code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( """The `inpainting.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionInpaintPipeline` instead.""" )
338
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCamelCase_ : lowercase = MBartConfig lowercase = {} lowercase = 'gelu' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : str = is_training UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Optional[Any] = eos_token_id UpperCAmelCase : List[str] = pad_token_id UpperCAmelCase : List[Any] = bos_token_id def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A ) return config, inputs_dict def _lowercase( self , A , A ) -> List[str]: UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder() UpperCAmelCase : int = inputs_dict["""input_ids"""] UpperCAmelCase : str = input_ids[:1, :] UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase : List[str] = inputs_dict["""head_mask"""] UpperCAmelCase : List[Any] = 1 # first forward pass UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = outputs.to_tuple() UpperCAmelCase : int = past_key_values[1] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]: if attention_mask is None: UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False def _lowercase( self , A , A , A , A , A ) -> int: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : int = TFMBartModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A ) def _lowercase( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase( self ) -> Dict: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_sentencepiece @require_tokenizers @require_tf class UpperCamelCase_ ( unittest.TestCase ): lowercase = [ ' UN Chief Says There Is No Military Solution in Syria', ] lowercase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] lowercase = 'facebook/mbart-large-en-ro' @cached_property def _lowercase( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowercase( self , **A ) -> Any: UpperCAmelCase : Optional[int] = self.translate_src_text(**A ) self.assertListEqual(self.expected_text , A ) def _lowercase( self , **A ) -> Optional[Any]: UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" ) UpperCAmelCase : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A ) return generated_words @slow def _lowercase( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
338
1
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser a : Optional[int] = re.compile(R"""\s+""") def __lowerCamelCase ( _lowercase ) -> str: return {"hash": hashlib.mda(re.sub(_lowercase , """""" , example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def __lowerCamelCase ( _lowercase ) -> Optional[Any]: UpperCAmelCase : str = [len(_lowercase ) for line in example["""content"""].splitlines()] return {"line_mean": np.mean(_lowercase ), "line_max": max(_lowercase )} def __lowerCamelCase ( _lowercase ) -> Optional[int]: UpperCAmelCase : List[Any] = np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[int]: if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def __lowerCamelCase ( _lowercase , _lowercase=5 ) -> List[str]: UpperCAmelCase : Optional[int] = ["""auto-generated""", """autogenerated""", """automatically generated"""] UpperCAmelCase : List[str] = example["""content"""].splitlines() for _, line in zip(range(_lowercase ) , _lowercase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def __lowerCamelCase ( _lowercase , _lowercase=5 , _lowercase=0.05 ) -> Dict: UpperCAmelCase : Any = ["""unit tests""", """test file""", """configuration file"""] UpperCAmelCase : List[str] = example["""content"""].splitlines() UpperCAmelCase : Dict = 0 UpperCAmelCase : int = 0 # first test for _, line in zip(range(_lowercase ) , _lowercase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test UpperCAmelCase : str = example["""content"""].count("""\n""" ) UpperCAmelCase : Union[str, Any] = int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Tuple = ["""def """, """class """, """for """, """while """] UpperCAmelCase : List[str] = example["""content"""].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def __lowerCamelCase ( _lowercase , _lowercase=4 ) -> List[str]: UpperCAmelCase : Optional[int] = example["""content"""].splitlines() UpperCAmelCase : List[Any] = 0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Optional[int] = tokenizer(example["""content"""] , truncation=_lowercase )["""input_ids"""] UpperCAmelCase : str = len(example["""content"""] ) / len(_lowercase ) return {"ratio": ratio} def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : Union[str, Any] = {} results.update(get_hash(_lowercase ) ) results.update(line_stats(_lowercase ) ) results.update(alpha_stats(_lowercase ) ) results.update(char_token_ratio(_lowercase ) ) results.update(is_autogenerated(_lowercase ) ) results.update(is_config_or_test(_lowercase ) ) results.update(has_no_keywords(_lowercase ) ) results.update(has_few_assignments(_lowercase ) ) return results def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: if not check_uniques(_lowercase , _lowercase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def __lowerCamelCase ( _lowercase ) -> Optional[Any]: with open(_lowercase , """rb""" ) as f_in: with gzip.open(str(_lowercase ) + """.gz""" , """wb""" , compresslevel=6 ) as f_out: shutil.copyfileobj(_lowercase , _lowercase ) os.unlink(_lowercase ) # Settings a : List[Any] = HfArgumentParser(PreprocessingArguments) a : Optional[int] = parser.parse_args() if args.num_workers is None: a : Dict = multiprocessing.cpu_count() a : Any = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset a : Union[str, Any] = time.time() a : List[Any] = load_dataset(args.dataset_name, split="""train""") print(F'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing a : Optional[int] = time.time() a : str = ds.map(preprocess, num_proc=args.num_workers) print(F'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes a : Any = set(ds.unique("""hash""")) a : str = len(uniques) / len(ds) print(F'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics a : Optional[int] = time.time() a : int = ds.filter(filter, fn_kwargs={"""uniques""": uniques, """args""": args}) print(F'''Time to filter dataset: {time.time()-t_start:.2f}''') print(F'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: a : List[str] = time.time() a , a : List[Any] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(F'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file a : Optional[int] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / """duplicate_clusters.json""", """w""") as f: json.dump(duplicate_clusters, f) a : Union[str, Any] = output_dir / """data""" data_dir.mkdir(exist_ok=True) a : int = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): a : Optional[int] = str(data_dir / F'''file-{file_number+1:012}.json''') a : Optional[Any] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'''Time to save dataset: {time.time()-t_start:.2f}''')
338
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: UpperCAmelCase : Tuple = len(_lowercase ) + 1 UpperCAmelCase : List[Any] = len(_lowercase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase : str = [[0 for i in range(_lowercase )] for j in range(_lowercase )] # since string of zero length match pattern of zero length UpperCAmelCase : int = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowercase ): UpperCAmelCase : str = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowercase ): UpperCAmelCase : Optional[Any] = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowercase ): for j in range(1 , _lowercase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase : Union[str, Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase : List[Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase : Optional[int] = dp[i - 1][j] else: UpperCAmelCase : Any = 0 else: UpperCAmelCase : str = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") a : List[str] = """aab""" a : Optional[int] = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
338
1
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCamelCase_ : def __init__( self , A , A=3 , A=32 , A=3 , A=10 , A=[8, 16, 32, 64] , A=[1, 1, 2, 1] , A=True , A=True , A="relu" , A=3 , A=None , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=1 , ) -> Dict: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[str] = batch_size UpperCAmelCase : int = image_size UpperCAmelCase : Dict = num_channels UpperCAmelCase : int = embeddings_size UpperCAmelCase : Optional[Any] = hidden_sizes UpperCAmelCase : Optional[Any] = depths UpperCAmelCase : Optional[Any] = is_training UpperCAmelCase : List[str] = use_labels UpperCAmelCase : Dict = hidden_act UpperCAmelCase : Union[str, Any] = num_labels UpperCAmelCase : Union[str, Any] = scope UpperCAmelCase : Optional[Any] = len(A ) UpperCAmelCase : Any = out_features UpperCAmelCase : Optional[Any] = out_indices UpperCAmelCase : str = num_groups def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : int = self.get_config() return config, pixel_values, labels def _lowercase( self ) -> str: return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def _lowercase( self , A , A , A ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = BitModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[str] = model(A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : Any = self.num_labels UpperCAmelCase : int = BitForImageClassification(A ) model.to(A ) model.eval() UpperCAmelCase : List[str] = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = BitBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase : Tuple = None UpperCAmelCase : Tuple = BitBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowercase( self ) -> int: UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = config_and_inputs UpperCAmelCase : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () lowercase = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Dict: UpperCAmelCase : Union[str, Any] = BitModelTester(self ) UpperCAmelCase : Union[str, Any] = ConfigTester(self , config_class=A , has_text_modality=A ) def _lowercase( self ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase( self ) -> List[str]: return @unittest.skip(reason="""Bit does not output attentions""" ) def _lowercase( self ) -> Optional[Any]: pass @unittest.skip(reason="""Bit does not use inputs_embeds""" ) def _lowercase( self ) -> List[Any]: pass @unittest.skip(reason="""Bit does not support input and output embeddings""" ) def _lowercase( self ) -> str: pass def _lowercase( self ) -> List[str]: UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Optional[int] = model_class(A ) UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Tuple = [*signature.parameters.keys()] UpperCAmelCase : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def _lowercase( self ) -> Any: UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A ) def _lowercase( self ) -> Any: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = model_class(config=A ) for name, module in model.named_modules(): if isinstance(A , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def _lowercase( self ) -> Tuple: def check_hidden_states_output(A , A , A ): UpperCAmelCase : int = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase : int = model(**self._prepare_for_class(A , A ) ) UpperCAmelCase : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : Tuple = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[str] = ["""preactivation""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCAmelCase : Optional[Any] = layer_type UpperCAmelCase : int = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : List[str] = True check_hidden_states_output(A , A , A ) @unittest.skip(reason="""Bit does not use feedforward chunking""" ) def _lowercase( self ) -> Optional[Any]: pass def _lowercase( self ) -> int: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def _lowercase( self ) -> Tuple: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Union[str, Any] = BitModel.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _lowercase( self ) -> Optional[Any]: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _lowercase( self ) -> List[str]: UpperCAmelCase : Tuple = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(A ) UpperCAmelCase : int = self.default_image_processor UpperCAmelCase : Tuple = prepare_img() UpperCAmelCase : Any = image_processor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): UpperCAmelCase : Union[str, Any] = model(**A ) # verify the logits UpperCAmelCase : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A ) UpperCAmelCase : Dict = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) ) @require_torch class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = (BitBackbone,) if is_torch_available() else () lowercase = BitConfig lowercase = False def _lowercase( self ) -> int: UpperCAmelCase : Dict = BitModelTester(self )
338
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : List[str] = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int: UpperCAmelCase : int = 1 UpperCAmelCase : str = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase : Tuple = pre_numerator UpperCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase : Union[str, Any] = cur_numerator UpperCAmelCase : Optional[int] = e_cont * pre_numerator + temp return sum_digits(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
338
1
'''simple docstring''' import os import string import sys a : List[Any] = 1 << 8 a : List[str] = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 2_7, """up""": 6_5 + ARROW_KEY_FLAG, """down""": 6_6 + ARROW_KEY_FLAG, """right""": 6_7 + ARROW_KEY_FLAG, """left""": 6_8 + ARROW_KEY_FLAG, """mod_int""": 9_1, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 5_0, """delete""": 5_1, """pg_up""": 5_3, """pg_down""": 5_4, } a : List[str] = KEYMAP["""up"""] a : Union[str, Any] = KEYMAP["""left"""] if sys.platform == "win32": a : str = [] a : List[Any] = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(1_0): a : Dict = ord(str(i)) def __lowerCamelCase ( ) -> List[str]: if os.name == "nt": import msvcrt UpperCAmelCase : Any = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_lowercase ) == 0: # Read the keystroke UpperCAmelCase : Tuple = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): UpperCAmelCase : List[str] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: UpperCAmelCase : Optional[Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(_lowercase ) if ord(_lowercase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) UpperCAmelCase : int = chr(KEYMAP["""esc"""] ) except KeyError: UpperCAmelCase : Dict = cha[1] else: UpperCAmelCase : int = ch.decode(_lowercase ) else: UpperCAmelCase : Optional[int] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty UpperCAmelCase : Any = sys.stdin.fileno() UpperCAmelCase : Tuple = termios.tcgetattr(_lowercase ) try: tty.setraw(_lowercase ) UpperCAmelCase : int = sys.stdin.read(1 ) finally: termios.tcsetattr(_lowercase , termios.TCSADRAIN , _lowercase ) return ch def __lowerCamelCase ( ) -> List[Any]: UpperCAmelCase : List[str] = get_raw_chars() if ord(_lowercase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_lowercase ) == KEYMAP["esc"]: UpperCAmelCase : Optional[Any] = get_raw_chars() if ord(_lowercase ) == KEYMAP["mod_int"]: UpperCAmelCase : Dict = get_raw_chars() if ord(_lowercase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_lowercase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_lowercase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
338
