code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : List[Any] = { 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = ['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = ['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = [ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = [ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
361
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES _lowerCamelCase : List[str] = logging.get_logger(__name__) _lowerCamelCase : Any = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) _lowerCamelCase : Optional[Any] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) _lowerCamelCase : int = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) _lowerCamelCase : List[str] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) _lowerCamelCase : int = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) _lowerCamelCase : int = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) _lowerCamelCase : Optional[int] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) _lowerCamelCase : Optional[Any] = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) _lowerCamelCase : Any = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) _lowerCamelCase : Union[str, Any] = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) _lowerCamelCase : Dict = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) _lowerCamelCase : int = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) _lowerCamelCase : Union[str, Any] = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) _lowerCamelCase : Any = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) _lowerCamelCase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) _lowerCamelCase : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) _lowerCamelCase : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) _lowerCamelCase : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) _lowerCamelCase : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) _lowerCamelCase : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) _lowerCamelCase : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) _lowerCamelCase : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) _lowerCamelCase : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) _lowerCamelCase : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) _lowerCamelCase : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) _lowerCamelCase : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_MAPPING _lowerCamelCase : Optional[Any] = auto_class_update(FlaxAutoModel) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_PRETRAINING_MAPPING _lowerCamelCase : List[str] = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING _lowerCamelCase : List[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_MASKED_LM_MAPPING _lowerCamelCase : List[str] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _lowerCamelCase : Tuple = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _lowerCamelCase : Tuple = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING _lowerCamelCase : Any = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _lowerCamelCase : str = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING _lowerCamelCase : Tuple = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING _lowerCamelCase : List[Any] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _lowerCamelCase : Union[str, Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING _lowerCamelCase : Optional[int] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class __UpperCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' __lowerCAmelCase = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING _lowerCamelCase : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
337
0
'''simple docstring''' import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __UpperCAmelCase ( TensorFormatter[Mapping, '''torch.Tensor''', Mapping] ): '''simple docstring''' def __init__(self : Dict , _lowerCAmelCase : Union[str, Any]=None , **_lowerCAmelCase : Optional[Any] ): super().__init__(features=_lowerCAmelCase ) A = torch_tensor_kwargs import torch # noqa import torch at initialization def A (self : Dict , _lowerCAmelCase : str ): import torch if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and column: if all( isinstance(_lowerCAmelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(_lowerCAmelCase ) return column def A (self : Tuple , _lowerCAmelCase : List[Any] ): import torch if isinstance(_lowerCAmelCase , (str, bytes, type(_lowerCAmelCase )) ): return value elif isinstance(_lowerCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() A = {} if isinstance(_lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): A = {"""dtype""": torch.intaa} elif isinstance(_lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): A = {"""dtype""": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_lowerCAmelCase , PIL.Image.Image ): A = np.asarray(_lowerCAmelCase ) return torch.tensor(_lowerCAmelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def A (self : List[str] , _lowerCAmelCase : int ): import torch # support for torch, tf, jax etc. if hasattr(_lowerCAmelCase , """__array__""" ) and not isinstance(_lowerCAmelCase , torch.Tensor ): A = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_lowerCAmelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_lowerCAmelCase ) for substruct in data_struct] ) elif isinstance(_lowerCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_lowerCAmelCase ) for substruct in data_struct] ) return self._tensorize(_lowerCAmelCase ) def A (self : Dict , _lowerCAmelCase : dict ): return map_nested(self._recursive_tensorize , _lowerCAmelCase , map_list=_lowerCAmelCase ) def A (self : Tuple , _lowerCAmelCase : pa.Table ): A = self.numpy_arrow_extractor().extract_row(_lowerCAmelCase ) A = self.python_features_decoder.decode_row(_lowerCAmelCase ) return self.recursive_tensorize(_lowerCAmelCase ) def A (self : Optional[int] , _lowerCAmelCase : pa.Table ): A = self.numpy_arrow_extractor().extract_column(_lowerCAmelCase ) A = self.python_features_decoder.decode_column(_lowerCAmelCase , pa_table.column_names[0] ) A = self.recursive_tensorize(_lowerCAmelCase ) A = self._consolidate(_lowerCAmelCase ) return column def A (self : List[str] , _lowerCAmelCase : pa.Table ): A = self.numpy_arrow_extractor().extract_batch(_lowerCAmelCase ) A = self.python_features_decoder.decode_batch(_lowerCAmelCase ) A = self.recursive_tensorize(_lowerCAmelCase ) for column_name in batch: A = self._consolidate(batch[column_name] ) return batch
362
'''simple docstring''' import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @require_torch def A (self : Any ): A = pipeline( task="""zero-shot-audio-classification""" , model="""hf-internal-testing/tiny-clap-htsat-unfused""" ) A = load_dataset("""ashraq/esc50""" ) A = dataset["""train"""]["""audio"""][-1]["""array"""] A = audio_classifier(_lowerCAmelCase , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [{"""score""": 0.501, """label""": """Sound of a dog"""}, {"""score""": 0.499, """label""": """Sound of vaccum cleaner"""}] , ) @unittest.skip("""No models are available in TF""" ) def A (self : List[str] ): pass @slow @require_torch def A (self : int ): A = pipeline( task="""zero-shot-audio-classification""" , model="""laion/clap-htsat-unfused""" , ) # This is an audio of a dog A = load_dataset("""ashraq/esc50""" ) A = dataset["""train"""]["""audio"""][-1]["""array"""] A = audio_classifier(_lowerCAmelCase , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ] , ) A = audio_classifier([audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) A = audio_classifier( [audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] , batch_size=5 ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) @unittest.skip("""No models are available in TF""" ) def A (self : Tuple ): pass
337
0
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) _lowerCamelCase : List[str] = { 'iou_prediction_head.layers.0': 'iou_prediction_head.proj_in', 'iou_prediction_head.layers.1': 'iou_prediction_head.layers.0', 'iou_prediction_head.layers.2': 'iou_prediction_head.proj_out', 'mask_decoder.output_upscaling.0': 'mask_decoder.upscale_conv1', 'mask_decoder.output_upscaling.1': 'mask_decoder.upscale_layer_norm', 'mask_decoder.output_upscaling.3': 'mask_decoder.upscale_conv2', 'mask_downscaling.0': 'mask_embed.conv1', 'mask_downscaling.1': 'mask_embed.layer_norm1', 'mask_downscaling.3': 'mask_embed.conv2', 'mask_downscaling.4': 'mask_embed.layer_norm2', 'mask_downscaling.6': 'mask_embed.conv3', 'point_embeddings': 'point_embed', 'pe_layer.positional_encoding_gaussian_matrix': 'shared_embedding.positional_embedding', 'image_encoder': 'vision_encoder', 'neck.0': 'neck.conv1', 'neck.1': 'neck.layer_norm1', 'neck.2': 'neck.conv2', 'neck.3': 'neck.layer_norm2', 'patch_embed.proj': 'patch_embed.projection', '.norm': '.layer_norm', 'blocks': 'layers', } def __a ( UpperCAmelCase ) ->Tuple: """simple docstring""" A = {} state_dict.pop("""pixel_mean""" , UpperCAmelCase ) state_dict.pop("""pixel_std""" , UpperCAmelCase ) A = R""".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*""" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: A = key.replace(UpperCAmelCase , UpperCAmelCase ) if re.match(UpperCAmelCase , UpperCAmelCase ): A = int(re.match(UpperCAmelCase , UpperCAmelCase ).group(2 ) ) if layer_nb == 0: A = key.replace("""layers.0""" , """proj_in""" ) elif layer_nb == 1: A = key.replace("""layers.1""" , """layers.0""" ) elif layer_nb == 2: A = key.replace("""layers.2""" , """proj_out""" ) A = value A = model_state_dict[ """prompt_encoder.shared_embedding.positional_embedding""" ] return model_state_dict def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="ybelkada/segment-anything" ) ->Any: """simple docstring""" A = hf_hub_download(UpperCAmelCase , F"""checkpoints/{model_name}.pth""" ) if "sam_vit_b" in model_name: A = SamConfig() elif "sam_vit_l" in model_name: A = SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) A = SamConfig( vision_config=UpperCAmelCase , ) elif "sam_vit_h" in model_name: A = SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) A = SamConfig( vision_config=UpperCAmelCase , ) A = torch.load(UpperCAmelCase , map_location="""cpu""" ) A = replace_keys(UpperCAmelCase ) A = SamImageProcessor() A = SamProcessor(image_processor=UpperCAmelCase ) A = SamModel(UpperCAmelCase ) hf_model.load_state_dict(UpperCAmelCase ) A = hf_model.to("""cuda""" ) A = """https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png""" A = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ).convert("""RGB""" ) A = [[[400, 650]]] A = [[1]] A = processor(images=np.array(UpperCAmelCase ) , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): A = hf_model(**UpperCAmelCase ) A = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_890_251_159_668 A = processor( images=np.array(UpperCAmelCase ) , input_points=UpperCAmelCase , input_labels=UpperCAmelCase , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): A = hf_model(**UpperCAmelCase ) A = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_712_603_092_193_604 A = ((75, 275, 1725, 850),) A = processor(images=np.array(UpperCAmelCase ) , input_boxes=UpperCAmelCase , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): A = hf_model(**UpperCAmelCase ) A = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_686_015_605_926_514 # Test with 2 points and 1 image. A = [[[400, 650], [800, 650]]] A = [[1, 1]] A = processor( images=np.array(UpperCAmelCase ) , input_points=UpperCAmelCase , input_labels=UpperCAmelCase , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): A = hf_model(**UpperCAmelCase ) A = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_936_047_792_434_692 if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() _lowerCamelCase : List[Any] = ['sam_vit_b_01ec64', 'sam_vit_h_4b8939', 'sam_vit_l_0b3195'] parser.add_argument( '--model_name', default='sam_vit_h_4b8939', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) parser.add_argument( '--model_hub_id', default='ybelkada/segment-anything', choices=choices, type=str, help='Path to hf config.json of model to convert', ) _lowerCamelCase : List[Any] = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
363
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _lowerCamelCase : Dict = 'src/diffusers' _lowerCamelCase : Dict = '.' # This is to make sure the diffusers module imported is the one in the repo. _lowerCamelCase : List[str] = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) _lowerCamelCase : Tuple = spec.loader.load_module() def __a ( UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" return line.startswith(UpperCAmelCase ) or len(UpperCAmelCase ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""" , UpperCAmelCase ) is not None def __a ( UpperCAmelCase ) ->Dict: """simple docstring""" A = object_name.split(""".""" ) A = 0 # First let's find the module where our object lives. A = parts[i] while i < len(UpperCAmelCase ) and not os.path.isfile(os.path.join(UpperCAmelCase , f"""{module}.py""" ) ): i += 1 if i < len(UpperCAmelCase ): A = os.path.join(UpperCAmelCase , parts[i] ) if i >= len(UpperCAmelCase ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(UpperCAmelCase , f"""{module}.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A = f.readlines() # Now let's find the class / func in the code! A = """""" A = 0 for name in parts[i + 1 :]: while ( line_index < len(UpperCAmelCase ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(UpperCAmelCase ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). A = line_index while line_index < len(UpperCAmelCase ) and _should_continue(lines[line_index] , UpperCAmelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A = lines[start_index:line_index] return "".join(UpperCAmelCase ) _lowerCamelCase : str = re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') _lowerCamelCase : Any = re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') _lowerCamelCase : str = re.compile(R'<FILL\s+[^>]*>') def __a ( UpperCAmelCase ) ->str: """simple docstring""" A = code.split("""\n""" ) A = 0 while idx < len(UpperCAmelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(UpperCAmelCase ): return re.search(R"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def __a ( UpperCAmelCase ) ->Optional[int]: """simple docstring""" A = len(get_indent(UpperCAmelCase ) ) > 0 if has_indent: A = f"""class Bla:\n{code}""" A = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=UpperCAmelCase ) A = black.format_str(UpperCAmelCase , mode=UpperCAmelCase ) A , A = style_docstrings_in_code(UpperCAmelCase ) return result[len("""class Bla:\n""" ) :] if has_indent else result def __a ( UpperCAmelCase , UpperCAmelCase=False ) ->List[str]: """simple docstring""" with open(UpperCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A = f.readlines() A = [] A = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(UpperCAmelCase ): A = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. A , A , A = search.groups() A = find_code_in_diffusers(UpperCAmelCase ) A = get_indent(UpperCAmelCase ) A = line_index + 1 if indent == theoretical_indent else line_index + 2 A = theoretical_indent A = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. A = True while line_index < len(UpperCAmelCase ) and should_continue: line_index += 1 if line_index >= len(UpperCAmelCase ): break A = lines[line_index] A = _should_continue(UpperCAmelCase , UpperCAmelCase ) and re.search(f"""^{indent}# End copy""" , UpperCAmelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A = lines[start_index:line_index] A = """""".join(UpperCAmelCase ) # Remove any nested `Copied from` comments to avoid circular copies A = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(UpperCAmelCase ) is None] A = """\n""".join(UpperCAmelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(UpperCAmelCase ) > 0: A = replace_pattern.replace("""with""" , """""" ).split(""",""" ) A = [_re_replace_pattern.search(UpperCAmelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue A , A , A = pattern.groups() A = re.sub(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if option.strip() == "all-casing": A = re.sub(obja.lower() , obja.lower() , UpperCAmelCase ) A = re.sub(obja.upper() , obja.upper() , UpperCAmelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line A = blackify(lines[start_index - 1] + theoretical_code ) A = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: A = lines[:start_index] + [theoretical_code] + lines[line_index:] A = start_index + 1 if overwrite and len(UpperCAmelCase ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(UpperCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(UpperCAmelCase ) return diffs def __a ( UpperCAmelCase = False ) ->int: """simple docstring""" A = glob.glob(os.path.join(UpperCAmelCase , """**/*.py""" ) , recursive=UpperCAmelCase ) A = [] for filename in all_files: A = is_copy_consistent(UpperCAmelCase , UpperCAmelCase ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(UpperCAmelCase ) > 0: A = """\n""".join(UpperCAmelCase ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _lowerCamelCase : Any = parser.parse_args() check_copies(args.fix_and_overwrite)
337
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = MODEL_FOR_CAUSAL_LM_MAPPING __lowerCAmelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def A (self : str ): A = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""pt""" ) # Using `do_sample=False` to force deterministic output A = text_generator("""This is a test""" , do_sample=_lowerCAmelCase ) self.assertEqual( _lowerCAmelCase , [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ] , ) A = text_generator(["""This is a test""", """This is a second test"""] ) self.assertEqual( _lowerCAmelCase , [ [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ], [ { """generated_text""": ( """This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy""" """ oscope. oscope. FiliFili@@""" ) } ], ] , ) A = text_generator("""This is a test""" , do_sample=_lowerCAmelCase , num_return_sequences=2 , return_tensors=_lowerCAmelCase ) self.assertEqual( _lowerCAmelCase , [ {"""generated_token_ids""": ANY(_lowerCAmelCase )}, {"""generated_token_ids""": ANY(_lowerCAmelCase )}, ] , ) A = text_generator.model.config.eos_token_id A = """<pad>""" A = text_generator( ["""This is a test""", """This is a second test"""] , do_sample=_lowerCAmelCase , num_return_sequences=2 , batch_size=2 , return_tensors=_lowerCAmelCase , ) self.assertEqual( _lowerCAmelCase , [ [ {"""generated_token_ids""": ANY(_lowerCAmelCase )}, {"""generated_token_ids""": ANY(_lowerCAmelCase )}, ], [ {"""generated_token_ids""": ANY(_lowerCAmelCase )}, {"""generated_token_ids""": ANY(_lowerCAmelCase )}, ], ] , ) @require_tf def A (self : Optional[int] ): A = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""tf""" ) # Using `do_sample=False` to force deterministic output A = text_generator("""This is a test""" , do_sample=_lowerCAmelCase ) self.assertEqual( _lowerCAmelCase , [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ] , ) A = text_generator(["""This is a test""", """This is a second test"""] , do_sample=_lowerCAmelCase ) self.assertEqual( _lowerCAmelCase , [ [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ], [ { """generated_text""": ( """This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes""" """ Cannes 閲閲Cannes Cannes Cannes 攵 please,""" ) } ], ] , ) def A (self : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : Dict ): A = TextGenerationPipeline(model=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) return text_generator, ["This is a test", "Another test"] def A (self : List[str] ): A = """Hello I believe in""" A = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) A = text_generator(_lowerCAmelCase ) self.assertEqual( _lowerCAmelCase , [{"""generated_text""": """Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"""}] , ) A = text_generator(_lowerCAmelCase , stop_sequence=""" fe""" ) self.assertEqual(_lowerCAmelCase , [{"""generated_text""": """Hello I believe in fe"""}] ) def A (self : List[str] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] ): A = text_generator.model A = text_generator.tokenizer A = text_generator("""This is a test""" ) self.assertEqual(_lowerCAmelCase , [{"""generated_text""": ANY(_lowerCAmelCase )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) A = text_generator("""This is a test""" , return_full_text=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , [{"""generated_text""": ANY(_lowerCAmelCase )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) A = pipeline(task="""text-generation""" , model=_lowerCAmelCase , tokenizer=_lowerCAmelCase , return_full_text=_lowerCAmelCase ) A = text_generator("""This is a test""" ) self.assertEqual(_lowerCAmelCase , [{"""generated_text""": ANY(_lowerCAmelCase )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) A = text_generator("""This is a test""" , return_full_text=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , [{"""generated_text""": ANY(_lowerCAmelCase )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) A = text_generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=_lowerCAmelCase ) self.assertEqual( _lowerCAmelCase , [ [{"""generated_text""": ANY(_lowerCAmelCase )}, {"""generated_text""": ANY(_lowerCAmelCase )}], [{"""generated_text""": ANY(_lowerCAmelCase )}, {"""generated_text""": ANY(_lowerCAmelCase )}], ] , ) if text_generator.tokenizer.pad_token is not None: A = text_generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=_lowerCAmelCase ) self.assertEqual( _lowerCAmelCase , [ [{"""generated_text""": ANY(_lowerCAmelCase )}, {"""generated_text""": ANY(_lowerCAmelCase )}], [{"""generated_text""": ANY(_lowerCAmelCase )}, {"""generated_text""": ANY(_lowerCAmelCase )}], ] , ) with self.assertRaises(_lowerCAmelCase ): A = text_generator("""test""" , return_full_text=_lowerCAmelCase , return_text=_lowerCAmelCase ) with self.assertRaises(_lowerCAmelCase ): A = text_generator("""test""" , return_full_text=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) with self.assertRaises(_lowerCAmelCase ): A = text_generator("""test""" , return_text=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): A = text_generator("""""" ) self.assertEqual(_lowerCAmelCase , [{"""generated_text""": ANY(_lowerCAmelCase )}] ) else: with self.assertRaises((ValueError, AssertionError) ): A = text_generator("""""" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. A = ["""RwkvForCausalLM""", """XGLMForCausalLM""", """GPTNeoXForCausalLM"""] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("""This is a test""" * 500 , max_new_tokens=20 ) A = text_generator("""This is a test""" * 500 , handle_long_generation="""hole""" , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_lowerCAmelCase ): text_generator( """This is a test""" * 500 , handle_long_generation="""hole""" , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def A (self : Optional[Any] ): import torch # Classic `model_kwargs` A = pipeline( model="""hf-internal-testing/tiny-random-bloom""" , model_kwargs={"""device_map""": """auto""", """torch_dtype""": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) A = pipe("""This is a test""" ) self.assertEqual( _lowerCAmelCase , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) A = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) A = pipe("""This is a test""" ) self.assertEqual( _lowerCAmelCase , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 A = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) A = pipe("""This is a test""" ) self.assertEqual( _lowerCAmelCase , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) @require_torch @require_torch_gpu def A (self : Optional[int] ): import torch A = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device=0 , torch_dtype=torch.floataa ) pipe("""This is a test""" ) @require_torch @require_accelerate @require_torch_gpu def A (self : Union[str, Any] ): import torch A = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.floataa ) pipe("""This is a test""" , do_sample=_lowerCAmelCase , top_p=0.5 ) def A (self : List[str] ): A = """Hello world""" A = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) if text_generator.model.framework == "tf": A = logging.get_logger("""transformers.generation.tf_utils""" ) else: A = logging.get_logger("""transformers.generation.utils""" ) A = """Both `max_new_tokens`""" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_lowerCAmelCase ) as cl: A = text_generator(_lowerCAmelCase , max_length=10 , max_new_tokens=1 ) self.assertIn(_lowerCAmelCase , cl.out ) # The user only sets one -> no warning with CaptureLogger(_lowerCAmelCase ) as cl: A = text_generator(_lowerCAmelCase , max_new_tokens=1 ) self.assertNotIn(_lowerCAmelCase , cl.out ) with CaptureLogger(_lowerCAmelCase ) as cl: A = text_generator(_lowerCAmelCase , max_length=10 ) self.assertNotIn(_lowerCAmelCase , cl.out )
364
'''simple docstring''' def __a ( UpperCAmelCase ) ->bool: """simple docstring""" return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def __a ( UpperCAmelCase ) ->bool: """simple docstring""" A = credit_card_number A = 0 A = len(UpperCAmelCase ) - 2 for i in range(UpperCAmelCase , -1 , -2 ): # double the value of every second digit A = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 A = cc_number[:i] + str(UpperCAmelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(UpperCAmelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def __a ( UpperCAmelCase ) ->bool: """simple docstring""" A = f"""{credit_card_number} is an invalid credit card number because""" if not credit_card_number.isdigit(): print(f"""{error_message} it has nonnumerical characters.""" ) return False if not 13 <= len(UpperCAmelCase ) <= 16: print(f"""{error_message} of its length.""" ) return False if not validate_initial_digits(UpperCAmelCase ): print(f"""{error_message} of its first two digits.""" ) return False if not luhn_validation(UpperCAmelCase ): print(f"""{error_message} it fails the Luhn check.""" ) return False print(f"""{credit_card_number} is a valid credit card number.""" ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
337
0
'''simple docstring''' def __a ( UpperCAmelCase ) ->bool: """simple docstring""" return str(UpperCAmelCase ) == str(UpperCAmelCase )[::-1] def __a ( UpperCAmelCase ) ->int: """simple docstring""" return int(UpperCAmelCase ) + int(str(UpperCAmelCase )[::-1] ) def __a ( UpperCAmelCase = 10000 ) ->int: """simple docstring""" A = [] for num in range(1 , UpperCAmelCase ): A = 0 A = num while iterations < 50: A = sum_reverse(UpperCAmelCase ) iterations += 1 if is_palindrome(UpperCAmelCase ): break else: lychrel_nums.append(UpperCAmelCase ) return len(UpperCAmelCase ) if __name__ == "__main__": print(f"{solution() = }")
365
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class __UpperCAmelCase : '''simple docstring''' def __init__(self : Any , _lowerCAmelCase : List[Any] ): A = str(id_ ) A = None A = None A = [] A = {} # {vertex:distance} def __lt__(self : List[Any] , _lowerCAmelCase : Tuple ): return self.key < other.key def __repr__(self : str ): return self.id def A (self : Union[str, Any] , _lowerCAmelCase : List[str] ): self.neighbors.append(_lowerCAmelCase ) def A (self : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ): A = weight def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , UpperCAmelCase ) graph[b - 1].add_edge(graph[a - 1] , UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->list: """simple docstring""" A = [] for u in graph: A = math.inf A = None A = 0 A = graph[:] while q: A = min(UpperCAmelCase ) q.remove(UpperCAmelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): A = u A = u.edges[v.id] for i in range(1 , len(UpperCAmelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __a ( UpperCAmelCase , UpperCAmelCase ) ->Iterator[tuple]: """simple docstring""" for u in graph: A = math.inf A = None A = 0 A = list(UpperCAmelCase ) hq.heapify(UpperCAmelCase ) while h: A = hq.heappop(UpperCAmelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): A = u A = u.edges[v.id] hq.heapify(UpperCAmelCase ) for i in range(1 , len(UpperCAmelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __a ( ) ->None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
337
0
'''simple docstring''' import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def __a ( ) ->Dict: """simple docstring""" A = argparse.ArgumentParser() parser.add_argument( """-m""" , """--pretrained_model_name_or_path""" , type=UpperCAmelCase , default=UpperCAmelCase , required=UpperCAmelCase , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , ) parser.add_argument( """-c""" , """--caption""" , type=UpperCAmelCase , default="""robotic cat with wings""" , help="""Text used to generate images.""" , ) parser.add_argument( """-n""" , """--images_num""" , type=UpperCAmelCase , default=4 , help="""How much images to generate.""" , ) parser.add_argument( """-s""" , """--seed""" , type=UpperCAmelCase , default=42 , help="""Seed for random process.""" , ) parser.add_argument( """-ci""" , """--cuda_id""" , type=UpperCAmelCase , default=0 , help="""cuda_id.""" , ) A = parser.parse_args() return args def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" if not len(UpperCAmelCase ) == rows * cols: raise ValueError("""The specified number of rows and columns are not correct.""" ) A , A = imgs[0].size A = Image.new("""RGB""" , size=(cols * w, rows * h) ) A , A = grid.size for i, img in enumerate(UpperCAmelCase ): grid.paste(UpperCAmelCase , box=(i % cols * w, i // cols * h) ) return grid def __a ( UpperCAmelCase , UpperCAmelCase="robotic cat with wings" , UpperCAmelCase=7.5 , UpperCAmelCase=50 , UpperCAmelCase=1 , UpperCAmelCase=42 , ) ->Optional[int]: """simple docstring""" A = torch.Generator(pipeline.device ).manual_seed(UpperCAmelCase ) A = pipeline( UpperCAmelCase , guidance_scale=UpperCAmelCase , num_inference_steps=UpperCAmelCase , generator=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , ).images A = int(math.sqrt(UpperCAmelCase ) ) A = image_grid(UpperCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images _lowerCamelCase : str = parse_args() # Load models and create wrapper for stable diffusion _lowerCamelCase : Any = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') _lowerCamelCase : Dict = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') _lowerCamelCase : Union[str, Any] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') _lowerCamelCase : Union[str, Any] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') _lowerCamelCase : int = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) _lowerCamelCase : Any = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): _lowerCamelCase : Optional[int] = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: _lowerCamelCase : str = unet.to(torch.device('cuda', args.cuda_id)) _lowerCamelCase : Union[str, Any] = pipeline.to(unet.device) _lowerCamelCase : Tuple = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) _lowerCamelCase : Union[str, Any] = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
366
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging _lowerCamelCase : int = logging.get_logger(__name__) _lowerCamelCase : Any = { 'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''perceiver''' def __init__(self : Dict , _lowerCAmelCase : List[str]=256 , _lowerCAmelCase : Any=1280 , _lowerCAmelCase : Dict=768 , _lowerCAmelCase : List[str]=1 , _lowerCAmelCase : Optional[int]=26 , _lowerCAmelCase : Any=8 , _lowerCAmelCase : Any=8 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : List[Any]="kv" , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : int=1 , _lowerCAmelCase : Dict="gelu" , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : List[str]=0.02 , _lowerCAmelCase : Any=1e-12 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : int=262 , _lowerCAmelCase : int=2048 , _lowerCAmelCase : int=56 , _lowerCAmelCase : List[Any]=[368, 496] , _lowerCAmelCase : List[Any]=16 , _lowerCAmelCase : Any=1920 , _lowerCAmelCase : Optional[int]=16 , _lowerCAmelCase : List[Any]=[1, 16, 224, 224] , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(**_lowerCAmelCase ) A = num_latents A = d_latents A = d_model A = num_blocks A = num_self_attends_per_block A = num_self_attention_heads A = num_cross_attention_heads A = qk_channels A = v_channels A = cross_attention_shape_for_attention A = self_attention_widening_factor A = cross_attention_widening_factor A = hidden_act A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = use_query_residual # masked language modeling attributes A = vocab_size A = max_position_embeddings # image classification attributes A = image_size # flow attributes A = train_size # multimodal autoencoding attributes A = num_frames A = audio_samples_per_frame A = samples_per_patch A = output_shape class __UpperCAmelCase ( A__ ): '''simple docstring''' @property def A (self : List[str] ): if self.task == "multiple-choice": A = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] ) @property def A (self : Dict ): return 1e-4 def A (self : List[Any] , _lowerCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 40 , _lowerCAmelCase : int = 40 , ): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A = preprocessor.num_special_tokens_to_add(_lowerCAmelCase ) A = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence A = [""" """.join(["""a"""] ) * seq_length] * batch_size A = dict(preprocessor(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) A = inputs.pop("""input_ids""" ) return inputs elif isinstance(_lowerCAmelCase , _lowerCAmelCase ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A = compute_effective_axis_dimension(_lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch ) A = self._generate_dummy_images(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) A = dict(preprocessor(images=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) A = inputs.pop("""pixel_values""" ) return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""" )
337
0
'''simple docstring''' def __a ( UpperCAmelCase = 4000000 ) ->int: """simple docstring""" A = [] A , A = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(UpperCAmelCase ) A , A = b, a + b return sum(UpperCAmelCase ) if __name__ == "__main__": print(f"{solution() = }")
367
'''simple docstring''' import math class __UpperCAmelCase : '''simple docstring''' def __init__(self : int , _lowerCAmelCase : List[Any]=0 ): # a graph with Node 0,1,...,N-1 A = n A = [ [math.inf for j in range(0 , _lowerCAmelCase )] for i in range(0 , _lowerCAmelCase ) ] # adjacency matrix for weight A = [ [math.inf for j in range(0 , _lowerCAmelCase )] for i in range(0 , _lowerCAmelCase ) ] # dp[i][j] stores minimum distance from i to j def A (self : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ): A = w def A (self : Union[str, Any] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): A = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def A (self : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ): return self.dp[u][v] if __name__ == "__main__": _lowerCamelCase : str = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
337
0
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : str=7 , _lowerCAmelCase : Optional[Any]=3 , _lowerCAmelCase : Union[str, Any]=18 , _lowerCAmelCase : Optional[Any]=30 , _lowerCAmelCase : List[str]=400 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Any=None , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[int]=[0.5, 0.5, 0.5] , _lowerCAmelCase : Dict=[0.5, 0.5, 0.5] , ): A = size if size is not None else {"""height""": 18, """width""": 18} A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size A = do_normalize A = image_mean A = image_std def A (self : Any ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = DPTImageProcessor if is_vision_available() else None def A (self : List[str] ): A = DPTImageProcessingTester(self ) @property def A (self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def A (self : List[Any] ): A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """image_std""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """size""" ) ) def A (self : List[str] ): A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) A = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def A (self : List[str] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched A = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def A (self : List[Any] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched A = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def A (self : Optional[int] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched A = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
368
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : int = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _lowerCamelCase : List[str] = { 'vocab_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json', }, 'merges_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt', }, 'tokenizer_file': { 'Salesforce/codegen-350M-mono': ( 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json' ), }, } _lowerCamelCase : List[str] = { 'Salesforce/codegen-350M-mono': 2048, } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ['''input_ids''', '''attention_mask'''] __lowerCAmelCase = CodeGenTokenizer def __init__(self : int , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Optional[Any]="<|endoftext|>" , _lowerCAmelCase : Dict="<|endoftext|>" , _lowerCAmelCase : Dict="<|endoftext|>" , _lowerCAmelCase : Any=False , **_lowerCAmelCase : Optional[int] , ): super().__init__( _lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , unk_token=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , **_lowerCAmelCase , ) if kwargs.pop("""add_bos_token""" , _lowerCAmelCase ): A = kwargs.pop("""name_or_path""" , """""" ) raise ValueError( """Currenty GPT2's fast tokenizer does NOT support adding a BOS token.""" """Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n""" F"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" F"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" """This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.""" """ so that the fast tokenizer works correctly.""" ) A = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , _lowerCAmelCase ) != add_prefix_space: A = getattr(_lowerCAmelCase , pre_tok_state.pop("""type""" ) ) A = add_prefix_space A = pre_tok_class(**_lowerCAmelCase ) A = add_prefix_space def A (self : int , *_lowerCAmelCase : int , **_lowerCAmelCase : List[Any] ): A = kwargs.get("""is_split_into_words""" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def A (self : Dict , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Optional[Any] ): A = kwargs.get("""is_split_into_words""" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def A (self : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): A = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def A (self : Tuple , _lowerCAmelCase : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = None , _lowerCAmelCase : Optional[List[str]] = None , **_lowerCAmelCase : Tuple , ): A = super().decode( token_ids=_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase , **_lowerCAmelCase , ) if truncate_before_pattern is not None and len(_lowerCAmelCase ) > 0: A = self.truncate(_lowerCAmelCase , _lowerCAmelCase ) return decoded_text def A (self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] ): def find_re(_lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple ): A = pattern.search(_lowerCAmelCase , _lowerCAmelCase ) return m.start() if m else -1 A = [re.compile(_lowerCAmelCase , re.MULTILINE ) for pattern in truncate_before_pattern] A = list(re.finditer("""^print""" , _lowerCAmelCase , re.MULTILINE ) ) if len(_lowerCAmelCase ) > 1: A = completion[: prints[1].start()] A = list(re.finditer("""^def""" , _lowerCAmelCase , re.MULTILINE ) ) if len(_lowerCAmelCase ) > 1: A = completion[: defs[1].start()] A = 0 A = [ pos for pos in [find_re(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for terminal in terminals] if pos != -1 ] if len(_lowerCAmelCase ) > 0: return completion[: min(_lowerCAmelCase )] else: return completion
337
0
def __a ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" while a != 0: A , A = b % a, a return b def __a ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" if gcd(UpperCAmelCase , UpperCAmelCase ) != 1: A = f"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(UpperCAmelCase ) A , A , A = 1, 0, a A , A , A = 0, 1, m while va != 0: A = ua // va A , A , A , A , A , A = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
369
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Optional[Any] = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[str] = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _lowerCamelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
337
0
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = ['''image_processor'''] __lowerCAmelCase = '''SamImageProcessor''' def __init__(self : Optional[Any] , _lowerCAmelCase : Dict ): super().__init__(_lowerCAmelCase ) A = self.image_processor A = -10 A = self.image_processor.size["""longest_edge"""] def __call__(self : Optional[Any] , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , **_lowerCAmelCase : Union[str, Any] , ): A = self.image_processor( _lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) # pop arguments that are not used in the foward but used nevertheless A = encoding_image_processor["""original_sizes"""] if hasattr(_lowerCAmelCase , """numpy""" ): # Checks if Torch or TF tensor A = original_sizes.numpy() A , A , A = self._check_and_preprocess_points( input_points=_lowerCAmelCase , input_labels=_lowerCAmelCase , input_boxes=_lowerCAmelCase , ) A = self._normalize_and_convert( _lowerCAmelCase , _lowerCAmelCase , input_points=_lowerCAmelCase , input_labels=_lowerCAmelCase , input_boxes=_lowerCAmelCase , return_tensors=_lowerCAmelCase , ) return encoding_image_processor def A (self : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str=None , _lowerCAmelCase : str=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : List[str]="pt" , ): if input_points is not None: if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): A = [ self._normalize_coordinates(self.target_size , _lowerCAmelCase , original_sizes[0] ) for point in input_points ] else: A = [ self._normalize_coordinates(self.target_size , _lowerCAmelCase , _lowerCAmelCase ) for point, original_size in zip(_lowerCAmelCase , _lowerCAmelCase ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: A , A = self._pad_points_and_labels(_lowerCAmelCase , _lowerCAmelCase ) A = np.array(_lowerCAmelCase ) if input_labels is not None: A = np.array(_lowerCAmelCase ) if input_boxes is not None: if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): A = [ self._normalize_coordinates(self.target_size , _lowerCAmelCase , original_sizes[0] , is_bounding_box=_lowerCAmelCase ) for box in input_boxes ] else: A = [ self._normalize_coordinates(self.target_size , _lowerCAmelCase , _lowerCAmelCase , is_bounding_box=_lowerCAmelCase ) for box, original_size in zip(_lowerCAmelCase , _lowerCAmelCase ) ] A = np.array(_lowerCAmelCase ) if input_boxes is not None: if return_tensors == "pt": A = torch.from_numpy(_lowerCAmelCase ) # boxes batch size of 1 by default A = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": A = tf.convert_to_tensor(_lowerCAmelCase ) # boxes batch size of 1 by default A = tf.expand_dims(_lowerCAmelCase , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes} ) if input_points is not None: if return_tensors == "pt": A = torch.from_numpy(_lowerCAmelCase ) # point batch size of 1 by default A = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": A = tf.convert_to_tensor(_lowerCAmelCase ) # point batch size of 1 by default A = tf.expand_dims(_lowerCAmelCase , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points} ) if input_labels is not None: if return_tensors == "pt": A = torch.from_numpy(_lowerCAmelCase ) # point batch size of 1 by default A = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": A = tf.convert_to_tensor(_lowerCAmelCase ) # point batch size of 1 by default A = tf.expand_dims(_lowerCAmelCase , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels} ) return encoding_image_processor def A (self : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] ): A = max([point.shape[0] for point in input_points] ) A = [] for i, point in enumerate(_lowerCAmelCase ): if point.shape[0] != expected_nb_points: A = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) A = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(_lowerCAmelCase ) A = processed_input_points return input_points, input_labels def A (self : Dict , _lowerCAmelCase : int , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict=False ): A , A = original_size A , A = self.image_processor._get_preprocess_shape(_lowerCAmelCase , longest_edge=_lowerCAmelCase ) A = deepcopy(_lowerCAmelCase ).astype(_lowerCAmelCase ) if is_bounding_box: A = coords.reshape(-1 , 2 , 2 ) A = coords[..., 0] * (new_w / old_w) A = coords[..., 1] * (new_h / old_h) if is_bounding_box: A = coords.reshape(-1 , 4 ) return coords def A (self : Any , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Dict=None , ): if input_points is not None: if hasattr(_lowerCAmelCase , """numpy""" ): # Checks for TF or Torch tensor A = input_points.numpy().tolist() if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not isinstance(input_points[0] , _lowerCAmelCase ): raise ValueError("""Input points must be a list of list of floating points.""" ) A = [np.array(_lowerCAmelCase ) for input_point in input_points] else: A = None if input_labels is not None: if hasattr(_lowerCAmelCase , """numpy""" ): A = input_labels.numpy().tolist() if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not isinstance(input_labels[0] , _lowerCAmelCase ): raise ValueError("""Input labels must be a list of list integers.""" ) A = [np.array(_lowerCAmelCase ) for label in input_labels] else: A = None if input_boxes is not None: if hasattr(_lowerCAmelCase , """numpy""" ): A = input_boxes.numpy().tolist() if ( not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not isinstance(input_boxes[0] , _lowerCAmelCase ) or not isinstance(input_boxes[0][0] , _lowerCAmelCase ) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""" ) A = [np.array(_lowerCAmelCase ).astype(np.floataa ) for box in input_boxes] else: A = None return input_points, input_labels, input_boxes @property def A (self : Tuple ): A = self.image_processor.model_input_names return list(dict.fromkeys(_lowerCAmelCase ) ) def A (self : Tuple , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Any ): return self.image_processor.post_process_masks(*_lowerCAmelCase , **_lowerCAmelCase )
370
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def A (self : Optional[Any] ): A = torch.nn.Linear(10 , 10 ) A = torch.optim.SGD(model.parameters() , 0.1 ) A = Accelerator() A = accelerator.prepare(_lowerCAmelCase ) try: pickle.loads(pickle.dumps(_lowerCAmelCase ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
337
0
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__(self : Union[str, Any] ): super().__init__() A = nn.Linear(3 , 4 ) A = nn.BatchNormad(4 ) A = nn.Linear(4 , 5 ) def A (self : Dict , _lowerCAmelCase : str ): return self.lineara(self.batchnorm(self.lineara(_lowerCAmelCase ) ) ) class __UpperCAmelCase ( A__ ): '''simple docstring''' def A (self : Union[str, Any] , _lowerCAmelCase : List[str] , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : List[Any] ): return (args[0] + 1,) + args[1:], kwargs class __UpperCAmelCase ( A__ ): '''simple docstring''' def A (self : List[str] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] ): return output + 1 class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def A (self : Union[str, Any] ): A = ModelForTest() A = ModelHook() add_hook_to_module(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(test_model._hf_hook , _lowerCAmelCase ) self.assertTrue(hasattr(_lowerCAmelCase , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(_lowerCAmelCase ) self.assertFalse(hasattr(_lowerCAmelCase , """_hf_hook""" ) ) self.assertFalse(hasattr(_lowerCAmelCase , """_old_forward""" ) ) def A (self : List[Any] ): A = ModelForTest() A = ModelHook() add_hook_to_module(_lowerCAmelCase , _lowerCAmelCase ) add_hook_to_module(_lowerCAmelCase , _lowerCAmelCase , append=_lowerCAmelCase ) self.assertEqual(isinstance(test_model._hf_hook , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(_lowerCAmelCase , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(_lowerCAmelCase ) self.assertFalse(hasattr(_lowerCAmelCase , """_hf_hook""" ) ) self.assertFalse(hasattr(_lowerCAmelCase , """_old_forward""" ) ) def A (self : List[Any] ): A = ModelForTest() A = torch.randn(2 , 3 ) A = test_model(x + 1 ) A = test_model(x + 2 ) A = PreForwardHook() add_hook_to_module(_lowerCAmelCase , _lowerCAmelCase ) A = test_model(_lowerCAmelCase ) self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain A = PreForwardHook() add_hook_to_module(_lowerCAmelCase , _lowerCAmelCase ) A = test_model(_lowerCAmelCase ) self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks A = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(_lowerCAmelCase , _lowerCAmelCase ) A = test_model(_lowerCAmelCase ) assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-5 ) def A (self : List[str] ): A = ModelForTest() A = torch.randn(2 , 3 ) A = test_model(_lowerCAmelCase ) A = PostForwardHook() add_hook_to_module(_lowerCAmelCase , _lowerCAmelCase ) A = test_model(_lowerCAmelCase ) self.assertTrue(torch.allclose(_lowerCAmelCase , output + 1 , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain A = PostForwardHook() add_hook_to_module(_lowerCAmelCase , _lowerCAmelCase ) A = test_model(_lowerCAmelCase ) self.assertTrue(torch.allclose(_lowerCAmelCase , output + 1 , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks A = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(_lowerCAmelCase , _lowerCAmelCase ) A = test_model(_lowerCAmelCase ) assert torch.allclose(_lowerCAmelCase , output + 2 , atol=1e-5 ) def A (self : Optional[int] ): A = ModelForTest() A = torch.randn(2 , 3 ) A = test_model(_lowerCAmelCase ) A = PostForwardHook() add_hook_to_module(_lowerCAmelCase , _lowerCAmelCase ) A = test_model(_lowerCAmelCase ) self.assertTrue(torch.allclose(_lowerCAmelCase , output + 1 ) ) self.assertTrue(outputa.requires_grad ) A = True A = test_model(_lowerCAmelCase ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def A (self : List[str] ): A = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device A = torch.randn(2 , 3 ) A = model(_lowerCAmelCase ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(_lowerCAmelCase , AlignDevicesHook(io_same_device=_lowerCAmelCase ) ) A = torch.randn(2 , 3 ).to(0 ) A = model(_lowerCAmelCase ) self.assertEqual(output.device , torch.device(0 ) ) def A (self : Union[str, Any] ): A = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices A = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**_lowerCAmelCase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowerCAmelCase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowerCAmelCase ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device A = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , _lowerCAmelCase ) A = torch.randn(2 , 3 ) A = model(_lowerCAmelCase ) self.assertEqual(output.device , _lowerCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload A = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**_lowerCAmelCase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowerCAmelCase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowerCAmelCase ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) A = torch.randn(2 , 3 ) A = model(_lowerCAmelCase ) self.assertEqual(output.device , _lowerCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A (self : int ): A = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices A = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(_lowerCAmelCase , execution_device=_lowerCAmelCase , offload=_lowerCAmelCase ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device A = torch.device(_lowerCAmelCase ) self.assertEqual(model.batchnorm.running_mean.device , _lowerCAmelCase ) A = torch.randn(2 , 3 ) A = model(_lowerCAmelCase ) self.assertEqual(output.device , _lowerCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowerCAmelCase ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(_lowerCAmelCase , execution_device=_lowerCAmelCase , offload=_lowerCAmelCase , offload_buffers=_lowerCAmelCase ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) A = torch.randn(2 , 3 ) A = model(_lowerCAmelCase ) self.assertEqual(output.device , _lowerCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowerCAmelCase ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A (self : List[Any] ): A = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices A = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( _lowerCAmelCase , execution_device=_lowerCAmelCase , offload=_lowerCAmelCase , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device A = torch.device(_lowerCAmelCase ) self.assertEqual(model.batchnorm.running_mean.device , _lowerCAmelCase ) A = torch.randn(2 , 3 ) A = model(_lowerCAmelCase ) self.assertEqual(output.device , _lowerCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowerCAmelCase ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( _lowerCAmelCase , execution_device=_lowerCAmelCase , offload=_lowerCAmelCase , weights_map=model.state_dict() , offload_buffers=_lowerCAmelCase , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) A = torch.randn(2 , 3 ) A = model(_lowerCAmelCase ) self.assertEqual(output.device , _lowerCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowerCAmelCase ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
