCase ( __lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE_ : List[Any] = "AutoImageProcessor" SCREAMING_SNAKE_CASE_ : str = "AutoTokenizer" def __init__( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,**UpperCAmelCase_ ): _lowercase : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" ,snake_case_ ,) _lowercase : Dict = kwargs.pop("""feature_extractor""" ) _lowercase : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(snake_case_ ,snake_case_ ) _lowercase : Dict = self.image_processor _lowercase : str = False def __call__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*snake_case_ ,**snake_case_ ) _lowercase : Optional[Any] = kwargs.pop("""images""" ,snake_case_ ) _lowercase : List[str] = kwargs.pop("""text""" ,snake_case_ ) if len(snake_case_ ) > 0: _lowercase : Any = args[0] _lowercase : Tuple = args[1:] if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: _lowercase : int = self.image_processor(snake_case_ ,*snake_case_ ,**snake_case_ ) if text is not None: _lowercase : str = self.tokenizer(snake_case_ ,**snake_case_ ) if text is None: return inputs elif images is None: return encodings else: _lowercase : Any = encodings['''input_ids'''] return inputs def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return self.tokenizer.batch_decode(*snake_case_ ,**snake_case_ ) def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return self.tokenizer.decode(*snake_case_ ,**snake_case_ ) @contextmanager def lowerCamelCase__ ( self ): warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your images inputs, or in a separate call.""" ) _lowercase : Union[str, Any] = True _lowercase : Optional[int] = self.tokenizer yield _lowercase : Optional[Any] = self.image_processor _lowercase : Optional[Any] = False def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=False ,UpperCAmelCase_=None ): if added_vocab is None: _lowercase : Any = self.tokenizer.get_added_vocab() _lowercase : Optional[Any] = {} while tokens: _lowercase : Any = re.search(R"""<s_(.*?)>""" ,snake_case_ ,re.IGNORECASE ) if start_token is None: break _lowercase : List[Any] = start_token.group(1 ) _lowercase : str = re.search(Rf"""</s_{key}>""" ,snake_case_ ,re.IGNORECASE ) _lowercase : Any = start_token.group() if end_token is None: _lowercase : Optional[int] = tokens.replace(snake_case_ ,"""""" ) else: _lowercase : List[Any] = end_token.group() _lowercase : Tuple = re.escape(snake_case_ ) _lowercase : Union[str, Any] = re.escape(snake_case_ ) _lowercase : Optional[int] = re.search(f"""{start_token_escaped}(.*?){end_token_escaped}""" ,snake_case_ ,re.IGNORECASE ) if content is not None: _lowercase : Tuple = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node _lowercase : int = self.tokenajson(snake_case_ ,is_inner_value=snake_case_ ,added_vocab=snake_case_ ) if value: if len(snake_case_ ) == 1: _lowercase : str = value[0] _lowercase : Any = value else: # leaf nodes _lowercase : Optional[int] = [] for leaf in content.split(R"""<sep/>""" ): _lowercase : Optional[int] = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": _lowercase : Dict = leaf[1:-2] # for categorical special tokens output[key].append(snake_case_ ) if len(output[key] ) == 1: _lowercase : Tuple = output[key][0] _lowercase : Union[str, Any] = tokens[tokens.find(snake_case_ ) + len(snake_case_ ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] ,is_inner_value=snake_case_ ,added_vocab=snake_case_ ) if len(snake_case_ ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def lowerCamelCase__ ( self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" ,snake_case_ ,) return self.image_processor_class @property def lowerCamelCase__ ( self ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" ,snake_case_ ,) return self.image_processor
352
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=0.9_9_9 , __UpperCAmelCase="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCAmelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCAmelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _lowercase : str = [] for i in range(__UpperCAmelCase ): _lowercase : Any = i / num_diffusion_timesteps _lowercase : int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ) , __UpperCAmelCase ) ) return torch.tensor(__UpperCAmelCase , dtype=torch.floataa ) class UpperCamelCase ( snake_case , snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [e.name for e in KarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE_ : str = 2 @register_to_config def __init__( self ,UpperCAmelCase_ = 10_00 ,UpperCAmelCase_ = 0.00085 ,UpperCAmelCase_ = 0.012 ,UpperCAmelCase_ = "linear" ,UpperCAmelCase_ = None ,UpperCAmelCase_ = "epsilon" ,UpperCAmelCase_ = "linspace" ,UpperCAmelCase_ = 0 ,): if trained_betas is not None: _lowercase : str = torch.tensor(UpperCAmelCase_ ,dtype=torch.floataa ) elif beta_schedule == "linear": _lowercase : Optional[Any] = torch.linspace(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowercase : Any = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,UpperCAmelCase_ ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowercase : Any = betas_for_alpha_bar(UpperCAmelCase_ ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) _lowercase : Tuple = 1.0 - self.betas _lowercase : Dict = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ): if schedule_timesteps is None: _lowercase : Optional[int] = self.timesteps _lowercase : Union[str, Any] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _lowercase : Optional[Any] = 1 if len(UpperCAmelCase_ ) > 1 else 0 else: _lowercase : Dict = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep _lowercase : List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCamelCase__ ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,): _lowercase : str = self.index_for_timestep(UpperCAmelCase_ ) if self.state_in_first_order: _lowercase : Optional[Any] = self.sigmas[step_index] else: _lowercase : Dict = self.sigmas_interpol[step_index] _lowercase : Optional[int] = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,): _lowercase : List[str] = num_inference_steps _lowercase : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _lowercase : Dict = np.linspace(0 ,num_train_timesteps - 1 ,UpperCAmelCase_ ,dtype=UpperCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _lowercase : Union[str, Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : str = (np.arange(0 ,UpperCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _lowercase : str = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : Optional[int] = (np.arange(UpperCAmelCase_ ,0 ,-step_ratio )).round().copy().astype(UpperCAmelCase_ ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _lowercase : Union[str, Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _lowercase : Optional[Any] = torch.from_numpy(np.log(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) _lowercase : List[str] = np.interp(UpperCAmelCase_ ,np.arange(0 ,len(UpperCAmelCase_ ) ) ,UpperCAmelCase_ ) _lowercase : int = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _lowercase : Any = torch.from_numpy(UpperCAmelCase_ ).to(device=UpperCAmelCase_ ) # interpolate sigmas _lowercase : List[str] = sigmas.log().lerp(sigmas.roll(1 ).log() ,0.5 ).exp() _lowercase : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _lowercase : Tuple = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(UpperCAmelCase_ ).startswith("""mps""" ): # mps does not support float64 _lowercase : Tuple = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ,dtype=torch.floataa ) else: _lowercase : str = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ) # interpolate timesteps _lowercase : int = self.sigma_to_t(UpperCAmelCase_ ).to(UpperCAmelCase_ ,dtype=timesteps.dtype ) _lowercase : Union[str, Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) ,dim=-1 ).flatten() _lowercase : str = torch.cat([timesteps[:1], interleaved_timesteps] ) _lowercase : List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _lowercase : Optional[Any] = defaultdict(UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): # get log sigma _lowercase : Optional[Any] = sigma.log() # get distribution _lowercase : Optional[int] = log_sigma - self.log_sigmas[:, None] # get sigmas range _lowercase : Tuple = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _lowercase : List[Any] = low_idx + 1 _lowercase : int = self.log_sigmas[low_idx] _lowercase : Any = self.log_sigmas[high_idx] # interpolate sigmas _lowercase : Any = (low - log_sigma) / (low - high) _lowercase : Dict = w.clamp(0 ,1 ) # transform interpolation to time range _lowercase : List[str] = (1 - w) * low_idx + w * high_idx _lowercase : Optional[int] = t.view(sigma.shape ) return t @property def lowerCamelCase__ ( self ): return self.sample is None def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = True ,): _lowercase : Optional[int] = self.index_for_timestep(UpperCAmelCase_ ) # advance index counter by 1 _lowercase : str = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _lowercase : Any = self.sigmas[step_index] _lowercase : Any = self.sigmas_interpol[step_index + 1] _lowercase : Tuple = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _lowercase : Union[str, Any] = self.sigmas[step_index - 1] _lowercase : int = self.sigmas_interpol[step_index] _lowercase : Tuple = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _lowercase : Any = 0 _lowercase : int = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _lowercase : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : Optional[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _lowercase : str = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _lowercase : List[str] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _lowercase : Any = sigma_interpol - sigma_hat # store for 2nd order step _lowercase : List[Any] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _lowercase : Optional[Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _lowercase : Optional[Any] = sigma_next - sigma_hat _lowercase : Any = self.sample _lowercase : Optional[int] = None _lowercase : str = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): # Make sure sigmas and timesteps have the same device and dtype as original_samples _lowercase : int = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCAmelCase_ ): # mps does not support float64 _lowercase : str = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) _lowercase : Any = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: _lowercase : List[Any] = self.timesteps.to(original_samples.device ) _lowercase : Union[str, Any] = timesteps.to(original_samples.device ) _lowercase : List[Any] = [self.index_for_timestep(UpperCAmelCase_ ,UpperCAmelCase_ ) for t in timesteps] _lowercase : Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _lowercase : List[Any] = sigma.unsqueeze(-1 ) _lowercase : int = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
336
0
"""simple docstring""" import os from pathlib import Path def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : str = { """en""": """Machine learning is great, isn\'t it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, nicht wahr?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] _lowercase : int = { """wmt16-en-de-dist-12-1""": [2_8.3, 2_7.5_2], """wmt16-en-de-dist-6-1""": [2_7.4, 2_7.1_1], """wmt16-en-de-12-1""": [2_6.9, 2_5.7_5], } _lowercase : Optional[int] = F"""{src_lang}-{tgt_lang}""" _lowercase : Union[str, Any] = F""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"allenai/{model_name}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` """ model_card_dir.mkdir(parents=__UpperCAmelCase , exist_ok=__UpperCAmelCase ) _lowercase : Union[str, Any] = os.path.join(__UpperCAmelCase , """README.md""" ) print(F"""Generating {path}""" ) with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(__UpperCAmelCase ) # make sure we are under the root of the project UpperCAmelCase: Union[str, Any] = Path(__file__).resolve().parent.parent.parent UpperCAmelCase: Any = repo_dir / """model_cards""" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: UpperCAmelCase: Any = model_cards_dir / """allenai""" / model_name write_model_card(model_card_dir, src_lang="""en""", tgt_lang="""de""", model_name=model_name)
353
"""simple docstring""" import pprint import requests UpperCAmelCase: Tuple = """https://zenquotes.io/api""" def __SCREAMING_SNAKE_CASE ( ): return requests.get(API_ENDPOINT_URL + """/today""" ).json() def __SCREAMING_SNAKE_CASE ( ): return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": UpperCAmelCase: int = random_quotes() pprint.pprint(response)
336
0
"""simple docstring""" import numpy as np def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase : np.ndarray , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : float = 1E-1_2 , __UpperCAmelCase : int = 100 , ): assert np.shape(__UpperCAmelCase )[0] == np.shape(__UpperCAmelCase )[1] # Ensure proper dimensionality. assert np.shape(__UpperCAmelCase )[0] == np.shape(__UpperCAmelCase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(__UpperCAmelCase ) == np.iscomplexobj(__UpperCAmelCase ) _lowercase : List[Any] = np.iscomplexobj(__UpperCAmelCase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(__UpperCAmelCase , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _lowercase : int = False _lowercase : List[str] = 0 _lowercase : Dict = 0 _lowercase : Union[str, Any] = 1E1_2 while not convergence: # Multiple matrix by the vector. _lowercase : int = np.dot(__UpperCAmelCase , __UpperCAmelCase ) # Normalize the resulting output vector. _lowercase : List[Any] = w / np.linalg.norm(__UpperCAmelCase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _lowercase : Optional[Any] = vector.conj().T if is_complex else vector.T _lowercase : Optional[Any] = np.dot(__UpperCAmelCase , np.dot(__UpperCAmelCase , __UpperCAmelCase ) ) # Check convergence. _lowercase : List[str] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _lowercase : str = True _lowercase : Optional[Any] = lambda_ if is_complex: _lowercase : Any = np.real(lambda_ ) return lambda_, vector def __SCREAMING_SNAKE_CASE ( ): _lowercase : List[Any] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _lowercase : Union[str, Any] = np.array([41, 4, 20] ) _lowercase : Dict = real_input_matrix.astype(np.complexaaa ) _lowercase : Optional[int] = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _lowercase : Optional[Any] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _lowercase : str = real_input_matrix _lowercase : List[Any] = real_vector elif problem_type == "complex": _lowercase : int = complex_input_matrix _lowercase : Tuple = complex_vector # Our implementation. _lowercase , _lowercase : Dict = power_iteration(__UpperCAmelCase , __UpperCAmelCase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _lowercase , _lowercase : str = np.linalg.eigh(__UpperCAmelCase ) # Last eigenvalue is the maximum one. _lowercase : Any = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _lowercase : List[str] = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(__UpperCAmelCase ) - np.abs(__UpperCAmelCase ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
354
"""simple docstring""" from __future__ import annotations from typing import TypedDict class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str SCREAMING_SNAKE_CASE_ : int def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(__UpperCAmelCase ) )] def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _lowercase : Tuple = all_rotations(__UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _lowercase : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__UpperCAmelCase ), } return response def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _lowercase : Optional[Any] = int(__UpperCAmelCase ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(__UpperCAmelCase ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _lowercase : int = [""""""] * len(__UpperCAmelCase ) for _ in range(len(__UpperCAmelCase ) ): for i in range(len(__UpperCAmelCase ) ): _lowercase : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": UpperCAmelCase: Optional[int] = """Provide a string that I will generate its BWT transform: """ UpperCAmelCase: int = input(entry_msg).strip() UpperCAmelCase: List[str] = bwt_transform(s) print( F'Burrows Wheeler transform for string \'{s}\' results ' F'in \'{result["bwt_string"]}\'' ) UpperCAmelCase: Union[str, Any] = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' ' F'we get original string \'{original_string}\'' )
336
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCamelCase ( metaclass=UpperCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = ['''torch''', '''scipy'''] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch""", """scipy"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch""", """scipy"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch""", """scipy"""] )
355
"""simple docstring""" from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __SCREAMING_SNAKE_CASE ( ): _lowercase : Dict = [randint(-1000 , 1000 ) for i in range(10 )] _lowercase : Tuple = randint(-5000 , 5000 ) return (arr, r) UpperCAmelCase: int = make_dataset() def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): for triplet in permutations(__UpperCAmelCase , 3 ): if sum(__UpperCAmelCase ) == target: return tuple(sorted(__UpperCAmelCase ) ) return (0, 0, 0) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): arr.sort() _lowercase : Optional[Any] = len(__UpperCAmelCase ) for i in range(n - 1 ): _lowercase , _lowercase : str = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __SCREAMING_SNAKE_CASE ( ): _lowercase : Tuple = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ _lowercase : Union[str, Any] = """ triplet_sum1(*dataset) """ _lowercase : Union[str, Any] = """ triplet_sum2(*dataset) """ _lowercase : Dict = repeat(setup=__UpperCAmelCase , stmt=__UpperCAmelCase , repeat=5 , number=10000 ) _lowercase : Any = repeat(setup=__UpperCAmelCase , stmt=__UpperCAmelCase , repeat=5 , number=10000 ) return (min(__UpperCAmelCase ), min(__UpperCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase: Any = solution_times() print(F'The time for naive implementation is {times[0]}.') print(F'The time for optimized implementation is {times[1]}.')
336
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = DiTPipeline SCREAMING_SNAKE_CASE_ : Optional[Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE_ : List[str] = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } SCREAMING_SNAKE_CASE_ : List[Any] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS SCREAMING_SNAKE_CASE_ : Tuple = False def lowerCamelCase__ ( self ): torch.manual_seed(0 ) _lowercase : Union[str, Any] = TransformeraDModel( sample_size=16 ,num_layers=2 ,patch_size=4 ,attention_head_dim=8 ,num_attention_heads=2 ,in_channels=4 ,out_channels=8 ,attention_bias=__lowerCamelCase ,activation_fn="""gelu-approximate""" ,num_embeds_ada_norm=10_00 ,norm_type="""ada_norm_zero""" ,norm_elementwise_affine=__lowerCamelCase ,) _lowercase : Any = AutoencoderKL() _lowercase : Optional[Any] = DDIMScheduler() _lowercase : Optional[Any] = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler} return components def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=0 ): if str(__lowerCamelCase ).startswith("""mps""" ): _lowercase : str = torch.manual_seed(__lowerCamelCase ) else: _lowercase : Dict = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) _lowercase : Any = { '''class_labels''': [1], '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def lowerCamelCase__ ( self ): _lowercase : Dict = '''cpu''' _lowercase : List[Any] = self.get_dummy_components() _lowercase : Tuple = self.pipeline_class(**__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _lowercase : List[str] = self.get_dummy_inputs(__lowerCamelCase ) _lowercase : Union[str, Any] = pipe(**__lowerCamelCase ).images _lowercase : Union[str, Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape ,(1, 16, 16, 3) ) _lowercase : Dict = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _lowercase : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCamelCase ,1E-3 ) def lowerCamelCase__ ( self ): self._test_inference_batch_single_identical(relax_max_difference=__lowerCamelCase ,expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() ,reason="""XFormers attention is only available with CUDA and `xformers` installed""" ,) def lowerCamelCase__ ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self ): _lowercase : Any = torch.manual_seed(0 ) _lowercase : Optional[Any] = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowercase : List[str] = ['''vase''', '''umbrella''', '''white shark''', '''white wolf'''] _lowercase : str = pipe.get_label_ids(__lowerCamelCase ) _lowercase : List[str] = pipe(__lowerCamelCase ,generator=__lowerCamelCase ,num_inference_steps=40 ,output_type="""np""" ).images for word, image in zip(__lowerCamelCase ,__lowerCamelCase ): _lowercase : Optional[Any] = load_numpy( f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1E-2 def lowerCamelCase__ ( self ): _lowercase : str = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowercase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowercase : Dict = ['''vase''', '''umbrella'''] _lowercase : Optional[Any] = pipe.get_label_ids(__lowerCamelCase ) _lowercase : Tuple = torch.manual_seed(0 ) _lowercase : Tuple = pipe(__lowerCamelCase ,generator=__lowerCamelCase ,num_inference_steps=25 ,output_type="""np""" ).images for word, image in zip(__lowerCamelCase ,__lowerCamelCase ): _lowercase : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" f"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1E-1
356
"""simple docstring""" import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE_ : Optional[int] = "BlipImageProcessor" SCREAMING_SNAKE_CASE_ : Tuple = "AutoTokenizer" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): super().__init__(UpperCAmelCase_ ,UpperCAmelCase_ ) # add QFormer tokenizer _lowercase : Optional[int] = qformer_tokenizer def __call__( self ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = True ,UpperCAmelCase_ = False ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = 0 ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): if images is None and text is None: raise ValueError("""You have to specify at least images or text.""" ) _lowercase : List[Any] = BatchFeature() if text is not None: _lowercase : List[str] = self.tokenizer( text=UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,stride=UpperCAmelCase_ ,pad_to_multiple_of=UpperCAmelCase_ ,return_attention_mask=UpperCAmelCase_ ,return_overflowing_tokens=UpperCAmelCase_ ,return_special_tokens_mask=UpperCAmelCase_ ,return_offsets_mapping=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ,return_length=UpperCAmelCase_ ,verbose=UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ,**UpperCAmelCase_ ,) encoding.update(UpperCAmelCase_ ) _lowercase : Dict = self.qformer_tokenizer( text=UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,stride=UpperCAmelCase_ ,pad_to_multiple_of=UpperCAmelCase_ ,return_attention_mask=UpperCAmelCase_ ,return_overflowing_tokens=UpperCAmelCase_ ,return_special_tokens_mask=UpperCAmelCase_ ,return_offsets_mapping=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ,return_length=UpperCAmelCase_ ,verbose=UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ,**UpperCAmelCase_ ,) _lowercase : str = qformer_text_encoding.pop("""input_ids""" ) _lowercase : int = qformer_text_encoding.pop("""attention_mask""" ) if images is not None: _lowercase : Optional[Any] = self.image_processor(UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ) encoding.update(UpperCAmelCase_ ) return encoding def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return self.tokenizer.batch_decode(*UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return self.tokenizer.decode(*UpperCAmelCase_ ,**UpperCAmelCase_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.tokenizer.model_input_names _lowercase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,**UpperCAmelCase_ ): if os.path.isfile(UpperCAmelCase_ ): raise ValueError(f"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(UpperCAmelCase_ ,exist_ok=UpperCAmelCase_ ) _lowercase : Any = os.path.join(UpperCAmelCase_ ,"""qformer_tokenizer""" ) self.qformer_tokenizer.save_pretrained(UpperCAmelCase_ ) return super().save_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): _lowercase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCAmelCase_ ,subfolder="""qformer_tokenizer""" ) _lowercase : Any = cls._get_arguments_from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) args.append(UpperCAmelCase_ ) return cls(*UpperCAmelCase_ )
336
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. UpperCAmelCase = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class UpperCamelCase ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ : str = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: SCREAMING_SNAKE_CASE_ : Tuple = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: SCREAMING_SNAKE_CASE_ : int = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def lowerCamelCase__ ( self ): _lowercase : List[Any] = pipeline( task="""text-classification""" ,model="""hf-internal-testing/tiny-random-distilbert""" ,framework="""pt""" ) _lowercase : Optional[int] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(_A ) ,[{"""label""": """LABEL_0""", """score""": 0.504}] ) _lowercase : Optional[int] = text_classifier("""This is great !""" ,top_k=2 ) self.assertEqual( nested_simplify(_A ) ,[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] ) _lowercase : Dict = text_classifier(["""This is great !""", """This is bad"""] ,top_k=2 ) self.assertEqual( nested_simplify(_A ) ,[ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] ,) _lowercase : List[str] = text_classifier("""This is great !""" ,top_k=1 ) self.assertEqual(nested_simplify(_A ) ,[{"""label""": """LABEL_0""", """score""": 0.504}] ) # Legacy behavior _lowercase : str = text_classifier("""This is great !""" ,return_all_scores=_A ) self.assertEqual(nested_simplify(_A ) ,[{"""label""": """LABEL_0""", """score""": 0.504}] ) _lowercase : List[Any] = text_classifier("""This is great !""" ,return_all_scores=_A ) self.assertEqual( nested_simplify(_A ) ,[[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] ) _lowercase : Optional[Any] = text_classifier(["""This is great !""", """Something else"""] ,return_all_scores=_A ) self.assertEqual( nested_simplify(_A ) ,[ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] ,) _lowercase : Any = text_classifier(["""This is great !""", """Something else"""] ,return_all_scores=_A ) self.assertEqual( nested_simplify(_A ) ,[ {"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_0""", """score""": 0.504}, ] ,) @require_torch def lowerCamelCase__ ( self ): import torch _lowercase : Union[str, Any] = pipeline( task="""text-classification""" ,model="""hf-internal-testing/tiny-random-distilbert""" ,framework="""pt""" ,device=torch.device("""cpu""" ) ,) _lowercase : List[str] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(_A ) ,[{"""label""": """LABEL_0""", """score""": 0.504}] ) @require_tf def lowerCamelCase__ ( self ): _lowercase : Tuple = pipeline( task="""text-classification""" ,model="""hf-internal-testing/tiny-random-distilbert""" ,framework="""tf""" ) _lowercase : Dict = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(_A ) ,[{"""label""": """LABEL_0""", """score""": 0.504}] ) @slow @require_torch def lowerCamelCase__ ( self ): _lowercase : str = pipeline("""text-classification""" ) _lowercase : str = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(_A ) ,[{"""label""": """POSITIVE""", """score""": 1.0}] ) _lowercase : Union[str, Any] = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(_A ) ,[{"""label""": """NEGATIVE""", """score""": 1.0}] ) _lowercase : Union[str, Any] = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(_A ) ,[{"""label""": """POSITIVE""", """score""": 0.988}] ) @slow @require_tf def lowerCamelCase__ ( self ): _lowercase : Tuple = pipeline("""text-classification""" ,framework="""tf""" ) _lowercase : Dict = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(_A ) ,[{"""label""": """POSITIVE""", """score""": 1.0}] ) _lowercase : str = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(_A ) ,[{"""label""": """NEGATIVE""", """score""": 1.0}] ) _lowercase : Optional[int] = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(_A ) ,[{"""label""": """POSITIVE""", """score""": 0.988}] ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : List[Any] = TextClassificationPipeline(model=_A ,tokenizer=_A ) return text_classifier, ["HuggingFace is in", "This is another test"] def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Tuple = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 _lowercase : str = 'HuggingFace is in' _lowercase : Optional[Any] = text_classifier(_A ) self.assertEqual(nested_simplify(_A ) ,[{"""label""": ANY(_A ), """score""": ANY(_A )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) _lowercase : List[str] = ['HuggingFace is in ', 'Paris is in France'] _lowercase : Any = text_classifier(_A ) self.assertEqual( nested_simplify(_A ) ,[{"""label""": ANY(_A ), """score""": ANY(_A )}, {"""label""": ANY(_A ), """score""": ANY(_A )}] ,) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format _lowercase : List[str] = text_classifier(_A ,top_k=_A ) _lowercase : Optional[Any] = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(_A ) ,[[{"""label""": ANY(_A ), """score""": ANY(_A )}] * N, [{"""label""": ANY(_A ), """score""": ANY(_A )}] * N] ,) _lowercase : Union[str, Any] = {'text': 'HuggingFace is in ', 'text_pair': 'Paris is in France'} _lowercase : Optional[Any] = text_classifier(_A ) self.assertEqual( nested_simplify(_A ) ,{"""label""": ANY(_A ), """score""": ANY(_A )} ,) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. _lowercase : Optional[Any] = [['HuggingFace is in ', 'Paris is in France']] with self.assertRaises(_A ): text_classifier(_A ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility _lowercase : List[str] = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(_A ) ,[{"""label""": ANY(_A ), """score""": ANY(_A )}] ,) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
357
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase: Tuple = logging.get_logger(__name__) UpperCAmelCase: List[Any] = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "trajectory_transformer" SCREAMING_SNAKE_CASE_ : Optional[int] = ["past_key_values"] SCREAMING_SNAKE_CASE_ : Tuple = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self ,UpperCAmelCase_=1_00 ,UpperCAmelCase_=5 ,UpperCAmelCase_=1 ,UpperCAmelCase_=1 ,UpperCAmelCase_=2_49 ,UpperCAmelCase_=6 ,UpperCAmelCase_=17 ,UpperCAmelCase_=25 ,UpperCAmelCase_=4 ,UpperCAmelCase_=4 ,UpperCAmelCase_=1_28 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.0006 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-12 ,UpperCAmelCase_=1 ,UpperCAmelCase_=True ,UpperCAmelCase_=1 ,UpperCAmelCase_=5_02_56 ,UpperCAmelCase_=5_02_56 ,**UpperCAmelCase_ ,): _lowercase : Dict = vocab_size _lowercase : List[str] = action_weight _lowercase : int = reward_weight _lowercase : List[Any] = value_weight _lowercase : List[str] = max_position_embeddings _lowercase : Any = block_size _lowercase : Any = action_dim _lowercase : List[str] = observation_dim _lowercase : Union[str, Any] = transition_dim _lowercase : str = learning_rate _lowercase : Tuple = n_layer _lowercase : Optional[int] = n_head _lowercase : List[str] = n_embd _lowercase : List[str] = embd_pdrop _lowercase : Optional[Any] = attn_pdrop _lowercase : List[Any] = resid_pdrop _lowercase : str = initializer_range _lowercase : Optional[Any] = layer_norm_eps _lowercase : List[Any] = kaiming_initializer_range _lowercase : List[Any] = use_cache super().__init__(pad_token_id=UpperCAmelCase_ ,bos_token_id=UpperCAmelCase_ ,eos_token_id=UpperCAmelCase_ ,**UpperCAmelCase_ )
336
0
from random import randint, random def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = 5 , ): _lowercase : Union[str, Any] = [[-1] * number_of_cells] # Create a highway without any car _lowercase : Optional[int] = 0 _lowercase : int = max(_A , 0 ) while i < number_of_cells: _lowercase : Optional[Any] = ( randint(0 , _A ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Dict = 0 _lowercase : Optional[int] = highway_now[car_index + 1 :] for cell in range(len(_A ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(_A , -1 ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Any = len(_A ) # Beforce calculations, the highway is empty _lowercase : Dict = [-1] * number_of_cells for car_index in range(_A ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _lowercase : Tuple = min(highway_now[car_index] + 1 , _A ) # Number of empty cell before the next car _lowercase : Optional[Any] = get_distance(_A , _A ) - 1 # We can't have the car causing an accident _lowercase : List[Any] = min(next_highway[car_index] , _A ) if random() < probability: # Randomly, a driver will slow down _lowercase : List[str] = max(next_highway[car_index] - 1 , 0 ) return next_highway def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Optional[Any] = len(highway[0] ) for i in range(_A ): _lowercase : Optional[int] = update(highway[i] , _A , _A ) _lowercase : List[str] = [-1] * number_of_cells for car_index in range(_A ): _lowercase : Dict = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _lowercase : List[Any] = (car_index + speed) % number_of_cells # Commit the change of position _lowercase : Optional[Any] = speed highway.append(_A ) return highway if __name__ == "__main__": import doctest doctest.testmod()
358
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase: Any = logging.get_logger(__name__) UpperCAmelCase: List[str] = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = "instructblip_vision_model" def __init__( self ,UpperCAmelCase_=14_08 ,UpperCAmelCase_=61_44 ,UpperCAmelCase_=39 ,UpperCAmelCase_=16 ,UpperCAmelCase_=2_24 ,UpperCAmelCase_=14 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=1E-6 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=1E-10 ,UpperCAmelCase_=True ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) _lowercase : Optional[Any] = hidden_size _lowercase : Tuple = intermediate_size _lowercase : List[Any] = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[Any] = patch_size _lowercase : Optional[Any] = image_size _lowercase : Union[str, Any] = initializer_range _lowercase : Optional[Any] = attention_dropout _lowercase : List[Any] = layer_norm_eps _lowercase : Optional[int] = hidden_act _lowercase : Tuple = qkv_bias @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): cls._set_token_in_kwargs(UpperCAmelCase_ ) _lowercase , _lowercase : List[Any] = cls.get_config_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": _lowercase : int = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = "instructblip_qformer" def __init__( self ,UpperCAmelCase_=3_05_22 ,UpperCAmelCase_=7_68 ,UpperCAmelCase_=12 ,UpperCAmelCase_=12 ,UpperCAmelCase_=30_72 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-12 ,UpperCAmelCase_=0 ,UpperCAmelCase_="absolute" ,UpperCAmelCase_=2 ,UpperCAmelCase_=14_08 ,**UpperCAmelCase_ ,): super().__init__(pad_token_id=UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : List[Any] = vocab_size _lowercase : List[Any] = hidden_size _lowercase : str = num_hidden_layers _lowercase : List[str] = num_attention_heads _lowercase : Optional[Any] = hidden_act _lowercase : int = intermediate_size _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : List[Any] = max_position_embeddings _lowercase : Tuple = initializer_range _lowercase : Optional[int] = layer_norm_eps _lowercase : Any = position_embedding_type _lowercase : Dict = cross_attention_frequency _lowercase : Optional[Any] = encoder_hidden_size @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): cls._set_token_in_kwargs(UpperCAmelCase_ ) _lowercase , _lowercase : Dict = cls.get_config_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": _lowercase : str = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "instructblip" SCREAMING_SNAKE_CASE_ : List[str] = True def __init__( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=32 ,**UpperCAmelCase_ ): super().__init__(**UpperCAmelCase_ ) if vision_config is None: _lowercase : str = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: _lowercase : Any = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: _lowercase : Optional[int] = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) _lowercase : int = InstructBlipVisionConfig(**UpperCAmelCase_ ) _lowercase : Optional[int] = InstructBlipQFormerConfig(**UpperCAmelCase_ ) _lowercase : Dict = text_config["""model_type"""] if """model_type""" in text_config else """opt""" _lowercase : str = CONFIG_MAPPING[text_model_type](**UpperCAmelCase_ ) _lowercase : str = self.text_config.tie_word_embeddings _lowercase : Union[str, Any] = self.text_config.is_encoder_decoder _lowercase : List[str] = num_query_tokens _lowercase : List[str] = self.vision_config.hidden_size _lowercase : Dict = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowercase : Union[str, Any] = 1.0 _lowercase : Dict = 0.02 @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,**UpperCAmelCase_ ,): return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**UpperCAmelCase_ ,) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowercase : int = self.vision_config.to_dict() _lowercase : Any = self.qformer_config.to_dict() _lowercase : Any = self.text_config.to_dict() _lowercase : Optional[int] = self.__class__.model_type return output