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=0.0_1 , A=1000 ) -> List[str]: UpperCAmelCase : List[Any] = p_stop UpperCAmelCase : Optional[int] = max_length def __iter__( self ) -> Union[str, Any]: UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = False while not stop and count < self.max_length: yield count count += 1 UpperCAmelCase : Any = random.random() < self.p_stop class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A , A=False , A=True ) -> Union[str, Any]: UpperCAmelCase : List[str] = [ BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A ) for i in range(2 ) ] UpperCAmelCase : List[str] = [list(A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] ) self.assertListEqual(A , A ) def _lowercase( self ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is very small. UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [[], []] self.check_batch_sampler_shards(A , A ) def _lowercase( self ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A ) def _lowercase( self ) -> Any: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : str = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [[], []] self.check_batch_sampler_shards(A , A , even_batches=A ) def _lowercase( self ) -> List[Any]: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCAmelCase : List[str] = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _lowercase( self , A , A , A , A=False , A=2 , A=False ) -> Tuple: random.seed(A ) UpperCAmelCase : Dict = list(A ) UpperCAmelCase : Any = [ IterableDatasetShard( A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , ) for i in range(A ) ] UpperCAmelCase : Dict = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(A ) iterable_dataset_lists.append(list(A ) ) UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCAmelCase : List[Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(A ) , len(A ) ) self.assertTrue(len(A ) % shard_batch_size == 0 ) UpperCAmelCase : List[Any] = [] for idx in range(0 , len(A ) , A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(A ) < len(A ): reference += reference self.assertListEqual(A , reference[: len(A )] ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = 42 UpperCAmelCase : List[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) # Edge case with a very small dataset UpperCAmelCase : List[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = SkipBatchSampler(A , 2 ) self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> int: UpperCAmelCase : Any = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) UpperCAmelCase : Optional[Any] = skip_first_batches(A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowercase( self ) -> Dict: Accelerator() UpperCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
338
1
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCamelCase_ ( __magic_name__ ): @require_torch def _lowercase( self ) -> List[str]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched UpperCAmelCase : List[Any] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ UpperCAmelCase : Tuple = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ UpperCAmelCase : List[Any] = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache UpperCAmelCase : Optional[int] = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(A ) BertModel.from_pretrained(A ) BertTokenizer.from_pretrained(A ) pipeline(task="""fill-mask""" , model=A ) # baseline - just load from_pretrained with normal network UpperCAmelCase : Optional[Any] = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed UpperCAmelCase : int = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase : List[Any] = """1""" UpperCAmelCase : int = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def _lowercase( self ) -> Optional[Any]: # python one-liner segments # this must be loaded before socket.socket is monkey-patched UpperCAmelCase : Optional[Any] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ UpperCAmelCase : List[Any] = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ UpperCAmelCase : Tuple = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache UpperCAmelCase : Optional[Any] = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(A ) BertModel.from_pretrained(A ) BertTokenizer.from_pretrained(A ) pipeline(task="""fill-mask""" , model=A ) # baseline - just load from_pretrained with normal network UpperCAmelCase : Any = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed UpperCAmelCase : List[str] = self.get_env() UpperCAmelCase : Optional[Any] = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def _lowercase( self ) -> str: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched UpperCAmelCase : int = """ from transformers import BertConfig, BertModel, BertTokenizer """ UpperCAmelCase : Tuple = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ UpperCAmelCase : Dict = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network UpperCAmelCase : Tuple = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed UpperCAmelCase : Union[str, Any] = self.get_env() UpperCAmelCase : Tuple = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # next emulate no network UpperCAmelCase : Optional[Any] = [sys.executable, """-c""", """\n""".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase : Tuple = """1""" UpperCAmelCase : Tuple = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def _lowercase( self ) -> Tuple: UpperCAmelCase : List[Any] = """ from transformers import pipeline """ UpperCAmelCase : Optional[Any] = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ UpperCAmelCase : Optional[Any] = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ UpperCAmelCase : List[str] = self.get_env() UpperCAmelCase : List[Any] = """1""" UpperCAmelCase : int = [sys.executable, """-c""", """\n""".join([load, mock, run] )] UpperCAmelCase : str = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""" ) , ) @require_torch def _lowercase( self ) -> Tuple: UpperCAmelCase : Optional[Any] = """ from transformers import AutoModel """ UpperCAmelCase : List[str] = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network UpperCAmelCase : Union[str, Any] = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed UpperCAmelCase : Union[str, Any] = self.get_env() UpperCAmelCase : Optional[Any] = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase : Dict = """1""" UpperCAmelCase : List[Any] = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() )
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[Any] = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
'''simple docstring''' from math import factorial class UpperCamelCase_ : def __init__( self , A , A ) -> Optional[Any]: UpperCAmelCase : Dict = real if isinstance(A , A ): UpperCAmelCase : Optional[Any] = [1] * rank else: UpperCAmelCase : Tuple = rank def __repr__( self ) -> int: return ( f'''{self.real}+''' f'''{'+'.join(str(A )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}''' ) def _lowercase( self ) -> Dict: UpperCAmelCase : Dict = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , A ) def __add__( self , A ) -> str: if not isinstance(A , A ): return Dual(self.real + other , self.duals ) UpperCAmelCase : Optional[Any] = self.duals.copy() UpperCAmelCase : Tuple = other.duals.copy() if len(A ) > len(A ): o_dual.extend([1] * (len(A ) - len(A )) ) elif len(A ) < len(A ): s_dual.extend([1] * (len(A ) - len(A )) ) UpperCAmelCase : Any = [] for i in range(len(A ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , A ) lowercase = __add__ def __sub__( self , A ) -> str: return self + other * -1 def __mul__( self , A ) -> Optional[Any]: if not isinstance(A , A ): UpperCAmelCase : List[str] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , A ) UpperCAmelCase : str = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , A ) lowercase = __mul__ def __truediv__( self , A ) -> Tuple: if not isinstance(A , A ): UpperCAmelCase : List[str] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , A ) raise ValueError def __floordiv__( self , A ) -> Union[str, Any]: if not isinstance(A , A ): UpperCAmelCase : Optional[int] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , A ) raise ValueError def __pow__( self , A ) -> Optional[Any]: if n < 0 or isinstance(A , A ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self UpperCAmelCase : Optional[Any] = self for _ in range(n - 1 ): x *= self return x def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: if not callable(_lowercase ): raise ValueError("""differentiate() requires a function as input for func""" ) if not isinstance(_lowercase , (float, int) ): raise ValueError("""differentiate() requires a float as input for position""" ) if not isinstance(_lowercase , _lowercase ): raise ValueError("""differentiate() requires an int as input for order""" ) UpperCAmelCase : Optional[Any] = Dual(_lowercase , 1 ) UpperCAmelCase : Any = func(_lowercase ) if order == 0: return result.real return result.duals[order - 1] * factorial(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() def __lowerCamelCase ( _lowercase ) -> Optional[Any]: return y**2 * y**4 print(differentiate(f, 9, 2))
338
'''simple docstring''' from math import loga def __lowerCamelCase ( _lowercase ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_lowercase , _lowercase ): raise TypeError("""Input value must be a 'int' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
338
1
'''simple docstring''' import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 a : Tuple = data_utils.TransfoXLTokenizer a : Optional[Any] = data_utils.TransfoXLCorpus a : List[Any] = data_utils a : Optional[int] = data_utils def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> str: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(_lowercase , """rb""" ) as fp: UpperCAmelCase : Dict = pickle.load(_lowercase , encoding="""latin1""" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) UpperCAmelCase : List[Any] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""pretrained_vocab_file"""] print(F'''Save vocabulary to {pytorch_vocab_dump_path}''' ) UpperCAmelCase : Optional[int] = corpus.vocab.__dict__ torch.save(_lowercase , _lowercase ) UpperCAmelCase : List[Any] = corpus.__dict__ corpus_dict_no_vocab.pop("""vocab""" , _lowercase ) UpperCAmelCase : Union[str, Any] = pytorch_dump_folder_path + """/""" + CORPUS_NAME print(F'''Save dataset to {pytorch_dataset_dump_path}''' ) torch.save(_lowercase , _lowercase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model UpperCAmelCase : int = os.path.abspath(_lowercase ) UpperCAmelCase : Dict = os.path.abspath(_lowercase ) print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' ) # Initialise PyTorch model if transfo_xl_config_file == "": UpperCAmelCase : Any = TransfoXLConfig() else: UpperCAmelCase : Optional[Any] = TransfoXLConfig.from_json_file(_lowercase ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase : int = TransfoXLLMHeadModel(_lowercase ) UpperCAmelCase : Any = load_tf_weights_in_transfo_xl(_lowercase , _lowercase , _lowercase ) # Save pytorch-model UpperCAmelCase : List[str] = os.path.join(_lowercase , _lowercase ) UpperCAmelCase : Dict = os.path.join(_lowercase , _lowercase ) print(F'''Save PyTorch model to {os.path.abspath(_lowercase )}''' ) torch.save(model.state_dict() , _lowercase ) print(F'''Save configuration file to {os.path.abspath(_lowercase )}''' ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--tf_checkpoint_path""", default="""""", type=str, help="""An optional path to a TensorFlow checkpoint path to be converted.""", ) parser.add_argument( """--transfo_xl_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--transfo_xl_dataset_file""", default="""""", type=str, help="""An optional dataset file to be converted in a vocabulary.""", ) a : Optional[Any] = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
338
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. a : Optional[int] = 1_0 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: for i in range(_lowercase , _lowercase ): if array[i] == target: return i return -1 def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = len(_lowercase ) while left <= right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1 UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase : Any = one_third - 1 elif array[two_third] < target: UpperCAmelCase : Tuple = two_third + 1 else: UpperCAmelCase : int = one_third + 1 UpperCAmelCase : List[Any] = two_third - 1 else: return -1 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: if left < right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : str = (left + right) // 3 + 1 UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() a : Any = input("""Enter numbers separated by comma:\n""").strip() a : Any = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip()) a : Union[str, Any] = ite_ternary_search(collection, target) a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
338
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig a : Tuple = { """google/tapas-base-finetuned-sqa""": ( """https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json""" ), """google/tapas-base-finetuned-wtq""": ( """https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json""" ), """google/tapas-base-finetuned-wikisql-supervised""": ( """https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json""" ), """google/tapas-base-finetuned-tabfact""": ( """https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json""" ), } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'tapas' def __init__( self , A=30522 , A=768 , A=12 , A=12 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=1024 , A=[3, 256, 256, 2, 256, 256, 10] , A=0.0_2 , A=1e-12 , A=0 , A=1_0.0 , A=0 , A=1.0 , A=None , A=1.0 , A=False , A=None , A=1.0 , A=1.0 , A=False , A=False , A="ratio" , A=None , A=None , A=64 , A=32 , A=False , A=True , A=False , A=False , A=True , A=False , A=None , A=None , **A , ) -> List[Any]: super().__init__(pad_token_id=A , **A ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Optional[Any] = hidden_size UpperCAmelCase : Any = num_hidden_layers UpperCAmelCase : Tuple = num_attention_heads UpperCAmelCase : str = hidden_act UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : Optional[int] = hidden_dropout_prob UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase : str = max_position_embeddings UpperCAmelCase : Union[str, Any] = type_vocab_sizes UpperCAmelCase : int = initializer_range UpperCAmelCase : int = layer_norm_eps # Fine-tuning task hyperparameters UpperCAmelCase : Optional[Any] = positive_label_weight UpperCAmelCase : Union[str, Any] = num_aggregation_labels UpperCAmelCase : List[str] = aggregation_loss_weight UpperCAmelCase : str = use_answer_as_supervision UpperCAmelCase : int = answer_loss_importance UpperCAmelCase : Dict = use_normalized_answer_loss UpperCAmelCase : str = huber_loss_delta UpperCAmelCase : Union[str, Any] = temperature UpperCAmelCase : Optional[Any] = aggregation_temperature UpperCAmelCase : Optional[Any] = use_gumbel_for_cells UpperCAmelCase : Optional[Any] = use_gumbel_for_aggregation UpperCAmelCase : int = average_approximation_function UpperCAmelCase : Tuple = cell_selection_preference UpperCAmelCase : Dict = answer_loss_cutoff UpperCAmelCase : Optional[int] = max_num_rows UpperCAmelCase : Optional[int] = max_num_columns UpperCAmelCase : int = average_logits_per_cell UpperCAmelCase : Dict = select_one_column UpperCAmelCase : Optional[int] = allow_empty_column_selection UpperCAmelCase : Union[str, Any] = init_cell_selection_weights_to_zero UpperCAmelCase : str = reset_position_index_per_cell UpperCAmelCase : str = disable_per_token_loss # Aggregation hyperparameters UpperCAmelCase : Dict = aggregation_labels UpperCAmelCase : List[Any] = no_aggregation_label_index if isinstance(self.aggregation_labels , A ): UpperCAmelCase : Optional[int] = {int(A ): v for k, v in aggregation_labels.items()}