371
'''simple docstring''' from ..utils import DummyObject, requires_backends class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Tuple , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Dict ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Optional[int] , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Any ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : List[str] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : str ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : List[str] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : int ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : List[Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : str ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : List[str] , *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : List[Any] ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Union[str, Any] , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : int ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Any , *_lowerCAmelCase : str , **_lowerCAmelCase : Union[str, Any] ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : List[Any] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Union[str, Any] ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : List[str] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Any ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Optional[int] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Dict ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Union[str, Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : List[str] ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Union[str, Any] , *_lowerCAmelCase : Any , **_lowerCAmelCase : str ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Optional[Any] , *_lowerCAmelCase : int , **_lowerCAmelCase : Any ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Dict , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : int ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' __lowerCAmelCase = ['''torch''', '''transformers''', '''onnx'''] def __init__(self : Dict , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Optional[int] ): requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Dict , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Any ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def A (cls : Optional[Any] , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Tuple ): requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
337
0
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: if len(_lowercase ) == 0: return False UpperCAmelCase : List[Any] = len(_lowercase ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , _lowercase ) else: return binary_search(a_list[midpoint + 1 :] , _lowercase ) if __name__ == "__main__": a : List[str] = input("""Enter numbers separated by comma:\n""").strip() a : Dict = [int(item.strip()) for item in user_input.split(""",""")] a : List[str] = int(input("""Enter the number to be found in the list:\n""").strip()) a : Dict = """""" if binary_search(sequence, target) else """not """ print(F'''{target} was {not_str}found in {sequence}''')
338
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A = None , A = None , A = False , **A , ) -> Tuple: super().__init__(features=A , cache_dir=A , keep_in_memory=A , **A ) UpperCAmelCase : Any = Sql( cache_dir=A , features=A , sql=A , con=A , **A , ) def _lowercase( self ) -> Dict: UpperCAmelCase : Any = None UpperCAmelCase : Any = None UpperCAmelCase : int = None UpperCAmelCase : int = None self.builder.download_and_prepare( download_config=A , download_mode=A , verification_mode=A , base_path=A , ) # Build dataset for splits UpperCAmelCase : str = self.builder.as_dataset( split="""train""" , verification_mode=A , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase_ : def __init__( self , A , A , A , A = None , A = None , **A , ) -> str: if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) UpperCAmelCase : Dict = dataset UpperCAmelCase : List[Any] = name UpperCAmelCase : Any = con UpperCAmelCase : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase : Optional[Any] = num_proc UpperCAmelCase : str = to_sql_kwargs def _lowercase( self ) -> int: UpperCAmelCase : Any = self.to_sql_kwargs.pop("""sql""" , A ) UpperCAmelCase : str = self.to_sql_kwargs.pop("""con""" , A ) UpperCAmelCase : Union[str, Any] = self.to_sql_kwargs.pop("""index""" , A ) UpperCAmelCase : str = self._write(index=A , **self.to_sql_kwargs ) return written def _lowercase( self , A ) -> Any: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = args UpperCAmelCase : Union[str, Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs UpperCAmelCase : int = query_table( table=self.dataset.data , key=slice(A , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCAmelCase : Any = batch.to_pandas() UpperCAmelCase : List[Any] = df.to_sql(self.name , self.con , index=A , **A ) return num_rows or len(A ) def _lowercase( self , A , **A ) -> int: UpperCAmelCase : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: UpperCAmelCase , UpperCAmelCase : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , A , A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
338
1
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def __lowerCamelCase ( _lowercase , _lowercase = True , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = False , _lowercase = 1_0_0 , _lowercase = 0.01 , _lowercase = 1 , ) -> Any: UpperCAmelCase : Any = False UpperCAmelCase : Optional[int] = search_prob UpperCAmelCase : int = start_temperate UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : str = None while not search_end: UpperCAmelCase : int = current_state.score() if best_state is None or current_score > best_state.score(): UpperCAmelCase : Optional[Any] = current_state scores.append(_lowercase ) iterations += 1 UpperCAmelCase : Optional[Any] = None UpperCAmelCase : Optional[Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCAmelCase : str = random.randint(0 , len(_lowercase ) - 1 ) # picking a random neighbor UpperCAmelCase : Optional[int] = neighbors.pop(_lowercase ) UpperCAmelCase : Optional[Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCAmelCase : List[str] = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCAmelCase : int = picked_neighbor else: UpperCAmelCase : Dict = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCAmelCase : List[str] = picked_neighbor UpperCAmelCase : Any = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCAmelCase : int = True else: UpperCAmelCase : Dict = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_lowercase ) , _lowercase ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def __lowerCamelCase ( _lowercase , _lowercase ) -> Dict: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a : Optional[int] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Optional[int] = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) a : List[str] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : int = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Any: return (3 * x**2) - (6 * y) a : str = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' ) a : Any = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Optional[Any] = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' )
338
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCamelCase_ : lowercase = MBartConfig lowercase = {} lowercase = 'gelu' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : str = is_training UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Optional[Any] = eos_token_id UpperCAmelCase : List[str] = pad_token_id UpperCAmelCase : List[Any] = bos_token_id def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A ) return config, inputs_dict def _lowercase( self , A , A ) -> List[str]: UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder() UpperCAmelCase : int = inputs_dict["""input_ids"""] UpperCAmelCase : str = input_ids[:1, :] UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase : List[str] = inputs_dict["""head_mask"""] UpperCAmelCase : List[Any] = 1 # first forward pass UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = outputs.to_tuple() UpperCAmelCase : int = past_key_values[1] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]: if attention_mask is None: UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False def _lowercase( self , A , A , A , A , A ) -> int: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : int = TFMBartModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A ) def _lowercase( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase( self ) -> Dict: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_sentencepiece @require_tokenizers @require_tf class UpperCamelCase_ ( unittest.TestCase ): lowercase = [ ' UN Chief Says There Is No Military Solution in Syria', ] lowercase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] lowercase = 'facebook/mbart-large-en-ro' @cached_property def _lowercase( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowercase( self , **A ) -> Any: UpperCAmelCase : Optional[int] = self.translate_src_text(**A ) self.assertListEqual(self.expected_text , A ) def _lowercase( self , **A ) -> Optional[Any]: UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" ) UpperCAmelCase : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A ) return generated_words @slow def _lowercase( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
338
1
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer a : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name a : int = """ Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") >>> repo = \"openai/shap-e-img2img\" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\" >>> image = load_image(image_url).convert(\"RGB\") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\") ``` """ @dataclass class UpperCamelCase_ ( __magic_name__ ): lowercase = 42 class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A , A , ) -> Union[str, Any]: super().__init__() self.register_modules( prior=A , image_encoder=A , image_processor=A , scheduler=A , renderer=A , ) def _lowercase( self , A , A , A , A , A , A ) -> Any: if latents is None: UpperCAmelCase : Optional[Any] = randn_tensor(A , generator=A , device=A , dtype=A ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) UpperCAmelCase : Union[str, Any] = latents.to(A ) UpperCAmelCase : Any = latents * scheduler.init_noise_sigma return latents def _lowercase( self , A=0 ) -> Optional[int]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) UpperCAmelCase : Union[str, Any] = torch.device(f'''cuda:{gpu_id}''' ) UpperCAmelCase : Dict = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A , A ) @property def _lowercase( self ) -> str: if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(A , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def _lowercase( self , A , A , A , A , ) -> Optional[Any]: if isinstance(A , A ) and isinstance(image[0] , torch.Tensor ): UpperCAmelCase : Union[str, Any] = torch.cat(A , axis=0 ) if image[0].ndim == 4 else torch.stack(A , axis=0 ) if not isinstance(A , torch.Tensor ): UpperCAmelCase : Optional[Any] = self.image_processor(A , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) UpperCAmelCase : List[Any] = image.to(dtype=self.image_encoder.dtype , device=A ) UpperCAmelCase : Optional[int] = self.image_encoder(A )["""last_hidden_state"""] UpperCAmelCase : Tuple = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 UpperCAmelCase : Tuple = image_embeds.repeat_interleave(A , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase : Optional[int] = torch.zeros_like(A ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase : Any = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(A ) def __call__( self , A , A = 1 , A = 25 , A = None , A = None , A = 4.0 , A = 64 , A = "pil" , A = True , ) -> str: if isinstance(A , PIL.Image.Image ): UpperCAmelCase : Union[str, Any] = 1 elif isinstance(A , torch.Tensor ): UpperCAmelCase : Any = image.shape[0] elif isinstance(A , A ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): UpperCAmelCase : Any = len(A ) else: raise ValueError( f'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(A )}''' ) UpperCAmelCase : Tuple = self._execution_device UpperCAmelCase : str = batch_size * num_images_per_prompt UpperCAmelCase : Optional[int] = guidance_scale > 1.0 UpperCAmelCase : int = self._encode_image(A , A , A , A ) # prior self.scheduler.set_timesteps(A , device=A ) UpperCAmelCase : Union[str, Any] = self.scheduler.timesteps UpperCAmelCase : Optional[Any] = self.prior.config.num_embeddings UpperCAmelCase : int = self.prior.config.embedding_dim UpperCAmelCase : Optional[Any] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , A , A , A , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim UpperCAmelCase : Dict = latents.reshape(latents.shape[0] , A , A ) for i, t in enumerate(self.progress_bar(A ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase : str = self.scheduler.scale_model_input(A , A ) UpperCAmelCase : int = self.prior( A , timestep=A , proj_embedding=A , ).predicted_image_embedding # remove the variance UpperCAmelCase , UpperCAmelCase : Optional[Any] = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: UpperCAmelCase , UpperCAmelCase : Dict = noise_pred.chunk(2 ) UpperCAmelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) UpperCAmelCase : Tuple = self.scheduler.step( A , timestep=A , sample=A , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=A ) UpperCAmelCase : Union[str, Any] = [] for i, latent in enumerate(A ): print() UpperCAmelCase : List[str] = self.renderer.decode( latent[None, :] , A , size=A , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(A ) UpperCAmelCase : Any = torch.stack(A ) if output_type not in ["np", "pil"]: raise ValueError(f'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) UpperCAmelCase : Dict = images.cpu().numpy() if output_type == "pil": UpperCAmelCase : Optional[int] = [self.numpy_to_pil(A ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=A )
338
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: UpperCAmelCase : Tuple = len(_lowercase ) + 1 UpperCAmelCase : List[Any] = len(_lowercase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase : str = [[0 for i in range(_lowercase )] for j in range(_lowercase )] # since string of zero length match pattern of zero length UpperCAmelCase : int = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowercase ): UpperCAmelCase : str = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowercase ): UpperCAmelCase : Optional[Any] = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowercase ): for j in range(1 , _lowercase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase : Union[str, Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase : List[Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase : Optional[int] = dp[i - 1][j] else: UpperCAmelCase : Any = 0 else: UpperCAmelCase : str = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") a : List[str] = """aab""" a : Optional[int] = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
338
1
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( _lowercase ) -> list[int]: return [ord(_lowercase ) - 9_6 for elem in plain] def __lowerCamelCase ( _lowercase ) -> str: return "".join(chr(elem + 9_6 ) for elem in encoded ) def __lowerCamelCase ( ) -> None: UpperCAmelCase : int = encode(input("""-> """ ).strip().lower() ) print("""Encoded: """ , _lowercase ) print("""Decoded:""" , decode(_lowercase ) ) if __name__ == "__main__": main()
338
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : List[str] = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int: UpperCAmelCase : int = 1 UpperCAmelCase : str = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase : Tuple = pre_numerator UpperCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase : Union[str, Any] = cur_numerator UpperCAmelCase : Optional[int] = e_cont * pre_numerator + temp return sum_digits(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
338
1
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( _lowercase , _lowercase ) -> int: if len(_lowercase ) < k or k < 0: raise ValueError("""Invalid Input""" ) UpperCAmelCase : Optional[Any] = sum(array[:k] ) for i in range(len(_lowercase ) - k ): UpperCAmelCase : Union[str, Any] = current_sum - array[i] + array[i + k] UpperCAmelCase : Optional[int] = max(_lowercase , _lowercase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() a : List[Any] = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0_0)] a : Optional[int] = randint(0, 1_1_0) print(F'''The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}''')
338
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=0.0_1 , A=1000 ) -> List[str]: UpperCAmelCase : List[Any] = p_stop UpperCAmelCase : Optional[int] = max_length def __iter__( self ) -> Union[str, Any]: UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = False while not stop and count < self.max_length: yield count count += 1 UpperCAmelCase : Any = random.random() < self.p_stop class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A , A=False , A=True ) -> Union[str, Any]: UpperCAmelCase : List[str] = [ BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A ) for i in range(2 ) ] UpperCAmelCase : List[str] = [list(A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] ) self.assertListEqual(A , A ) def _lowercase( self ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is very small. UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [[], []] self.check_batch_sampler_shards(A , A ) def _lowercase( self ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A ) def _lowercase( self ) -> Any: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : str = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [[], []] self.check_batch_sampler_shards(A , A , even_batches=A ) def _lowercase( self ) -> List[Any]: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCAmelCase : List[str] = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _lowercase( self , A , A , A , A=False , A=2 , A=False ) -> Tuple: random.seed(A ) UpperCAmelCase : Dict = list(A ) UpperCAmelCase : Any = [ IterableDatasetShard( A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , ) for i in range(A ) ] UpperCAmelCase : Dict = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(A ) iterable_dataset_lists.append(list(A ) ) UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCAmelCase : List[Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(A ) , len(A ) ) self.assertTrue(len(A ) % shard_batch_size == 0 ) UpperCAmelCase : List[Any] = [] for idx in range(0 , len(A ) , A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(A ) < len(A ): reference += reference self.assertListEqual(A , reference[: len(A )] ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = 42 UpperCAmelCase : List[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) # Edge case with a very small dataset UpperCAmelCase : List[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = SkipBatchSampler(A , 2 ) self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> int: UpperCAmelCase : Any = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) UpperCAmelCase : Optional[Any] = skip_first_batches(A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowercase( self ) -> Dict: Accelerator() UpperCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
338
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor a : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , **A ) -> None: warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , A , ) super().__init__(*A , **A )
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[Any] = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
'''simple docstring''' import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __lowerCamelCase ( _lowercase ) -> Optional[Any]: UpperCAmelCase : Any = {} UpperCAmelCase : Optional[int] = tokenizer(example["""content"""] , truncation=_lowercase )["""input_ids"""] UpperCAmelCase : Optional[int] = len(example["""content"""] ) / len(output["""input_ids"""] ) return output a : List[Any] = HfArgumentParser(PretokenizationArguments) a : Any = parser.parse_args() if args.num_workers is None: a : List[str] = multiprocessing.cpu_count() a : int = AutoTokenizer.from_pretrained(args.tokenizer_dir) a : Optional[int] = time.time() a : int = load_dataset(args.dataset_name, split="""train""") print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') a : Optional[Any] = time.time() a : Union[str, Any] = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') a : str = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
338
'''simple docstring''' from math import loga def __lowerCamelCase ( _lowercase ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_lowercase , _lowercase ): raise TypeError("""Input value must be a 'int' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
338
1
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> int: assert column_title.isupper() UpperCAmelCase : Dict = 0 UpperCAmelCase : Tuple = len(_lowercase ) - 1 UpperCAmelCase : Tuple = 0 while index >= 0: UpperCAmelCase : Optional[int] = (ord(column_title[index] ) - 6_4) * pow(2_6 , _lowercase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
338
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. a : Optional[int] = 1_0 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: for i in range(_lowercase , _lowercase ): if array[i] == target: return i return -1 def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = len(_lowercase ) while left <= right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1 UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase : Any = one_third - 1 elif array[two_third] < target: UpperCAmelCase : Tuple = two_third + 1 else: UpperCAmelCase : int = one_third + 1 UpperCAmelCase : List[Any] = two_third - 1 else: return -1 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: if left < right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : str = (left + right) // 3 + 1 UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() a : Any = input("""Enter numbers separated by comma:\n""").strip() a : Any = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip()) a : Union[str, Any] = ite_ternary_search(collection, target) a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
338
1
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class UpperCamelCase_ ( __magic_name__ ): lowercase = 42 lowercase = None def __lowerCamelCase ( _lowercase , _lowercase=0.999 , _lowercase="cosine" , ) -> str: if alpha_transform_type == "cosine": def alpha_bar_fn(_lowercase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowercase ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) UpperCAmelCase : Dict = [] for i in range(_lowercase ): UpperCAmelCase : Union[str, Any] = i / num_diffusion_timesteps UpperCAmelCase : Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowercase ) / alpha_bar_fn(_lowercase ) , _lowercase ) ) return torch.tensor(_lowercase , dtype=torch.floataa ) class UpperCamelCase_ ( __magic_name__ , __magic_name__ ): @register_to_config def __init__( self , A = 1000 , A = "fixed_small_log" , A = True , A = 1.0 , A = "epsilon" , A = "squaredcos_cap_v2" , ) -> Any: if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" ) UpperCAmelCase : Tuple = betas_for_alpha_bar(A ) UpperCAmelCase : Tuple = 1.0 - self.betas UpperCAmelCase : Optional[int] = torch.cumprod(self.alphas , dim=0 ) UpperCAmelCase : Dict = torch.tensor(1.0 ) # standard deviation of the initial noise distribution UpperCAmelCase : str = 1.0 # setable values UpperCAmelCase : Any = None UpperCAmelCase : Any = torch.from_numpy(np.arange(0 , A )[::-1].copy() ) UpperCAmelCase : Union[str, Any] = variance_type def _lowercase( self , A , A = None ) -> torch.FloatTensor: return sample def _lowercase( self , A , A = None ) -> Optional[Any]: UpperCAmelCase : List[Any] = num_inference_steps UpperCAmelCase : Dict = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) UpperCAmelCase : int = (np.arange(0 , A ) * step_ratio).round()[::-1].copy().astype(np.intaa ) UpperCAmelCase : Union[str, Any] = torch.from_numpy(A ).to(A ) def _lowercase( self , A , A=None , A=None , A=None ) -> int: if prev_timestep is None: UpperCAmelCase : int = t - 1 UpperCAmelCase : int = self.alphas_cumprod[t] UpperCAmelCase : List[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase : Dict = 1 - alpha_prod_t UpperCAmelCase : Union[str, Any] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase : Optional[Any] = self.betas[t] else: UpperCAmelCase : Optional[Any] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase : str = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: UpperCAmelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": UpperCAmelCase : Dict = torch.log(torch.clamp(A , min=1e-20 ) ) UpperCAmelCase : List[str] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler UpperCAmelCase : Union[str, Any] = variance.log() UpperCAmelCase : Optional[int] = beta.log() UpperCAmelCase : Optional[Any] = (predicted_variance + 1) / 2 UpperCAmelCase : Dict = frac * max_log + (1 - frac) * min_log return variance def _lowercase( self , A , A , A , A = None , A=None , A = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: UpperCAmelCase : Optional[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": UpperCAmelCase , UpperCAmelCase : Any = torch.split(A , sample.shape[1] , dim=1 ) else: UpperCAmelCase : Optional[int] = None # 1. compute alphas, betas if prev_timestep is None: UpperCAmelCase : Dict = t - 1 UpperCAmelCase : List[Any] = self.alphas_cumprod[t] UpperCAmelCase : Union[str, Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase : int = 1 - alpha_prod_t UpperCAmelCase : Optional[int] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase : Tuple = self.betas[t] UpperCAmelCase : Union[str, Any] = self.alphas[t] else: UpperCAmelCase : Tuple = 1 - alpha_prod_t / alpha_prod_t_prev UpperCAmelCase : int = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase : Dict = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' """ for the UnCLIPScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase : Union[str, Any] = torch.clamp( A , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase : str = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t UpperCAmelCase : Optional[Any] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase : Optional[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCAmelCase : List[str] = 0 if t > 0: UpperCAmelCase : Optional[Any] = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=A , device=model_output.device ) UpperCAmelCase : Optional[Any] = self._get_variance( A , predicted_variance=A , prev_timestep=A , ) if self.variance_type == "fixed_small_log": UpperCAmelCase : Union[str, Any] = variance elif self.variance_type == "learned_range": UpperCAmelCase : Union[str, Any] = (0.5 * variance).exp() else: raise ValueError( f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' """ for the UnCLIPScheduler.""" ) UpperCAmelCase : Dict = variance * variance_noise UpperCAmelCase : List[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=A , pred_original_sample=A ) def _lowercase( self , A , A , A , ) -> torch.FloatTensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples UpperCAmelCase : Tuple = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) UpperCAmelCase : Optional[Any] = timesteps.to(original_samples.device ) UpperCAmelCase : Union[str, Any] = alphas_cumprod[timesteps] ** 0.5 UpperCAmelCase : int = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase : Tuple = sqrt_alpha_prod.unsqueeze(-1 ) UpperCAmelCase : str = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCAmelCase : List[Any] = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase : Dict = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) UpperCAmelCase : Union[str, Any] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
338
'''simple docstring''' import numpy as np class UpperCamelCase_ : def __init__( self ) -> int: UpperCAmelCase : str = (0, 0) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Any = 0 UpperCAmelCase : int = 0 UpperCAmelCase : Optional[int] = 0 def __eq__( self , A ) -> Optional[Any]: return self.position == cell.position def _lowercase( self ) -> Tuple: print(self.position ) class UpperCamelCase_ : def __init__( self , A=(5, 5) ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = np.zeros(A ) UpperCAmelCase : int = world_size[0] UpperCAmelCase : List[str] = world_size[1] def _lowercase( self ) -> List[Any]: print(self.w ) def _lowercase( self , A ) -> Dict: UpperCAmelCase : Optional[Any] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase : List[Any] = cell.position[0] UpperCAmelCase : Union[str, Any] = cell.position[1] UpperCAmelCase : Optional[int] = [] for n in neughbour_cord: UpperCAmelCase : Any = current_x + n[0] UpperCAmelCase : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase : str = Cell() UpperCAmelCase : List[str] = (x, y) UpperCAmelCase : Dict = cell neighbours.append(A ) return neighbours def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase : List[Any] = [] UpperCAmelCase : Optional[int] = [] _open.append(_lowercase ) while _open: UpperCAmelCase : Any = np.argmin([n.f for n in _open] ) UpperCAmelCase : Optional[int] = _open[min_f] _closed.append(_open.pop(_lowercase ) ) if current == goal: break for n in world.get_neigbours(_lowercase ): for c in _closed: if c == n: continue UpperCAmelCase : List[str] = current.g + 1 UpperCAmelCase , UpperCAmelCase : List[str] = n.position UpperCAmelCase , UpperCAmelCase : Dict = goal.position UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase : Dict = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_lowercase ) UpperCAmelCase : Dict = [] while current.parent is not None: path.append(current.position ) UpperCAmelCase : Optional[int] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": a : List[str] = Gridworld() # Start position and goal a : Optional[int] = Cell() a : Optional[Any] = (0, 0) a : Optional[Any] = Cell() a : str = (4, 4) print(F'''path from {start.position} to {goal.position}''') a : List[Any] = astar(world, start, goal) # Just for visual reasons. for i in s: a : Any = 1 print(world.w)
338
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[Any] = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def __lowerCamelCase ( _lowercase , _lowercase ) -> float: return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(_lowercase , _lowercase ) ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[list[float] | float]]: if dataset.ndim != value_array.ndim: UpperCAmelCase : Optional[int] = ( """Wrong input data's dimensions... """ F'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(_lowercase ) try: if dataset.shape[1] != value_array.shape[1]: UpperCAmelCase : Optional[Any] = ( """Wrong input data's shape... """ F'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(_lowercase ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("""Wrong shape""" ) if dataset.dtype != value_array.dtype: UpperCAmelCase : Optional[int] = ( """Input data have different datatype... """ F'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(_lowercase ) UpperCAmelCase : Union[str, Any] = [] for value in value_array: UpperCAmelCase : List[str] = euclidean(_lowercase , dataset[0] ) UpperCAmelCase : List[str] = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCAmelCase : Tuple = euclidean(_lowercase , _lowercase ) if dist > temp_dist: UpperCAmelCase : str = temp_dist UpperCAmelCase : List[Any] = dataset_value.tolist() answer.append([vector, dist] ) return answer def __lowerCamelCase ( _lowercase , _lowercase ) -> float: return np.dot(_lowercase , _lowercase ) / (norm(_lowercase ) * norm(_lowercase )) if __name__ == "__main__": import doctest doctest.testmod()
338
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a : int = logging.get_logger(__name__) a : int = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off a : Tuple = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] a : Optional[int] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class UpperCamelCase_ ( __magic_name__ ): lowercase = 'whisper' lowercase = ['past_key_values'] lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]: UpperCAmelCase : str = vocab_size UpperCAmelCase : Union[str, Any] = num_mel_bins UpperCAmelCase : Tuple = d_model UpperCAmelCase : Optional[int] = encoder_layers UpperCAmelCase : List[str] = encoder_attention_heads UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : int = decoder_attention_heads UpperCAmelCase : Optional[int] = decoder_ffn_dim UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : List[str] = dropout UpperCAmelCase : Optional[Any] = attention_dropout UpperCAmelCase : Optional[Any] = activation_dropout UpperCAmelCase : Optional[Any] = activation_function UpperCAmelCase : Optional[Any] = init_std UpperCAmelCase : int = encoder_layerdrop UpperCAmelCase : Dict = decoder_layerdrop UpperCAmelCase : Optional[int] = use_cache UpperCAmelCase : List[str] = encoder_layers UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Union[str, Any] = max_source_positions UpperCAmelCase : Tuple = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : List[str] = classifier_proj_size UpperCAmelCase : Optional[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : int = mask_time_prob UpperCAmelCase : int = mask_time_length UpperCAmelCase : Dict = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Optional[int] = mask_feature_length UpperCAmelCase : int = mask_feature_min_masks UpperCAmelCase : List[Any] = median_filter_width super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , ) class UpperCamelCase_ ( __magic_name__ ): @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : str = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase : List[Any] = {0: """batch"""} else: UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) return common_inputs def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Optional[int] = OrderedDict() UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , ) UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2] UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Any = super().generate_dummy_inputs( preprocessor.tokenizer , A , A , A , A ) UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" ) UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def _lowercase( self ) -> float: return 1e-3
338
1
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return "\n".join( F'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=1_0))
338
'''simple docstring''' a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowerCamelCase ( ) -> None: UpperCAmelCase : Optional[int] = input("""Enter message: """ ) UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ ) UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): UpperCAmelCase : List[str] = """encrypt""" UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase ) elif mode.lower().startswith("""d""" ): UpperCAmelCase : Tuple = """decrypt""" UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """encrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """decrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Tuple = key.upper() for symbol in message: UpperCAmelCase : Dict = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowercase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowercase ): UpperCAmelCase : Optional[int] = 0 else: translated.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": main()
338
1
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=0.0_1 , A=1000 ) -> List[str]: UpperCAmelCase : List[Any] = p_stop UpperCAmelCase : Optional[int] = max_length def __iter__( self ) -> Union[str, Any]: UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = False while not stop and count < self.max_length: yield count count += 1 UpperCAmelCase : Any = random.random() < self.p_stop class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A , A=False , A=True ) -> Union[str, Any]: UpperCAmelCase : List[str] = [ BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A ) for i in range(2 ) ] UpperCAmelCase : List[str] = [list(A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] ) self.assertListEqual(A , A ) def _lowercase( self ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is very small. UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [[], []] self.check_batch_sampler_shards(A , A ) def _lowercase( self ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A ) def _lowercase( self ) -> Any: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : str = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [[], []] self.check_batch_sampler_shards(A , A , even_batches=A ) def _lowercase( self ) -> List[Any]: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCAmelCase : List[str] = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _lowercase( self , A , A , A , A=False , A=2 , A=False ) -> Tuple: random.seed(A ) UpperCAmelCase : Dict = list(A ) UpperCAmelCase : Any = [ IterableDatasetShard( A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , ) for i in range(A ) ] UpperCAmelCase : Dict = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(A ) iterable_dataset_lists.append(list(A ) ) UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCAmelCase : List[Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(A ) , len(A ) ) self.assertTrue(len(A ) % shard_batch_size == 0 ) UpperCAmelCase : List[Any] = [] for idx in range(0 , len(A ) , A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(A ) < len(A ): reference += reference self.assertListEqual(A , reference[: len(A )] ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = 42 UpperCAmelCase : List[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) # Edge case with a very small dataset UpperCAmelCase : List[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = SkipBatchSampler(A , 2 ) self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> int: UpperCAmelCase : Any = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) UpperCAmelCase : Optional[Any] = skip_first_batches(A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowercase( self ) -> Dict: Accelerator() UpperCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
338
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Optional[int] = split_dict._to_yaml_list() assert len(_lowercase ) == len(_lowercase ) UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(_lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCAmelCase : List[str] = None # the split name of split_dict takes over the name of the split info object UpperCAmelCase : int = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name="""my_dataset""" )] ) def __lowerCamelCase ( _lowercase ) -> List[str]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files UpperCAmelCase : Optional[Any] = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
338
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : Tuple = logging.get_logger(__name__) a : Optional[int] = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'decision_transformer' lowercase = ['past_key_values'] lowercase = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , A=17 , A=4 , A=128 , A=4096 , A=True , A=1 , A=1024 , A=3 , A=1 , A=None , A="relu" , A=0.1 , A=0.1 , A=0.1 , A=1e-5 , A=0.0_2 , A=True , A=True , A=50256 , A=50256 , A=False , A=False , **A , ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = state_dim UpperCAmelCase : Optional[int] = act_dim UpperCAmelCase : Optional[Any] = hidden_size UpperCAmelCase : List[str] = max_ep_len UpperCAmelCase : Optional[Any] = action_tanh UpperCAmelCase : List[str] = vocab_size UpperCAmelCase : Union[str, Any] = n_positions UpperCAmelCase : List[str] = n_layer UpperCAmelCase : str = n_head UpperCAmelCase : Any = n_inner UpperCAmelCase : Optional[int] = activation_function UpperCAmelCase : Tuple = resid_pdrop UpperCAmelCase : List[str] = embd_pdrop UpperCAmelCase : Dict = attn_pdrop UpperCAmelCase : List[Any] = layer_norm_epsilon UpperCAmelCase : Any = initializer_range UpperCAmelCase : int = scale_attn_weights UpperCAmelCase : int = use_cache UpperCAmelCase : Any = scale_attn_by_inverse_layer_idx UpperCAmelCase : List[str] = reorder_and_upcast_attn UpperCAmelCase : List[Any] = bos_token_id UpperCAmelCase : str = eos_token_id super().__init__(bos_token_id=A , eos_token_id=A , **A )
338
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor a : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , **A ) -> None: warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , A , ) super().__init__(*A , **A )
338
1
'''simple docstring''' import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib a : Union[str, Any] = threading.Lock() a : Optional[logging.Handler] = None a : List[str] = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } a : Any = logging.WARNING a : str = True def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : Optional[Any] = os.getenv("""TRANSFORMERS_VERBOSITY""" , _lowercase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'''Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ''' F'''has to be one of: { ', '.join(log_levels.keys() ) }''' ) return _default_log_level def __lowerCamelCase ( ) -> str: return __name__.split(""".""" )[0] def __lowerCamelCase ( ) -> logging.Logger: return logging.getLogger(_get_library_name() ) def __lowerCamelCase ( ) -> None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return UpperCAmelCase : Tuple = logging.StreamHandler() # Set sys.stderr as stream. UpperCAmelCase : Any = sys.stderr.flush # Apply our default configuration to the library root logger. UpperCAmelCase : int = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) UpperCAmelCase : Union[str, Any] = False def __lowerCamelCase ( ) -> None: global _default_handler with _lock: if not _default_handler: return UpperCAmelCase : List[str] = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) UpperCAmelCase : int = None def __lowerCamelCase ( ) -> Union[str, Any]: return log_levels def __lowerCamelCase ( _lowercase = None ) -> logging.Logger: if name is None: UpperCAmelCase : List[Any] = _get_library_name() _configure_library_root_logger() return logging.getLogger(_lowercase ) def __lowerCamelCase ( ) -> int: _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def __lowerCamelCase ( _lowercase ) -> None: _configure_library_root_logger() _get_library_root_logger().setLevel(_lowercase ) def __lowerCamelCase ( ) -> Any: return set_verbosity(_lowercase ) def __lowerCamelCase ( ) -> Optional[int]: return set_verbosity(_lowercase ) def __lowerCamelCase ( ) -> int: return set_verbosity(_lowercase ) def __lowerCamelCase ( ) -> List[str]: return set_verbosity(_lowercase ) def __lowerCamelCase ( ) -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def __lowerCamelCase ( ) -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def __lowerCamelCase ( _lowercase ) -> None: _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(_lowercase ) def __lowerCamelCase ( _lowercase ) -> None: _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(_lowercase ) def __lowerCamelCase ( ) -> None: _configure_library_root_logger() UpperCAmelCase : int = False def __lowerCamelCase ( ) -> None: _configure_library_root_logger() UpperCAmelCase : Optional[int] = True def __lowerCamelCase ( ) -> None: UpperCAmelCase : str = _get_library_root_logger().handlers for handler in handlers: UpperCAmelCase : List[str] = logging.Formatter("""[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s""" ) handler.setFormatter(_lowercase ) def __lowerCamelCase ( ) -> None: UpperCAmelCase : Dict = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(_lowercase ) def __lowerCamelCase ( self , *_lowercase , **_lowercase ) -> Tuple: UpperCAmelCase : Optional[Any] = os.getenv("""TRANSFORMERS_NO_ADVISORY_WARNINGS""" , _lowercase ) if no_advisory_warnings: return self.warning(*_lowercase , **_lowercase ) a : List[Any] = warning_advice @functools.lru_cache(_lowercase ) def __lowerCamelCase ( self , *_lowercase , **_lowercase ) -> int: self.warning(*_lowercase , **_lowercase ) a : Union[str, Any] = warning_once class UpperCamelCase_ : def __init__( self , *A , **A ) -> Optional[Any]: # pylint: disable=unused-argument UpperCAmelCase : Any = args[0] if args else None def __iter__( self ) -> int: return iter(self._iterator ) def __getattr__( self , A ) -> Optional[Any]: def empty_fn(*A , **A ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ) -> List[Any]: return self def __exit__( self , A , A , A ) -> Any: return class UpperCamelCase_ : def __call__( self , *A , **A ) -> List[Any]: if _tqdm_active: return tqdm_lib.tqdm(*A , **A ) else: return EmptyTqdm(*A , **A ) def _lowercase( self , *A , **A ) -> Any: UpperCAmelCase : Any = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*A , **A ) def _lowercase( self ) -> int: if _tqdm_active: return tqdm_lib.tqdm.get_lock() a : Tuple = _tqdm_cls() def __lowerCamelCase ( ) -> bool: global _tqdm_active return bool(_tqdm_active ) def __lowerCamelCase ( ) -> Any: global _tqdm_active UpperCAmelCase : int = True hf_hub_utils.enable_progress_bars() def __lowerCamelCase ( ) -> Optional[Any]: global _tqdm_active UpperCAmelCase : Optional[int] = False hf_hub_utils.disable_progress_bars()
338
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a : Union[str, Any] = logging.get_logger(__name__) a : Union[str, Any] = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'detr' lowercase = ['past_key_values'] lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(A , A ): UpperCAmelCase : Any = backbone_config.get("""model_type""" ) UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : List[Any] = config_class.from_dict(A ) # set timm attributes to None UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = None, None, None UpperCAmelCase : Dict = use_timm_backbone UpperCAmelCase : Any = backbone_config UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : int = num_queries UpperCAmelCase : List[str] = d_model UpperCAmelCase : Tuple = encoder_ffn_dim UpperCAmelCase : Optional[Any] = encoder_layers UpperCAmelCase : Any = encoder_attention_heads UpperCAmelCase : Optional[Any] = decoder_ffn_dim UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : str = dropout UpperCAmelCase : Tuple = attention_dropout UpperCAmelCase : Dict = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : List[Any] = init_std UpperCAmelCase : str = init_xavier_std UpperCAmelCase : List[Any] = encoder_layerdrop UpperCAmelCase : int = decoder_layerdrop UpperCAmelCase : List[Any] = encoder_layers UpperCAmelCase : Union[str, Any] = auxiliary_loss UpperCAmelCase : str = position_embedding_type UpperCAmelCase : Union[str, Any] = backbone UpperCAmelCase : List[str] = use_pretrained_backbone UpperCAmelCase : Optional[int] = dilation # Hungarian matcher UpperCAmelCase : Union[str, Any] = class_cost UpperCAmelCase : Optional[Any] = bbox_cost UpperCAmelCase : List[Any] = giou_cost # Loss coefficients UpperCAmelCase : int = mask_loss_coefficient UpperCAmelCase : Optional[int] = dice_loss_coefficient UpperCAmelCase : Dict = bbox_loss_coefficient UpperCAmelCase : Any = giou_loss_coefficient UpperCAmelCase : Any = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def _lowercase( self ) -> int: return self.encoder_attention_heads @property def _lowercase( self ) -> int: return self.d_model @classmethod def _lowercase( cls , A , **A ) -> Dict: return cls(backbone_config=A , **A ) def _lowercase( self ) -> Dict[str, any]: UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase : Any = self.backbone_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowercase( self ) -> float: return 1e-5 @property def _lowercase( self ) -> int: return 12
338
1
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( _lowercase ) -> list[int]: UpperCAmelCase : List[Any] = 2 UpperCAmelCase : Any = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_lowercase ) if n > 1: factors.append(_lowercase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[str] = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = BlenderbotSmallTokenizer lowercase = False def _lowercase( self ) -> List[Any]: super().setUp() UpperCAmelCase : int = ["""__start__""", """adapt""", """act""", """ap@@""", """te""", """__end__""", """__unk__"""] UpperCAmelCase : Optional[Any] = dict(zip(A , range(len(A ) ) ) ) UpperCAmelCase : Optional[int] = ["""#version: 0.2""", """a p""", """t e</w>""", """ap t</w>""", """a d""", """ad apt</w>""", """a c""", """ac t</w>""", """"""] UpperCAmelCase : Tuple = {"""unk_token""": """__unk__""", """bos_token""": """__start__""", """eos_token""": """__end__"""} UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(A ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(A ) ) def _lowercase( self , **A ) -> Tuple: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> Any: UpperCAmelCase : Tuple = """adapt act apte""" UpperCAmelCase : Dict = """adapt act apte""" return input_text, output_text def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[Any] = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase : Optional[int] = """adapt act apte""" UpperCAmelCase : Dict = ["""adapt""", """act""", """ap@@""", """te"""] UpperCAmelCase : Tuple = tokenizer.tokenize(A ) self.assertListEqual(A , A ) UpperCAmelCase : Any = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] UpperCAmelCase : List[Any] = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) assert tok("""sam""" ).input_ids == [1384] UpperCAmelCase : Any = """I am a small frog.""" UpperCAmelCase : Tuple = tok([src_text] , padding=A , truncation=A )["""input_ids"""] UpperCAmelCase : List[Any] = tok.batch_decode(A , skip_special_tokens=A , clean_up_tokenization_spaces=A )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def _lowercase( self ) -> str: UpperCAmelCase : Union[str, Any] = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) UpperCAmelCase : Any = """I am a small frog .""" UpperCAmelCase : str = """.""" UpperCAmelCase : Optional[Any] = tok(A )["""input_ids"""] UpperCAmelCase : int = tok(A )["""input_ids"""] assert encoded[-1] == encoded_dot[0]
338