336
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore UpperCAmelCase: Any = "\nHuman: <<task>>\n\nAssistant: " UpperCAmelCase: List[Any] = "huggingface-tools/default-prompts" UpperCAmelCase: List[str] = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="run" ): if prompt_or_repo_id is None: _lowercase : List[Any] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("""\\s""" , lowerCAmelCase__ ) is not None: return prompt_or_repo_id _lowercase : int = cached_file( lowerCAmelCase__ , PROMPT_FILES[mode] , repo_type="""dataset""" , user_agent={"""agent""": agent_name} ) with open(lowerCAmelCase__ , """r""" , encoding="""utf-8""" ) as f: return f.read()
359
"""simple docstring""" import cva import numpy as np class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): if k in (0.04, 0.06): _lowercase : Optional[Any] = k _lowercase : Optional[Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self ): return str(self.k ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : List[str] = cva.imread(UpperCAmelCase_ ,0 ) _lowercase , _lowercase : Dict = img.shape _lowercase : list[list[int]] = [] _lowercase : int = img.copy() _lowercase : List[str] = cva.cvtColor(UpperCAmelCase_ ,cva.COLOR_GRAY2RGB ) _lowercase , _lowercase : Optional[Any] = np.gradient(UpperCAmelCase_ ) _lowercase : Optional[int] = dx**2 _lowercase : Optional[Any] = dy**2 _lowercase : Optional[Any] = dx * dy _lowercase : List[str] = 0.04 _lowercase : Optional[Any] = self.window_size // 2 for y in range(UpperCAmelCase_ ,h - offset ): for x in range(UpperCAmelCase_ ,w - offset ): _lowercase : Optional[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : Dict = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : Union[str, Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : int = (wxx * wyy) - (wxy**2) _lowercase : Union[str, Any] = wxx + wyy _lowercase : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) ,0 ) color_img.itemset((y, x, 1) ,0 ) color_img.itemset((y, x, 2) ,2_55 ) return color_img, corner_list if __name__ == "__main__": UpperCAmelCase: Optional[int] = HarrisCorner(0.04, 3) UpperCAmelCase , UpperCAmelCase: List[Any] = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
336
0
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase ( __a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = """ClapFeatureExtractor""" SCREAMING_SNAKE_CASE_ : List[str] = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): super().__init__(a__ ,a__ ) def __call__( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,**UpperCAmelCase_ ): _lowercase : List[str] = kwargs.pop("""sampling_rate""" ,a__ ) if text is None and audios is None: raise ValueError("""You have to specify either text or audios. Both cannot be none.""" ) if text is not None: _lowercase : str = self.tokenizer(a__ ,return_tensors=a__ ,**a__ ) if audios is not None: _lowercase : Optional[Any] = self.feature_extractor( a__ ,sampling_rate=a__ ,return_tensors=a__ ,**a__ ) if text is not None and audios is not None: _lowercase : Tuple = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) ,tensor_type=a__ ) def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return self.tokenizer.batch_decode(*a__ ,**a__ ) def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return self.tokenizer.decode(*a__ ,**a__ ) @property def lowerCamelCase__ ( self ): _lowercase : Dict = self.tokenizer.model_input_names _lowercase : List[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
360
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = LEDTokenizer SCREAMING_SNAKE_CASE_ : List[str] = LEDTokenizerFast SCREAMING_SNAKE_CASE_ : List[str] = True def lowerCamelCase__ ( self ): super().setUp() _lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _lowercase : List[Any] = dict(zip(UpperCAmelCase_ ,range(len(UpperCAmelCase_ ) ) ) ) _lowercase : Optional[int] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowercase : Dict = {"""unk_token""": """<unk>"""} _lowercase : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _lowercase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return "lower newer", "lower newer" @cached_property def lowerCamelCase__ ( self ): return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def lowerCamelCase__ ( self ): return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _lowercase : Any = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Tuple = tokenizer(UpperCAmelCase_ ,max_length=len(UpperCAmelCase_ ) ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) _lowercase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Dict = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIn("""input_ids""" ,UpperCAmelCase_ ) self.assertIn("""attention_mask""" ,UpperCAmelCase_ ) self.assertNotIn("""labels""" ,UpperCAmelCase_ ) self.assertNotIn("""decoder_attention_mask""" ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Dict = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Tuple = tokenizer(text_target=UpperCAmelCase_ ,max_length=32 ,padding="""max_length""" ,return_tensors="""pt""" ) self.assertEqual(32 ,targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : List[Any] = tokenizer( ["""I am a small frog""" * 10_24, """I am a small frog"""] ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual(batch.input_ids.shape ,(2, 51_22) ) @require_torch def lowerCamelCase__ ( self ): _lowercase : List[Any] = ["""A long paragraph for summarization."""] _lowercase : Dict = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Dict = tokenizer(UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : List[str] = tokenizer(text_target=UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : Union[str, Any] = inputs["""input_ids"""] _lowercase : List[str] = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : str = ["""Summary of the text.""", """Another summary."""] _lowercase : Optional[int] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _lowercase : Any = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ) _lowercase : str = [[0] * len(UpperCAmelCase_ ) for x in encoded_output["""input_ids"""]] _lowercase : Optional[int] = tokenizer.pad(UpperCAmelCase_ ) self.assertSequenceEqual(outputs["""global_attention_mask"""] ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): pass def lowerCamelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase : int = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Optional[int] = self.tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Dict = """A, <mask> AllenNLP sentence.""" _lowercase : List[Any] = tokenizer_r.encode_plus(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) _lowercase : Any = tokenizer_p.encode_plus(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) ,sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) ,sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) ,) _lowercase : str = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) _lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( UpperCAmelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( UpperCAmelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
336
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase: Optional[Any] = { "configuration_whisper": ["WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP", "WhisperConfig", "WhisperOnnxConfig"], "feature_extraction_whisper": ["WhisperFeatureExtractor"], "processing_whisper": ["WhisperProcessor"], "tokenization_whisper": ["WhisperTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: List[str] = ["WhisperTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: List[Any] = [ "WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST", "WhisperForConditionalGeneration", "WhisperModel", "WhisperPreTrainedModel", "WhisperForAudioClassification", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: Tuple = [ "TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWhisperForConditionalGeneration", "TFWhisperModel", "TFWhisperPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: List[str] = [ "FlaxWhisperForConditionalGeneration", "FlaxWhisperModel", "FlaxWhisperPreTrainedModel", "FlaxWhisperForAudioClassification", ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys UpperCAmelCase: int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
361
"""simple docstring""" import argparse from collections import defaultdict def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : str = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Any = f.readlines() _lowercase : Optional[int] = F"""class {class_name}(""" _lowercase : List[str] = F"""{4 * " "}def {test_name}(""" _lowercase : List[Any] = F"""{8 * " "}{correct_line.split()[0]}""" _lowercase : int = F"""{16 * " "}{correct_line.split()[0]}""" _lowercase : str = False _lowercase : Optional[Any] = False _lowercase : Union[str, Any] = False _lowercase : Any = False _lowercase : int = 0 _lowercase : Tuple = 0 _lowercase : Union[str, Any] = [] for line in lines: if line.startswith(__UpperCAmelCase ): _lowercase : List[str] = True elif in_class and line.startswith(__UpperCAmelCase ): _lowercase : str = True elif in_class and in_func and (line.startswith(__UpperCAmelCase ) or line.startswith(__UpperCAmelCase )): _lowercase : Union[str, Any] = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _lowercase : Optional[int] = True if in_class and in_func and in_line: if ")" not in line: continue else: _lowercase : Optional[Any] = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * " "}{correct_line}""" ) _lowercase : Union[str, Any] = False else: new_lines.append(__UpperCAmelCase ) with open(__UpperCAmelCase , """w""" ) as f: for line in new_lines: f.write(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=None ): if fail is not None: with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Dict = {l.strip() for l in f.readlines()} else: _lowercase : int = None with open(__UpperCAmelCase , """r""" ) as f: _lowercase : int = f.readlines() _lowercase : int = defaultdict(__UpperCAmelCase ) for line in correct_lines: _lowercase , _lowercase , _lowercase , _lowercase : int = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase: List[Any] = argparse.ArgumentParser() parser.add_argument("""--correct_filename""", help="""filename of tests with expected result""") parser.add_argument("""--fail_filename""", help="""filename of test failures""", type=str, default=None) UpperCAmelCase: Any = parser.parse_args() main(args.correct_filename, args.fail_filename)
336
0
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase: Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase: List[str] = { """huggingface/informer-tourism-monthly""": ( """https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json""" ), # See all Informer models at https://huggingface.co/models?filter=informer } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = "informer" SCREAMING_SNAKE_CASE_ : Dict = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = "student_t" ,UpperCAmelCase_ = "nll" ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = None ,UpperCAmelCase_ = "mean" ,UpperCAmelCase_ = 0 ,UpperCAmelCase_ = 0 ,UpperCAmelCase_ = 0 ,UpperCAmelCase_ = 0 ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = 64 ,UpperCAmelCase_ = 32 ,UpperCAmelCase_ = 32 ,UpperCAmelCase_ = 2 ,UpperCAmelCase_ = 2 ,UpperCAmelCase_ = 2 ,UpperCAmelCase_ = 2 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = "gelu" ,UpperCAmelCase_ = 0.05 ,UpperCAmelCase_ = 0.1 ,UpperCAmelCase_ = 0.1 ,UpperCAmelCase_ = 0.1 ,UpperCAmelCase_ = 0.1 ,UpperCAmelCase_ = 1_00 ,UpperCAmelCase_ = 0.02 ,UpperCAmelCase_=True ,UpperCAmelCase_ = "prob" ,UpperCAmelCase_ = 5 ,UpperCAmelCase_ = True ,**UpperCAmelCase_ ,): _lowercase : Optional[Any] = prediction_length _lowercase : List[str] = context_length or prediction_length _lowercase : Union[str, Any] = distribution_output _lowercase : List[Any] = loss _lowercase : Optional[Any] = input_size _lowercase : str = num_time_features _lowercase : Union[str, Any] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] _lowercase : Union[str, Any] = scaling _lowercase : Tuple = num_dynamic_real_features _lowercase : List[Any] = num_static_real_features _lowercase : Tuple = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(__a ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) _lowercase : Optional[Any] = cardinality else: _lowercase : str = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(__a ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) _lowercase : int = embedding_dimension else: _lowercase : Union[str, Any] = [min(50 ,(cat + 1) // 2 ) for cat in self.cardinality] _lowercase : List[Any] = num_parallel_samples # Transformer architecture configuration _lowercase : Optional[int] = input_size * len(self.lags_sequence ) + self._number_of_features _lowercase : Dict = d_model _lowercase : Any = encoder_attention_heads _lowercase : Union[str, Any] = decoder_attention_heads _lowercase : Tuple = encoder_ffn_dim _lowercase : List[Any] = decoder_ffn_dim _lowercase : List[str] = encoder_layers _lowercase : Union[str, Any] = decoder_layers _lowercase : Dict = dropout _lowercase : Dict = attention_dropout _lowercase : Union[str, Any] = activation_dropout _lowercase : Dict = encoder_layerdrop _lowercase : Optional[int] = decoder_layerdrop _lowercase : Any = activation_function _lowercase : Optional[int] = init_std _lowercase : Any = use_cache # Informer _lowercase : Optional[Any] = attention_type _lowercase : Dict = sampling_factor _lowercase : Tuple = distil super().__init__(is_encoder_decoder=__a ,**__a ) @property def lowerCamelCase__ ( self ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
362
"""simple docstring""" UpperCAmelCase: List[str] = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
336
0
"""simple docstring""" import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline UpperCAmelCase: Tuple = version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , ): output_path.parent.mkdir(parents=UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( UpperCAmelCase__ , UpperCAmelCase__ , f=output_path.as_posix() , input_names=UpperCAmelCase__ , output_names=UpperCAmelCase__ , dynamic_axes=UpperCAmelCase__ , do_constant_folding=UpperCAmelCase__ , use_external_data_format=UpperCAmelCase__ , enable_onnx_checker=UpperCAmelCase__ , opset_version=UpperCAmelCase__ , ) else: export( UpperCAmelCase__ , UpperCAmelCase__ , f=output_path.as_posix() , input_names=UpperCAmelCase__ , output_names=UpperCAmelCase__ , dynamic_axes=UpperCAmelCase__ , do_constant_folding=UpperCAmelCase__ , opset_version=UpperCAmelCase__ , ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ): _lowercase : List[Any] = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _lowercase : Optional[Any] = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: _lowercase : Any = """cpu""" _lowercase : List[Any] = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ , torch_dtype=UpperCAmelCase__ ).to(UpperCAmelCase__ ) _lowercase : Any = Path(UpperCAmelCase__ ) # TEXT ENCODER _lowercase : int = pipeline.text_encoder.config.max_position_embeddings _lowercase : str = pipeline.text_encoder.config.hidden_size _lowercase : List[str] = pipeline.tokenizer( """A sample prompt""" , padding="""max_length""" , max_length=pipeline.tokenizer.model_max_length , truncation=UpperCAmelCase__ , return_tensors="""pt""" , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=UpperCAmelCase__ , dtype=torch.intaa )) , output_path=output_path / """text_encoder""" / """model.onnx""" , ordered_input_names=["""input_ids"""] , output_names=["""last_hidden_state""", """pooler_output"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """sequence"""}, } , opset=UpperCAmelCase__ , ) del pipeline.text_encoder # UNET _lowercase : Dict = pipeline.unet.config.in_channels _lowercase : Union[str, Any] = pipeline.unet.config.sample_size _lowercase : Optional[int] = output_path / """unet""" / """model.onnx""" onnx_export( pipeline.unet , model_args=( torch.randn(2 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ), torch.randn(2 ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ), torch.randn(2 , UpperCAmelCase__ , UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ), False, ) , output_path=UpperCAmelCase__ , ordered_input_names=["""sample""", """timestep""", """encoder_hidden_states""", """return_dict"""] , output_names=["""out_sample"""] , dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """timestep""": {0: """batch"""}, """encoder_hidden_states""": {0: """batch""", 1: """sequence"""}, } , opset=UpperCAmelCase__ , use_external_data_format=UpperCAmelCase__ , ) _lowercase : Any = str(unet_path.absolute().as_posix() ) _lowercase : List[str] = os.path.dirname(UpperCAmelCase__ ) _lowercase : List[Any] = onnx.load(UpperCAmelCase__ ) # clean up existing tensor files shutil.rmtree(UpperCAmelCase__ ) os.mkdir(UpperCAmelCase__ ) # collate external tensor files into one onnx.save_model( UpperCAmelCase__ , UpperCAmelCase__ , save_as_external_data=UpperCAmelCase__ , all_tensors_to_one_file=UpperCAmelCase__ , location="""weights.pb""" , convert_attribute=UpperCAmelCase__ , ) del pipeline.unet # VAE ENCODER _lowercase : Optional[Any] = pipeline.vae _lowercase : Any = vae_encoder.config.in_channels _lowercase : Tuple = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder _lowercase : int = lambda __UpperCAmelCase , __UpperCAmelCase : vae_encoder.encode(UpperCAmelCase__ , UpperCAmelCase__ )[0].sample() onnx_export( UpperCAmelCase__ , model_args=( torch.randn(1 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ), False, ) , output_path=output_path / """vae_encoder""" / """model.onnx""" , ordered_input_names=["""sample""", """return_dict"""] , output_names=["""latent_sample"""] , dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=UpperCAmelCase__ , ) # VAE DECODER _lowercase : List[Any] = pipeline.vae _lowercase : Optional[int] = vae_decoder.config.latent_channels _lowercase : Optional[int] = vae_decoder.config.out_channels # forward only through the decoder part _lowercase : List[str] = vae_encoder.decode onnx_export( UpperCAmelCase__ , model_args=( torch.randn(1 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=UpperCAmelCase__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: _lowercase : Dict = pipeline.safety_checker _lowercase : Tuple = safety_checker.config.vision_config.num_channels _lowercase : Union[str, Any] = safety_checker.config.vision_config.image_size _lowercase : str = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ), torch.randn(1 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ), ) , output_path=output_path / """safety_checker""" / """model.onnx""" , ordered_input_names=["""clip_input""", """images"""] , output_names=["""out_images""", """has_nsfw_concepts"""] , dynamic_axes={ """clip_input""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """images""": {0: """batch""", 1: """height""", 2: """width""", 3: """channels"""}, } , opset=UpperCAmelCase__ , ) del pipeline.safety_checker _lowercase : Optional[Any] = OnnxRuntimeModel.from_pretrained(output_path / """safety_checker""" ) _lowercase : str = pipeline.feature_extractor else: _lowercase : int = None _lowercase : int = None _lowercase : List[str] = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_encoder""" ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_decoder""" ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / """text_encoder""" ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / """unet""" ) , scheduler=pipeline.scheduler , safety_checker=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(UpperCAmelCase__ ) print("""ONNX pipeline saved to""" , UpperCAmelCase__ ) del pipeline del onnx_pipeline _lowercase : str = OnnxStableDiffusionPipeline.from_pretrained(UpperCAmelCase__ , provider="""CPUExecutionProvider""" ) print("""ONNX pipeline is loadable""" ) if __name__ == "__main__": UpperCAmelCase: Any = argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=14, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") UpperCAmelCase: Dict = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
363
"""simple docstring""" UpperCAmelCase: str = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ UpperCAmelCase: Any = [{"""type""": """code""", """content""": INSTALL_CONTENT}] UpperCAmelCase: int = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
336
0
"""simple docstring""" import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCamelCase ( snake_case__ ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_=10_24 ,UpperCAmelCase_=10_24 ,UpperCAmelCase_=3.6 ): _lowercase : List[str] = tokenizer _lowercase : List[Any] = tokenizer.bos_token_id _lowercase : List[str] = dataset _lowercase : List[Any] = seq_length _lowercase : Any = seq_length * chars_per_token * num_of_sequences def __iter__( self ): _lowercase : List[str] = iter(self.dataset ) _lowercase : Dict = True while more_examples: _lowercase , _lowercase : Optional[int] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(_A )["""content"""] ) buffer_len += len(buffer[-1] ) except StopIteration: _lowercase : Optional[int] = False break _lowercase : int = tokenizer(_A ,truncation=_A )["""input_ids"""] _lowercase : List[Any] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 ,len(_A ) ,self.seq_length ): _lowercase : List[Any] = all_token_ids[i : i + self.seq_length] if len(_A ) == self.seq_length: yield torch.tensor(_A ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : int = {"""streaming""": True} _lowercase : Optional[Any] = load_dataset(args.dataset_name , split="""train""" , **SCREAMING_SNAKE_CASE_ ) _lowercase : str = ConstantLengthDataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , seq_length=args.seq_length ) _lowercase : Union[str, Any] = DataLoader(SCREAMING_SNAKE_CASE_ , batch_size=args.batch_size ) return eval_dataloader def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): model.eval() _lowercase : str = [] for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): with torch.no_grad(): _lowercase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) _lowercase : Tuple = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(SCREAMING_SNAKE_CASE_ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break _lowercase : str = torch.mean(torch.cat(SCREAMING_SNAKE_CASE_ ) ) try: _lowercase : Any = torch.exp(SCREAMING_SNAKE_CASE_ ) except OverflowError: _lowercase : Any = float("""inf""" ) return loss.item(), perplexity.item() # Setup Accelerator UpperCAmelCase: Dict = Accelerator() # Parse configuration UpperCAmelCase: Tuple = HfArgumentParser(EvaluationArguments) UpperCAmelCase: Dict = parser.parse_args() set_seed(args.seed) # Logging UpperCAmelCase: Optional[int] = logging.getLogger(__name__) logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) # Load model and tokenizer UpperCAmelCase: Union[str, Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) UpperCAmelCase: int = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader UpperCAmelCase: Optional[Any] = create_dataloader(args) # Prepare everything with our `accelerator`. UpperCAmelCase , UpperCAmelCase: int = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info("""Evaluating and saving model after training""") UpperCAmelCase , UpperCAmelCase: Dict = evaluate(args) logger.info(F'loss/eval: {eval_loss}, perplexity: {perplexity}')
364
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL UpperCAmelCase: List[Any] = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): def constraint_to_multiple_of(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=0 , __UpperCAmelCase=None ): _lowercase : Union[str, Any] = round(val / multiple ) * multiple if max_val is not None and x > max_val: _lowercase : str = math.floor(val / multiple ) * multiple if x < min_val: _lowercase : Dict = math.ceil(val / multiple ) * multiple return x _lowercase : List[str] = (output_size, output_size) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else output_size _lowercase , _lowercase : List[Any] = get_image_size(__UpperCAmelCase ) _lowercase , _lowercase : Union[str, Any] = output_size # determine new height and width _lowercase : str = output_height / input_height _lowercase : List[Any] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _lowercase : str = scale_width else: # fit height _lowercase : int = scale_height _lowercase : List[Any] = constraint_to_multiple_of(scale_height * input_height , multiple=__UpperCAmelCase ) _lowercase : Optional[Any] = constraint_to_multiple_of(scale_width * input_width , multiple=__UpperCAmelCase ) return (new_height, new_width) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["pixel_values"] def __init__( self ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = PILImageResampling.BILINEAR ,UpperCAmelCase_ = False ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = 1 / 2_55 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) _lowercase : List[Any] = size if size is not None else {"""height""": 3_84, """width""": 3_84} _lowercase : str = get_size_dict(UpperCAmelCase_ ) _lowercase : Tuple = do_resize _lowercase : Any = size _lowercase : List[Any] = keep_aspect_ratio _lowercase : Any = ensure_multiple_of _lowercase : str = resample _lowercase : Optional[Any] = do_rescale _lowercase : List[Any] = rescale_factor _lowercase : Union[str, Any] = do_normalize _lowercase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowercase : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = False ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = PILImageResampling.BICUBIC ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): _lowercase : Optional[Any] = get_size_dict(UpperCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _lowercase : Dict = get_resize_output_image_size( UpperCAmelCase_ ,output_size=(size["""height"""], size["""width"""]) ,keep_aspect_ratio=UpperCAmelCase_ ,multiple=UpperCAmelCase_ ,) return resize(UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): return rescale(UpperCAmelCase_ ,scale=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): return normalize(UpperCAmelCase_ ,mean=UpperCAmelCase_ ,std=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = ChannelDimension.FIRST ,**UpperCAmelCase_ ,): _lowercase : Any = do_resize if do_resize is not None else self.do_resize _lowercase : List[str] = size if size is not None else self.size _lowercase : int = get_size_dict(UpperCAmelCase_ ) _lowercase : Any = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _lowercase : List[str] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _lowercase : List[str] = resample if resample is not None else self.resample _lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _lowercase : Any = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase : str = do_normalize if do_normalize is not None else self.do_normalize _lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean _lowercase : int = image_std if image_std is not None else self.image_std _lowercase : Union[str, Any] = make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _lowercase : int = [to_numpy_array(UpperCAmelCase_ ) for image in images] if do_resize: _lowercase : Union[str, Any] = [self.resize(image=UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ) for image in images] if do_rescale: _lowercase : int = [self.rescale(image=UpperCAmelCase_ ,scale=UpperCAmelCase_ ) for image in images] if do_normalize: _lowercase : str = [self.normalize(image=UpperCAmelCase_ ,mean=UpperCAmelCase_ ,std=UpperCAmelCase_ ) for image in images] _lowercase : Tuple = [to_channel_dimension_format(UpperCAmelCase_ ,UpperCAmelCase_ ) for image in images] _lowercase : int = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase_ ,tensor_type=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): _lowercase : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(UpperCAmelCase_ ): _lowercase : Tuple = target_sizes.numpy() _lowercase : Optional[Any] = [] for idx in range(len(UpperCAmelCase_ ) ): _lowercase : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode="""bilinear""" ,align_corners=UpperCAmelCase_ ) _lowercase : Optional[int] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase_ ) else: _lowercase : Union[str, Any] = logits.argmax(dim=1 ) _lowercase : Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
336
0
"""simple docstring""" from typing import Any import numpy as np def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return np.array_equal(snake_case__ , matrix.conjugate().T ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : str = v.conjugate().T _lowercase : int = v_star.dot(snake_case__ ) assert isinstance(snake_case__ , np.ndarray ) return (v_star_dot.dot(snake_case__ )) / (v_star.dot(snake_case__ )) def __SCREAMING_SNAKE_CASE ( ): _lowercase : List[str] = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) _lowercase : Any = np.array([[1], [2], [3]] ) assert is_hermitian(snake_case__ ), F"""{a} is not hermitian.""" print(rayleigh_quotient(snake_case__ , snake_case__ ) ) _lowercase : List[Any] = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(snake_case__ ), F"""{a} is not hermitian.""" assert rayleigh_quotient(snake_case__ , snake_case__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
365
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCAmelCase: Optional[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCAmelCase: Tuple = [0, 25, 50] UpperCAmelCase: List[Any] = [25, 50, 75] UpperCAmelCase: Optional[int] = fuzz.membership.trimf(X, abca) UpperCAmelCase: Any = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCAmelCase: List[Any] = np.ones(75) UpperCAmelCase: Any = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) UpperCAmelCase: str = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) UpperCAmelCase: Optional[int] = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) UpperCAmelCase: List[Any] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) UpperCAmelCase: Optional[int] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] UpperCAmelCase: int = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) UpperCAmelCase: int = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] UpperCAmelCase: List[Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] UpperCAmelCase: int = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("""Young""") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("""Middle aged""") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("""union""") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("""intersection""") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("""complement_a""") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("""difference a/b""") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("""alg_sum""") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("""alg_product""") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("""bdd_sum""") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("""bdd_difference""") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
336
0
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCAmelCase: str = logging.get_logger(__name__) class UpperCamelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = "vision-encoder-decoder" SCREAMING_SNAKE_CASE_ : Dict = True def __init__( self ,**UpperCAmelCase_ ): super().__init__(**UpperCAmelCase_ ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"""A configuraton of type {self.model_type} cannot be instantiated because """ f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) _lowercase : List[str] = kwargs.pop("""encoder""" ) _lowercase : str = encoder_config.pop("""model_type""" ) _lowercase : Dict = kwargs.pop("""decoder""" ) _lowercase : List[str] = decoder_config.pop("""model_type""" ) _lowercase : Dict = AutoConfig.for_model(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : str = AutoConfig.for_model(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Any = True @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,UpperCAmelCase_ ,**UpperCAmelCase_ ): logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) _lowercase : Any = True _lowercase : List[Any] = True return cls(encoder=encoder_config.to_dict() ,decoder=decoder_config.to_dict() ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : List[Any] = copy.deepcopy(self.__dict__ ) _lowercase : Any = self.encoder.to_dict() _lowercase : int = self.decoder.to_dict() _lowercase : Union[str, Any] = self.__class__.model_type return output class UpperCamelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = version.parse("1.11" ) @property def lowerCamelCase__ ( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase__ ( self ): return 1E-4 @property def lowerCamelCase__ ( self ): return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class UpperCamelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" @property def lowerCamelCase__ ( self ): _lowercase : Tuple = OrderedDict() _lowercase : List[Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _lowercase : Any = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _lowercase : List[str] = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = -1 ,UpperCAmelCase_ = -1 ,UpperCAmelCase_ = False ,UpperCAmelCase_ = None ,): import torch _lowercase : Optional[Any] = OrderedDict() _lowercase : Optional[Any] = super().generate_dummy_inputs( UpperCAmelCase_ ,batch_size=UpperCAmelCase_ ,seq_length=UpperCAmelCase_ ,is_pair=UpperCAmelCase_ ,framework=UpperCAmelCase_ ) _lowercase , _lowercase : str = dummy_input["""input_ids"""].shape _lowercase : Optional[int] = (batch, encoder_sequence, self._config.encoder_hidden_size) _lowercase : Optional[int] = dummy_input.pop("""input_ids""" ) _lowercase : Dict = dummy_input.pop("""attention_mask""" ) _lowercase : Optional[Any] = torch.zeros(UpperCAmelCase_ ) return common_inputs class UpperCamelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" @property def lowerCamelCase__ ( self ): pass def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return VisionEncoderDecoderEncoderOnnxConfig(UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = "default" ): _lowercase : Optional[Any] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(UpperCAmelCase_ ,UpperCAmelCase_ )
366
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ): _lowercase : str = tempfile.mkdtemp() # fmt: off _lowercase : List[Any] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _lowercase : Optional[int] = dict(zip(UpperCAmelCase_ ,range(len(UpperCAmelCase_ ) ) ) ) _lowercase : Optional[int] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] _lowercase : Optional[int] = {"""unk_token""": """<unk>"""} _lowercase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _lowercase : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) _lowercase : Dict = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } _lowercase : List[Any] = os.path.join(self.tmpdirname ,UpperCAmelCase_ ) with open(self.image_processor_file ,"""w""" ,encoding="""utf-8""" ) as fp: json.dump(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPTokenizer.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPImageProcessor.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] _lowercase : Tuple = [Image.fromarray(np.moveaxis(UpperCAmelCase_ ,0 ,-1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.get_tokenizer() _lowercase : List[Any] = self.get_rust_tokenizer() _lowercase : List[Any] = self.get_image_processor() _lowercase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) _lowercase : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname ,use_fast=UpperCAmelCase_ ) _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) _lowercase : List[str] = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer ,UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : str = CLIPProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowercase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) _lowercase : Optional[int] = self.get_image_processor(do_normalize=UpperCAmelCase_ ,padding_value=1.0 ) _lowercase : int = CLIPProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=UpperCAmelCase_ ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : Optional[int] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : int = self.prepare_image_inputs() _lowercase : str = image_processor(UpperCAmelCase_ ,return_tensors="""np""" ) _lowercase : int = processor(images=UpperCAmelCase_ ,return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : Optional[Any] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : List[Any] = """lower newer""" _lowercase : Any = processor(text=UpperCAmelCase_ ) _lowercase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : str = """lower newer""" _lowercase : List[Any] = self.prepare_image_inputs() _lowercase : Optional[int] = processor(text=UpperCAmelCase_ ,images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowerCamelCase__ ( self ): _lowercase : Dict = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowercase : int = processor.batch_decode(UpperCAmelCase_ ) _lowercase : Tuple = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : Optional[Any] = """lower newer""" _lowercase : Any = self.prepare_image_inputs() _lowercase : Optional[int] = processor(text=UpperCAmelCase_ ,images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
336
0