338
'''simple docstring''' import numpy as np class UpperCamelCase_ : def __init__( self ) -> int: UpperCAmelCase : str = (0, 0) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Any = 0 UpperCAmelCase : int = 0 UpperCAmelCase : Optional[int] = 0 def __eq__( self , A ) -> Optional[Any]: return self.position == cell.position def _lowercase( self ) -> Tuple: print(self.position ) class UpperCamelCase_ : def __init__( self , A=(5, 5) ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = np.zeros(A ) UpperCAmelCase : int = world_size[0] UpperCAmelCase : List[str] = world_size[1] def _lowercase( self ) -> List[Any]: print(self.w ) def _lowercase( self , A ) -> Dict: UpperCAmelCase : Optional[Any] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase : List[Any] = cell.position[0] UpperCAmelCase : Union[str, Any] = cell.position[1] UpperCAmelCase : Optional[int] = [] for n in neughbour_cord: UpperCAmelCase : Any = current_x + n[0] UpperCAmelCase : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase : str = Cell() UpperCAmelCase : List[str] = (x, y) UpperCAmelCase : Dict = cell neighbours.append(A ) return neighbours def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase : List[Any] = [] UpperCAmelCase : Optional[int] = [] _open.append(_lowercase ) while _open: UpperCAmelCase : Any = np.argmin([n.f for n in _open] ) UpperCAmelCase : Optional[int] = _open[min_f] _closed.append(_open.pop(_lowercase ) ) if current == goal: break for n in world.get_neigbours(_lowercase ): for c in _closed: if c == n: continue UpperCAmelCase : List[str] = current.g + 1 UpperCAmelCase , UpperCAmelCase : List[str] = n.position UpperCAmelCase , UpperCAmelCase : Dict = goal.position UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase : Dict = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_lowercase ) UpperCAmelCase : Dict = [] while current.parent is not None: path.append(current.position ) UpperCAmelCase : Optional[int] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": a : List[str] = Gridworld() # Start position and goal a : Optional[int] = Cell() a : Optional[Any] = (0, 0) a : Optional[Any] = Cell() a : str = (4, 4) print(F'''path from {start.position} to {goal.position}''') a : List[Any] = astar(world, start, goal) # Just for visual reasons. for i in s: a : Any = 1 print(world.w)
338
1
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class UpperCamelCase_ ( unittest.TestCase ): lowercase = JukeboxTokenizer lowercase = { 'artist': 'Zac Brown Band', 'genres': 'Country', 'lyrics': 'I met a traveller from an antique land,\n Who said "Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ', } @require_torch def _lowercase( self ) -> Tuple: import torch UpperCAmelCase : str = JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" ) UpperCAmelCase : Optional[Any] = tokenizer(**self.metas )["""input_ids"""] # fmt: off UpperCAmelCase : str = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def _lowercase( self ) -> Tuple: import torch UpperCAmelCase : Union[str, Any] = JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" ) UpperCAmelCase : Dict = tokenizer(**self.metas )["""input_ids"""] # fmt: off UpperCAmelCase : Optional[int] = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = IFInpaintingSuperResolutionPipeline lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) lowercase = PipelineTesterMixin.required_optional_params - {'latents'} def _lowercase( self ) -> List[str]: return self._get_superresolution_dummy_components() def _lowercase( self , A , A=0 ) -> Tuple: if str(A ).startswith("""mps""" ): UpperCAmelCase : int = torch.manual_seed(A ) else: UpperCAmelCase : Optional[Any] = torch.Generator(device=A ).manual_seed(A ) UpperCAmelCase : int = floats_tensor((1, 3, 16, 16) , rng=random.Random(A ) ).to(A ) UpperCAmelCase : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) UpperCAmelCase : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) UpperCAmelCase : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _lowercase( self ) -> Optional[Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _lowercase( self ) -> Tuple: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _lowercase( self ) -> Dict: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _lowercase( self ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _lowercase( self ) -> Tuple: self._test_save_load_local() def _lowercase( self ) -> int: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
338
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a : int = logging.get_logger(__name__) a : int = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off a : Tuple = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] a : Optional[int] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class UpperCamelCase_ ( __magic_name__ ): lowercase = 'whisper' lowercase = ['past_key_values'] lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]: UpperCAmelCase : str = vocab_size UpperCAmelCase : Union[str, Any] = num_mel_bins UpperCAmelCase : Tuple = d_model UpperCAmelCase : Optional[int] = encoder_layers UpperCAmelCase : List[str] = encoder_attention_heads UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : int = decoder_attention_heads UpperCAmelCase : Optional[int] = decoder_ffn_dim UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : List[str] = dropout UpperCAmelCase : Optional[Any] = attention_dropout UpperCAmelCase : Optional[Any] = activation_dropout UpperCAmelCase : Optional[Any] = activation_function UpperCAmelCase : Optional[Any] = init_std UpperCAmelCase : int = encoder_layerdrop UpperCAmelCase : Dict = decoder_layerdrop UpperCAmelCase : Optional[int] = use_cache UpperCAmelCase : List[str] = encoder_layers UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Union[str, Any] = max_source_positions UpperCAmelCase : Tuple = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : List[str] = classifier_proj_size UpperCAmelCase : Optional[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : int = mask_time_prob UpperCAmelCase : int = mask_time_length UpperCAmelCase : Dict = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Optional[int] = mask_feature_length UpperCAmelCase : int = mask_feature_min_masks UpperCAmelCase : List[Any] = median_filter_width super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , ) class UpperCamelCase_ ( __magic_name__ ): @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : str = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase : List[Any] = {0: """batch"""} else: UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) return common_inputs def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Optional[int] = OrderedDict() UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , ) UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2] UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Any = super().generate_dummy_inputs( preprocessor.tokenizer , A , A , A , A ) UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" ) UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def _lowercase( self ) -> float: return 1e-3
338
1
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class UpperCamelCase_ ( unittest.TestCase ): def __init__( self , A , A = True , A = None , A = 32 , A = True , A = 1 / 255 , A = True , A = True , A = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , A = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , A = True , A=7 , A=30 , A=400 , A=3 , ) -> str: UpperCAmelCase : Dict = parent UpperCAmelCase : Union[str, Any] = do_resize UpperCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 288} UpperCAmelCase : List[str] = size_divisor UpperCAmelCase : List[str] = do_rescale UpperCAmelCase : Dict = rescale_factor UpperCAmelCase : Any = do_normalize UpperCAmelCase : List[Any] = do_center_crop UpperCAmelCase : Optional[int] = image_mean UpperCAmelCase : List[str] = image_std UpperCAmelCase : List[str] = do_pad UpperCAmelCase : Union[str, Any] = batch_size UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : str = min_resolution UpperCAmelCase : List[Any] = max_resolution def _lowercase( self ) -> int: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def _lowercase( self , A , A=False ) -> Tuple: if not batched: UpperCAmelCase : Dict = self.size["""shortest_edge"""] UpperCAmelCase : Any = image_inputs[0] if isinstance(A , Image.Image ): UpperCAmelCase , UpperCAmelCase : Union[str, Any] = image.size else: UpperCAmelCase , UpperCAmelCase : Optional[Any] = image.shape[1], image.shape[2] UpperCAmelCase : List[Any] = size / min(A , A ) if h < w: UpperCAmelCase , UpperCAmelCase : List[str] = size, scale * w else: UpperCAmelCase , UpperCAmelCase : List[Any] = scale * h, size UpperCAmelCase : str = int((1333 / 800) * size ) if max(A , A ) > max_size: UpperCAmelCase : int = max_size / max(A , A ) UpperCAmelCase : Union[str, Any] = newh * scale UpperCAmelCase : Dict = neww * scale UpperCAmelCase , UpperCAmelCase : Optional[int] = int(newh + 0.5 ), int(neww + 0.5 ) UpperCAmelCase , UpperCAmelCase : List[str] = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: UpperCAmelCase : Tuple = [] for image in image_inputs: UpperCAmelCase , UpperCAmelCase : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase : Optional[int] = max(A , key=lambda A : item[0] )[0] UpperCAmelCase : Optional[Any] = max(A , key=lambda A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = BridgeTowerImageProcessor if is_vision_available() else None def _lowercase( self ) -> Dict: UpperCAmelCase : Dict = BridgeTowerImageProcessingTester(self ) @property def _lowercase( self ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def _lowercase( self ) -> List[str]: UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , """image_mean""" ) ) self.assertTrue(hasattr(A , """image_std""" ) ) self.assertTrue(hasattr(A , """do_normalize""" ) ) self.assertTrue(hasattr(A , """do_resize""" ) ) self.assertTrue(hasattr(A , """size""" ) ) self.assertTrue(hasattr(A , """size_divisor""" ) ) def _lowercase( self ) -> List[str]: pass def _lowercase( self ) -> str: # Initialize image processor UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input UpperCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCAmelCase , UpperCAmelCase : int = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase : int = image_processing(A , return_tensors="""pt""" ).pixel_values UpperCAmelCase , UpperCAmelCase : Dict = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase( self ) -> Union[str, Any]: # Initialize image processor UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input UpperCAmelCase : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCAmelCase , UpperCAmelCase : Optional[int] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase : Union[str, Any] = image_processing(A , return_tensors="""pt""" ).pixel_values UpperCAmelCase , UpperCAmelCase : Optional[int] = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase( self ) -> List[str]: # Initialize image processor UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input UpperCAmelCase : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCAmelCase , UpperCAmelCase : Tuple = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase : Union[str, Any] = image_processing(A , return_tensors="""pt""" ).pixel_values UpperCAmelCase , UpperCAmelCase : Dict = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
338
'''simple docstring''' a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowerCamelCase ( ) -> None: UpperCAmelCase : Optional[int] = input("""Enter message: """ ) UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ ) UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): UpperCAmelCase : List[str] = """encrypt""" UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase ) elif mode.lower().startswith("""d""" ): UpperCAmelCase : Tuple = """decrypt""" UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """encrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """decrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Tuple = key.upper() for symbol in message: UpperCAmelCase : Dict = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowercase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowercase ): UpperCAmelCase : Optional[int] = 0 else: translated.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": main()
338
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : Optional[Any] = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys a : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Optional[int] = split_dict._to_yaml_list() assert len(_lowercase ) == len(_lowercase ) UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(_lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCAmelCase : List[str] = None # the split name of split_dict takes over the name of the split info object UpperCAmelCase : int = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name="""my_dataset""" )] ) def __lowerCamelCase ( _lowercase ) -> List[str]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files UpperCAmelCase : Optional[Any] = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
338
1
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def __lowerCamelCase ( _lowercase ) -> Tuple: random.seed(_lowercase ) np.random.seed(_lowercase ) torch.manual_seed(_lowercase ) torch.cuda.manual_seed_all(_lowercase ) # ^^ safe to call this function even if cuda is not available class UpperCamelCase_ : def __init__( self , A , A = 0.9_9_9_9 , A = 0.0 , A = 0 , A = False , A = 1.0 , A = 2 / 3 , A = None , A = None , **A , ) -> Tuple: if isinstance(A , torch.nn.Module ): UpperCAmelCase : Tuple = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , A , standard_warn=A , ) UpperCAmelCase : Any = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility UpperCAmelCase : Tuple = True if kwargs.get("""max_value""" , A ) is not None: UpperCAmelCase : Optional[int] = """The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""" , """1.0.0""" , A , standard_warn=A ) UpperCAmelCase : int = kwargs["""max_value"""] if kwargs.get("""min_value""" , A ) is not None: UpperCAmelCase : int = """The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""" , """1.0.0""" , A , standard_warn=A ) UpperCAmelCase : Optional[Any] = kwargs["""min_value"""] UpperCAmelCase : Optional[Any] = list(A ) UpperCAmelCase : Optional[Any] = [p.clone().detach() for p in parameters] if kwargs.get("""device""" , A ) is not None: UpperCAmelCase : Tuple = """The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""" , """1.0.0""" , A , standard_warn=A ) self.to(device=kwargs["""device"""] ) UpperCAmelCase : Dict = None UpperCAmelCase : List[str] = decay UpperCAmelCase : List[str] = min_decay UpperCAmelCase : str = update_after_step UpperCAmelCase : str = use_ema_warmup UpperCAmelCase : List[Any] = inv_gamma UpperCAmelCase : int = power UpperCAmelCase : int = 0 UpperCAmelCase : Optional[Any] = None # set in `step()` UpperCAmelCase : List[str] = model_cls UpperCAmelCase : Union[str, Any] = model_config @classmethod def _lowercase( cls , A , A ) -> "EMAModel": UpperCAmelCase , UpperCAmelCase : Any = model_cls.load_config(A , return_unused_kwargs=A ) UpperCAmelCase : Union[str, Any] = model_cls.from_pretrained(A ) UpperCAmelCase : Tuple = cls(model.parameters() , model_cls=A , model_config=model.config ) ema_model.load_state_dict(A ) return ema_model def _lowercase( self , A ) -> Union[str, Any]: if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) UpperCAmelCase : Dict = self.model_cls.from_config(self.model_config ) UpperCAmelCase : Optional[int] = self.state_dict() state_dict.pop("""shadow_params""" , A ) model.register_to_config(**A ) self.copy_to(model.parameters() ) model.save_pretrained(A ) def _lowercase( self , A ) -> float: UpperCAmelCase : List[Any] = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: UpperCAmelCase : Optional[int] = 1 - (1 + step / self.inv_gamma) ** -self.power else: UpperCAmelCase : str = (1 + step) / (10 + step) UpperCAmelCase : int = min(A , self.decay ) # make sure decay is not smaller than min_decay UpperCAmelCase : List[Any] = max(A , self.min_decay ) return cur_decay_value @torch.no_grad() def _lowercase( self , A ) -> Dict: if isinstance(A , torch.nn.Module ): UpperCAmelCase : Optional[int] = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , A , standard_warn=A , ) UpperCAmelCase : Optional[int] = parameters.parameters() UpperCAmelCase : Tuple = list(A ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. UpperCAmelCase : Any = self.get_decay(self.optimization_step ) UpperCAmelCase : int = decay UpperCAmelCase : List[Any] = 1 - decay UpperCAmelCase : int = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , A ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): UpperCAmelCase : Any = deepspeed.zero.GatheredParameters(A , modifier_rank=A ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(A ) def _lowercase( self , A ) -> None: UpperCAmelCase : Optional[Any] = list(A ) for s_param, param in zip(self.shadow_params , A ): param.data.copy_(s_param.to(param.device ).data ) def _lowercase( self , A=None , A=None ) -> None: UpperCAmelCase : int = [ p.to(device=A , dtype=A ) if p.is_floating_point() else p.to(device=A ) for p in self.shadow_params ] def _lowercase( self ) -> dict: return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def _lowercase( self , A ) -> None: UpperCAmelCase : List[Any] = [param.detach().cpu().clone() for param in parameters] def _lowercase( self , A ) -> None: if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params , A ): param.data.copy_(c_param.data ) # Better memory-wise. UpperCAmelCase : List[Any] = None def _lowercase( self , A ) -> None: UpperCAmelCase : List[str] = copy.deepcopy(A ) UpperCAmelCase : Tuple = state_dict.get("""decay""" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) UpperCAmelCase : Optional[int] = state_dict.get("""min_decay""" , self.min_decay ) if not isinstance(self.min_decay , A ): raise ValueError("""Invalid min_decay""" ) UpperCAmelCase : Optional[Any] = state_dict.get("""optimization_step""" , self.optimization_step ) if not isinstance(self.optimization_step , A ): raise ValueError("""Invalid optimization_step""" ) UpperCAmelCase : Optional[Any] = state_dict.get("""update_after_step""" , self.update_after_step ) if not isinstance(self.update_after_step , A ): raise ValueError("""Invalid update_after_step""" ) UpperCAmelCase : Any = state_dict.get("""use_ema_warmup""" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , A ): raise ValueError("""Invalid use_ema_warmup""" ) UpperCAmelCase : Optional[int] = state_dict.get("""inv_gamma""" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("""Invalid inv_gamma""" ) UpperCAmelCase : Dict = state_dict.get("""power""" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("""Invalid power""" ) UpperCAmelCase : Union[str, Any] = state_dict.get("""shadow_params""" , A ) if shadow_params is not None: UpperCAmelCase : Tuple = shadow_params if not isinstance(self.shadow_params , A ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(A , torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
338
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor a : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , **A ) -> None: warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , A , ) super().__init__(*A , **A )
338
1
'''simple docstring''' from __future__ import annotations a : Optional[int] = tuple[int, int, int] a : Optional[int] = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase a : Optional[Any] = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" # -------------------------- default selection -------------------------- # rotors -------------------------- a : List[Any] = """EGZWVONAHDCLFQMSIPJBYUKXTR""" a : str = """FOBHMDKEXQNRAULPGSJVTYICZW""" a : List[Any] = """ZJXESIUQLHAVRMDOYGTNFWPBKC""" # reflector -------------------------- a : List[Any] = { """A""": """N""", """N""": """A""", """B""": """O""", """O""": """B""", """C""": """P""", """P""": """C""", """D""": """Q""", """Q""": """D""", """E""": """R""", """R""": """E""", """F""": """S""", """S""": """F""", """G""": """T""", """T""": """G""", """H""": """U""", """U""": """H""", """I""": """V""", """V""": """I""", """J""": """W""", """W""": """J""", """K""": """X""", """X""": """K""", """L""": """Y""", """Y""": """L""", """M""": """Z""", """Z""": """M""", } # -------------------------- extra rotors -------------------------- a : Any = """RMDJXFUWGISLHVTCQNKYPBEZOA""" a : Dict = """SGLCPQWZHKXAREONTFBVIYJUDM""" a : Optional[int] = """HVSICLTYKQUBXDWAJZOMFGPREN""" a : Optional[int] = """RZWQHFMVDBKICJLNTUXAGYPSOE""" a : str = """LFKIJODBEGAMQPXVUHYSTCZRWN""" a : Union[str, Any] = """KOAEGVDHXPQZMLFTYWJNBRCIUS""" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> tuple[RotorPositionT, RotorSelectionT, dict[str, str]]: # Checks if there are 3 unique rotors if (unique_rotsel := len(set(_lowercase ) )) < 3: UpperCAmelCase : Tuple = F'''Please use 3 unique rotors (not {unique_rotsel})''' raise Exception(_lowercase ) # Checks if rotor positions are valid UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = rotpos if not 0 < rotorposa <= len(_lowercase ): UpperCAmelCase : Union[str, Any] = F'''First rotor position is not within range of 1..26 ({rotorposa}''' raise ValueError(_lowercase ) if not 0 < rotorposa <= len(_lowercase ): UpperCAmelCase : Any = F'''Second rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(_lowercase ) if not 0 < rotorposa <= len(_lowercase ): UpperCAmelCase : Dict = F'''Third rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(_lowercase ) # Validates string and returns dict UpperCAmelCase : Tuple = _plugboard(_lowercase ) return rotpos, rotsel, pbdict def __lowerCamelCase ( _lowercase ) -> dict[str, str]: # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(_lowercase , _lowercase ): UpperCAmelCase : Any = F'''Plugboard setting isn\'t type string ({type(_lowercase )})''' raise TypeError(_lowercase ) elif len(_lowercase ) % 2 != 0: UpperCAmelCase : str = F'''Odd number of symbols ({len(_lowercase )})''' raise Exception(_lowercase ) elif pbstring == "": return {} pbstring.replace(""" """ , """""" ) # Checks if all characters are unique UpperCAmelCase : Any = set() for i in pbstring: if i not in abc: UpperCAmelCase : str = F'''\'{i}\' not in list of symbols''' raise Exception(_lowercase ) elif i in tmppbl: UpperCAmelCase : Dict = F'''Duplicate symbol ({i})''' raise Exception(_lowercase ) else: tmppbl.add(_lowercase ) del tmppbl # Created the dictionary UpperCAmelCase : List[str] = {} for j in range(0 , len(_lowercase ) - 1 , 2 ): UpperCAmelCase : Any = pbstring[j + 1] UpperCAmelCase : List[Any] = pbstring[j] return pb def __lowerCamelCase ( _lowercase , _lowercase , _lowercase = (rotora, rotora, rotora) , _lowercase = "" , ) -> str: UpperCAmelCase : Optional[int] = text.upper() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = _validator( _lowercase , _lowercase , plugb.upper() ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = rotor_position UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 UpperCAmelCase : str = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: UpperCAmelCase : Tuple = plugboard[symbol] # rotor ra -------------------------- UpperCAmelCase : Tuple = abc.index(_lowercase ) + rotorposa UpperCAmelCase : Union[str, Any] = rotora[index % len(_lowercase )] # rotor rb -------------------------- UpperCAmelCase : Optional[int] = abc.index(_lowercase ) + rotorposa UpperCAmelCase : Dict = rotora[index % len(_lowercase )] # rotor rc -------------------------- UpperCAmelCase : str = abc.index(_lowercase ) + rotorposa UpperCAmelCase : Optional[int] = rotora[index % len(_lowercase )] # reflector -------------------------- # this is the reason you don't need another machine to decipher UpperCAmelCase : List[Any] = reflector[symbol] # 2nd rotors UpperCAmelCase : Optional[int] = abc[rotora.index(_lowercase ) - rotorposa] UpperCAmelCase : str = abc[rotora.index(_lowercase ) - rotorposa] UpperCAmelCase : Optional[int] = abc[rotora.index(_lowercase ) - rotorposa] # 2nd plugboard if symbol in plugboard: UpperCAmelCase : List[Any] = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(_lowercase ): UpperCAmelCase : str = 0 rotorposa += 1 if rotorposa >= len(_lowercase ): UpperCAmelCase : int = 0 rotorposa += 1 if rotorposa >= len(_lowercase ): UpperCAmelCase : Dict = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": a : Union[str, Any] = """This is my Python script that emulates the Enigma machine from WWII.""" a : List[str] = (1, 1, 1) a : int = """pictures""" a : Union[str, Any] = (rotora, rotora, rotora) a : List[Any] = enigma(message, rotor_pos, rotor_sel, pb) print("""Encrypted message:""", en) print("""Decrypted message:""", enigma(en, rotor_pos, rotor_sel, pb))
338
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a : Union[str, Any] = logging.get_logger(__name__) a : Union[str, Any] = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'detr' lowercase = ['past_key_values'] lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(A , A ): UpperCAmelCase : Any = backbone_config.get("""model_type""" ) UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : List[Any] = config_class.from_dict(A ) # set timm attributes to None UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = None, None, None UpperCAmelCase : Dict = use_timm_backbone UpperCAmelCase : Any = backbone_config UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : int = num_queries UpperCAmelCase : List[str] = d_model UpperCAmelCase : Tuple = encoder_ffn_dim UpperCAmelCase : Optional[Any] = encoder_layers UpperCAmelCase : Any = encoder_attention_heads UpperCAmelCase : Optional[Any] = decoder_ffn_dim UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : str = dropout UpperCAmelCase : Tuple = attention_dropout UpperCAmelCase : Dict = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : List[Any] = init_std UpperCAmelCase : str = init_xavier_std UpperCAmelCase : List[Any] = encoder_layerdrop UpperCAmelCase : int = decoder_layerdrop UpperCAmelCase : List[Any] = encoder_layers UpperCAmelCase : Union[str, Any] = auxiliary_loss UpperCAmelCase : str = position_embedding_type UpperCAmelCase : Union[str, Any] = backbone UpperCAmelCase : List[str] = use_pretrained_backbone UpperCAmelCase : Optional[int] = dilation # Hungarian matcher UpperCAmelCase : Union[str, Any] = class_cost UpperCAmelCase : Optional[Any] = bbox_cost UpperCAmelCase : List[Any] = giou_cost # Loss coefficients UpperCAmelCase : int = mask_loss_coefficient UpperCAmelCase : Optional[int] = dice_loss_coefficient UpperCAmelCase : Dict = bbox_loss_coefficient UpperCAmelCase : Any = giou_loss_coefficient UpperCAmelCase : Any = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def _lowercase( self ) -> int: return self.encoder_attention_heads @property def _lowercase( self ) -> int: return self.d_model @classmethod def _lowercase( cls , A , **A ) -> Dict: return cls(backbone_config=A , **A ) def _lowercase( self ) -> Dict[str, any]: UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase : Any = self.backbone_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowercase( self ) -> float: return 1e-5 @property def _lowercase( self ) -> int: return 12
338
1
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> int: return 1 if input_a == input_a else 0 def __lowerCamelCase ( ) -> None: assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[str] = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 a : Optional[Any] = sys.version_info >= (3, 1_0) def __lowerCamelCase ( _lowercase=None , _lowercase=None ) -> Union[str, Any]: return field(default_factory=lambda: default , metadata=_lowercase ) @dataclass class UpperCamelCase_ : lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 @dataclass class UpperCamelCase_ : lowercase = 42 lowercase = field(default='toto' , metadata={'help': 'help message'} ) @dataclass class UpperCamelCase_ : lowercase = False lowercase = True lowercase = None class UpperCamelCase_ ( __magic_name__ ): lowercase = 'titi' lowercase = 'toto' class UpperCamelCase_ ( __magic_name__ ): lowercase = 'titi' lowercase = 'toto' lowercase = 42 @dataclass class UpperCamelCase_ : lowercase = "toto" def _lowercase( self ) -> Dict: UpperCAmelCase : int = BasicEnum(self.foo ) @dataclass class UpperCamelCase_ : lowercase = "toto" def _lowercase( self ) -> Tuple: UpperCAmelCase : Any = MixedTypeEnum(self.foo ) @dataclass class UpperCamelCase_ : lowercase = None lowercase = field(default=__magic_name__ , metadata={'help': 'help message'} ) lowercase = None lowercase = list_field(default=[] ) lowercase = list_field(default=[] ) @dataclass class UpperCamelCase_ : lowercase = list_field(default=[] ) lowercase = list_field(default=[1, 2, 3] ) lowercase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) lowercase = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class UpperCamelCase_ : lowercase = field() lowercase = field() lowercase = field() def _lowercase( self ) -> Any: UpperCAmelCase : Dict = BasicEnum(self.required_enum ) @dataclass class UpperCamelCase_ : lowercase = 42 lowercase = field() lowercase = None lowercase = field(default='toto' , metadata={'help': 'help message'} ) lowercase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class UpperCamelCase_ : lowercase = False lowercase = True lowercase = None @dataclass class UpperCamelCase_ : lowercase = None lowercase = field(default=__magic_name__ , metadata={'help': 'help message'} ) lowercase = None lowercase = list_field(default=[] ) lowercase = list_field(default=[] ) class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A ) -> List[str]: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): UpperCAmelCase : Optional[Any] = {k: v for k, v in vars(A ).items() if k != """container"""} UpperCAmelCase : Any = {k: v for k, v in vars(A ).items() if k != """container"""} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" , A ) and yy.get("""choices""" , A ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](A ) , yy["""type"""](A ) ) del xx["type"], yy["type"] self.assertEqual(A , A ) def _lowercase( self ) -> Dict: UpperCAmelCase : Any = HfArgumentParser(A ) UpperCAmelCase : str = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=A , required=A ) expected.add_argument("""--bar""" , type=A , required=A ) expected.add_argument("""--baz""" , type=A , required=A ) expected.add_argument("""--flag""" , type=A , default=A , const=A , nargs="""?""" ) self.argparsersEqual(A , A ) UpperCAmelCase : Optional[Any] = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""] ((UpperCAmelCase) , ) : Dict = parser.parse_args_into_dataclasses(A , look_for_args_file=A ) self.assertFalse(example.flag ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = HfArgumentParser(A ) UpperCAmelCase : str = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=42 , type=A ) expected.add_argument("""--baz""" , default="""toto""" , type=A , help="""help message""" ) self.argparsersEqual(A , A ) def _lowercase( self ) -> Any: UpperCAmelCase : Tuple = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=A , default=A , const=A , nargs="""?""" ) expected.add_argument("""--baz""" , type=A , default=A , const=A , nargs="""?""" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" , action="""store_false""" , default=A , dest="""baz""" ) expected.add_argument("""--opt""" , type=A , default=A ) UpperCAmelCase : Union[str, Any] = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(A ) for dataclass_type in dataclass_types: UpperCAmelCase : List[Any] = HfArgumentParser(A ) self.argparsersEqual(A , A ) UpperCAmelCase : Optional[Any] = parser.parse_args([] ) self.assertEqual(A , Namespace(foo=A , baz=A , opt=A ) ) UpperCAmelCase : Tuple = parser.parse_args(["""--foo""", """--no_baz"""] ) self.assertEqual(A , Namespace(foo=A , baz=A , opt=A ) ) UpperCAmelCase : List[Any] = parser.parse_args(["""--foo""", """--baz"""] ) self.assertEqual(A , Namespace(foo=A , baz=A , opt=A ) ) UpperCAmelCase : Dict = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] ) self.assertEqual(A , Namespace(foo=A , baz=A , opt=A ) ) UpperCAmelCase : Optional[Any] = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] ) self.assertEqual(A , Namespace(foo=A , baz=A , opt=A ) ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = HfArgumentParser(A ) UpperCAmelCase : Any = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(A , A ) UpperCAmelCase : List[Any] = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) UpperCAmelCase : int = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) UpperCAmelCase : Optional[int] = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) UpperCAmelCase : Tuple = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) UpperCAmelCase : Any = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) UpperCAmelCase : str = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def _lowercase( self ) -> Optional[int]: @dataclass class UpperCamelCase_ : lowercase = "toto" UpperCAmelCase : int = HfArgumentParser(A ) UpperCAmelCase : Dict = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(A , A ) UpperCAmelCase : Tuple = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) UpperCAmelCase : Optional[int] = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) UpperCAmelCase : int = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : int = HfArgumentParser(A ) UpperCAmelCase : Any = argparse.ArgumentParser() expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=A ) expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=A ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=A ) expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=A ) self.argparsersEqual(A , A ) UpperCAmelCase : int = parser.parse_args([] ) self.assertEqual( A , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , ) UpperCAmelCase : Optional[int] = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() ) self.assertEqual(A , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Any = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=A , type=A ) expected.add_argument("""--bar""" , default=A , type=A , help="""help message""" ) expected.add_argument("""--baz""" , default=A , type=A ) expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=A ) expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=A ) UpperCAmelCase : Optional[Any] = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(A ) for dataclass_type in dataclass_types: UpperCAmelCase : Optional[Any] = HfArgumentParser(A ) self.argparsersEqual(A , A ) UpperCAmelCase : List[Any] = parser.parse_args([] ) self.assertEqual(A , Namespace(foo=A , bar=A , baz=A , ces=[] , des=[] ) ) UpperCAmelCase : Tuple = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() ) self.assertEqual(A , Namespace(foo=12 , bar=3.1_4 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = HfArgumentParser(A ) UpperCAmelCase : List[str] = argparse.ArgumentParser() expected.add_argument("""--required_list""" , nargs="""+""" , type=A , required=A ) expected.add_argument("""--required_str""" , type=A , required=A ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=A , ) self.argparsersEqual(A , A ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Optional[int] = HfArgumentParser(A ) UpperCAmelCase : List[Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=A , required=A ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=A , ) expected.add_argument("""--opt""" , type=A , default=A ) expected.add_argument("""--baz""" , default="""toto""" , type=A , help="""help message""" ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=A ) self.argparsersEqual(A , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Optional[int] = HfArgumentParser(A ) UpperCAmelCase : Dict = { """foo""": 12, """bar""": 3.1_4, """baz""": """42""", """flag""": True, } UpperCAmelCase : List[Any] = parser.parse_dict(A )[0] UpperCAmelCase : Optional[int] = BasicExample(**A ) self.assertEqual(A , A ) def _lowercase( self ) -> int: UpperCAmelCase : str = HfArgumentParser(A ) UpperCAmelCase : int = { """foo""": 12, """bar""": 3.1_4, """baz""": """42""", """flag""": True, """extra""": 42, } self.assertRaises(A , parser.parse_dict , A , allow_extra_keys=A ) def _lowercase( self ) -> Any: UpperCAmelCase : Union[str, Any] = HfArgumentParser(A ) UpperCAmelCase : Any = { """foo""": 12, """bar""": 3.1_4, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase : List[Any] = os.path.join(A , """temp_json""" ) os.mkdir(A ) with open(temp_local_path + """.json""" , """w+""" ) as f: json.dump(A , A ) UpperCAmelCase : Union[str, Any] = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0] UpperCAmelCase : List[str] = BasicExample(**A ) self.assertEqual(A , A ) def _lowercase( self ) -> int: UpperCAmelCase : Tuple = HfArgumentParser(A ) UpperCAmelCase : int = { """foo""": 12, """bar""": 3.1_4, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase : Optional[Any] = os.path.join(A , """temp_yaml""" ) os.mkdir(A ) with open(temp_local_path + """.yaml""" , """w+""" ) as f: yaml.dump(A , A ) UpperCAmelCase : List[Any] = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0] UpperCAmelCase : Optional[Any] = BasicExample(**A ) self.assertEqual(A , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = HfArgumentParser(A ) self.assertIsNotNone(A )
338
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" ) if "model" in sd.keys(): UpperCAmelCase : Any = torch.load(_lowercase , map_location="""cpu""" )["""model"""] # pop unnecessary weights UpperCAmelCase : Union[str, Any] = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(_lowercase ) UpperCAmelCase : Tuple = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase : List[Any] = sd.pop(_lowercase ) UpperCAmelCase : Tuple = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase : List[str] = sd[key] # We split QKV in separate Q,K,V UpperCAmelCase : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" ) UpperCAmelCase : Tuple = key.replace(""".qkv_proj.""" , """.k_proj.""" ) UpperCAmelCase : int = key.replace(""".qkv_proj.""" , """.v_proj.""" ) UpperCAmelCase : Dict = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = torch.split(_lowercase , depth // 3 , dim=0 ) UpperCAmelCase : Tuple = q UpperCAmelCase : Tuple = k UpperCAmelCase : Any = v del sd[key] return sd @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Optional[Any]: UpperCAmelCase : Tuple = load_checkpoint(_lowercase ) if config is not None: UpperCAmelCase : Dict = OPTConfig.from_pretrained(_lowercase ) else: UpperCAmelCase : int = OPTConfig() UpperCAmelCase : List[Any] = OPTModel(_lowercase ).half().eval() model.load_state_dict(_lowercase ) # Check results Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") a : Union[str, Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
338
1
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class UpperCamelCase_ ( nn.Module ): def __init__( self , A = 16 , A = 88 , A = None , A = 1 , A = 0.0 , A = 32 , A = None , A = False , A = None , A = None , A = "geglu" , A = None , ) -> str: super().__init__() UpperCAmelCase : int = nn.ModuleList( [ TransformeraDModel( num_attention_heads=A , attention_head_dim=A , in_channels=A , num_layers=A , dropout=A , norm_num_groups=A , cross_attention_dim=A , attention_bias=A , sample_size=A , num_vector_embeds=A , activation_fn=A , num_embeds_ada_norm=A , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference UpperCAmelCase : Union[str, Any] = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` UpperCAmelCase : Any = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` UpperCAmelCase : int = [1, 0] def _lowercase( self , A , A , A=None , A=None , A=None , A = True , ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = hidden_states UpperCAmelCase : Optional[int] = [] UpperCAmelCase : List[str] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens UpperCAmelCase : Tuple = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] UpperCAmelCase : str = self.transformer_index_for_condition[i] UpperCAmelCase : Optional[Any] = self.transformers[transformer_index]( A , encoder_hidden_states=A , timestep=A , cross_attention_kwargs=A , return_dict=A , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] UpperCAmelCase : Union[str, Any] = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) UpperCAmelCase : Dict = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=A )
338
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : str = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'levit' def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int: super().__init__(**A ) UpperCAmelCase : Any = image_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : Tuple = kernel_size UpperCAmelCase : Optional[int] = stride UpperCAmelCase : Dict = padding UpperCAmelCase : List[Any] = hidden_sizes UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = depths UpperCAmelCase : Any = key_dim UpperCAmelCase : str = drop_path_rate UpperCAmelCase : List[Any] = patch_size UpperCAmelCase : str = attention_ratio UpperCAmelCase : Optional[Any] = mlp_ratio UpperCAmelCase : Dict = initializer_range UpperCAmelCase : int = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase( self ) -> float: return 1e-4
338
1
'''simple docstring''' from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch a : Dict = logging.get_logger(__name__) @add_end_docstrings( __magic_name__ , R'\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ' , ) class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A ) -> np.ndarray: if self.framework == "tf": UpperCAmelCase : Tuple = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": UpperCAmelCase : List[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=A ) else: raise ValueError("""Unsupported framework""" ) return masked_index def _lowercase( self , A ) -> np.ndarray: UpperCAmelCase : List[str] = self.get_masked_index(A ) UpperCAmelCase : Dict = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , f'''No mask_token ({self.tokenizer.mask_token}) found on the input''' , ) def _lowercase( self , A ) -> Dict: if isinstance(A , A ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(A ) def _lowercase( self , A , A=None , **A ) -> Dict[str, GenericTensor]: if return_tensors is None: UpperCAmelCase : List[Any] = self.framework UpperCAmelCase : List[Any] = self.tokenizer(A , return_tensors=A ) self.ensure_exactly_one_mask_token(A ) return model_inputs def _lowercase( self , A ) -> int: UpperCAmelCase : str = self.model(**A ) UpperCAmelCase : Optional[int] = model_inputs["""input_ids"""] return model_outputs def _lowercase( self , A , A=5 , A=None ) -> List[str]: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: UpperCAmelCase : List[Any] = target_ids.shape[0] UpperCAmelCase : Optional[int] = model_outputs["""input_ids"""][0] UpperCAmelCase : Any = model_outputs["""logits"""] if self.framework == "tf": UpperCAmelCase : Optional[Any] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] UpperCAmelCase : str = outputs.numpy() UpperCAmelCase : Tuple = outputs[0, masked_index, :] UpperCAmelCase : Dict = stable_softmax(A , axis=-1 ) if target_ids is not None: UpperCAmelCase : List[Any] = tf.gather_nd(tf.squeeze(A , 0 ) , target_ids.reshape(-1 , 1 ) ) UpperCAmelCase : List[str] = tf.expand_dims(A , 0 ) UpperCAmelCase : int = tf.math.top_k(A , k=A ) UpperCAmelCase , UpperCAmelCase : Optional[int] = topk.values.numpy(), topk.indices.numpy() else: UpperCAmelCase : Union[str, Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=A ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample UpperCAmelCase : Tuple = outputs[0, masked_index, :] UpperCAmelCase : List[str] = logits.softmax(dim=-1 ) if target_ids is not None: UpperCAmelCase : Any = probs[..., target_ids] UpperCAmelCase , UpperCAmelCase : Optional[int] = probs.topk(A ) UpperCAmelCase : int = [] UpperCAmelCase : List[str] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): UpperCAmelCase : str = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place UpperCAmelCase : List[Any] = input_ids.numpy().copy() if target_ids is not None: UpperCAmelCase : Optional[int] = target_ids[p].tolist() UpperCAmelCase : str = p # Filter padding out: UpperCAmelCase : Union[str, Any] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back UpperCAmelCase : Optional[int] = self.tokenizer.decode(A , skip_special_tokens=A ) UpperCAmelCase : Optional[Any] = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence} row.append(A ) result.append(A ) if single_mask: return result[0] return result def _lowercase( self , A , A=None ) -> Any: if isinstance(A , A ): UpperCAmelCase : int = [targets] try: UpperCAmelCase : Optional[int] = self.tokenizer.get_vocab() except Exception: UpperCAmelCase : int = {} UpperCAmelCase : Any = [] for target in targets: UpperCAmelCase : Optional[int] = vocab.get(A , A ) if id_ is None: UpperCAmelCase : Optional[Any] = self.tokenizer( A , add_special_tokens=A , return_attention_mask=A , return_token_type_ids=A , max_length=1 , truncation=A , )["""input_ids"""] if len(A ) == 0: logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' """We cannot replace it with anything meaningful, ignoring it""" ) continue UpperCAmelCase : List[Any] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' f'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' ) target_ids.append(id_ ) UpperCAmelCase : List[str] = list(set(A ) ) if len(A ) == 0: raise ValueError("""At least one target must be provided when passed.""" ) UpperCAmelCase : str = np.array(A ) return target_ids def _lowercase( self , A=None , A=None ) -> List[Any]: UpperCAmelCase : Dict = {} if targets is not None: UpperCAmelCase : List[Any] = self.get_target_ids(A , A ) UpperCAmelCase : Union[str, Any] = target_ids if top_k is not None: UpperCAmelCase : str = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , """The tokenizer does not define a `mask_token`.""" ) return {}, {}, postprocess_params def __call__( self , A , *A , **A ) -> Dict: UpperCAmelCase : List[Any] = super().__call__(A , **A ) if isinstance(A , A ) and len(A ) == 1: return outputs[0] return outputs
338