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" ) if "model" in sd.keys(): UpperCAmelCase : Any = torch.load(_lowercase , map_location="""cpu""" )["""model"""] # pop unnecessary weights UpperCAmelCase : Union[str, Any] = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(_lowercase ) UpperCAmelCase : Tuple = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase : List[Any] = sd.pop(_lowercase ) UpperCAmelCase : Tuple = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase : List[str] = sd[key] # We split QKV in separate Q,K,V UpperCAmelCase : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" ) UpperCAmelCase : Tuple = key.replace(""".qkv_proj.""" , """.k_proj.""" ) UpperCAmelCase : int = key.replace(""".qkv_proj.""" , """.v_proj.""" ) UpperCAmelCase : Dict = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = torch.split(_lowercase , depth // 3 , dim=0 ) UpperCAmelCase : Tuple = q UpperCAmelCase : Tuple = k UpperCAmelCase : Any = v del sd[key] return sd @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Optional[Any]: UpperCAmelCase : Tuple = load_checkpoint(_lowercase ) if config is not None: UpperCAmelCase : Dict = OPTConfig.from_pretrained(_lowercase ) else: UpperCAmelCase : int = OPTConfig() UpperCAmelCase : List[Any] = OPTModel(_lowercase ).half().eval() model.load_state_dict(_lowercase ) # Check results Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") a : Union[str, Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
338
1
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = KandinskyVaaPriorPipeline lowercase = ['prompt'] lowercase = ['prompt', 'negative_prompt'] lowercase = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] lowercase = False @property def _lowercase( self ) -> Dict: return 32 @property def _lowercase( self ) -> List[str]: return 32 @property def _lowercase( self ) -> Any: return self.time_input_dim @property def _lowercase( self ) -> List[Any]: return self.time_input_dim * 4 @property def _lowercase( self ) -> str: return 100 @property def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def _lowercase( self ) -> Any: torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(A ) @property def _lowercase( self ) -> Any: torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } UpperCAmelCase : Optional[int] = PriorTransformer(**A ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 UpperCAmelCase : Optional[Any] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def _lowercase( self ) -> Any: torch.manual_seed(0 ) UpperCAmelCase : List[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) UpperCAmelCase : Dict = CLIPVisionModelWithProjection(A ) return model @property def _lowercase( self ) -> Dict: UpperCAmelCase : List[str] = CLIPImageProcessor( crop_size=224 , do_center_crop=A , do_normalize=A , do_resize=A , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=224 , ) return image_processor def _lowercase( self ) -> List[Any]: UpperCAmelCase : Tuple = self.dummy_prior UpperCAmelCase : Optional[int] = self.dummy_image_encoder UpperCAmelCase : List[Any] = self.dummy_text_encoder UpperCAmelCase : Dict = self.dummy_tokenizer UpperCAmelCase : Any = self.dummy_image_processor UpperCAmelCase : List[str] = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=A , clip_sample_range=1_0.0 , ) UpperCAmelCase : int = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def _lowercase( self , A , A=0 ) -> List[str]: if str(A ).startswith("""mps""" ): UpperCAmelCase : Tuple = torch.manual_seed(A ) else: UpperCAmelCase : Optional[Any] = torch.Generator(device=A ).manual_seed(A ) UpperCAmelCase : Union[str, Any] = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = """cpu""" UpperCAmelCase : Optional[int] = self.get_dummy_components() UpperCAmelCase : int = self.pipeline_class(**A ) UpperCAmelCase : int = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : str = pipe(**self.get_dummy_inputs(A ) ) UpperCAmelCase : Optional[int] = output.image_embeds UpperCAmelCase : List[str] = pipe( **self.get_dummy_inputs(A ) , return_dict=A , )[0] UpperCAmelCase : str = image[0, -10:] UpperCAmelCase : int = image_from_tuple[0, -10:] assert image.shape == (1, 32) UpperCAmelCase : Optional[Any] = np.array( [-0.0_5_3_2, 1.7_1_2_0, 0.3_6_5_6, -1.0_8_5_2, -0.8_9_4_6, -1.1_7_5_6, 0.4_3_4_8, 0.2_4_8_2, 0.5_1_4_6, -0.1_1_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def _lowercase( self ) -> Tuple: UpperCAmelCase : Optional[int] = torch_device == """cpu""" UpperCAmelCase : List[Any] = True UpperCAmelCase : str = False self._test_inference_batch_single_identical( test_max_difference=A , relax_max_difference=A , test_mean_pixel_difference=A , ) @skip_mps def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Tuple = torch_device == """cpu""" UpperCAmelCase : Union[str, Any] = False self._test_attention_slicing_forward_pass( test_max_difference=A , test_mean_pixel_difference=A , )
338
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : str = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'levit' def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int: super().__init__(**A ) UpperCAmelCase : Any = image_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : Tuple = kernel_size UpperCAmelCase : Optional[int] = stride UpperCAmelCase : Dict = padding UpperCAmelCase : List[Any] = hidden_sizes UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = depths UpperCAmelCase : Any = key_dim UpperCAmelCase : str = drop_path_rate UpperCAmelCase : List[Any] = patch_size UpperCAmelCase : str = attention_ratio UpperCAmelCase : Optional[Any] = mlp_ratio UpperCAmelCase : Dict = initializer_range UpperCAmelCase : int = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase( self ) -> float: return 1e-4
338
1
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node a : Tuple = 4 a : Tuple = 3 class UpperCamelCase_ ( __magic_name__ ): pass def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: for shard in shards: for i in range(_lowercase ): yield {"i": i, "shard": shard} def __lowerCamelCase ( ) -> int: UpperCAmelCase : Tuple = int(os.environ["""RANK"""] ) UpperCAmelCase : List[str] = int(os.environ["""WORLD_SIZE"""] ) UpperCAmelCase : List[str] = ArgumentParser() parser.add_argument("""--streaming""" , type=_lowercase ) parser.add_argument("""--local_rank""" , type=_lowercase ) parser.add_argument("""--num_workers""" , type=_lowercase , default=0 ) UpperCAmelCase : Optional[int] = parser.parse_args() UpperCAmelCase : Optional[Any] = args.streaming UpperCAmelCase : Union[str, Any] = args.num_workers UpperCAmelCase : Dict = {"""shards""": [F'''shard_{shard_idx}''' for shard_idx in range(_lowercase )]} UpperCAmelCase : Union[str, Any] = IterableDataset.from_generator(_lowercase , gen_kwargs=_lowercase ) if not streaming: UpperCAmelCase : Optional[Any] = Dataset.from_list(list(_lowercase ) ) UpperCAmelCase : int = split_dataset_by_node(_lowercase , rank=_lowercase , world_size=_lowercase ) UpperCAmelCase : Optional[Any] = torch.utils.data.DataLoader(_lowercase , num_workers=_lowercase ) UpperCAmelCase : str = NUM_SHARDS * NUM_ITEMS_PER_SHARD UpperCAmelCase : Union[str, Any] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) UpperCAmelCase : Any = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
338
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) a : List[str] = """Hello, World!""" a : List[Any] = """en_XX""" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Dict = Path("""data_bin""" ) UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(_lowercase ) UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder UpperCAmelCase : Tuple = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , _lowercase ) UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight UpperCAmelCase : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase : List[str] = model.roberta.encoder.layer[i] UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i] # self attention UpperCAmelCase : Optional[Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias # intermediate UpperCAmelCase : Tuple = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) UpperCAmelCase : List[str] = xmod_layer.fca.weight UpperCAmelCase : str = xmod_layer.fca.bias # output UpperCAmelCase : Any = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) UpperCAmelCase : Dict = xmod_layer.fca.weight UpperCAmelCase : Dict = xmod_layer.fca.bias UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code] UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code] UpperCAmelCase : Any = from_adapter.fca.weight UpperCAmelCase : int = from_adapter.fca.bias UpperCAmelCase : Dict = from_adapter.fca.weight UpperCAmelCase : Dict = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias UpperCAmelCase : str = xmod.model.encoder.lm_head.weight UpperCAmelCase : str = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) UpperCAmelCase : Optional[int] = model(_lowercase )[0] if classification_head: UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) ) else: UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) a : List[str] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
338
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : Optional[Any] = logging.get_logger(__name__) a : Any = { """alibaba-damo/mgp-str-base""": """https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json""", } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'mgp-str' def __init__( self , A=[32, 128] , A=4 , A=3 , A=27 , A=38 , A=50257 , A=30522 , A=768 , A=12 , A=12 , A=4.0 , A=True , A=False , A=1e-5 , A=0.0 , A=0.0 , A=0.0 , A=False , A=0.0_2 , **A , ) -> str: super().__init__(**A ) UpperCAmelCase : str = image_size UpperCAmelCase : List[Any] = patch_size UpperCAmelCase : str = num_channels UpperCAmelCase : List[str] = max_token_length UpperCAmelCase : Union[str, Any] = num_character_labels UpperCAmelCase : List[Any] = num_bpe_labels UpperCAmelCase : Dict = num_wordpiece_labels UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : int = mlp_ratio UpperCAmelCase : List[Any] = distilled UpperCAmelCase : Dict = layer_norm_eps UpperCAmelCase : List[str] = drop_rate UpperCAmelCase : List[Any] = qkv_bias UpperCAmelCase : int = attn_drop_rate UpperCAmelCase : Tuple = drop_path_rate UpperCAmelCase : Optional[int] = output_aa_attentions UpperCAmelCase : Dict = initializer_range
338
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __lowerCamelCase ( _lowercase ) -> List[Any]: for i in range(0 , _lowercase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __lowerCamelCase ( _lowercase ) -> Dict: for i in range(_lowercase , 0 , -1 ): for _ in range(_lowercase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __lowerCamelCase ( _lowercase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowercase ) # upper half reverse_floyd(_lowercase ) # lower half if __name__ == "__main__": print(R"""| /\ | |- | |- |--| |\ /| |-""") print(R"""|/ \| |- |_ |_ |__| | \/ | |_""") a : List[Any] = 1 while K: a : int = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) a : Tuple = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
338
1
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> int: while b: UpperCAmelCase , UpperCAmelCase : str = b, a % b return a def __lowerCamelCase ( _lowercase , _lowercase ) -> int: return a if b == 0 else euclidean_gcd_recursive(_lowercase , a % b ) def __lowerCamelCase ( ) -> Optional[Any]: print(F'''euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}''' ) print(F'''euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}''' ) print(F'''euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}''' ) print(F'''euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}''' ) print(F'''euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}''' ) print(F'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}''' ) print(F'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}''' ) print(F'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}''' ) if __name__ == "__main__": main()
338
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever a : List[str] = logging.getLogger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A=None ) -> Union[str, Any]: super().__init__( A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , ) UpperCAmelCase : Optional[Any] = None def _lowercase( self , A ) -> List[Any]: logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually UpperCAmelCase : Tuple = self._infer_socket_ifname() # avoid clash with the NCCL port UpperCAmelCase : str = str(distributed_port + 1 ) UpperCAmelCase : Any = dist.new_group(ranks=A , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _lowercase( self ) -> Dict: return dist.get_rank(group=self.process_group ) == 0 def _lowercase( self , A , A , A=torch.floataa ) -> str: UpperCAmelCase : List[Any] = torch.empty(A , dtype=A ) dist.scatter(A , src=0 , scatter_list=A , group=self.process_group ) return target_tensor def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names UpperCAmelCase : Optional[int] = next((addr for addr in addrs if addr.startswith("""e""" )) , A ) return ifname def _lowercase( self , A , A ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): UpperCAmelCase , UpperCAmelCase : str = self._main_retrieve(A , A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A ) # distributed training UpperCAmelCase : int = dist.get_world_size(group=self.process_group ) # gather logic UpperCAmelCase : int = None if self._is_main(): UpperCAmelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )] dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group ) # scatter logic UpperCAmelCase : List[Any] = question_hidden_states.shape[0] UpperCAmelCase : Tuple = [] UpperCAmelCase : Any = [] if self._is_main(): assert len(A ) == world_size UpperCAmelCase , UpperCAmelCase : Optional[int] = self._main_retrieve(torch.cat(A ).numpy() , A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = torch.tensor(A ), torch.tensor(A ) UpperCAmelCase : List[str] = self._chunk_tensor(A , A ) UpperCAmelCase : Union[str, Any] = self._chunk_tensor(A , A ) UpperCAmelCase : Tuple = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa ) UpperCAmelCase : Optional[Any] = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
338
1
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging a : str = logging.get_logger(__name__) a : Any = { """Salesforce/codegen-350M-nl""": """https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json""", """Salesforce/codegen-350M-multi""": """https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json""", """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json""", """Salesforce/codegen-2B-nl""": """https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json""", """Salesforce/codegen-2B-multi""": """https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json""", """Salesforce/codegen-2B-mono""": """https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json""", """Salesforce/codegen-6B-nl""": """https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json""", """Salesforce/codegen-6B-multi""": """https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json""", """Salesforce/codegen-6B-mono""": """https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json""", """Salesforce/codegen-16B-nl""": """https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json""", """Salesforce/codegen-16B-multi""": """https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json""", """Salesforce/codegen-16B-mono""": """https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json""", } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'codegen' lowercase = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , A=50400 , A=2048 , A=2048 , A=4096 , A=28 , A=16 , A=64 , A=None , A="gelu_new" , A=0.0 , A=0.0 , A=0.0 , A=1e-5 , A=0.0_2 , A=True , A=50256 , A=50256 , A=False , **A , ) -> str: UpperCAmelCase : int = vocab_size UpperCAmelCase : Union[str, Any] = n_ctx UpperCAmelCase : Optional[Any] = n_positions UpperCAmelCase : Tuple = n_embd UpperCAmelCase : Any = n_layer UpperCAmelCase : Tuple = n_head UpperCAmelCase : Optional[Any] = n_inner UpperCAmelCase : List[Any] = rotary_dim UpperCAmelCase : Union[str, Any] = activation_function UpperCAmelCase : Any = resid_pdrop UpperCAmelCase : Optional[int] = embd_pdrop UpperCAmelCase : Dict = attn_pdrop UpperCAmelCase : Dict = layer_norm_epsilon UpperCAmelCase : Any = initializer_range UpperCAmelCase : Any = use_cache UpperCAmelCase : Optional[int] = bos_token_id UpperCAmelCase : Tuple = eos_token_id super().__init__( bos_token_id=A , eos_token_id=A , tie_word_embeddings=A , **A ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A = "default" , A = None , A = False , ) -> Union[str, Any]: super().__init__(A , task=A , patching_specs=A , use_past=A ) if not getattr(self._config , """pad_token_id""" , A ): # TODO: how to do that better? UpperCAmelCase : Optional[int] = 0 @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : int = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) UpperCAmelCase : Optional[int] = {0: """batch""", 1: """past_sequence + sequence"""} else: UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""} return common_inputs @property def _lowercase( self ) -> int: return self._config.n_layer @property def _lowercase( self ) -> int: return self._config.n_head def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]: UpperCAmelCase : Any = super(A , self ).generate_dummy_inputs( A , batch_size=A , seq_length=A , is_pair=A , framework=A ) # We need to order the input in the way they appears in the forward() UpperCAmelCase : Any = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch UpperCAmelCase , UpperCAmelCase : List[str] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values UpperCAmelCase : Dict = seqlen + 2 UpperCAmelCase : List[Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCAmelCase : Optional[int] = [ (torch.zeros(A ), torch.zeros(A )) for _ in range(self.num_layers ) ] UpperCAmelCase : Union[str, Any] = common_inputs["""attention_mask"""] if self.use_past: UpperCAmelCase : Optional[int] = ordered_inputs["""attention_mask"""].dtype UpperCAmelCase : List[Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(A , A , dtype=A )] , dim=1 ) return ordered_inputs @property def _lowercase( self ) -> int: return 13
338
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : List[str] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } a : List[Any] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } a : List[Any] = { """facebook/blenderbot_small-90M""": 5_1_2, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = BlenderbotSmallTokenizer def __init__( self , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , A=True , **A , ) -> Union[str, Any]: super().__init__( ByteLevelBPETokenizer( vocab=A , merges=A , add_prefix_space=A , trim_offsets=A , ) , bos_token=A , eos_token=A , unk_token=A , **A , ) UpperCAmelCase : Optional[Any] = add_prefix_space def _lowercase( self , A , A=None ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
338
1
'''simple docstring''' import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class UpperCamelCase_ ( __magic_name__ ): # to overwrite at feature extractactor specific tests lowercase = None lowercase = None @property def _lowercase( self ) -> Optional[int]: return self.feat_extract_tester.prepare_feat_extract_dict() def _lowercase( self ) -> Any: UpperCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(A , """feature_size""" ) ) self.assertTrue(hasattr(A , """sampling_rate""" ) ) self.assertTrue(hasattr(A , """padding_value""" ) ) def _lowercase( self ) -> int: UpperCAmelCase : List[Any] = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase : int = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase : Tuple = feat_extract.model_input_names[0] UpperCAmelCase : Optional[int] = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(A ) == len(A ) for x, y in zip(A , processed_features[input_name] ) ) ) UpperCAmelCase : List[str] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=A ) UpperCAmelCase : List[Any] = BatchFeature({input_name: speech_inputs} , tensor_type="""np""" ) UpperCAmelCase : Tuple = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase : Tuple = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=A ) UpperCAmelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase : Union[str, Any] = feat_extract.model_input_names[0] UpperCAmelCase : int = BatchFeature({input_name: speech_inputs} , tensor_type="""pt""" ) UpperCAmelCase : int = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase : Union[str, Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def _lowercase( self ) -> str: UpperCAmelCase : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=A ) UpperCAmelCase : str = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase : Optional[int] = feat_extract.model_input_names[0] UpperCAmelCase : List[Any] = BatchFeature({input_name: speech_inputs} , tensor_type="""tf""" ) UpperCAmelCase : Optional[int] = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase : List[Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def _lowercase( self , A=False ) -> int: def _inputs_have_equal_length(A ): UpperCAmelCase : Union[str, Any] = len(input[0] ) for input_slice in input[1:]: if len(A ) != length: return False return True def _inputs_are_equal(A , A ): if len(A ) != len(A ): return False for input_slice_a, input_slice_a in zip(A , A ): if not np.allclose(np.asarray(A ) , np.asarray(A ) , atol=1e-3 ): return False return True UpperCAmelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase : List[str] = self.feat_extract_tester.prepare_inputs_for_common(numpify=A ) UpperCAmelCase : Any = feat_extract.model_input_names[0] UpperCAmelCase : str = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase : Optional[int] = self.feat_extract_tester.seq_length_diff UpperCAmelCase : int = self.feat_extract_tester.max_seq_length + pad_diff UpperCAmelCase : str = self.feat_extract_tester.min_seq_length UpperCAmelCase : List[Any] = self.feat_extract_tester.batch_size UpperCAmelCase : Optional[int] = self.feat_extract_tester.feature_size # test padding for List[int] + numpy UpperCAmelCase : Dict = feat_extract.pad(A , padding=A ) UpperCAmelCase : Optional[Any] = input_a[input_name] UpperCAmelCase : List[Any] = feat_extract.pad(A , padding="""longest""" ) UpperCAmelCase : Union[str, Any] = input_a[input_name] UpperCAmelCase : Optional[Any] = feat_extract.pad(A , padding="""max_length""" , max_length=len(speech_inputs[-1] ) ) UpperCAmelCase : List[Any] = input_a[input_name] UpperCAmelCase : str = feat_extract.pad(A , padding="""longest""" , return_tensors="""np""" ) UpperCAmelCase : Optional[int] = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(A ): feat_extract.pad(A , padding="""max_length""" )[input_name] UpperCAmelCase : str = feat_extract.pad( A , padding="""max_length""" , max_length=A , return_tensors="""np""" ) UpperCAmelCase : List[Any] = input_a[input_name] self.assertFalse(_inputs_have_equal_length(A ) ) self.assertTrue(_inputs_have_equal_length(A ) ) self.assertTrue(_inputs_have_equal_length(A ) ) self.assertTrue(_inputs_are_equal(A , A ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy UpperCAmelCase : List[Any] = feat_extract.pad(A , pad_to_multiple_of=10 ) UpperCAmelCase : str = input_a[input_name] UpperCAmelCase : List[Any] = feat_extract.pad(A , padding="""longest""" , pad_to_multiple_of=10 ) UpperCAmelCase : List[str] = input_a[input_name] UpperCAmelCase : Tuple = feat_extract.pad( A , padding="""max_length""" , pad_to_multiple_of=10 , max_length=A ) UpperCAmelCase : Optional[Any] = input_a[input_name] UpperCAmelCase : int = feat_extract.pad( A , padding="""max_length""" , pad_to_multiple_of=10 , max_length=A , return_tensors="""np""" , ) UpperCAmelCase : Any = input_a[input_name] self.assertTrue(all(len(A ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(A , A ) ) UpperCAmelCase : Tuple = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(A ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct UpperCAmelCase : Tuple = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def _lowercase( self , A=False ) -> List[str]: def _inputs_have_equal_length(A ): UpperCAmelCase : str = len(input[0] ) for input_slice in input[1:]: if len(A ) != length: return False return True def _inputs_are_equal(A , A ): if len(A ) != len(A ): return False for input_slice_a, input_slice_a in zip(A , A ): if not np.allclose(np.asarray(A ) , np.asarray(A ) , atol=1e-3 ): return False return True UpperCAmelCase : Dict = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase : Any = self.feat_extract_tester.prepare_inputs_for_common(numpify=A ) UpperCAmelCase : int = feat_extract.model_input_names[0] UpperCAmelCase : List[Any] = BatchFeature({input_name: speech_inputs} ) # truncate to smallest UpperCAmelCase : List[Any] = feat_extract.pad( A , padding="""max_length""" , max_length=len(speech_inputs[0] ) , truncation=A ) UpperCAmelCase : List[Any] = input_a[input_name] UpperCAmelCase : List[Any] = feat_extract.pad(A , padding="""max_length""" , max_length=len(speech_inputs[0] ) ) UpperCAmelCase : str = input_a[input_name] self.assertTrue(_inputs_have_equal_length(A ) ) self.assertFalse(_inputs_have_equal_length(A ) ) # truncate to smallest with np UpperCAmelCase : int = feat_extract.pad( A , padding="""max_length""" , max_length=len(speech_inputs[0] ) , return_tensors="""np""" , truncation=A , ) UpperCAmelCase : int = input_a[input_name] UpperCAmelCase : Union[str, Any] = feat_extract.pad( A , padding="""max_length""" , max_length=len(speech_inputs[0] ) , return_tensors="""np""" ) UpperCAmelCase : Optional[int] = input_a[input_name] self.assertTrue(_inputs_have_equal_length(A ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(A ) ) # truncate to middle UpperCAmelCase : int = feat_extract.pad( A , padding="""max_length""" , max_length=len(speech_inputs[1] ) , truncation=A , return_tensors="""np""" , ) UpperCAmelCase : str = input_a[input_name] UpperCAmelCase : Dict = feat_extract.pad( A , padding="""max_length""" , max_length=len(speech_inputs[1] ) , truncation=A ) UpperCAmelCase : Union[str, Any] = input_a[input_name] UpperCAmelCase : int = feat_extract.pad( A , padding="""max_length""" , max_length=len(speech_inputs[1] ) , return_tensors="""np""" ) UpperCAmelCase : Tuple = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(A ) ) self.assertTrue(_inputs_have_equal_length(A ) ) self.assertTrue(_inputs_are_equal(A , A ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(A ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(A ): feat_extract.pad(A , truncation=A )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(A ): feat_extract.pad(A , padding="""longest""" , truncation=A )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(A ): feat_extract.pad(A , padding="""longest""" , truncation=A )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(A ): feat_extract.pad(A , padding="""max_length""" , truncation=A )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy UpperCAmelCase : Tuple = 12 UpperCAmelCase : Optional[Any] = feat_extract.pad( A , padding="""max_length""" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=A , truncation=A , ) UpperCAmelCase : Tuple = input_a[input_name] UpperCAmelCase : Optional[int] = feat_extract.pad( A , padding="""max_length""" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=A , ) UpperCAmelCase : Optional[Any] = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of UpperCAmelCase : Optional[Any] = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: UpperCAmelCase : Tuple = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(A ) ) self.assertFalse(_inputs_have_equal_length(A ) ) def _lowercase( self ) -> int: self._check_padding(numpify=A ) def _lowercase( self ) -> Tuple: self._check_padding(numpify=A ) def _lowercase( self ) -> Tuple: self._check_truncation(numpify=A ) def _lowercase( self ) -> Dict: self._check_truncation(numpify=A ) @require_torch def _lowercase( self ) -> Dict: UpperCAmelCase : str = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase : str = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase : List[str] = feat_extract.model_input_names[0] UpperCAmelCase : Dict = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase : Any = feat_extract.pad(A , padding="""longest""" , return_tensors="""np""" )[input_name] UpperCAmelCase : Optional[int] = feat_extract.pad(A , padding="""longest""" , return_tensors="""pt""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase : Tuple = feat_extract.model_input_names[0] UpperCAmelCase : Tuple = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase : List[Any] = feat_extract.pad(A , padding="""longest""" , return_tensors="""np""" )[input_name] UpperCAmelCase : Dict = feat_extract.pad(A , padding="""longest""" , return_tensors="""tf""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = self.feat_extract_dict UpperCAmelCase : List[str] = True UpperCAmelCase : Any = self.feature_extraction_class(**A ) UpperCAmelCase : int = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase : Optional[int] = [len(A ) for x in speech_inputs] UpperCAmelCase : List[Any] = feat_extract.model_input_names[0] UpperCAmelCase : Union[str, Any] = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase : str = feat_extract.pad(A , padding="""longest""" , return_tensors="""np""" ) self.assertIn("""attention_mask""" , A ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , A ) def _lowercase( self ) -> Any: UpperCAmelCase : Union[str, Any] = self.feat_extract_dict UpperCAmelCase : Dict = True UpperCAmelCase : int = self.feature_extraction_class(**A ) UpperCAmelCase : Any = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase : str = [len(A ) for x in speech_inputs] UpperCAmelCase : Optional[int] = feat_extract.model_input_names[0] UpperCAmelCase : Optional[Any] = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase : List[Any] = min(A ) UpperCAmelCase : Tuple = feat_extract.pad( A , padding="""max_length""" , max_length=A , truncation=A , return_tensors="""np""" ) self.assertIn("""attention_mask""" , A ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
338
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A = None , A = None , A = False , **A , ) -> Tuple: super().__init__(features=A , cache_dir=A , keep_in_memory=A , **A ) UpperCAmelCase : Any = Sql( cache_dir=A , features=A , sql=A , con=A , **A , ) def _lowercase( self ) -> Dict: UpperCAmelCase : Any = None UpperCAmelCase : Any = None UpperCAmelCase : int = None UpperCAmelCase : int = None self.builder.download_and_prepare( download_config=A , download_mode=A , verification_mode=A , base_path=A , ) # Build dataset for splits UpperCAmelCase : str = self.builder.as_dataset( split="""train""" , verification_mode=A , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase_ : def __init__( self , A , A , A , A = None , A = None , **A , ) -> str: if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) UpperCAmelCase : Dict = dataset UpperCAmelCase : List[Any] = name UpperCAmelCase : Any = con UpperCAmelCase : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase : Optional[Any] = num_proc UpperCAmelCase : str = to_sql_kwargs def _lowercase( self ) -> int: UpperCAmelCase : Any = self.to_sql_kwargs.pop("""sql""" , A ) UpperCAmelCase : str = self.to_sql_kwargs.pop("""con""" , A ) UpperCAmelCase : Union[str, Any] = self.to_sql_kwargs.pop("""index""" , A ) UpperCAmelCase : str = self._write(index=A , **self.to_sql_kwargs ) return written def _lowercase( self , A ) -> Any: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = args UpperCAmelCase : Union[str, Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs UpperCAmelCase : int = query_table( table=self.dataset.data , key=slice(A , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCAmelCase : Any = batch.to_pandas() UpperCAmelCase : List[Any] = df.to_sql(self.name , self.con , index=A , **A ) return num_rows or len(A ) def _lowercase( self , A , **A ) -> int: UpperCAmelCase : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: UpperCAmelCase , UpperCAmelCase : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , A , A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
338
1
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase = False ) -> bool: if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 1_0 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis UpperCAmelCase : Tuple = [ 2_0_4_7, 1_3_7_3_6_5_3, 2_5_3_2_6_0_0_1, 3_2_1_5_0_3_1_7_5_1, 2_1_5_2_3_0_2_8_9_8_7_4_7, 3_4_7_4_7_4_9_6_6_0_3_8_3, 3_4_1_5_5_0_0_7_1_7_2_8_3_2_1, 1, 3_8_2_5_1_2_3_0_5_6_5_4_6_4_1_3_0_5_1, 1, 1, 3_1_8_6_6_5_8_5_7_8_3_4_0_3_1_1_5_1_1_6_7_4_6_1, 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1, ] UpperCAmelCase : str = [2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1] for idx, _p in enumerate(_lowercase , 1 ): if n < _p: # then we have our last prime to check UpperCAmelCase : int = primes[:idx] break UpperCAmelCase , UpperCAmelCase : Any = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: UpperCAmelCase : str = False for r in range(_lowercase ): UpperCAmelCase : Any = pow(_lowercase , d * 2**r , _lowercase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): UpperCAmelCase : Any = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __lowerCamelCase ( ) -> None: assert not miller_rabin(5_6_1 ) assert miller_rabin(5_6_3 ) # 2047 assert not miller_rabin(8_3_8_2_0_1 ) assert miller_rabin(8_3_8_2_0_7 ) # 1_373_653 assert not miller_rabin(1_7_3_1_6_0_0_1 ) assert miller_rabin(1_7_3_1_6_0_1_7 ) # 25_326_001 assert not miller_rabin(3_0_7_8_3_8_6_6_4_1 ) assert miller_rabin(3_0_7_8_3_8_6_6_5_3 ) # 3_215_031_751 assert not miller_rabin(1_7_1_3_0_4_5_5_7_4_8_0_1 ) assert miller_rabin(1_7_1_3_0_4_5_5_7_4_8_1_9 ) # 2_152_302_898_747 assert not miller_rabin(2_7_7_9_7_9_9_7_2_8_3_0_7 ) assert miller_rabin(2_7_7_9_7_9_9_7_2_8_3_2_7 ) # 3_474_749_660_383 assert not miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_4_4_1 ) assert miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_5_2_7 ) # 341_550_071_728_321 assert not miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_5_1 ) assert miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_9_1 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_8_6_7 ) assert miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_9_5_1 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_3_3 ) assert miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_5_9 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
338
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCamelCase_ : lowercase = MBartConfig lowercase = {} lowercase = 'gelu' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : str = is_training UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Optional[Any] = eos_token_id UpperCAmelCase : List[str] = pad_token_id UpperCAmelCase : List[Any] = bos_token_id def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A ) return config, inputs_dict def _lowercase( self , A , A ) -> List[str]: UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder() UpperCAmelCase : int = inputs_dict["""input_ids"""] UpperCAmelCase : str = input_ids[:1, :] UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase : List[str] = inputs_dict["""head_mask"""] UpperCAmelCase : List[Any] = 1 # first forward pass UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = outputs.to_tuple() UpperCAmelCase : int = past_key_values[1] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]: if attention_mask is None: UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False def _lowercase( self , A , A , A , A , A ) -> int: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : int = TFMBartModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A ) def _lowercase( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase( self ) -> Dict: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_sentencepiece @require_tokenizers @require_tf class UpperCamelCase_ ( unittest.TestCase ): lowercase = [ ' UN Chief Says There Is No Military Solution in Syria', ] lowercase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] lowercase = 'facebook/mbart-large-en-ro' @cached_property def _lowercase( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowercase( self , **A ) -> Any: UpperCAmelCase : Optional[int] = self.translate_src_text(**A ) self.assertListEqual(self.expected_text , A ) def _lowercase( self , **A ) -> Optional[Any]: UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" ) UpperCAmelCase : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A ) return generated_words @slow def _lowercase( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
338
1
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging a : List[str] = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=None , **A ) -> Dict: warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , A , ) super().__init__(args=A , **A )
338
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: UpperCAmelCase : Tuple = len(_lowercase ) + 1 UpperCAmelCase : List[Any] = len(_lowercase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase : str = [[0 for i in range(_lowercase )] for j in range(_lowercase )] # since string of zero length match pattern of zero length UpperCAmelCase : int = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowercase ): UpperCAmelCase : str = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowercase ): UpperCAmelCase : Optional[Any] = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowercase ): for j in range(1 , _lowercase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase : Union[str, Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase : List[Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase : Optional[int] = dp[i - 1][j] else: UpperCAmelCase : Any = 0 else: UpperCAmelCase : str = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") a : List[str] = """aab""" a : Optional[int] = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
338
1
'''simple docstring''' import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration a : Optional[int] = { """tiny.en""": """https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt""", """tiny""": """https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt""", """base.en""": """https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt""", """base""": """https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt""", """small.en""": """https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt""", """small""": """https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt""", """medium.en""": """https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt""", """medium""": """https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt""", """large""": """https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt""", """large-v2""": """https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt""", } def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: UpperCAmelCase : List[Any] = ["""layers""", """blocks"""] for k in ignore_keys: state_dict.pop(_lowercase , _lowercase ) a : List[Any] = { """blocks""": """layers""", """mlp.0""": """fc1""", """mlp.2""": """fc2""", """mlp_ln""": """final_layer_norm""", """.attn.query""": """.self_attn.q_proj""", """.attn.key""": """.self_attn.k_proj""", """.attn.value""": """.self_attn.v_proj""", """.attn_ln""": """.self_attn_layer_norm""", """.attn.out""": """.self_attn.out_proj""", """.cross_attn.query""": """.encoder_attn.q_proj""", """.cross_attn.key""": """.encoder_attn.k_proj""", """.cross_attn.value""": """.encoder_attn.v_proj""", """.cross_attn_ln""": """.encoder_attn_layer_norm""", """.cross_attn.out""": """.encoder_attn.out_proj""", """decoder.ln.""": """decoder.layer_norm.""", """encoder.ln.""": """encoder.layer_norm.""", """token_embedding""": """embed_tokens""", """encoder.positional_embedding""": """encoder.embed_positions.weight""", """decoder.positional_embedding""": """decoder.embed_positions.weight""", """ln_post""": """layer_norm""", } def __lowerCamelCase ( _lowercase ) -> Optional[int]: UpperCAmelCase : List[str] = list(s_dict.keys() ) for key in keys: UpperCAmelCase : Optional[int] = key for k, v in WHISPER_MAPPING.items(): if k in key: UpperCAmelCase : Tuple = new_key.replace(_lowercase , _lowercase ) print(F'''{key} -> {new_key}''' ) UpperCAmelCase : List[str] = s_dict.pop(_lowercase ) return s_dict def __lowerCamelCase ( _lowercase ) -> Tuple: UpperCAmelCase , UpperCAmelCase : Dict = emb.weight.shape UpperCAmelCase : int = nn.Linear(_lowercase , _lowercase , bias=_lowercase ) UpperCAmelCase : Union[str, Any] = emb.weight.data return lin_layer def __lowerCamelCase ( _lowercase , _lowercase ) -> bytes: os.makedirs(_lowercase , exist_ok=_lowercase ) UpperCAmelCase : int = os.path.basename(_lowercase ) UpperCAmelCase : Dict = url.split("""/""" )[-2] UpperCAmelCase : Dict = os.path.join(_lowercase , _lowercase ) if os.path.exists(_lowercase ) and not os.path.isfile(_lowercase ): raise RuntimeError(F'''{download_target} exists and is not a regular file''' ) if os.path.isfile(_lowercase ): UpperCAmelCase : str = open(_lowercase , """rb""" ).read() if hashlib.shaaaa(_lowercase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F'''{download_target} exists, but the SHA256 checksum does not match; re-downloading the file''' ) with urllib.request.urlopen(_lowercase ) as source, open(_lowercase , """wb""" ) as output: with tqdm( total=int(source.info().get("""Content-Length""" ) ) , ncols=8_0 , unit="""iB""" , unit_scale=_lowercase , unit_divisor=1_0_2_4 ) as loop: while True: UpperCAmelCase : str = source.read(8_1_9_2 ) if not buffer: break output.write(_lowercase ) loop.update(len(_lowercase ) ) UpperCAmelCase : int = open(_lowercase , """rb""" ).read() if hashlib.shaaaa(_lowercase ).hexdigest() != expected_shaaaa: raise RuntimeError( """Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.""" ) return model_bytes def __lowerCamelCase ( _lowercase , _lowercase ) -> int: if ".pt" not in checkpoint_path: UpperCAmelCase : Optional[Any] = _download(_MODELS[checkpoint_path] ) else: UpperCAmelCase : str = torch.load(_lowercase , map_location="""cpu""" ) UpperCAmelCase : Optional[int] = original_checkpoint["""dims"""] UpperCAmelCase : List[str] = original_checkpoint["""model_state_dict"""] UpperCAmelCase : int = state_dict["""decoder.token_embedding.weight"""] remove_ignore_keys_(_lowercase ) rename_keys(_lowercase ) UpperCAmelCase : Union[str, Any] = True UpperCAmelCase : Union[str, Any] = state_dict["""decoder.layers.0.fc1.weight"""].shape[0] UpperCAmelCase : Any = WhisperConfig( vocab_size=dimensions["""n_vocab"""] , encoder_ffn_dim=_lowercase , decoder_ffn_dim=_lowercase , num_mel_bins=dimensions["""n_mels"""] , d_model=dimensions["""n_audio_state"""] , max_target_positions=dimensions["""n_text_ctx"""] , encoder_layers=dimensions["""n_audio_layer"""] , encoder_attention_heads=dimensions["""n_audio_head"""] , decoder_layers=dimensions["""n_text_layer"""] , decoder_attention_heads=dimensions["""n_text_state"""] , max_source_positions=dimensions["""n_audio_ctx"""] , ) UpperCAmelCase : List[Any] = WhisperForConditionalGeneration(_lowercase ) UpperCAmelCase , UpperCAmelCase : Dict = model.model.load_state_dict(_lowercase , strict=_lowercase ) if len(_lowercase ) > 0 and not set(_lowercase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" F''' but all the following weights are missing {missing}''' ) if tie_embeds: UpperCAmelCase : List[str] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: UpperCAmelCase : str = proj_out_weights model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Patht to the downloaded checkpoints""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") a : Optional[int] = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
338
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : List[str] = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int: UpperCAmelCase : int = 1 UpperCAmelCase : str = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase : Tuple = pre_numerator UpperCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase : Union[str, Any] = cur_numerator UpperCAmelCase : Optional[int] = e_cont * pre_numerator + temp return sum_digits(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
338
1
'''simple docstring''' import sys import turtle def __lowerCamelCase ( _lowercase , _lowercase ) -> tuple[float, float]: return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , ) -> None: my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(_lowercase , get_mid(_lowercase , _lowercase ) , get_mid(_lowercase , _lowercase ) , depth - 1 ) triangle(_lowercase , get_mid(_lowercase , _lowercase ) , get_mid(_lowercase , _lowercase ) , depth - 1 ) triangle(_lowercase , get_mid(_lowercase , _lowercase ) , get_mid(_lowercase , _lowercase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( """Correct format for using this script: """ """python fractals.py <int:depth_for_fractal>""" ) a : Optional[Any] = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("""red""") a : Tuple = [(-1_7_5, -1_2_5), (0, 1_7_5), (1_7_5, -1_2_5)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
338
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=0.0_1 , A=1000 ) -> List[str]: UpperCAmelCase : List[Any] = p_stop UpperCAmelCase : Optional[int] = max_length def __iter__( self ) -> Union[str, Any]: UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = False while not stop and count < self.max_length: yield count count += 1 UpperCAmelCase : Any = random.random() < self.p_stop class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A , A=False , A=True ) -> Union[str, Any]: UpperCAmelCase : List[str] = [ BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A ) for i in range(2 ) ] UpperCAmelCase : List[str] = [list(A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] ) self.assertListEqual(A , A ) def _lowercase( self ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is very small. UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [[], []] self.check_batch_sampler_shards(A , A ) def _lowercase( self ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A ) def _lowercase( self ) -> Any: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : str = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [[], []] self.check_batch_sampler_shards(A , A , even_batches=A ) def _lowercase( self ) -> List[Any]: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCAmelCase : List[str] = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _lowercase( self , A , A , A , A=False , A=2 , A=False ) -> Tuple: random.seed(A ) UpperCAmelCase : Dict = list(A ) UpperCAmelCase : Any = [ IterableDatasetShard( A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , ) for i in range(A ) ] UpperCAmelCase : Dict = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(A ) iterable_dataset_lists.append(list(A ) ) UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCAmelCase : List[Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(A ) , len(A ) ) self.assertTrue(len(A ) % shard_batch_size == 0 ) UpperCAmelCase : List[Any] = [] for idx in range(0 , len(A ) , A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(A ) < len(A ): reference += reference self.assertListEqual(A , reference[: len(A )] ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = 42 UpperCAmelCase : List[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) # Edge case with a very small dataset UpperCAmelCase : List[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = SkipBatchSampler(A , 2 ) self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> int: UpperCAmelCase : Any = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) UpperCAmelCase : Optional[Any] = skip_first_batches(A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowercase( self ) -> Dict: Accelerator() UpperCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
338
1
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> str: if b == 0: return 1 if (b % 2) == 0: return actual_power(_lowercase , int(b / 2 ) ) * actual_power(_lowercase , int(b / 2 ) ) else: return a * actual_power(_lowercase , int(b / 2 ) ) * actual_power(_lowercase , int(b / 2 ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> float: if b < 0: return 1 / actual_power(_lowercase , _lowercase ) return actual_power(_lowercase , _lowercase ) if __name__ == "__main__": print(power(-2, -3))
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[Any] = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a : Union[str, Any] = logging.get_logger(__name__) a : Union[str, Any] = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'detr' lowercase = ['past_key_values'] lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(A , A ): UpperCAmelCase : Any = backbone_config.get("""model_type""" ) UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : List[Any] = config_class.from_dict(A ) # set timm attributes to None UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = None, None, None UpperCAmelCase : Dict = use_timm_backbone UpperCAmelCase : Any = backbone_config UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : int = num_queries UpperCAmelCase : List[str] = d_model UpperCAmelCase : Tuple = encoder_ffn_dim UpperCAmelCase : Optional[Any] = encoder_layers UpperCAmelCase : Any = encoder_attention_heads UpperCAmelCase : Optional[Any] = decoder_ffn_dim UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : str = dropout UpperCAmelCase : Tuple = attention_dropout UpperCAmelCase : Dict = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : List[Any] = init_std UpperCAmelCase : str = init_xavier_std UpperCAmelCase : List[Any] = encoder_layerdrop UpperCAmelCase : int = decoder_layerdrop UpperCAmelCase : List[Any] = encoder_layers UpperCAmelCase : Union[str, Any] = auxiliary_loss UpperCAmelCase : str = position_embedding_type UpperCAmelCase : Union[str, Any] = backbone UpperCAmelCase : List[str] = use_pretrained_backbone UpperCAmelCase : Optional[int] = dilation # Hungarian matcher UpperCAmelCase : Union[str, Any] = class_cost UpperCAmelCase : Optional[Any] = bbox_cost UpperCAmelCase : List[Any] = giou_cost # Loss coefficients UpperCAmelCase : int = mask_loss_coefficient UpperCAmelCase : Optional[int] = dice_loss_coefficient UpperCAmelCase : Dict = bbox_loss_coefficient UpperCAmelCase : Any = giou_loss_coefficient UpperCAmelCase : Any = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def _lowercase( self ) -> int: return self.encoder_attention_heads @property def _lowercase( self ) -> int: return self.d_model @classmethod def _lowercase( cls , A , **A ) -> Dict: return cls(backbone_config=A , **A ) def _lowercase( self ) -> Dict[str, any]: UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase : Any = self.backbone_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowercase( self ) -> float: return 1e-5 @property def _lowercase( self ) -> int: return 12
338
'''simple docstring''' from math import loga def __lowerCamelCase ( _lowercase ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_lowercase , _lowercase ): raise TypeError("""Input value must be a 'int' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
338
1