"""simple docstring""" import copy import re class UpperCamelCase : """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = """hp""" SCREAMING_SNAKE_CASE_ : Any = {} SCREAMING_SNAKE_CASE_ : List[str] = None @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : List[str] = prefix _lowercase : Optional[Any] = defaults cls.build_naming_info() @staticmethod def lowerCamelCase__ ( UpperCAmelCase_ ,UpperCAmelCase_ ): if len(__lowercase ) == 0: return "" _lowercase : List[str] = None if any(char.isdigit() for char in word ): raise Exception(f"""Parameters should not contain numbers: '{word}' contains a number""" ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 ,len(__lowercase ) + 1 ): _lowercase : Dict = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: _lowercase : Dict = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(UpperCAmelCase_ ): _lowercase : List[str] = '''''' while integer != 0: _lowercase : List[str] = chr(ord("""A""" ) + integer % 10 ) + s integer //= 10 return s _lowercase : str = 0 while True: _lowercase : List[str] = word + '''#''' + int_to_alphabetic(__lowercase ) if sword in info["reverse_short_word"]: continue else: _lowercase : List[Any] = sword break _lowercase : Any = short_word _lowercase : int = word return short_word @staticmethod def lowerCamelCase__ ( UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Any = param_name.split("""_""" ) _lowercase : Optional[int] = [TrialShortNamer.shortname_for_word(__lowercase ,__lowercase ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name _lowercase : Any = ['''''', '''_'''] for separator in separators: _lowercase : List[Any] = separator.join(__lowercase ) if shortname not in info["reverse_short_param"]: _lowercase : str = shortname _lowercase : Tuple = param_name return shortname return param_name @staticmethod def lowerCamelCase__ ( UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : List[Any] = TrialShortNamer.shortname_for_key(__lowercase ,__lowercase ) _lowercase : int = short_name _lowercase : List[Any] = param_name @classmethod def lowerCamelCase__ ( cls ): if cls.NAMING_INFO is not None: return _lowercase : Optional[Any] = { '''short_word''': {}, '''reverse_short_word''': {}, '''short_param''': {}, '''reverse_short_param''': {}, } _lowercase : Dict = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(__lowercase ,__lowercase ) _lowercase : Any = info @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ): cls.build_naming_info() assert cls.PREFIX is not None _lowercase : Optional[int] = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f"""You should provide a default value for the param name {k} with value {v}""" ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue _lowercase : Tuple = cls.NAMING_INFO['''short_param'''][k] if isinstance(__lowercase ,__lowercase ): _lowercase : List[Any] = 1 if v else 0 _lowercase : Optional[int] = '''''' if isinstance(__lowercase ,(int, float) ) else '''-''' _lowercase : Dict = f"""{key}{sep}{v}""" name.append(__lowercase ) return "_".join(__lowercase ) @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ): _lowercase : List[str] = repr[len(cls.PREFIX ) + 1 :] if repr == "": _lowercase : Dict = [] else: _lowercase : List[Any] = repr.split("""_""" ) _lowercase : List[str] = {} for value in values: if "-" in value: _lowercase : List[str] = value.split("""-""" ) else: _lowercase : Union[str, Any] = re.sub("""[0-9.]""" ,"""""" ,__lowercase ) _lowercase : int = float(re.sub("""[^0-9.]""" ,"""""" ,__lowercase ) ) _lowercase : int = cls.NAMING_INFO['''reverse_short_param'''][p_k] _lowercase : List[str] = p_v for k in cls.DEFAULTS: if k not in parameters: _lowercase : str = cls.DEFAULTS[k] return parameters
367
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int UpperCAmelCase: str = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class UpperCamelCase ( datasets.BuilderConfig ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[datasets.Features] = None def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , ): import pyspark def generate_fn(): _lowercase : List[Any] = df.select("""*""" , pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) ) for partition_id in partition_order: _lowercase : Optional[int] = df_with_partition_id.select("""*""" ).where(F"""part_id = {partition_id}""" ).drop("""part_id""" ) _lowercase : int = partition_df.collect() _lowercase : Dict = 0 for row in rows: yield F"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class UpperCamelCase ( _BaseExamplesIterable ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ,): _lowercase : Union[str, Any] = df _lowercase : List[str] = partition_order or range(self.df.rdd.getNumPartitions() ) _lowercase : Tuple = _generate_iterable_examples(self.df ,self.partition_order ) def __iter__( self ): yield from self.generate_examples_fn() def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : List[str] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(UpperCAmelCase_ ) return SparkExamplesIterable(self.df ,partition_order=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Union[str, Any] = self.split_shard_indices_by_worker(UpperCAmelCase_ ,UpperCAmelCase_ ) return SparkExamplesIterable(self.df ,partition_order=UpperCAmelCase_ ) @property def lowerCamelCase__ ( self ): return len(self.partition_order ) class UpperCamelCase ( datasets.DatasetBuilder ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = SparkConfig def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): import pyspark _lowercase : List[Any] = pyspark.sql.SparkSession.builder.getOrCreate() _lowercase : List[Any] = df _lowercase : int = working_dir super().__init__( cache_dir=UpperCAmelCase_ ,config_name=str(self.df.semanticHash() ) ,**UpperCAmelCase_ ,) def lowerCamelCase__ ( self ): # Returns the path of the created file. def create_cache_and_write_probe(UpperCAmelCase_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir ,exist_ok=UpperCAmelCase_ ) _lowercase : Union[str, Any] = os.path.join(self._cache_dir ,"""fs_test""" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(UpperCAmelCase_ ,"""a""" ) return [probe_file] if self._spark.conf.get("""spark.master""" ,"""""" ).startswith("""local""" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: _lowercase : List[str] = ( self._spark.sparkContext.parallelize(range(1 ) ,1 ).mapPartitions(UpperCAmelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( """When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" ) def lowerCamelCase__ ( self ): return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def lowerCamelCase__ ( self ,UpperCAmelCase_ ): import pyspark def get_arrow_batch_size(UpperCAmelCase_ ): for batch in it: yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} ) _lowercase : List[str] = self.df.count() _lowercase : List[str] = df_num_rows if df_num_rows <= 1_00 else 1_00 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. _lowercase : Union[str, Any] = ( self.df.limit(UpperCAmelCase_ ) .repartition(1 ) .mapInArrow(UpperCAmelCase_ ,"""batch_bytes: long""" ) .agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) ) .collect()[0] .sample_bytes / sample_num_rows ) _lowercase : List[Any] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. _lowercase : int = min(UpperCAmelCase_ ,int(approx_total_size / max_shard_size ) ) _lowercase : List[Any] = self.df.repartition(UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): import pyspark _lowercase : Union[str, Any] = ParquetWriter if file_format == """parquet""" else ArrowWriter _lowercase : List[Any] = os.path.join(self._working_dir ,os.path.basename(UpperCAmelCase_ ) ) if self._working_dir else fpath _lowercase : Any = file_format == """parquet""" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. _lowercase : Union[str, Any] = self.config.features _lowercase : Optional[int] = self._writer_batch_size _lowercase : Optional[Any] = self._fs.storage_options def write_arrow(UpperCAmelCase_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. _lowercase : Any = pyspark.TaskContext().taskAttemptId() _lowercase : List[str] = next(UpperCAmelCase_ ,UpperCAmelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,) _lowercase : List[Any] = 0 _lowercase : int = writer_class( features=UpperCAmelCase_ ,path=working_fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,writer_batch_size=UpperCAmelCase_ ,storage_options=UpperCAmelCase_ ,embed_local_files=UpperCAmelCase_ ,) _lowercase : Optional[int] = pa.Table.from_batches([first_batch] ) writer.write_table(UpperCAmelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: _lowercase , _lowercase : Optional[Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,) shard_id += 1 _lowercase : Union[str, Any] = writer_class( features=writer._features ,path=working_fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,writer_batch_size=UpperCAmelCase_ ,storage_options=UpperCAmelCase_ ,embed_local_files=UpperCAmelCase_ ,) _lowercase : Dict = pa.Table.from_batches([batch] ) writer.write_table(UpperCAmelCase_ ) if writer._num_bytes > 0: _lowercase , _lowercase : Dict = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,) if working_fpath != fpath: for file in os.listdir(os.path.dirname(UpperCAmelCase_ ) ): _lowercase : Dict = os.path.join(os.path.dirname(UpperCAmelCase_ ) ,os.path.basename(UpperCAmelCase_ ) ) shutil.move(UpperCAmelCase_ ,UpperCAmelCase_ ) _lowercase : List[str] = ( self.df.mapInArrow(UpperCAmelCase_ ,"""task_id: long, num_examples: long, num_bytes: long""" ) .groupBy("""task_id""" ) .agg( pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) ,pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) ,pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) ,pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) ,) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = "arrow" ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): self._validate_cache_dir() _lowercase : Tuple = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(UpperCAmelCase_ ) _lowercase : Optional[int] = not is_remote_filesystem(self._fs ) _lowercase : Dict = os.path.join if is_local else posixpath.join _lowercase : int = """-TTTTT-SSSSS-of-NNNNN""" _lowercase : Optional[Any] = f"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" _lowercase : Dict = path_join(self._output_dir ,UpperCAmelCase_ ) _lowercase : List[Any] = 0 _lowercase : Optional[Any] = 0 _lowercase : int = 0 _lowercase : Any = [] _lowercase : Any = [] for task_id, content in self._prepare_split_single(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Tuple = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(UpperCAmelCase_ ) _lowercase : Optional[int] = total_num_examples _lowercase : List[Any] = total_num_bytes # should rename everything at the end logger.debug(f"""Renaming {total_shards} shards.""" ) if total_shards > 1: _lowercase : List[Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. _lowercase : Union[str, Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): rename( UpperCAmelCase_ ,fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,fpath.replace("""TTTTT-SSSSS""" ,f"""{global_shard_id:05d}""" ).replace("""NNNNN""" ,f"""{total_shards:05d}""" ) ,) _lowercase : Optional[Any] = [] _lowercase : List[str] = 0 for i in range(len(UpperCAmelCase_ ) ): _lowercase , _lowercase : List[str] = task_id_and_num_shards[i] for shard_id in range(UpperCAmelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(UpperCAmelCase_ ,len(UpperCAmelCase_ ) ).map(lambda UpperCAmelCase_ : _rename_shard(*UpperCAmelCase_ ) ).collect() else: # don't use any pattern _lowercase : Tuple = 0 _lowercase : Optional[Any] = task_id_and_num_shards[0][0] self._rename( fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,fpath.replace(UpperCAmelCase_ ,"""""" ) ,) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,): return SparkExamplesIterable(self.df )
336
0
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): return [sentence[i : i + ngram_size] for i in range(len(snake_case_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
368
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase: Optional[int] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = XLNetTokenizer SCREAMING_SNAKE_CASE_ : Dict = XLNetTokenizerFast SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Union[str, Any] = True def lowerCamelCase__ ( self ): super().setUp() # We have a SentencePiece fixture for testing _lowercase : Dict = XLNetTokenizer(UpperCAmelCase_ ,keep_accents=UpperCAmelCase_ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = """<s>""" _lowercase : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) ,UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<unk>""" ) self.assertEqual(vocab_keys[1] ,"""<s>""" ) self.assertEqual(vocab_keys[-1] ,"""<eod>""" ) self.assertEqual(len(UpperCAmelCase_ ) ,10_06 ) def lowerCamelCase__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size ,10_00 ) def lowerCamelCase__ ( self ): _lowercase : int = XLNetTokenizer(UpperCAmelCase_ ,keep_accents=UpperCAmelCase_ ) _lowercase : Union[str, Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCAmelCase_ ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) ,[2_85, 46, 10, 1_70, 3_82] ) _lowercase : Any = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] ,) _lowercase : List[Any] = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,[8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) _lowercase : Optional[Any] = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] ,) def lowerCamelCase__ ( self ): _lowercase : Dict = XLNetTokenizer(UpperCAmelCase_ ,do_lower_case=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] ,) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""▁he""", """ll""", """o"""] ) def lowerCamelCase__ ( self ): _lowercase : int = XLNetTokenizer(UpperCAmelCase_ ,do_lower_case=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] ,) @slow def lowerCamelCase__ ( self ): _lowercase : Dict = XLNetTokenizer.from_pretrained("""xlnet-base-cased""" ) _lowercase : int = tokenizer.encode("""sequence builders""" ,add_special_tokens=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=UpperCAmelCase_ ) _lowercase : Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) _lowercase : Dict = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ,UpperCAmelCase_ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def lowerCamelCase__ ( self ): # fmt: off _lowercase : Union[str, Any] = {"""input_ids""": [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ ,model_name="""xlnet-base-cased""" ,revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" ,)
336
0
"""simple docstring""" from __future__ import annotations from scipy.special import comb # type: ignore class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ): _lowercase : Optional[Any] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _lowercase : List[Any] = len(_UpperCAmelCase ) - 1 def lowerCamelCase__ ( self ,UpperCAmelCase_ ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowercase : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree ,_UpperCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(_UpperCAmelCase ) ,5 ) == 1 return output_values def lowerCamelCase__ ( self ,UpperCAmelCase_ ): assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowercase : Optional[Any] = self.basis_function(_UpperCAmelCase ) _lowercase : Optional[int] = 0.0 _lowercase : str = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowerCamelCase__ ( self ,UpperCAmelCase_ = 0.01 ): from matplotlib import pyplot as plt # type: ignore _lowercase : list[float] = [] # x coordinates of points to plot _lowercase : list[float] = [] # y coordinates of points to plot _lowercase : List[Any] = 0.0 while t <= 1: _lowercase : Tuple = self.bezier_curve_function(_UpperCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _lowercase : Union[str, Any] = [i[0] for i in self.list_of_points] _lowercase : str = [i[1] for i in self.list_of_points] plt.plot( _UpperCAmelCase ,_UpperCAmelCase ,color="""blue""" ,label="""Curve of Degree """ + str(self.degree ) ,) plt.scatter(_UpperCAmelCase ,_UpperCAmelCase ,color="""red""" ,label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
369
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
336
0
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : List[Any] = tmp_path / "cache" _lowercase : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowercase : Optional[Any] = ParquetDatasetReader(__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , keep_in_memory=__SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Optional[Any] = tmp_path / "cache" _lowercase : List[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _lowercase : List[Any] = features.copy() if features else default_expected_features _lowercase : Tuple = ( Features({feature: Value(__SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) _lowercase : str = ParquetDatasetReader(__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Tuple = tmp_path / "cache" _lowercase : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _lowercase : Tuple = ParquetDatasetReader(__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , split=__SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if issubclass(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): _lowercase : Optional[Any] = parquet_path elif issubclass(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): _lowercase : Dict = [parquet_path] _lowercase : List[Any] = tmp_path / "cache" _lowercase : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _lowercase : Any = ParquetDatasetReader(__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=("train",) ): assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for split in splits: _lowercase : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : List[Any] = tmp_path / "cache" _lowercase : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowercase : Tuple = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=__SCREAMING_SNAKE_CASE , keep_in_memory=__SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : str = tmp_path / "cache" _lowercase : Tuple = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _lowercase : Dict = features.copy() if features else default_expected_features _lowercase : Dict = ( Features({feature: Value(__SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) _lowercase : List[Any] = ParquetDatasetReader({"""train""": parquet_path} , features=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if split: _lowercase : Optional[int] = {split: parquet_path} else: _lowercase : Dict = "train" _lowercase : int = {"train": parquet_path, "test": parquet_path} _lowercase : Any = tmp_path / "cache" _lowercase : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _lowercase : Optional[Any] = ParquetDatasetReader(__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : List[Any] = ParquetDatasetWriter(__SCREAMING_SNAKE_CASE , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _lowercase : Union[str, Any] = pq.ParquetFile(tmp_path / """foo.parquet""" ) _lowercase : Optional[Any] = pf.read() assert dataset.data.table == output_table def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Optional[int] = str(shared_datadir / """test_image_rgb.jpg""" ) _lowercase : str = {"image": [image_path]} _lowercase : List[Any] = Features({"""image""": Image()} ) _lowercase : Any = Dataset.from_dict(__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE ) _lowercase : Dict = ParquetDatasetWriter(__SCREAMING_SNAKE_CASE , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _lowercase : Tuple = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features _lowercase : Union[str, Any] = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=__SCREAMING_SNAKE_CASE ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): assert get_writer_batch_size(__SCREAMING_SNAKE_CASE ) == expected
370
"""simple docstring""" import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : int = [] for line in lines: _lowercase : Dict = re.sub(R"""#.*""" , """""" , __UpperCAmelCase ) # remove comments if line: filtered_lines.append(__UpperCAmelCase ) _lowercase : Tuple = """\n""".join(__UpperCAmelCase ) # Make a hash from all this code _lowercase : Tuple = full_str.encode("""utf-8""" ) return shaaaa(__UpperCAmelCase ).hexdigest() # get importable module names and hash for caching UpperCAmelCase: Tuple = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions UpperCAmelCase: List[str] = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) UpperCAmelCase: Any = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name UpperCAmelCase: Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
336
0
"""simple docstring""" from __future__ import annotations def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif stress < 0: raise ValueError("""Stress cannot be negative""" ) elif tangential_force < 0: raise ValueError("""Tangential Force cannot be negative""" ) elif area < 0: raise ValueError("""Area cannot be negative""" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
371
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
336
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCAmelCase: Union[str, Any] = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: int = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: Any = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys UpperCAmelCase: str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
350
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( ): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] UpperCAmelCase: Any = generate_large_matrix() UpperCAmelCase: Dict = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid ) assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Tuple = 0 _lowercase : List[Any] = len(__UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _lowercase : Tuple = (left + right) // 2 _lowercase : List[Any] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _lowercase : Dict = mid + 1 else: _lowercase : Dict = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Any = 0 _lowercase : Optional[int] = len(grid[0] ) for i in range(len(__UpperCAmelCase ) ): _lowercase : Union[str, Any] = find_negative_index(grid[i][:bound] ) total += bound return (len(__UpperCAmelCase ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Tuple = 0 for row in grid: for i, number in enumerate(__UpperCAmelCase ): if number < 0: total += len(__UpperCAmelCase ) - i break return total def __SCREAMING_SNAKE_CASE ( ): from timeit import timeit print("""Running benchmarks""" ) _lowercase : Tuple = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _lowercase : Dict = timeit(F"""{func}(grid=grid)""" , setup=__UpperCAmelCase , number=500 ) print(F"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
336
0
"""simple docstring""" import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def lowerCamelCase__ ( self ,UpperCAmelCase_=0 ): _lowercase : Optional[int] = np.random.RandomState(UpperCAmelCase_ ) _lowercase : Union[str, Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def lowerCamelCase__ ( self ): _lowercase : Any = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _lowercase : List[Any] = self.get_dummy_inputs() _lowercase : List[Any] = pipe(**UpperCAmelCase_ ).images _lowercase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _lowercase : Tuple = np.array([0.65072, 0.58492, 0.48219, 0.55521, 0.53180, 0.55939, 0.50697, 0.39800, 0.46455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self ): _lowercase : Tuple = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) _lowercase : Dict = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _lowercase : Union[str, Any] = self.get_dummy_inputs() _lowercase : Optional[Any] = pipe(**UpperCAmelCase_ ).images _lowercase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _lowercase : int = np.array([0.65863, 0.59425, 0.49326, 0.56313, 0.53875, 0.56627, 0.51065, 0.39777, 0.46330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self ): _lowercase : str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) _lowercase : Optional[int] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _lowercase : Dict = self.get_dummy_inputs() _lowercase : Optional[int] = pipe(**UpperCAmelCase_ ).images _lowercase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _lowercase : List[Any] = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self ): _lowercase : Tuple = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) _lowercase : Dict = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _lowercase : str = self.get_dummy_inputs() _lowercase : str = pipe(**UpperCAmelCase_ ).images _lowercase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _lowercase : str = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self ): _lowercase : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) _lowercase : Any = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _lowercase : Optional[Any] = self.get_dummy_inputs() _lowercase : Union[str, Any] = pipe(**UpperCAmelCase_ ).images _lowercase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _lowercase : int = np.array([0.53817, 0.60812, 0.47384, 0.49530, 0.51894, 0.49814, 0.47984, 0.38958, 0.44271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) _lowercase : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _lowercase : List[Any] = self.get_dummy_inputs() _lowercase : int = pipe(**UpperCAmelCase_ ).images _lowercase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _lowercase : List[str] = np.array([0.53895, 0.60808, 0.47933, 0.49608, 0.51886, 0.49950, 0.48053, 0.38957, 0.44200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self ): _lowercase : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _lowercase : str = self.get_dummy_inputs() _lowercase : Optional[Any] = 3 * [inputs["""prompt"""]] # forward _lowercase : str = pipe(**UpperCAmelCase_ ) _lowercase : Optional[int] = output.images[0, -3:, -3:, -1] _lowercase : List[str] = self.get_dummy_inputs() _lowercase : List[Any] = 3 * [inputs.pop("""prompt""" )] _lowercase : Optional[int] = pipe.tokenizer( UpperCAmelCase_ ,padding="""max_length""" ,max_length=pipe.tokenizer.model_max_length ,truncation=UpperCAmelCase_ ,return_tensors="""np""" ,) _lowercase : Tuple = text_inputs["""input_ids"""] _lowercase : int = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] _lowercase : str = prompt_embeds # forward _lowercase : List[Any] = pipe(**UpperCAmelCase_ ) _lowercase : Tuple = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 def lowerCamelCase__ ( self ): _lowercase : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _lowercase : Tuple = self.get_dummy_inputs() _lowercase : List[Any] = 3 * ["""this is a negative prompt"""] _lowercase : int = negative_prompt _lowercase : Tuple = 3 * [inputs["""prompt"""]] # forward _lowercase : Dict = pipe(**UpperCAmelCase_ ) _lowercase : List[str] = output.images[0, -3:, -3:, -1] _lowercase : Optional[int] = self.get_dummy_inputs() _lowercase : Optional[int] = 3 * [inputs.pop("""prompt""" )] _lowercase : Optional[Any] = [] for p in [prompt, negative_prompt]: _lowercase : List[Any] = pipe.tokenizer( UpperCAmelCase_ ,padding="""max_length""" ,max_length=pipe.tokenizer.model_max_length ,truncation=UpperCAmelCase_ ,return_tensors="""np""" ,) _lowercase : Optional[Any] = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) _lowercase : Dict = embeds # forward _lowercase : List[Any] = pipe(**UpperCAmelCase_ ) _lowercase : Any = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @property def lowerCamelCase__ ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = ort.SessionOptions() _lowercase : Any = False return options def lowerCamelCase__ ( self ): # using the PNDM scheduler by default _lowercase : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" ,revision="""onnx""" ,safety_checker=UpperCAmelCase_ ,feature_extractor=UpperCAmelCase_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _lowercase : List[Any] = """A painting of a squirrel eating a burger""" np.random.seed(0 ) _lowercase : List[Any] = sd_pipe([prompt] ,guidance_scale=6.0 ,num_inference_steps=10 ,output_type="""np""" ) _lowercase : Union[str, Any] = output.images _lowercase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Optional[int] = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCamelCase__ ( self ): _lowercase : Any = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" ,subfolder="""scheduler""" ,revision="""onnx""" ) _lowercase : Tuple = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" ,revision="""onnx""" ,scheduler=UpperCAmelCase_ ,safety_checker=UpperCAmelCase_ ,feature_extractor=UpperCAmelCase_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _lowercase : Dict = """open neural network exchange""" _lowercase : Optional[Any] = np.random.RandomState(0 ) _lowercase : Union[str, Any] = sd_pipe([prompt] ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=UpperCAmelCase_ ,output_type="""np""" ) _lowercase : Optional[Any] = output.images _lowercase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Union[str, Any] = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCamelCase__ ( self ): _lowercase : str = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" ,subfolder="""scheduler""" ,revision="""onnx""" ) _lowercase : List[str] = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" ,revision="""onnx""" ,scheduler=UpperCAmelCase_ ,safety_checker=UpperCAmelCase_ ,feature_extractor=UpperCAmelCase_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _lowercase : Dict = """open neural network exchange""" _lowercase : Dict = np.random.RandomState(0 ) _lowercase : List[Any] = sd_pipe([prompt] ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=UpperCAmelCase_ ,output_type="""np""" ) _lowercase : Optional[Any] = output.images _lowercase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Dict = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCamelCase__ ( self ): _lowercase : List[str] = 0 def test_callback_fn(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) -> None: _lowercase : int = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) _lowercase : List[str] = latents[0, -3:, -3:, -1] _lowercase : Union[str, Any] = np.array( [-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) _lowercase : str = latents[0, -3:, -3:, -1] _lowercase : List[Any] = np.array( [-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 _lowercase : Tuple = False _lowercase : List[str] = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" ,revision="""onnx""" ,safety_checker=UpperCAmelCase_ ,feature_extractor=UpperCAmelCase_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _lowercase : Optional[int] = """Andromeda galaxy in a bottle""" _lowercase : Dict = np.random.RandomState(0 ) pipe( prompt=UpperCAmelCase_ ,num_inference_steps=5 ,guidance_scale=7.5 ,generator=UpperCAmelCase_ ,callback=UpperCAmelCase_ ,callback_steps=1 ,) assert test_callback_fn.has_been_called assert number_of_steps == 6 def lowerCamelCase__ ( self ): _lowercase : Dict = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" ,revision="""onnx""" ,safety_checker=UpperCAmelCase_ ,feature_extractor=UpperCAmelCase_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) assert isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) assert pipe.safety_checker is None _lowercase : Optional[int] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCAmelCase_ ) _lowercase : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(UpperCAmelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _lowercase : Any = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None
351
"""simple docstring""" import re from filelock import FileLock try: import nltk UpperCAmelCase: List[str] = True except (ImportError, ModuleNotFoundError): UpperCAmelCase: int = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): re.sub("""<n>""" , """""" , __UpperCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__UpperCAmelCase ) )
336
0
"""simple docstring""" from abc import ABC, abstractmethod from typing import List, Optional class UpperCamelCase ( snake_case ): """simple docstring""" def __init__( self ): # test for the above condition self.test() def lowerCamelCase__ ( self ): _lowercase : Any = 0 _lowercase : Tuple = False while not completed: if counter == 1: self.reset() _lowercase : Optional[Any] = self.advance() if not self.does_advance(UpperCAmelCase_ ): raise Exception( """Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" ) _lowercase : Optional[Any] = self.update(UpperCAmelCase_ ) counter += 1 if counter > 1_00_00: raise Exception("""update() does not fulfill the constraint.""" ) if self.remaining() != 0: raise Exception("""Custom Constraint is not defined correctly.""" ) @abstractmethod def lowerCamelCase__ ( self ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def lowerCamelCase__ ( self ,UpperCAmelCase_ ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def lowerCamelCase__ ( self ,UpperCAmelCase_ ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def lowerCamelCase__ ( self ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def lowerCamelCase__ ( self ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def lowerCamelCase__ ( self ,UpperCAmelCase_=False ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class UpperCamelCase ( snake_case ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ): super(UpperCAmelCase_ ,self ).__init__() if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) or len(UpperCAmelCase_ ) == 0: raise ValueError(f"""`token_ids` has to be a non-empty list, but is {token_ids}.""" ) if any((not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(f"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" ) _lowercase : int = token_ids _lowercase : str = len(self.token_ids ) _lowercase : List[str] = -1 # the index of the currently fulfilled step _lowercase : Optional[Any] = False def lowerCamelCase__ ( self ): if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): raise ValueError(f"""`token_id` has to be an `int`, but is {token_id} of type {type(UpperCAmelCase_ )}""" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): raise ValueError(f"""`token_id` has to be an `int`, but is {token_id} of type {type(UpperCAmelCase_ )}""" ) _lowercase : Optional[int] = False _lowercase : List[str] = False _lowercase : Optional[Any] = False if self.does_advance(UpperCAmelCase_ ): self.fulfilled_idx += 1 _lowercase : Any = True if self.fulfilled_idx == (self.seqlen - 1): _lowercase : int = True _lowercase : Union[str, Any] = completed else: # failed to make progress. _lowercase : Optional[Any] = True self.reset() return stepped, completed, reset def lowerCamelCase__ ( self ): _lowercase : Optional[int] = False _lowercase : List[str] = 0 def lowerCamelCase__ ( self ): return self.seqlen - (self.fulfilled_idx + 1) def lowerCamelCase__ ( self ,UpperCAmelCase_=False ): _lowercase : Any = PhrasalConstraint(self.token_ids ) if stateful: _lowercase : Dict = self.seqlen _lowercase : Tuple = self.fulfilled_idx _lowercase : Tuple = self.completed return new_constraint class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=True ): _lowercase : Optional[int] = max([len(UpperCAmelCase_ ) for one in nested_token_ids] ) _lowercase : List[Any] = {} for token_ids in nested_token_ids: _lowercase : Union[str, Any] = root for tidx, token_id in enumerate(UpperCAmelCase_ ): if token_id not in level: _lowercase : int = {} _lowercase : str = level[token_id] if no_subsets and self.has_subsets(UpperCAmelCase_ ,UpperCAmelCase_ ): raise ValueError( """Each list in `nested_token_ids` can't be a complete subset of another list, but is""" f""" {nested_token_ids}.""" ) _lowercase : int = root def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : Any = self.trie for current_token in current_seq: _lowercase : Optional[Any] = start[current_token] _lowercase : Any = list(start.keys() ) return next_tokens def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : str = self.next_tokens(UpperCAmelCase_ ) return len(UpperCAmelCase_ ) == 0 def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : List[Any] = list(root.values() ) if len(UpperCAmelCase_ ) == 0: return 1 else: return sum([self.count_leaves(UpperCAmelCase_ ) for nn in next_nodes] ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Optional[Any] = self.count_leaves(UpperCAmelCase_ ) return len(UpperCAmelCase_ ) != leaf_count class UpperCamelCase ( snake_case ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ): super(UpperCAmelCase_ ,self ).__init__() if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) or len(UpperCAmelCase_ ) == 0: raise ValueError(f"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" ) if any(not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) for token_ids in nested_token_ids ): raise ValueError(f"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" ) if any( any((not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" ) _lowercase : str = DisjunctiveTrie(UpperCAmelCase_ ) _lowercase : Optional[Any] = nested_token_ids _lowercase : Optional[Any] = self.trie.max_height _lowercase : Optional[int] = [] _lowercase : int = False def lowerCamelCase__ ( self ): _lowercase : str = self.trie.next_tokens(self.current_seq ) if len(UpperCAmelCase_ ) == 0: return None else: return token_list def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): raise ValueError(f"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCAmelCase_ )}""" ) _lowercase : Dict = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): raise ValueError(f"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCAmelCase_ )}""" ) _lowercase : Union[str, Any] = False _lowercase : Dict = False _lowercase : List[str] = False if self.does_advance(UpperCAmelCase_ ): self.current_seq.append(UpperCAmelCase_ ) _lowercase : Union[str, Any] = True else: _lowercase : Optional[int] = True self.reset() _lowercase : List[str] = self.trie.reached_leaf(self.current_seq ) _lowercase : Optional[int] = completed return stepped, completed, reset def lowerCamelCase__ ( self ): _lowercase : Tuple = False _lowercase : Union[str, Any] = [] def lowerCamelCase__ ( self ): if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def lowerCamelCase__ ( self ,UpperCAmelCase_=False ): _lowercase : Tuple = DisjunctiveConstraint(self.token_ids ) if stateful: _lowercase : Optional[Any] = self.seqlen _lowercase : Any = self.current_seq _lowercase : Dict = self.completed return new_constraint class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ): _lowercase : Dict = constraints # max # of steps required to fulfill a given constraint _lowercase : str = max([c.seqlen for c in constraints] ) _lowercase : str = len(UpperCAmelCase_ ) _lowercase : Any = False self.init_state() def lowerCamelCase__ ( self ): _lowercase : List[str] = [] _lowercase : Dict = None _lowercase : List[str] = [constraint.copy(stateful=UpperCAmelCase_ ) for constraint in self.constraints] def lowerCamelCase__ ( self ): _lowercase : str = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def lowerCamelCase__ ( self ): _lowercase : Any = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" _lowercase : Any = constraint.advance() if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): token_list.append(UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): token_list.extend(UpperCAmelCase_ ) else: _lowercase : List[Any] = self.inprogress_constraint.advance() if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): token_list.append(UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): token_list.extend(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) == 0: return None else: return token_list def lowerCamelCase__ ( self ,UpperCAmelCase_ ): self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint _lowercase : int = self.add(UpperCAmelCase_ ) # the entire list of constraints are fulfilled if self.completed: break def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): raise ValueError(f"""`token_id` should be an `int`, but is `{token_id}`.""" ) _lowercase : Tuple = False, False if self.completed: _lowercase : Union[str, Any] = True _lowercase : List[Any] = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state _lowercase : List[Any] = self.inprogress_constraint.update(UpperCAmelCase_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=UpperCAmelCase_ ) ) _lowercase : List[Any] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) _lowercase : List[Any] = None if len(self.pending_constraints ) == 0: # we're done! _lowercase : int = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(UpperCAmelCase_ ): _lowercase : Dict = pending_constraint.update(UpperCAmelCase_ ) if not stepped: raise Exception( """`constraint.update(token_id)` is not yielding incremental progress, """ """even though `constraint.does_advance(token_id)` is true.""" ) if complete: self.complete_constraints.append(UpperCAmelCase_ ) _lowercase : Tuple = None if not complete and stepped: _lowercase : List[Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". _lowercase : Optional[Any] = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. _lowercase : Any = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def lowerCamelCase__ ( self ,UpperCAmelCase_=True ): _lowercase : List[Any] = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: _lowercase : int = [ constraint.copy(stateful=UpperCAmelCase_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: _lowercase : Optional[int] = self.inprogress_constraint.copy(stateful=UpperCAmelCase_ ) _lowercase : Dict = [constraint.copy() for constraint in self.pending_constraints] return new_state