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) a : List[str] = """Hello, World!""" a : List[Any] = """en_XX""" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Dict = Path("""data_bin""" ) UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(_lowercase ) UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder UpperCAmelCase : Tuple = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , _lowercase ) UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight UpperCAmelCase : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase : List[str] = model.roberta.encoder.layer[i] UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i] # self attention UpperCAmelCase : Optional[Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias # intermediate UpperCAmelCase : Tuple = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) UpperCAmelCase : List[str] = xmod_layer.fca.weight UpperCAmelCase : str = xmod_layer.fca.bias # output UpperCAmelCase : Any = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) UpperCAmelCase : Dict = xmod_layer.fca.weight UpperCAmelCase : Dict = xmod_layer.fca.bias UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code] UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code] UpperCAmelCase : Any = from_adapter.fca.weight UpperCAmelCase : int = from_adapter.fca.bias UpperCAmelCase : Dict = from_adapter.fca.weight UpperCAmelCase : Dict = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias UpperCAmelCase : str = xmod.model.encoder.lm_head.weight UpperCAmelCase : str = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) UpperCAmelCase : Optional[int] = model(_lowercase )[0] if classification_head: UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) ) else: UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) a : List[str] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
338
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a : Optional[Any] = { """configuration_efficientformer""": [ """EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientFormerConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = ["""EfficientFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = [ """EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientFormerForImageClassification""", """EfficientFormerForImageClassificationWithTeacher""", """EfficientFormerModel""", """EfficientFormerPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = [ """TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFEfficientFormerForImageClassification""", """TFEfficientFormerForImageClassificationWithTeacher""", """TFEfficientFormerModel""", """TFEfficientFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __lowerCamelCase ( _lowercase ) -> List[Any]: for i in range(0 , _lowercase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __lowerCamelCase ( _lowercase ) -> Dict: for i in range(_lowercase , 0 , -1 ): for _ in range(_lowercase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __lowerCamelCase ( _lowercase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowercase ) # upper half reverse_floyd(_lowercase ) # lower half if __name__ == "__main__": print(R"""| /\ | |- | |- |--| |\ /| |-""") print(R"""|/ \| |- |_ |_ |__| | \/ | |_""") a : List[Any] = 1 while K: a : int = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) a : Tuple = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
338
1
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=False , A=True , A=False , A=False , A=19 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> int: UpperCAmelCase : List[str] = parent UpperCAmelCase : Any = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : int = is_training UpperCAmelCase : Union[str, Any] = use_input_mask UpperCAmelCase : List[str] = use_token_type_ids UpperCAmelCase : str = use_labels UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Optional[Any] = hidden_size UpperCAmelCase : Tuple = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[Any] = intermediate_size UpperCAmelCase : int = hidden_act UpperCAmelCase : Optional[Any] = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : List[str] = max_position_embeddings UpperCAmelCase : int = type_vocab_size UpperCAmelCase : Optional[Any] = type_sequence_label_size UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : List[str] = num_labels UpperCAmelCase : Tuple = num_choices UpperCAmelCase : int = scope def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[int] = None if self.use_input_mask: UpperCAmelCase : int = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[Any] = None UpperCAmelCase : Dict = None UpperCAmelCase : str = None if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : Dict = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> List[str]: UpperCAmelCase : Tuple = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=A , esmfold_config={"""trunk""": {"""num_blocks""": 2}, """fp16_esm""": False} , ) return config def _lowercase( self , A , A , A , A , A , A ) -> str: UpperCAmelCase : Optional[Any] = EsmForProteinFolding(config=A ).float() model.to(A ) model.eval() UpperCAmelCase : Any = model(A , attention_mask=A ) UpperCAmelCase : List[Any] = model(A ) UpperCAmelCase : Tuple = model(A ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def _lowercase( self ) -> Dict: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = config_and_inputs UpperCAmelCase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = False lowercase = (EsmForProteinFolding,) if is_torch_available() else () lowercase = () lowercase = {} if is_torch_available() else {} lowercase = False def _lowercase( self ) -> List[str]: UpperCAmelCase : int = EsmFoldModelTester(self ) UpperCAmelCase : Tuple = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self ) -> str: self.config_tester.run_common_tests() def _lowercase( self ) -> Tuple: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) @unittest.skip("""Does not support attention outputs""" ) def _lowercase( self ) -> Dict: pass @unittest.skip def _lowercase( self ) -> Optional[Any]: pass @unittest.skip("""Esm does not support embedding resizing""" ) def _lowercase( self ) -> Union[str, Any]: pass @unittest.skip("""Esm does not support embedding resizing""" ) def _lowercase( self ) -> Dict: pass @unittest.skip("""ESMFold does not support passing input embeds!""" ) def _lowercase( self ) -> str: pass @unittest.skip("""ESMFold does not support head pruning.""" ) def _lowercase( self ) -> str: pass @unittest.skip("""ESMFold does not support head pruning.""" ) def _lowercase( self ) -> Dict: pass @unittest.skip("""ESMFold does not support head pruning.""" ) def _lowercase( self ) -> Tuple: pass @unittest.skip("""ESMFold does not support head pruning.""" ) def _lowercase( self ) -> Optional[int]: pass @unittest.skip("""ESMFold does not support head pruning.""" ) def _lowercase( self ) -> Tuple: pass @unittest.skip("""ESMFold does not output hidden states in the normal way.""" ) def _lowercase( self ) -> Dict: pass @unittest.skip("""ESMfold does not output hidden states in the normal way.""" ) def _lowercase( self ) -> List[str]: pass @unittest.skip("""ESMFold only has one output format.""" ) def _lowercase( self ) -> str: pass @unittest.skip("""This test doesn't work for ESMFold and doesn't test core functionality""" ) def _lowercase( self ) -> List[str]: pass @unittest.skip("""ESMFold does not support input chunking.""" ) def _lowercase( self ) -> Optional[Any]: pass @unittest.skip("""ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments.""" ) def _lowercase( self ) -> Tuple: pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def _lowercase( self ) -> Optional[Any]: pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def _lowercase( self ) -> Dict: pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def _lowercase( self ) -> Union[str, Any]: pass @unittest.skip("""ESMFold doesn't support data parallel.""" ) def _lowercase( self ) -> Union[str, Any]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _lowercase( self ) -> Any: pass @require_torch class UpperCamelCase_ ( __magic_name__ ): @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : Dict = EsmForProteinFolding.from_pretrained("""facebook/esmfold_v1""" ).float() model.eval() UpperCAmelCase : Any = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) UpperCAmelCase : Union[str, Any] = model(A )["""positions"""] UpperCAmelCase : Any = torch.tensor([2.5_8_2_8, 0.7_9_9_3, -1_0.9_3_3_4] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , A , atol=1e-4 ) )
338
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever a : List[str] = logging.getLogger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A=None ) -> Union[str, Any]: super().__init__( A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , ) UpperCAmelCase : Optional[Any] = None def _lowercase( self , A ) -> List[Any]: logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually UpperCAmelCase : Tuple = self._infer_socket_ifname() # avoid clash with the NCCL port UpperCAmelCase : str = str(distributed_port + 1 ) UpperCAmelCase : Any = dist.new_group(ranks=A , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _lowercase( self ) -> Dict: return dist.get_rank(group=self.process_group ) == 0 def _lowercase( self , A , A , A=torch.floataa ) -> str: UpperCAmelCase : List[Any] = torch.empty(A , dtype=A ) dist.scatter(A , src=0 , scatter_list=A , group=self.process_group ) return target_tensor def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names UpperCAmelCase : Optional[int] = next((addr for addr in addrs if addr.startswith("""e""" )) , A ) return ifname def _lowercase( self , A , A ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): UpperCAmelCase , UpperCAmelCase : str = self._main_retrieve(A , A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A ) # distributed training UpperCAmelCase : int = dist.get_world_size(group=self.process_group ) # gather logic UpperCAmelCase : int = None if self._is_main(): UpperCAmelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )] dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group ) # scatter logic UpperCAmelCase : List[Any] = question_hidden_states.shape[0] UpperCAmelCase : Tuple = [] UpperCAmelCase : Any = [] if self._is_main(): assert len(A ) == world_size UpperCAmelCase , UpperCAmelCase : Optional[int] = self._main_retrieve(torch.cat(A ).numpy() , A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = torch.tensor(A ), torch.tensor(A ) UpperCAmelCase : List[str] = self._chunk_tensor(A , A ) UpperCAmelCase : Union[str, Any] = self._chunk_tensor(A , A ) UpperCAmelCase : Tuple = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa ) UpperCAmelCase : Optional[Any] = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
338
1
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration a : Optional[int] = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] a : Tuple = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] a : Tuple = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) a : str = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) a : List[Any] = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def __lowerCamelCase ( _lowercase , _lowercase ) -> int: for tf_name, hf_name in patterns: UpperCAmelCase : Union[str, Any] = k.replace(_lowercase , _lowercase ) return k def __lowerCamelCase ( _lowercase , _lowercase ) -> BigBirdPegasusForConditionalGeneration: UpperCAmelCase : Any = BigBirdPegasusConfig(**_lowercase ) UpperCAmelCase : Any = BigBirdPegasusForConditionalGeneration(_lowercase ) UpperCAmelCase : Optional[Any] = torch_model.state_dict() UpperCAmelCase : Optional[int] = {} # separating decoder weights UpperCAmelCase : Union[str, Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("""pegasus/decoder""" )} UpperCAmelCase : List[Any] = {k: tf_weights[k] for k in tf_weights if not k.startswith("""pegasus/decoder""" )} for k, v in tqdm(decoder_weights.items() , """tf -> hf conversion""" ): UpperCAmelCase : str = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCAmelCase : int = DECODER_PATTERNS UpperCAmelCase : Union[str, Any] = rename_state_dict_key(_lowercase , _lowercase ) if new_k not in state_dict: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): UpperCAmelCase : int = v.T UpperCAmelCase : List[str] = torch.from_numpy(_lowercase ) assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items() , """tf -> hf conversion""" ): UpperCAmelCase : str = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCAmelCase : int = REMAINING_PATTERNS UpperCAmelCase : Dict = rename_state_dict_key(_lowercase , _lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): UpperCAmelCase : List[Any] = v.T UpperCAmelCase : Dict = torch.from_numpy(_lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' UpperCAmelCase : Any = mapping["""model.embed_positions.weight"""] UpperCAmelCase : List[str] = mapping.pop("""model.embed_positions.weight""" ) UpperCAmelCase , UpperCAmelCase : Optional[int] = torch_model.load_state_dict(_lowercase , strict=_lowercase ) UpperCAmelCase : Tuple = [ k for k in missing if k not in [ """final_logits_bias""", """model.encoder.embed_tokens.weight""", """model.decoder.embed_tokens.weight""", """lm_head.weight""", ] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def __lowerCamelCase ( _lowercase ) -> Dict: UpperCAmelCase : Dict = tf.train.list_variables(_lowercase ) UpperCAmelCase : List[str] = {} UpperCAmelCase : List[Any] = ["""global_step"""] for name, shape in tqdm(_lowercase , desc="""converting tf checkpoint to dict""" ): UpperCAmelCase : Dict = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCAmelCase : Dict = tf.train.load_variable(_lowercase , _lowercase ) UpperCAmelCase : str = array return tf_weights def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Dict = get_tf_weights_as_numpy(_lowercase ) UpperCAmelCase : int = convert_bigbird_pegasus(_lowercase , _lowercase ) torch_model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") a : List[str] = parser.parse_args() a : Any = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
338
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : List[str] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } a : List[Any] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } a : List[Any] = { """facebook/blenderbot_small-90M""": 5_1_2, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = BlenderbotSmallTokenizer def __init__( self , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , A=True , **A , ) -> Union[str, Any]: super().__init__( ByteLevelBPETokenizer( vocab=A , merges=A , add_prefix_space=A , trim_offsets=A , ) , bos_token=A , eos_token=A , unk_token=A , **A , ) UpperCAmelCase : Optional[Any] = add_prefix_space def _lowercase( self , A , A=None ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
338
1