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]: if isinstance(_lowercase , torch.Tensor ): return image elif isinstance(_lowercase , PIL.Image.Image ): UpperCAmelCase : Tuple = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCAmelCase : List[str] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] UpperCAmelCase : List[Any] = np.concatenate(_lowercase , axis=0 ) UpperCAmelCase : List[Any] = np.array(_lowercase ).astype(np.floataa ) / 255.0 UpperCAmelCase : List[str] = image.transpose(0 , 3 , 1 , 2 ) UpperCAmelCase : int = 2.0 * image - 1.0 UpperCAmelCase : str = torch.from_numpy(_lowercase ) elif isinstance(image[0] , torch.Tensor ): UpperCAmelCase : str = torch.cat(_lowercase , dim=0 ) return image def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=0.9995 ) -> Tuple: if not isinstance(_lowercase , np.ndarray ): UpperCAmelCase : Tuple = True UpperCAmelCase : Union[str, Any] = va.device UpperCAmelCase : List[str] = va.cpu().numpy() UpperCAmelCase : List[Any] = va.cpu().numpy() UpperCAmelCase : Optional[Any] = np.sum(va * va / (np.linalg.norm(_lowercase ) * np.linalg.norm(_lowercase )) ) if np.abs(_lowercase ) > DOT_THRESHOLD: UpperCAmelCase : str = (1 - t) * va + t * va else: UpperCAmelCase : Dict = np.arccos(_lowercase ) UpperCAmelCase : Union[str, Any] = np.sin(_lowercase ) UpperCAmelCase : List[str] = theta_a * t UpperCAmelCase : Union[str, Any] = np.sin(_lowercase ) UpperCAmelCase : Optional[Any] = np.sin(theta_a - theta_t ) / sin_theta_a UpperCAmelCase : Dict = sin_theta_t / sin_theta_a UpperCAmelCase : List[Any] = sa * va + sa * va if inputs_are_torch: UpperCAmelCase : str = torch.from_numpy(_lowercase ).to(_lowercase ) return va def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = F.normalize(_lowercase , dim=-1 ) UpperCAmelCase : Optional[int] = F.normalize(_lowercase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def __lowerCamelCase ( _lowercase , _lowercase ) -> List[Any]: for param in model.parameters(): UpperCAmelCase : Optional[int] = value class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A , A , A , A , A=None , A=None , A=None , ) -> List[Any]: super().__init__() self.register_modules( vae=A , text_encoder=A , clip_model=A , tokenizer=A , unet=A , scheduler=A , feature_extractor=A , coca_model=A , coca_tokenizer=A , coca_transform=A , ) UpperCAmelCase : Optional[Any] = ( feature_extractor.size if isinstance(feature_extractor.size , A ) else feature_extractor.size["""shortest_edge"""] ) UpperCAmelCase : Any = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , A ) set_requires_grad(self.clip_model , A ) def _lowercase( self , A = "auto" ) -> int: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase : Optional[int] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def _lowercase( self ) -> Optional[Any]: self.enable_attention_slicing(A ) def _lowercase( self ) -> List[str]: set_requires_grad(self.vae , A ) def _lowercase( self ) -> str: set_requires_grad(self.vae , A ) def _lowercase( self ) -> Tuple: set_requires_grad(self.unet , A ) def _lowercase( self ) -> Optional[int]: set_requires_grad(self.unet , A ) def _lowercase( self , A , A , A ) -> Any: # get the original timestep using init_timestep UpperCAmelCase : Dict = min(int(num_inference_steps * strength ) , A ) UpperCAmelCase : Optional[Any] = max(num_inference_steps - init_timestep , 0 ) UpperCAmelCase : Dict = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase( self , A , A , A , A , A , A=None ) -> Dict: if not isinstance(A , torch.Tensor ): raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(A )}''' ) UpperCAmelCase : Tuple = image.to(device=A , dtype=A ) if isinstance(A , A ): UpperCAmelCase : Optional[Any] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(A ) ] UpperCAmelCase : List[str] = torch.cat(A , dim=0 ) else: UpperCAmelCase : List[Any] = self.vae.encode(A ).latent_dist.sample(A ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase : Tuple = 0.1_8_2_1_5 * init_latents UpperCAmelCase : Optional[int] = init_latents.repeat_interleave(A , dim=0 ) UpperCAmelCase : Tuple = randn_tensor(init_latents.shape , generator=A , device=A , dtype=A ) # get latents UpperCAmelCase : str = self.scheduler.add_noise(A , A , A ) UpperCAmelCase : str = init_latents return latents def _lowercase( self , A ) -> Tuple: UpperCAmelCase : str = self.coca_transform(A ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): UpperCAmelCase : List[str] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) UpperCAmelCase : Dict = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("""<end_of_text>""" )[0].replace("""<start_of_text>""" , """""" ).rstrip(""" .,""" ) def _lowercase( self , A , A ) -> int: UpperCAmelCase : Optional[Any] = self.feature_extractor.preprocess(A ) UpperCAmelCase : Any = torch.from_numpy(clip_image_input["""pixel_values"""][0] ).unsqueeze(0 ).to(self.device ).half() UpperCAmelCase : str = self.clip_model.get_image_features(A ) UpperCAmelCase : str = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) UpperCAmelCase : Tuple = image_embeddings_clip.repeat_interleave(A , dim=0 ) return image_embeddings_clip @torch.enable_grad() def _lowercase( self , A , A , A , A , A , A , A , ) -> str: UpperCAmelCase : Optional[Any] = latents.detach().requires_grad_() UpperCAmelCase : str = self.scheduler.scale_model_input(A , A ) # predict the noise residual UpperCAmelCase : str = self.unet(A , A , encoder_hidden_states=A ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): UpperCAmelCase : Dict = self.scheduler.alphas_cumprod[timestep] UpperCAmelCase : str = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase : Dict = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 UpperCAmelCase : Optional[Any] = torch.sqrt(A ) UpperCAmelCase : Optional[Any] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , A ): UpperCAmelCase : List[Any] = self.scheduler.sigmas[index] UpperCAmelCase : Dict = latents - sigma * noise_pred else: raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase : Optional[Any] = 1 / 0.1_8_2_1_5 * sample UpperCAmelCase : str = self.vae.decode(A ).sample UpperCAmelCase : int = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase : Union[str, Any] = transforms.Resize(self.feature_extractor_size )(A ) UpperCAmelCase : Union[str, Any] = self.normalize(A ).to(latents.dtype ) UpperCAmelCase : str = self.clip_model.get_image_features(A ) UpperCAmelCase : Tuple = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) UpperCAmelCase : List[Any] = spherical_dist_loss(A , A ).mean() * clip_guidance_scale UpperCAmelCase : Any = -torch.autograd.grad(A , A )[0] if isinstance(self.scheduler , A ): UpperCAmelCase : List[str] = latents.detach() + grads * (sigma**2) UpperCAmelCase : List[str] = noise_pred_original else: UpperCAmelCase : Any = noise_pred_original - torch.sqrt(A ) * grads return noise_pred, latents @torch.no_grad() def __call__( self , A , A , A = None , A = None , A = 512 , A = 512 , A = 0.6 , A = 50 , A = 7.5 , A = 1 , A = 0.0 , A = 100 , A = None , A = "pil" , A = True , A = 0.8 , A = 0.1 , A = 0.1 , ) -> List[Any]: if isinstance(A , A ) and len(A ) != batch_size: raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(A )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(A , torch.Generator ) and batch_size > 1: UpperCAmelCase : Any = [generator] + [None] * (batch_size - 1) UpperCAmelCase : Any = [ ("""model""", self.coca_model is None), ("""tokenizer""", self.coca_tokenizer is None), ("""transform""", self.coca_transform is None), ] UpperCAmelCase : int = [x[0] for x in coca_is_none if x[1]] UpperCAmelCase : str = """, """.join(A ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(A ): raise ValueError( f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) UpperCAmelCase : Optional[int] = self.get_image_description(A ) if style_prompt is None: if len(A ): raise ValueError( f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) UpperCAmelCase : Union[str, Any] = self.get_image_description(A ) # get prompt text embeddings for content and style UpperCAmelCase : List[Any] = self.tokenizer( A , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors="""pt""" , ) UpperCAmelCase : Dict = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] UpperCAmelCase : str = self.tokenizer( A , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors="""pt""" , ) UpperCAmelCase : Optional[int] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] UpperCAmelCase : Any = slerp(A , A , A ) # duplicate text embeddings for each generation per prompt UpperCAmelCase : Any = text_embeddings.repeat_interleave(A , dim=0 ) # set timesteps UpperCAmelCase : Union[str, Any] = """offset""" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) UpperCAmelCase : str = {} if accepts_offset: UpperCAmelCase : List[str] = 1 self.scheduler.set_timesteps(A , **A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) UpperCAmelCase , UpperCAmelCase : Tuple = self.get_timesteps(A , A , self.device ) UpperCAmelCase : Dict = timesteps[:1].repeat(A ) # Preprocess image UpperCAmelCase : int = preprocess(A , A , A ) UpperCAmelCase : Dict = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) UpperCAmelCase : str = preprocess(A , A , A ) UpperCAmelCase : Any = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) UpperCAmelCase : List[str] = slerp(A , A , A ) if clip_guidance_scale > 0: UpperCAmelCase : Optional[Any] = self.get_clip_image_embeddings(A , A ) UpperCAmelCase : Optional[Any] = self.get_clip_image_embeddings(A , A ) UpperCAmelCase : Tuple = slerp( A , A , A ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCAmelCase : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCAmelCase : Union[str, Any] = content_text_input.input_ids.shape[-1] UpperCAmelCase : List[str] = self.tokenizer([""""""] , padding="""max_length""" , max_length=A , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt UpperCAmelCase : str = uncond_embeddings.repeat_interleave(A , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase : List[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCAmelCase : Optional[int] = (batch_size, self.unet.config.in_channels, height // 8, width // 8) UpperCAmelCase : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps UpperCAmelCase : Dict = torch.randn(A , generator=A , device="""cpu""" , dtype=A ).to( self.device ) else: UpperCAmelCase : Optional[int] = torch.randn(A , generator=A , device=self.device , dtype=A ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) UpperCAmelCase : Tuple = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase : int = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase : int = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase : Dict = {} if accepts_eta: UpperCAmelCase : Any = eta # check if the scheduler accepts generator UpperCAmelCase : Tuple = """generator""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: UpperCAmelCase : Optional[Any] = generator with self.progress_bar(total=A ): for i, t in enumerate(A ): # expand the latents if we are doing classifier free guidance UpperCAmelCase : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase : List[str] = self.scheduler.scale_model_input(A , A ) # predict the noise residual UpperCAmelCase : Union[str, Any] = self.unet(A , A , encoder_hidden_states=A ).sample # perform classifier free guidance if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase : Tuple = noise_pred.chunk(2 ) UpperCAmelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: UpperCAmelCase : List[Any] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) UpperCAmelCase , UpperCAmelCase : int = self.cond_fn( A , A , A , A , A , A , A , ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase : Tuple = self.scheduler.step(A , A , A , **A ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase : int = 1 / 0.1_8_2_1_5 * latents UpperCAmelCase : Tuple = self.vae.decode(A ).sample UpperCAmelCase : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : Optional[Any] = self.numpy_to_pil(A ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
338
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. a : Optional[int] = 1_0 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: for i in range(_lowercase , _lowercase ): if array[i] == target: return i return -1 def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = len(_lowercase ) while left <= right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1 UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase : Any = one_third - 1 elif array[two_third] < target: UpperCAmelCase : Tuple = two_third + 1 else: UpperCAmelCase : int = one_third + 1 UpperCAmelCase : List[Any] = two_third - 1 else: return -1 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: if left < right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : str = (left + right) // 3 + 1 UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() a : Any = input("""Enter numbers separated by comma:\n""").strip() a : Any = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip()) a : Union[str, Any] = ite_ternary_search(collection, target) a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
338
1
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument a : int = { """/attention/""": """/0/SelfAttention/""", """/self_attention/""": """/0/SelfAttention/""", """/encoder_decoder_attention/""": """/1/EncDecAttention/""", """value""": """v""", """query""": """q""", """key""": """k""", """out""": """o""", """pre_self_attention_layer_norm""": """0/layer_norm""", """pre_cross_attention_layer_norm""": """1/layer_norm""", """pre_attention_layer_norm""": """0/layer_norm""", # previously 1, but seems wrong """token_embedder""": """shared""", """encoder_norm""": """final_layer_norm""", """decoder_norm""": """final_layer_norm""", """relpos_bias/rel_embedding""": """block/0/layer/0/SelfAttention/relative_attention_bias/weight""", """router/router_weights/w/""": """router/classifier/""", """roer/roer_weights/w/""": """router/classifier/""", """logits_dense""": """lm_head""", } def __lowerCamelCase ( _lowercase ) -> str: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model UpperCAmelCase : int = list(s_dict.keys() ) for key in keys: UpperCAmelCase : Any = R""".*/layers_(\d+)""" UpperCAmelCase : Dict = key if re.match(_lowercase , _lowercase ): UpperCAmelCase : List[Any] = re.sub(R"""layers_(\d+)""" , R"""block/\1/layer""" , _lowercase ) UpperCAmelCase : int = R"""(encoder|decoder)\/""" if re.match(_lowercase , _lowercase ): UpperCAmelCase : Optional[int] = re.match(_lowercase , _lowercase ).groups() if groups[0] == "encoder": UpperCAmelCase : Optional[Any] = re.sub(R"""/mlp/""" , R"""/1/mlp/""" , _lowercase ) UpperCAmelCase : str = re.sub(R"""/pre_mlp_layer_norm/""" , R"""/1/layer_norm/""" , _lowercase ) elif groups[0] == "decoder": UpperCAmelCase : List[Any] = re.sub(R"""/mlp/""" , R"""/2/mlp/""" , _lowercase ) UpperCAmelCase : Tuple = re.sub(R"""/pre_mlp_layer_norm/""" , R"""/2/layer_norm/""" , _lowercase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: UpperCAmelCase : List[Any] = new_key.replace(_lowercase , _lowercase ) print(F'''{key} -> {new_key}''' ) UpperCAmelCase : Optional[Any] = s_dict.pop(_lowercase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCAmelCase : List[Any] = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCAmelCase : Tuple = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: UpperCAmelCase : Any = s_dict[key].shape[0] UpperCAmelCase : Union[str, Any] = s_dict[key] for idx in range(_lowercase ): UpperCAmelCase : Union[str, Any] = expert_weihts[idx] print(F'''{key} -> {key.replace('expert/' , 'nested fstring' )}''' ) s_dict.pop(_lowercase ) return s_dict a : Optional[Any] = { """NUM_ENCODER_LAYERS""": """num_layers""", """NUM_DECODER_LAYERS""": """num_decoder_layers""", """NUM_HEADS""": """num_heads""", """HEAD_DIM""": """d_kv""", """EMBED_DIM""": """d_model""", """MLP_DIM""": """d_ff""", """NUM_SELECTED_EXPERTS""": """num_selected_experts""", """NUM_ENCODER_SPARSE_LAYERS""": """num_sparse_encoder_layers""", """NUM_DECODER_SPARSE_LAYERS""": """num_sparse_decoder_layers""", """dense.MlpBlock.activations""": """feed_forward_proj""", } def __lowerCamelCase ( _lowercase , _lowercase ) -> Dict: # Convert a google style config to the hugging face fromat import regex as re with open(_lowercase , """r""" ) as f: UpperCAmelCase : Any = f.read() UpperCAmelCase : str = re.findall(R"""(.*) = ([0-9.]*)""" , _lowercase ) UpperCAmelCase : str = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": UpperCAmelCase : Dict = float(_lowercase ) if """.""" in value else int(_lowercase ) UpperCAmelCase : Union[str, Any] = re.findall(R"""(.*activations) = \(\'(.*)\',\)""" , _lowercase )[0] UpperCAmelCase : Dict = str(activation[1] ) UpperCAmelCase : List[str] = num_experts UpperCAmelCase : Tuple = SwitchTransformersConfig(**_lowercase ) return config def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None , _lowercase="./" , _lowercase=8 ) -> List[Any]: # Initialise PyTorch model print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) UpperCAmelCase : Optional[Any] = checkpoints.load_tax_checkpoint(_lowercase ) if gin_file is not None: UpperCAmelCase : int = convert_gin_to_config(_lowercase , _lowercase ) else: UpperCAmelCase : List[Any] = SwitchTransformersConfig.from_pretrained(_lowercase ) UpperCAmelCase : Dict = SwitchTransformersForConditionalGeneration(_lowercase ) UpperCAmelCase : str = flax_params["""target"""] UpperCAmelCase : Optional[int] = flatten_dict(_lowercase , sep="""/""" ) UpperCAmelCase : Union[str, Any] = rename_keys(_lowercase ) UpperCAmelCase : Optional[int] = unflatten_dict(_lowercase , sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(_lowercase , _lowercase ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the""" """ model architecture. If not provided, a `gin_file` has to be provided.""" ), ) parser.add_argument( """--gin_file""", default=None, type=str, required=False, help="""Path to the gin config file. If not provided, a `config_file` has to be passed """, ) parser.add_argument( """--config_name""", default=None, type=str, required=False, help="""Config name of SwitchTransformers model.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output pytorch model.""" ) parser.add_argument("""--num_experts""", default=8, type=int, required=False, help="""Number of experts""") a : int = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
338
'''simple docstring''' import numpy as np class UpperCamelCase_ : def __init__( self ) -> int: UpperCAmelCase : str = (0, 0) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Any = 0 UpperCAmelCase : int = 0 UpperCAmelCase : Optional[int] = 0 def __eq__( self , A ) -> Optional[Any]: return self.position == cell.position def _lowercase( self ) -> Tuple: print(self.position ) class UpperCamelCase_ : def __init__( self , A=(5, 5) ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = np.zeros(A ) UpperCAmelCase : int = world_size[0] UpperCAmelCase : List[str] = world_size[1] def _lowercase( self ) -> List[Any]: print(self.w ) def _lowercase( self , A ) -> Dict: UpperCAmelCase : Optional[Any] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase : List[Any] = cell.position[0] UpperCAmelCase : Union[str, Any] = cell.position[1] UpperCAmelCase : Optional[int] = [] for n in neughbour_cord: UpperCAmelCase : Any = current_x + n[0] UpperCAmelCase : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase : str = Cell() UpperCAmelCase : List[str] = (x, y) UpperCAmelCase : Dict = cell neighbours.append(A ) return neighbours def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase : List[Any] = [] UpperCAmelCase : Optional[int] = [] _open.append(_lowercase ) while _open: UpperCAmelCase : Any = np.argmin([n.f for n in _open] ) UpperCAmelCase : Optional[int] = _open[min_f] _closed.append(_open.pop(_lowercase ) ) if current == goal: break for n in world.get_neigbours(_lowercase ): for c in _closed: if c == n: continue UpperCAmelCase : List[str] = current.g + 1 UpperCAmelCase , UpperCAmelCase : List[str] = n.position UpperCAmelCase , UpperCAmelCase : Dict = goal.position UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase : Dict = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_lowercase ) UpperCAmelCase : Dict = [] while current.parent is not None: path.append(current.position ) UpperCAmelCase : Optional[int] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": a : List[str] = Gridworld() # Start position and goal a : Optional[int] = Cell() a : Optional[Any] = (0, 0) a : Optional[Any] = Cell() a : str = (4, 4) print(F'''path from {start.position} to {goal.position}''') a : List[Any] = astar(world, start, goal) # Just for visual reasons. for i in s: a : Any = 1 print(world.w)
338
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor a : Tuple = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , **A ) -> None: warnings.warn( """The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use DeformableDetrImageProcessor instead.""" , A , ) super().__init__(*A , **A )
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
'''simple docstring''' from typing import Any class UpperCamelCase_ : def __init__( self , A ) -> List[str]: UpperCAmelCase : Tuple = data UpperCAmelCase : Union[str, Any] = None def __repr__( self ) -> str: return f'''Node({self.data})''' class UpperCamelCase_ : def __init__( self ) -> Optional[Any]: UpperCAmelCase : List[Any] = None def __iter__( self ) -> Any: UpperCAmelCase : List[Any] = self.head while node: yield node.data UpperCAmelCase : Optional[int] = node.next def __len__( self ) -> int: return sum(1 for _ in self ) def __repr__( self ) -> str: return "->".join([str(A ) for item in self] ) def __getitem__( self , A ) -> Any: if not 0 <= index < len(self ): raise ValueError("""list index out of range.""" ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , A , A ) -> None: if not 0 <= index < len(self ): raise ValueError("""list index out of range.""" ) UpperCAmelCase : List[str] = self.head for _ in range(A ): UpperCAmelCase : Any = current.next UpperCAmelCase : List[str] = data def _lowercase( self , A ) -> None: self.insert_nth(len(self ) , A ) def _lowercase( self , A ) -> None: self.insert_nth(0 , A ) def _lowercase( self , A , A ) -> None: if not 0 <= index <= len(self ): raise IndexError("""list index out of range""" ) UpperCAmelCase : str = Node(A ) if self.head is None: UpperCAmelCase : List[Any] = new_node elif index == 0: UpperCAmelCase : List[str] = self.head # link new_node to head UpperCAmelCase : Dict = new_node else: UpperCAmelCase : List[str] = self.head for _ in range(index - 1 ): UpperCAmelCase : Optional[int] = temp.next UpperCAmelCase : int = temp.next UpperCAmelCase : str = new_node def _lowercase( self ) -> None: # print every node data print(self ) def _lowercase( self ) -> Any: return self.delete_nth(0 ) def _lowercase( self ) -> Any: # delete from tail return self.delete_nth(len(self ) - 1 ) def _lowercase( self , A = 0 ) -> Any: if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("""List index out of range.""" ) UpperCAmelCase : List[Any] = self.head # default first node if index == 0: UpperCAmelCase : Union[str, Any] = self.head.next else: UpperCAmelCase : Optional[int] = self.head for _ in range(index - 1 ): UpperCAmelCase : List[Any] = temp.next UpperCAmelCase : str = temp.next UpperCAmelCase : Optional[int] = temp.next.next return delete_node.data def _lowercase( self ) -> bool: return self.head is None def _lowercase( self ) -> None: UpperCAmelCase : Dict = None UpperCAmelCase : Dict = self.head while current: # Store the current node's next node. UpperCAmelCase : Any = current.next # Make the current node's next point backwards UpperCAmelCase : Dict = prev # Make the previous node be the current node UpperCAmelCase : Dict = current # Make the current node the next node (to progress iteration) UpperCAmelCase : Dict = next_node # Return prev in order to put the head at the end UpperCAmelCase : Dict = prev def __lowerCamelCase ( ) -> None: UpperCAmelCase : Optional[Any] = LinkedList() assert linked_list.is_empty() is True assert str(_lowercase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(1_0 ): assert len(_lowercase ) == i linked_list.insert_nth(_lowercase , i + 1 ) assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 1_1 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(1_1 ) assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(0 , 1_2 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 1_0 assert linked_list.delete_tail() == 1_1 assert len(_lowercase ) == 9 assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 1_0 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): UpperCAmelCase : Optional[int] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(-8 , 1 ) ) def __lowerCamelCase ( ) -> None: UpperCAmelCase : Any = [ -9, 1_0_0, Node(7_7_3_4_5_1_1_2 ), """dlrow olleH""", 7, 5_5_5_5, 0, -192.5_5555, """Hello, world!""", 77.9, Node(1_0 ), None, None, 12.20, ] UpperCAmelCase : Union[str, Any] = LinkedList() for i in test_input: linked_list.insert_tail(_lowercase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_lowercase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head UpperCAmelCase : Optional[int] = linked_list.delete_head() assert result == -9 assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail UpperCAmelCase : Optional[int] = linked_list.delete_tail() assert result == 12.2 assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list UpperCAmelCase : str = linked_list.delete_nth(1_0 ) assert result is None assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("""Hello again, world!""" ) ) assert ( str(_lowercase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_lowercase ) assert ( str(_lowercase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_lowercase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __lowerCamelCase ( ) -> Dict: from doctest import testmod testmod() UpperCAmelCase : Tuple = LinkedList() linked_list.insert_head(input("""Inserting 1st at head """ ).strip() ) linked_list.insert_head(input("""Inserting 2nd at head """ ).strip() ) print("""\nPrint list:""" ) linked_list.print_list() linked_list.insert_tail(input("""\nInserting 1st at tail """ ).strip() ) linked_list.insert_tail(input("""Inserting 2nd at tail """ ).strip() ) print("""\nPrint list:""" ) linked_list.print_list() print("""\nDelete head""" ) linked_list.delete_head() print("""Delete tail""" ) linked_list.delete_tail() print("""\nPrint list:""" ) linked_list.print_list() print("""\nReverse linked list""" ) linked_list.reverse() print("""\nPrint list:""" ) linked_list.print_list() print("""\nString representation of linked list:""" ) print(_lowercase ) print("""\nReading/changing Node data using indexing:""" ) print(F'''Element at Position 1: {linked_list[1]}''' ) UpperCAmelCase : int = input("""Enter New Value: """ ).strip() print("""New list:""" ) print(_lowercase ) print(F'''length of linked_list is : {len(_lowercase )}''' ) if __name__ == "__main__": main()
338
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a : int = logging.get_logger(__name__) a : int = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off a : Tuple = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] a : Optional[int] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class UpperCamelCase_ ( __magic_name__ ): lowercase = 'whisper' lowercase = ['past_key_values'] lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]: UpperCAmelCase : str = vocab_size UpperCAmelCase : Union[str, Any] = num_mel_bins UpperCAmelCase : Tuple = d_model UpperCAmelCase : Optional[int] = encoder_layers UpperCAmelCase : List[str] = encoder_attention_heads UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : int = decoder_attention_heads UpperCAmelCase : Optional[int] = decoder_ffn_dim UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : List[str] = dropout UpperCAmelCase : Optional[Any] = attention_dropout UpperCAmelCase : Optional[Any] = activation_dropout UpperCAmelCase : Optional[Any] = activation_function UpperCAmelCase : Optional[Any] = init_std UpperCAmelCase : int = encoder_layerdrop UpperCAmelCase : Dict = decoder_layerdrop UpperCAmelCase : Optional[int] = use_cache UpperCAmelCase : List[str] = encoder_layers UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Union[str, Any] = max_source_positions UpperCAmelCase : Tuple = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : List[str] = classifier_proj_size UpperCAmelCase : Optional[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : int = mask_time_prob UpperCAmelCase : int = mask_time_length UpperCAmelCase : Dict = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Optional[int] = mask_feature_length UpperCAmelCase : int = mask_feature_min_masks UpperCAmelCase : List[Any] = median_filter_width super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , ) class UpperCamelCase_ ( __magic_name__ ): @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : str = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase : List[Any] = {0: """batch"""} else: UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) return common_inputs def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Optional[int] = OrderedDict() UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , ) UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2] UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Any = super().generate_dummy_inputs( preprocessor.tokenizer , A , A , A , A ) UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" ) UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def _lowercase( self ) -> float: return 1e-3
338
1
'''simple docstring''' import pprint import requests a : int = """https://zenquotes.io/api""" def __lowerCamelCase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def __lowerCamelCase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": a : int = random_quotes() pprint.pprint(response)
338
'''simple docstring''' a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowerCamelCase ( ) -> None: UpperCAmelCase : Optional[int] = input("""Enter message: """ ) UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ ) UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): UpperCAmelCase : List[str] = """encrypt""" UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase ) elif mode.lower().startswith("""d""" ): UpperCAmelCase : Tuple = """decrypt""" UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """encrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """decrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Tuple = key.upper() for symbol in message: UpperCAmelCase : Dict = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowercase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowercase ): UpperCAmelCase : Optional[int] = 0 else: translated.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": main()
338
1
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> list: if any(not isinstance(_lowercase , _lowercase ) or x < 0 for x in sequence ): raise TypeError("""Sequence must be list of non-negative integers""" ) for _ in range(len(_lowercase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(_lowercase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
338
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Optional[int] = split_dict._to_yaml_list() assert len(_lowercase ) == len(_lowercase ) UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(_lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCAmelCase : List[str] = None # the split name of split_dict takes over the name of the split info object UpperCAmelCase : int = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name="""my_dataset""" )] ) def __lowerCamelCase ( _lowercase ) -> List[str]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files UpperCAmelCase : Optional[Any] = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
338
1
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" ) if "model" in sd.keys(): UpperCAmelCase : Any = torch.load(_lowercase , map_location="""cpu""" )["""model"""] # pop unnecessary weights UpperCAmelCase : Union[str, Any] = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(_lowercase ) UpperCAmelCase : Tuple = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase : List[Any] = sd.pop(_lowercase ) UpperCAmelCase : Tuple = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase : List[str] = sd[key] # We split QKV in separate Q,K,V UpperCAmelCase : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" ) UpperCAmelCase : Tuple = key.replace(""".qkv_proj.""" , """.k_proj.""" ) UpperCAmelCase : int = key.replace(""".qkv_proj.""" , """.v_proj.""" ) UpperCAmelCase : Dict = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = torch.split(_lowercase , depth // 3 , dim=0 ) UpperCAmelCase : Tuple = q UpperCAmelCase : Tuple = k UpperCAmelCase : Any = v del sd[key] return sd @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Optional[Any]: UpperCAmelCase : Tuple = load_checkpoint(_lowercase ) if config is not None: UpperCAmelCase : Dict = OPTConfig.from_pretrained(_lowercase ) else: UpperCAmelCase : int = OPTConfig() UpperCAmelCase : List[Any] = OPTModel(_lowercase ).half().eval() model.load_state_dict(_lowercase ) # Check results Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") a : Union[str, Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
338
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor a : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , **A ) -> None: warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , A , ) super().__init__(*A , **A )
338
1
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> List[str]: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def __lowerCamelCase ( _lowercase , _lowercase=0 ) -> Union[str, Any]: return sorted(_lowercase , key=lambda _lowercase : x[column] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=float("""inf""" ) ) -> Tuple: for i in range(points_counts - 1 ): for j in range(i + 1 , _lowercase ): UpperCAmelCase : Optional[int] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: UpperCAmelCase : List[Any] = current_dis return min_dis def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=float("""inf""" ) ) -> Optional[int]: for i in range(min(6 , points_counts - 1 ) , _lowercase ): for j in range(max(0 , i - 6 ) , _lowercase ): UpperCAmelCase : Tuple = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: UpperCAmelCase : Dict = current_dis return min_dis def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: # base case if points_counts <= 3: return dis_between_closest_pair(_lowercase , _lowercase ) # recursion UpperCAmelCase : List[Any] = points_counts // 2 UpperCAmelCase : Dict = closest_pair_of_points_sqr( _lowercase , points_sorted_on_y[:mid] , _lowercase ) UpperCAmelCase : str = closest_pair_of_points_sqr( _lowercase , points_sorted_on_y[mid:] , points_counts - mid ) UpperCAmelCase : List[str] = min(_lowercase , _lowercase ) UpperCAmelCase : Any = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_lowercase ) UpperCAmelCase : Dict = dis_between_closest_in_strip( _lowercase , len(_lowercase ) , _lowercase ) return min(_lowercase , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Tuple: UpperCAmelCase : Union[str, Any] = column_based_sort(_lowercase , column=0 ) UpperCAmelCase : Tuple = column_based_sort(_lowercase , column=1 ) return ( closest_pair_of_points_sqr( _lowercase , _lowercase , _lowercase ) ) ** 0.5 if __name__ == "__main__": a : Union[str, Any] = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)] print("""Distance:""", closest_pair_of_points(points, len(points)))
338
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a : Union[str, Any] = logging.get_logger(__name__) a : Union[str, Any] = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'detr' lowercase = ['past_key_values'] lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(A , A ): UpperCAmelCase : Any = backbone_config.get("""model_type""" ) UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : List[Any] = config_class.from_dict(A ) # set timm attributes to None UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = None, None, None UpperCAmelCase : Dict = use_timm_backbone UpperCAmelCase : Any = backbone_config UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : int = num_queries UpperCAmelCase : List[str] = d_model UpperCAmelCase : Tuple = encoder_ffn_dim UpperCAmelCase : Optional[Any] = encoder_layers UpperCAmelCase : Any = encoder_attention_heads UpperCAmelCase : Optional[Any] = decoder_ffn_dim UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : str = dropout UpperCAmelCase : Tuple = attention_dropout UpperCAmelCase : Dict = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : List[Any] = init_std UpperCAmelCase : str = init_xavier_std UpperCAmelCase : List[Any] = encoder_layerdrop UpperCAmelCase : int = decoder_layerdrop UpperCAmelCase : List[Any] = encoder_layers UpperCAmelCase : Union[str, Any] = auxiliary_loss UpperCAmelCase : str = position_embedding_type UpperCAmelCase : Union[str, Any] = backbone UpperCAmelCase : List[str] = use_pretrained_backbone UpperCAmelCase : Optional[int] = dilation # Hungarian matcher UpperCAmelCase : Union[str, Any] = class_cost UpperCAmelCase : Optional[Any] = bbox_cost UpperCAmelCase : List[Any] = giou_cost # Loss coefficients UpperCAmelCase : int = mask_loss_coefficient UpperCAmelCase : Optional[int] = dice_loss_coefficient UpperCAmelCase : Dict = bbox_loss_coefficient UpperCAmelCase : Any = giou_loss_coefficient UpperCAmelCase : Any = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def _lowercase( self ) -> int: return self.encoder_attention_heads @property def _lowercase( self ) -> int: return self.d_model @classmethod def _lowercase( cls , A , **A ) -> Dict: return cls(backbone_config=A , **A ) def _lowercase( self ) -> Dict[str, any]: UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase : Any = self.backbone_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowercase( self ) -> float: return 1e-5 @property def _lowercase( self ) -> int: return 12
338
1
'''simple docstring''' from __future__ import annotations import math def __lowerCamelCase ( _lowercase ) -> list[int]: if num <= 0: UpperCAmelCase : List[str] = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(_lowercase ) UpperCAmelCase : Tuple = [True] * (num + 1) UpperCAmelCase : str = [] UpperCAmelCase : List[str] = 2 UpperCAmelCase : Any = int(math.sqrt(_lowercase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_lowercase ) # Set multiples of start be False for i in range(start * start , num + 1 , _lowercase ): if sieve[i] is True: UpperCAmelCase : Union[str, Any] = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_lowercase ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[str] = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
'''simple docstring''' import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCamelCase_ : def __init__( self , A , A=2 , A=3 , A=4 , A=2 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=36 , A=3 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=6 , A=6 , A=3 , A=4 , A=None , A=1000 , ) -> Union[str, Any]: UpperCAmelCase : List[str] = parent UpperCAmelCase : Tuple = batch_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : Tuple = image_size UpperCAmelCase : Dict = patch_size UpperCAmelCase : Any = text_seq_length UpperCAmelCase : List[Any] = is_training UpperCAmelCase : Optional[int] = use_input_mask UpperCAmelCase : Tuple = use_token_type_ids UpperCAmelCase : Tuple = use_labels UpperCAmelCase : Dict = vocab_size UpperCAmelCase : List[Any] = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Any = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : Optional[Any] = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : List[Any] = max_position_embeddings UpperCAmelCase : List[Any] = type_vocab_size UpperCAmelCase : Optional[int] = type_sequence_label_size UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : Dict = coordinate_size UpperCAmelCase : Optional[int] = shape_size UpperCAmelCase : Tuple = num_labels UpperCAmelCase : Tuple = num_choices UpperCAmelCase : Optional[Any] = scope UpperCAmelCase : Union[str, Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCAmelCase : Any = text_seq_length UpperCAmelCase : Optional[int] = (image_size // patch_size) ** 2 + 1 UpperCAmelCase : str = self.text_seq_length + self.image_seq_length def _lowercase( self ) -> Any: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) UpperCAmelCase : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCAmelCase : Optional[Any] = bbox[i, j, 3] UpperCAmelCase : int = bbox[i, j, 1] UpperCAmelCase : Any = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCAmelCase : List[str] = bbox[i, j, 2] UpperCAmelCase : List[str] = bbox[i, j, 0] UpperCAmelCase : int = t UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = None if self.use_input_mask: UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCAmelCase : Any = None if self.use_token_type_ids: UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) UpperCAmelCase : Tuple = None UpperCAmelCase : Optional[Any] = None if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) UpperCAmelCase : Any = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _lowercase( self , A , A , A , A , A , A , A , A ) -> Optional[Any]: UpperCAmelCase : Optional[int] = LayoutLMvaModel(config=A ) model.to(A ) model.eval() # text + image UpperCAmelCase : Dict = model(A , pixel_values=A ) UpperCAmelCase : List[Any] = model( A , bbox=A , pixel_values=A , attention_mask=A , token_type_ids=A ) UpperCAmelCase : int = model(A , bbox=A , pixel_values=A , token_type_ids=A ) UpperCAmelCase : List[Any] = model(A , bbox=A , pixel_values=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCAmelCase : Optional[Any] = model(A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCAmelCase : Optional[int] = model(pixel_values=A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A ) -> Dict: UpperCAmelCase : Any = self.num_labels UpperCAmelCase : List[str] = LayoutLMvaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model( A , bbox=A , pixel_values=A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A , A , A , A , A , A ) -> Optional[Any]: UpperCAmelCase : Any = self.num_labels UpperCAmelCase : Optional[Any] = LayoutLMvaForTokenClassification(config=A ) model.to(A ) model.eval() UpperCAmelCase : int = model( A , bbox=A , pixel_values=A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _lowercase( self , A , A , A , A , A , A , A , A ) -> Any: UpperCAmelCase : Optional[Any] = LayoutLMvaForQuestionAnswering(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[str] = model( A , bbox=A , pixel_values=A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase( self ) -> int: UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Optional[int] = config_and_inputs UpperCAmelCase : Dict = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = False lowercase = False lowercase = False lowercase = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowercase = ( {'document-question-answering': LayoutLMvaForQuestionAnswering, 'feature-extraction': LayoutLMvaModel} if is_torch_available() else {} ) def _lowercase( self , A , A , A , A , A ) -> str: # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = LayoutLMvaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self , A , A , A=False ) -> Optional[int]: UpperCAmelCase : Optional[Any] = copy.deepcopy(A ) if model_class in get_values(A ): UpperCAmelCase : str = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(A , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A ): UpperCAmelCase : Any = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=A ) elif model_class in get_values(A ): UpperCAmelCase : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) UpperCAmelCase : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) elif model_class in [ *get_values(A ), ]: UpperCAmelCase : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) elif model_class in [ *get_values(A ), ]: UpperCAmelCase : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=A , ) return inputs_dict def _lowercase( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowercase( self ) -> Tuple: UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> Any: UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : List[Any] = type self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) @slow def _lowercase( self ) -> int: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : List[str] = LayoutLMvaModel.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ) -> int: UpperCAmelCase : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _lowercase( self ) -> List[Any]: return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None @slow def _lowercase( self ) -> Tuple: UpperCAmelCase : Union[str, Any] = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(A ) UpperCAmelCase : Dict = self.default_image_processor UpperCAmelCase : str = prepare_img() UpperCAmelCase : List[str] = image_processor(images=A , return_tensors="""pt""" ).pixel_values.to(A ) UpperCAmelCase : Tuple = torch.tensor([[1, 2]] ) UpperCAmelCase : Union[str, Any] = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass UpperCAmelCase : Dict = model( input_ids=input_ids.to(A ) , bbox=bbox.to(A ) , pixel_values=pixel_values.to(A ) , ) # verify the logits UpperCAmelCase : List[Any] = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , A ) UpperCAmelCase : Tuple = torch.tensor( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , A , atol=1e-4 ) )
338
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" ) if "model" in sd.keys(): UpperCAmelCase : Any = torch.load(_lowercase , map_location="""cpu""" )["""model"""] # pop unnecessary weights UpperCAmelCase : Union[str, Any] = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(_lowercase ) UpperCAmelCase : Tuple = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase : List[Any] = sd.pop(_lowercase ) UpperCAmelCase : Tuple = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase : List[str] = sd[key] # We split QKV in separate Q,K,V UpperCAmelCase : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" ) UpperCAmelCase : Tuple = key.replace(""".qkv_proj.""" , """.k_proj.""" ) UpperCAmelCase : int = key.replace(""".qkv_proj.""" , """.v_proj.""" ) UpperCAmelCase : Dict = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = torch.split(_lowercase , depth // 3 , dim=0 ) UpperCAmelCase : Tuple = q UpperCAmelCase : Tuple = k UpperCAmelCase : Any = v del sd[key] return sd @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Optional[Any]: UpperCAmelCase : Tuple = load_checkpoint(_lowercase ) if config is not None: UpperCAmelCase : Dict = OPTConfig.from_pretrained(_lowercase ) else: UpperCAmelCase : int = OPTConfig() UpperCAmelCase : List[Any] = OPTModel(_lowercase ).half().eval() model.load_state_dict(_lowercase ) # Check results Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") a : Union[str, Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
338
1
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = StableUnCLIPPipeline lowercase = TEXT_TO_IMAGE_PARAMS lowercase = TEXT_TO_IMAGE_BATCH_PARAMS lowercase = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false lowercase = False def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = 32 UpperCAmelCase : List[Any] = embedder_hidden_size # prior components torch.manual_seed(0 ) UpperCAmelCase : Any = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) UpperCAmelCase : int = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=A , projection_dim=A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=A , num_layers=1 , ) torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = DDPMScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=A , clip_sample_range=5.0 , beta_schedule="""squaredcos_cap_v2""" , ) # regular denoising components torch.manual_seed(0 ) UpperCAmelCase : List[str] = StableUnCLIPImageNormalizer(embedding_dim=A ) UpperCAmelCase : List[Any] = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) UpperCAmelCase : Any = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=A , layers_per_block=1 , upcast_attention=A , use_linear_projection=A , ) torch.manual_seed(0 ) UpperCAmelCase : List[str] = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type="""v_prediction""" , set_alpha_to_one=A , steps_offset=1 , ) torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = AutoencoderKL() UpperCAmelCase : Tuple = { # prior components """prior_tokenizer""": prior_tokenizer, """prior_text_encoder""": prior_text_encoder, """prior""": prior, """prior_scheduler""": prior_scheduler, # image noising components """image_normalizer""": image_normalizer, """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder, """unet""": unet, """scheduler""": scheduler, """vae""": vae, } return components def _lowercase( self , A , A=0 ) -> Optional[int]: if str(A ).startswith("""mps""" ): UpperCAmelCase : Dict = torch.manual_seed(A ) else: UpperCAmelCase : int = torch.Generator(device=A ).manual_seed(A ) UpperCAmelCase : str = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """prior_num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _lowercase( self ) -> str: UpperCAmelCase : Any = torch_device == """cpu""" self._test_attention_slicing_forward_pass(test_max_difference=A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : List[Any] = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=A ) @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase( self ) -> Dict: UpperCAmelCase : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""" ) UpperCAmelCase : Dict = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase : Optional[int] = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase : Tuple = pipe("""anime turle""" , generator=A , output_type="""np""" ) UpperCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(A , A ) def _lowercase( self ) -> Optional[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase : Any = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) UpperCAmelCase : Dict = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase : Tuple = pipe( """anime turtle""" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="""np""" , ) UpperCAmelCase : List[str] = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
338
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : str = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'levit' def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int: super().__init__(**A ) UpperCAmelCase : Any = image_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : Tuple = kernel_size UpperCAmelCase : Optional[int] = stride UpperCAmelCase : Dict = padding UpperCAmelCase : List[Any] = hidden_sizes UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = depths UpperCAmelCase : Any = key_dim UpperCAmelCase : str = drop_path_rate UpperCAmelCase : List[Any] = patch_size UpperCAmelCase : str = attention_ratio UpperCAmelCase : Optional[Any] = mlp_ratio UpperCAmelCase : Dict = initializer_range UpperCAmelCase : int = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase( self ) -> float: return 1e-4
338
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : List[Any] = logging.get_logger(__name__) a : Tuple = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'rwkv' lowercase = {'max_position_embeddings': 'context_length'} def __init__( self , A=50277 , A=1024 , A=4096 , A=32 , A=None , A=None , A=1e-5 , A=0 , A=0 , A=6 , A=False , A=True , **A , ) -> str: UpperCAmelCase : List[str] = vocab_size UpperCAmelCase : List[str] = context_length UpperCAmelCase : Dict = hidden_size UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : Union[str, Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size UpperCAmelCase : Any = intermediate_size if intermediate_size is not None else 4 * hidden_size UpperCAmelCase : Optional[int] = layer_norm_epsilon UpperCAmelCase : List[str] = rescale_every UpperCAmelCase : List[str] = use_cache UpperCAmelCase : Any = bos_token_id UpperCAmelCase : List[str] = eos_token_id super().__init__( tie_word_embeddings=A , bos_token_id=A , eos_token_id=A , **A )
338
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) a : List[str] = """Hello, World!""" a : List[Any] = """en_XX""" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Dict = Path("""data_bin""" ) UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(_lowercase ) UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder UpperCAmelCase : Tuple = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , _lowercase ) UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight UpperCAmelCase : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase : List[str] = model.roberta.encoder.layer[i] UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i] # self attention UpperCAmelCase : Optional[Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias # intermediate UpperCAmelCase : Tuple = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) UpperCAmelCase : List[str] = xmod_layer.fca.weight UpperCAmelCase : str = xmod_layer.fca.bias # output UpperCAmelCase : Any = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) UpperCAmelCase : Dict = xmod_layer.fca.weight UpperCAmelCase : Dict = xmod_layer.fca.bias UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code] UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code] UpperCAmelCase : Any = from_adapter.fca.weight UpperCAmelCase : int = from_adapter.fca.bias UpperCAmelCase : Dict = from_adapter.fca.weight UpperCAmelCase : Dict = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias UpperCAmelCase : str = xmod.model.encoder.lm_head.weight UpperCAmelCase : str = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) UpperCAmelCase : Optional[int] = model(_lowercase )[0] if classification_head: UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) ) else: UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) a : List[str] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