352
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=0.9_9_9 , __UpperCAmelCase="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCAmelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCAmelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _lowercase : str = [] for i in range(__UpperCAmelCase ): _lowercase : Any = i / num_diffusion_timesteps _lowercase : int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ) , __UpperCAmelCase ) ) return torch.tensor(__UpperCAmelCase , dtype=torch.floataa ) class UpperCamelCase ( snake_case , snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [e.name for e in KarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE_ : str = 2 @register_to_config def __init__( self ,UpperCAmelCase_ = 10_00 ,UpperCAmelCase_ = 0.00085 ,UpperCAmelCase_ = 0.012 ,UpperCAmelCase_ = "linear" ,UpperCAmelCase_ = None ,UpperCAmelCase_ = "epsilon" ,UpperCAmelCase_ = "linspace" ,UpperCAmelCase_ = 0 ,): if trained_betas is not None: _lowercase : str = torch.tensor(UpperCAmelCase_ ,dtype=torch.floataa ) elif beta_schedule == "linear": _lowercase : Optional[Any] = torch.linspace(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowercase : Any = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,UpperCAmelCase_ ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowercase : Any = betas_for_alpha_bar(UpperCAmelCase_ ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) _lowercase : Tuple = 1.0 - self.betas _lowercase : Dict = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ): if schedule_timesteps is None: _lowercase : Optional[int] = self.timesteps _lowercase : Union[str, Any] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _lowercase : Optional[Any] = 1 if len(UpperCAmelCase_ ) > 1 else 0 else: _lowercase : Dict = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep _lowercase : List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCamelCase__ ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,): _lowercase : str = self.index_for_timestep(UpperCAmelCase_ ) if self.state_in_first_order: _lowercase : Optional[Any] = self.sigmas[step_index] else: _lowercase : Dict = self.sigmas_interpol[step_index] _lowercase : Optional[int] = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,): _lowercase : List[str] = num_inference_steps _lowercase : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _lowercase : Dict = np.linspace(0 ,num_train_timesteps - 1 ,UpperCAmelCase_ ,dtype=UpperCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _lowercase : Union[str, Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : str = (np.arange(0 ,UpperCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _lowercase : str = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : Optional[int] = (np.arange(UpperCAmelCase_ ,0 ,-step_ratio )).round().copy().astype(UpperCAmelCase_ ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _lowercase : Union[str, Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _lowercase : Optional[Any] = torch.from_numpy(np.log(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) _lowercase : List[str] = np.interp(UpperCAmelCase_ ,np.arange(0 ,len(UpperCAmelCase_ ) ) ,UpperCAmelCase_ ) _lowercase : int = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _lowercase : Any = torch.from_numpy(UpperCAmelCase_ ).to(device=UpperCAmelCase_ ) # interpolate sigmas _lowercase : List[str] = sigmas.log().lerp(sigmas.roll(1 ).log() ,0.5 ).exp() _lowercase : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _lowercase : Tuple = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(UpperCAmelCase_ ).startswith("""mps""" ): # mps does not support float64 _lowercase : Tuple = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ,dtype=torch.floataa ) else: _lowercase : str = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ) # interpolate timesteps _lowercase : int = self.sigma_to_t(UpperCAmelCase_ ).to(UpperCAmelCase_ ,dtype=timesteps.dtype ) _lowercase : Union[str, Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) ,dim=-1 ).flatten() _lowercase : str = torch.cat([timesteps[:1], interleaved_timesteps] ) _lowercase : List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _lowercase : Optional[Any] = defaultdict(UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): # get log sigma _lowercase : Optional[Any] = sigma.log() # get distribution _lowercase : Optional[int] = log_sigma - self.log_sigmas[:, None] # get sigmas range _lowercase : Tuple = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _lowercase : List[Any] = low_idx + 1 _lowercase : int = self.log_sigmas[low_idx] _lowercase : Any = self.log_sigmas[high_idx] # interpolate sigmas _lowercase : Any = (low - log_sigma) / (low - high) _lowercase : Dict = w.clamp(0 ,1 ) # transform interpolation to time range _lowercase : List[str] = (1 - w) * low_idx + w * high_idx _lowercase : Optional[int] = t.view(sigma.shape ) return t @property def lowerCamelCase__ ( self ): return self.sample is None def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = True ,): _lowercase : Optional[int] = self.index_for_timestep(UpperCAmelCase_ ) # advance index counter by 1 _lowercase : str = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _lowercase : Any = self.sigmas[step_index] _lowercase : Any = self.sigmas_interpol[step_index + 1] _lowercase : Tuple = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _lowercase : Union[str, Any] = self.sigmas[step_index - 1] _lowercase : int = self.sigmas_interpol[step_index] _lowercase : Tuple = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _lowercase : Any = 0 _lowercase : int = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _lowercase : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : Optional[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _lowercase : str = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _lowercase : List[str] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _lowercase : Any = sigma_interpol - sigma_hat # store for 2nd order step _lowercase : List[Any] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _lowercase : Optional[Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _lowercase : Optional[Any] = sigma_next - sigma_hat _lowercase : Any = self.sample _lowercase : Optional[int] = None _lowercase : str = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): # Make sure sigmas and timesteps have the same device and dtype as original_samples _lowercase : int = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCAmelCase_ ): # mps does not support float64 _lowercase : str = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) _lowercase : Any = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: _lowercase : List[Any] = self.timesteps.to(original_samples.device ) _lowercase : Union[str, Any] = timesteps.to(original_samples.device ) _lowercase : List[Any] = [self.index_for_timestep(UpperCAmelCase_ ,UpperCAmelCase_ ) for t in timesteps] _lowercase : Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _lowercase : List[Any] = sigma.unsqueeze(-1 ) _lowercase : int = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
336
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=7 ,UpperCAmelCase_=3 ,UpperCAmelCase_=18 ,UpperCAmelCase_=30 ,UpperCAmelCase_=4_00 ,UpperCAmelCase_=True ,UpperCAmelCase_=None ,UpperCAmelCase_=True ,UpperCAmelCase_=None ,UpperCAmelCase_=True ,UpperCAmelCase_=[0.5, 0.5, 0.5] ,UpperCAmelCase_=[0.5, 0.5, 0.5] ,): _lowercase : Tuple = size if size is not None else {"""shortest_edge""": 18} _lowercase : int = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _lowercase : Optional[Any] = parent _lowercase : Tuple = batch_size _lowercase : Optional[int] = num_channels _lowercase : Tuple = image_size _lowercase : Dict = min_resolution _lowercase : int = max_resolution _lowercase : Optional[int] = do_resize _lowercase : Any = size _lowercase : str = do_center_crop _lowercase : Optional[Any] = crop_size _lowercase : Union[str, Any] = do_normalize _lowercase : Union[str, Any] = image_mean _lowercase : Tuple = image_std def lowerCamelCase__ ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = LevitImageProcessor if is_vision_available() else None def lowerCamelCase__ ( self ): _lowercase : Tuple = LevitImageProcessingTester(self ) @property def lowerCamelCase__ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self ): _lowercase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ ,"""image_mean""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ ,"""image_std""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ ,"""do_normalize""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ ,"""do_resize""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ ,"""do_center_crop""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ ,"""size""" ) ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} ) _lowercase : Any = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} ) def lowerCamelCase__ ( self ): pass def lowerCamelCase__ ( self ): # Initialize image_processing _lowercase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowercase : str = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ ,Image.Image ) # Test not batched input _lowercase : str = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched _lowercase : Optional[int] = image_processing(UpperCAmelCase_ ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def lowerCamelCase__ ( self ): # Initialize image_processing _lowercase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowercase : str = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCAmelCase_ ,numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ ,np.ndarray ) # Test not batched input _lowercase : List[Any] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched _lowercase : Optional[Any] = image_processing(UpperCAmelCase_ ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def lowerCamelCase__ ( self ): # Initialize image_processing _lowercase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowercase : List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCAmelCase_ ,torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ ,torch.Tensor ) # Test not batched input _lowercase : str = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched _lowercase : int = image_processing(UpperCAmelCase_ ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,)
353
"""simple docstring""" import pprint import requests UpperCAmelCase: Tuple = """https://zenquotes.io/api""" def __SCREAMING_SNAKE_CASE ( ): return requests.get(API_ENDPOINT_URL + """/today""" ).json() def __SCREAMING_SNAKE_CASE ( ): return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": UpperCAmelCase: int = random_quotes() pprint.pprint(response)
336
0
"""simple docstring""" from ....utils import logging UpperCAmelCase: Tuple = logging.get_logger(__name__) class UpperCamelCase ( snake_case ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ,UpperCAmelCase_=20_48 ): _lowercase : Optional[Any] = config.__dict__ _lowercase : Union[str, Any] = modal_hidden_size if num_labels: _lowercase : List[Any] = num_labels
354
"""simple docstring""" from __future__ import annotations from typing import TypedDict class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str SCREAMING_SNAKE_CASE_ : int def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(__UpperCAmelCase ) )] def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _lowercase : Tuple = all_rotations(__UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _lowercase : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__UpperCAmelCase ), } return response def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _lowercase : Optional[Any] = int(__UpperCAmelCase ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(__UpperCAmelCase ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _lowercase : int = [""""""] * len(__UpperCAmelCase ) for _ in range(len(__UpperCAmelCase ) ): for i in range(len(__UpperCAmelCase ) ): _lowercase : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": UpperCAmelCase: Optional[int] = """Provide a string that I will generate its BWT transform: """ UpperCAmelCase: int = input(entry_msg).strip() UpperCAmelCase: List[str] = bwt_transform(s) print( F'Burrows Wheeler transform for string \'{s}\' results ' F'in \'{result["bwt_string"]}\'' ) UpperCAmelCase: Union[str, Any] = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' ' F'we get original string \'{original_string}\'' )
336
0
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = CpmAntTokenizer SCREAMING_SNAKE_CASE_ : List[str] = False def lowerCamelCase__ ( self ): super().setUp() _lowercase : Optional[int] = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] _lowercase : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def lowerCamelCase__ ( self ): _lowercase : str = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) _lowercase : List[str] = """今天天气真好!""" _lowercase : Dict = ["""今天""", """天气""", """真""", """好""", """!"""] _lowercase : List[str] = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) _lowercase : Tuple = """今天天气真好!""" _lowercase : Any = [tokenizer.bos_token] + tokens _lowercase : Union[str, Any] = [6, 98_02, 1_49_62, 20_82, 8_31, 2_44] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) ,UpperCAmelCase_ ) _lowercase : Optional[int] = tokenizer.decode(UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ ,UpperCAmelCase_ )
355
"""simple docstring""" from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __SCREAMING_SNAKE_CASE ( ): _lowercase : Dict = [randint(-1000 , 1000 ) for i in range(10 )] _lowercase : Tuple = randint(-5000 , 5000 ) return (arr, r) UpperCAmelCase: int = make_dataset() def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): for triplet in permutations(__UpperCAmelCase , 3 ): if sum(__UpperCAmelCase ) == target: return tuple(sorted(__UpperCAmelCase ) ) return (0, 0, 0) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): arr.sort() _lowercase : Optional[Any] = len(__UpperCAmelCase ) for i in range(n - 1 ): _lowercase , _lowercase : str = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __SCREAMING_SNAKE_CASE ( ): _lowercase : Tuple = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ _lowercase : Union[str, Any] = """ triplet_sum1(*dataset) """ _lowercase : Union[str, Any] = """ triplet_sum2(*dataset) """ _lowercase : Dict = repeat(setup=__UpperCAmelCase , stmt=__UpperCAmelCase , repeat=5 , number=10000 ) _lowercase : Any = repeat(setup=__UpperCAmelCase , stmt=__UpperCAmelCase , repeat=5 , number=10000 ) return (min(__UpperCAmelCase ), min(__UpperCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase: Any = solution_times() print(F'The time for naive implementation is {times[0]}.') print(F'The time for optimized implementation is {times[1]}.')
336
0
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCAmelCase: Optional[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCAmelCase: Tuple = [0, 25, 50] UpperCAmelCase: List[Any] = [25, 50, 75] UpperCAmelCase: Optional[int] = fuzz.membership.trimf(X, abca) UpperCAmelCase: Any = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCAmelCase: List[Any] = np.ones(75) UpperCAmelCase: Any = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) UpperCAmelCase: str = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) UpperCAmelCase: Optional[int] = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) UpperCAmelCase: List[Any] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) UpperCAmelCase: Optional[int] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] UpperCAmelCase: int = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) UpperCAmelCase: int = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] UpperCAmelCase: List[Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] UpperCAmelCase: int = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("""Young""") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("""Middle aged""") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("""union""") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("""intersection""") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("""complement_a""") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("""difference a/b""") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("""alg_sum""") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("""alg_product""") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("""bdd_sum""") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("""bdd_difference""") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
356
"""simple docstring""" import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE_ : Optional[int] = "BlipImageProcessor" SCREAMING_SNAKE_CASE_ : Tuple = "AutoTokenizer" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): super().__init__(UpperCAmelCase_ ,UpperCAmelCase_ ) # add QFormer tokenizer _lowercase : Optional[int] = qformer_tokenizer def __call__( self ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = True ,UpperCAmelCase_ = False ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = 0 ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): if images is None and text is None: raise ValueError("""You have to specify at least images or text.""" ) _lowercase : List[Any] = BatchFeature() if text is not None: _lowercase : List[str] = self.tokenizer( text=UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,stride=UpperCAmelCase_ ,pad_to_multiple_of=UpperCAmelCase_ ,return_attention_mask=UpperCAmelCase_ ,return_overflowing_tokens=UpperCAmelCase_ ,return_special_tokens_mask=UpperCAmelCase_ ,return_offsets_mapping=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ,return_length=UpperCAmelCase_ ,verbose=UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ,**UpperCAmelCase_ ,) encoding.update(UpperCAmelCase_ ) _lowercase : Dict = self.qformer_tokenizer( text=UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,stride=UpperCAmelCase_ ,pad_to_multiple_of=UpperCAmelCase_ ,return_attention_mask=UpperCAmelCase_ ,return_overflowing_tokens=UpperCAmelCase_ ,return_special_tokens_mask=UpperCAmelCase_ ,return_offsets_mapping=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ,return_length=UpperCAmelCase_ ,verbose=UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ,**UpperCAmelCase_ ,) _lowercase : str = qformer_text_encoding.pop("""input_ids""" ) _lowercase : int = qformer_text_encoding.pop("""attention_mask""" ) if images is not None: _lowercase : Optional[Any] = self.image_processor(UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ) encoding.update(UpperCAmelCase_ ) return encoding def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return self.tokenizer.batch_decode(*UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return self.tokenizer.decode(*UpperCAmelCase_ ,**UpperCAmelCase_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.tokenizer.model_input_names _lowercase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,**UpperCAmelCase_ ): if os.path.isfile(UpperCAmelCase_ ): raise ValueError(f"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(UpperCAmelCase_ ,exist_ok=UpperCAmelCase_ ) _lowercase : Any = os.path.join(UpperCAmelCase_ ,"""qformer_tokenizer""" ) self.qformer_tokenizer.save_pretrained(UpperCAmelCase_ ) return super().save_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): _lowercase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCAmelCase_ ,subfolder="""qformer_tokenizer""" ) _lowercase : Any = cls._get_arguments_from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) args.append(UpperCAmelCase_ ) return cls(*UpperCAmelCase_ )
336
0
"""simple docstring""" from __future__ import annotations UpperCAmelCase = 1.6021e-19 # units = C def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif conductivity < 0: raise ValueError("""Conductivity cannot be negative""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative""" ) elif mobility < 0: raise ValueError("""mobility cannot be negative""" ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
357
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase: Tuple = logging.get_logger(__name__) UpperCAmelCase: List[Any] = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "trajectory_transformer" SCREAMING_SNAKE_CASE_ : Optional[int] = ["past_key_values"] SCREAMING_SNAKE_CASE_ : Tuple = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self ,UpperCAmelCase_=1_00 ,UpperCAmelCase_=5 ,UpperCAmelCase_=1 ,UpperCAmelCase_=1 ,UpperCAmelCase_=2_49 ,UpperCAmelCase_=6 ,UpperCAmelCase_=17 ,UpperCAmelCase_=25 ,UpperCAmelCase_=4 ,UpperCAmelCase_=4 ,UpperCAmelCase_=1_28 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.0006 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-12 ,UpperCAmelCase_=1 ,UpperCAmelCase_=True ,UpperCAmelCase_=1 ,UpperCAmelCase_=5_02_56 ,UpperCAmelCase_=5_02_56 ,**UpperCAmelCase_ ,): _lowercase : Dict = vocab_size _lowercase : List[str] = action_weight _lowercase : int = reward_weight _lowercase : List[Any] = value_weight _lowercase : List[str] = max_position_embeddings _lowercase : Any = block_size _lowercase : Any = action_dim _lowercase : List[str] = observation_dim _lowercase : Union[str, Any] = transition_dim _lowercase : str = learning_rate _lowercase : Tuple = n_layer _lowercase : Optional[int] = n_head _lowercase : List[str] = n_embd _lowercase : List[str] = embd_pdrop _lowercase : Optional[Any] = attn_pdrop _lowercase : List[Any] = resid_pdrop _lowercase : str = initializer_range _lowercase : Optional[Any] = layer_norm_eps _lowercase : List[Any] = kaiming_initializer_range _lowercase : List[Any] = use_cache super().__init__(pad_token_id=UpperCAmelCase_ ,bos_token_id=UpperCAmelCase_ ,eos_token_id=UpperCAmelCase_ ,**UpperCAmelCase_ )
336
0
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ,UpperCAmelCase_ ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] ,model_result["""ss"""] ): _lowercase : Union[str, Any] = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Optional[int] = """sshleifer/tiny-gpt2""" _lowercase : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=UpperCAmelCase_ ,inference=UpperCAmelCase_ ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=UpperCAmelCase_ ,multi_process=UpperCAmelCase_ ,) _lowercase : Any = TensorFlowBenchmark(UpperCAmelCase_ ) _lowercase : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase__ ( self ): _lowercase : int = """sgugger/tiny-distilbert-classification""" _lowercase : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=UpperCAmelCase_ ,inference=UpperCAmelCase_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=UpperCAmelCase_ ,only_pretrain_model=UpperCAmelCase_ ,) _lowercase : List[Any] = TensorFlowBenchmark(UpperCAmelCase_ ) _lowercase : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase__ ( self ): _lowercase : List[str] = """sshleifer/tiny-gpt2""" _lowercase : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=UpperCAmelCase_ ,inference=UpperCAmelCase_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=UpperCAmelCase_ ,) _lowercase : List[str] = TensorFlowBenchmark(UpperCAmelCase_ ) _lowercase : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase__ ( self ): _lowercase : List[Any] = """sshleifer/tiny-gpt2""" _lowercase : str = AutoConfig.from_pretrained(UpperCAmelCase_ ) _lowercase : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=UpperCAmelCase_ ,inference=UpperCAmelCase_ ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=UpperCAmelCase_ ,multi_process=UpperCAmelCase_ ,) _lowercase : str = TensorFlowBenchmark(UpperCAmelCase_ ,[config] ) _lowercase : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase__ ( self ): _lowercase : Optional[int] = """sshleifer/tiny-gpt2""" _lowercase : str = AutoConfig.from_pretrained(UpperCAmelCase_ ) _lowercase : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=UpperCAmelCase_ ,inference=UpperCAmelCase_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=UpperCAmelCase_ ,) _lowercase : Union[str, Any] = TensorFlowBenchmark(UpperCAmelCase_ ,[config] ) _lowercase : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = """sshleifer/tiny-gpt2""" _lowercase : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=UpperCAmelCase_ ,inference=UpperCAmelCase_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=UpperCAmelCase_ ,) _lowercase : Optional[int] = TensorFlowBenchmark(UpperCAmelCase_ ) _lowercase : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCamelCase__ ( self ): _lowercase : Tuple = """sshleifer/tiny-gpt2""" _lowercase : Tuple = AutoConfig.from_pretrained(UpperCAmelCase_ ) _lowercase : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=UpperCAmelCase_ ,inference=UpperCAmelCase_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=UpperCAmelCase_ ,) _lowercase : Dict = TensorFlowBenchmark(UpperCAmelCase_ ,[config] ) _lowercase : str = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCamelCase__ ( self ): _lowercase : Tuple = """patrickvonplaten/t5-tiny-random""" _lowercase : Tuple = AutoConfig.from_pretrained(UpperCAmelCase_ ) _lowercase : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=UpperCAmelCase_ ,inference=UpperCAmelCase_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=UpperCAmelCase_ ,) _lowercase : str = TensorFlowBenchmark(UpperCAmelCase_ ,configs=[config] ) _lowercase : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 ,"""Cannot do xla on CPU.""" ) def lowerCamelCase__ ( self ): _lowercase : Any = """sshleifer/tiny-gpt2""" _lowercase : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=UpperCAmelCase_ ,inference=UpperCAmelCase_ ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=UpperCAmelCase_ ,multi_process=UpperCAmelCase_ ,) _lowercase : List[str] = TensorFlowBenchmark(UpperCAmelCase_ ) _lowercase : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase__ ( self ): _lowercase : Optional[int] = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: _lowercase : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=UpperCAmelCase_ ,save_to_csv=UpperCAmelCase_ ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(UpperCAmelCase_ ,"""inf_time.csv""" ) ,inference_memory_csv_file=os.path.join(UpperCAmelCase_ ,"""inf_mem.csv""" ) ,env_info_csv_file=os.path.join(UpperCAmelCase_ ,"""env.csv""" ) ,multi_process=UpperCAmelCase_ ,) _lowercase : Tuple = TensorFlowBenchmark(UpperCAmelCase_ ) benchmark.run() self.assertTrue(Path(os.path.join(UpperCAmelCase_ ,"""inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCAmelCase_ ,"""inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCAmelCase_ ,"""env.csv""" ) ).exists() ) def lowerCamelCase__ ( self ): _lowercase : Dict = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(UpperCAmelCase_ ): self.assertTrue(hasattr(UpperCAmelCase_ ,"""sequential""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ ,"""cumulative""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ ,"""current""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ ,"""total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: _lowercase : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=UpperCAmelCase_ ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(UpperCAmelCase_ ,"""log.txt""" ) ,log_print=UpperCAmelCase_ ,trace_memory_line_by_line=UpperCAmelCase_ ,eager_mode=UpperCAmelCase_ ,multi_process=UpperCAmelCase_ ,) _lowercase : Optional[Any] = TensorFlowBenchmark(UpperCAmelCase_ ) _lowercase : int = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(UpperCAmelCase_ ,"""log.txt""" ) ).exists() )
358
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase: Any = logging.get_logger(__name__) UpperCAmelCase: List[str] = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = "instructblip_vision_model" def __init__( self ,UpperCAmelCase_=14_08 ,UpperCAmelCase_=61_44 ,UpperCAmelCase_=39 ,UpperCAmelCase_=16 ,UpperCAmelCase_=2_24 ,UpperCAmelCase_=14 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=1E-6 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=1E-10 ,UpperCAmelCase_=True ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) _lowercase : Optional[Any] = hidden_size _lowercase : Tuple = intermediate_size _lowercase : List[Any] = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[Any] = patch_size _lowercase : Optional[Any] = image_size _lowercase : Union[str, Any] = initializer_range _lowercase : Optional[Any] = attention_dropout _lowercase : List[Any] = layer_norm_eps _lowercase : Optional[int] = hidden_act _lowercase : Tuple = qkv_bias @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): cls._set_token_in_kwargs(UpperCAmelCase_ ) _lowercase , _lowercase : List[Any] = cls.get_config_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": _lowercase : int = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = "instructblip_qformer" def __init__( self ,UpperCAmelCase_=3_05_22 ,UpperCAmelCase_=7_68 ,UpperCAmelCase_=12 ,UpperCAmelCase_=12 ,UpperCAmelCase_=30_72 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-12 ,UpperCAmelCase_=0 ,UpperCAmelCase_="absolute" ,UpperCAmelCase_=2 ,UpperCAmelCase_=14_08 ,**UpperCAmelCase_ ,): super().__init__(pad_token_id=UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : List[Any] = vocab_size _lowercase : List[Any] = hidden_size _lowercase : str = num_hidden_layers _lowercase : List[str] = num_attention_heads _lowercase : Optional[Any] = hidden_act _lowercase : int = intermediate_size _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : List[Any] = max_position_embeddings _lowercase : Tuple = initializer_range _lowercase : Optional[int] = layer_norm_eps _lowercase : Any = position_embedding_type _lowercase : Dict = cross_attention_frequency _lowercase : Optional[Any] = encoder_hidden_size @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): cls._set_token_in_kwargs(UpperCAmelCase_ ) _lowercase , _lowercase : Dict = cls.get_config_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": _lowercase : str = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "instructblip" SCREAMING_SNAKE_CASE_ : List[str] = True def __init__( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=32 ,**UpperCAmelCase_ ): super().__init__(**UpperCAmelCase_ ) if vision_config is None: _lowercase : str = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: _lowercase : Any = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: _lowercase : Optional[int] = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) _lowercase : int = InstructBlipVisionConfig(**UpperCAmelCase_ ) _lowercase : Optional[int] = InstructBlipQFormerConfig(**UpperCAmelCase_ ) _lowercase : Dict = text_config["""model_type"""] if """model_type""" in text_config else """opt""" _lowercase : str = CONFIG_MAPPING[text_model_type](**UpperCAmelCase_ ) _lowercase : str = self.text_config.tie_word_embeddings _lowercase : Union[str, Any] = self.text_config.is_encoder_decoder _lowercase : List[str] = num_query_tokens _lowercase : List[str] = self.vision_config.hidden_size _lowercase : Dict = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowercase : Union[str, Any] = 1.0 _lowercase : Dict = 0.02 @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,**UpperCAmelCase_ ,): return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**UpperCAmelCase_ ,) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowercase : int = self.vision_config.to_dict() _lowercase : Any = self.qformer_config.to_dict() _lowercase : Any = self.text_config.to_dict() _lowercase : Optional[int] = self.__class__.model_type return output
336
0
"""simple docstring""" UpperCAmelCase: Optional[Any] = [ """DownloadConfig""", """DownloadManager""", """DownloadMode""", """StreamingDownloadManager""", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
359
"""simple docstring""" import cva import numpy as np class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): if k in (0.04, 0.06): _lowercase : Optional[Any] = k _lowercase : Optional[Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self ): return str(self.k ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : List[str] = cva.imread(UpperCAmelCase_ ,0 ) _lowercase , _lowercase : Dict = img.shape _lowercase : list[list[int]] = [] _lowercase : int = img.copy() _lowercase : List[str] = cva.cvtColor(UpperCAmelCase_ ,cva.COLOR_GRAY2RGB ) _lowercase , _lowercase : Optional[Any] = np.gradient(UpperCAmelCase_ ) _lowercase : Optional[int] = dx**2 _lowercase : Optional[Any] = dy**2 _lowercase : Optional[Any] = dx * dy _lowercase : List[str] = 0.04 _lowercase : Optional[Any] = self.window_size // 2 for y in range(UpperCAmelCase_ ,h - offset ): for x in range(UpperCAmelCase_ ,w - offset ): _lowercase : Optional[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : Dict = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : Union[str, Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : int = (wxx * wyy) - (wxy**2) _lowercase : Union[str, Any] = wxx + wyy _lowercase : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) ,0 ) color_img.itemset((y, x, 1) ,0 ) color_img.itemset((y, x, 2) ,2_55 ) return color_img, corner_list if __name__ == "__main__": UpperCAmelCase: Optional[int] = HarrisCorner(0.04, 3) UpperCAmelCase , UpperCAmelCase: List[Any] = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
336
0
"""simple docstring""" from __future__ import annotations import os from typing import Any import requests UpperCAmelCase: Optional[Any] = """https://api.github.com""" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user UpperCAmelCase: Union[str, Any] = BASE_URL + """/user""" # https://github.com/settings/tokens UpperCAmelCase: List[str] = os.environ.get("""USER_TOKEN""", """""") def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : List[Any] = { """Authorization""": F"""token {auth_token}""", """Accept""": """application/vnd.github.v3+json""", } return requests.get(__UpperCAmelCase , headers=__UpperCAmelCase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F'{key}: {value}') else: raise ValueError("""'USER_TOKEN' field cannot be empty.""")