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm a : List[str] = re.compile("""[^A-Za-z_0-9]""") # parameters used in DuplicationIndex a : Optional[Any] = 1_0 a : List[str] = 2_5_6 def __lowerCamelCase ( _lowercase ) -> Optional[MinHash]: if len(_lowercase ) < MIN_NUM_TOKENS: return None UpperCAmelCase : Optional[int] = MinHash(num_perm=_lowercase ) for token in set(_lowercase ): min_hash.update(token.encode() ) return min_hash def __lowerCamelCase ( _lowercase ) -> Set[str]: return {t for t in NON_ALPHA.split(_lowercase ) if len(t.strip() ) > 0} class UpperCamelCase_ : def __init__( self , *, A = 0.8_5 , ) -> Tuple: UpperCAmelCase : Optional[Any] = duplication_jaccard_threshold UpperCAmelCase : Union[str, Any] = NUM_PERM UpperCAmelCase : Optional[Any] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) UpperCAmelCase : Optional[int] = defaultdict(A ) def _lowercase( self , A , A ) -> None: UpperCAmelCase : str = self._index.query(A ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(A , A ) if len(A ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(A ) break else: self._duplicate_clusters[close_duplicates[0]].add(A ) def _lowercase( self ) -> List[List[Dict]]: UpperCAmelCase : Optional[Any] = [] for base, duplicates in self._duplicate_clusters.items(): UpperCAmelCase : int = [base] + list(A ) # reformat the cluster to be a list of dict UpperCAmelCase : str = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(A ) return duplicate_clusters def _lowercase( self , A ) -> None: UpperCAmelCase : Any = self.get_duplicate_clusters() with open(A , """w""" ) as f: json.dump(A , A ) def __lowerCamelCase ( _lowercase ) -> Optional[Any]: UpperCAmelCase , UpperCAmelCase : Optional[int] = element UpperCAmelCase : List[str] = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def __lowerCamelCase ( _lowercase ) -> str: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_lowercase , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[int]: UpperCAmelCase : Optional[int] = DuplicationIndex(duplication_jaccard_threshold=_lowercase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_lowercase ) ) , max_queue_size=1_0_0 ) ): di.add(_lowercase , _lowercase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def __lowerCamelCase ( _lowercase , _lowercase ) -> float: UpperCAmelCase : int = get_tokens(_lowercase ) UpperCAmelCase : Optional[int] = get_tokens(_lowercase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) a : str = None def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Optional[Any] = [] for elementa in cluster: UpperCAmelCase : Union[str, Any] = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: UpperCAmelCase : List[Any] = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(_lowercase , _lowercase ) >= jaccard_threshold: elementa["copies"] += 1 break else: UpperCAmelCase : str = 1 extremes.append(_lowercase ) return extremes def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Tuple: global _shared_dataset UpperCAmelCase : Any = dataset UpperCAmelCase : Optional[int] = [] UpperCAmelCase : List[str] = partial(_find_cluster_extremes_shared , jaccard_threshold=_lowercase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _lowercase , _lowercase , ) , total=len(_lowercase ) , ): extremes_list.append(_lowercase ) return extremes_list def __lowerCamelCase ( _lowercase , _lowercase = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: UpperCAmelCase : Dict = make_duplicate_clusters(_lowercase , _lowercase ) UpperCAmelCase : str = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} UpperCAmelCase : Optional[int] = {} UpperCAmelCase : Optional[Any] = find_extremes(_lowercase , _lowercase , _lowercase ) for extremes in extremes_clusters: for element in extremes: UpperCAmelCase : Dict = element UpperCAmelCase : str = duplicate_indices - set(extreme_dict.keys() ) UpperCAmelCase : str = dataset.filter(lambda _lowercase , _lowercase : idx not in remove_indices , with_indices=_lowercase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: UpperCAmelCase : Optional[Any] = element["""base_index"""] in extreme_dict if element["is_extreme"]: UpperCAmelCase : List[Any] = extreme_dict[element["""base_index"""]]["""copies"""] print(F'''Original dataset size: {len(_lowercase )}''' ) print(F'''Number of duplicate clusters: {len(_lowercase )}''' ) print(F'''Files in duplicate cluster: {len(_lowercase )}''' ) print(F'''Unique files in duplicate cluster: {len(_lowercase )}''' ) print(F'''Filtered dataset size: {len(_lowercase )}''' ) return ds_filter, duplicate_clusters
338
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A = None , A = None , A = False , **A , ) -> Tuple: super().__init__(features=A , cache_dir=A , keep_in_memory=A , **A ) UpperCAmelCase : Any = Sql( cache_dir=A , features=A , sql=A , con=A , **A , ) def _lowercase( self ) -> Dict: UpperCAmelCase : Any = None UpperCAmelCase : Any = None UpperCAmelCase : int = None UpperCAmelCase : int = None self.builder.download_and_prepare( download_config=A , download_mode=A , verification_mode=A , base_path=A , ) # Build dataset for splits UpperCAmelCase : str = self.builder.as_dataset( split="""train""" , verification_mode=A , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase_ : def __init__( self , A , A , A , A = None , A = None , **A , ) -> str: if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) UpperCAmelCase : Dict = dataset UpperCAmelCase : List[Any] = name UpperCAmelCase : Any = con UpperCAmelCase : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase : Optional[Any] = num_proc UpperCAmelCase : str = to_sql_kwargs def _lowercase( self ) -> int: UpperCAmelCase : Any = self.to_sql_kwargs.pop("""sql""" , A ) UpperCAmelCase : str = self.to_sql_kwargs.pop("""con""" , A ) UpperCAmelCase : Union[str, Any] = self.to_sql_kwargs.pop("""index""" , A ) UpperCAmelCase : str = self._write(index=A , **self.to_sql_kwargs ) return written def _lowercase( self , A ) -> Any: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = args UpperCAmelCase : Union[str, Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs UpperCAmelCase : int = query_table( table=self.dataset.data , key=slice(A , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCAmelCase : Any = batch.to_pandas() UpperCAmelCase : List[Any] = df.to_sql(self.name , self.con , index=A , **A ) return num_rows or len(A ) def _lowercase( self , A , **A ) -> int: UpperCAmelCase : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: UpperCAmelCase , UpperCAmelCase : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , A , A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
338
1
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets a : Union[str, Any] = """\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } """ a : str = """\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy. """ a : Union[str, Any] = R""" Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") Examples: >>> metric = datasets.load_metric(\"competition_math\") >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"]) >>> print(results) {'accuracy': 1.0} """ @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/hendrycks/math""" , codebase_urls=["""https://github.com/hendrycks/math"""] , ) def _lowercase( self , A , A ) -> List[Any]: UpperCAmelCase : Optional[Any] = 0.0 for i, j in zip(A , A ): n_correct += 1.0 if math_equivalence.is_equiv(A , A ) else 0.0 UpperCAmelCase : List[str] = n_correct / len(A ) return { "accuracy": accuracy, }
338
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCamelCase_ : lowercase = MBartConfig lowercase = {} lowercase = 'gelu' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : str = is_training UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Optional[Any] = eos_token_id UpperCAmelCase : List[str] = pad_token_id UpperCAmelCase : List[Any] = bos_token_id def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A ) return config, inputs_dict def _lowercase( self , A , A ) -> List[str]: UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder() UpperCAmelCase : int = inputs_dict["""input_ids"""] UpperCAmelCase : str = input_ids[:1, :] UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase : List[str] = inputs_dict["""head_mask"""] UpperCAmelCase : List[Any] = 1 # first forward pass UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = outputs.to_tuple() UpperCAmelCase : int = past_key_values[1] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]: if attention_mask is None: UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False def _lowercase( self , A , A , A , A , A ) -> int: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : int = TFMBartModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A ) def _lowercase( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase( self ) -> Dict: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_sentencepiece @require_tokenizers @require_tf class UpperCamelCase_ ( unittest.TestCase ): lowercase = [ ' UN Chief Says There Is No Military Solution in Syria', ] lowercase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] lowercase = 'facebook/mbart-large-en-ro' @cached_property def _lowercase( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowercase( self , **A ) -> Any: UpperCAmelCase : Optional[int] = self.translate_src_text(**A ) self.assertListEqual(self.expected_text , A ) def _lowercase( self , **A ) -> Optional[Any]: UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" ) UpperCAmelCase : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A ) return generated_words @slow def _lowercase( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
338
1
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets a : int = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ a : Dict = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ a : Union[str, Any] = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase( self ) -> List[Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase( self , A , A , A=None , A="uniform_average" , A=True ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = mean_squared_error( A , A , sample_weight=A , multioutput=A , squared=A ) return {"mse": mse}
338
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: UpperCAmelCase : Tuple = len(_lowercase ) + 1 UpperCAmelCase : List[Any] = len(_lowercase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase : str = [[0 for i in range(_lowercase )] for j in range(_lowercase )] # since string of zero length match pattern of zero length UpperCAmelCase : int = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowercase ): UpperCAmelCase : str = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowercase ): UpperCAmelCase : Optional[Any] = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowercase ): for j in range(1 , _lowercase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase : Union[str, Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase : List[Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase : Optional[int] = dp[i - 1][j] else: UpperCAmelCase : Any = 0 else: UpperCAmelCase : str = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") a : List[str] = """aab""" a : Optional[int] = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
338
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a : str = logging.get_logger(__name__) a : Any = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} a : Union[str, Any] = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } a : int = { """gpt2""": 1_0_2_4, """gpt2-medium""": 1_0_2_4, """gpt2-large""": 1_0_2_4, """gpt2-xl""": 1_0_2_4, """distilgpt2""": 1_0_2_4, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = GPTaTokenizer def __init__( self , A=None , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , **A , ) -> Union[str, Any]: super().__init__( A , A , tokenizer_file=A , unk_token=A , bos_token=A , eos_token=A , add_prefix_space=A , **A , ) UpperCAmelCase : List[str] = kwargs.pop("""add_bos_token""" , A ) UpperCAmelCase : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , A ) != add_prefix_space: UpperCAmelCase : List[str] = getattr(A , pre_tok_state.pop("""type""" ) ) UpperCAmelCase : str = add_prefix_space UpperCAmelCase : Tuple = pre_tok_class(**A ) UpperCAmelCase : int = add_prefix_space def _lowercase( self , *A , **A ) -> BatchEncoding: UpperCAmelCase : Optional[int] = kwargs.get("""is_split_into_words""" , A ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A , **A ) def _lowercase( self , *A , **A ) -> BatchEncoding: UpperCAmelCase : Any = kwargs.get("""is_split_into_words""" , A ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*A , **A ) def _lowercase( self , A , A = None ) -> Tuple[str]: UpperCAmelCase : List[Any] = self._tokenizer.model.save(A , name=A ) return tuple(A ) def _lowercase( self , A ) -> List[int]: UpperCAmelCase : Dict = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(A , add_special_tokens=A ) + [self.eos_token_id] ) if len(A ) > self.model_max_length: UpperCAmelCase : Optional[int] = input_ids[-self.model_max_length :] return input_ids
338
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : List[str] = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int: UpperCAmelCase : int = 1 UpperCAmelCase : str = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase : Tuple = pre_numerator UpperCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase : Union[str, Any] = cur_numerator UpperCAmelCase : Optional[int] = e_cont * pre_numerator + temp return sum_digits(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
338
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a : int = logging.get_logger(__name__) a : int = { """ut/deta""": """https://huggingface.co/ut/deta/resolve/main/config.json""", } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'deta' lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , A=None , A=900 , A=2048 , A=6 , A=2048 , A=8 , A=6 , A=1024 , A=8 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=True , A=False , A="sine" , A=5 , A=4 , A=4 , A=True , A=300 , A=True , A=True , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , A=0.2_5 , **A , ) -> List[str]: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase : Any = CONFIG_MAPPING["""resnet"""](out_features=["""stage2""", """stage3""", """stage4"""] ) else: if isinstance(A , A ): UpperCAmelCase : Dict = backbone_config.pop("""model_type""" ) UpperCAmelCase : str = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : int = config_class.from_dict(A ) UpperCAmelCase : Dict = backbone_config UpperCAmelCase : int = num_queries UpperCAmelCase : str = max_position_embeddings UpperCAmelCase : List[str] = d_model UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : Union[str, Any] = encoder_layers UpperCAmelCase : Optional[Any] = encoder_attention_heads UpperCAmelCase : List[str] = decoder_ffn_dim UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : Tuple = dropout UpperCAmelCase : Union[str, Any] = attention_dropout UpperCAmelCase : Dict = activation_dropout UpperCAmelCase : Optional[Any] = activation_function UpperCAmelCase : Union[str, Any] = init_std UpperCAmelCase : List[str] = init_xavier_std UpperCAmelCase : int = encoder_layerdrop UpperCAmelCase : List[Any] = auxiliary_loss UpperCAmelCase : List[str] = position_embedding_type # deformable attributes UpperCAmelCase : Optional[Any] = num_feature_levels UpperCAmelCase : Tuple = encoder_n_points UpperCAmelCase : Dict = decoder_n_points UpperCAmelCase : Any = two_stage UpperCAmelCase : List[Any] = two_stage_num_proposals UpperCAmelCase : Optional[int] = with_box_refine UpperCAmelCase : Optional[Any] = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher UpperCAmelCase : List[str] = class_cost UpperCAmelCase : Union[str, Any] = bbox_cost UpperCAmelCase : int = giou_cost # Loss coefficients UpperCAmelCase : Union[str, Any] = mask_loss_coefficient UpperCAmelCase : Any = dice_loss_coefficient UpperCAmelCase : List[Any] = bbox_loss_coefficient UpperCAmelCase : List[str] = giou_loss_coefficient UpperCAmelCase : Dict = eos_coefficient UpperCAmelCase : Optional[Any] = focal_alpha super().__init__(is_encoder_decoder=A , **A ) @property def _lowercase( self ) -> int: return self.encoder_attention_heads @property def _lowercase( self ) -> int: return self.d_model def _lowercase( self ) -> int: UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Optional[Any] = self.backbone_config.to_dict() UpperCAmelCase : Optional[int] = self.__class__.model_type return output
338