338
1
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever a : List[str] = logging.getLogger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A=None ) -> Union[str, Any]: super().__init__( A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , ) UpperCAmelCase : Optional[Any] = None def _lowercase( self , A ) -> List[Any]: logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually UpperCAmelCase : Tuple = self._infer_socket_ifname() # avoid clash with the NCCL port UpperCAmelCase : str = str(distributed_port + 1 ) UpperCAmelCase : Any = dist.new_group(ranks=A , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _lowercase( self ) -> Dict: return dist.get_rank(group=self.process_group ) == 0 def _lowercase( self , A , A , A=torch.floataa ) -> str: UpperCAmelCase : List[Any] = torch.empty(A , dtype=A ) dist.scatter(A , src=0 , scatter_list=A , group=self.process_group ) return target_tensor def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names UpperCAmelCase : Optional[int] = next((addr for addr in addrs if addr.startswith("""e""" )) , A ) return ifname def _lowercase( self , A , A ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): UpperCAmelCase , UpperCAmelCase : str = self._main_retrieve(A , A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A ) # distributed training UpperCAmelCase : int = dist.get_world_size(group=self.process_group ) # gather logic UpperCAmelCase : int = None if self._is_main(): UpperCAmelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )] dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group ) # scatter logic UpperCAmelCase : List[Any] = question_hidden_states.shape[0] UpperCAmelCase : Tuple = [] UpperCAmelCase : Any = [] if self._is_main(): assert len(A ) == world_size UpperCAmelCase , UpperCAmelCase : Optional[int] = self._main_retrieve(torch.cat(A ).numpy() , A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = torch.tensor(A ), torch.tensor(A ) UpperCAmelCase : List[str] = self._chunk_tensor(A , A ) UpperCAmelCase : Union[str, Any] = self._chunk_tensor(A , A ) UpperCAmelCase : Tuple = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa ) UpperCAmelCase : Optional[Any] = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
338
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __lowerCamelCase ( _lowercase ) -> List[Any]: for i in range(0 , _lowercase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __lowerCamelCase ( _lowercase ) -> Dict: for i in range(_lowercase , 0 , -1 ): for _ in range(_lowercase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __lowerCamelCase ( _lowercase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowercase ) # upper half reverse_floyd(_lowercase ) # lower half if __name__ == "__main__": print(R"""| /\ | |- | |- |--| |\ /| |-""") print(R"""|/ \| |- |_ |_ |__| | \/ | |_""") a : List[Any] = 1 while K: a : int = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) a : Tuple = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
338
1
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a : Optional[int] = logging.get_logger(__name__) a : Any = { """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } a : Any = { """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } a : str = { """vinai/phobert-base""": 2_5_6, """vinai/phobert-large""": 2_5_6, } def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : str = set() UpperCAmelCase : str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase : int = char UpperCAmelCase : Any = set(_lowercase ) return pairs class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , A , A , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> Dict: super().__init__( bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , ) UpperCAmelCase : Dict = vocab_file UpperCAmelCase : List[str] = merges_file UpperCAmelCase : Tuple = {} UpperCAmelCase : List[str] = 0 UpperCAmelCase : str = 1 UpperCAmelCase : Optional[Any] = 2 UpperCAmelCase : Tuple = 3 self.add_from_file(A ) UpperCAmelCase : Optional[int] = {v: k for k, v in self.encoder.items()} with open(A , encoding="""utf-8""" ) as merges_handle: UpperCAmelCase : Union[str, Any] = merges_handle.read().split("""\n""" )[:-1] UpperCAmelCase : int = [tuple(merge.split()[:-1] ) for merge in merges] UpperCAmelCase : Tuple = dict(zip(A , range(len(A ) ) ) ) UpperCAmelCase : Dict = {} def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Any = [self.cls_token_id] UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : List[Any] = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _lowercase( self ) -> Any: return len(self.encoder ) def _lowercase( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase( self , A ) -> Dict: if token in self.cache: return self.cache[token] UpperCAmelCase : Optional[Any] = tuple(A ) UpperCAmelCase : List[Any] = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) UpperCAmelCase : List[Any] = get_pairs(A ) if not pairs: return token while True: UpperCAmelCase : List[Any] = min(A , key=lambda A : self.bpe_ranks.get(A , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase , UpperCAmelCase : Tuple = bigram UpperCAmelCase : Dict = [] UpperCAmelCase : Optional[Any] = 0 while i < len(A ): try: UpperCAmelCase : Optional[int] = word.index(A , A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase : int = j if word[i] == first and i < len(A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase : Tuple = tuple(A ) UpperCAmelCase : Tuple = new_word if len(A ) == 1: break else: UpperCAmelCase : Optional[int] = get_pairs(A ) UpperCAmelCase : List[str] = """@@ """.join(A ) UpperCAmelCase : Any = word[:-4] UpperCAmelCase : Optional[Any] = word return word def _lowercase( self , A ) -> Any: UpperCAmelCase : Dict = [] UpperCAmelCase : int = re.findall(r"""\S+\n?""" , A ) for token in words: split_tokens.extend(list(self.bpe(A ).split(""" """ ) ) ) return split_tokens def _lowercase( self , A ) -> int: return self.encoder.get(A , self.encoder.get(self.unk_token ) ) def _lowercase( self , A ) -> Union[str, Any]: return self.decoder.get(A , self.unk_token ) def _lowercase( self , A ) -> str: UpperCAmelCase : int = """ """.join(A ).replace("""@@ """ , """""" ).strip() return out_string def _lowercase( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : str = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase : Dict = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) if os.path.abspath(self.merges_file ) != os.path.abspath(A ): copyfile(self.merges_file , A ) return out_vocab_file, out_merge_file def _lowercase( self , A ) -> str: if isinstance(A , A ): try: with open(A , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(A ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return UpperCAmelCase : Optional[Any] = f.readlines() for lineTmp in lines: UpperCAmelCase : Optional[int] = lineTmp.strip() UpperCAmelCase : List[str] = line.rfind(""" """ ) if idx == -1: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" ) UpperCAmelCase : Any = line[:idx] UpperCAmelCase : Optional[Any] = len(self.encoder )
338
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever a : List[str] = logging.getLogger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A=None ) -> Union[str, Any]: super().__init__( A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , ) UpperCAmelCase : Optional[Any] = None def _lowercase( self , A ) -> List[Any]: logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually UpperCAmelCase : Tuple = self._infer_socket_ifname() # avoid clash with the NCCL port UpperCAmelCase : str = str(distributed_port + 1 ) UpperCAmelCase : Any = dist.new_group(ranks=A , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _lowercase( self ) -> Dict: return dist.get_rank(group=self.process_group ) == 0 def _lowercase( self , A , A , A=torch.floataa ) -> str: UpperCAmelCase : List[Any] = torch.empty(A , dtype=A ) dist.scatter(A , src=0 , scatter_list=A , group=self.process_group ) return target_tensor def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names UpperCAmelCase : Optional[int] = next((addr for addr in addrs if addr.startswith("""e""" )) , A ) return ifname def _lowercase( self , A , A ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): UpperCAmelCase , UpperCAmelCase : str = self._main_retrieve(A , A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A ) # distributed training UpperCAmelCase : int = dist.get_world_size(group=self.process_group ) # gather logic UpperCAmelCase : int = None if self._is_main(): UpperCAmelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )] dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group ) # scatter logic UpperCAmelCase : List[Any] = question_hidden_states.shape[0] UpperCAmelCase : Tuple = [] UpperCAmelCase : Any = [] if self._is_main(): assert len(A ) == world_size UpperCAmelCase , UpperCAmelCase : Optional[int] = self._main_retrieve(torch.cat(A ).numpy() , A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = torch.tensor(A ), torch.tensor(A ) UpperCAmelCase : List[str] = self._chunk_tensor(A , A ) UpperCAmelCase : Union[str, Any] = self._chunk_tensor(A , A ) UpperCAmelCase : Tuple = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa ) UpperCAmelCase : Optional[Any] = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
338
1
'''simple docstring''' from math import loga def __lowerCamelCase ( _lowercase ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_lowercase , _lowercase ): raise TypeError("""Input value must be a 'int' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
338
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : List[str] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } a : List[Any] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } a : List[Any] = { """facebook/blenderbot_small-90M""": 5_1_2, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = BlenderbotSmallTokenizer def __init__( self , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , A=True , **A , ) -> Union[str, Any]: super().__init__( ByteLevelBPETokenizer( vocab=A , merges=A , add_prefix_space=A , trim_offsets=A , ) , bos_token=A , eos_token=A , unk_token=A , **A , ) UpperCAmelCase : Optional[Any] = add_prefix_space def _lowercase( self , A , A=None ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
338
1
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging a : Optional[Any] = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): lowercase = 'linear' lowercase = 'cosine' lowercase = 'cosine_with_restarts' lowercase = 'polynomial' lowercase = 'constant' lowercase = 'constant_with_warmup' lowercase = 'piecewise_constant' def __lowerCamelCase ( _lowercase , _lowercase = -1 ) -> List[str]: return LambdaLR(_lowercase , lambda _lowercase : 1 , last_epoch=_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase = -1 ) -> List[str]: def lr_lambda(_lowercase ): if current_step < num_warmup_steps: return float(_lowercase ) / float(max(1.0 , _lowercase ) ) return 1.0 return LambdaLR(_lowercase , _lowercase , last_epoch=_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase = -1 ) -> List[Any]: UpperCAmelCase : List[Any] = {} UpperCAmelCase : Tuple = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: UpperCAmelCase , UpperCAmelCase : Optional[Any] = rule_str.split(""":""" ) UpperCAmelCase : Optional[Any] = int(_lowercase ) UpperCAmelCase : Any = float(_lowercase ) UpperCAmelCase : Union[str, Any] = value UpperCAmelCase : List[str] = float(rule_list[-1] ) def create_rules_function(_lowercase , _lowercase ): def rule_func(_lowercase ) -> float: UpperCAmelCase : Dict = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_lowercase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func UpperCAmelCase : Tuple = create_rules_function(_lowercase , _lowercase ) return LambdaLR(_lowercase , _lowercase , last_epoch=_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=-1 ) -> Union[str, Any]: def lr_lambda(_lowercase ): if current_step < num_warmup_steps: return float(_lowercase ) / float(max(1 , _lowercase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_lowercase , _lowercase , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase = 0.5 , _lowercase = -1 ) -> Any: def lr_lambda(_lowercase ): if current_step < num_warmup_steps: return float(_lowercase ) / float(max(1 , _lowercase ) ) UpperCAmelCase : List[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_lowercase ) * 2.0 * progress )) ) return LambdaLR(_lowercase , _lowercase , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase = 1 , _lowercase = -1 ) -> int: def lr_lambda(_lowercase ): if current_step < num_warmup_steps: return float(_lowercase ) / float(max(1 , _lowercase ) ) UpperCAmelCase : str = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_lowercase ) * progress) % 1.0) )) ) return LambdaLR(_lowercase , _lowercase , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=1e-7 , _lowercase=1.0 , _lowercase=-1 ) -> Optional[Any]: UpperCAmelCase : str = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(F'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(_lowercase ): if current_step < num_warmup_steps: return float(_lowercase ) / float(max(1 , _lowercase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: UpperCAmelCase : Union[str, Any] = lr_init - lr_end UpperCAmelCase : List[str] = num_training_steps - num_warmup_steps UpperCAmelCase : Optional[Any] = 1 - (current_step - num_warmup_steps) / decay_steps UpperCAmelCase : Tuple = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_lowercase , _lowercase , _lowercase ) a : Any = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __lowerCamelCase ( _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = 1 , _lowercase = 1.0 , _lowercase = -1 , ) -> Union[str, Any]: UpperCAmelCase : Any = SchedulerType(_lowercase ) UpperCAmelCase : Optional[int] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_lowercase , last_epoch=_lowercase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_lowercase , step_rules=_lowercase , last_epoch=_lowercase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_lowercase , num_warmup_steps=_lowercase , last_epoch=_lowercase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _lowercase , num_warmup_steps=_lowercase , num_training_steps=_lowercase , num_cycles=_lowercase , last_epoch=_lowercase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _lowercase , num_warmup_steps=_lowercase , num_training_steps=_lowercase , power=_lowercase , last_epoch=_lowercase , ) return schedule_func( _lowercase , num_warmup_steps=_lowercase , num_training_steps=_lowercase , last_epoch=_lowercase )
338
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A = None , A = None , A = False , **A , ) -> Tuple: super().__init__(features=A , cache_dir=A , keep_in_memory=A , **A ) UpperCAmelCase : Any = Sql( cache_dir=A , features=A , sql=A , con=A , **A , ) def _lowercase( self ) -> Dict: UpperCAmelCase : Any = None UpperCAmelCase : Any = None UpperCAmelCase : int = None UpperCAmelCase : int = None self.builder.download_and_prepare( download_config=A , download_mode=A , verification_mode=A , base_path=A , ) # Build dataset for splits UpperCAmelCase : str = self.builder.as_dataset( split="""train""" , verification_mode=A , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase_ : def __init__( self , A , A , A , A = None , A = None , **A , ) -> str: if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) UpperCAmelCase : Dict = dataset UpperCAmelCase : List[Any] = name UpperCAmelCase : Any = con UpperCAmelCase : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase : Optional[Any] = num_proc UpperCAmelCase : str = to_sql_kwargs def _lowercase( self ) -> int: UpperCAmelCase : Any = self.to_sql_kwargs.pop("""sql""" , A ) UpperCAmelCase : str = self.to_sql_kwargs.pop("""con""" , A ) UpperCAmelCase : Union[str, Any] = self.to_sql_kwargs.pop("""index""" , A ) UpperCAmelCase : str = self._write(index=A , **self.to_sql_kwargs ) return written def _lowercase( self , A ) -> Any: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = args UpperCAmelCase : Union[str, Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs UpperCAmelCase : int = query_table( table=self.dataset.data , key=slice(A , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCAmelCase : Any = batch.to_pandas() UpperCAmelCase : List[Any] = df.to_sql(self.name , self.con , index=A , **A ) return num_rows or len(A ) def _lowercase( self , A , **A ) -> int: UpperCAmelCase : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: UpperCAmelCase , UpperCAmelCase : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , A , A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
338
1
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel a : List[Any] = logging.getLogger(__name__) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: # save results if os.path.exists(_lowercase ): if os.path.exists(os.path.join(_lowercase , """config.json""" ) ) and os.path.isfile( os.path.join(_lowercase , """config.json""" ) ): os.remove(os.path.join(_lowercase , """config.json""" ) ) if os.path.exists(os.path.join(_lowercase , """pytorch_model.bin""" ) ) and os.path.isfile( os.path.join(_lowercase , """pytorch_model.bin""" ) ): os.remove(os.path.join(_lowercase , """pytorch_model.bin""" ) ) else: os.makedirs(_lowercase ) model.save_pretrained(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase=False ) -> List[Any]: UpperCAmelCase : Tuple = 2 if unlogit: UpperCAmelCase : Any = torch.pow(_lowercase , _lowercase ) UpperCAmelCase : Any = p * torch.log(_lowercase ) UpperCAmelCase : List[Any] = 0 return -plogp.sum(dim=-1 ) def __lowerCamelCase ( _lowercase ) -> Any: logger.info("""lv, h >\t""" + """\t""".join(F'''{x + 1}''' for x in range(len(_lowercase ) ) ) ) for row in range(len(_lowercase ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + """\t""".join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + """\t""".join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=True , _lowercase=True , _lowercase=None , _lowercase=False ) -> int: UpperCAmelCase , UpperCAmelCase : Any = model.config.num_hidden_layers, model.config.num_attention_heads UpperCAmelCase : int = torch.zeros(_lowercase , _lowercase ).to(args.device ) UpperCAmelCase : Union[str, Any] = torch.zeros(_lowercase , _lowercase ).to(args.device ) if head_mask is None: UpperCAmelCase : Optional[Any] = torch.ones(_lowercase , _lowercase ).to(args.device ) head_mask.requires_grad_(requires_grad=_lowercase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: UpperCAmelCase : List[str] = None UpperCAmelCase : List[str] = 0.0 UpperCAmelCase : List[Any] = 0.0 for step, inputs in enumerate(tqdm(_lowercase , desc="""Iteration""" , disable=args.local_rank not in [-1, 0] ) ): UpperCAmelCase : List[Any] = tuple(t.to(args.device ) for t in inputs ) ((UpperCAmelCase) , ) : Dict = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) UpperCAmelCase : Optional[int] = model(_lowercase , labels=_lowercase , head_mask=_lowercase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(_lowercase ): UpperCAmelCase : Union[str, Any] = entropy(attn.detach() , _lowercase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(_lowercase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: UpperCAmelCase : List[Any] = 2 UpperCAmelCase : Any = torch.pow(torch.pow(_lowercase , _lowercase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: UpperCAmelCase : Union[str, Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("""Attention entropies""" ) print_ad_tensor(_lowercase ) if compute_importance: logger.info("""Head importance scores""" ) print_ad_tensor(_lowercase ) logger.info("""Head ranked by importance scores""" ) UpperCAmelCase : str = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) UpperCAmelCase : Tuple = torch.arange( head_importance.numel() , device=args.device ) UpperCAmelCase : Any = head_ranks.view_as(_lowercase ) print_ad_tensor(_lowercase ) return attn_entropy, head_importance, total_loss def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = compute_heads_importance(_lowercase , _lowercase , _lowercase , compute_entropy=_lowercase ) UpperCAmelCase : List[Any] = 1 / loss # instead of downsteam score use the LM loss logger.info("""Pruning: original score: %f, threshold: %f""" , _lowercase , original_score * args.masking_threshold ) UpperCAmelCase : Optional[Any] = torch.ones_like(_lowercase ) UpperCAmelCase : Optional[Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) UpperCAmelCase : Dict = original_score while current_score >= original_score * args.masking_threshold: UpperCAmelCase : Any = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads UpperCAmelCase : Tuple = float("""Inf""" ) UpperCAmelCase : List[str] = head_importance.view(-1 ).sort()[1] if len(_lowercase ) <= num_to_mask: print("""BREAK BY num_to_mask""" ) break # mask heads UpperCAmelCase : Tuple = current_heads_to_mask[:num_to_mask] logger.info("""Heads to mask: %s""" , str(current_heads_to_mask.tolist() ) ) UpperCAmelCase : Tuple = new_head_mask.view(-1 ) UpperCAmelCase : Dict = 0.0 UpperCAmelCase : Optional[int] = new_head_mask.view_as(_lowercase ) UpperCAmelCase : Any = new_head_mask.clone().detach() print_ad_tensor(_lowercase ) # Compute metric and head importance again UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = compute_heads_importance( _lowercase , _lowercase , _lowercase , compute_entropy=_lowercase , head_mask=_lowercase ) UpperCAmelCase : Optional[int] = 1 / loss logger.info( """Masking: current score: %f, remaining heads %d (%.1f percents)""" , _lowercase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_0_0 , ) logger.info("""Final head mask""" ) print_ad_tensor(_lowercase ) np.save(os.path.join(args.output_dir , """head_mask.npy""" ) , head_mask.detach().cpu().numpy() ) return head_mask def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : str = datetime.now() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = compute_heads_importance( _lowercase , _lowercase , _lowercase , compute_entropy=_lowercase , compute_importance=_lowercase , head_mask=_lowercase ) UpperCAmelCase : List[Any] = 1 / loss UpperCAmelCase : List[str] = datetime.now() - before_time UpperCAmelCase : str = sum(p.numel() for p in model.parameters() ) UpperCAmelCase : Dict = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(_lowercase ) ) } for k, v in heads_to_prune.items(): if isinstance(_lowercase , _lowercase ): UpperCAmelCase : Optional[int] = [ v, ] assert sum(len(_lowercase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(_lowercase ) UpperCAmelCase : Optional[int] = sum(p.numel() for p in model.parameters() ) UpperCAmelCase : Any = datetime.now() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = compute_heads_importance( _lowercase , _lowercase , _lowercase , compute_entropy=_lowercase , compute_importance=_lowercase , head_mask=_lowercase , actually_pruned=_lowercase , ) UpperCAmelCase : List[Any] = 1 / loss UpperCAmelCase : Optional[int] = datetime.now() - before_time logger.info( """Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)""" , _lowercase , _lowercase , pruned_num_params / original_num_params * 1_0_0 , ) logger.info("""Pruning: score with masking: %f score with pruning: %f""" , _lowercase , _lowercase ) logger.info("""Pruning: speed ratio (original timing / new timing): %f percents""" , original_time / new_time * 1_0_0 ) save_model(_lowercase , args.output_dir ) def __lowerCamelCase ( ) -> int: UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--data_dir""" , default=_lowercase , type=_lowercase , required=_lowercase , help="""The input data dir. Should contain the .tsv files (or other data files) for the task.""" , ) parser.add_argument( """--model_name_or_path""" , default=_lowercase , type=_lowercase , required=_lowercase , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--output_dir""" , default=_lowercase , type=_lowercase , required=_lowercase , help="""The output directory where the model predictions and checkpoints will be written.""" , ) # Other parameters parser.add_argument( """--config_name""" , default="""""" , type=_lowercase , help="""Pretrained config name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--tokenizer_name""" , default="""""" , type=_lowercase , help="""Pretrained tokenizer name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--cache_dir""" , default=_lowercase , type=_lowercase , help="""Where do you want to store the pre-trained models downloaded from s3""" , ) parser.add_argument( """--data_subset""" , type=_lowercase , default=-1 , help="""If > 0: limit the data to a subset of data_subset instances.""" ) parser.add_argument( """--overwrite_output_dir""" , action="""store_true""" , help="""Whether to overwrite data in output directory""" ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) parser.add_argument( """--dont_normalize_importance_by_layer""" , action="""store_true""" , help="""Don't normalize importance score by layers""" ) parser.add_argument( """--dont_normalize_global_importance""" , action="""store_true""" , help="""Don't normalize all importance scores between 0 and 1""" , ) parser.add_argument( """--try_masking""" , action="""store_true""" , help="""Whether to try to mask head until a threshold of accuracy.""" ) parser.add_argument( """--masking_threshold""" , default=0.9 , type=_lowercase , help="""masking threshold in term of metrics (stop masking when metric < threshold * original metric value).""" , ) parser.add_argument( """--masking_amount""" , default=0.1 , type=_lowercase , help="""Amount to heads to masking at each masking step.""" ) parser.add_argument("""--metric_name""" , default="""acc""" , type=_lowercase , help="""Metric to use for head masking.""" ) parser.add_argument( """--max_seq_length""" , default=1_2_8 , type=_lowercase , help=( """The maximum total input sequence length after WordPiece tokenization. \n""" """Sequences longer than this will be truncated, sequences shorter padded.""" ) , ) parser.add_argument("""--batch_size""" , default=1 , type=_lowercase , help="""Batch size.""" ) parser.add_argument("""--seed""" , type=_lowercase , default=4_2 ) parser.add_argument("""--local_rank""" , type=_lowercase , default=-1 , help="""local_rank for distributed training on gpus""" ) parser.add_argument("""--no_cuda""" , action="""store_true""" , help="""Whether not to use CUDA when available""" ) parser.add_argument("""--server_ip""" , type=_lowercase , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=_lowercase , default="""""" , help="""Can be used for distant debugging.""" ) UpperCAmelCase : List[str] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_lowercase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: UpperCAmelCase : List[Any] = torch.device("""cuda""" if torch.cuda.is_available() and not args.no_cuda else """cpu""" ) UpperCAmelCase : Dict = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) UpperCAmelCase : Tuple = torch.device("""cuda""" , args.local_rank ) UpperCAmelCase : str = 1 torch.distributed.init_process_group(backend="""nccl""" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("""device: {} n_gpu: {}, distributed: {}""".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) UpperCAmelCase : Dict = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: UpperCAmelCase : Tuple = nn.parallel.DistributedDataParallel( _lowercase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=_lowercase ) elif args.n_gpu > 1: UpperCAmelCase : Dict = nn.DataParallel(_lowercase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=_lowercase ) torch.save(_lowercase , os.path.join(args.output_dir , """run_args.bin""" ) ) logger.info("""Training/evaluation parameters %s""" , _lowercase ) # Prepare dataset UpperCAmelCase : List[str] = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) UpperCAmelCase : str = (torch.from_numpy(_lowercase ),) UpperCAmelCase : Union[str, Any] = TensorDataset(*_lowercase ) UpperCAmelCase : List[str] = RandomSampler(_lowercase ) UpperCAmelCase : Any = DataLoader(_lowercase , sampler=_lowercase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(_lowercase , _lowercase , _lowercase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: UpperCAmelCase : Optional[Any] = mask_heads(_lowercase , _lowercase , _lowercase ) prune_heads(_lowercase , _lowercase , _lowercase , _lowercase ) if __name__ == "__main__": main()
338
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCamelCase_ : lowercase = MBartConfig lowercase = {} lowercase = 'gelu' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : str = is_training UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Optional[Any] = eos_token_id UpperCAmelCase : List[str] = pad_token_id UpperCAmelCase : List[Any] = bos_token_id def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A ) return config, inputs_dict def _lowercase( self , A , A ) -> List[str]: UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder() UpperCAmelCase : int = inputs_dict["""input_ids"""] UpperCAmelCase : str = input_ids[:1, :] UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase : List[str] = inputs_dict["""head_mask"""] UpperCAmelCase : List[Any] = 1 # first forward pass UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = outputs.to_tuple() UpperCAmelCase : int = past_key_values[1] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]: if attention_mask is None: UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False def _lowercase( self , A , A , A , A , A ) -> int: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : int = TFMBartModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A ) def _lowercase( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase( self ) -> Dict: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_sentencepiece @require_tokenizers @require_tf class UpperCamelCase_ ( unittest.TestCase ): lowercase = [ ' UN Chief Says There Is No Military Solution in Syria', ] lowercase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] lowercase = 'facebook/mbart-large-en-ro' @cached_property def _lowercase( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowercase( self , **A ) -> Any: UpperCAmelCase : Optional[int] = self.translate_src_text(**A ) self.assertListEqual(self.expected_text , A ) def _lowercase( self , **A ) -> Optional[Any]: UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" ) UpperCAmelCase : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A ) return generated_words @slow def _lowercase( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
338
1
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCamelCase_ ( unittest.TestCase ): def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=4 , ) -> Union[str, Any]: UpperCAmelCase : str = parent UpperCAmelCase : Union[str, Any] = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : Dict = is_training UpperCAmelCase : Optional[int] = use_attention_mask UpperCAmelCase : List[str] = use_token_type_ids UpperCAmelCase : int = use_labels UpperCAmelCase : Tuple = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : Tuple = num_hidden_layers UpperCAmelCase : Optional[Any] = num_attention_heads UpperCAmelCase : Dict = intermediate_size UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : Union[str, Any] = hidden_dropout_prob UpperCAmelCase : Dict = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : int = type_sequence_label_size UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : List[str] = num_choices def _lowercase( self ) -> int: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Tuple = None if self.use_attention_mask: UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : int = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = config_and_inputs UpperCAmelCase : str = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = config_and_inputs UpperCAmelCase : List[Any] = True UpperCAmelCase : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = True lowercase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Any = FlaxRobertaModelTester(self ) @slow def _lowercase( self ) -> Tuple: for model_class_name in self.all_model_classes: UpperCAmelCase : int = model_class_name.from_pretrained("""roberta-base""" , from_pt=A ) UpperCAmelCase : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(A )
338
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: UpperCAmelCase : Tuple = len(_lowercase ) + 1 UpperCAmelCase : List[Any] = len(_lowercase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase : str = [[0 for i in range(_lowercase )] for j in range(_lowercase )] # since string of zero length match pattern of zero length UpperCAmelCase : int = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowercase ): UpperCAmelCase : str = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowercase ): UpperCAmelCase : Optional[Any] = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowercase ): for j in range(1 , _lowercase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase : Union[str, Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase : List[Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase : Optional[int] = dp[i - 1][j] else: UpperCAmelCase : Any = 0 else: UpperCAmelCase : str = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") a : List[str] = """aab""" a : Optional[int] = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
338
1
'''simple docstring''' import mpmath # for roots of unity import numpy as np class UpperCamelCase_ : def __init__( self , A=None , A=None ) -> Dict: # Input as list UpperCAmelCase : Optional[int] = list(poly_a or [0] )[:] UpperCAmelCase : Any = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() UpperCAmelCase : Any = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() UpperCAmelCase : Tuple = len(self.polyB ) # Add 0 to make lengths equal a power of 2 UpperCAmelCase : Union[str, Any] = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform UpperCAmelCase : Optional[int] = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product UpperCAmelCase : Optional[int] = self.__multiply() def _lowercase( self , A ) -> str: UpperCAmelCase : Tuple = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB] # Corner case if len(A ) <= 1: return dft[0] # UpperCAmelCase : Optional[int] = self.c_max_length // 2 while next_ncol > 0: UpperCAmelCase : Dict = [[] for i in range(A )] UpperCAmelCase : List[str] = self.root**next_ncol # First half of next step UpperCAmelCase : List[str] = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(A ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step UpperCAmelCase : int = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(A ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update UpperCAmelCase : Any = new_dft UpperCAmelCase : int = next_ncol // 2 return dft[0] def _lowercase( self ) -> List[Any]: UpperCAmelCase : Tuple = self.__dft("""A""" ) UpperCAmelCase : Tuple = self.__dft("""B""" ) UpperCAmelCase : int = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT UpperCAmelCase : Optional[int] = 2 while next_ncol <= self.c_max_length: UpperCAmelCase : int = [[] for i in range(A )] UpperCAmelCase : Optional[Any] = self.root ** (next_ncol // 2) UpperCAmelCase : List[Any] = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update UpperCAmelCase : str = new_inverse_c next_ncol *= 2 # Unpack UpperCAmelCase : Dict = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self ) -> str: UpperCAmelCase : Optional[int] = """A = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) UpperCAmelCase : Optional[Any] = """B = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) UpperCAmelCase : Union[str, Any] = """A*B = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return f'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
338
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : List[str] = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int: UpperCAmelCase : int = 1 UpperCAmelCase : str = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase : Tuple = pre_numerator UpperCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase : Union[str, Any] = cur_numerator UpperCAmelCase : Optional[int] = e_cont * pre_numerator + temp return sum_digits(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
338
1
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : def __init__( self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.0_2 , A=["stage2", "stage3", "stage4"] , A=3 , A=None , ) -> Optional[Any]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Union[str, Any] = batch_size UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : int = num_stages UpperCAmelCase : Dict = hidden_sizes UpperCAmelCase : str = depths UpperCAmelCase : Union[str, Any] = is_training UpperCAmelCase : Dict = use_labels UpperCAmelCase : Dict = intermediate_size UpperCAmelCase : Any = hidden_act UpperCAmelCase : Any = type_sequence_label_size UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : List[Any] = out_features UpperCAmelCase : Optional[Any] = num_labels UpperCAmelCase : int = scope UpperCAmelCase : int = num_stages def _lowercase( self ) -> Dict: UpperCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Dict = None if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : str = self.get_config() return config, pixel_values, labels def _lowercase( self ) -> Tuple: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def _lowercase( self ) -> List[str]: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=A , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=A , loss_ignore_index=255 , num_labels=self.num_labels , ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : Any = UperNetForSemanticSegmentation(config=A ) model.to(A ) model.eval() UpperCAmelCase : Optional[int] = model(A ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Optional[int] = config_and_inputs UpperCAmelCase : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Any: UpperCAmelCase : List[str] = UperNetModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def _lowercase( self ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase( self ) -> List[str]: return def _lowercase( self ) -> Optional[Any]: UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Union[str, Any] = model_class(A ) UpperCAmelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Union[str, Any] = [*signature.parameters.keys()] UpperCAmelCase : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def _lowercase( self ) -> Dict: pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def _lowercase( self ) -> Any: pass @unittest.skip(reason="""UperNet does not have a base model""" ) def _lowercase( self ) -> Dict: pass @unittest.skip(reason="""UperNet does not have a base model""" ) def _lowercase( self ) -> List[Any]: pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def _lowercase( self ) -> List[Any]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _lowercase( self ) -> Any: pass def _lowercase( self ) -> Dict: def check_hidden_states_output(A , A , A ): UpperCAmelCase : str = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase : str = model(**self._prepare_for_class(A , A ) ) UpperCAmelCase : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : int = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Dict = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : List[Any] = True check_hidden_states_output(A , A , A ) def _lowercase( self ) -> Dict: UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Optional[int] = _config_zero_init(A ) UpperCAmelCase : Dict = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(config=A ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def _lowercase( self ) -> Any: pass @slow def _lowercase( self ) -> Tuple: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : List[str] = UperNetForSemanticSegmentation.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ) -> Any: UpperCAmelCase : Tuple = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) UpperCAmelCase : Any = Image.open(_lowercase ).convert("""RGB""" ) return image @require_torch @require_vision @slow class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) UpperCAmelCase : Dict = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(A ) UpperCAmelCase : Optional[Any] = prepare_img() UpperCAmelCase : int = processor(images=A , return_tensors="""pt""" ).to(A ) with torch.no_grad(): UpperCAmelCase : Dict = model(**A ) UpperCAmelCase : str = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , A ) UpperCAmelCase : Optional[Any] = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , A , atol=1e-4 ) ) def _lowercase( self ) -> str: UpperCAmelCase : Any = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) UpperCAmelCase : List[str] = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(A ) UpperCAmelCase : Any = prepare_img() UpperCAmelCase : int = processor(images=A , return_tensors="""pt""" ).to(A ) with torch.no_grad(): UpperCAmelCase : List[Any] = model(**A ) UpperCAmelCase : int = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , A ) UpperCAmelCase : Dict = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , A , atol=1e-4 ) )
338
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=0.0_1 , A=1000 ) -> List[str]: UpperCAmelCase : List[Any] = p_stop UpperCAmelCase : Optional[int] = max_length def __iter__( self ) -> Union[str, Any]: UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = False while not stop and count < self.max_length: yield count count += 1 UpperCAmelCase : Any = random.random() < self.p_stop class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A , A=False , A=True ) -> Union[str, Any]: UpperCAmelCase : List[str] = [ BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A ) for i in range(2 ) ] UpperCAmelCase : List[str] = [list(A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] ) self.assertListEqual(A , A ) def _lowercase( self ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is very small. UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [[], []] self.check_batch_sampler_shards(A , A ) def _lowercase( self ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A ) def _lowercase( self ) -> Any: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : str = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [[], []] self.check_batch_sampler_shards(A , A , even_batches=A ) def _lowercase( self ) -> List[Any]: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCAmelCase : List[str] = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _lowercase( self , A , A , A , A=False , A=2 , A=False ) -> Tuple: random.seed(A ) UpperCAmelCase : Dict = list(A ) UpperCAmelCase : Any = [ IterableDatasetShard( A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , ) for i in range(A ) ] UpperCAmelCase : Dict = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(A ) iterable_dataset_lists.append(list(A ) ) UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCAmelCase : List[Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(A ) , len(A ) ) self.assertTrue(len(A ) % shard_batch_size == 0 ) UpperCAmelCase : List[Any] = [] for idx in range(0 , len(A ) , A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(A ) < len(A ): reference += reference self.assertListEqual(A , reference[: len(A )] ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = 42 UpperCAmelCase : List[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) # Edge case with a very small dataset UpperCAmelCase : List[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = SkipBatchSampler(A , 2 ) self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> int: UpperCAmelCase : Any = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) UpperCAmelCase : Optional[Any] = skip_first_batches(A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowercase( self ) -> Dict: Accelerator() UpperCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
338
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Dict: UpperCAmelCase : Any = tempfile.mkdtemp() UpperCAmelCase : Any = BlipImageProcessor() UpperCAmelCase : Any = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) UpperCAmelCase : Any = BlipaProcessor(A , A ) processor.save_pretrained(self.tmpdirname ) def _lowercase( self , **A ) -> List[str]: return AutoProcessor.from_pretrained(self.tmpdirname , **A ).tokenizer def _lowercase( self , **A ) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **A ).image_processor def _lowercase( self ) -> Tuple: shutil.rmtree(self.tmpdirname ) def _lowercase( self ) -> int: UpperCAmelCase : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase : List[Any] = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase : Any = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCAmelCase : str = self.get_image_processor(do_normalize=A , padding_value=1.0 ) UpperCAmelCase : Tuple = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) def _lowercase( self ) -> Any: UpperCAmelCase : Optional[Any] = self.get_image_processor() UpperCAmelCase : Optional[int] = self.get_tokenizer() UpperCAmelCase : Optional[Any] = BlipaProcessor(tokenizer=A , image_processor=A ) UpperCAmelCase : Dict = self.prepare_image_inputs() UpperCAmelCase : Tuple = image_processor(A , return_tensors="""np""" ) UpperCAmelCase : Tuple = processor(images=A , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Optional[Any] = self.get_image_processor() UpperCAmelCase : Tuple = self.get_tokenizer() UpperCAmelCase : Optional[int] = BlipaProcessor(tokenizer=A , image_processor=A ) UpperCAmelCase : List[Any] = """lower newer""" UpperCAmelCase : Optional[int] = processor(text=A ) UpperCAmelCase : Union[str, Any] = tokenizer(A , return_token_type_ids=A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowercase( self ) -> int: UpperCAmelCase : List[str] = self.get_image_processor() UpperCAmelCase : Dict = self.get_tokenizer() UpperCAmelCase : Optional[int] = BlipaProcessor(tokenizer=A , image_processor=A ) UpperCAmelCase : int = """lower newer""" UpperCAmelCase : str = self.prepare_image_inputs() UpperCAmelCase : List[str] = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def _lowercase( self ) -> Tuple: UpperCAmelCase : Union[str, Any] = self.get_image_processor() UpperCAmelCase : Tuple = self.get_tokenizer() UpperCAmelCase : Dict = BlipaProcessor(tokenizer=A , image_processor=A ) UpperCAmelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase : Optional[int] = processor.batch_decode(A ) UpperCAmelCase : Any = tokenizer.batch_decode(A ) self.assertListEqual(A , A ) def _lowercase( self ) -> int: UpperCAmelCase : Any = self.get_image_processor() UpperCAmelCase : Any = self.get_tokenizer() UpperCAmelCase : Dict = BlipaProcessor(tokenizer=A , image_processor=A ) UpperCAmelCase : Any = """lower newer""" UpperCAmelCase : Any = self.prepare_image_inputs() UpperCAmelCase : Tuple = processor(text=A , images=A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[Any] = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> float: return 1_0 - x * x def __lowerCamelCase ( _lowercase , _lowercase ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(_lowercase ) * equation(_lowercase ) >= 0: raise ValueError("""Wrong space!""" ) UpperCAmelCase : Any = a while (b - a) >= 0.01: # Find middle point UpperCAmelCase : str = (a + b) / 2 # Check if middle point is root if equation(_lowercase ) == 0.0: break # Decide the side to repeat the steps if equation(_lowercase ) * equation(_lowercase ) < 0: UpperCAmelCase : Union[str, Any] = c else: UpperCAmelCase : Any = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
338
'''simple docstring''' from math import loga def __lowerCamelCase ( _lowercase ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_lowercase , _lowercase ): raise TypeError("""Input value must be a 'int' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
338
1
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer a : Optional[int] = ["""gpt2"""] a : Optional[int] = """gpt2""" if is_tf_available(): class UpperCamelCase_ ( tf.Module ): def __init__( self , A ) -> Dict: super().__init__() UpperCAmelCase : Any = tokenizer UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(A ) UpperCAmelCase : Any = TFGPTaLMHeadModel.from_config(A ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="""text""" ),) ) def _lowercase( self , A ) -> Dict: UpperCAmelCase : List[str] = self.tokenizer(A ) UpperCAmelCase : List[Any] = tokenized["""input_ids"""].to_tensor() UpperCAmelCase : Optional[Any] = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) UpperCAmelCase : List[str] = self.model(input_ids=A , attention_mask=A )["""logits"""] return outputs @require_tf @require_keras_nlp class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Dict: super().setUp() UpperCAmelCase : Dict = [GPTaTokenizer.from_pretrained(A ) for checkpoint in (TOKENIZER_CHECKPOINTS)] UpperCAmelCase : Optional[int] = [TFGPTaTokenizer.from_pretrained(A ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCAmelCase : Optional[int] = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] UpperCAmelCase : str = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _lowercase( self ) -> Optional[int]: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: UpperCAmelCase : Dict = tokenizer([test_inputs] , return_tensors="""tf""" ) UpperCAmelCase : str = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors UpperCAmelCase : Optional[Any] = python_outputs[key].numpy() UpperCAmelCase : List[str] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(A , tf.intaa ) == tf_outputs_values ) ) @slow def _lowercase( self ) -> int: for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase : Dict = tf.function(A ) for test_inputs in self.test_sentences: UpperCAmelCase : Any = tf.constant(A ) UpperCAmelCase : int = compiled_tokenizer(A ) UpperCAmelCase : Optional[int] = tf_tokenizer(A ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _lowercase( self ) -> Tuple: for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase : List[Any] = ModelToSave(tokenizer=A ) UpperCAmelCase : Optional[int] = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase : Dict = model.serving(A ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCAmelCase : str = Path(A ) / """saved.model""" tf.saved_model.save(A , A , signatures={"""serving_default""": model.serving} ) UpperCAmelCase : Union[str, Any] = tf.saved_model.load(A ) UpperCAmelCase : Optional[Any] = loaded_model.signatures["""serving_default"""](A )["""output_0"""] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def _lowercase( self ) -> Dict: for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase : List[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase : Optional[int] = tf_tokenizer(A ) # Build model with some sample inputs UpperCAmelCase : int = tf_tokenizer.get_config() UpperCAmelCase : int = TFGPTaTokenizer.from_config(A ) UpperCAmelCase : Optional[Any] = model_from_config(A ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def _lowercase( self ) -> str: for tf_tokenizer in self.tf_tokenizers: # for the test to run UpperCAmelCase : List[Any] = 123123 for max_length in [3, 5, 1024]: UpperCAmelCase : Tuple = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase : Union[str, Any] = tf_tokenizer(A , max_length=A ) UpperCAmelCase : List[str] = out["""input_ids"""].numpy().shape[1] assert out_length == max_length
338