360
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = LEDTokenizer SCREAMING_SNAKE_CASE_ : List[str] = LEDTokenizerFast SCREAMING_SNAKE_CASE_ : List[str] = True def lowerCamelCase__ ( self ): super().setUp() _lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _lowercase : List[Any] = dict(zip(UpperCAmelCase_ ,range(len(UpperCAmelCase_ ) ) ) ) _lowercase : Optional[int] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowercase : Dict = {"""unk_token""": """<unk>"""} _lowercase : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _lowercase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return "lower newer", "lower newer" @cached_property def lowerCamelCase__ ( self ): return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def lowerCamelCase__ ( self ): return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _lowercase : Any = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Tuple = tokenizer(UpperCAmelCase_ ,max_length=len(UpperCAmelCase_ ) ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) _lowercase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Dict = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIn("""input_ids""" ,UpperCAmelCase_ ) self.assertIn("""attention_mask""" ,UpperCAmelCase_ ) self.assertNotIn("""labels""" ,UpperCAmelCase_ ) self.assertNotIn("""decoder_attention_mask""" ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Dict = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Tuple = tokenizer(text_target=UpperCAmelCase_ ,max_length=32 ,padding="""max_length""" ,return_tensors="""pt""" ) self.assertEqual(32 ,targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : List[Any] = tokenizer( ["""I am a small frog""" * 10_24, """I am a small frog"""] ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual(batch.input_ids.shape ,(2, 51_22) ) @require_torch def lowerCamelCase__ ( self ): _lowercase : List[Any] = ["""A long paragraph for summarization."""] _lowercase : Dict = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Dict = tokenizer(UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : List[str] = tokenizer(text_target=UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : Union[str, Any] = inputs["""input_ids"""] _lowercase : List[str] = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : str = ["""Summary of the text.""", """Another summary."""] _lowercase : Optional[int] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _lowercase : Any = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ) _lowercase : str = [[0] * len(UpperCAmelCase_ ) for x in encoded_output["""input_ids"""]] _lowercase : Optional[int] = tokenizer.pad(UpperCAmelCase_ ) self.assertSequenceEqual(outputs["""global_attention_mask"""] ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): pass def lowerCamelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase : int = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Optional[int] = self.tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Dict = """A, <mask> AllenNLP sentence.""" _lowercase : List[Any] = tokenizer_r.encode_plus(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) _lowercase : Any = tokenizer_p.encode_plus(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) ,sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) ,sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) ,) _lowercase : str = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) _lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( UpperCAmelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( UpperCAmelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
336
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase: Tuple = logging.get_logger(__name__) UpperCAmelCase: List[Any] = { """microsoft/trocr-base-handwritten""": ( """https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json""" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = "trocr" SCREAMING_SNAKE_CASE_ : Optional[int] = ["past_key_values"] SCREAMING_SNAKE_CASE_ : str = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self ,UpperCAmelCase_=5_02_65 ,UpperCAmelCase_=10_24 ,UpperCAmelCase_=12 ,UpperCAmelCase_=16 ,UpperCAmelCase_=40_96 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=2 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=True ,UpperCAmelCase_=False ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,UpperCAmelCase_=1 ,UpperCAmelCase_=0 ,UpperCAmelCase_=2 ,**UpperCAmelCase_ ,): _lowercase : List[Any] = vocab_size _lowercase : Optional[Any] = d_model _lowercase : List[Any] = decoder_layers _lowercase : Optional[int] = decoder_attention_heads _lowercase : Dict = decoder_ffn_dim _lowercase : Any = activation_function _lowercase : Tuple = max_position_embeddings _lowercase : int = dropout _lowercase : Union[str, Any] = attention_dropout _lowercase : Optional[Any] = activation_dropout _lowercase : List[Any] = init_std _lowercase : List[Any] = decoder_layerdrop _lowercase : str = use_cache _lowercase : Tuple = scale_embedding _lowercase : Optional[int] = use_learned_position_embeddings _lowercase : str = layernorm_embedding super().__init__( pad_token_id=UpperCAmelCase_ ,bos_token_id=UpperCAmelCase_ ,eos_token_id=UpperCAmelCase_ ,decoder_start_token_id=UpperCAmelCase_ ,**UpperCAmelCase_ ,)
361
"""simple docstring""" import argparse from collections import defaultdict def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : str = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Any = f.readlines() _lowercase : Optional[int] = F"""class {class_name}(""" _lowercase : List[str] = F"""{4 * " "}def {test_name}(""" _lowercase : List[Any] = F"""{8 * " "}{correct_line.split()[0]}""" _lowercase : int = F"""{16 * " "}{correct_line.split()[0]}""" _lowercase : str = False _lowercase : Optional[Any] = False _lowercase : Union[str, Any] = False _lowercase : Any = False _lowercase : int = 0 _lowercase : Tuple = 0 _lowercase : Union[str, Any] = [] for line in lines: if line.startswith(__UpperCAmelCase ): _lowercase : List[str] = True elif in_class and line.startswith(__UpperCAmelCase ): _lowercase : str = True elif in_class and in_func and (line.startswith(__UpperCAmelCase ) or line.startswith(__UpperCAmelCase )): _lowercase : Union[str, Any] = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _lowercase : Optional[int] = True if in_class and in_func and in_line: if ")" not in line: continue else: _lowercase : Optional[Any] = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * " "}{correct_line}""" ) _lowercase : Union[str, Any] = False else: new_lines.append(__UpperCAmelCase ) with open(__UpperCAmelCase , """w""" ) as f: for line in new_lines: f.write(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=None ): if fail is not None: with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Dict = {l.strip() for l in f.readlines()} else: _lowercase : int = None with open(__UpperCAmelCase , """r""" ) as f: _lowercase : int = f.readlines() _lowercase : int = defaultdict(__UpperCAmelCase ) for line in correct_lines: _lowercase , _lowercase , _lowercase , _lowercase : int = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase: List[Any] = argparse.ArgumentParser() parser.add_argument("""--correct_filename""", help="""filename of tests with expected result""") parser.add_argument("""--fail_filename""", help="""filename of test failures""", type=str, default=None) UpperCAmelCase: Any = parser.parse_args() main(args.correct_filename, args.fail_filename)
336
0
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL UpperCAmelCase: List[Any] = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): def constraint_to_multiple_of(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=0 , __UpperCAmelCase=None ): _lowercase : Union[str, Any] = round(val / multiple ) * multiple if max_val is not None and x > max_val: _lowercase : str = math.floor(val / multiple ) * multiple if x < min_val: _lowercase : Dict = math.ceil(val / multiple ) * multiple return x _lowercase : List[str] = (output_size, output_size) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else output_size _lowercase : List[Any] = get_image_size(__UpperCAmelCase ) _lowercase : Union[str, Any] = output_size # determine new height and width _lowercase : str = output_height / input_height _lowercase : List[Any] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _lowercase : str = scale_width else: # fit height _lowercase : int = scale_height _lowercase : List[Any] = constraint_to_multiple_of(scale_height * input_height , multiple=__UpperCAmelCase ) _lowercase : Optional[Any] = constraint_to_multiple_of(scale_width * input_width , multiple=__UpperCAmelCase ) return (new_height, new_width) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["pixel_values"] def __init__( self ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = PILImageResampling.BILINEAR ,UpperCAmelCase_ = False ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = 1 / 2_55 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) _lowercase : List[Any] = size if size is not None else {"""height""": 3_84, """width""": 3_84} _lowercase : str = get_size_dict(UpperCAmelCase_ ) _lowercase : Tuple = do_resize _lowercase : Any = size _lowercase : List[Any] = keep_aspect_ratio _lowercase : Any = ensure_multiple_of _lowercase : str = resample _lowercase : Optional[Any] = do_rescale _lowercase : List[Any] = rescale_factor _lowercase : Union[str, Any] = do_normalize _lowercase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowercase : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = False ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = PILImageResampling.BICUBIC ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): _lowercase : Optional[Any] = get_size_dict(UpperCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _lowercase : Dict = get_resize_output_image_size( UpperCAmelCase_ ,output_size=(size["""height"""], size["""width"""]) ,keep_aspect_ratio=UpperCAmelCase_ ,multiple=UpperCAmelCase_ ,) return resize(UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): return rescale(UpperCAmelCase_ ,scale=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): return normalize(UpperCAmelCase_ ,mean=UpperCAmelCase_ ,std=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = ChannelDimension.FIRST ,**UpperCAmelCase_ ,): _lowercase : Any = do_resize if do_resize is not None else self.do_resize _lowercase : List[str] = size if size is not None else self.size _lowercase : int = get_size_dict(UpperCAmelCase_ ) _lowercase : Any = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _lowercase : List[str] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _lowercase : List[str] = resample if resample is not None else self.resample _lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _lowercase : Any = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase : str = do_normalize if do_normalize is not None else self.do_normalize _lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean _lowercase : int = image_std if image_std is not None else self.image_std _lowercase : Union[str, Any] = make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _lowercase : int = [to_numpy_array(UpperCAmelCase_ ) for image in images] if do_resize: _lowercase : Union[str, Any] = [self.resize(image=UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ) for image in images] if do_rescale: _lowercase : int = [self.rescale(image=UpperCAmelCase_ ,scale=UpperCAmelCase_ ) for image in images] if do_normalize: _lowercase : str = [self.normalize(image=UpperCAmelCase_ ,mean=UpperCAmelCase_ ,std=UpperCAmelCase_ ) for image in images] _lowercase : Tuple = [to_channel_dimension_format(UpperCAmelCase_ ,UpperCAmelCase_ ) for image in images] _lowercase : int = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase_ ,tensor_type=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): _lowercase : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(UpperCAmelCase_ ): _lowercase : Tuple = target_sizes.numpy() _lowercase : Optional[Any] = [] for idx in range(len(UpperCAmelCase_ ) ): _lowercase : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode="""bilinear""" ,align_corners=UpperCAmelCase_ ) _lowercase : Optional[int] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase_ ) else: _lowercase : Union[str, Any] = logits.argmax(dim=1 ) _lowercase : Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
362
"""simple docstring""" UpperCAmelCase: List[str] = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
336
0
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(__UpperCAmelCase ) ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): # Base Case if index == len(__UpperCAmelCase ): return True # Recursive Step for i in range(__UpperCAmelCase ): if valid_coloring(graph[index] , __UpperCAmelCase , __UpperCAmelCase ): # Color current vertex _lowercase : Dict = i # Validate coloring if util_color(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , index + 1 ): return True # Backtrack _lowercase : Dict = -1 return False def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Union[str, Any] = [-1] * len(__UpperCAmelCase ) if util_color(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , 0 ): return colored_vertices return []
363
"""simple docstring""" UpperCAmelCase: str = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ UpperCAmelCase: Any = [{"""type""": """code""", """content""": INSTALL_CONTENT}] UpperCAmelCase: int = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
336
0
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset from utils import logger class UpperCamelCase ( snake_case ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : str = params _lowercase : Optional[int] = np.array(UpperCAmelCase_ ) _lowercase : Any = np.array([len(UpperCAmelCase_ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self ,UpperCAmelCase_ ): return (self.token_ids[index], self.lengths[index]) def __len__( self ): return len(self.lengths ) def lowerCamelCase__ ( self ): assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.params.max_model_input_size _lowercase : Any = self.lengths > max_len logger.info(f"""Splitting {sum(UpperCAmelCase_ )} too long sequences.""" ) def divide_chunks(UpperCAmelCase_ ,UpperCAmelCase_ ): return [l[i : i + n] for i in range(0 ,len(UpperCAmelCase_ ) ,UpperCAmelCase_ )] _lowercase : str = [] _lowercase : Tuple = [] if self.params.mlm: _lowercase : List[str] = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: _lowercase : Optional[int] = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids ,self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: _lowercase : Tuple = [] for sub_s in divide_chunks(seq_ ,max_len - 2 ): if sub_s[0] != cls_id: _lowercase : Optional[Any] = np.insert(UpperCAmelCase_ ,0 ,UpperCAmelCase_ ) if sub_s[-1] != sep_id: _lowercase : Any = np.insert(UpperCAmelCase_ ,len(UpperCAmelCase_ ) ,UpperCAmelCase_ ) assert len(UpperCAmelCase_ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(UpperCAmelCase_ ) new_tok_ids.extend(UpperCAmelCase_ ) new_lengths.extend([len(UpperCAmelCase_ ) for l in sub_seqs] ) _lowercase : Union[str, Any] = np.array(UpperCAmelCase_ ) _lowercase : Any = np.array(UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : int = len(self ) _lowercase : Union[str, Any] = self.lengths > 11 _lowercase : Optional[int] = self.token_ids[indices] _lowercase : Any = self.lengths[indices] _lowercase : Any = len(self ) logger.info(f"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def lowerCamelCase__ ( self ): if "unk_token" not in self.params.special_tok_ids: return else: _lowercase : Tuple = self.params.special_tok_ids["""unk_token"""] _lowercase : Optional[Any] = len(self ) _lowercase : List[Any] = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) _lowercase : int = (unk_occs / self.lengths) < 0.5 _lowercase : List[str] = self.token_ids[indices] _lowercase : List[str] = self.lengths[indices] _lowercase : List[str] = len(self ) logger.info(f"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def lowerCamelCase__ ( self ): if not self.params.is_master: return logger.info(f"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : Optional[int] = [t[0] for t in batch] _lowercase : Optional[int] = [t[1] for t in batch] assert len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ) # Max for paddings _lowercase : List[Any] = max(UpperCAmelCase_ ) # Pad token ids if self.params.mlm: _lowercase : int = self.params.special_tok_ids["""pad_token"""] else: _lowercase : Any = self.params.special_tok_ids["""unk_token"""] _lowercase : List[Any] = [list(t.astype(UpperCAmelCase_ ) ) + [pad_idx] * (max_seq_len_ - len(UpperCAmelCase_ )) for t in token_ids] assert len(tk_ ) == len(UpperCAmelCase_ ) assert all(len(UpperCAmelCase_ ) == max_seq_len_ for t in tk_ ) _lowercase : Any = torch.tensor(tk_ ) # (bs, max_seq_len_) _lowercase : Any = torch.tensor(UpperCAmelCase_ ) # (bs) return tk_t, lg_t
364
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL UpperCAmelCase: List[Any] = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): def constraint_to_multiple_of(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=0 , __UpperCAmelCase=None ): _lowercase : Union[str, Any] = round(val / multiple ) * multiple if max_val is not None and x > max_val: _lowercase : str = math.floor(val / multiple ) * multiple if x < min_val: _lowercase : Dict = math.ceil(val / multiple ) * multiple return x _lowercase : List[str] = (output_size, output_size) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else output_size _lowercase , _lowercase : List[Any] = get_image_size(__UpperCAmelCase ) _lowercase , _lowercase : Union[str, Any] = output_size # determine new height and width _lowercase : str = output_height / input_height _lowercase : List[Any] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _lowercase : str = scale_width else: # fit height _lowercase : int = scale_height _lowercase : List[Any] = constraint_to_multiple_of(scale_height * input_height , multiple=__UpperCAmelCase ) _lowercase : Optional[Any] = constraint_to_multiple_of(scale_width * input_width , multiple=__UpperCAmelCase ) return (new_height, new_width) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["pixel_values"] def __init__( self ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = PILImageResampling.BILINEAR ,UpperCAmelCase_ = False ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = 1 / 2_55 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) _lowercase : List[Any] = size if size is not None else {"""height""": 3_84, """width""": 3_84} _lowercase : str = get_size_dict(UpperCAmelCase_ ) _lowercase : Tuple = do_resize _lowercase : Any = size _lowercase : List[Any] = keep_aspect_ratio _lowercase : Any = ensure_multiple_of _lowercase : str = resample _lowercase : Optional[Any] = do_rescale _lowercase : List[Any] = rescale_factor _lowercase : Union[str, Any] = do_normalize _lowercase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowercase : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = False ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = PILImageResampling.BICUBIC ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): _lowercase : Optional[Any] = get_size_dict(UpperCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _lowercase : Dict = get_resize_output_image_size( UpperCAmelCase_ ,output_size=(size["""height"""], size["""width"""]) ,keep_aspect_ratio=UpperCAmelCase_ ,multiple=UpperCAmelCase_ ,) return resize(UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): return rescale(UpperCAmelCase_ ,scale=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): return normalize(UpperCAmelCase_ ,mean=UpperCAmelCase_ ,std=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = ChannelDimension.FIRST ,**UpperCAmelCase_ ,): _lowercase : Any = do_resize if do_resize is not None else self.do_resize _lowercase : List[str] = size if size is not None else self.size _lowercase : int = get_size_dict(UpperCAmelCase_ ) _lowercase : Any = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _lowercase : List[str] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _lowercase : List[str] = resample if resample is not None else self.resample _lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _lowercase : Any = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase : str = do_normalize if do_normalize is not None else self.do_normalize _lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean _lowercase : int = image_std if image_std is not None else self.image_std _lowercase : Union[str, Any] = make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _lowercase : int = [to_numpy_array(UpperCAmelCase_ ) for image in images] if do_resize: _lowercase : Union[str, Any] = [self.resize(image=UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ) for image in images] if do_rescale: _lowercase : int = [self.rescale(image=UpperCAmelCase_ ,scale=UpperCAmelCase_ ) for image in images] if do_normalize: _lowercase : str = [self.normalize(image=UpperCAmelCase_ ,mean=UpperCAmelCase_ ,std=UpperCAmelCase_ ) for image in images] _lowercase : Tuple = [to_channel_dimension_format(UpperCAmelCase_ ,UpperCAmelCase_ ) for image in images] _lowercase : int = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase_ ,tensor_type=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): _lowercase : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(UpperCAmelCase_ ): _lowercase : Tuple = target_sizes.numpy() _lowercase : Optional[Any] = [] for idx in range(len(UpperCAmelCase_ ) ): _lowercase : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode="""bilinear""" ,align_corners=UpperCAmelCase_ ) _lowercase : Optional[int] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase_ ) else: _lowercase : Union[str, Any] = logits.argmax(dim=1 ) _lowercase : Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
336
0
"""simple docstring""" import warnings from .generation import TFGenerationMixin class UpperCamelCase ( snake_case ): """simple docstring""" warnings.warn( "Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will " "be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead." , snake_case , )
365
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCAmelCase: Optional[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCAmelCase: Tuple = [0, 25, 50] UpperCAmelCase: List[Any] = [25, 50, 75] UpperCAmelCase: Optional[int] = fuzz.membership.trimf(X, abca) UpperCAmelCase: Any = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCAmelCase: List[Any] = np.ones(75) UpperCAmelCase: Any = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) UpperCAmelCase: str = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) UpperCAmelCase: Optional[int] = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) UpperCAmelCase: List[Any] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) UpperCAmelCase: Optional[int] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] UpperCAmelCase: int = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) UpperCAmelCase: int = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] UpperCAmelCase: List[Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] UpperCAmelCase: int = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("""Young""") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("""Middle aged""") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("""union""") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("""intersection""") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("""complement_a""") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("""difference a/b""") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("""alg_sum""") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("""alg_product""") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("""bdd_sum""") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("""bdd_difference""") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
336
0
"""simple docstring""" import math def a ( __UpperCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a ( __UpperCAmelCase = 10001 ): try: _lowercase : str = int(__UpperCAmelCase ) except (TypeError, ValueError): raise TypeError("""Parameter nth must be int or castable to int.""" ) from None if nth <= 0: raise ValueError("""Parameter nth must be greater than or equal to one.""" ) _lowercase : list[int] = [] _lowercase : int = 2 while len(__UpperCAmelCase ) < nth: if is_prime(__UpperCAmelCase ): primes.append(__UpperCAmelCase ) num += 1 else: num += 1 return primes[len(__UpperCAmelCase ) - 1] if __name__ == "__main__": print(F'{solution() = }')
366
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ): _lowercase : str = tempfile.mkdtemp() # fmt: off _lowercase : List[Any] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _lowercase : Optional[int] = dict(zip(UpperCAmelCase_ ,range(len(UpperCAmelCase_ ) ) ) ) _lowercase : Optional[int] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] _lowercase : Optional[int] = {"""unk_token""": """<unk>"""} _lowercase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _lowercase : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) _lowercase : Dict = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } _lowercase : List[Any] = os.path.join(self.tmpdirname ,UpperCAmelCase_ ) with open(self.image_processor_file ,"""w""" ,encoding="""utf-8""" ) as fp: json.dump(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPTokenizer.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPImageProcessor.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] _lowercase : Tuple = [Image.fromarray(np.moveaxis(UpperCAmelCase_ ,0 ,-1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.get_tokenizer() _lowercase : List[Any] = self.get_rust_tokenizer() _lowercase : List[Any] = self.get_image_processor() _lowercase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) _lowercase : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname ,use_fast=UpperCAmelCase_ ) _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) _lowercase : List[str] = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer ,UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : str = CLIPProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowercase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) _lowercase : Optional[int] = self.get_image_processor(do_normalize=UpperCAmelCase_ ,padding_value=1.0 ) _lowercase : int = CLIPProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=UpperCAmelCase_ ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : Optional[int] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : int = self.prepare_image_inputs() _lowercase : str = image_processor(UpperCAmelCase_ ,return_tensors="""np""" ) _lowercase : int = processor(images=UpperCAmelCase_ ,return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : Optional[Any] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : List[Any] = """lower newer""" _lowercase : Any = processor(text=UpperCAmelCase_ ) _lowercase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : str = """lower newer""" _lowercase : List[Any] = self.prepare_image_inputs() _lowercase : Optional[int] = processor(text=UpperCAmelCase_ ,images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowerCamelCase__ ( self ): _lowercase : Dict = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowercase : int = processor.batch_decode(UpperCAmelCase_ ) _lowercase : Tuple = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : Optional[Any] = """lower newer""" _lowercase : Any = self.prepare_image_inputs() _lowercase : Optional[int] = processor(text=UpperCAmelCase_ ,images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
336
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase: Optional[int] = { """configuration_informer""": [ """INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: List[Any] = [ """INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """InformerForPrediction""", """InformerModel""", """InformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys UpperCAmelCase: Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
367
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int UpperCAmelCase: str = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class UpperCamelCase ( datasets.BuilderConfig ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[datasets.Features] = None def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , ): import pyspark def generate_fn(): _lowercase : List[Any] = df.select("""*""" , pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) ) for partition_id in partition_order: _lowercase : Optional[int] = df_with_partition_id.select("""*""" ).where(F"""part_id = {partition_id}""" ).drop("""part_id""" ) _lowercase : int = partition_df.collect() _lowercase : Dict = 0 for row in rows: yield F"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class UpperCamelCase ( _BaseExamplesIterable ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ,): _lowercase : Union[str, Any] = df _lowercase : List[str] = partition_order or range(self.df.rdd.getNumPartitions() ) _lowercase : Tuple = _generate_iterable_examples(self.df ,self.partition_order ) def __iter__( self ): yield from self.generate_examples_fn() def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : List[str] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(UpperCAmelCase_ ) return SparkExamplesIterable(self.df ,partition_order=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Union[str, Any] = self.split_shard_indices_by_worker(UpperCAmelCase_ ,UpperCAmelCase_ ) return SparkExamplesIterable(self.df ,partition_order=UpperCAmelCase_ ) @property def lowerCamelCase__ ( self ): return len(self.partition_order ) class UpperCamelCase ( datasets.DatasetBuilder ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = SparkConfig def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): import pyspark _lowercase : List[Any] = pyspark.sql.SparkSession.builder.getOrCreate() _lowercase : List[Any] = df _lowercase : int = working_dir super().__init__( cache_dir=UpperCAmelCase_ ,config_name=str(self.df.semanticHash() ) ,**UpperCAmelCase_ ,) def lowerCamelCase__ ( self ): # Returns the path of the created file. def create_cache_and_write_probe(UpperCAmelCase_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir ,exist_ok=UpperCAmelCase_ ) _lowercase : Union[str, Any] = os.path.join(self._cache_dir ,"""fs_test""" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(UpperCAmelCase_ ,"""a""" ) return [probe_file] if self._spark.conf.get("""spark.master""" ,"""""" ).startswith("""local""" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: _lowercase : List[str] = ( self._spark.sparkContext.parallelize(range(1 ) ,1 ).mapPartitions(UpperCAmelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( """When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" ) def lowerCamelCase__ ( self ): return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def lowerCamelCase__ ( self ,UpperCAmelCase_ ): import pyspark def get_arrow_batch_size(UpperCAmelCase_ ): for batch in it: yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} ) _lowercase : List[str] = self.df.count() _lowercase : List[str] = df_num_rows if df_num_rows <= 1_00 else 1_00 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. _lowercase : Union[str, Any] = ( self.df.limit(UpperCAmelCase_ ) .repartition(1 ) .mapInArrow(UpperCAmelCase_ ,"""batch_bytes: long""" ) .agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) ) .collect()[0] .sample_bytes / sample_num_rows ) _lowercase : List[Any] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. _lowercase : int = min(UpperCAmelCase_ ,int(approx_total_size / max_shard_size ) ) _lowercase : List[Any] = self.df.repartition(UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): import pyspark _lowercase : Union[str, Any] = ParquetWriter if file_format == """parquet""" else ArrowWriter _lowercase : List[Any] = os.path.join(self._working_dir ,os.path.basename(UpperCAmelCase_ ) ) if self._working_dir else fpath _lowercase : Any = file_format == """parquet""" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. _lowercase : Union[str, Any] = self.config.features _lowercase : Optional[int] = self._writer_batch_size _lowercase : Optional[Any] = self._fs.storage_options def write_arrow(UpperCAmelCase_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. _lowercase : Any = pyspark.TaskContext().taskAttemptId() _lowercase : List[str] = next(UpperCAmelCase_ ,UpperCAmelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,) _lowercase : List[Any] = 0 _lowercase : int = writer_class( features=UpperCAmelCase_ ,path=working_fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,writer_batch_size=UpperCAmelCase_ ,storage_options=UpperCAmelCase_ ,embed_local_files=UpperCAmelCase_ ,) _lowercase : Optional[int] = pa.Table.from_batches([first_batch] ) writer.write_table(UpperCAmelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: _lowercase , _lowercase : Optional[Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,) shard_id += 1 _lowercase : Union[str, Any] = writer_class( features=writer._features ,path=working_fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,writer_batch_size=UpperCAmelCase_ ,storage_options=UpperCAmelCase_ ,embed_local_files=UpperCAmelCase_ ,) _lowercase : Dict = pa.Table.from_batches([batch] ) writer.write_table(UpperCAmelCase_ ) if writer._num_bytes > 0: _lowercase , _lowercase : Dict = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,) if working_fpath != fpath: for file in os.listdir(os.path.dirname(UpperCAmelCase_ ) ): _lowercase : Dict = os.path.join(os.path.dirname(UpperCAmelCase_ ) ,os.path.basename(UpperCAmelCase_ ) ) shutil.move(UpperCAmelCase_ ,UpperCAmelCase_ ) _lowercase : List[str] = ( self.df.mapInArrow(UpperCAmelCase_ ,"""task_id: long, num_examples: long, num_bytes: long""" ) .groupBy("""task_id""" ) .agg( pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) ,pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) ,pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) ,pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) ,) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = "arrow" ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): self._validate_cache_dir() _lowercase : Tuple = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(UpperCAmelCase_ ) _lowercase : Optional[int] = not is_remote_filesystem(self._fs ) _lowercase : Dict = os.path.join if is_local else posixpath.join _lowercase : int = """-TTTTT-SSSSS-of-NNNNN""" _lowercase : Optional[Any] = f"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" _lowercase : Dict = path_join(self._output_dir ,UpperCAmelCase_ ) _lowercase : List[Any] = 0 _lowercase : Optional[Any] = 0 _lowercase : int = 0 _lowercase : Any = [] _lowercase : Any = [] for task_id, content in self._prepare_split_single(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Tuple = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(UpperCAmelCase_ ) _lowercase : Optional[int] = total_num_examples _lowercase : List[Any] = total_num_bytes # should rename everything at the end logger.debug(f"""Renaming {total_shards} shards.""" ) if total_shards > 1: _lowercase : List[Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. _lowercase : Union[str, Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): rename( UpperCAmelCase_ ,fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,fpath.replace("""TTTTT-SSSSS""" ,f"""{global_shard_id:05d}""" ).replace("""NNNNN""" ,f"""{total_shards:05d}""" ) ,) _lowercase : Optional[Any] = [] _lowercase : List[str] = 0 for i in range(len(UpperCAmelCase_ ) ): _lowercase , _lowercase : List[str] = task_id_and_num_shards[i] for shard_id in range(UpperCAmelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(UpperCAmelCase_ ,len(UpperCAmelCase_ ) ).map(lambda UpperCAmelCase_ : _rename_shard(*UpperCAmelCase_ ) ).collect() else: # don't use any pattern _lowercase : Tuple = 0 _lowercase : Optional[Any] = task_id_and_num_shards[0][0] self._rename( fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,fpath.replace(UpperCAmelCase_ ,"""""" ) ,) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,): return SparkExamplesIterable(self.df )