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. a : Optional[int] = 1_0 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: for i in range(_lowercase , _lowercase ): if array[i] == target: return i return -1 def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = len(_lowercase ) while left <= right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1 UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase : Any = one_third - 1 elif array[two_third] < target: UpperCAmelCase : Tuple = two_third + 1 else: UpperCAmelCase : int = one_third + 1 UpperCAmelCase : List[Any] = two_third - 1 else: return -1 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: if left < right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : str = (left + right) // 3 + 1 UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() a : Any = input("""Enter numbers separated by comma:\n""").strip() a : Any = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip()) a : Union[str, Any] = ite_ternary_search(collection, target) a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
338
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase_ ( unittest.TestCase ): @property def _lowercase( self ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase : str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _lowercase( self ) -> int: UpperCAmelCase : Optional[int] = self.dummy_uncond_unet UpperCAmelCase : Union[str, Any] = KarrasVeScheduler() UpperCAmelCase : Optional[Any] = KarrasVePipeline(unet=A , scheduler=A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) UpperCAmelCase : List[Any] = pipe(num_inference_steps=2 , generator=A , output_type="""numpy""" ).images UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : int = pipe(num_inference_steps=2 , generator=A , output_type="""numpy""" , return_dict=A )[0] UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] UpperCAmelCase : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : List[str] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Tuple: UpperCAmelCase : List[str] = """google/ncsnpp-celebahq-256""" UpperCAmelCase : Tuple = UNetaDModel.from_pretrained(A ) UpperCAmelCase : Optional[Any] = KarrasVeScheduler() UpperCAmelCase : Union[str, Any] = KarrasVePipeline(unet=A , scheduler=A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe(num_inference_steps=20 , generator=A , output_type="""numpy""" ).images UpperCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
338
'''simple docstring''' import numpy as np class UpperCamelCase_ : def __init__( self ) -> int: UpperCAmelCase : str = (0, 0) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Any = 0 UpperCAmelCase : int = 0 UpperCAmelCase : Optional[int] = 0 def __eq__( self , A ) -> Optional[Any]: return self.position == cell.position def _lowercase( self ) -> Tuple: print(self.position ) class UpperCamelCase_ : def __init__( self , A=(5, 5) ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = np.zeros(A ) UpperCAmelCase : int = world_size[0] UpperCAmelCase : List[str] = world_size[1] def _lowercase( self ) -> List[Any]: print(self.w ) def _lowercase( self , A ) -> Dict: UpperCAmelCase : Optional[Any] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase : List[Any] = cell.position[0] UpperCAmelCase : Union[str, Any] = cell.position[1] UpperCAmelCase : Optional[int] = [] for n in neughbour_cord: UpperCAmelCase : Any = current_x + n[0] UpperCAmelCase : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase : str = Cell() UpperCAmelCase : List[str] = (x, y) UpperCAmelCase : Dict = cell neighbours.append(A ) return neighbours def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase : List[Any] = [] UpperCAmelCase : Optional[int] = [] _open.append(_lowercase ) while _open: UpperCAmelCase : Any = np.argmin([n.f for n in _open] ) UpperCAmelCase : Optional[int] = _open[min_f] _closed.append(_open.pop(_lowercase ) ) if current == goal: break for n in world.get_neigbours(_lowercase ): for c in _closed: if c == n: continue UpperCAmelCase : List[str] = current.g + 1 UpperCAmelCase , UpperCAmelCase : List[str] = n.position UpperCAmelCase , UpperCAmelCase : Dict = goal.position UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase : Dict = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_lowercase ) UpperCAmelCase : Dict = [] while current.parent is not None: path.append(current.position ) UpperCAmelCase : Optional[int] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": a : List[str] = Gridworld() # Start position and goal a : Optional[int] = Cell() a : Optional[Any] = (0, 0) a : Optional[Any] = Cell() a : str = (4, 4) print(F'''path from {start.position} to {goal.position}''') a : List[Any] = astar(world, start, goal) # Just for visual reasons. for i in s: a : Any = 1 print(world.w)
338
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a : List[str] = logging.get_logger(__name__) a : Dict = { """facebook/wav2vec2-base-960h""": """https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json""", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'wav2vec2' def __init__( self , A=32 , A=768 , A=12 , A=12 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=0.1 , A=0.0 , A=0.0 , A=0.1 , A=0.1 , A=0.0_2 , A=1e-5 , A="group" , A="gelu" , A=(512, 512, 512, 512, 512, 512, 512) , A=(5, 2, 2, 2, 2, 2, 2) , A=(10, 3, 3, 3, 3, 2, 2) , A=False , A=128 , A=16 , A=False , A=True , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=320 , A=2 , A=0.1 , A=100 , A=256 , A=256 , A=0.1 , A="sum" , A=False , A=False , A=256 , A=(512, 512, 512, 512, 1500) , A=(5, 3, 3, 1, 1) , A=(1, 2, 3, 1, 1) , A=512 , A=0 , A=1 , A=2 , A=False , A=3 , A=2 , A=3 , A=None , A=None , **A , ) -> str: super().__init__(**A , pad_token_id=A , bos_token_id=A , eos_token_id=A ) UpperCAmelCase : Dict = hidden_size UpperCAmelCase : str = feat_extract_norm UpperCAmelCase : Any = feat_extract_activation UpperCAmelCase : List[Any] = list(A ) UpperCAmelCase : str = list(A ) UpperCAmelCase : Optional[Any] = list(A ) UpperCAmelCase : Union[str, Any] = conv_bias UpperCAmelCase : List[Any] = num_conv_pos_embeddings UpperCAmelCase : str = num_conv_pos_embedding_groups UpperCAmelCase : Optional[Any] = len(self.conv_dim ) UpperCAmelCase : Any = num_hidden_layers UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : Optional[Any] = hidden_act UpperCAmelCase : Tuple = num_attention_heads UpperCAmelCase : Union[str, Any] = hidden_dropout UpperCAmelCase : Tuple = attention_dropout UpperCAmelCase : Union[str, Any] = activation_dropout UpperCAmelCase : Any = feat_proj_dropout UpperCAmelCase : Tuple = final_dropout UpperCAmelCase : Tuple = layerdrop UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Any = vocab_size UpperCAmelCase : Tuple = do_stable_layer_norm UpperCAmelCase : str = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : List[Any] = apply_spec_augment UpperCAmelCase : List[str] = mask_time_prob UpperCAmelCase : Any = mask_time_length UpperCAmelCase : List[Any] = mask_time_min_masks UpperCAmelCase : Optional[int] = mask_feature_prob UpperCAmelCase : Union[str, Any] = mask_feature_length UpperCAmelCase : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase : List[str] = num_codevectors_per_group UpperCAmelCase : List[str] = num_codevector_groups UpperCAmelCase : List[str] = contrastive_logits_temperature UpperCAmelCase : Optional[int] = feat_quantizer_dropout UpperCAmelCase : List[Any] = num_negatives UpperCAmelCase : Optional[int] = codevector_dim UpperCAmelCase : int = proj_codevector_dim UpperCAmelCase : Optional[Any] = diversity_loss_weight # ctc loss UpperCAmelCase : Tuple = ctc_loss_reduction UpperCAmelCase : str = ctc_zero_infinity # adapter UpperCAmelCase : int = add_adapter UpperCAmelCase : str = adapter_kernel_size UpperCAmelCase : Tuple = adapter_stride UpperCAmelCase : Dict = num_adapter_layers UpperCAmelCase : Tuple = output_hidden_size or hidden_size UpperCAmelCase : Optional[Any] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase : Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : List[str] = list(A ) UpperCAmelCase : Union[str, Any] = list(A ) UpperCAmelCase : int = list(A ) UpperCAmelCase : Any = xvector_output_dim @property def _lowercase( self ) -> Tuple: return functools.reduce(operator.mul , self.conv_stride , 1 )
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
'''simple docstring''' def __lowerCamelCase ( _lowercase = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int: try: UpperCAmelCase : List[str] = int(_lowercase ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) UpperCAmelCase : Dict = 2 UpperCAmelCase : Dict = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 UpperCAmelCase : int = i while n % i == 0: UpperCAmelCase : Optional[int] = n // i i += 1 return int(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
338
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a : int = logging.get_logger(__name__) a : int = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off a : Tuple = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] a : Optional[int] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class UpperCamelCase_ ( __magic_name__ ): lowercase = 'whisper' lowercase = ['past_key_values'] lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]: UpperCAmelCase : str = vocab_size UpperCAmelCase : Union[str, Any] = num_mel_bins UpperCAmelCase : Tuple = d_model UpperCAmelCase : Optional[int] = encoder_layers UpperCAmelCase : List[str] = encoder_attention_heads UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : int = decoder_attention_heads UpperCAmelCase : Optional[int] = decoder_ffn_dim UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : List[str] = dropout UpperCAmelCase : Optional[Any] = attention_dropout UpperCAmelCase : Optional[Any] = activation_dropout UpperCAmelCase : Optional[Any] = activation_function UpperCAmelCase : Optional[Any] = init_std UpperCAmelCase : int = encoder_layerdrop UpperCAmelCase : Dict = decoder_layerdrop UpperCAmelCase : Optional[int] = use_cache UpperCAmelCase : List[str] = encoder_layers UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Union[str, Any] = max_source_positions UpperCAmelCase : Tuple = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : List[str] = classifier_proj_size UpperCAmelCase : Optional[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : int = mask_time_prob UpperCAmelCase : int = mask_time_length UpperCAmelCase : Dict = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Optional[int] = mask_feature_length UpperCAmelCase : int = mask_feature_min_masks UpperCAmelCase : List[Any] = median_filter_width super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , ) class UpperCamelCase_ ( __magic_name__ ): @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : str = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase : List[Any] = {0: """batch"""} else: UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) return common_inputs def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Optional[int] = OrderedDict() UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , ) UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2] UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Any = super().generate_dummy_inputs( preprocessor.tokenizer , A , A , A , A ) UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" ) UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def _lowercase( self ) -> float: return 1e-3
338
1
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function a : Any = 1.054571817E-34 # unit of ℏ : J * s a : Any = 3E8 # unit of c : m * s^-1 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> dict[str, float]: if (force, area, distance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if force < 0: raise ValueError("""Magnitude of force can not be negative""" ) if distance < 0: raise ValueError("""Distance can not be negative""" ) if area < 0: raise ValueError("""Area can not be negative""" ) if force == 0: UpperCAmelCase : Union[str, Any] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 2_4_0 * (distance) ** 4 ) return {"force": force} elif area == 0: UpperCAmelCase : Tuple = (2_4_0 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: UpperCAmelCase : Tuple = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_4_0 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("""One and only one argument must be 0""" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
338
'''simple docstring''' a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowerCamelCase ( ) -> None: UpperCAmelCase : Optional[int] = input("""Enter message: """ ) UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ ) UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): UpperCAmelCase : List[str] = """encrypt""" UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase ) elif mode.lower().startswith("""d""" ): UpperCAmelCase : Tuple = """decrypt""" UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """encrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """decrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Tuple = key.upper() for symbol in message: UpperCAmelCase : Dict = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowercase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowercase ): UpperCAmelCase : Optional[int] = 0 else: translated.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": main()
338
1
'''simple docstring''' import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Tuple = logging.get_logger(__name__) a : List[str] = { """google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""", """google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""", """google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""", } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'owlvit_text_model' def __init__( self , A=49408 , A=512 , A=2048 , A=12 , A=8 , A=16 , A="quick_gelu" , A=1e-5 , A=0.0 , A=0.0_2 , A=1.0 , A=0 , A=49406 , A=49407 , **A , ) -> Dict: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) UpperCAmelCase : str = vocab_size UpperCAmelCase : List[Any] = hidden_size UpperCAmelCase : Any = intermediate_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Dict = hidden_act UpperCAmelCase : List[str] = layer_norm_eps UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = initializer_range UpperCAmelCase : Optional[int] = initializer_factor @classmethod def _lowercase( cls , A , **A ) -> "PretrainedConfig": cls._set_token_in_kwargs(A ) UpperCAmelCase , UpperCAmelCase : int = cls.get_config_dict(A , **A ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": UpperCAmelCase : Dict = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(A , **A ) class UpperCamelCase_ ( __magic_name__ ): lowercase = 'owlvit_vision_model' def __init__( self , A=768 , A=3072 , A=12 , A=12 , A=3 , A=768 , A=32 , A="quick_gelu" , A=1e-5 , A=0.0 , A=0.0_2 , A=1.0 , **A , ) -> Optional[int]: super().__init__(**A ) UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : int = intermediate_size UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : str = num_channels UpperCAmelCase : Any = image_size UpperCAmelCase : Tuple = patch_size UpperCAmelCase : Dict = hidden_act UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : int = attention_dropout UpperCAmelCase : Any = initializer_range UpperCAmelCase : List[Any] = initializer_factor @classmethod def _lowercase( cls , A , **A ) -> "PretrainedConfig": cls._set_token_in_kwargs(A ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = cls.get_config_dict(A , **A ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": UpperCAmelCase : List[Any] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(A , **A ) class UpperCamelCase_ ( __magic_name__ ): lowercase = 'owlvit' lowercase = True def __init__( self , A=None , A=None , A=512 , A=2.6_5_9_2 , A=True , **A , ) -> int: super().__init__(**A ) if text_config is None: UpperCAmelCase : str = {} logger.info("""text_config is None. Initializing the OwlViTTextConfig with default values.""" ) if vision_config is None: UpperCAmelCase : List[Any] = {} logger.info("""vision_config is None. initializing the OwlViTVisionConfig with default values.""" ) UpperCAmelCase : int = OwlViTTextConfig(**A ) UpperCAmelCase : Optional[Any] = OwlViTVisionConfig(**A ) UpperCAmelCase : Union[str, Any] = projection_dim UpperCAmelCase : int = logit_scale_init_value UpperCAmelCase : Optional[Any] = return_dict UpperCAmelCase : Any = 1.0 @classmethod def _lowercase( cls , A , **A ) -> "PretrainedConfig": cls._set_token_in_kwargs(A ) UpperCAmelCase , UpperCAmelCase : List[str] = cls.get_config_dict(A , **A ) if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(A , **A ) @classmethod def _lowercase( cls , A , A , **A ) -> Optional[Any]: UpperCAmelCase : int = {} UpperCAmelCase : int = text_config UpperCAmelCase : Optional[Any] = vision_config return cls.from_dict(A , **A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : List[str] = self.text_config.to_dict() UpperCAmelCase : List[str] = self.vision_config.to_dict() UpperCAmelCase : List[str] = self.__class__.model_type return output class UpperCamelCase_ ( __magic_name__ ): @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ] ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""logits_per_image""", {0: """batch"""}), ("""logits_per_text""", {0: """batch"""}), ("""text_embeds""", {0: """batch"""}), ("""image_embeds""", {0: """batch"""}), ] ) @property def _lowercase( self ) -> float: return 1e-4 def _lowercase( self , A , A = -1 , A = -1 , A = None , ) -> Mapping[str, Any]: UpperCAmelCase : Any = super().generate_dummy_inputs( processor.tokenizer , batch_size=A , seq_length=A , framework=A ) UpperCAmelCase : Optional[int] = super().generate_dummy_inputs( processor.image_processor , batch_size=A , framework=A ) return {**text_input_dict, **image_input_dict} @property def _lowercase( self ) -> int: return 14
338
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Optional[int] = split_dict._to_yaml_list() assert len(_lowercase ) == len(_lowercase ) UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(_lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCAmelCase : List[str] = None # the split name of split_dict takes over the name of the split info object UpperCAmelCase : int = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name="""my_dataset""" )] ) def __lowerCamelCase ( _lowercase ) -> List[str]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files UpperCAmelCase : Optional[Any] = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
338
1
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , ) -> str: if config_name_or_path is None: UpperCAmelCase : List[str] = """facebook/rag-token-base""" if model_type == """rag_token""" else """facebook/rag-sequence-base""" if generator_tokenizer_name_or_path is None: UpperCAmelCase : List[Any] = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: UpperCAmelCase : Union[str, Any] = question_encoder_name_or_path UpperCAmelCase : Tuple = RagTokenForGeneration if model_type == """rag_token""" else RagSequenceForGeneration # Save model. UpperCAmelCase : Optional[int] = RagConfig.from_pretrained(_lowercase ) UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained(_lowercase ) UpperCAmelCase : int = AutoConfig.from_pretrained(_lowercase ) UpperCAmelCase : Tuple = gen_config UpperCAmelCase : Optional[int] = question_encoder_config UpperCAmelCase : Optional[Any] = model_class.from_pretrained_question_encoder_generator( _lowercase , _lowercase , config=_lowercase ) rag_model.save_pretrained(_lowercase ) # Sanity check. model_class.from_pretrained(_lowercase ) # Save tokenizers. UpperCAmelCase : Any = AutoTokenizer.from_pretrained(_lowercase ) gen_tokenizer.save_pretrained(dest_dir / """generator_tokenizer/""" ) UpperCAmelCase : int = AutoTokenizer.from_pretrained(_lowercase ) question_encoder_tokenizer.save_pretrained(dest_dir / """question_encoder_tokenizer/""" ) if __name__ == "__main__": a : List[Any] = argparse.ArgumentParser() parser.add_argument( """--model_type""", choices=["""rag_sequence""", """rag_token"""], required=True, type=str, help="""RAG model type: rag_sequence, rag_token""", ) parser.add_argument("""--dest""", type=str, required=True, help="""Path to the output checkpoint directory.""") parser.add_argument("""--generator_name_or_path""", type=str, required=True, help="""Generator model identifier""") parser.add_argument( """--question_encoder_name_or_path""", type=str, required=True, help="""Question encoder model identifier""" ) parser.add_argument( """--generator_tokenizer_name_or_path""", type=str, help="""Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``""", ) parser.add_argument( """--question_encoder_tokenizer_name_or_path""", type=str, help="""Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``""", ) parser.add_argument( """--config_name_or_path""", type=str, help=( """Identifier of the model config to use, if not provided, resolves to a base config for a given""" """ ``model_type``""" ), ) a : str = parser.parse_args() a : int = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
338
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor a : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , **A ) -> None: warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , A , ) super().__init__(*A , **A )
338
1
'''simple docstring''' import math def __lowerCamelCase ( _lowercase ) -> list: UpperCAmelCase : List[str] = [True] * n UpperCAmelCase : Tuple = False UpperCAmelCase : List[str] = False UpperCAmelCase : List[str] = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): UpperCAmelCase : Dict = i * 2 while index < n: UpperCAmelCase : Tuple = False UpperCAmelCase : Dict = index + i UpperCAmelCase : Union[str, Any] = [2] for i in range(3 , _lowercase , 2 ): if is_prime[i]: primes.append(_lowercase ) return primes def __lowerCamelCase ( _lowercase = 9_9_9_9_6_6_6_6_3_3_3_3 ) -> int: UpperCAmelCase : Dict = math.floor(math.sqrt(_lowercase ) ) + 1_0_0 UpperCAmelCase : List[str] = prime_sieve(_lowercase ) UpperCAmelCase : Dict = 0 UpperCAmelCase : List[str] = 0 UpperCAmelCase : str = primes[prime_index] while (last_prime**2) <= limit: UpperCAmelCase : Any = primes[prime_index + 1] UpperCAmelCase : Any = last_prime**2 UpperCAmelCase : List[Any] = next_prime**2 # Get numbers divisible by lps(current) UpperCAmelCase : Optional[Any] = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) UpperCAmelCase : Optional[Any] = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps UpperCAmelCase : Optional[int] = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair UpperCAmelCase : List[str] = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
338
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a : Union[str, Any] = logging.get_logger(__name__) a : Union[str, Any] = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'detr' lowercase = ['past_key_values'] lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(A , A ): UpperCAmelCase : Any = backbone_config.get("""model_type""" ) UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : List[Any] = config_class.from_dict(A ) # set timm attributes to None UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = None, None, None UpperCAmelCase : Dict = use_timm_backbone UpperCAmelCase : Any = backbone_config UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : int = num_queries UpperCAmelCase : List[str] = d_model UpperCAmelCase : Tuple = encoder_ffn_dim UpperCAmelCase : Optional[Any] = encoder_layers UpperCAmelCase : Any = encoder_attention_heads UpperCAmelCase : Optional[Any] = decoder_ffn_dim UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : str = dropout UpperCAmelCase : Tuple = attention_dropout UpperCAmelCase : Dict = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : List[Any] = init_std UpperCAmelCase : str = init_xavier_std UpperCAmelCase : List[Any] = encoder_layerdrop UpperCAmelCase : int = decoder_layerdrop UpperCAmelCase : List[Any] = encoder_layers UpperCAmelCase : Union[str, Any] = auxiliary_loss UpperCAmelCase : str = position_embedding_type UpperCAmelCase : Union[str, Any] = backbone UpperCAmelCase : List[str] = use_pretrained_backbone UpperCAmelCase : Optional[int] = dilation # Hungarian matcher UpperCAmelCase : Union[str, Any] = class_cost UpperCAmelCase : Optional[Any] = bbox_cost UpperCAmelCase : List[Any] = giou_cost # Loss coefficients UpperCAmelCase : int = mask_loss_coefficient UpperCAmelCase : Optional[int] = dice_loss_coefficient UpperCAmelCase : Dict = bbox_loss_coefficient UpperCAmelCase : Any = giou_loss_coefficient UpperCAmelCase : Any = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def _lowercase( self ) -> int: return self.encoder_attention_heads @property def _lowercase( self ) -> int: return self.d_model @classmethod def _lowercase( cls , A , **A ) -> Dict: return cls(backbone_config=A , **A ) def _lowercase( self ) -> Dict[str, any]: UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase : Any = self.backbone_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowercase( self ) -> float: return 1e-5 @property def _lowercase( self ) -> int: return 12
338
1
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class UpperCamelCase_ ( datasets.BeamBasedBuilder ): def _lowercase( self ) -> Any: return datasets.DatasetInfo( features=datasets.Features({"""content""": datasets.Value("""string""" )} ) , supervised_keys=A , ) def _lowercase( self , A , A ) -> Tuple: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_dummy_examples()} )] def _lowercase( self , A , A ) -> Optional[Any]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(A ) class UpperCamelCase_ ( datasets.BeamBasedBuilder ): def _lowercase( self ) -> Union[str, Any]: return datasets.DatasetInfo( features=datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) , supervised_keys=A , ) def _lowercase( self , A , A ) -> Any: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_nested_examples()} ) ] def _lowercase( self , A , A ) -> Union[str, Any]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(A ) def __lowerCamelCase ( ) -> Optional[Any]: return [(i, {"content": content}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] def __lowerCamelCase ( ) -> int: return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] class UpperCamelCase_ ( __magic_name__ ): @require_beam def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase : int = DummyBeamDataset(cache_dir=A , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(A , builder.name , """default""" , """0.0.0""" , f'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) UpperCAmelCase : List[Any] = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , A ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , A ) self.assertDictEqual(dset["""train"""][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(A , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def _lowercase( self ) -> Dict: import apache_beam as beam UpperCAmelCase : Optional[int] = beam.io.parquetio.WriteToParquet UpperCAmelCase : Any = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase : Dict = DummyBeamDataset(cache_dir=A , beam_runner="""DirectRunner""" ) with patch("""apache_beam.io.parquetio.WriteToParquet""" ) as write_parquet_mock: UpperCAmelCase : Optional[int] = partial(A , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( A , builder.name , """default""" , """0.0.0""" , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertTrue( os.path.exists( os.path.join( A , builder.name , """default""" , """0.0.0""" , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) UpperCAmelCase : Optional[Any] = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , A ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , A ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["""train"""]["""content"""] ) , sorted(["""foo""", """bar""", """foobar"""] ) ) self.assertTrue( os.path.exists(os.path.join(A , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def _lowercase( self ) -> Any: with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase : Optional[Any] = DummyBeamDataset(cache_dir=A ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def _lowercase( self ) -> str: UpperCAmelCase : Optional[Any] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase : Any = NestedBeamDataset(cache_dir=A , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(A , builder.name , """default""" , """0.0.0""" , f'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) ) UpperCAmelCase : List[str] = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , A ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , A ) self.assertDictEqual(dset["""train"""][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(A , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[str] = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = RobertaTokenizer lowercase = RobertaTokenizerFast lowercase = True lowercase = {'cls_token': '<s>'} def _lowercase( self ) -> int: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase : int = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] UpperCAmelCase : List[Any] = dict(zip(A , range(len(A ) ) ) ) UpperCAmelCase : Union[str, Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] UpperCAmelCase : Optional[int] = {"""unk_token""": """<unk>"""} UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(A ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(A ) ) def _lowercase( self , **A ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , **A ) -> Any: kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> List[str]: UpperCAmelCase : int = """lower newer""" UpperCAmelCase : List[str] = """lower newer""" return input_text, output_text def _lowercase( self ) -> Any: UpperCAmelCase : int = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase : Any = """lower newer""" UpperCAmelCase : Optional[int] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] UpperCAmelCase : Union[str, Any] = tokenizer.tokenize(A ) # , add_prefix_space=True) self.assertListEqual(A , A ) UpperCAmelCase : str = tokens + [tokenizer.unk_token] UpperCAmelCase : List[str] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=A ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=A ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def _lowercase( self ) -> int: UpperCAmelCase : List[str] = self.tokenizer_class.from_pretrained("""roberta-base""" ) UpperCAmelCase : Tuple = tokenizer.encode("""sequence builders""" , add_special_tokens=A ) UpperCAmelCase : Optional[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=A ) UpperCAmelCase : Tuple = tokenizer.encode( """sequence builders""" , add_special_tokens=A , add_prefix_space=A ) UpperCAmelCase : Dict = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=A , add_prefix_space=A ) UpperCAmelCase : Any = tokenizer.build_inputs_with_special_tokens(A ) UpperCAmelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(A , A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _lowercase( self ) -> Optional[int]: UpperCAmelCase : List[str] = self.get_tokenizer() UpperCAmelCase : List[str] = """Encode this sequence.""" UpperCAmelCase : Optional[int] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments UpperCAmelCase : str = tokenizer.encode(A , add_special_tokens=A , add_prefix_space=A ) UpperCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(A , A ) UpperCAmelCase : Union[str, Any] = tokenizer.encode(A , add_special_tokens=A , add_prefix_space=A ) UpperCAmelCase : int = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(A , A ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) UpperCAmelCase : str = tokenizer.encode(A , add_special_tokens=A ) UpperCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(A , A ) # Testing spaces after special tokens UpperCAmelCase : int = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(A , lstrip=A , rstrip=A )} ) # mask token has a left space UpperCAmelCase : List[Any] = tokenizer.convert_tokens_to_ids(A ) UpperCAmelCase : Union[str, Any] = """Encode <mask> sequence""" UpperCAmelCase : Any = """Encode <mask>sequence""" UpperCAmelCase : Tuple = tokenizer.encode(A ) UpperCAmelCase : Dict = encoded.index(A ) UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(A , A ) UpperCAmelCase : List[Any] = tokenizer.encode(A ) UpperCAmelCase : List[Any] = encoded.index(A ) UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(A , A ) def _lowercase( self ) -> List[str]: pass def _lowercase( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(A , **A ) UpperCAmelCase : Dict = self.tokenizer_class.from_pretrained(A , **A ) UpperCAmelCase : str = """A, <mask> AllenNLP sentence.""" UpperCAmelCase : List[Any] = tokenizer_r.encode_plus(A , add_special_tokens=A , return_token_type_ids=A ) UpperCAmelCase : Dict = tokenizer_p.encode_plus(A , add_special_tokens=A , return_token_type_ids=A ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) UpperCAmelCase : str = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) UpperCAmelCase : int = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( A , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( A , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def _lowercase( self ) -> Optional[int]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): UpperCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : List[str] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) UpperCAmelCase : Tuple = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , A ) self.assertEqual(post_processor_state["""add_prefix_space"""] , A ) self.assertEqual(post_processor_state["""trim_offsets"""] , A ) def _lowercase( self ) -> Dict: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase : Dict = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` UpperCAmelCase : str = f'''{text_of_1_token} {text_of_1_token}''' UpperCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : Optional[Any] = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A ) + 1, len(A ) + 1 + len(A )) , ) UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : Optional[Any] = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A ) + 1, len(A ) + 1 + len(A )) , ) UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : Union[str, Any] = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A ), len(A ) + 1 + len(A )) , ) UpperCAmelCase : str = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : List[str] = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A ), len(A ) + 1 + len(A )) , ) UpperCAmelCase : str = f''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : Optional[Any] = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A ) + 1, 1 + len(A ) + 1 + len(A )) , ) UpperCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : int = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A ), 1 + len(A ) + 1 + len(A )) , ) UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : Dict = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A ), 1 + len(A ) + 1 + len(A )) , )
338
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" ) if "model" in sd.keys(): UpperCAmelCase : Any = torch.load(_lowercase , map_location="""cpu""" )["""model"""] # pop unnecessary weights UpperCAmelCase : Union[str, Any] = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(_lowercase ) UpperCAmelCase : Tuple = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase : List[Any] = sd.pop(_lowercase ) UpperCAmelCase : Tuple = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase : List[str] = sd[key] # We split QKV in separate Q,K,V UpperCAmelCase : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" ) UpperCAmelCase : Tuple = key.replace(""".qkv_proj.""" , """.k_proj.""" ) UpperCAmelCase : int = key.replace(""".qkv_proj.""" , """.v_proj.""" ) UpperCAmelCase : Dict = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = torch.split(_lowercase , depth // 3 , dim=0 ) UpperCAmelCase : Tuple = q UpperCAmelCase : Tuple = k UpperCAmelCase : Any = v del sd[key] return sd @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Optional[Any]: UpperCAmelCase : Tuple = load_checkpoint(_lowercase ) if config is not None: UpperCAmelCase : Dict = OPTConfig.from_pretrained(_lowercase ) else: UpperCAmelCase : int = OPTConfig() UpperCAmelCase : List[Any] = OPTModel(_lowercase ).half().eval() model.load_state_dict(_lowercase ) # Check results Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") a : Union[str, Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
338
1
'''simple docstring''' a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowerCamelCase ( ) -> None: UpperCAmelCase : Optional[int] = input("""Enter message: """ ) UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ ) UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): UpperCAmelCase : List[str] = """encrypt""" UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase ) elif mode.lower().startswith("""d""" ): UpperCAmelCase : Tuple = """decrypt""" UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """encrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """decrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Tuple = key.upper() for symbol in message: UpperCAmelCase : Dict = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowercase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowercase ): UpperCAmelCase : Optional[int] = 0 else: translated.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": main()
338
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : str = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'levit' def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int: super().__init__(**A ) UpperCAmelCase : Any = image_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : Tuple = kernel_size UpperCAmelCase : Optional[int] = stride UpperCAmelCase : Dict = padding UpperCAmelCase : List[Any] = hidden_sizes UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = depths UpperCAmelCase : Any = key_dim UpperCAmelCase : str = drop_path_rate UpperCAmelCase : List[Any] = patch_size UpperCAmelCase : str = attention_ratio UpperCAmelCase : Optional[Any] = mlp_ratio UpperCAmelCase : Dict = initializer_range UpperCAmelCase : int = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase( self ) -> float: return 1e-4
338
1
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features a : Tuple = logging.get_logger(__name__) a : Tuple = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) a : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase_ : lowercase = field( default=__magic_name__ , metadata={'help': 'Model type selected in the list: ' + ', '.join(__magic_name__ )} ) lowercase = field( default=__magic_name__ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowercase = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase = field( default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowercase = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowercase = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowercase = field( default=__magic_name__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowercase = field( default=__magic_name__ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowercase = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowercase = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowercase = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowercase = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class UpperCamelCase_ ( __magic_name__ ): lowercase = 'train' lowercase = 'dev' class UpperCamelCase_ ( __magic_name__ ): lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 def __init__( self , A , A , A = None , A = Split.train , A = False , A = None , A = "pt" , ) -> int: UpperCAmelCase : List[str] = args UpperCAmelCase : Union[str, Any] = is_language_sensitive UpperCAmelCase : List[str] = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(A , A ): try: UpperCAmelCase : str = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) UpperCAmelCase : Union[str, Any] = mode # Load data features from cache or dataset file UpperCAmelCase : Union[str, Any] = """v2""" if args.version_2_with_negative else """v1""" UpperCAmelCase : Optional[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase : int = cached_features_file + """.lock""" with FileLock(A ): if os.path.exists(A ) and not args.overwrite_cache: UpperCAmelCase : Optional[int] = time.time() UpperCAmelCase : str = torch.load(A ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. UpperCAmelCase : Dict = self.old_features["""features"""] UpperCAmelCase : Dict = self.old_features.get("""dataset""" , A ) UpperCAmelCase : Dict = self.old_features.get("""examples""" , A ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' """ future run""" ) else: if mode == Split.dev: UpperCAmelCase : int = self.processor.get_dev_examples(args.data_dir ) else: UpperCAmelCase : str = self.processor.get_train_examples(args.data_dir ) UpperCAmelCase , UpperCAmelCase : Dict = squad_convert_examples_to_features( examples=self.examples , tokenizer=A , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=A , ) UpperCAmelCase : Any = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , A , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> Dict: return len(self.features ) def __getitem__( self , A ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset UpperCAmelCase : Any = self.features[i] UpperCAmelCase : Optional[Any] = torch.tensor(feature.input_ids , dtype=torch.long ) UpperCAmelCase : Any = torch.tensor(feature.attention_mask , dtype=torch.long ) UpperCAmelCase : int = torch.tensor(feature.token_type_ids , dtype=torch.long ) UpperCAmelCase : Dict = torch.tensor(feature.cls_index , dtype=torch.long ) UpperCAmelCase : Optional[int] = torch.tensor(feature.p_mask , dtype=torch.float ) UpperCAmelCase : Optional[Any] = torch.tensor(feature.is_impossible , dtype=torch.float ) UpperCAmelCase : Union[str, Any] = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: UpperCAmelCase : Tuple = torch.tensor(feature.start_position , dtype=torch.long ) UpperCAmelCase : Any = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
338
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) a : List[str] = """Hello, World!""" a : List[Any] = """en_XX""" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Dict = Path("""data_bin""" ) UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(_lowercase ) UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder UpperCAmelCase : Tuple = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , _lowercase ) UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight UpperCAmelCase : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase : List[str] = model.roberta.encoder.layer[i] UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i] # self attention UpperCAmelCase : Optional[Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias # intermediate UpperCAmelCase : Tuple = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) UpperCAmelCase : List[str] = xmod_layer.fca.weight UpperCAmelCase : str = xmod_layer.fca.bias # output UpperCAmelCase : Any = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) UpperCAmelCase : Dict = xmod_layer.fca.weight UpperCAmelCase : Dict = xmod_layer.fca.bias UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code] UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code] UpperCAmelCase : Any = from_adapter.fca.weight UpperCAmelCase : int = from_adapter.fca.bias UpperCAmelCase : Dict = from_adapter.fca.weight UpperCAmelCase : Dict = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias UpperCAmelCase : str = xmod.model.encoder.lm_head.weight UpperCAmelCase : str = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) UpperCAmelCase : Optional[int] = model(_lowercase )[0] if classification_head: UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) ) else: UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) a : List[str] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
338
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") a : Optional[int] = logging.getLogger(__name__) @dataclass class UpperCamelCase_ : lowercase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowercase = field( default=__magic_name__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowercase = field( default=__magic_name__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowercase = field( default=__magic_name__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowercase = field( default=__magic_name__ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) lowercase = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowercase = field( default=__magic_name__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) @dataclass class UpperCamelCase_ : lowercase = field(default=__magic_name__ , metadata={'help': 'The input training data file (a text file).'} ) lowercase = field( default=__magic_name__ , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) lowercase = field( default=__magic_name__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowercase = field( default=__magic_name__ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowercase = field( default=__magic_name__ , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. If passed, sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase = field( default=__magic_name__ , metadata={ 'help': ( 'Whether to pad all samples to the maximum sentence length. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch. More ' 'efficient on GPU but very bad for TPU.' ) } , ) lowercase = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowercase = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def _lowercase( self ) -> Optional[Any]: if self.train_file is not None: UpperCAmelCase : Optional[Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: UpperCAmelCase : Tuple = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class UpperCamelCase_ : lowercase = 42 lowercase = True lowercase = None lowercase = None def __call__( self , A ) -> List[str]: UpperCAmelCase : str = """label""" if """label""" in features[0].keys() else """labels""" UpperCAmelCase : str = [feature.pop(A ) for feature in features] UpperCAmelCase : Tuple = len(A ) UpperCAmelCase : List[Any] = len(features[0]["""input_ids"""] ) UpperCAmelCase : Optional[Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(A )] for feature in features ] UpperCAmelCase : int = list(chain(*A ) ) UpperCAmelCase : Dict = self.tokenizer.pad( A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten UpperCAmelCase : List[Any] = {k: v.view(A , A , -1 ) for k, v in batch.items()} # Add back labels UpperCAmelCase : Tuple = torch.tensor(A , dtype=torch.intaa ) return batch def __lowerCamelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , _lowercase , _lowercase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase : Optional[Any] = training_args.get_process_log_level() logger.setLevel(_lowercase ) datasets.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCAmelCase : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: UpperCAmelCase : List[Any] = {} if data_args.train_file is not None: UpperCAmelCase : Union[str, Any] = data_args.train_file if data_args.validation_file is not None: UpperCAmelCase : Dict = data_args.validation_file UpperCAmelCase : int = data_args.train_file.split(""".""" )[-1] UpperCAmelCase : Any = load_dataset( _lowercase , data_files=_lowercase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. UpperCAmelCase : Union[str, Any] = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase : Optional[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. UpperCAmelCase : List[str] = [F'''ending{i}''' for i in range(4 )] UpperCAmelCase : Optional[int] = """sent1""" UpperCAmelCase : Optional[int] = """sent2""" if data_args.max_seq_length is None: UpperCAmelCase : str = tokenizer.model_max_length if max_seq_length > 1_0_2_4: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) UpperCAmelCase : Any = 1_0_2_4 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) UpperCAmelCase : int = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(_lowercase ): UpperCAmelCase : Optional[int] = [[context] * 4 for context in examples[context_name]] UpperCAmelCase : Any = examples[question_header_name] UpperCAmelCase : List[Any] = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(_lowercase ) ] # Flatten out UpperCAmelCase : List[str] = list(chain(*_lowercase ) ) UpperCAmelCase : Tuple = list(chain(*_lowercase ) ) # Tokenize UpperCAmelCase : Dict = tokenizer( _lowercase , _lowercase , truncation=_lowercase , max_length=_lowercase , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(_lowercase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) UpperCAmelCase : List[str] = raw_datasets["""train"""] if data_args.max_train_samples is not None: UpperCAmelCase : int = min(len(_lowercase ) , data_args.max_train_samples ) UpperCAmelCase : str = train_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): UpperCAmelCase : int = train_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) UpperCAmelCase : Dict = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: UpperCAmelCase : Optional[int] = min(len(_lowercase ) , data_args.max_eval_samples ) UpperCAmelCase : Optional[int] = eval_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): UpperCAmelCase : Dict = eval_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator UpperCAmelCase : List[Any] = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=_lowercase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(_lowercase ): UpperCAmelCase , UpperCAmelCase : Tuple = eval_predictions UpperCAmelCase : str = np.argmax(_lowercase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer UpperCAmelCase : Any = Trainer( model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_lowercase , data_collator=_lowercase , compute_metrics=_lowercase , ) # Training if training_args.do_train: UpperCAmelCase : int = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase : Tuple = last_checkpoint UpperCAmelCase : List[str] = trainer.train(resume_from_checkpoint=_lowercase ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCAmelCase : Tuple = train_result.metrics UpperCAmelCase : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase ) ) UpperCAmelCase : Optional[int] = min(_lowercase , len(_lowercase ) ) trainer.log_metrics("""train""" , _lowercase ) trainer.save_metrics("""train""" , _lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCAmelCase : Dict = trainer.evaluate() UpperCAmelCase : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase ) UpperCAmelCase : Dict = min(_lowercase , len(_lowercase ) ) trainer.log_metrics("""eval""" , _lowercase ) trainer.save_metrics("""eval""" , _lowercase ) UpperCAmelCase : Any = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**_lowercase ) else: trainer.create_model_card(**_lowercase ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
338
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __lowerCamelCase ( _lowercase ) -> List[Any]: for i in range(0 , _lowercase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __lowerCamelCase ( _lowercase ) -> Dict: for i in range(_lowercase , 0 , -1 ): for _ in range(_lowercase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __lowerCamelCase ( _lowercase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowercase ) # upper half reverse_floyd(_lowercase ) # lower half if __name__ == "__main__": print(R"""| /\ | |- | |- |--| |\ /| |-""") print(R"""|/ \| |- |_ |_ |__| | \/ | |_""") a : List[Any] = 1 while K: a : int = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) a : Tuple = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
338
1