336
0
"""simple docstring""" from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True ): model.train() _lowercase : List[str] = model(__UpperCAmelCase ) _lowercase : int = F.mse_loss(__UpperCAmelCase , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=False ): set_seed(42 ) _lowercase : Union[str, Any] = RegressionModel() _lowercase : int = deepcopy(__UpperCAmelCase ) _lowercase : List[str] = RegressionDataset(length=80 ) _lowercase : Union[str, Any] = DataLoader(__UpperCAmelCase , batch_size=16 ) model.to(accelerator.device ) if sched: _lowercase : Optional[int] = AdamW(params=model.parameters() , lr=1E-3 ) _lowercase : Union[str, Any] = AdamW(params=ddp_model.parameters() , lr=1E-3 ) _lowercase : Optional[int] = LambdaLR(__UpperCAmelCase , lr_lambda=lambda __UpperCAmelCase : epoch**0.6_5 ) _lowercase : Optional[Any] = LambdaLR(__UpperCAmelCase , lr_lambda=lambda __UpperCAmelCase : epoch**0.6_5 ) # Make a copy of `model` if sched: _lowercase : Any = accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: _lowercase : Tuple = accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): # Test when on a single CPU or GPU that the context manager does nothing _lowercase : str = get_training_setup(__UpperCAmelCase ) # Use a single batch _lowercase : Optional[int] = next(iter(__UpperCAmelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model _lowercase : int = accelerator.gather((ddp_input, ddp_target) ) _lowercase : Any = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__UpperCAmelCase ): step_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: # Sync grads step_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) _lowercase : Dict = ddp_input[torch.randperm(len(__UpperCAmelCase ) )] def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): # Test on distributed setup that context manager behaves properly _lowercase : Optional[int] = get_training_setup(__UpperCAmelCase ) # Use a single batch _lowercase : Dict = next(iter(__UpperCAmelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model _lowercase : str = accelerator.gather((ddp_input, ddp_target) ) _lowercase : Tuple = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__UpperCAmelCase ): step_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: # Sync grads step_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) _lowercase : Any = ddp_input[torch.randperm(len(__UpperCAmelCase ) )] def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase=False , __UpperCAmelCase=False ): _lowercase : Tuple = Accelerator( split_batches=__UpperCAmelCase , dispatch_batches=__UpperCAmelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly _lowercase : Any = get_training_setup(__UpperCAmelCase ) for iteration, batch in enumerate(__UpperCAmelCase ): _lowercase : Union[str, Any] = batch.values() # Gather the distributed inputs and targs for the base model _lowercase : Dict = accelerator.gather((ddp_input, ddp_target) ) _lowercase : Optional[Any] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Do "gradient accumulation" (noop) with accelerator.accumulate(__UpperCAmelCase ): step_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(__UpperCAmelCase ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) _lowercase : Tuple = ddp_input[torch.randperm(len(__UpperCAmelCase ) )] GradientState._reset_state() def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase=False , __UpperCAmelCase=False ): _lowercase : Union[str, Any] = Accelerator( split_batches=__UpperCAmelCase , dispatch_batches=__UpperCAmelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly _lowercase : Union[str, Any] = get_training_setup(__UpperCAmelCase , __UpperCAmelCase ) for iteration, batch in enumerate(__UpperCAmelCase ): _lowercase : Any = batch.values() # Gather the distributed inputs and targs for the base model _lowercase : List[Any] = accelerator.gather((ddp_input, ddp_target) ) _lowercase : Union[str, Any] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(__UpperCAmelCase )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(__UpperCAmelCase ): step_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n""" _lowercase : str = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(__UpperCAmelCase )) if accelerator.num_processes > 1: check_model_parameters(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def __SCREAMING_SNAKE_CASE ( ): _lowercase : Optional[Any] = Accelerator() _lowercase : int = RegressionDataset(length=80 ) _lowercase : Tuple = DataLoader(__UpperCAmelCase , batch_size=16 ) _lowercase : Optional[Any] = RegressionDataset(length=96 ) _lowercase : List[str] = DataLoader(__UpperCAmelCase , batch_size=16 ) _lowercase : Dict = accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(__UpperCAmelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(__UpperCAmelCase ) if iteration < len(__UpperCAmelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(__UpperCAmelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(__UpperCAmelCase ) if batch_num < len(__UpperCAmelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __SCREAMING_SNAKE_CASE ( ): _lowercase : str = Accelerator() _lowercase : Optional[Any] = accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(__UpperCAmelCase ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(__UpperCAmelCase ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """ , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(__UpperCAmelCase , __UpperCAmelCase ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(__UpperCAmelCase , __UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
368
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase: Optional[int] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = XLNetTokenizer SCREAMING_SNAKE_CASE_ : Dict = XLNetTokenizerFast SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Union[str, Any] = True def lowerCamelCase__ ( self ): super().setUp() # We have a SentencePiece fixture for testing _lowercase : Dict = XLNetTokenizer(UpperCAmelCase_ ,keep_accents=UpperCAmelCase_ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = """<s>""" _lowercase : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) ,UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<unk>""" ) self.assertEqual(vocab_keys[1] ,"""<s>""" ) self.assertEqual(vocab_keys[-1] ,"""<eod>""" ) self.assertEqual(len(UpperCAmelCase_ ) ,10_06 ) def lowerCamelCase__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size ,10_00 ) def lowerCamelCase__ ( self ): _lowercase : int = XLNetTokenizer(UpperCAmelCase_ ,keep_accents=UpperCAmelCase_ ) _lowercase : Union[str, Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCAmelCase_ ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) ,[2_85, 46, 10, 1_70, 3_82] ) _lowercase : Any = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] ,) _lowercase : List[Any] = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,[8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) _lowercase : Optional[Any] = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] ,) def lowerCamelCase__ ( self ): _lowercase : Dict = XLNetTokenizer(UpperCAmelCase_ ,do_lower_case=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] ,) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""▁he""", """ll""", """o"""] ) def lowerCamelCase__ ( self ): _lowercase : int = XLNetTokenizer(UpperCAmelCase_ ,do_lower_case=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] ,) @slow def lowerCamelCase__ ( self ): _lowercase : Dict = XLNetTokenizer.from_pretrained("""xlnet-base-cased""" ) _lowercase : int = tokenizer.encode("""sequence builders""" ,add_special_tokens=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=UpperCAmelCase_ ) _lowercase : Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) _lowercase : Dict = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ,UpperCAmelCase_ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def lowerCamelCase__ ( self ): # fmt: off _lowercase : Union[str, Any] = {"""input_ids""": [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ ,model_name="""xlnet-base-cased""" ,revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" ,)
336
0
"""simple docstring""" import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): UpperCAmelCase: List[str] = True from torch.cuda.amp import autocast UpperCAmelCase: Tuple = logging.getLogger(__name__) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase=None , __UpperCAmelCase=None ): return field(default_factory=lambda: default , metadata=__UpperCAmelCase ) @dataclass class UpperCamelCase : """simple docstring""" SCREAMING_SNAKE_CASE_ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) SCREAMING_SNAKE_CASE_ : Optional[bool] = field( default=snake_case , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) SCREAMING_SNAKE_CASE_ : Optional[float] = field( default=0.1 , metadata={"help": "The dropout ratio for the attention probabilities."} ) SCREAMING_SNAKE_CASE_ : Optional[float] = field( default=0.1 , metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) SCREAMING_SNAKE_CASE_ : Optional[float] = field( default=0.1 , metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." } , ) SCREAMING_SNAKE_CASE_ : Optional[float] = field( default=0.1 , metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."} , ) SCREAMING_SNAKE_CASE_ : Optional[float] = field( default=0.05 , metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) } , ) SCREAMING_SNAKE_CASE_ : Optional[float] = field(default=0.0 , metadata={"help": "The LayerDrop probability."} ) @dataclass class UpperCamelCase : """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=snake_case , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default="train+validation" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) SCREAMING_SNAKE_CASE_ : bool = field( default=snake_case , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=snake_case , metadata={"help": "The number of processes to use for the preprocessing."} , ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) } , ) SCREAMING_SNAKE_CASE_ : List[str] = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"] , metadata={"help": "A list of characters to remove from the transcripts."} , ) @dataclass class UpperCamelCase : """simple docstring""" SCREAMING_SNAKE_CASE_ : WavaVecaProcessor SCREAMING_SNAKE_CASE_ : Union[bool, str] = True SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : Optional[int] = None def __call__( self ,UpperCAmelCase_ ): # split inputs and labels since they have to be of different lenghts and need # different padding methods _lowercase : Any = [{"""input_values""": feature["""input_values"""]} for feature in features] _lowercase : Union[str, Any] = [{"""input_ids""": feature["""labels"""]} for feature in features] _lowercase : List[Any] = self.processor.pad( UpperCAmelCase_ ,padding=self.padding ,max_length=self.max_length ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors="""pt""" ,) _lowercase : Union[str, Any] = self.processor.pad( labels=UpperCAmelCase_ ,padding=self.padding ,max_length=self.max_length_labels ,pad_to_multiple_of=self.pad_to_multiple_of_labels ,return_tensors="""pt""" ,) # replace padding with -100 to ignore loss correctly _lowercase : Optional[Any] = labels_batch["""input_ids"""].masked_fill(labels_batch.attention_mask.ne(1 ) ,-1_00 ) _lowercase : Optional[Any] = labels return batch class UpperCamelCase ( snake_case ): """simple docstring""" def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): model.train() _lowercase : List[str] = self._prepare_inputs(UpperCAmelCase_ ) if self.use_amp: with autocast(): _lowercase : Optional[int] = self.compute_loss(UpperCAmelCase_ ,UpperCAmelCase_ ) else: _lowercase : List[str] = self.compute_loss(UpperCAmelCase_ ,UpperCAmelCase_ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _lowercase : Optional[Any] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowercase : Tuple = loss.sum() / (inputs["""labels"""] >= 0).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: _lowercase : int = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(UpperCAmelCase_ ).backward() elif self.use_apex: with amp.scale_loss(UpperCAmelCase_ ,self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(UpperCAmelCase_ ) else: loss.backward() return loss.detach() def __SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _lowercase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowercase : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowercase : Union[str, Any] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _lowercase : List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowercase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , __UpperCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _lowercase : List[Any] = datasets.load_dataset( """common_voice""" , data_args.dataset_config_name , split=data_args.train_split_name ) _lowercase : Optional[Any] = datasets.load_dataset("""common_voice""" , data_args.dataset_config_name , split="""test""" ) # Create and save tokenizer _lowercase : Any = F"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(__UpperCAmelCase ): _lowercase : Optional[Any] = re.sub(__UpperCAmelCase , """""" , batch["""sentence"""] ).lower() + """ """ return batch _lowercase : Optional[Any] = train_dataset.map(__UpperCAmelCase , remove_columns=["""sentence"""] ) _lowercase : Optional[Any] = eval_dataset.map(__UpperCAmelCase , remove_columns=["""sentence"""] ) def extract_all_chars(__UpperCAmelCase ): _lowercase : str = """ """.join(batch["""text"""] ) _lowercase : Any = list(set(__UpperCAmelCase ) ) return {"vocab": [vocab], "all_text": [all_text]} _lowercase : Dict = train_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , batch_size=-1 , keep_in_memory=__UpperCAmelCase , remove_columns=train_dataset.column_names , ) _lowercase : Tuple = train_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , batch_size=-1 , keep_in_memory=__UpperCAmelCase , remove_columns=eval_dataset.column_names , ) _lowercase : Optional[int] = list(set(vocab_train["""vocab"""][0] ) | set(vocab_test["""vocab"""][0] ) ) _lowercase : Dict = {v: k for k, v in enumerate(__UpperCAmelCase )} _lowercase : int = vocab_dict[""" """] del vocab_dict[" "] _lowercase : Union[str, Any] = len(__UpperCAmelCase ) _lowercase : Optional[int] = len(__UpperCAmelCase ) with open("""vocab.json""" , """w""" ) as vocab_file: json.dump(__UpperCAmelCase , __UpperCAmelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowercase : List[str] = WavaVecaCTCTokenizer( """vocab.json""" , unk_token="""[UNK]""" , pad_token="""[PAD]""" , word_delimiter_token="""|""" , ) _lowercase : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase ) _lowercase : Union[str, Any] = WavaVecaProcessor(feature_extractor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) _lowercase : List[str] = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction="""mean""" , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _lowercase : Dict = min(len(__UpperCAmelCase ) , data_args.max_train_samples ) _lowercase : List[Any] = train_dataset.select(range(__UpperCAmelCase ) ) if data_args.max_val_samples is not None: _lowercase : str = eval_dataset.select(range(data_args.max_val_samples ) ) _lowercase : Union[str, Any] = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(__UpperCAmelCase ): _lowercase : int = torchaudio.load(batch["""path"""] ) _lowercase : Any = resampler(__UpperCAmelCase ).squeeze().numpy() _lowercase : Tuple = 16000 _lowercase : Any = batch["""text"""] return batch _lowercase : str = train_dataset.map( __UpperCAmelCase , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _lowercase : int = eval_dataset.map( __UpperCAmelCase , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(__UpperCAmelCase ): # check that all files have the correct sampling rate assert ( len(set(batch["""sampling_rate"""] ) ) == 1 ), F"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" _lowercase : Union[str, Any] = processor( audio=batch["""speech"""] , text=batch["""target_text"""] , sampling_rate=batch["""sampling_rate"""][0] ) batch.update(__UpperCAmelCase ) return batch _lowercase : Union[str, Any] = train_dataset.map( __UpperCAmelCase , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , ) _lowercase : Dict = eval_dataset.map( __UpperCAmelCase , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , ) # Metric _lowercase : Dict = datasets.load_metric("""wer""" ) def compute_metrics(__UpperCAmelCase ): _lowercase : int = pred.predictions _lowercase : str = np.argmax(__UpperCAmelCase , axis=-1 ) _lowercase : Optional[Any] = processor.tokenizer.pad_token_id _lowercase : Tuple = processor.batch_decode(__UpperCAmelCase ) # we do not want to group tokens when computing the metrics _lowercase : Optional[int] = processor.batch_decode(pred.label_ids , group_tokens=__UpperCAmelCase ) _lowercase : str = wer_metric.compute(predictions=__UpperCAmelCase , references=__UpperCAmelCase ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _lowercase : Any = DataCollatorCTCWithPadding(processor=__UpperCAmelCase , padding=__UpperCAmelCase ) # Initialize our Trainer _lowercase : Dict = CTCTrainer( model=__UpperCAmelCase , data_collator=__UpperCAmelCase , args=__UpperCAmelCase , compute_metrics=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _lowercase : int = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _lowercase : List[str] = model_args.model_name_or_path else: _lowercase : Dict = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _lowercase : List[Any] = trainer.train(resume_from_checkpoint=__UpperCAmelCase ) trainer.save_model() _lowercase : int = train_result.metrics _lowercase : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase ) ) _lowercase : int = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics("""train""" , __UpperCAmelCase ) trainer.save_metrics("""train""" , __UpperCAmelCase ) trainer.save_state() # Evaluation _lowercase : List[Any] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _lowercase : Tuple = trainer.evaluate() _lowercase : Optional[Any] = data_args.max_val_samples if data_args.max_val_samples is not None else len(__UpperCAmelCase ) _lowercase : Dict = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics("""eval""" , __UpperCAmelCase ) trainer.save_metrics("""eval""" , __UpperCAmelCase ) return results if __name__ == "__main__": main()
369
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
336
0
"""simple docstring""" from math import factorial, radians def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase = 18 , __UpperCAmelCase = 10 ): _lowercase : int = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians _lowercase : List[Any] = radians(__UpperCAmelCase ) _lowercase : List[Any] = angle_in_radians _lowercase : Union[str, Any] = 3 _lowercase : Union[str, Any] = -1 for _ in range(__UpperCAmelCase ): result += (b * (angle_in_radians**a)) / factorial(__UpperCAmelCase ) _lowercase : Tuple = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": __import__("""doctest""").testmod()
370
"""simple docstring""" import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : int = [] for line in lines: _lowercase : Dict = re.sub(R"""#.*""" , """""" , __UpperCAmelCase ) # remove comments if line: filtered_lines.append(__UpperCAmelCase ) _lowercase : Tuple = """\n""".join(__UpperCAmelCase ) # Make a hash from all this code _lowercase : Tuple = full_str.encode("""utf-8""" ) return shaaaa(__UpperCAmelCase ).hexdigest() # get importable module names and hash for caching UpperCAmelCase: Tuple = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions UpperCAmelCase: List[str] = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) UpperCAmelCase: Any = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name UpperCAmelCase: Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
336
0
"""simple docstring""" from manim import * class UpperCamelCase ( snake_case ): """simple docstring""" def lowerCamelCase__ ( self ): _lowercase : int = Rectangle(height=0.5 ,width=0.5 ) _lowercase : Union[str, Any] = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) _lowercase : Dict = [mem.copy() for i in range(6 )] _lowercase : Any = [mem.copy() for i in range(6 )] _lowercase : str = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ ,buff=0 ) _lowercase : Optional[Any] = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ ,buff=0 ) _lowercase : Tuple = VGroup(UpperCAmelCase_ ,UpperCAmelCase_ ).arrange(UpperCAmelCase_ ,buff=0 ) _lowercase : Optional[int] = Text("""CPU""" ,font_size=24 ) _lowercase : Dict = Group(UpperCAmelCase_ ,UpperCAmelCase_ ).arrange(UpperCAmelCase_ ,buff=0.5 ,aligned_edge=UpperCAmelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase_ ) _lowercase : Tuple = [mem.copy() for i in range(1 )] _lowercase : List[Any] = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ ,buff=0 ) _lowercase : Any = Text("""GPU""" ,font_size=24 ) _lowercase : Any = Group(UpperCAmelCase_ ,UpperCAmelCase_ ).arrange(UpperCAmelCase_ ,buff=0.5 ,aligned_edge=UpperCAmelCase_ ) gpu.align_to(UpperCAmelCase_ ,UpperCAmelCase_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(UpperCAmelCase_ ) _lowercase : List[Any] = [mem.copy() for i in range(6 )] _lowercase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ ,buff=0 ) _lowercase : Tuple = Text("""Model""" ,font_size=24 ) _lowercase : Optional[int] = Group(UpperCAmelCase_ ,UpperCAmelCase_ ).arrange(UpperCAmelCase_ ,buff=0.5 ,aligned_edge=UpperCAmelCase_ ) model.move_to([3, -1.0, 0] ) self.play( Create(UpperCAmelCase_ ,run_time=1 ) ,Create(UpperCAmelCase_ ,run_time=1 ) ,Create(UpperCAmelCase_ ,run_time=1 ) ,) _lowercase : int = MarkupText( f"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" ,font_size=24 ,) _lowercase : Optional[int] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowercase : str = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ ,run_time=2.5 ) ,Write(UpperCAmelCase_ ) ,Write(UpperCAmelCase_ ) ) self.add(UpperCAmelCase_ ) _lowercase : Union[str, Any] = [] _lowercase : Optional[Any] = [] _lowercase : Optional[Any] = [] for i, rect in enumerate(UpperCAmelCase_ ): _lowercase : Any = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase_ ,opacity=0.7 ) cpu_target.move_to(UpperCAmelCase_ ) cpu_target.generate_target() _lowercase : List[Any] = 0.46 / 4 _lowercase : Optional[int] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=UpperCAmelCase_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target ,direction=UpperCAmelCase_ ,buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=UpperCAmelCase_ ,buff=0.0 ) cpu_targs.append(UpperCAmelCase_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(UpperCAmelCase_ ) ) second_animations.append(MoveToTarget(UpperCAmelCase_ ,run_time=1.5 ) ) self.play(*UpperCAmelCase_ ) self.play(*UpperCAmelCase_ ) self.wait()
371
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
336
0
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "Speech2TextFeatureExtractor" SCREAMING_SNAKE_CASE_ : List[str] = "Speech2TextTokenizer" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): super().__init__(UpperCAmelCase_ ,UpperCAmelCase_ ) _lowercase : Optional[Any] = self.feature_extractor _lowercase : List[str] = False def __call__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*UpperCAmelCase_ ,**UpperCAmelCase_ ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) _lowercase : List[Any] = kwargs.pop("""raw_speech""" ) else: _lowercase : List[str] = kwargs.pop("""audio""" ,UpperCAmelCase_ ) _lowercase : List[Any] = kwargs.pop("""sampling_rate""" ,UpperCAmelCase_ ) _lowercase : Any = kwargs.pop("""text""" ,UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0: _lowercase : str = args[0] _lowercase : Optional[int] = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: _lowercase : int = self.feature_extractor(UpperCAmelCase_ ,*UpperCAmelCase_ ,sampling_rate=UpperCAmelCase_ ,**UpperCAmelCase_ ) if text is not None: _lowercase : List[Any] = self.tokenizer(UpperCAmelCase_ ,**UpperCAmelCase_ ) if text is None: return inputs elif audio is None: return encodings else: _lowercase : Dict = encodings["""input_ids"""] return inputs def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return self.tokenizer.batch_decode(*UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return self.tokenizer.decode(*UpperCAmelCase_ ,**UpperCAmelCase_ ) @contextmanager def lowerCamelCase__ ( self ): warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) _lowercase : Union[str, Any] = True _lowercase : int = self.tokenizer yield _lowercase : Optional[Any] = self.feature_extractor _lowercase : Union[str, Any] = False
350
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( ): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] UpperCAmelCase: Any = generate_large_matrix() UpperCAmelCase: Dict = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid ) assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Tuple = 0 _lowercase : List[Any] = len(__UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _lowercase : Tuple = (left + right) // 2 _lowercase : List[Any] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _lowercase : Dict = mid + 1 else: _lowercase : Dict = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Any = 0 _lowercase : Optional[int] = len(grid[0] ) for i in range(len(__UpperCAmelCase ) ): _lowercase : Union[str, Any] = find_negative_index(grid[i][:bound] ) total += bound return (len(__UpperCAmelCase ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Tuple = 0 for row in grid: for i, number in enumerate(__UpperCAmelCase ): if number < 0: total += len(__UpperCAmelCase ) - i break return total def __SCREAMING_SNAKE_CASE ( ): from timeit import timeit print("""Running benchmarks""" ) _lowercase : Tuple = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _lowercase : Dict = timeit(F"""{func}(grid=grid)""" , setup=__UpperCAmelCase , number=500 ) print(F"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
336
0
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_=0.2 ,UpperCAmelCase_=0.2 ): _lowercase : int = bp_numa _lowercase : str = bp_numa _lowercase : List[Any] = bp_numa _lowercase : List[str] = conva_get[:2] _lowercase : int = conva_get[2] _lowercase : int = size_pa _lowercase : List[Any] = rate_w _lowercase : str = rate_t _lowercase : List[str] = [ np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] _lowercase : List[Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) _lowercase : Optional[Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) _lowercase : Tuple = -2 * np.random.rand(self.conva[1] ) + 1 _lowercase : List[str] = -2 * np.random.rand(self.num_bpa ) + 1 _lowercase : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 def lowerCamelCase__ ( self ,UpperCAmelCase_ ): # save model dict with pickle _lowercase : Any = { """num_bp1""": self.num_bpa, """num_bp2""": self.num_bpa, """num_bp3""": self.num_bpa, """conv1""": self.conva, """step_conv1""": self.step_conva, """size_pooling1""": self.size_poolinga, """rate_weight""": self.rate_weight, """rate_thre""": self.rate_thre, """w_conv1""": self.w_conva, """wkj""": self.wkj, """vji""": self.vji, """thre_conv1""": self.thre_conva, """thre_bp2""": self.thre_bpa, """thre_bp3""": self.thre_bpa, } with open(UpperCAmelCase_ ,"""wb""" ) as f: pickle.dump(UpperCAmelCase_ ,UpperCAmelCase_ ) print(f"""Model saved: {save_path}""" ) @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ): # read saved model with open(UpperCAmelCase_ ,"""rb""" ) as f: _lowercase : Any = pickle.load(UpperCAmelCase_ ) # noqa: S301 _lowercase : int = model_dic.get("""conv1""" ) conv_get.append(model_dic.get("""step_conv1""" ) ) _lowercase : int = model_dic.get("""size_pooling1""" ) _lowercase : Tuple = model_dic.get("""num_bp1""" ) _lowercase : Optional[int] = model_dic.get("""num_bp2""" ) _lowercase : Union[str, Any] = model_dic.get("""num_bp3""" ) _lowercase : Optional[int] = model_dic.get("""rate_weight""" ) _lowercase : List[str] = model_dic.get("""rate_thre""" ) # create model instance _lowercase : Optional[int] = CNN(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) # modify model parameter _lowercase : Any = model_dic.get("""w_conv1""" ) _lowercase : str = model_dic.get("""wkj""" ) _lowercase : List[str] = model_dic.get("""vji""" ) _lowercase : Optional[int] = model_dic.get("""thre_conv1""" ) _lowercase : List[str] = model_dic.get("""thre_bp2""" ) _lowercase : List[Any] = model_dic.get("""thre_bp3""" ) return conv_ins def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return 1 / (1 + np.exp(-1 * x )) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return round(UpperCAmelCase_ ,3 ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): # convolution process _lowercase : Any = convs[0] _lowercase : Union[str, Any] = convs[1] _lowercase : Optional[int] = np.shape(UpperCAmelCase_ )[0] # get the data slice of original image data, data_focus _lowercase : List[Any] = [] for i_focus in range(0 ,size_data - size_conv + 1 ,UpperCAmelCase_ ): for j_focus in range(0 ,size_data - size_conv + 1 ,UpperCAmelCase_ ): _lowercase : Optional[int] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(UpperCAmelCase_ ) # calculate the feature map of every single kernel, and saved as list of matrix _lowercase : Any = [] _lowercase : Tuple = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(UpperCAmelCase_ ): _lowercase : str = [] for i_focus in range(len(UpperCAmelCase_ ) ): _lowercase : List[str] = ( np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(UpperCAmelCase_ ) ) _lowercase : List[str] = np.asmatrix(UpperCAmelCase_ ).reshape( UpperCAmelCase_ ,UpperCAmelCase_ ) data_featuremap.append(UpperCAmelCase_ ) # expanding the data slice to One dimenssion _lowercase : Tuple = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(UpperCAmelCase_ ) ) _lowercase : Optional[int] = np.asarray(UpperCAmelCase_ ) return focus_list, data_featuremap def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_="average_pool" ): # pooling process _lowercase : Any = len(featuremaps[0] ) _lowercase : Optional[int] = int(size_map / size_pooling ) _lowercase : List[str] = [] for i_map in range(len(UpperCAmelCase_ ) ): _lowercase : Union[str, Any] = featuremaps[i_map] _lowercase : List[str] = [] for i_focus in range(0 ,UpperCAmelCase_ ,UpperCAmelCase_ ): for j_focus in range(0 ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : List[Any] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(UpperCAmelCase_ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(UpperCAmelCase_ ) ) _lowercase : int = np.asmatrix(UpperCAmelCase_ ).reshape(UpperCAmelCase_ ,UpperCAmelCase_ ) featuremap_pooled.append(UpperCAmelCase_ ) return featuremap_pooled def lowerCamelCase__ ( self ,UpperCAmelCase_ ): # expanding three dimension data to one dimension list _lowercase : List[Any] = [] for i in range(len(UpperCAmelCase_ ) ): _lowercase : List[Any] = np.shape(data[i] ) _lowercase : Dict = data[i].reshape(1 ,shapes[0] * shapes[1] ) _lowercase : Any = data_listed.getA().tolist()[0] data_expanded.extend(UpperCAmelCase_ ) _lowercase : Optional[int] = np.asarray(UpperCAmelCase_ ) return data_expanded def lowerCamelCase__ ( self ,UpperCAmelCase_ ): # expanding matrix to one dimension list _lowercase : Optional[int] = np.asarray(UpperCAmelCase_ ) _lowercase : List[str] = np.shape(UpperCAmelCase_ ) _lowercase : List[Any] = data_mat.reshape(1 ,shapes[0] * shapes[1] ) return data_expanded def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Union[str, Any] = [] _lowercase : Optional[Any] = 0 for i_map in range(UpperCAmelCase_ ): _lowercase : List[Any] = np.ones((size_map, size_map) ) for i in range(0 ,UpperCAmelCase_ ,UpperCAmelCase_ ): for j in range(0 ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Optional[Any] = pd_pool[ i_pool ] _lowercase : Dict = i_pool + 1 _lowercase : Tuple = np.multiply( UpperCAmelCase_ ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) ) pd_all.append(UpperCAmelCase_ ) return pd_all def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_=bool ): # model traning print("""----------------------Start Training-------------------------""" ) print((""" - - Shape: Train_Data """, np.shape(UpperCAmelCase_ )) ) print((""" - - Shape: Teach_Data """, np.shape(UpperCAmelCase_ )) ) _lowercase : Union[str, Any] = 0 _lowercase : List[str] = [] _lowercase : int = 1_00_00 while rp < n_repeat and mse >= error_accuracy: _lowercase : int = 0 print(f"""-------------Learning Time {rp}--------------""" ) for p in range(len(UpperCAmelCase_ ) ): # print('------------Learning Image: %d--------------'%p) _lowercase : str = np.asmatrix(datas_train[p] ) _lowercase : str = np.asarray(datas_teach[p] ) _lowercase : Tuple = self.convolute( UpperCAmelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) _lowercase : Tuple = self.pooling(UpperCAmelCase_ ,self.size_poolinga ) _lowercase : List[Any] = np.shape(UpperCAmelCase_ ) _lowercase : str = self._expand(UpperCAmelCase_ ) _lowercase : int = data_bp_input _lowercase : List[Any] = np.dot(UpperCAmelCase_ ,self.vji.T ) - self.thre_bpa _lowercase : List[Any] = self.sig(UpperCAmelCase_ ) _lowercase : Optional[Any] = np.dot(UpperCAmelCase_ ,self.wkj.T ) - self.thre_bpa _lowercase : Union[str, Any] = self.sig(UpperCAmelCase_ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- _lowercase : Any = np.multiply( (data_teach - bp_outa) ,np.multiply(UpperCAmelCase_ ,(1 - bp_outa) ) ) _lowercase : Optional[Any] = np.multiply( np.dot(UpperCAmelCase_ ,self.wkj ) ,np.multiply(UpperCAmelCase_ ,(1 - bp_outa) ) ) _lowercase : Tuple = np.dot(UpperCAmelCase_ ,self.vji ) _lowercase : Dict = pd_i_all / (self.size_poolinga * self.size_poolinga) _lowercase : List[str] = pd_conva_pooled.T.getA().tolist() _lowercase : Dict = self._calculate_gradient_from_pool( UpperCAmelCase_ ,UpperCAmelCase_ ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): _lowercase : Optional[int] = self._expand_mat(pd_conva_all[k_conv] ) _lowercase : Optional[Any] = self.rate_weight * np.dot(UpperCAmelCase_ ,UpperCAmelCase_ ) _lowercase : Tuple = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) _lowercase : Optional[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer _lowercase : Any = self.wkj + pd_k_all.T * bp_outa * self.rate_weight _lowercase : Tuple = self.vji + pd_j_all.T * bp_outa * self.rate_weight _lowercase : Union[str, Any] = self.thre_bpa - pd_k_all * self.rate_thre _lowercase : List[Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image _lowercase : int = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) _lowercase : Any = rp + 1 _lowercase : Optional[int] = error_count / patterns all_mse.append(UpperCAmelCase_ ) def draw_error(): _lowercase : Optional[int] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(UpperCAmelCase_ ,"""+-""" ) plt.plot(UpperCAmelCase_ ,"""r--""" ) plt.xlabel("""Learning Times""" ) plt.ylabel("""All_mse""" ) plt.grid(UpperCAmelCase_ ,alpha=0.5 ) plt.show() print("""------------------Training Complished---------------------""" ) print((""" - - Training epoch: """, rp, f""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def lowerCamelCase__ ( self ,UpperCAmelCase_ ): # model predict _lowercase : Optional[int] = [] print("""-------------------Start Testing-------------------------""" ) print((""" - - Shape: Test_Data """, np.shape(UpperCAmelCase_ )) ) for p in range(len(UpperCAmelCase_ ) ): _lowercase : Tuple = np.asmatrix(datas_test[p] ) _lowercase : Optional[Any] = self.convolute( UpperCAmelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) _lowercase : List[str] = self.pooling(UpperCAmelCase_ ,self.size_poolinga ) _lowercase : Dict = self._expand(UpperCAmelCase_ ) _lowercase : Optional[int] = data_bp_input _lowercase : Tuple = bp_outa * self.vji.T - self.thre_bpa _lowercase : Union[str, Any] = self.sig(UpperCAmelCase_ ) _lowercase : Union[str, Any] = bp_outa * self.wkj.T - self.thre_bpa _lowercase : Dict = self.sig(UpperCAmelCase_ ) produce_out.extend(bp_outa.getA().tolist() ) _lowercase : Any = [list(map(self.do_round ,UpperCAmelCase_ ) ) for each in produce_out] return np.asarray(UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): # return the data of image after convoluting process so we can check it out _lowercase : Dict = np.asmatrix(UpperCAmelCase_ ) _lowercase : Tuple = self.convolute( UpperCAmelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) _lowercase : Union[str, Any] = self.pooling(UpperCAmelCase_ ,self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