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a : List[str] = logging.get_logger(__name__) a : int = {"""vocab_file""": """spiece.model"""} a : Dict = { """vocab_file""": { """AI-Sweden/gpt-sw3-126m""": """https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-350m""": """https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-1.6b""": """https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-6.7b""": """https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-20b""": """https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model""", } } a : Optional[Any] = { """AI-Sweden/gpt-sw3-126m""": 2_0_4_8, """AI-Sweden/gpt-sw3-350m""": 2_0_4_8, """AI-Sweden/gpt-sw3-1.6b""": 2_0_4_8, """AI-Sweden/gpt-sw3-6.7b""": 2_0_4_8, """AI-Sweden/gpt-sw3-20b""": 2_0_4_8, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] def __init__( self , A , A=False , A=False , A=False , A=None , A=None , A=None , A=None , A = None , **A , ) -> None: UpperCAmelCase : Any = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase : Dict = kwargs.get("""name_or_path""" ) if name_or_path is None: logger.warning( """name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,""" """ you are testing the model, this can safely be ignored""" ) UpperCAmelCase : int = """None""" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing UpperCAmelCase : Optional[int] = """<|endoftext|>""" if eos_token is None else eos_token UpperCAmelCase : str = """<unk>""" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: UpperCAmelCase : Optional[Any] = unk_token if pad_token is None else pad_token UpperCAmelCase : Tuple = eos_token if bos_token is None else bos_token else: UpperCAmelCase : List[str] = """<pad>""" if pad_token is None else pad_token UpperCAmelCase : Optional[int] = """<s>""" if bos_token is None else bos_token super().__init__( do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) UpperCAmelCase : str = do_lower_case UpperCAmelCase : Optional[int] = remove_space UpperCAmelCase : Optional[Any] = keep_accents UpperCAmelCase : str = vocab_file UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) # Used for whitespace normalization in input texts # fmt : off UpperCAmelCase : Optional[int] = {""" """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """""", """„"""} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing UpperCAmelCase : Any = re.compile( f'''[{''.join(map(A , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8203] ) )}]''' ) def __getstate__( self ) -> int: UpperCAmelCase : Dict = self.__dict__.copy() UpperCAmelCase : Any = None return state def __setstate__( self , A ) -> int: UpperCAmelCase : List[str] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCAmelCase : Union[str, Any] = {} UpperCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def _lowercase( self ) -> int: return len(self.sp_model ) def _lowercase( self , A ) -> str: UpperCAmelCase : List[str] = self.non_printing_characters_re.sub("""""" , A ) # Normalize whitespaces UpperCAmelCase : List[str] = """""".join([char if char not in self.whitespaces else """ """ for char in text] ) # NFC Unicode normalization UpperCAmelCase : List[str] = unicodedata.normalize("""NFC""" , A ) return text def _lowercase( self , A , **A ) -> List[str]: UpperCAmelCase : List[Any] = self.preprocess_text(A ) return self.sp_model.encode(A , out_type=A ) def _lowercase( self , A ) -> int: return self.sp_model.PieceToId(A ) def _lowercase( self , A ) -> str: return self.sp_model.IdToPiece(A ) @staticmethod def _lowercase( A ) -> str: return out_string def _lowercase( self , A ) -> str: UpperCAmelCase : Optional[int] = [] UpperCAmelCase : str = """""" UpperCAmelCase : int = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token UpperCAmelCase : Dict = True UpperCAmelCase : Optional[Any] = [] else: current_sub_tokens.append(A ) UpperCAmelCase : List[Any] = False out_string += self.sp_model.decode(A ) return out_string def _lowercase( self ) -> Dict[str, int]: UpperCAmelCase : Tuple = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowercase( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : str = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: UpperCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,) def _lowercase( self , A , A = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: if isinstance(A , A ): UpperCAmelCase : Tuple = self.preprocess_text(A ) UpperCAmelCase : Dict = self.sp_model.encode(A ) else: UpperCAmelCase : Tuple = [self.preprocess_text(A ) for t in text] UpperCAmelCase : Union[str, Any] = self.sp_model.encode(A ) if return_tensors is True or return_tensors == "pt": UpperCAmelCase : Union[str, Any] = torch.tensor(A ) return token_ids def _lowercase( self , A ) -> str: return self.sp_model.decode(A ) def _lowercase( self , A ) -> List[int]: UpperCAmelCase : Any = [f'''User: {text}''' if is_user else f'''Bot: {text}''' for is_user, text in conversation.iter_texts()] UpperCAmelCase : Dict = ( f'''{self.eos_token}{self.bos_token}''' + f'''{self.bos_token}'''.join(A ) + f'''{self.bos_token}Bot:''' ) return self.encode(text=A )
338
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever a : List[str] = logging.getLogger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A=None ) -> Union[str, Any]: super().__init__( A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , ) UpperCAmelCase : Optional[Any] = None def _lowercase( self , A ) -> List[Any]: logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually UpperCAmelCase : Tuple = self._infer_socket_ifname() # avoid clash with the NCCL port UpperCAmelCase : str = str(distributed_port + 1 ) UpperCAmelCase : Any = dist.new_group(ranks=A , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _lowercase( self ) -> Dict: return dist.get_rank(group=self.process_group ) == 0 def _lowercase( self , A , A , A=torch.floataa ) -> str: UpperCAmelCase : List[Any] = torch.empty(A , dtype=A ) dist.scatter(A , src=0 , scatter_list=A , group=self.process_group ) return target_tensor def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names UpperCAmelCase : Optional[int] = next((addr for addr in addrs if addr.startswith("""e""" )) , A ) return ifname def _lowercase( self , A , A ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): UpperCAmelCase , UpperCAmelCase : str = self._main_retrieve(A , A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A ) # distributed training UpperCAmelCase : int = dist.get_world_size(group=self.process_group ) # gather logic UpperCAmelCase : int = None if self._is_main(): UpperCAmelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )] dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group ) # scatter logic UpperCAmelCase : List[Any] = question_hidden_states.shape[0] UpperCAmelCase : Tuple = [] UpperCAmelCase : Any = [] if self._is_main(): assert len(A ) == world_size UpperCAmelCase , UpperCAmelCase : Optional[int] = self._main_retrieve(torch.cat(A ).numpy() , A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = torch.tensor(A ), torch.tensor(A ) UpperCAmelCase : List[str] = self._chunk_tensor(A , A ) UpperCAmelCase : Union[str, Any] = self._chunk_tensor(A , A ) UpperCAmelCase : Tuple = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa ) UpperCAmelCase : Optional[Any] = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
338
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING a : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): lowercase = 'upernet' def __init__( self , A=None , A=512 , A=0.0_2 , A=[1, 2, 3, 6] , A=True , A=0.4 , A=384 , A=256 , A=1 , A=False , A=255 , **A , ) -> Union[str, Any]: super().__init__(**A ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase : Union[str, Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(A , A ): UpperCAmelCase : Optional[Any] = backbone_config.get("""model_type""" ) UpperCAmelCase : List[Any] = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : List[str] = config_class.from_dict(A ) UpperCAmelCase : int = backbone_config UpperCAmelCase : Tuple = hidden_size UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : List[Any] = pool_scales UpperCAmelCase : List[str] = use_auxiliary_head UpperCAmelCase : Any = auxiliary_loss_weight UpperCAmelCase : Dict = auxiliary_in_channels UpperCAmelCase : Tuple = auxiliary_channels UpperCAmelCase : List[Any] = auxiliary_num_convs UpperCAmelCase : Union[str, Any] = auxiliary_concat_input UpperCAmelCase : Union[str, Any] = loss_ignore_index def _lowercase( self ) -> Any: UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Dict = self.backbone_config.to_dict() UpperCAmelCase : int = self.__class__.model_type return output
338
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : List[str] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } a : List[Any] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } a : List[Any] = { """facebook/blenderbot_small-90M""": 5_1_2, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = BlenderbotSmallTokenizer def __init__( self , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , A=True , **A , ) -> Union[str, Any]: super().__init__( ByteLevelBPETokenizer( vocab=A , merges=A , add_prefix_space=A , trim_offsets=A , ) , bos_token=A , eos_token=A , unk_token=A , **A , ) UpperCAmelCase : Optional[Any] = add_prefix_space def _lowercase( self , A , A=None ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
338
1
'''simple docstring''' import math a : Dict = 1_0 a : List[Any] = 7 a : Optional[Any] = BALLS_PER_COLOUR * NUM_COLOURS def __lowerCamelCase ( _lowercase = 2_0 ) -> str: UpperCAmelCase : Union[str, Any] = math.comb(_lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR , _lowercase ) UpperCAmelCase : str = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(2_0))
338
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A = None , A = None , A = False , **A , ) -> Tuple: super().__init__(features=A , cache_dir=A , keep_in_memory=A , **A ) UpperCAmelCase : Any = Sql( cache_dir=A , features=A , sql=A , con=A , **A , ) def _lowercase( self ) -> Dict: UpperCAmelCase : Any = None UpperCAmelCase : Any = None UpperCAmelCase : int = None UpperCAmelCase : int = None self.builder.download_and_prepare( download_config=A , download_mode=A , verification_mode=A , base_path=A , ) # Build dataset for splits UpperCAmelCase : str = self.builder.as_dataset( split="""train""" , verification_mode=A , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase_ : def __init__( self , A , A , A , A = None , A = None , **A , ) -> str: if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) UpperCAmelCase : Dict = dataset UpperCAmelCase : List[Any] = name UpperCAmelCase : Any = con UpperCAmelCase : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase : Optional[Any] = num_proc UpperCAmelCase : str = to_sql_kwargs def _lowercase( self ) -> int: UpperCAmelCase : Any = self.to_sql_kwargs.pop("""sql""" , A ) UpperCAmelCase : str = self.to_sql_kwargs.pop("""con""" , A ) UpperCAmelCase : Union[str, Any] = self.to_sql_kwargs.pop("""index""" , A ) UpperCAmelCase : str = self._write(index=A , **self.to_sql_kwargs ) return written def _lowercase( self , A ) -> Any: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = args UpperCAmelCase : Union[str, Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs UpperCAmelCase : int = query_table( table=self.dataset.data , key=slice(A , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCAmelCase : Any = batch.to_pandas() UpperCAmelCase : List[Any] = df.to_sql(self.name , self.con , index=A , **A ) return num_rows or len(A ) def _lowercase( self , A , **A ) -> int: UpperCAmelCase : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: UpperCAmelCase , UpperCAmelCase : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , A , A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
338
1
'''simple docstring''' import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html a : Optional[Any] = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class UpperCamelCase_ : lowercase = PegasusConfig lowercase = {} lowercase = 'gelu' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=5 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Tuple: UpperCAmelCase : List[str] = parent UpperCAmelCase : Optional[Any] = batch_size UpperCAmelCase : List[str] = seq_length UpperCAmelCase : Any = is_training UpperCAmelCase : str = use_labels UpperCAmelCase : Dict = vocab_size UpperCAmelCase : Any = hidden_size UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : Dict = num_attention_heads UpperCAmelCase : Dict = intermediate_size UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : List[str] = eos_token_id UpperCAmelCase : Optional[Any] = pad_token_id UpperCAmelCase : Optional[int] = bos_token_id def _lowercase( self ) -> List[str]: UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) UpperCAmelCase : List[str] = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : int = np.concatenate([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[str] = prepare_pegasus_inputs_dict(A , A , A ) return config, inputs_dict def _lowercase( self , A , A , A ) -> Optional[Any]: UpperCAmelCase : Tuple = 20 UpperCAmelCase : Tuple = model_class_name(A ) UpperCAmelCase : List[str] = model.encode(inputs_dict["""input_ids"""] ) UpperCAmelCase , UpperCAmelCase : Tuple = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) UpperCAmelCase : Tuple = model.init_cache(decoder_input_ids.shape[0] , A , A ) UpperCAmelCase : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) UpperCAmelCase : Optional[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , A , decoder_attention_mask=A , past_key_values=A , decoder_position_ids=A , ) UpperCAmelCase : Union[str, Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) UpperCAmelCase : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , A , decoder_attention_mask=A , past_key_values=outputs_cache.past_key_values , decoder_position_ids=A , ) UpperCAmelCase : List[Any] = model.decode(A , A ) UpperCAmelCase : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def _lowercase( self , A , A , A ) -> Dict: UpperCAmelCase : Optional[int] = 20 UpperCAmelCase : List[Any] = model_class_name(A ) UpperCAmelCase : Optional[int] = model.encode(inputs_dict["""input_ids"""] ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) UpperCAmelCase : List[str] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) UpperCAmelCase : int = model.init_cache(decoder_input_ids.shape[0] , A , A ) UpperCAmelCase : Tuple = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase : int = model.decode( decoder_input_ids[:, :-1] , A , decoder_attention_mask=A , past_key_values=A , decoder_position_ids=A , ) UpperCAmelCase : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) UpperCAmelCase : str = model.decode( decoder_input_ids[:, -1:] , A , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=A , decoder_position_ids=A , ) UpperCAmelCase : str = model.decode(A , A , decoder_attention_mask=A ) UpperCAmelCase : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , ) -> Tuple: if attention_mask is None: UpperCAmelCase : List[str] = np.not_equal(_lowercase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: UpperCAmelCase : Dict = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowercase = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowercase = True lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> int: UpperCAmelCase : Any = FlaxPegasusModelTester(self ) UpperCAmelCase : Dict = ConfigTester(self , config_class=A ) def _lowercase( self ) -> Any: self.config_tester.run_common_tests() def _lowercase( self ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(A , A , A ) def _lowercase( self ) -> int: UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(A , A , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase : Optional[int] = self._prepare_for_class(A , A ) UpperCAmelCase : Tuple = model_class(A ) @jax.jit def encode_jitted(A , A=None , **A ): return model.encode(input_ids=A , attention_mask=A ) with self.subTest("""JIT Enabled""" ): UpperCAmelCase : Tuple = encode_jitted(**A ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCAmelCase : Union[str, Any] = encode_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase : List[Any] = model_class(A ) UpperCAmelCase : Tuple = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) UpperCAmelCase : List[Any] = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(A , A , A ): return model.decode( decoder_input_ids=A , decoder_attention_mask=A , encoder_outputs=A , ) with self.subTest("""JIT Enabled""" ): UpperCAmelCase : Union[str, Any] = decode_jitted(**A ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCAmelCase : Union[str, Any] = decode_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowercase( self ) -> str: for model_class_name in self.all_model_classes: UpperCAmelCase : Tuple = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=A ) UpperCAmelCase : Union[str, Any] = np.ones((1, 1) ) UpperCAmelCase : Optional[Any] = model(A ) self.assertIsNotNone(A ) @slow def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) UpperCAmelCase : List[str] = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) UpperCAmelCase : Optional[int] = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] UpperCAmelCase : Optional[int] = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] UpperCAmelCase : Dict = tokenizer(A , return_tensors="""np""" , truncation=A , max_length=512 , padding=A ) UpperCAmelCase : Any = model.generate(**A , num_beams=2 ).sequences UpperCAmelCase : int = tokenizer.batch_decode(A , skip_special_tokens=A ) assert tgt_text == decoded
338
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCamelCase_ : lowercase = MBartConfig lowercase = {} lowercase = 'gelu' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : str = is_training UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Optional[Any] = eos_token_id UpperCAmelCase : List[str] = pad_token_id UpperCAmelCase : List[Any] = bos_token_id def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A ) return config, inputs_dict def _lowercase( self , A , A ) -> List[str]: UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder() UpperCAmelCase : int = inputs_dict["""input_ids"""] UpperCAmelCase : str = input_ids[:1, :] UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase : List[str] = inputs_dict["""head_mask"""] UpperCAmelCase : List[Any] = 1 # first forward pass UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = outputs.to_tuple() UpperCAmelCase : int = past_key_values[1] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]: if attention_mask is None: UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False def _lowercase( self , A , A , A , A , A ) -> int: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : int = TFMBartModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A ) def _lowercase( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase( self ) -> Dict: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_sentencepiece @require_tokenizers @require_tf class UpperCamelCase_ ( unittest.TestCase ): lowercase = [ ' UN Chief Says There Is No Military Solution in Syria', ] lowercase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] lowercase = 'facebook/mbart-large-en-ro' @cached_property def _lowercase( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowercase( self , **A ) -> Any: UpperCAmelCase : Optional[int] = self.translate_src_text(**A ) self.assertListEqual(self.expected_text , A ) def _lowercase( self , **A ) -> Optional[Any]: UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" ) UpperCAmelCase : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A ) return generated_words @slow def _lowercase( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
338
1
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __lowerCamelCase ( _lowercase , _lowercase ) -> Tuple: assert isinstance(_lowercase , _lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase : Optional[Any] = tmp_path / """cache""" UpperCAmelCase : Optional[int] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : Optional[int] = TextDatasetReader(_lowercase , cache_dir=_lowercase , keep_in_memory=_lowercase ).read() _check_text_dataset(_lowercase , _lowercase ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]: UpperCAmelCase : Dict = tmp_path / """cache""" UpperCAmelCase : Tuple = {"""text""": """string"""} UpperCAmelCase : List[Any] = features.copy() if features else default_expected_features UpperCAmelCase : str = ( Features({feature: Value(_lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : List[Any] = TextDatasetReader(_lowercase , features=_lowercase , cache_dir=_lowercase ).read() _check_text_dataset(_lowercase , _lowercase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Any = tmp_path / """cache""" UpperCAmelCase : Optional[Any] = {"""text""": """string"""} UpperCAmelCase : Tuple = TextDatasetReader(_lowercase , cache_dir=_lowercase , split=_lowercase ).read() _check_text_dataset(_lowercase , _lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: if issubclass(_lowercase , _lowercase ): UpperCAmelCase : Union[str, Any] = text_path elif issubclass(_lowercase , _lowercase ): UpperCAmelCase : int = [text_path] UpperCAmelCase : Dict = tmp_path / """cache""" UpperCAmelCase : Optional[Any] = {"""text""": """string"""} UpperCAmelCase : Optional[int] = TextDatasetReader(_lowercase , cache_dir=_lowercase ).read() _check_text_dataset(_lowercase , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=("train",) ) -> Dict: assert isinstance(_lowercase , _lowercase ) for split in splits: UpperCAmelCase : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = tmp_path / """cache""" UpperCAmelCase : Tuple = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : Tuple = TextDatasetReader({"""train""": text_path} , cache_dir=_lowercase , keep_in_memory=_lowercase ).read() _check_text_datasetdict(_lowercase , _lowercase ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" UpperCAmelCase : Optional[Any] = {"""text""": """string"""} UpperCAmelCase : List[str] = features.copy() if features else default_expected_features UpperCAmelCase : int = ( Features({feature: Value(_lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : str = TextDatasetReader({"""train""": text_path} , features=_lowercase , cache_dir=_lowercase ).read() _check_text_datasetdict(_lowercase , _lowercase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: if split: UpperCAmelCase : Tuple = {split: text_path} else: UpperCAmelCase : List[str] = """train""" UpperCAmelCase : int = {"""train""": text_path, """test""": text_path} UpperCAmelCase : Union[str, Any] = tmp_path / """cache""" UpperCAmelCase : int = {"""text""": """string"""} UpperCAmelCase : Optional[Any] = TextDatasetReader(_lowercase , cache_dir=_lowercase ).read() _check_text_datasetdict(_lowercase , _lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
338
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: UpperCAmelCase : Tuple = len(_lowercase ) + 1 UpperCAmelCase : List[Any] = len(_lowercase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase : str = [[0 for i in range(_lowercase )] for j in range(_lowercase )] # since string of zero length match pattern of zero length UpperCAmelCase : int = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowercase ): UpperCAmelCase : str = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowercase ): UpperCAmelCase : Optional[Any] = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowercase ): for j in range(1 , _lowercase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase : Union[str, Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase : List[Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase : Optional[int] = dp[i - 1][j] else: UpperCAmelCase : Any = 0 else: UpperCAmelCase : str = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") a : List[str] = """aab""" a : Optional[int] = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
338
1
'''simple docstring''' import random from typing import Any def __lowerCamelCase ( _lowercase ) -> list[Any]: for _ in range(len(_lowercase ) ): UpperCAmelCase : Union[str, Any] = random.randint(0 , len(_lowercase ) - 1 ) UpperCAmelCase : int = random.randint(0 , len(_lowercase ) - 1 ) UpperCAmelCase , UpperCAmelCase : List[str] = data[b], data[a] return data if __name__ == "__main__": a : Optional[int] = [0, 1, 2, 3, 4, 5, 6, 7] a : Dict = ["""python""", """says""", """hello""", """!"""] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
338
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : List[str] = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int: UpperCAmelCase : int = 1 UpperCAmelCase : str = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase : Tuple = pre_numerator UpperCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase : Union[str, Any] = cur_numerator UpperCAmelCase : Optional[int] = e_cont * pre_numerator + temp return sum_digits(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
338
1
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> bool: if not all(x.isalpha() for x in string ): raise ValueError("""String must only contain alphabetic characters.""" ) UpperCAmelCase : List[str] = sorted(string.lower() ) return len(_lowercase ) == len(set(_lowercase ) ) if __name__ == "__main__": a : List[Any] = input("""Enter a string """).strip() a : Dict = is_isogram(input_str) print(F'''{input_str} is {'an' if isogram else 'not an'} isogram.''')
338
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=0.0_1 , A=1000 ) -> List[str]: UpperCAmelCase : List[Any] = p_stop UpperCAmelCase : Optional[int] = max_length def __iter__( self ) -> Union[str, Any]: UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = False while not stop and count < self.max_length: yield count count += 1 UpperCAmelCase : Any = random.random() < self.p_stop class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A , A=False , A=True ) -> Union[str, Any]: UpperCAmelCase : List[str] = [ BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A ) for i in range(2 ) ] UpperCAmelCase : List[str] = [list(A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] ) self.assertListEqual(A , A ) def _lowercase( self ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is very small. UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [[], []] self.check_batch_sampler_shards(A , A ) def _lowercase( self ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A ) def _lowercase( self ) -> Any: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : str = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [[], []] self.check_batch_sampler_shards(A , A , even_batches=A ) def _lowercase( self ) -> List[Any]: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCAmelCase : List[str] = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _lowercase( self , A , A , A , A=False , A=2 , A=False ) -> Tuple: random.seed(A ) UpperCAmelCase : Dict = list(A ) UpperCAmelCase : Any = [ IterableDatasetShard( A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , ) for i in range(A ) ] UpperCAmelCase : Dict = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(A ) iterable_dataset_lists.append(list(A ) ) UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCAmelCase : List[Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(A ) , len(A ) ) self.assertTrue(len(A ) % shard_batch_size == 0 ) UpperCAmelCase : List[Any] = [] for idx in range(0 , len(A ) , A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(A ) < len(A ): reference += reference self.assertListEqual(A , reference[: len(A )] ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = 42 UpperCAmelCase : List[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) # Edge case with a very small dataset UpperCAmelCase : List[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = SkipBatchSampler(A , 2 ) self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> int: UpperCAmelCase : Any = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) UpperCAmelCase : Optional[Any] = skip_first_batches(A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowercase( self ) -> Dict: Accelerator() UpperCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
338
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def __lowerCamelCase ( _lowercase ) -> Optional[Any]: # vision encoder if "img_encoder.pos_embed" in name: UpperCAmelCase : Optional[int] = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: UpperCAmelCase : str = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: UpperCAmelCase : Dict = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: UpperCAmelCase : Union[str, Any] = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: UpperCAmelCase : List[Any] = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: UpperCAmelCase : str = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: UpperCAmelCase : int = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: UpperCAmelCase : Tuple = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: UpperCAmelCase : Dict = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: UpperCAmelCase : int = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: UpperCAmelCase : Union[str, Any] = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: UpperCAmelCase : Dict = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: UpperCAmelCase : Dict = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: UpperCAmelCase : str = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: UpperCAmelCase : int = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: UpperCAmelCase : Optional[Any] = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: UpperCAmelCase : Any = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: UpperCAmelCase : List[Any] = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: UpperCAmelCase : Any = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: UpperCAmelCase : Dict = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: UpperCAmelCase : List[str] = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: UpperCAmelCase : List[Any] = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: UpperCAmelCase : Any = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: UpperCAmelCase : Optional[Any] = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def __lowerCamelCase ( _lowercase , _lowercase ) -> str: for key in orig_state_dict.copy().keys(): UpperCAmelCase : str = orig_state_dict.pop(_lowercase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors UpperCAmelCase : List[str] = key.split(""".""" ) UpperCAmelCase , UpperCAmelCase : Dict = int(key_split[2] ), int(key_split[4] ) UpperCAmelCase : List[str] = config.vision_config.hidden_size if "weight" in key: UpperCAmelCase : Dict = val[:dim, :] UpperCAmelCase : Tuple = val[dim : dim * 2, :] UpperCAmelCase : List[str] = val[-dim:, :] else: UpperCAmelCase : Union[str, Any] = val[:dim] UpperCAmelCase : Any = val[dim : dim * 2] UpperCAmelCase : List[str] = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors UpperCAmelCase : str = key.split(""".""" ) UpperCAmelCase : Union[str, Any] = int(key_split[3] ) UpperCAmelCase : Tuple = config.text_config.hidden_size if "weight" in key: UpperCAmelCase : Optional[int] = val[:dim, :] UpperCAmelCase : List[str] = val[ dim : dim * 2, : ] UpperCAmelCase : int = val[-dim:, :] else: UpperCAmelCase : Optional[int] = val[:dim] UpperCAmelCase : Any = val[dim : dim * 2] UpperCAmelCase : Optional[Any] = val[-dim:] else: UpperCAmelCase : Union[str, Any] = rename_key(_lowercase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): UpperCAmelCase : int = val.squeeze_() else: UpperCAmelCase : List[Any] = val return orig_state_dict def __lowerCamelCase ( ) -> Tuple: UpperCAmelCase : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Dict = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase="groupvit-gcc-yfcc" , _lowercase=False ) -> Optional[int]: UpperCAmelCase : int = GroupViTConfig() UpperCAmelCase : List[Any] = GroupViTModel(_lowercase ).eval() UpperCAmelCase : List[Any] = torch.load(_lowercase , map_location="""cpu""" )["""model"""] UpperCAmelCase : Union[str, Any] = convert_state_dict(_lowercase , _lowercase ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = model.load_state_dict(_lowercase , strict=_lowercase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(_lowercase ) == 0) # verify result UpperCAmelCase : Union[str, Any] = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) UpperCAmelCase : Optional[Any] = prepare_img() UpperCAmelCase : List[str] = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=_lowercase , padding=_lowercase , return_tensors="""pt""" ) with torch.no_grad(): UpperCAmelCase : Optional[int] = model(**_lowercase ) if model_name == "groupvit-gcc-yfcc": UpperCAmelCase : Any = torch.tensor([[13.3523, 6.3629]] ) elif model_name == "groupvit-gcc-redcaps": UpperCAmelCase : Dict = torch.tensor([[16.1873, 8.6230]] ) else: raise ValueError(F'''Model name {model_name} not supported.''' ) assert torch.allclose(outputs.logits_per_image , _lowercase , atol=1e-3 ) processor.save_pretrained(_lowercase ) model.save_pretrained(_lowercase ) print("""Successfully saved processor and model to""" , _lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(_lowercase , organization="""nielsr""" ) model.push_to_hub(_lowercase , organization="""nielsr""" ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) a : str = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[Any] = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a : List[str] = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
'''simple docstring''' from math import loga def __lowerCamelCase ( _lowercase ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_lowercase , _lowercase ): raise TypeError("""Input value must be a 'int' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
338
1
'''simple docstring''' import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=5 ) -> List[Any]: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count("""<mask>""" ) == 1 UpperCAmelCase : str = torch.tensor(tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) ).unsqueeze(0 ) # Batch size 1 UpperCAmelCase : Dict = model(_lowercase )[0] # The last hidden-state is the first element of the output tuple UpperCAmelCase : Tuple = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() UpperCAmelCase : Any = logits[0, masked_index, :] UpperCAmelCase : Optional[Any] = logits.softmax(dim=0 ) UpperCAmelCase , UpperCAmelCase : Optional[int] = prob.topk(k=_lowercase , dim=0 ) UpperCAmelCase : Optional[Any] = """ """.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(_lowercase ) )] ) UpperCAmelCase : List[str] = tokenizer.mask_token UpperCAmelCase : Tuple = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(""" """ ) ): UpperCAmelCase : str = predicted_token_bpe.replace("""\u2581""" , """ """ ) if " {0}".format(_lowercase ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(""" {0}""".format(_lowercase ) , _lowercase ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(_lowercase , _lowercase ), values[index].item(), predicted_token, ) ) return topk_filled_outputs a : Union[str, Any] = CamembertTokenizer.from_pretrained("""camembert-base""") a : Dict = CamembertForMaskedLM.from_pretrained("""camembert-base""") model.eval() a : Union[str, Any] = """Le camembert est <mask> :)""" print(fill_mask(masked_input, model, tokenizer, topk=3))
338
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. a : Optional[int] = 1_0 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: for i in range(_lowercase , _lowercase ): if array[i] == target: return i return -1 def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = len(_lowercase ) while left <= right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1 UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase : Any = one_third - 1 elif array[two_third] < target: UpperCAmelCase : Tuple = two_third + 1 else: UpperCAmelCase : int = one_third + 1 UpperCAmelCase : List[Any] = two_third - 1 else: return -1 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: if left < right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : str = (left + right) // 3 + 1 UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() a : Any = input("""Enter numbers separated by comma:\n""").strip() a : Any = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip()) a : Union[str, Any] = ite_ternary_search(collection, target) a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
338
1
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( _lowercase ) -> bool: return len(set(_lowercase ) ) == len(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
338
'''simple docstring''' import numpy as np class UpperCamelCase_ : def __init__( self ) -> int: UpperCAmelCase : str = (0, 0) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Any = 0 UpperCAmelCase : int = 0 UpperCAmelCase : Optional[int] = 0 def __eq__( self , A ) -> Optional[Any]: return self.position == cell.position def _lowercase( self ) -> Tuple: print(self.position ) class UpperCamelCase_ : def __init__( self , A=(5, 5) ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = np.zeros(A ) UpperCAmelCase : int = world_size[0] UpperCAmelCase : List[str] = world_size[1] def _lowercase( self ) -> List[Any]: print(self.w ) def _lowercase( self , A ) -> Dict: UpperCAmelCase : Optional[Any] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase : List[Any] = cell.position[0] UpperCAmelCase : Union[str, Any] = cell.position[1] UpperCAmelCase : Optional[int] = [] for n in neughbour_cord: UpperCAmelCase : Any = current_x + n[0] UpperCAmelCase : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase : str = Cell() UpperCAmelCase : List[str] = (x, y) UpperCAmelCase : Dict = cell neighbours.append(A ) return neighbours def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase : List[Any] = [] UpperCAmelCase : Optional[int] = [] _open.append(_lowercase ) while _open: UpperCAmelCase : Any = np.argmin([n.f for n in _open] ) UpperCAmelCase : Optional[int] = _open[min_f] _closed.append(_open.pop(_lowercase ) ) if current == goal: break for n in world.get_neigbours(_lowercase ): for c in _closed: if c == n: continue UpperCAmelCase : List[str] = current.g + 1 UpperCAmelCase , UpperCAmelCase : List[str] = n.position UpperCAmelCase , UpperCAmelCase : Dict = goal.position UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase : Dict = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_lowercase ) UpperCAmelCase : Dict = [] while current.parent is not None: path.append(current.position ) UpperCAmelCase : Optional[int] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": a : List[str] = Gridworld() # Start position and goal a : Optional[int] = Cell() a : Optional[Any] = (0, 0) a : Optional[Any] = Cell() a : str = (4, 4) print(F'''path from {start.position} to {goal.position}''') a : List[Any] = astar(world, start, goal) # Just for visual reasons. for i in s: a : Any = 1 print(world.w)
338
1
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 650, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> int: if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="""utf-8""" , check=A , ) assert hasattr(self , """env""" ) def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : List[str] = f'''{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}''' # distributed data settings UpperCAmelCase : Optional[int] = {"""smdistributed""": {"""dataparallel""": {"""enabled""": True}}} if self.script != """run_ddp.py""" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=A , instance_count=A , instance_type=self.instance_type , debugger_hook_config=A , hyperparameters={**self.env.distributed_hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=A , py_version="""py36""" , ) def _lowercase( self , A ) -> Tuple: TrainingJobAnalytics(A ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def _lowercase( self , A ) -> str: # create estimator UpperCAmelCase : int = self.create_estimator(A ) # run training estimator.fit() # result dataframe UpperCAmelCase : Optional[Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCAmelCase : Union[str, Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) UpperCAmelCase : str = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase : Dict = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , A )
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> Any: UpperCAmelCase : Optional[Any] = """""" for i in table: res += inp[i - 1] return res def __lowerCamelCase ( _lowercase ) -> Tuple: return data[1:] + data[0] def __lowerCamelCase ( _lowercase , _lowercase ) -> Any: UpperCAmelCase : List[str] = """""" for i in range(len(_lowercase ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def __lowerCamelCase ( _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Union[str, Any] = int("""0b""" + data[0] + data[-1] , 2 ) UpperCAmelCase : List[str] = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[str]: UpperCAmelCase : Dict = message[:4] UpperCAmelCase : List[str] = message[4:] UpperCAmelCase : Union[str, Any] = apply_table(_lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = xor(_lowercase , _lowercase ) UpperCAmelCase : List[str] = apply_sbox(_lowercase , temp[:4] ) # noqa: E741 UpperCAmelCase : Union[str, Any] = apply_sbox(_lowercase , temp[4:] ) UpperCAmelCase : Tuple = """0""" * (2 - len(_lowercase )) + l # noqa: E741 UpperCAmelCase : Optional[Any] = """0""" * (2 - len(_lowercase )) + r UpperCAmelCase : Union[str, Any] = apply_table(l + r , _lowercase ) UpperCAmelCase : Any = xor(_lowercase , _lowercase ) return temp + right if __name__ == "__main__": a : Dict = input("""Enter 10 bit key: """) a : int = input("""Enter 8 bit message: """) a : Dict = [6, 3, 7, 4, 8, 5, 1_0, 9] a : Optional[Any] = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] a : List[str] = [2, 4, 3, 1] a : Tuple = [2, 6, 3, 1, 4, 8, 5, 7] a : List[str] = [4, 1, 3, 5, 7, 2, 8, 6] a : Union[str, Any] = [4, 1, 2, 3, 2, 3, 4, 1] a : Tuple = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] a : Union[str, Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation a : Union[str, Any] = apply_table(key, paa_table) a : Union[str, Any] = temp[:5] a : Optional[int] = temp[5:] a : Optional[int] = left_shift(left) a : List[str] = left_shift(right) a : Any = apply_table(left + right, pa_table) a : Optional[int] = left_shift(left) a : int = left_shift(right) a : str = left_shift(left) a : Optional[Any] = left_shift(right) a : Any = apply_table(left + right, pa_table) # encryption a : List[Any] = apply_table(message, IP) a : List[str] = function(expansion, sa, sa, keya, temp) a : List[str] = temp[4:] + temp[:4] a : List[str] = function(expansion, sa, sa, keya, temp) a : Optional[int] = apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption a : Dict = apply_table(CT, IP) a : List[Any] = function(expansion, sa, sa, keya, temp) a : str = temp[4:] + temp[:4] a : Optional[Any] = function(expansion, sa, sa, keya, temp) a : Optional[Any] = apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
338
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a : int = logging.get_logger(__name__) a : int = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off a : Tuple = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] a : Optional[int] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class UpperCamelCase_ ( __magic_name__ ): lowercase = 'whisper' lowercase = ['past_key_values'] lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]: UpperCAmelCase : str = vocab_size UpperCAmelCase : Union[str, Any] = num_mel_bins UpperCAmelCase : Tuple = d_model UpperCAmelCase : Optional[int] = encoder_layers UpperCAmelCase : List[str] = encoder_attention_heads UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : int = decoder_attention_heads UpperCAmelCase : Optional[int] = decoder_ffn_dim UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : List[str] = dropout UpperCAmelCase : Optional[Any] = attention_dropout UpperCAmelCase : Optional[Any] = activation_dropout UpperCAmelCase : Optional[Any] = activation_function UpperCAmelCase : Optional[Any] = init_std UpperCAmelCase : int = encoder_layerdrop UpperCAmelCase : Dict = decoder_layerdrop UpperCAmelCase : Optional[int] = use_cache UpperCAmelCase : List[str] = encoder_layers UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Union[str, Any] = max_source_positions UpperCAmelCase : Tuple = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : List[str] = classifier_proj_size UpperCAmelCase : Optional[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : int = mask_time_prob UpperCAmelCase : int = mask_time_length UpperCAmelCase : Dict = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Optional[int] = mask_feature_length UpperCAmelCase : int = mask_feature_min_masks UpperCAmelCase : List[Any] = median_filter_width super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , ) class UpperCamelCase_ ( __magic_name__ ): @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : str = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase : List[Any] = {0: """batch"""} else: UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) return common_inputs def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Optional[int] = OrderedDict() UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , ) UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2] UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Any = super().generate_dummy_inputs( preprocessor.tokenizer , A , A , A , A ) UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" ) UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def _lowercase( self ) -> float: return 1e-3
338
1
'''simple docstring''' from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def __lowerCamelCase ( ) -> int: UpperCAmelCase , UpperCAmelCase : List[Any] = 9, 1_4 # noqa: F841 UpperCAmelCase : List[Any] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 1_4], [3, 4, 9], [5, 4, 1_0], [1, 7, 1_1], ] UpperCAmelCase : List[Any] = defaultdict(_lowercase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) UpperCAmelCase : str = mst(_lowercase ) UpperCAmelCase : int = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: UpperCAmelCase : List[str] = tuple(answer[:2] ) UpperCAmelCase : str = tuple(edge[::-1] ) assert edge in result or reverse in result
338
'''simple docstring''' a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowerCamelCase ( ) -> None: UpperCAmelCase : Optional[int] = input("""Enter message: """ ) UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ ) UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): UpperCAmelCase : List[str] = """encrypt""" UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase ) elif mode.lower().startswith("""d""" ): UpperCAmelCase : Tuple = """decrypt""" UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """encrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """decrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Tuple = key.upper() for symbol in message: UpperCAmelCase : Dict = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowercase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowercase ): UpperCAmelCase : Optional[int] = 0 else: translated.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": main()
338
1
'''simple docstring''' from ...processing_utils import ProcessorMixin class UpperCamelCase_ ( __magic_name__ ): lowercase = ['image_processor', 'feature_extractor'] lowercase = 'TvltImageProcessor' lowercase = 'TvltFeatureExtractor' def __init__( self , A , A ) -> List[str]: super().__init__(image_processor=A , feature_extractor=A ) UpperCAmelCase : int = image_processor UpperCAmelCase : List[str] = feature_extractor def __call__( self , A=None , A=None , A=None , A=None , A=False , A=False , *A , **A , ) -> int: if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) UpperCAmelCase : List[str] = None if images is not None: UpperCAmelCase : List[Any] = self.image_processor(A , mask_pixel=A , *A , **A ) if images_mixed is not None: UpperCAmelCase : Tuple = self.image_processor(A , is_mixed=A , *A , **A ) if audio is not None: UpperCAmelCase : Any = self.feature_extractor( A , *A , sampling_rate=A , mask_audio=A , **A ) UpperCAmelCase : Dict = {} if audio is not None: output_dict.update(A ) if images is not None: output_dict.update(A ) if images_mixed_dict is not None: output_dict.update(A ) return output_dict @property def _lowercase( self ) -> int: UpperCAmelCase : List[Any] = self.image_processor.model_input_names UpperCAmelCase : Optional[int] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
338
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Optional[int] = split_dict._to_yaml_list() assert len(_lowercase ) == len(_lowercase ) UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(_lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCAmelCase : List[str] = None # the split name of split_dict takes over the name of the split info object UpperCAmelCase : int = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name="""my_dataset""" )] ) def __lowerCamelCase ( _lowercase ) -> List[str]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files UpperCAmelCase : Optional[Any] = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
338
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() a : Any = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : str = DPTConfig(embedding_type="""hybrid""" ) if "large" in checkpoint_url: UpperCAmelCase : Optional[Any] = 1_0_2_4 UpperCAmelCase : str = 4_0_9_6 UpperCAmelCase : Union[str, Any] = 2_4 UpperCAmelCase : List[str] = 1_6 UpperCAmelCase : List[Any] = [5, 1_1, 1_7, 2_3] UpperCAmelCase : str = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4] UpperCAmelCase : int = (1, 3_8_4, 3_8_4) if "nyu" or "midas" in checkpoint_url: UpperCAmelCase : Optional[int] = 7_6_8 UpperCAmelCase : Optional[int] = [1, 1, 1, 0.5] UpperCAmelCase : Any = [2_5_6, 5_1_2, 7_6_8, 7_6_8] UpperCAmelCase : List[Any] = 1_5_0 UpperCAmelCase : Any = 1_6 UpperCAmelCase : Optional[Any] = (1, 3_8_4, 3_8_4) UpperCAmelCase : Union[str, Any] = False UpperCAmelCase : Optional[Any] = """project""" if "ade" in checkpoint_url: UpperCAmelCase : List[str] = True UpperCAmelCase : List[Any] = 7_6_8 UpperCAmelCase : List[str] = [1, 1, 1, 0.5] UpperCAmelCase : Dict = 1_5_0 UpperCAmelCase : int = 1_6 UpperCAmelCase : str = """huggingface/label-files""" UpperCAmelCase : int = """ade20k-id2label.json""" UpperCAmelCase : str = json.load(open(cached_download(hf_hub_url(_lowercase , _lowercase , repo_type="""dataset""" ) ) , """r""" ) ) UpperCAmelCase : Dict = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : int = idalabel UpperCAmelCase : str = {v: k for k, v in idalabel.items()} UpperCAmelCase : Optional[Any] = [1, 1_5_0, 4_8_0, 4_8_0] return config, expected_shape def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Union[str, Any] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(_lowercase , _lowercase ) def __lowerCamelCase ( _lowercase ) -> Tuple: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCAmelCase : Tuple = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: UpperCAmelCase : Any = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: UpperCAmelCase : str = name.replace("""patch_embed""" , """""" ) if "pos_embed" in name: UpperCAmelCase : Optional[int] = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: UpperCAmelCase : List[Any] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: UpperCAmelCase : int = name.replace("""proj""" , """projection""" ) if "blocks" in name: UpperCAmelCase : Optional[Any] = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: UpperCAmelCase : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: UpperCAmelCase : Optional[Any] = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name and "backbone" not in name: UpperCAmelCase : Dict = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name and "backbone" not in name: UpperCAmelCase : Optional[Any] = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: UpperCAmelCase : Dict = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: UpperCAmelCase : Union[str, Any] = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: UpperCAmelCase : Optional[Any] = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: UpperCAmelCase : Optional[int] = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: UpperCAmelCase : Dict = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: UpperCAmelCase : int = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: UpperCAmelCase : int = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCAmelCase : Optional[int] = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: UpperCAmelCase : List[Any] = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: UpperCAmelCase : Any = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: UpperCAmelCase : str = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: UpperCAmelCase : Optional[Any] = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: UpperCAmelCase : Dict = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCAmelCase : List[str] = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: UpperCAmelCase : str = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: UpperCAmelCase : Tuple = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: UpperCAmelCase : Any = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCAmelCase : Any = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: UpperCAmelCase : Optional[Any] = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: UpperCAmelCase : int = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: UpperCAmelCase : Optional[Any] = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: UpperCAmelCase : int = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: UpperCAmelCase : Dict = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: UpperCAmelCase : List[Any] = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: UpperCAmelCase : List[str] = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: UpperCAmelCase : Optional[Any] = name.replace("""bn""" , """batch_norm""" ) if "head" in name: UpperCAmelCase : Any = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: UpperCAmelCase : Tuple = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: UpperCAmelCase : Union[str, Any] = name.replace("""auxlayer""" , """auxiliary_head.head""" ) if "backbone" in name: UpperCAmelCase : List[Any] = name.replace("""backbone""" , """backbone.bit.encoder""" ) if ".." in name: UpperCAmelCase : List[Any] = name.replace("""..""" , """.""" ) if "stem.conv" in name: UpperCAmelCase : Optional[Any] = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: UpperCAmelCase : Dict = name.replace("""blocks""" , """layers""" ) if "convolution" in name and "backbone" in name: UpperCAmelCase : Union[str, Any] = name.replace("""convolution""" , """conv""" ) if "layer" in name and "backbone" in name: UpperCAmelCase : Tuple = name.replace("""layer""" , """layers""" ) if "backbone.bit.encoder.bit" in name: UpperCAmelCase : Any = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" ) if "embedder.conv" in name: UpperCAmelCase : List[Any] = name.replace("""embedder.conv""" , """embedder.convolution""" ) if "backbone.bit.encoder.stem.norm" in name: UpperCAmelCase : Dict = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" ) return name def __lowerCamelCase ( _lowercase , _lowercase ) -> Union[str, Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase : List[Any] = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) UpperCAmelCase : List[Any] = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Union[str, Any] = in_proj_weight[: config.hidden_size, :] UpperCAmelCase : Tuple = in_proj_bias[: config.hidden_size] UpperCAmelCase : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase : Tuple = in_proj_bias[-config.hidden_size :] def __lowerCamelCase ( ) -> str: UpperCAmelCase : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : List[str] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Any: UpperCAmelCase , UpperCAmelCase : str = get_dpt_config(_lowercase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(_lowercase ) # rename keys for key in state_dict.copy().keys(): UpperCAmelCase : Tuple = state_dict.pop(_lowercase ) UpperCAmelCase : Optional[Any] = val # read in qkv matrices read_in_q_k_v(_lowercase , _lowercase ) # load HuggingFace model UpperCAmelCase : Optional[int] = DPTForSemanticSegmentation(_lowercase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(_lowercase ) model.load_state_dict(_lowercase ) model.eval() # Check outputs on an image UpperCAmelCase : Optional[Any] = 4_8_0 if """ade""" in checkpoint_url else 3_8_4 UpperCAmelCase : List[str] = DPTImageProcessor(size=_lowercase ) UpperCAmelCase : int = prepare_img() UpperCAmelCase : Any = image_processor(_lowercase , return_tensors="""pt""" ) # forward pass UpperCAmelCase : Optional[Any] = model(**_lowercase ).logits if """ade""" in checkpoint_url else model(**_lowercase ).predicted_depth if show_prediction: UpperCAmelCase : List[Any] = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=_lowercase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 2_5_5 ).show() if pytorch_dump_folder_path is not None: Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowercase ) if push_to_hub: model.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) if __name__ == "__main__": a : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=False, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) parser.add_argument( """--show_prediction""", action="""store_true""", ) a : int = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
338
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor a : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , **A ) -> None: warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , A , ) super().__init__(*A , **A )
338
1
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") a : Tuple = logging.getLogger(__name__) @dataclass class UpperCamelCase_ : lowercase = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) lowercase = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) lowercase = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase = field( default=__magic_name__ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) lowercase = field( default=__magic_name__ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) lowercase = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowercase = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) lowercase = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) lowercase = field( default=__magic_name__ , metadata={'help': 'A csv or a json file containing the training data.'} ) lowercase = field( default=__magic_name__ , metadata={'help': 'A csv or a json file containing the validation data.'} ) lowercase = field(default=__magic_name__ , metadata={'help': 'A csv or a json file containing the test data.'} ) def _lowercase( self ) -> str: if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: UpperCAmelCase : Optional[int] = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." UpperCAmelCase : List[str] = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class UpperCamelCase_ : lowercase = field( default=__magic_name__ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowercase = field( default=__magic_name__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowercase = field( default=__magic_name__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowercase = field( default=__magic_name__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowercase = field( default=__magic_name__ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) lowercase = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowercase = field( default=__magic_name__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def __lowerCamelCase ( ) -> str: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) UpperCAmelCase : int = training_args.get_process_log_level() logger.setLevel(_lowercase ) datasets.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCAmelCase : Tuple = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. UpperCAmelCase : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. UpperCAmelCase : Tuple = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: UpperCAmelCase : Any = data_args.train_file.split(""".""" )[-1] UpperCAmelCase : Tuple = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." UpperCAmelCase : int = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(F'''load a local file for {key}: {data_files[key]}''' ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files UpperCAmelCase : str = load_dataset("""csv""" , data_files=_lowercase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files UpperCAmelCase : Optional[int] = load_dataset("""json""" , data_files=_lowercase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels UpperCAmelCase : Optional[int] = raw_datasets["""train"""].features["""label"""].names UpperCAmelCase : Union[str, Any] = len(_lowercase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase : int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer UpperCAmelCase : int = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_lowercase , ) UpperCAmelCase : str = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: UpperCAmelCase : List[Any] = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch UpperCAmelCase : Union[str, Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. UpperCAmelCase : Any = {"""Refused""": 0, """Entailed""": 1} UpperCAmelCase : str = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) UpperCAmelCase : Any = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_lowercase ): # Tokenize the texts def _convert_table_text_to_pandas(_lowercase ): UpperCAmelCase : Optional[int] = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] UpperCAmelCase : Optional[int] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd UpperCAmelCase : Optional[Any] = examples["""statement"""] UpperCAmelCase : Any = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) UpperCAmelCase : int = tokenizer(_lowercase , _lowercase , padding=_lowercase , max_length=_lowercase , truncation=_lowercase ) UpperCAmelCase : Optional[Any] = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): UpperCAmelCase : Optional[Any] = raw_datasets.map( _lowercase , batched=_lowercase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) UpperCAmelCase : Any = raw_datasets["""train"""] if data_args.max_train_samples is not None: UpperCAmelCase : Any = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) UpperCAmelCase : Union[str, Any] = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: UpperCAmelCase : List[str] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) UpperCAmelCase : List[str] = raw_datasets["""test"""] if data_args.max_predict_samples is not None: UpperCAmelCase : Union[str, Any] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_lowercase ) ) , 3 ): logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_lowercase ): UpperCAmelCase : Optional[Any] = p.predictions[0] if isinstance(p.predictions , _lowercase ) else p.predictions UpperCAmelCase : Any = np.argmax(_lowercase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: UpperCAmelCase : Tuple = default_data_collator elif training_args.fpaa: UpperCAmelCase : Tuple = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) else: UpperCAmelCase : Dict = None # Initialize our Trainer UpperCAmelCase : int = Trainer( model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_lowercase , tokenizer=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: UpperCAmelCase : Optional[int] = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase : Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase : Dict = last_checkpoint UpperCAmelCase : str = trainer.train(resume_from_checkpoint=_lowercase ) UpperCAmelCase : List[Any] = train_result.metrics UpperCAmelCase : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase ) ) UpperCAmelCase : Dict = min(_lowercase , len(_lowercase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , _lowercase ) trainer.save_metrics("""train""" , _lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCAmelCase : Union[str, Any] = trainer.evaluate(eval_dataset=_lowercase ) UpperCAmelCase : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase ) UpperCAmelCase : Any = min(_lowercase , len(_lowercase ) ) trainer.log_metrics("""eval""" , _lowercase ) trainer.save_metrics("""eval""" , _lowercase ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. UpperCAmelCase : Tuple = predict_dataset.remove_columns("""label""" ) UpperCAmelCase : List[str] = trainer.predict(_lowercase , metric_key_prefix="""predict""" ).predictions UpperCAmelCase : Dict = np.argmax(_lowercase , axis=1 ) UpperCAmelCase : Any = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(_lowercase , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(_lowercase ): UpperCAmelCase : Tuple = label_list[item] writer.write(F'''{index}\t{item}\n''' ) UpperCAmelCase : Any = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**_lowercase ) else: trainer.create_model_card(**_lowercase ) def __lowerCamelCase ( _lowercase ) -> str: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
338
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a : Union[str, Any] = logging.get_logger(__name__) a : Union[str, Any] = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'detr' lowercase = ['past_key_values'] lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(A , A ): UpperCAmelCase : Any = backbone_config.get("""model_type""" ) UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : List[Any] = config_class.from_dict(A ) # set timm attributes to None UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = None, None, None UpperCAmelCase : Dict = use_timm_backbone UpperCAmelCase : Any = backbone_config UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : int = num_queries UpperCAmelCase : List[str] = d_model UpperCAmelCase : Tuple = encoder_ffn_dim UpperCAmelCase : Optional[Any] = encoder_layers UpperCAmelCase : Any = encoder_attention_heads UpperCAmelCase : Optional[Any] = decoder_ffn_dim UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : str = dropout UpperCAmelCase : Tuple = attention_dropout UpperCAmelCase : Dict = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : List[Any] = init_std UpperCAmelCase : str = init_xavier_std UpperCAmelCase : List[Any] = encoder_layerdrop UpperCAmelCase : int = decoder_layerdrop UpperCAmelCase : List[Any] = encoder_layers UpperCAmelCase : Union[str, Any] = auxiliary_loss UpperCAmelCase : str = position_embedding_type UpperCAmelCase : Union[str, Any] = backbone UpperCAmelCase : List[str] = use_pretrained_backbone UpperCAmelCase : Optional[int] = dilation # Hungarian matcher UpperCAmelCase : Union[str, Any] = class_cost UpperCAmelCase : Optional[Any] = bbox_cost UpperCAmelCase : List[Any] = giou_cost # Loss coefficients UpperCAmelCase : int = mask_loss_coefficient UpperCAmelCase : Optional[int] = dice_loss_coefficient UpperCAmelCase : Dict = bbox_loss_coefficient UpperCAmelCase : Any = giou_loss_coefficient UpperCAmelCase : Any = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def _lowercase( self ) -> int: return self.encoder_attention_heads @property def _lowercase( self ) -> int: return self.d_model @classmethod def _lowercase( cls , A , **A ) -> Dict: return cls(backbone_config=A , **A ) def _lowercase( self ) -> Dict[str, any]: UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase : Any = self.backbone_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowercase( self ) -> float: return 1e-5 @property def _lowercase( self ) -> int: return 12
338
1
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = DebertaTokenizer lowercase = True lowercase = DebertaTokenizerFast def _lowercase( self ) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase : List[str] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """[UNK]""", ] UpperCAmelCase : Optional[int] = dict(zip(A , range(len(A ) ) ) ) UpperCAmelCase : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] UpperCAmelCase : List[Any] = {"""unk_token""": """[UNK]"""} UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(A ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(A ) ) def _lowercase( self , **A ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> Tuple: UpperCAmelCase : Optional[int] = """lower newer""" UpperCAmelCase : Any = """lower newer""" return input_text, output_text def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Tuple = self.get_tokenizer() UpperCAmelCase : Optional[int] = """lower newer""" UpperCAmelCase : Optional[int] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] UpperCAmelCase : Optional[int] = tokenizer.tokenize(A ) self.assertListEqual(A , A ) UpperCAmelCase : int = tokens + [tokenizer.unk_token] UpperCAmelCase : List[Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = self.get_tokenizer() UpperCAmelCase : List[str] = tokenizer("""Hello""" , """World""" ) UpperCAmelCase : Tuple = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["""token_type_ids"""] , A ) @slow def _lowercase( self ) -> Optional[int]: UpperCAmelCase : int = self.tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) UpperCAmelCase : Tuple = tokenizer.encode("""sequence builders""" , add_special_tokens=A ) UpperCAmelCase : Tuple = tokenizer.encode("""multi-sequence build""" , add_special_tokens=A ) UpperCAmelCase : List[Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=A , add_prefix_space=A ) UpperCAmelCase : Dict = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=A , add_prefix_space=A ) UpperCAmelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(A ) UpperCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(A , A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : str = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: UpperCAmelCase : Any = tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) UpperCAmelCase : Tuple = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] UpperCAmelCase : str = tokenizer(A , padding=A ) UpperCAmelCase : List[Any] = [tokenizer.decode(A , skip_special_tokens=A ) for seq in encoding["""input_ids"""]] # fmt: off UpperCAmelCase : str = { """input_ids""": [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], """token_type_ids""": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on UpperCAmelCase : Optional[int] = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] self.assertDictEqual(encoding.data , A ) for expected, decoded in zip(A , A ): self.assertEqual(A , A )
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[str] = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class UpperCamelCase_ ( __magic_name__ ): lowercase = (DPMSolverSDEScheduler,) lowercase = 10 def _lowercase( self , **A ) -> Optional[int]: UpperCAmelCase : Any = { """num_train_timesteps""": 1100, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**A ) return config def _lowercase( self ) -> Optional[int]: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=A ) def _lowercase( self ) -> Optional[Any]: for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=A , beta_end=A ) def _lowercase( self ) -> int: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=A ) def _lowercase( self ) -> str: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A ) def _lowercase( self ) -> str: UpperCAmelCase : str = self.scheduler_classes[0] UpperCAmelCase : Dict = self.get_scheduler_config() UpperCAmelCase : str = scheduler_class(**A ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase : Optional[Any] = self.dummy_model() UpperCAmelCase : int = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase : Tuple = sample.to(A ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : Union[str, Any] = scheduler.scale_model_input(A , A ) UpperCAmelCase : Optional[Any] = model(A , A ) UpperCAmelCase : Dict = scheduler.step(A , A , A ) UpperCAmelCase : Tuple = output.prev_sample UpperCAmelCase : Tuple = torch.sum(torch.abs(A ) ) UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_7_8_2_1_0_4_4_9_2_1_8_7_5 ) < 1e-2 assert abs(result_mean.item() - 0.2_1_7_8_7_0_5_9_6_4_5_6_5_2_7_7 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_2_1_1_1_8_1_6_4_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_6_8_9_2_2_9_9_6_5_2 ) < 1e-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1e-3 def _lowercase( self ) -> Any: UpperCAmelCase : List[str] = self.scheduler_classes[0] UpperCAmelCase : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""" ) UpperCAmelCase : Optional[int] = scheduler_class(**A ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase : int = self.dummy_model() UpperCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase : Dict = sample.to(A ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : int = scheduler.scale_model_input(A , A ) UpperCAmelCase : str = model(A , A ) UpperCAmelCase : Tuple = scheduler.step(A , A , A ) UpperCAmelCase : Optional[int] = output.prev_sample UpperCAmelCase : Any = torch.sum(torch.abs(A ) ) UpperCAmelCase : List[Any] = torch.mean(torch.abs(A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_2_4.7_7_1_4_9_2_0_0_4_3_9_4_5_3 ) < 1e-2 assert abs(result_mean.item() - 0.1_6_2_2_6_2_8_9_0_1_4_8_1_6_2_8_4 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_2_8.1_6_6_3_3_6_0_5_9_5_7_0_3 ) < 1e-2 assert abs(result_mean.item() - 0.1_6_6_8_8_3_2_6_0_0_1_1_6_7_2_9_7 ) < 1e-3 else: assert abs(result_sum.item() - 1_1_9.8_4_8_7_5_4_8_8_2_8_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.1_5_6_0_5_3_0_6_6_2_5_3_6_6_2_1 ) < 1e-3 def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Tuple = self.scheduler_classes[0] UpperCAmelCase : List[str] = self.get_scheduler_config() UpperCAmelCase : Tuple = scheduler_class(**A ) scheduler.set_timesteps(self.num_inference_steps , device=A ) UpperCAmelCase : Tuple = self.dummy_model() UpperCAmelCase : Tuple = self.dummy_sample_deter.to(A ) * scheduler.init_noise_sigma for t in scheduler.timesteps: UpperCAmelCase : Any = scheduler.scale_model_input(A , A ) UpperCAmelCase : Dict = model(A , A ) UpperCAmelCase : Union[str, Any] = scheduler.step(A , A , A ) UpperCAmelCase : Dict = output.prev_sample UpperCAmelCase : List[Any] = torch.sum(torch.abs(A ) ) UpperCAmelCase : Dict = torch.mean(torch.abs(A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_6_9_5_7_3_9_7_4_6_0_9_3_8 ) < 1e-2 assert abs(result_mean.item() - 0.2_1_8_0_5_9_3_4_6_0_7_9_8_2_6_3_5 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_3_6_3_7_6_9_5_3_1_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_8_3_8_2_4_1_5_7_7_1 ) < 1e-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1e-3 def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[Any] = self.scheduler_classes[0] UpperCAmelCase : Optional[int] = self.get_scheduler_config() UpperCAmelCase : str = scheduler_class(**A , use_karras_sigmas=A ) scheduler.set_timesteps(self.num_inference_steps , device=A ) UpperCAmelCase : Dict = self.dummy_model() UpperCAmelCase : List[str] = self.dummy_sample_deter.to(A ) * scheduler.init_noise_sigma UpperCAmelCase : Any = sample.to(A ) for t in scheduler.timesteps: UpperCAmelCase : Optional[Any] = scheduler.scale_model_input(A , A ) UpperCAmelCase : Tuple = model(A , A ) UpperCAmelCase : Optional[Any] = scheduler.step(A , A , A ) UpperCAmelCase : Dict = output.prev_sample UpperCAmelCase : Dict = torch.sum(torch.abs(A ) ) UpperCAmelCase : Any = torch.mean(torch.abs(A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_7_6.6_6_9_7_4_1_3_5_7_4_2_1_8_8 ) < 1e-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_7.6_3_6_5_3_5_6_4_4_5_3_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1e-2 else: assert abs(result_sum.item() - 1_7_0.3_1_3_5_2_2_3_3_8_8_6_7_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1e-2
338
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" ) if "model" in sd.keys(): UpperCAmelCase : Any = torch.load(_lowercase , map_location="""cpu""" )["""model"""] # pop unnecessary weights UpperCAmelCase : Union[str, Any] = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(_lowercase ) UpperCAmelCase : Tuple = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase : List[Any] = sd.pop(_lowercase ) UpperCAmelCase : Tuple = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase : List[str] = sd[key] # We split QKV in separate Q,K,V UpperCAmelCase : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" ) UpperCAmelCase : Tuple = key.replace(""".qkv_proj.""" , """.k_proj.""" ) UpperCAmelCase : int = key.replace(""".qkv_proj.""" , """.v_proj.""" ) UpperCAmelCase : Dict = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = torch.split(_lowercase , depth // 3 , dim=0 ) UpperCAmelCase : Tuple = q UpperCAmelCase : Tuple = k UpperCAmelCase : Any = v del sd[key] return sd @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Optional[Any]: UpperCAmelCase : Tuple = load_checkpoint(_lowercase ) if config is not None: UpperCAmelCase : Dict = OPTConfig.from_pretrained(_lowercase ) else: UpperCAmelCase : int = OPTConfig() UpperCAmelCase : List[Any] = OPTModel(_lowercase ).half().eval() model.load_state_dict(_lowercase ) # Check results Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") a : Union[str, Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
338
1
'''simple docstring''' import numpy as np def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : Tuple = int(np.ceil((x_end - xa) / h ) ) UpperCAmelCase : Optional[Any] = np.zeros((n + 1,) ) UpperCAmelCase : int = ya UpperCAmelCase : Dict = xa for k in range(_lowercase ): UpperCAmelCase : int = f(_lowercase , y[k] ) UpperCAmelCase : Optional[int] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) UpperCAmelCase : Dict = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) UpperCAmelCase : Union[str, Any] = f(x + h , y[k] + h * ka ) UpperCAmelCase : int = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
338
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : str = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'levit' def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int: super().__init__(**A ) UpperCAmelCase : Any = image_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : Tuple = kernel_size UpperCAmelCase : Optional[int] = stride UpperCAmelCase : Dict = padding UpperCAmelCase : List[Any] = hidden_sizes UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = depths UpperCAmelCase : Any = key_dim UpperCAmelCase : str = drop_path_rate UpperCAmelCase : List[Any] = patch_size UpperCAmelCase : str = attention_ratio UpperCAmelCase : Optional[Any] = mlp_ratio UpperCAmelCase : Dict = initializer_range UpperCAmelCase : int = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase( self ) -> float: return 1e-4
338
1
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip a : List[Any] = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def __lowerCamelCase ( _lowercase ) -> Optional[int]: if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: return max(metric_fn(_lowercase , _lowercase ) for gt in ground_truths ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: UpperCAmelCase : List[Any] = [line.strip() for line in open(_lowercase , """r""" ).readlines()] UpperCAmelCase : Optional[Any] = [] if args.gold_data_mode == "qa": UpperCAmelCase : Dict = pd.read_csv(_lowercase , sep="""\t""" , header=_lowercase ) for answer_list in data[1]: UpperCAmelCase : Tuple = ast.literal_eval(_lowercase ) answers.append(_lowercase ) else: UpperCAmelCase : List[str] = [line.strip() for line in open(_lowercase , """r""" ).readlines()] UpperCAmelCase : List[Any] = [[reference] for reference in references] UpperCAmelCase : List[Any] = 0 for prediction, ground_truths in zip(_lowercase , _lowercase ): total += 1 em += metric_max_over_ground_truths(_lowercase , _lowercase , _lowercase ) fa += metric_max_over_ground_truths(_lowercase , _lowercase , _lowercase ) UpperCAmelCase : Tuple = 100.0 * em / total UpperCAmelCase : Optional[Any] = 100.0 * fa / total logger.info(F'''F1: {fa:.2f}''' ) logger.info(F'''EM: {em:.2f}''' ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Union[str, Any] = args.k UpperCAmelCase : Union[str, Any] = [line.strip() for line in open(_lowercase , """r""" ).readlines()] UpperCAmelCase : Union[str, Any] = [line.strip() for line in open(_lowercase , """r""" ).readlines()] UpperCAmelCase : List[Any] = 0 for hypo, reference in zip(_lowercase , _lowercase ): UpperCAmelCase : int = set(hypo.split("""\t""" )[:k] ) UpperCAmelCase : Optional[Any] = set(reference.split("""\t""" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k UpperCAmelCase : Tuple = 100.0 * em / total logger.info(F'''Precision@{k}: {em: .2f}''' ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: def strip_title(_lowercase ): if title.startswith("""\"""" ): UpperCAmelCase : Any = title[1:] if title.endswith("""\"""" ): UpperCAmelCase : Optional[Any] = title[:-1] return title UpperCAmelCase : Optional[int] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _lowercase , return_tensors="""pt""" , padding=_lowercase , truncation=_lowercase , )["""input_ids"""].to(args.device ) UpperCAmelCase : List[str] = rag_model.rag.question_encoder(_lowercase ) UpperCAmelCase : int = question_enc_outputs[0] UpperCAmelCase : Union[str, Any] = rag_model.retriever( _lowercase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , ) UpperCAmelCase : Tuple = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) UpperCAmelCase : Any = [] for docs in all_docs: UpperCAmelCase : Optional[Any] = [strip_title(_lowercase ) for title in docs["""title"""]] provenance_strings.append("""\t""".join(_lowercase ) ) return provenance_strings def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[int]: with torch.no_grad(): UpperCAmelCase : Dict = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _lowercase , return_tensors="""pt""" , padding=_lowercase , truncation=_lowercase ) UpperCAmelCase : Optional[Any] = inputs_dict.input_ids.to(args.device ) UpperCAmelCase : Optional[int] = inputs_dict.attention_mask.to(args.device ) UpperCAmelCase : str = rag_model.generate( # rag_model overwrites generate _lowercase , attention_mask=_lowercase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_lowercase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) UpperCAmelCase : Any = rag_model.retriever.generator_tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase ) if args.print_predictions: for q, a in zip(_lowercase , _lowercase ): logger.info("""Q: {} - A: {}""".format(_lowercase , _lowercase ) ) return answers def __lowerCamelCase ( ) -> int: UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=_lowercase , help=( """RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the""" """ model_name_or_path""" ) , ) parser.add_argument( """--index_name""" , default=_lowercase , choices=["""exact""", """compressed""", """legacy"""] , type=_lowercase , help="""RAG model retriever type""" , ) parser.add_argument( """--index_path""" , default=_lowercase , type=_lowercase , help="""Path to the retrieval index""" , ) parser.add_argument("""--n_docs""" , default=5 , type=_lowercase , help="""Number of retrieved docs""" ) parser.add_argument( """--model_name_or_path""" , default=_lowercase , type=_lowercase , required=_lowercase , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , ) parser.add_argument( """--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=_lowercase , help=( """Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates""" """ precision@k.""" ) , ) parser.add_argument("""--k""" , default=1 , type=_lowercase , help="""k for the precision@k calculation""" ) parser.add_argument( """--evaluation_set""" , default=_lowercase , type=_lowercase , required=_lowercase , help="""Path to a file containing evaluation samples""" , ) parser.add_argument( """--gold_data_path""" , default=_lowercase , type=_lowercase , required=_lowercase , help="""Path to a tab-separated file with gold samples""" , ) parser.add_argument( """--gold_data_mode""" , default="""qa""" , type=_lowercase , choices=["""qa""", """ans"""] , help=( """Format of the gold data file""" """qa - a single line in the following format: question [tab] answer_list""" """ans - a single line of the gold file contains the expected answer string""" ) , ) parser.add_argument( """--predictions_path""" , type=_lowercase , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , ) parser.add_argument( """--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , ) parser.add_argument( """--eval_batch_size""" , default=8 , type=_lowercase , help="""Batch size per GPU/CPU for evaluation.""" , ) parser.add_argument( """--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , ) parser.add_argument( """--num_beams""" , default=4 , type=_lowercase , help="""Number of beams to be used when generating answers""" , ) parser.add_argument("""--min_length""" , default=1 , type=_lowercase , help="""Min length of the generated answers""" ) parser.add_argument("""--max_length""" , default=5_0 , type=_lowercase , help="""Max length of the generated answers""" ) parser.add_argument( """--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , ) parser.add_argument( """--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , ) UpperCAmelCase : List[Any] = parser.parse_args() UpperCAmelCase : List[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) return args def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : List[str] = {} if args.model_type is None: UpperCAmelCase : Dict = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("""rag""" ): UpperCAmelCase : Any = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration UpperCAmelCase : Union[str, Any] = args.n_docs if args.index_name is not None: UpperCAmelCase : Tuple = args.index_name if args.index_path is not None: UpperCAmelCase : List[Any] = args.index_path else: UpperCAmelCase : List[Any] = BartForConditionalGeneration UpperCAmelCase : Union[str, Any] = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("""Evaluate the following checkpoints: %s""" , _lowercase ) UpperCAmelCase : Optional[int] = get_scores if args.eval_mode == """e2e""" else get_precision_at_k UpperCAmelCase : Optional[int] = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) ) score_fn(_lowercase , args.predictions_path , args.gold_data_path ) continue logger.info("""***** Running evaluation for {} *****""".format(_lowercase ) ) logger.info(""" Batch size = %d""" , args.eval_batch_size ) logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) ) if args.model_type.startswith("""rag""" ): UpperCAmelCase : Optional[int] = RagRetriever.from_pretrained(_lowercase , **_lowercase ) UpperCAmelCase : Tuple = model_class.from_pretrained(_lowercase , retriever=_lowercase , **_lowercase ) model.retriever.init_retrieval() else: UpperCAmelCase : Optional[int] = model_class.from_pretrained(_lowercase , **_lowercase ) model.to(args.device ) with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file: UpperCAmelCase : List[Any] = [] for line in tqdm(_lowercase ): questions.append(line.strip() ) if len(_lowercase ) == args.eval_batch_size: UpperCAmelCase : str = evaluate_batch_fn(_lowercase , _lowercase , _lowercase ) preds_file.write("""\n""".join(_lowercase ) + """\n""" ) preds_file.flush() UpperCAmelCase : Dict = [] if len(_lowercase ) > 0: UpperCAmelCase : List[str] = evaluate_batch_fn(_lowercase , _lowercase , _lowercase ) preds_file.write("""\n""".join(_lowercase ) ) preds_file.flush() score_fn(_lowercase , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": a : List[Any] = get_args() main(args)
338
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) a : List[str] = """Hello, World!""" a : List[Any] = """en_XX""" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Dict = Path("""data_bin""" ) UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(_lowercase ) UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder UpperCAmelCase : Tuple = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , _lowercase ) UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight UpperCAmelCase : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase : List[str] = model.roberta.encoder.layer[i] UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i] # self attention UpperCAmelCase : Optional[Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias # intermediate UpperCAmelCase : Tuple = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) UpperCAmelCase : List[str] = xmod_layer.fca.weight UpperCAmelCase : str = xmod_layer.fca.bias # output UpperCAmelCase : Any = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) UpperCAmelCase : Dict = xmod_layer.fca.weight UpperCAmelCase : Dict = xmod_layer.fca.bias UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code] UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code] UpperCAmelCase : Any = from_adapter.fca.weight UpperCAmelCase : int = from_adapter.fca.bias UpperCAmelCase : Dict = from_adapter.fca.weight UpperCAmelCase : Dict = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias UpperCAmelCase : str = xmod.model.encoder.lm_head.weight UpperCAmelCase : str = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) UpperCAmelCase : Optional[int] = model(_lowercase )[0] if classification_head: UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) ) else: UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) a : List[str] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
338
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : List[str] = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __lowerCamelCase ( _lowercase ) -> List[Any]: for i in range(0 , _lowercase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __lowerCamelCase ( _lowercase ) -> Dict: for i in range(_lowercase , 0 , -1 ): for _ in range(_lowercase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __lowerCamelCase ( _lowercase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowercase ) # upper half reverse_floyd(_lowercase ) # lower half if __name__ == "__main__": print(R"""| /\ | |- | |- |--| |\ /| |-""") print(R"""|/ \| |- |_ |_ |__| | \/ | |_""") a : List[Any] = 1 while K: a : int = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) a : Tuple = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
338
1
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A ) -> Any: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): UpperCAmelCase : int = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(A ) def _lowercase( self ) -> List[str]: UpperCAmelCase : List[str] = """sshleifer/tiny-gpt2""" UpperCAmelCase : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) UpperCAmelCase : Optional[Any] = PyTorchBenchmark(A ) UpperCAmelCase : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : int = """sgugger/tiny-distilbert-classification""" UpperCAmelCase : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , only_pretrain_model=A , ) UpperCAmelCase : List[str] = PyTorchBenchmark(A ) UpperCAmelCase : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase( self ) -> Dict: UpperCAmelCase : Tuple = """sshleifer/tiny-gpt2""" UpperCAmelCase : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , torchscript=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) UpperCAmelCase : int = PyTorchBenchmark(A ) UpperCAmelCase : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : List[str] = """sshleifer/tiny-gpt2""" UpperCAmelCase : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , fpaa=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) UpperCAmelCase : List[str] = PyTorchBenchmark(A ) UpperCAmelCase : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = """sshleifer/tiny-gpt2""" UpperCAmelCase : Dict = AutoConfig.from_pretrained(A ) # set architectures equal to `None` UpperCAmelCase : Tuple = None UpperCAmelCase : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) UpperCAmelCase : Dict = PyTorchBenchmark(A , configs=[config] ) UpperCAmelCase : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase( self ) -> str: UpperCAmelCase : Any = """sshleifer/tiny-gpt2""" UpperCAmelCase : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) UpperCAmelCase : Optional[int] = PyTorchBenchmark(A ) UpperCAmelCase : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" ) def _lowercase( self ) -> Any: UpperCAmelCase : int = """sshleifer/tiny-gpt2""" UpperCAmelCase : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , fpaa=A , multi_process=A , ) UpperCAmelCase : List[str] = PyTorchBenchmark(A ) UpperCAmelCase : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : Union[str, Any] = """sshleifer/tiny-gpt2""" UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(A ) UpperCAmelCase : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) UpperCAmelCase : Optional[Any] = PyTorchBenchmark(A , configs=[config] ) UpperCAmelCase : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Optional[int] = """sshleifer/tinier_bart""" UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained(A ) UpperCAmelCase : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) UpperCAmelCase : Optional[Any] = PyTorchBenchmark(A , configs=[config] ) UpperCAmelCase : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[Any] = """sshleifer/tiny-gpt2""" UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(A ) UpperCAmelCase : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) UpperCAmelCase : Optional[Any] = PyTorchBenchmark(A , configs=[config] ) UpperCAmelCase : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = """sshleifer/tinier_bart""" UpperCAmelCase : int = AutoConfig.from_pretrained(A ) UpperCAmelCase : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) UpperCAmelCase : Any = PyTorchBenchmark(A , configs=[config] ) UpperCAmelCase : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowercase( self ) -> Tuple: UpperCAmelCase : str = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , save_to_csv=A , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(A , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(A , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(A , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(A , """train_time.csv""" ) , env_info_csv_file=os.path.join(A , """env.csv""" ) , multi_process=A , ) UpperCAmelCase : Dict = PyTorchBenchmark(A ) benchmark.run() self.assertTrue(Path(os.path.join(A , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(A , """train_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(A , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(A , """train_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(A , """env.csv""" ) ).exists() ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Any = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(A ): self.assertTrue(hasattr(A , """sequential""" ) ) self.assertTrue(hasattr(A , """cumulative""" ) ) self.assertTrue(hasattr(A , """current""" ) ) self.assertTrue(hasattr(A , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(A , """log.txt""" ) , log_print=A , trace_memory_line_by_line=A , multi_process=A , ) UpperCAmelCase : str = PyTorchBenchmark(A ) UpperCAmelCase : Union[str, Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(A , """log.txt""" ) ).exists() )
338
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever a : List[str] = logging.getLogger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A=None ) -> Union[str, Any]: super().__init__( A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , ) UpperCAmelCase : Optional[Any] = None def _lowercase( self , A ) -> List[Any]: logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually UpperCAmelCase : Tuple = self._infer_socket_ifname() # avoid clash with the NCCL port UpperCAmelCase : str = str(distributed_port + 1 ) UpperCAmelCase : Any = dist.new_group(ranks=A , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _lowercase( self ) -> Dict: return dist.get_rank(group=self.process_group ) == 0 def _lowercase( self , A , A , A=torch.floataa ) -> str: UpperCAmelCase : List[Any] = torch.empty(A , dtype=A ) dist.scatter(A , src=0 , scatter_list=A , group=self.process_group ) return target_tensor def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names UpperCAmelCase : Optional[int] = next((addr for addr in addrs if addr.startswith("""e""" )) , A ) return ifname def _lowercase( self , A , A ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): UpperCAmelCase , UpperCAmelCase : str = self._main_retrieve(A , A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A ) # distributed training UpperCAmelCase : int = dist.get_world_size(group=self.process_group ) # gather logic UpperCAmelCase : int = None if self._is_main(): UpperCAmelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )] dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group ) # scatter logic UpperCAmelCase : List[Any] = question_hidden_states.shape[0] UpperCAmelCase : Tuple = [] UpperCAmelCase : Any = [] if self._is_main(): assert len(A ) == world_size UpperCAmelCase , UpperCAmelCase : Optional[int] = self._main_retrieve(torch.cat(A ).numpy() , A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = torch.tensor(A ), torch.tensor(A ) UpperCAmelCase : List[str] = self._chunk_tensor(A , A ) UpperCAmelCase : Union[str, Any] = self._chunk_tensor(A , A ) UpperCAmelCase : Tuple = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa ) UpperCAmelCase : Optional[Any] = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
338
1
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer a : Any = logging.get_logger(__name__) a : Union[str, Any] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} a : int = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } a : Any = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } a : Dict = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } a : Any = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2, """facebook/dpr-ctx_encoder-multiset-base""": 5_1_2, } a : List[Any] = { """facebook/dpr-question_encoder-single-nq-base""": 5_1_2, """facebook/dpr-question_encoder-multiset-base""": 5_1_2, } a : Dict = { """facebook/dpr-reader-single-nq-base""": 5_1_2, """facebook/dpr-reader-multiset-base""": 5_1_2, } a : int = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } a : Union[str, Any] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } a : Dict = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase = DPRContextEncoderTokenizer class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase = DPRQuestionEncoderTokenizer a : Union[str, Any] = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) a : str = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) a : Optional[Any] = R""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(__magic_name__ ) class UpperCamelCase_ : def __call__( self , A , A = None , A = None , A = False , A = False , A = None , A = None , A = None , **A , ) -> BatchEncoding: if titles is None and texts is None: return super().__call__( A , padding=A , truncation=A , max_length=A , return_tensors=A , return_attention_mask=A , **A , ) elif titles is None or texts is None: UpperCAmelCase : Optional[int] = titles if texts is None else texts return super().__call__( A , A , padding=A , truncation=A , max_length=A , return_tensors=A , return_attention_mask=A , **A , ) UpperCAmelCase : List[Any] = titles if not isinstance(A , A ) else [titles] UpperCAmelCase : Union[str, Any] = texts if not isinstance(A , A ) else [texts] UpperCAmelCase : Optional[Any] = len(A ) UpperCAmelCase : Tuple = questions if not isinstance(A , A ) else [questions] * n_passages assert len(A ) == len( A ), f'''There should be as many titles than texts but got {len(A )} titles and {len(A )} texts.''' UpperCAmelCase : str = super().__call__(A , A , padding=A , truncation=A )["""input_ids"""] UpperCAmelCase : Optional[int] = super().__call__(A , add_special_tokens=A , padding=A , truncation=A )["""input_ids"""] UpperCAmelCase : int = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(A , A ) ] } if return_attention_mask is not False: UpperCAmelCase : Dict = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) UpperCAmelCase : int = attention_mask return self.pad(A , padding=A , max_length=A , return_tensors=A ) def _lowercase( self , A , A , A = 16 , A = 64 , A = 4 , ) -> List[DPRSpanPrediction]: UpperCAmelCase : Tuple = reader_input["""input_ids"""] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = reader_output[:3] UpperCAmelCase : Optional[int] = len(A ) UpperCAmelCase : Optional[Any] = sorted(range(A ) , reverse=A , key=relevance_logits.__getitem__ ) UpperCAmelCase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: UpperCAmelCase : Optional[int] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence UpperCAmelCase : List[Any] = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: UpperCAmelCase : Optional[Any] = sequence_ids.index(self.pad_token_id ) else: UpperCAmelCase : Union[str, Any] = len(A ) UpperCAmelCase : Optional[Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=A , top_spans=A , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=A , start_index=A , end_index=A , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _lowercase( self , A , A , A , A , ) -> List[DPRSpanPrediction]: UpperCAmelCase : Any = [] for start_index, start_score in enumerate(A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) UpperCAmelCase : List[str] = sorted(A , key=lambda A : x[1] , reverse=A ) UpperCAmelCase : List[Any] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' UpperCAmelCase : List[Any] = end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__magic_name__ ) class UpperCamelCase_ ( __magic_name__ , __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = READER_PRETRAINED_VOCAB_FILES_MAP lowercase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = READER_PRETRAINED_INIT_CONFIGURATION lowercase = ['input_ids', 'attention_mask'] lowercase = DPRReaderTokenizer
338
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : List[str] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } a : List[Any] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } a : List[Any] = { """facebook/blenderbot_small-90M""": 5_1_2, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = BlenderbotSmallTokenizer def __init__( self , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , A=True , **A , ) -> Union[str, Any]: super().__init__( ByteLevelBPETokenizer( vocab=A , merges=A , add_prefix_space=A , trim_offsets=A , ) , bos_token=A , eos_token=A , unk_token=A , **A , ) UpperCAmelCase : Optional[Any] = add_prefix_space def _lowercase( self , A , A=None ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
338
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor a : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , **A ) -> None: warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , A , ) super().__init__(*A , **A )
338
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A = None , A = None , A = False , **A , ) -> Tuple: super().__init__(features=A , cache_dir=A , keep_in_memory=A , **A ) UpperCAmelCase : Any = Sql( cache_dir=A , features=A , sql=A , con=A , **A , ) def _lowercase( self ) -> Dict: UpperCAmelCase : Any = None UpperCAmelCase : Any = None UpperCAmelCase : int = None UpperCAmelCase : int = None self.builder.download_and_prepare( download_config=A , download_mode=A , verification_mode=A , base_path=A , ) # Build dataset for splits UpperCAmelCase : str = self.builder.as_dataset( split="""train""" , verification_mode=A , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase_ : def __init__( self , A , A , A , A = None , A = None , **A , ) -> str: if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) UpperCAmelCase : Dict = dataset UpperCAmelCase : List[Any] = name UpperCAmelCase : Any = con UpperCAmelCase : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase : Optional[Any] = num_proc UpperCAmelCase : str = to_sql_kwargs def _lowercase( self ) -> int: UpperCAmelCase : Any = self.to_sql_kwargs.pop("""sql""" , A ) UpperCAmelCase : str = self.to_sql_kwargs.pop("""con""" , A ) UpperCAmelCase : Union[str, Any] = self.to_sql_kwargs.pop("""index""" , A ) UpperCAmelCase : str = self._write(index=A , **self.to_sql_kwargs ) return written def _lowercase( self , A ) -> Any: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = args UpperCAmelCase : Union[str, Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs UpperCAmelCase : int = query_table( table=self.dataset.data , key=slice(A , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCAmelCase : Any = batch.to_pandas() UpperCAmelCase : List[Any] = df.to_sql(self.name , self.con , index=A , **A ) return num_rows or len(A ) def _lowercase( self , A , **A ) -> int: UpperCAmelCase : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: UpperCAmelCase , UpperCAmelCase : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , A , A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
338
1