351
"""simple docstring""" import re from filelock import FileLock try: import nltk UpperCAmelCase: List[str] = True except (ImportError, ModuleNotFoundError): UpperCAmelCase: int = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): re.sub("""<n>""" , """""" , __UpperCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__UpperCAmelCase ) )
336
0
"""simple docstring""" import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file UpperCAmelCase: List[Any] = """Run commands across TPU VMs for initial setup before running `accelerate launch`.""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase=None ): if subparsers is not None: _lowercase : int = subparsers.add_parser("""tpu-config""" , description=_description ) else: _lowercase : Optional[int] = argparse.ArgumentParser("""Accelerate tpu-config command""" , description=_description ) # Core arguments _lowercase : List[str] = parser.add_argument_group( """Config Arguments""" , """Arguments that can be configured through `accelerate config`.""" ) config_args.add_argument( """--config_file""" , type=__UpperCAmelCase , default=__UpperCAmelCase , help="""Path to the config file to use for accelerate.""" , ) config_args.add_argument( """--tpu_name""" , default=__UpperCAmelCase , help="""The name of the TPU to use. If not specified, will use the TPU specified in the config file.""" , ) config_args.add_argument( """--tpu_zone""" , default=__UpperCAmelCase , help="""The zone of the TPU to use. If not specified, will use the zone specified in the config file.""" , ) _lowercase : int = parser.add_argument_group("""TPU Arguments""" , """Arguments for options ran inside the TPU.""" ) pod_args.add_argument( """--use_alpha""" , action="""store_true""" , help="""Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.""" , ) pod_args.add_argument( """--command_file""" , default=__UpperCAmelCase , help="""The path to the file containing the commands to run on the pod on startup.""" , ) pod_args.add_argument( """--command""" , action="""append""" , nargs="""+""" , help="""A command to run on the pod. Can be passed multiple times.""" , ) pod_args.add_argument( """--install_accelerate""" , action="""store_true""" , help="""Whether to install accelerate on the pod. Defaults to False.""" , ) pod_args.add_argument( """--accelerate_version""" , default="""latest""" , help="""The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub.""" , ) pod_args.add_argument( """--debug""" , action="""store_true""" , help="""If set, will print the command that would be run instead of running it.""" ) if subparsers is not None: parser.set_defaults(func=__UpperCAmelCase ) return parser def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Union[str, Any] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(__UpperCAmelCase ): _lowercase : Tuple = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: _lowercase : List[str] = defaults.command_file if not args.command and defaults.commands is not None: _lowercase : int = defaults.commands if not args.tpu_name: _lowercase : Optional[int] = defaults.tpu_name if not args.tpu_zone: _lowercase : Dict = defaults.tpu_zone if args.accelerate_version == "dev": _lowercase : int = """git+https://github.com/huggingface/accelerate.git""" elif args.accelerate_version == "latest": _lowercase : List[Any] = """accelerate -U""" elif isinstance(parse(args.accelerate_version ) , __UpperCAmelCase ): _lowercase : List[str] = F"""accelerate=={args.accelerate_version}""" if not args.command_file and not args.command: raise ValueError("""You must specify either a command file or a command to run on the pod.""" ) if args.command_file: with open(args.command_file , """r""" ) as f: _lowercase : Dict = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , __UpperCAmelCase ): _lowercase : Optional[Any] = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate _lowercase : int = ["""cd /usr/share"""] if args.install_accelerate: new_cmd += [F"""pip install {args.accelerate_version}"""] new_cmd += args.command _lowercase : Optional[int] = """; """.join(__UpperCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess _lowercase : Any = ["""gcloud"""] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"""Running {" ".join(__UpperCAmelCase )}""" ) return subprocess.run(__UpperCAmelCase ) print("""Successfully setup pod.""" ) def __SCREAMING_SNAKE_CASE ( ): _lowercase : Union[str, Any] = tpu_command_parser() _lowercase : Optional[int] = parser.parse_args() tpu_command_launcher(__UpperCAmelCase )
352
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=0.9_9_9 , __UpperCAmelCase="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCAmelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCAmelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _lowercase : str = [] for i in range(__UpperCAmelCase ): _lowercase : Any = i / num_diffusion_timesteps _lowercase : int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ) , __UpperCAmelCase ) ) return torch.tensor(__UpperCAmelCase , dtype=torch.floataa ) class UpperCamelCase ( snake_case , snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [e.name for e in KarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE_ : str = 2 @register_to_config def __init__( self ,UpperCAmelCase_ = 10_00 ,UpperCAmelCase_ = 0.00085 ,UpperCAmelCase_ = 0.012 ,UpperCAmelCase_ = "linear" ,UpperCAmelCase_ = None ,UpperCAmelCase_ = "epsilon" ,UpperCAmelCase_ = "linspace" ,UpperCAmelCase_ = 0 ,): if trained_betas is not None: _lowercase : str = torch.tensor(UpperCAmelCase_ ,dtype=torch.floataa ) elif beta_schedule == "linear": _lowercase : Optional[Any] = torch.linspace(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowercase : Any = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,UpperCAmelCase_ ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowercase : Any = betas_for_alpha_bar(UpperCAmelCase_ ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) _lowercase : Tuple = 1.0 - self.betas _lowercase : Dict = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ): if schedule_timesteps is None: _lowercase : Optional[int] = self.timesteps _lowercase : Union[str, Any] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _lowercase : Optional[Any] = 1 if len(UpperCAmelCase_ ) > 1 else 0 else: _lowercase : Dict = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep _lowercase : List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCamelCase__ ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,): _lowercase : str = self.index_for_timestep(UpperCAmelCase_ ) if self.state_in_first_order: _lowercase : Optional[Any] = self.sigmas[step_index] else: _lowercase : Dict = self.sigmas_interpol[step_index] _lowercase : Optional[int] = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,): _lowercase : List[str] = num_inference_steps _lowercase : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _lowercase : Dict = np.linspace(0 ,num_train_timesteps - 1 ,UpperCAmelCase_ ,dtype=UpperCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _lowercase : Union[str, Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : str = (np.arange(0 ,UpperCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _lowercase : str = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : Optional[int] = (np.arange(UpperCAmelCase_ ,0 ,-step_ratio )).round().copy().astype(UpperCAmelCase_ ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _lowercase : Union[str, Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _lowercase : Optional[Any] = torch.from_numpy(np.log(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) _lowercase : List[str] = np.interp(UpperCAmelCase_ ,np.arange(0 ,len(UpperCAmelCase_ ) ) ,UpperCAmelCase_ ) _lowercase : int = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _lowercase : Any = torch.from_numpy(UpperCAmelCase_ ).to(device=UpperCAmelCase_ ) # interpolate sigmas _lowercase : List[str] = sigmas.log().lerp(sigmas.roll(1 ).log() ,0.5 ).exp() _lowercase : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _lowercase : Tuple = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(UpperCAmelCase_ ).startswith("""mps""" ): # mps does not support float64 _lowercase : Tuple = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ,dtype=torch.floataa ) else: _lowercase : str = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ) # interpolate timesteps _lowercase : int = self.sigma_to_t(UpperCAmelCase_ ).to(UpperCAmelCase_ ,dtype=timesteps.dtype ) _lowercase : Union[str, Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) ,dim=-1 ).flatten() _lowercase : str = torch.cat([timesteps[:1], interleaved_timesteps] ) _lowercase : List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _lowercase : Optional[Any] = defaultdict(UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): # get log sigma _lowercase : Optional[Any] = sigma.log() # get distribution _lowercase : Optional[int] = log_sigma - self.log_sigmas[:, None] # get sigmas range _lowercase : Tuple = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _lowercase : List[Any] = low_idx + 1 _lowercase : int = self.log_sigmas[low_idx] _lowercase : Any = self.log_sigmas[high_idx] # interpolate sigmas _lowercase : Any = (low - log_sigma) / (low - high) _lowercase : Dict = w.clamp(0 ,1 ) # transform interpolation to time range _lowercase : List[str] = (1 - w) * low_idx + w * high_idx _lowercase : Optional[int] = t.view(sigma.shape ) return t @property def lowerCamelCase__ ( self ): return self.sample is None def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = True ,): _lowercase : Optional[int] = self.index_for_timestep(UpperCAmelCase_ ) # advance index counter by 1 _lowercase : str = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _lowercase : Any = self.sigmas[step_index] _lowercase : Any = self.sigmas_interpol[step_index + 1] _lowercase : Tuple = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _lowercase : Union[str, Any] = self.sigmas[step_index - 1] _lowercase : int = self.sigmas_interpol[step_index] _lowercase : Tuple = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _lowercase : Any = 0 _lowercase : int = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _lowercase : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : Optional[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _lowercase : str = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _lowercase : List[str] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _lowercase : Any = sigma_interpol - sigma_hat # store for 2nd order step _lowercase : List[Any] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _lowercase : Optional[Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _lowercase : Optional[Any] = sigma_next - sigma_hat _lowercase : Any = self.sample _lowercase : Optional[int] = None _lowercase : str = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): # Make sure sigmas and timesteps have the same device and dtype as original_samples _lowercase : int = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCAmelCase_ ): # mps does not support float64 _lowercase : str = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) _lowercase : Any = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: _lowercase : List[Any] = self.timesteps.to(original_samples.device ) _lowercase : Union[str, Any] = timesteps.to(original_samples.device ) _lowercase : List[Any] = [self.index_for_timestep(UpperCAmelCase_ ,UpperCAmelCase_ ) for t in timesteps] _lowercase : Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _lowercase : List[Any] = sigma.unsqueeze(-1 ) _lowercase : int = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
336
0
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ): _lowercase : Optional[int] = tempfile.mkdtemp() _lowercase : List[str] = BlipImageProcessor() _lowercase : int = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" ) _lowercase : Optional[int] = BlipProcessor(UpperCAmelCase_ ,UpperCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return AutoProcessor.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ).tokenizer def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return AutoProcessor.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ).image_processor def lowerCamelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ ( self ): _lowercase : int = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] _lowercase : Dict = [Image.fromarray(np.moveaxis(UpperCAmelCase_ ,0 ,-1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = BlipProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowercase : str = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) _lowercase : Optional[int] = self.get_image_processor(do_normalize=UpperCAmelCase_ ,padding_value=1.0 ) _lowercase : Optional[int] = BlipProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=UpperCAmelCase_ ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Optional[int] = self.get_image_processor() _lowercase : Any = self.get_tokenizer() _lowercase : Any = BlipProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : List[Any] = self.prepare_image_inputs() _lowercase : Any = image_processor(UpperCAmelCase_ ,return_tensors="""np""" ) _lowercase : Optional[int] = processor(images=UpperCAmelCase_ ,return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : List[str] = self.get_tokenizer() _lowercase : str = BlipProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : Any = """lower newer""" _lowercase : Tuple = processor(text=UpperCAmelCase_ ) _lowercase : Tuple = tokenizer(UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def lowerCamelCase__ ( self ): _lowercase : int = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : Tuple = BlipProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : Union[str, Any] = """lower newer""" _lowercase : Dict = self.prepare_image_inputs() _lowercase : Any = processor(text=UpperCAmelCase_ ,images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowerCamelCase__ ( self ): _lowercase : str = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : Optional[Any] = BlipProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowercase : int = processor.batch_decode(UpperCAmelCase_ ) _lowercase : Dict = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : List[str] = self.get_image_processor() _lowercase : Tuple = self.get_tokenizer() _lowercase : Any = BlipProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : int = """lower newer""" _lowercase : Optional[int] = self.prepare_image_inputs() _lowercase : Tuple = processor(text=UpperCAmelCase_ ,images=UpperCAmelCase_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] )
353
"""simple docstring""" import pprint import requests UpperCAmelCase: Tuple = """https://zenquotes.io/api""" def __SCREAMING_SNAKE_CASE ( ): return requests.get(API_ENDPOINT_URL + """/today""" ).json() def __SCREAMING_SNAKE_CASE ( ): return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": UpperCAmelCase: int = random_quotes() pprint.pprint(response)
336
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase: Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase: Union[str, Any] = { """sayakpaul/vit-msn-base""": """https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json""", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = "vit_msn" def __init__( self ,UpperCAmelCase_=7_68 ,UpperCAmelCase_=12 ,UpperCAmelCase_=12 ,UpperCAmelCase_=30_72 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-06 ,UpperCAmelCase_=2_24 ,UpperCAmelCase_=16 ,UpperCAmelCase_=3 ,UpperCAmelCase_=True ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) _lowercase : Union[str, Any] = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : int = num_attention_heads _lowercase : str = intermediate_size _lowercase : Tuple = hidden_act _lowercase : List[Any] = hidden_dropout_prob _lowercase : str = attention_probs_dropout_prob _lowercase : List[str] = initializer_range _lowercase : List[Any] = layer_norm_eps _lowercase : List[Any] = image_size _lowercase : str = patch_size _lowercase : List[Any] = num_channels _lowercase : Any = qkv_bias
354
"""simple docstring""" from __future__ import annotations from typing import TypedDict class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str SCREAMING_SNAKE_CASE_ : int def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(__UpperCAmelCase ) )] def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _lowercase : Tuple = all_rotations(__UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _lowercase : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__UpperCAmelCase ), } return response def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _lowercase : Optional[Any] = int(__UpperCAmelCase ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(__UpperCAmelCase ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _lowercase : int = [""""""] * len(__UpperCAmelCase ) for _ in range(len(__UpperCAmelCase ) ): for i in range(len(__UpperCAmelCase ) ): _lowercase : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": UpperCAmelCase: Optional[int] = """Provide a string that I will generate its BWT transform: """ UpperCAmelCase: int = input(entry_msg).strip() UpperCAmelCase: List[str] = bwt_transform(s) print( F'Burrows Wheeler transform for string \'{s}\' results ' F'in \'{result["bwt_string"]}\'' ) UpperCAmelCase: Union[str, Any] = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' ' F'we get original string \'{original_string}\'' )
336
0
"""simple docstring""" import pprint import requests UpperCAmelCase: Tuple = """https://zenquotes.io/api""" def __SCREAMING_SNAKE_CASE ( ): return requests.get(API_ENDPOINT_URL + """/today""" ).json() def __SCREAMING_SNAKE_CASE ( ): return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": UpperCAmelCase: int = random_quotes() pprint.pprint(response)
355
"""simple docstring""" from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __SCREAMING_SNAKE_CASE ( ): _lowercase : Dict = [randint(-1000 , 1000 ) for i in range(10 )] _lowercase : Tuple = randint(-5000 , 5000 ) return (arr, r) UpperCAmelCase: int = make_dataset() def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): for triplet in permutations(__UpperCAmelCase , 3 ): if sum(__UpperCAmelCase ) == target: return tuple(sorted(__UpperCAmelCase ) ) return (0, 0, 0) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): arr.sort() _lowercase : Optional[Any] = len(__UpperCAmelCase ) for i in range(n - 1 ): _lowercase , _lowercase : str = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __SCREAMING_SNAKE_CASE ( ): _lowercase : Tuple = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ _lowercase : Union[str, Any] = """ triplet_sum1(*dataset) """ _lowercase : Union[str, Any] = """ triplet_sum2(*dataset) """ _lowercase : Dict = repeat(setup=__UpperCAmelCase , stmt=__UpperCAmelCase , repeat=5 , number=10000 ) _lowercase : Any = repeat(setup=__UpperCAmelCase , stmt=__UpperCAmelCase , repeat=5 , number=10000 ) return (min(__UpperCAmelCase ), min(__UpperCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase: Any = solution_times() print(F'The time for naive implementation is {times[0]}.') print(F'The time for optimized implementation is {times[1]}.')
336
0
"""simple docstring""" import argparse from collections import defaultdict def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : str = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Any = f.readlines() _lowercase : Optional[int] = F"""class {class_name}(""" _lowercase : List[str] = F"""{4 * " "}def {test_name}(""" _lowercase : List[Any] = F"""{8 * " "}{correct_line.split()[0]}""" _lowercase : int = F"""{16 * " "}{correct_line.split()[0]}""" _lowercase : str = False _lowercase : Optional[Any] = False _lowercase : Union[str, Any] = False _lowercase : Any = False _lowercase : int = 0 _lowercase : Tuple = 0 _lowercase : Union[str, Any] = [] for line in lines: if line.startswith(__UpperCAmelCase ): _lowercase : List[str] = True elif in_class and line.startswith(__UpperCAmelCase ): _lowercase : str = True elif in_class and in_func and (line.startswith(__UpperCAmelCase ) or line.startswith(__UpperCAmelCase )): _lowercase : Union[str, Any] = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _lowercase : Optional[int] = True if in_class and in_func and in_line: if ")" not in line: continue else: _lowercase : Optional[Any] = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * " "}{correct_line}""" ) _lowercase : Union[str, Any] = False else: new_lines.append(__UpperCAmelCase ) with open(__UpperCAmelCase , """w""" ) as f: for line in new_lines: f.write(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=None ): if fail is not None: with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Dict = {l.strip() for l in f.readlines()} else: _lowercase : int = None with open(__UpperCAmelCase , """r""" ) as f: _lowercase : int = f.readlines() _lowercase : int = defaultdict(__UpperCAmelCase ) for line in correct_lines: _lowercase : int = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase: List[Any] = argparse.ArgumentParser() parser.add_argument("""--correct_filename""", help="""filename of tests with expected result""") parser.add_argument("""--fail_filename""", help="""filename of test failures""", type=str, default=None) UpperCAmelCase: Any = parser.parse_args() main(args.correct_filename, args.fail_filename)
356
"""simple docstring""" import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE_ : Optional[int] = "BlipImageProcessor" SCREAMING_SNAKE_CASE_ : Tuple = "AutoTokenizer" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): super().__init__(UpperCAmelCase_ ,UpperCAmelCase_ ) # add QFormer tokenizer _lowercase : Optional[int] = qformer_tokenizer def __call__( self ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = True ,UpperCAmelCase_ = False ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = 0 ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): if images is None and text is None: raise ValueError("""You have to specify at least images or text.""" ) _lowercase : List[Any] = BatchFeature() if text is not None: _lowercase : List[str] = self.tokenizer( text=UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,stride=UpperCAmelCase_ ,pad_to_multiple_of=UpperCAmelCase_ ,return_attention_mask=UpperCAmelCase_ ,return_overflowing_tokens=UpperCAmelCase_ ,return_special_tokens_mask=UpperCAmelCase_ ,return_offsets_mapping=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ,return_length=UpperCAmelCase_ ,verbose=UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ,**UpperCAmelCase_ ,) encoding.update(UpperCAmelCase_ ) _lowercase : Dict = self.qformer_tokenizer( text=UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,stride=UpperCAmelCase_ ,pad_to_multiple_of=UpperCAmelCase_ ,return_attention_mask=UpperCAmelCase_ ,return_overflowing_tokens=UpperCAmelCase_ ,return_special_tokens_mask=UpperCAmelCase_ ,return_offsets_mapping=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ,return_length=UpperCAmelCase_ ,verbose=UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ,**UpperCAmelCase_ ,) _lowercase : str = qformer_text_encoding.pop("""input_ids""" ) _lowercase : int = qformer_text_encoding.pop("""attention_mask""" ) if images is not None: _lowercase : Optional[Any] = self.image_processor(UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ) encoding.update(UpperCAmelCase_ ) return encoding def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return self.tokenizer.batch_decode(*UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return self.tokenizer.decode(*UpperCAmelCase_ ,**UpperCAmelCase_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.tokenizer.model_input_names _lowercase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,**UpperCAmelCase_ ): if os.path.isfile(UpperCAmelCase_ ): raise ValueError(f"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(UpperCAmelCase_ ,exist_ok=UpperCAmelCase_ ) _lowercase : Any = os.path.join(UpperCAmelCase_ ,"""qformer_tokenizer""" ) self.qformer_tokenizer.save_pretrained(UpperCAmelCase_ ) return super().save_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): _lowercase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCAmelCase_ ,subfolder="""qformer_tokenizer""" ) _lowercase : Any = cls._get_arguments_from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) args.append(UpperCAmelCase_ ) return cls(*UpperCAmelCase_ )
336
0
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME UpperCAmelCase = ["""small""", """medium""", """large"""] UpperCAmelCase = """lm_head.decoder.weight""" UpperCAmelCase = """lm_head.weight""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : str = torch.load(__UpperCAmelCase ) _lowercase : Optional[Any] = d.pop(__UpperCAmelCase ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) torch.save(__UpperCAmelCase , os.path.join(__UpperCAmelCase , __UpperCAmelCase ) ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) UpperCAmelCase = parser.parse_args() for MODEL in DIALOGPT_MODELS: UpperCAmelCase = os.path.join(args.dialogpt_path, F'{MODEL}_ft.pkl') UpperCAmelCase = F'./DialoGPT-{MODEL}' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
357
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase: Tuple = logging.get_logger(__name__) UpperCAmelCase: List[Any] = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "trajectory_transformer" SCREAMING_SNAKE_CASE_ : Optional[int] = ["past_key_values"] SCREAMING_SNAKE_CASE_ : Tuple = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self ,UpperCAmelCase_=1_00 ,UpperCAmelCase_=5 ,UpperCAmelCase_=1 ,UpperCAmelCase_=1 ,UpperCAmelCase_=2_49 ,UpperCAmelCase_=6 ,UpperCAmelCase_=17 ,UpperCAmelCase_=25 ,UpperCAmelCase_=4 ,UpperCAmelCase_=4 ,UpperCAmelCase_=1_28 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.0006 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-12 ,UpperCAmelCase_=1 ,UpperCAmelCase_=True ,UpperCAmelCase_=1 ,UpperCAmelCase_=5_02_56 ,UpperCAmelCase_=5_02_56 ,**UpperCAmelCase_ ,): _lowercase : Dict = vocab_size _lowercase : List[str] = action_weight _lowercase : int = reward_weight _lowercase : List[Any] = value_weight _lowercase : List[str] = max_position_embeddings _lowercase : Any = block_size _lowercase : Any = action_dim _lowercase : List[str] = observation_dim _lowercase : Union[str, Any] = transition_dim _lowercase : str = learning_rate _lowercase : Tuple = n_layer _lowercase : Optional[int] = n_head _lowercase : List[str] = n_embd _lowercase : List[str] = embd_pdrop _lowercase : Optional[Any] = attn_pdrop _lowercase : List[Any] = resid_pdrop _lowercase : str = initializer_range _lowercase : Optional[Any] = layer_norm_eps _lowercase : List[Any] = kaiming_initializer_range _lowercase : List[Any] = use_cache super().__init__(pad_token_id=UpperCAmelCase_ ,bos_token_id=UpperCAmelCase_ ,eos_token_id=UpperCAmelCase_ ,**UpperCAmelCase_ )
336
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase: Any = { """configuration_encodec""": [ """ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EncodecConfig""", ], """feature_extraction_encodec""": ["""EncodecFeatureExtractor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: int = [ """ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST""", """EncodecModel""", """EncodecPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys UpperCAmelCase: Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
358
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase: Any = logging.get_logger(__name__) UpperCAmelCase: List[str] = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = "instructblip_vision_model" def __init__( self ,UpperCAmelCase_=14_08 ,UpperCAmelCase_=61_44 ,UpperCAmelCase_=39 ,UpperCAmelCase_=16 ,UpperCAmelCase_=2_24 ,UpperCAmelCase_=14 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=1E-6 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=1E-10 ,UpperCAmelCase_=True ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) _lowercase : Optional[Any] = hidden_size _lowercase : Tuple = intermediate_size _lowercase : List[Any] = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[Any] = patch_size _lowercase : Optional[Any] = image_size _lowercase : Union[str, Any] = initializer_range _lowercase : Optional[Any] = attention_dropout _lowercase : List[Any] = layer_norm_eps _lowercase : Optional[int] = hidden_act _lowercase : Tuple = qkv_bias @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): cls._set_token_in_kwargs(UpperCAmelCase_ ) _lowercase , _lowercase : List[Any] = cls.get_config_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": _lowercase : int = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = "instructblip_qformer" def __init__( self ,UpperCAmelCase_=3_05_22 ,UpperCAmelCase_=7_68 ,UpperCAmelCase_=12 ,UpperCAmelCase_=12 ,UpperCAmelCase_=30_72 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-12 ,UpperCAmelCase_=0 ,UpperCAmelCase_="absolute" ,UpperCAmelCase_=2 ,UpperCAmelCase_=14_08 ,**UpperCAmelCase_ ,): super().__init__(pad_token_id=UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : List[Any] = vocab_size _lowercase : List[Any] = hidden_size _lowercase : str = num_hidden_layers _lowercase : List[str] = num_attention_heads _lowercase : Optional[Any] = hidden_act _lowercase : int = intermediate_size _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : List[Any] = max_position_embeddings _lowercase : Tuple = initializer_range _lowercase : Optional[int] = layer_norm_eps _lowercase : Any = position_embedding_type _lowercase : Dict = cross_attention_frequency _lowercase : Optional[Any] = encoder_hidden_size @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): cls._set_token_in_kwargs(UpperCAmelCase_ ) _lowercase , _lowercase : Dict = cls.get_config_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": _lowercase : str = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "instructblip" SCREAMING_SNAKE_CASE_ : List[str] = True def __init__( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=32 ,**UpperCAmelCase_ ): super().__init__(**UpperCAmelCase_ ) if vision_config is None: _lowercase : str = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: _lowercase : Any = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: _lowercase : Optional[int] = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) _lowercase : int = InstructBlipVisionConfig(**UpperCAmelCase_ ) _lowercase : Optional[int] = InstructBlipQFormerConfig(**UpperCAmelCase_ ) _lowercase : Dict = text_config["""model_type"""] if """model_type""" in text_config else """opt""" _lowercase : str = CONFIG_MAPPING[text_model_type](**UpperCAmelCase_ ) _lowercase : str = self.text_config.tie_word_embeddings _lowercase : Union[str, Any] = self.text_config.is_encoder_decoder _lowercase : List[str] = num_query_tokens _lowercase : List[str] = self.vision_config.hidden_size _lowercase : Dict = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowercase : Union[str, Any] = 1.0 _lowercase : Dict = 0.02 @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,**UpperCAmelCase_ ,): return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**UpperCAmelCase_ ,) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowercase : int = self.vision_config.to_dict() _lowercase : Any = self.qformer_config.to_dict() _lowercase : Any = self.text_config.to_dict() _lowercase : Optional[int] = self.__class__.model_type return output
336
0
"""simple docstring""" from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return {key.lstrip("""-""" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def __SCREAMING_SNAKE_CASE ( ): _lowercase : Optional[Any] = ArgumentParser( """HuggingFace Datasets CLI tool""" , usage="""datasets-cli <command> [<args>]""" , allow_abbrev=__UpperCAmelCase ) _lowercase : Dict = parser.add_subparsers(help="""datasets-cli command helpers""" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(__UpperCAmelCase ) EnvironmentCommand.register_subcommand(__UpperCAmelCase ) TestCommand.register_subcommand(__UpperCAmelCase ) RunBeamCommand.register_subcommand(__UpperCAmelCase ) DummyDataCommand.register_subcommand(__UpperCAmelCase ) # Parse args _lowercase : Optional[int] = parser.parse_known_args() if not hasattr(__UpperCAmelCase , """func""" ): parser.print_help() exit(1 ) _lowercase : List[str] = parse_unknown_args(__UpperCAmelCase ) # Run _lowercase : Optional[int] = args.func(__UpperCAmelCase , **__UpperCAmelCase ) service.run() if __name__ == "__main__": main()
359
"""simple docstring""" import cva import numpy as np class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): if k in (0.04, 0.06): _lowercase : Optional[Any] = k _lowercase : Optional[Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self ): return str(self.k ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : List[str] = cva.imread(UpperCAmelCase_ ,0 ) _lowercase , _lowercase : Dict = img.shape _lowercase : list[list[int]] = [] _lowercase : int = img.copy() _lowercase : List[str] = cva.cvtColor(UpperCAmelCase_ ,cva.COLOR_GRAY2RGB ) _lowercase , _lowercase : Optional[Any] = np.gradient(UpperCAmelCase_ ) _lowercase : Optional[int] = dx**2 _lowercase : Optional[Any] = dy**2 _lowercase : Optional[Any] = dx * dy _lowercase : List[str] = 0.04 _lowercase : Optional[Any] = self.window_size // 2 for y in range(UpperCAmelCase_ ,h - offset ): for x in range(UpperCAmelCase_ ,w - offset ): _lowercase : Optional[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : Dict = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : Union[str, Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : int = (wxx * wyy) - (wxy**2) _lowercase : Union[str, Any] = wxx + wyy _lowercase : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) ,0 ) color_img.itemset((y, x, 1) ,0 ) color_img.itemset((y, x, 2) ,2_55 ) return color_img, corner_list if __name__ == "__main__": UpperCAmelCase: Optional[int] = HarrisCorner(0.04, 3) UpperCAmelCase , UpperCAmelCase: List[Any] = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
336
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCAmelCase: Any = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Any = b.T _lowercase : Union[str, Any] = np.sum(np.square(__UpperCAmelCase ) , axis=1 ) _lowercase : int = np.sum(np.square(__UpperCAmelCase ) , axis=0 ) _lowercase : Union[str, Any] = np.matmul(__UpperCAmelCase , __UpperCAmelCase ) _lowercase : int = aa[:, None] - 2 * ab + ba[None, :] return d def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Optional[Any] = x.reshape(-1 , 3 ) _lowercase : List[str] = squared_euclidean_distance(__UpperCAmelCase , __UpperCAmelCase ) return np.argmin(__UpperCAmelCase , axis=1 ) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ["pixel_values"] def __init__( self ,UpperCAmelCase_ = None ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = PILImageResampling.BILINEAR ,UpperCAmelCase_ = True ,UpperCAmelCase_ = True ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) _lowercase : Dict = size if size is not None else {"""height""": 2_56, """width""": 2_56} _lowercase : Tuple = get_size_dict(UpperCAmelCase_ ) _lowercase : Optional[Any] = np.array(UpperCAmelCase_ ) if clusters is not None else None _lowercase : Any = do_resize _lowercase : Tuple = size _lowercase : Dict = resample _lowercase : Dict = do_normalize _lowercase : Union[str, Any] = do_color_quantize def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = PILImageResampling.BILINEAR ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): _lowercase : List[str] = get_size_dict(UpperCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dictionary must contain both height and width keys. Got {size.keys()}""" ) return resize( UpperCAmelCase_ ,size=(size["""height"""], size["""width"""]) ,resample=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,): _lowercase : Tuple = rescale(image=UpperCAmelCase_ ,scale=1 / 127.5 ,data_format=UpperCAmelCase_ ) _lowercase : Dict = image - 1 return image def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = ChannelDimension.FIRST ,**UpperCAmelCase_ ,): _lowercase : Dict = do_resize if do_resize is not None else self.do_resize _lowercase : Union[str, Any] = size if size is not None else self.size _lowercase : str = get_size_dict(UpperCAmelCase_ ) _lowercase : int = resample if resample is not None else self.resample _lowercase : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize _lowercase : Any = do_color_quantize if do_color_quantize is not None else self.do_color_quantize _lowercase : Any = clusters if clusters is not None else self.clusters _lowercase : Any = np.array(UpperCAmelCase_ ) _lowercase : Optional[int] = make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_color_quantize and clusters is None: raise ValueError("""Clusters must be specified if do_color_quantize is True.""" ) # All transformations expect numpy arrays. _lowercase : Optional[Any] = [to_numpy_array(UpperCAmelCase_ ) for image in images] if do_resize: _lowercase : int = [self.resize(image=UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ) for image in images] if do_normalize: _lowercase : Dict = [self.normalize(image=UpperCAmelCase_ ) for image in images] if do_color_quantize: _lowercase : List[Any] = [to_channel_dimension_format(UpperCAmelCase_ ,ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) _lowercase : int = np.array(UpperCAmelCase_ ) _lowercase : Optional[int] = color_quantize(UpperCAmelCase_ ,UpperCAmelCase_ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) _lowercase : Dict = images.shape[0] _lowercase : Optional[int] = images.reshape(UpperCAmelCase_ ,-1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. _lowercase : Tuple = list(UpperCAmelCase_ ) else: _lowercase : List[str] = [to_channel_dimension_format(UpperCAmelCase_ ,UpperCAmelCase_ ) for image in images] _lowercase : Tuple = {"""input_ids""": images} return BatchFeature(data=UpperCAmelCase_ ,tensor_type=UpperCAmelCase_ )
360
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = LEDTokenizer SCREAMING_SNAKE_CASE_ : List[str] = LEDTokenizerFast SCREAMING_SNAKE_CASE_ : List[str] = True def lowerCamelCase__ ( self ): super().setUp() _lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _lowercase : List[Any] = dict(zip(UpperCAmelCase_ ,range(len(UpperCAmelCase_ ) ) ) ) _lowercase : Optional[int] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowercase : Dict = {"""unk_token""": """<unk>"""} _lowercase : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _lowercase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return "lower newer", "lower newer" @cached_property def lowerCamelCase__ ( self ): return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def lowerCamelCase__ ( self ): return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _lowercase : Any = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Tuple = tokenizer(UpperCAmelCase_ ,max_length=len(UpperCAmelCase_ ) ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) _lowercase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Dict = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIn("""input_ids""" ,UpperCAmelCase_ ) self.assertIn("""attention_mask""" ,UpperCAmelCase_ ) self.assertNotIn("""labels""" ,UpperCAmelCase_ ) self.assertNotIn("""decoder_attention_mask""" ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Dict = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Tuple = tokenizer(text_target=UpperCAmelCase_ ,max_length=32 ,padding="""max_length""" ,return_tensors="""pt""" ) self.assertEqual(32 ,targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : List[Any] = tokenizer( ["""I am a small frog""" * 10_24, """I am a small frog"""] ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual(batch.input_ids.shape ,(2, 51_22) ) @require_torch def lowerCamelCase__ ( self ): _lowercase : List[Any] = ["""A long paragraph for summarization."""] _lowercase : Dict = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Dict = tokenizer(UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : List[str] = tokenizer(text_target=UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : Union[str, Any] = inputs["""input_ids"""] _lowercase : List[str] = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : str = ["""Summary of the text.""", """Another summary."""] _lowercase : Optional[int] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _lowercase : Any = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ) _lowercase : str = [[0] * len(UpperCAmelCase_ ) for x in encoded_output["""input_ids"""]] _lowercase : Optional[int] = tokenizer.pad(UpperCAmelCase_ ) self.assertSequenceEqual(outputs["""global_attention_mask"""] ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): pass def lowerCamelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase : int = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Optional[int] = self.tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Dict = """A, <mask> AllenNLP sentence.""" _lowercase : List[Any] = tokenizer_r.encode_plus(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) _lowercase : Any = tokenizer_p.encode_plus(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) ,sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) ,sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) ,) _lowercase : str = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) _lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( UpperCAmelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( UpperCAmelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
336
0
"""simple docstring""" from __future__ import annotations def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Dict = len(__UpperCAmelCase ) # We need to create solution object to save path. _lowercase : int = [[0 for _ in range(__UpperCAmelCase )] for _ in range(__UpperCAmelCase )] _lowercase : Optional[Any] = run_maze(__UpperCAmelCase , 0 , 0 , __UpperCAmelCase ) if solved: print("""\n""".join(str(__UpperCAmelCase ) for row in solutions ) ) else: print("""No solution exists!""" ) return solved def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : List[Any] = len(__UpperCAmelCase ) # Final check point. if i == j == (size - 1): _lowercase : Any = 1 return True _lowercase : Optional[int] = (not i < 0) and (not j < 0) # Check lower bounds _lowercase : Union[str, Any] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. _lowercase : str = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited _lowercase : Optional[int] = 1 # check for directions if ( run_maze(__UpperCAmelCase , i + 1 , __UpperCAmelCase , __UpperCAmelCase ) or run_maze(__UpperCAmelCase , __UpperCAmelCase , j + 1 , __UpperCAmelCase ) or run_maze(__UpperCAmelCase , i - 1 , __UpperCAmelCase , __UpperCAmelCase ) or run_maze(__UpperCAmelCase , __UpperCAmelCase , j - 1 , __UpperCAmelCase ) ): return True _lowercase : Optional[Any] = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
361
"""simple docstring""" import argparse from collections import defaultdict def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : str = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Any = f.readlines() _lowercase : Optional[int] = F"""class {class_name}(""" _lowercase : List[str] = F"""{4 * " "}def {test_name}(""" _lowercase : List[Any] = F"""{8 * " "}{correct_line.split()[0]}""" _lowercase : int = F"""{16 * " "}{correct_line.split()[0]}""" _lowercase : str = False _lowercase : Optional[Any] = False _lowercase : Union[str, Any] = False _lowercase : Any = False _lowercase : int = 0 _lowercase : Tuple = 0 _lowercase : Union[str, Any] = [] for line in lines: if line.startswith(__UpperCAmelCase ): _lowercase : List[str] = True elif in_class and line.startswith(__UpperCAmelCase ): _lowercase : str = True elif in_class and in_func and (line.startswith(__UpperCAmelCase ) or line.startswith(__UpperCAmelCase )): _lowercase : Union[str, Any] = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _lowercase : Optional[int] = True if in_class and in_func and in_line: if ")" not in line: continue else: _lowercase : Optional[Any] = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * " "}{correct_line}""" ) _lowercase : Union[str, Any] = False else: new_lines.append(__UpperCAmelCase ) with open(__UpperCAmelCase , """w""" ) as f: for line in new_lines: f.write(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=None ): if fail is not None: with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Dict = {l.strip() for l in f.readlines()} else: _lowercase : int = None with open(__UpperCAmelCase , """r""" ) as f: _lowercase : int = f.readlines() _lowercase : int = defaultdict(__UpperCAmelCase ) for line in correct_lines: _lowercase , _lowercase , _lowercase , _lowercase : int = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase: List[Any] = argparse.ArgumentParser() parser.add_argument("""--correct_filename""", help="""filename of tests with expected result""") parser.add_argument("""--fail_filename""", help="""filename of test failures""", type=str, default=None) UpperCAmelCase: Any = parser.parse_args() main(args.correct_filename, args.fail_filename)
336
0
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Dict = s.rsplit(__UpperCAmelCase , __UpperCAmelCase ) return new.join(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Tuple = {} _lowercase : Union[str, Any] = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: _lowercase : Union[str, Any] = key.replace(F"""{group_key}.""" , F"""{group_key}.group.""" ) if "res_path" in key: _lowercase : Optional[Any] = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): _lowercase : Optional[int] = rreplace(__UpperCAmelCase , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): _lowercase : Tuple = rreplace(__UpperCAmelCase , """.b""" , """.bias""" , 1 ) _lowercase : Union[str, Any] = value.float() return upgrade @torch.no_grad() def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=True ): from dall_e import Encoder _lowercase : Optional[Any] = Encoder() if os.path.exists(__UpperCAmelCase ): _lowercase : List[str] = torch.load(__UpperCAmelCase ) else: _lowercase : str = torch.hub.load_state_dict_from_url(__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _lowercase : str = ckpt.state_dict() encoder.load_state_dict(__UpperCAmelCase ) if config_path is not None: _lowercase : Dict = FlavaImageCodebookConfig.from_pretrained(__UpperCAmelCase ) else: _lowercase : Optional[Any] = FlavaImageCodebookConfig() _lowercase : Union[str, Any] = FlavaImageCodebook(__UpperCAmelCase ).eval() _lowercase : Dict = encoder.state_dict() _lowercase : Any = upgrade_state_dict(__UpperCAmelCase ) hf_model.load_state_dict(__UpperCAmelCase ) _lowercase : List[Any] = hf_model.state_dict() _lowercase : int = count_parameters(__UpperCAmelCase ) _lowercase : List[Any] = count_parameters(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(__UpperCAmelCase ) else: return hf_state_dict if __name__ == "__main__": UpperCAmelCase: str = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") UpperCAmelCase: Optional[Any] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
362
"""simple docstring""" UpperCAmelCase: List[str] = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
336
0
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class UpperCamelCase ( snake_case ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Dict = dataset _lowercase : Dict = process _lowercase : Optional[int] = params def __len__( self ): return len(self.dataset ) def __getitem__( self ,UpperCAmelCase_ ): _lowercase : Dict = self.dataset[i] _lowercase : str = self.process(UpperCAmelCase_ ,**self.params ) return processed class UpperCamelCase ( snake_case ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_=None ): _lowercase : Optional[Any] = loader _lowercase : Any = infer _lowercase : Tuple = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _lowercase : Tuple = None _lowercase : int = loader_batch_size # Internal bookkeeping _lowercase : int = None _lowercase : Optional[Any] = None def __len__( self ): return len(self.loader ) def __iter__( self ): _lowercase : Optional[Any] = iter(self.loader ) return self def lowerCamelCase__ ( self ): if isinstance(self._loader_batch_data ,torch.Tensor ): # Batch data is simple tensor, just fetch the slice _lowercase : Optional[int] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _lowercase : Dict = {} for k, element in self._loader_batch_data.items(): if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): # Convert ModelOutput to tuple first _lowercase : int = element.to_tuple() if isinstance(element[0] ,torch.Tensor ): _lowercase : Tuple = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] ,np.ndarray ): _lowercase : Dict = tuple(np.expand_dims(el[self._loader_batch_index] ,0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] ,torch.Tensor ): _lowercase : List[Any] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] ,np.ndarray ): _lowercase : int = tuple(np.expand_dims(el[self._loader_batch_index] ,0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _lowercase : Union[str, Any] = None elif isinstance(element[self._loader_batch_index] ,torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _lowercase : str = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] ,np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _lowercase : Optional[Any] = np.expand_dims(element[self._loader_batch_index] ,0 ) else: # This is typically a list, so no need to `unsqueeze`. _lowercase : int = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _lowercase : int = self._loader_batch_data.__class__(UpperCAmelCase_ ) self._loader_batch_index += 1 return result def lowerCamelCase__ ( self ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _lowercase : List[str] = next(self.iterator ) _lowercase : List[str] = self.infer(UpperCAmelCase_ ,**self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(UpperCAmelCase_ ,torch.Tensor ): _lowercase : int = processed else: _lowercase : Optional[Any] = list(processed.keys() )[0] _lowercase : int = processed[key] if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : List[Any] = len(UpperCAmelCase_ ) else: _lowercase : Dict = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _lowercase : Optional[Any] = observed_batch_size # Setting internal index to unwrap the batch _lowercase : Union[str, Any] = processed _lowercase : Union[str, Any] = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class UpperCamelCase ( snake_case ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_=None ): super().__init__(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) def __iter__( self ): _lowercase : List[Any] = iter(self.loader ) _lowercase : Any = None return self def lowerCamelCase__ ( self ): if self.subiterator is None: _lowercase : int = self.infer(next(self.iterator ) ,**self.params ) try: # Try to return next item _lowercase : int = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _lowercase : Dict = self.infer(next(self.iterator ) ,**self.params ) _lowercase : List[str] = next(self.subiterator ) return processed class UpperCamelCase ( snake_case ): """simple docstring""" def __iter__( self ): _lowercase : Any = iter(self.loader ) return self def lowerCamelCase__ ( self ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. _lowercase : int = False _lowercase : Tuple = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _lowercase : Union[str, Any] = self.loader_batch_item() _lowercase : Optional[int] = item.pop("""is_last""" ) accumulator.append(UpperCAmelCase_ ) if is_last: return accumulator while not is_last: _lowercase : Optional[int] = self.infer(next(self.iterator ) ,**self.params ) if self.loader_batch_size is not None: if isinstance(UpperCAmelCase_ ,torch.Tensor ): _lowercase : Any = processed else: _lowercase : int = list(processed.keys() )[0] _lowercase : str = processed[key] if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : str = len(UpperCAmelCase_ ) else: _lowercase : int = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _lowercase : Any = observed_batch_size _lowercase : List[str] = processed _lowercase : Union[str, Any] = 0 while self._loader_batch_index < self.loader_batch_size: _lowercase : Optional[int] = self.loader_batch_item() _lowercase : List[str] = item.pop("""is_last""" ) accumulator.append(UpperCAmelCase_ ) if is_last: return accumulator else: _lowercase : List[Any] = processed _lowercase : List[str] = item.pop("""is_last""" ) accumulator.append(UpperCAmelCase_ ) return accumulator class UpperCamelCase ( snake_case ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Optional[int] = dataset _lowercase : Optional[int] = key def __len__( self ): return len(self.dataset ) def __getitem__( self ,UpperCAmelCase_ ): return self.dataset[i][self.key] class UpperCamelCase ( snake_case ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Optional[Any] = dataset _lowercase : Optional[int] = keya _lowercase : Any = keya def __len__( self ): return len(self.dataset ) def __getitem__( self ,UpperCAmelCase_ ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
363
"""simple docstring""" UpperCAmelCase: str = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ UpperCAmelCase: Any = [{"""type""": """code""", """content""": INSTALL_CONTENT}] UpperCAmelCase: int = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
336
0
"""simple docstring""" from __future__ import annotations def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): if partitions <= 0: raise ValueError("""partitions must be a positive number!""" ) if partitions > number_of_bytes: raise ValueError("""partitions can not > number_of_bytes!""" ) _lowercase : Optional[Any] = number_of_bytes // partitions _lowercase : List[Any] = [] for i in range(__UpperCAmelCase ): _lowercase : List[str] = i * bytes_per_partition + 1 _lowercase : List[str] = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(F"""{start_bytes}-{end_bytes}""" ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
364
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL UpperCAmelCase: List[Any] = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): def constraint_to_multiple_of(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=0 , __UpperCAmelCase=None ): _lowercase : Union[str, Any] = round(val / multiple ) * multiple if max_val is not None and x > max_val: _lowercase : str = math.floor(val / multiple ) * multiple if x < min_val: _lowercase : Dict = math.ceil(val / multiple ) * multiple return x _lowercase : List[str] = (output_size, output_size) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else output_size _lowercase , _lowercase : List[Any] = get_image_size(__UpperCAmelCase ) _lowercase , _lowercase : Union[str, Any] = output_size # determine new height and width _lowercase : str = output_height / input_height _lowercase : List[Any] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _lowercase : str = scale_width else: # fit height _lowercase : int = scale_height _lowercase : List[Any] = constraint_to_multiple_of(scale_height * input_height , multiple=__UpperCAmelCase ) _lowercase : Optional[Any] = constraint_to_multiple_of(scale_width * input_width , multiple=__UpperCAmelCase ) return (new_height, new_width) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["pixel_values"] def __init__( self ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = PILImageResampling.BILINEAR ,UpperCAmelCase_ = False ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = 1 / 2_55 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) _lowercase : List[Any] = size if size is not None else {"""height""": 3_84, """width""": 3_84} _lowercase : str = get_size_dict(UpperCAmelCase_ ) _lowercase : Tuple = do_resize _lowercase : Any = size _lowercase : List[Any] = keep_aspect_ratio _lowercase : Any = ensure_multiple_of _lowercase : str = resample _lowercase : Optional[Any] = do_rescale _lowercase : List[Any] = rescale_factor _lowercase : Union[str, Any] = do_normalize _lowercase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowercase : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = False ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = PILImageResampling.BICUBIC ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): _lowercase : Optional[Any] = get_size_dict(UpperCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _lowercase : Dict = get_resize_output_image_size( UpperCAmelCase_ ,output_size=(size["""height"""], size["""width"""]) ,keep_aspect_ratio=UpperCAmelCase_ ,multiple=UpperCAmelCase_ ,) return resize(UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): return rescale(UpperCAmelCase_ ,scale=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): return normalize(UpperCAmelCase_ ,mean=UpperCAmelCase_ ,std=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = ChannelDimension.FIRST ,**UpperCAmelCase_ ,): _lowercase : Any = do_resize if do_resize is not None else self.do_resize _lowercase : List[str] = size if size is not None else self.size _lowercase : int = get_size_dict(UpperCAmelCase_ ) _lowercase : Any = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _lowercase : List[str] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _lowercase : List[str] = resample if resample is not None else self.resample _lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _lowercase : Any = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase : str = do_normalize if do_normalize is not None else self.do_normalize _lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean _lowercase : int = image_std if image_std is not None else self.image_std _lowercase : Union[str, Any] = make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _lowercase : int = [to_numpy_array(UpperCAmelCase_ ) for image in images] if do_resize: _lowercase : Union[str, Any] = [self.resize(image=UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ) for image in images] if do_rescale: _lowercase : int = [self.rescale(image=UpperCAmelCase_ ,scale=UpperCAmelCase_ ) for image in images] if do_normalize: _lowercase : str = [self.normalize(image=UpperCAmelCase_ ,mean=UpperCAmelCase_ ,std=UpperCAmelCase_ ) for image in images] _lowercase : Tuple = [to_channel_dimension_format(UpperCAmelCase_ ,UpperCAmelCase_ ) for image in images] _lowercase : int = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase_ ,tensor_type=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): _lowercase : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(UpperCAmelCase_ ): _lowercase : Tuple = target_sizes.numpy() _lowercase : Optional[Any] = [] for idx in range(len(UpperCAmelCase_ ) ): _lowercase : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode="""bilinear""" ,align_corners=UpperCAmelCase_ ) _lowercase : Optional[int] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase_ ) else: _lowercase : Union[str, Any] = logits.argmax(dim=1 ) _lowercase : Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
336
0
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) _lowercase : Optional[int] = str(bin(__UpperCAmelCase ) )[2:] # remove the leading "0b" _lowercase : Any = str(bin(__UpperCAmelCase ) )[2:] _lowercase : str = max(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) return "0b" + "".join( str(int("""1""" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCAmelCase ) , b_binary.zfill(__UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
365
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCAmelCase: Optional[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCAmelCase: Tuple = [0, 25, 50] UpperCAmelCase: List[Any] = [25, 50, 75] UpperCAmelCase: Optional[int] = fuzz.membership.trimf(X, abca) UpperCAmelCase: Any = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCAmelCase: List[Any] = np.ones(75) UpperCAmelCase: Any = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) UpperCAmelCase: str = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) UpperCAmelCase: Optional[int] = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) UpperCAmelCase: List[Any] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) UpperCAmelCase: Optional[int] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] UpperCAmelCase: int = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) UpperCAmelCase: int = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] UpperCAmelCase: List[Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] UpperCAmelCase: int = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("""Young""") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("""Middle aged""") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("""union""") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("""intersection""") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("""complement_a""") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("""difference a/b""") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("""alg_sum""") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("""alg_product""") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("""bdd_sum""") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("""bdd_difference""") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
336
0
"""simple docstring""" import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCAmelCase: Any = logging.get_logger(__name__) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ["input_values", "attention_mask"] def __init__( self ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = 1_60_00 ,UpperCAmelCase_ = 0.0 ,UpperCAmelCase_ = False ,UpperCAmelCase_ = 80 ,UpperCAmelCase_ = 16 ,UpperCAmelCase_ = 64 ,UpperCAmelCase_ = "hann_window" ,UpperCAmelCase_ = 1.0 ,UpperCAmelCase_ = 80 ,UpperCAmelCase_ = 76_00 ,UpperCAmelCase_ = 1E-10 ,UpperCAmelCase_ = 2 ,UpperCAmelCase_ = True ,**UpperCAmelCase_ ,): super().__init__(feature_size=UpperCAmelCase_ ,sampling_rate=UpperCAmelCase_ ,padding_value=UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : List[str] = do_normalize _lowercase : Any = return_attention_mask _lowercase : str = num_mel_bins _lowercase : Dict = hop_length _lowercase : Dict = win_length _lowercase : int = win_function _lowercase : Any = frame_signal_scale _lowercase : Any = fmin _lowercase : Union[str, Any] = fmax _lowercase : Union[str, Any] = mel_floor _lowercase : Any = reduction_factor _lowercase : List[str] = win_length * sampling_rate // 10_00 _lowercase : Dict = hop_length * sampling_rate // 10_00 _lowercase : Optional[Any] = optimal_fft_length(self.sample_size ) _lowercase : List[Any] = (self.n_fft // 2) + 1 _lowercase : Any = window_function(window_length=self.sample_size ,name=self.win_function ,periodic=UpperCAmelCase_ ) _lowercase : Dict = mel_filter_bank( num_frequency_bins=self.n_freqs ,num_mel_filters=self.num_mel_bins ,min_frequency=self.fmin ,max_frequency=self.fmax ,sampling_rate=self.sampling_rate ,norm="""slaney""" ,mel_scale="""slaney""" ,) if frame_signal_scale != 1.0: warnings.warn( """The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers""" ,UpperCAmelCase_ ,) if reduction_factor != 2.0: warnings.warn( """The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers""" ,UpperCAmelCase_ ,) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowerCamelCase__ ( UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = 0.0 ): if attention_mask is not None: _lowercase : Any = np.array(UpperCAmelCase_ ,np.intaa ) _lowercase : List[Any] = [] for vector, length in zip(UpperCAmelCase_ ,attention_mask.sum(-1 ) ): _lowercase : List[str] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: _lowercase : List[str] = padding_value normed_input_values.append(UpperCAmelCase_ ) else: _lowercase : List[str] = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def lowerCamelCase__ ( self ,UpperCAmelCase_ ,): _lowercase : List[str] = spectrogram( UpperCAmelCase_ ,window=self.window ,frame_length=self.sample_size ,hop_length=self.sample_stride ,fft_length=self.n_fft ,mel_filters=self.mel_filters ,mel_floor=self.mel_floor ,log_mel="""log10""" ,) return log_mel_spec.T def __call__( self ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = False ,UpperCAmelCase_ = None ,UpperCAmelCase_ = False ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): if audio is None and audio_target is None: raise ValueError("""You must provide either `audio` or `audio_target` values.""" ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if audio is not None: _lowercase : Tuple = self._process_audio( UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,**UpperCAmelCase_ ,) else: _lowercase : Dict = None if audio_target is not None: _lowercase : Any = self._process_audio( UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,**UpperCAmelCase_ ,) if inputs is None: return inputs_target else: _lowercase : List[Any] = inputs_target["""input_values"""] _lowercase : Dict = inputs_target.get("""attention_mask""" ) if decoder_attention_mask is not None: _lowercase : Union[str, Any] = decoder_attention_mask return inputs def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = None ,UpperCAmelCase_ = False ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): _lowercase : Any = isinstance(UpperCAmelCase_ ,np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) _lowercase : Tuple = is_batched_numpy or ( isinstance(UpperCAmelCase_ ,(list, tuple) ) and (isinstance(speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: _lowercase : Union[str, Any] = [np.asarray(UpperCAmelCase_ ,dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(UpperCAmelCase_ ,np.ndarray ): _lowercase : int = np.asarray(UpperCAmelCase_ ,dtype=np.floataa ) elif isinstance(UpperCAmelCase_ ,np.ndarray ) and speech.dtype is np.dtype(np.floataa ): _lowercase : Union[str, Any] = speech.astype(np.floataa ) # always return batch if not is_batched: _lowercase : Dict = [speech] # needed to make pad() work on spectrogram inputs _lowercase : Dict = self.feature_size # convert into correct format for padding if is_target: _lowercase : str = [self._extract_mel_features(UpperCAmelCase_ ) for waveform in speech] _lowercase : Any = BatchFeature({"""input_values""": features} ) _lowercase : Any = self.num_mel_bins else: _lowercase : Optional[Any] = BatchFeature({"""input_values""": speech} ) _lowercase : List[Any] = self.pad( UpperCAmelCase_ ,padding=UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,pad_to_multiple_of=UpperCAmelCase_ ,return_attention_mask=UpperCAmelCase_ ,**UpperCAmelCase_ ,) _lowercase : Dict = feature_size_hack # convert input values to correct format _lowercase : Tuple = padded_inputs["""input_values"""] if not isinstance(input_values[0] ,np.ndarray ): _lowercase : Dict = [np.asarray(UpperCAmelCase_ ,dtype=np.floataa ) for array in input_values] elif ( not isinstance(UpperCAmelCase_ ,np.ndarray ) and isinstance(input_values[0] ,np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): _lowercase : Dict = [array.astype(np.floataa ) for array in input_values] elif isinstance(UpperCAmelCase_ ,np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): _lowercase : int = input_values.astype(np.floataa ) # convert attention_mask to correct format _lowercase : Dict = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: _lowercase : Union[str, Any] = [np.asarray(UpperCAmelCase_ ,dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: _lowercase : Union[str, Any] = ( attention_mask if self._get_padding_strategies(UpperCAmelCase_ ,max_length=UpperCAmelCase_ ) is not PaddingStrategy.DO_NOT_PAD else None ) _lowercase : Union[str, Any] = self.zero_mean_unit_var_norm( padded_inputs["""input_values"""] ,attention_mask=UpperCAmelCase_ ,padding_value=self.padding_value ) if return_tensors is not None: _lowercase : Optional[int] = padded_inputs.convert_to_tensors(UpperCAmelCase_ ) return padded_inputs def lowerCamelCase__ ( self ): _lowercase : Any = super().to_dict() # Don't serialize these as they are derived from the other properties. _lowercase : Union[str, Any] = ["""window""", """mel_filters""", """sample_size""", """sample_stride""", """n_fft""", """n_freqs"""] for name in names: if name in output: del output[name] return output
366
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ): _lowercase : str = tempfile.mkdtemp() # fmt: off _lowercase : List[Any] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _lowercase : Optional[int] = dict(zip(UpperCAmelCase_ ,range(len(UpperCAmelCase_ ) ) ) ) _lowercase : Optional[int] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] _lowercase : Optional[int] = {"""unk_token""": """<unk>"""} _lowercase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _lowercase : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) _lowercase : Dict = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } _lowercase : List[Any] = os.path.join(self.tmpdirname ,UpperCAmelCase_ ) with open(self.image_processor_file ,"""w""" ,encoding="""utf-8""" ) as fp: json.dump(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPTokenizer.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPImageProcessor.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] _lowercase : Tuple = [Image.fromarray(np.moveaxis(UpperCAmelCase_ ,0 ,-1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.get_tokenizer() _lowercase : List[Any] = self.get_rust_tokenizer() _lowercase : List[Any] = self.get_image_processor() _lowercase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) _lowercase : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname ,use_fast=UpperCAmelCase_ ) _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) _lowercase : List[str] = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer ,UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : str = CLIPProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowercase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) _lowercase : Optional[int] = self.get_image_processor(do_normalize=UpperCAmelCase_ ,padding_value=1.0 ) _lowercase : int = CLIPProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=UpperCAmelCase_ ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : Optional[int] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : int = self.prepare_image_inputs() _lowercase : str = image_processor(UpperCAmelCase_ ,return_tensors="""np""" ) _lowercase : int = processor(images=UpperCAmelCase_ ,return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : Optional[Any] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : List[Any] = """lower newer""" _lowercase : Any = processor(text=UpperCAmelCase_ ) _lowercase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : str = """lower newer""" _lowercase : List[Any] = self.prepare_image_inputs() _lowercase : Optional[int] = processor(text=UpperCAmelCase_ ,images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowerCamelCase__ ( self ): _lowercase : Dict = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowercase : int = processor.batch_decode(UpperCAmelCase_ ) _lowercase : Tuple = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : Optional[Any] = """lower newer""" _lowercase : Any = self.prepare_image_inputs() _lowercase : Optional[int] = processor(text=UpperCAmelCase_ ,images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
336
0