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=0.0_1 , A=1000 ) -> List[str]: UpperCAmelCase : List[Any] = p_stop UpperCAmelCase : Optional[int] = max_length def __iter__( self ) -> Union[str, Any]: UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = False while not stop and count < self.max_length: yield count count += 1 UpperCAmelCase : Any = random.random() < self.p_stop class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A , A=False , A=True ) -> Union[str, Any]: UpperCAmelCase : List[str] = [ BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A ) for i in range(2 ) ] UpperCAmelCase : List[str] = [list(A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] ) self.assertListEqual(A , A ) def _lowercase( self ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is very small. UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [[], []] self.check_batch_sampler_shards(A , A ) def _lowercase( self ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A ) def _lowercase( self ) -> Any: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : str = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [[], []] self.check_batch_sampler_shards(A , A , even_batches=A ) def _lowercase( self ) -> List[Any]: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCAmelCase : List[str] = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _lowercase( self , A , A , A , A=False , A=2 , A=False ) -> Tuple: random.seed(A ) UpperCAmelCase : Dict = list(A ) UpperCAmelCase : Any = [ IterableDatasetShard( A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , ) for i in range(A ) ] UpperCAmelCase : Dict = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(A ) iterable_dataset_lists.append(list(A ) ) UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCAmelCase : List[Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(A ) , len(A ) ) self.assertTrue(len(A ) % shard_batch_size == 0 ) UpperCAmelCase : List[Any] = [] for idx in range(0 , len(A ) , A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(A ) < len(A ): reference += reference self.assertListEqual(A , reference[: len(A )] ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = 42 UpperCAmelCase : List[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) # Edge case with a very small dataset UpperCAmelCase : List[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = SkipBatchSampler(A , 2 ) self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> int: UpperCAmelCase : Any = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) UpperCAmelCase : Optional[Any] = skip_first_batches(A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowercase( self ) -> Dict: Accelerator() UpperCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
338
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : str = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'levit' def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int: super().__init__(**A ) UpperCAmelCase : Any = image_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : Tuple = kernel_size UpperCAmelCase : Optional[int] = stride UpperCAmelCase : Dict = padding UpperCAmelCase : List[Any] = hidden_sizes UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = depths UpperCAmelCase : Any = key_dim UpperCAmelCase : str = drop_path_rate UpperCAmelCase : List[Any] = patch_size UpperCAmelCase : str = attention_ratio UpperCAmelCase : Optional[Any] = mlp_ratio UpperCAmelCase : Dict = initializer_range UpperCAmelCase : int = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase( self ) -> float: return 1e-4
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[Any] = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass a : List[str] = (3, 9, -1_1, 0, 7, 5, 1, -1) a : Any = (4, 6, 2, 0, 8, 1_0, 3, -2) @dataclass class UpperCamelCase_ : lowercase = 42 lowercase = 42 class UpperCamelCase_ : def __init__( self , A ) -> None: UpperCAmelCase : Node | None = None for i in sorted(A , reverse=A ): UpperCAmelCase : Tuple = Node(A , self.head ) def __iter__( self ) -> Iterator[int]: UpperCAmelCase : int = self.head while node: yield node.data UpperCAmelCase : str = node.next_node def __len__( self ) -> int: return sum(1 for _ in self ) def __str__( self ) -> str: return " -> ".join([str(A ) for node in self] ) def __lowerCamelCase ( _lowercase , _lowercase ) -> SortedLinkedList: return SortedLinkedList(list(_lowercase ) + list(_lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() a : Optional[int] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
338
'''simple docstring''' from math import loga def __lowerCamelCase ( _lowercase ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_lowercase , _lowercase ): raise TypeError("""Input value must be a 'int' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
338
1
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") a : Optional[Any] = int(input("""Enter number: """).strip()) print(F'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
338
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. a : Optional[int] = 1_0 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: for i in range(_lowercase , _lowercase ): if array[i] == target: return i return -1 def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = len(_lowercase ) while left <= right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1 UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase : Any = one_third - 1 elif array[two_third] < target: UpperCAmelCase : Tuple = two_third + 1 else: UpperCAmelCase : int = one_third + 1 UpperCAmelCase : List[Any] = two_third - 1 else: return -1 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: if left < right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : str = (left + right) // 3 + 1 UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() a : Any = input("""Enter numbers separated by comma:\n""").strip() a : Any = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip()) a : Union[str, Any] = ite_ternary_search(collection, target) a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
338
1
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> float: if digit_amount > 0: return round(number - int(_lowercase ) , _lowercase ) return number - int(_lowercase ) if __name__ == "__main__": print(decimal_isolate(1.5_3, 0)) print(decimal_isolate(3_5.3_4_5, 1)) print(decimal_isolate(3_5.3_4_5, 2)) print(decimal_isolate(3_5.3_4_5, 3)) print(decimal_isolate(-1_4.7_8_9, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-1_4.1_2_3, 1)) print(decimal_isolate(-1_4.1_2_3, 2)) print(decimal_isolate(-1_4.1_2_3, 3))
338
'''simple docstring''' import numpy as np class UpperCamelCase_ : def __init__( self ) -> int: UpperCAmelCase : str = (0, 0) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Any = 0 UpperCAmelCase : int = 0 UpperCAmelCase : Optional[int] = 0 def __eq__( self , A ) -> Optional[Any]: return self.position == cell.position def _lowercase( self ) -> Tuple: print(self.position ) class UpperCamelCase_ : def __init__( self , A=(5, 5) ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = np.zeros(A ) UpperCAmelCase : int = world_size[0] UpperCAmelCase : List[str] = world_size[1] def _lowercase( self ) -> List[Any]: print(self.w ) def _lowercase( self , A ) -> Dict: UpperCAmelCase : Optional[Any] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase : List[Any] = cell.position[0] UpperCAmelCase : Union[str, Any] = cell.position[1] UpperCAmelCase : Optional[int] = [] for n in neughbour_cord: UpperCAmelCase : Any = current_x + n[0] UpperCAmelCase : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase : str = Cell() UpperCAmelCase : List[str] = (x, y) UpperCAmelCase : Dict = cell neighbours.append(A ) return neighbours def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase : List[Any] = [] UpperCAmelCase : Optional[int] = [] _open.append(_lowercase ) while _open: UpperCAmelCase : Any = np.argmin([n.f for n in _open] ) UpperCAmelCase : Optional[int] = _open[min_f] _closed.append(_open.pop(_lowercase ) ) if current == goal: break for n in world.get_neigbours(_lowercase ): for c in _closed: if c == n: continue UpperCAmelCase : List[str] = current.g + 1 UpperCAmelCase , UpperCAmelCase : List[str] = n.position UpperCAmelCase , UpperCAmelCase : Dict = goal.position UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase : Dict = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_lowercase ) UpperCAmelCase : Dict = [] while current.parent is not None: path.append(current.position ) UpperCAmelCase : Optional[int] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": a : List[str] = Gridworld() # Start position and goal a : Optional[int] = Cell() a : Optional[Any] = (0, 0) a : Optional[Any] = Cell() a : str = (4, 4) print(F'''path from {start.position} to {goal.position}''') a : List[Any] = astar(world, start, goal) # Just for visual reasons. for i in s: a : Any = 1 print(world.w)
338
1
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class UpperCamelCase_ : lowercase = None lowercase = False lowercase = False lowercase = False lowercase = None lowercase = None lowercase = False lowercase = False lowercase = False lowercase = True lowercase = None lowercase = 1 lowercase = None lowercase = False lowercase = None lowercase = None def _lowercase( self ) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(A ) for k, v in self.__dict__.items()} )
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING a : Tuple = logging.get_logger(__name__) a : Optional[int] = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'instructblip_vision_model' def __init__( self , A=1408 , A=6144 , A=39 , A=16 , A=224 , A=14 , A="gelu" , A=1e-6 , A=0.0 , A=1e-10 , A=True , **A , ) -> List[Any]: super().__init__(**A ) UpperCAmelCase : Optional[Any] = hidden_size UpperCAmelCase : Dict = intermediate_size UpperCAmelCase : Tuple = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Optional[Any] = patch_size UpperCAmelCase : List[Any] = image_size UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : Optional[int] = attention_dropout UpperCAmelCase : List[str] = layer_norm_eps UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : List[Any] = qkv_bias @classmethod def _lowercase( cls , A , **A ) -> "PretrainedConfig": cls._set_token_in_kwargs(A ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = cls.get_config_dict(A , **A ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": UpperCAmelCase : int = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(A , **A ) class UpperCamelCase_ ( __magic_name__ ): lowercase = 'instructblip_qformer' def __init__( self , A=30522 , A=768 , A=12 , A=12 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=0.0_2 , A=1e-12 , A=0 , A="absolute" , A=2 , A=1408 , **A , ) -> Any: super().__init__(pad_token_id=A , **A ) UpperCAmelCase : Union[str, Any] = vocab_size UpperCAmelCase : Tuple = hidden_size UpperCAmelCase : Tuple = num_hidden_layers UpperCAmelCase : Dict = num_attention_heads UpperCAmelCase : str = hidden_act UpperCAmelCase : Optional[Any] = intermediate_size UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase : Any = max_position_embeddings UpperCAmelCase : Any = initializer_range UpperCAmelCase : int = layer_norm_eps UpperCAmelCase : List[str] = position_embedding_type UpperCAmelCase : Any = cross_attention_frequency UpperCAmelCase : int = encoder_hidden_size @classmethod def _lowercase( cls , A , **A ) -> "PretrainedConfig": cls._set_token_in_kwargs(A ) UpperCAmelCase , UpperCAmelCase : Optional[int] = cls.get_config_dict(A , **A ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": UpperCAmelCase : Dict = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(A , **A ) class UpperCamelCase_ ( __magic_name__ ): lowercase = 'instructblip' lowercase = True def __init__( self , A=None , A=None , A=None , A=32 , **A ) -> Optional[Any]: super().__init__(**A ) if vision_config is None: UpperCAmelCase : Tuple = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: UpperCAmelCase : int = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: UpperCAmelCase : Any = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) UpperCAmelCase : int = InstructBlipVisionConfig(**A ) UpperCAmelCase : int = InstructBlipQFormerConfig(**A ) UpperCAmelCase : Optional[int] = text_config["""model_type"""] if """model_type""" in text_config else """opt""" UpperCAmelCase : Optional[Any] = CONFIG_MAPPING[text_model_type](**A ) UpperCAmelCase : int = self.text_config.tie_word_embeddings UpperCAmelCase : str = self.text_config.is_encoder_decoder UpperCAmelCase : str = num_query_tokens UpperCAmelCase : Optional[int] = self.vision_config.hidden_size UpperCAmelCase : Tuple = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCAmelCase : Optional[int] = 1.0 UpperCAmelCase : Optional[Any] = 0.0_2 @classmethod def _lowercase( cls , A , A , A , **A , ) -> Any: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **A , ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : int = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Union[str, Any] = self.vision_config.to_dict() UpperCAmelCase : Optional[int] = self.qformer_config.to_dict() UpperCAmelCase : Optional[int] = self.text_config.to_dict() UpperCAmelCase : int = self.__class__.model_type return output
338
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a : int = logging.get_logger(__name__) a : int = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off a : Tuple = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] a : Optional[int] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class UpperCamelCase_ ( __magic_name__ ): lowercase = 'whisper' lowercase = ['past_key_values'] lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]: UpperCAmelCase : str = vocab_size UpperCAmelCase : Union[str, Any] = num_mel_bins UpperCAmelCase : Tuple = d_model UpperCAmelCase : Optional[int] = encoder_layers UpperCAmelCase : List[str] = encoder_attention_heads UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : int = decoder_attention_heads UpperCAmelCase : Optional[int] = decoder_ffn_dim UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : List[str] = dropout UpperCAmelCase : Optional[Any] = attention_dropout UpperCAmelCase : Optional[Any] = activation_dropout UpperCAmelCase : Optional[Any] = activation_function UpperCAmelCase : Optional[Any] = init_std UpperCAmelCase : int = encoder_layerdrop UpperCAmelCase : Dict = decoder_layerdrop UpperCAmelCase : Optional[int] = use_cache UpperCAmelCase : List[str] = encoder_layers UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Union[str, Any] = max_source_positions UpperCAmelCase : Tuple = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : List[str] = classifier_proj_size UpperCAmelCase : Optional[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : int = mask_time_prob UpperCAmelCase : int = mask_time_length UpperCAmelCase : Dict = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Optional[int] = mask_feature_length UpperCAmelCase : int = mask_feature_min_masks UpperCAmelCase : List[Any] = median_filter_width super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , ) class UpperCamelCase_ ( __magic_name__ ): @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : str = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase : List[Any] = {0: """batch"""} else: UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) return common_inputs def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Optional[int] = OrderedDict() UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , ) UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2] UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Any = super().generate_dummy_inputs( preprocessor.tokenizer , A , A , A , A ) UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" ) UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def _lowercase( self ) -> float: return 1e-3
338
1
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCamelCase_ ( unittest.TestCase ): def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=4 , ) -> Tuple: UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : Optional[Any] = batch_size UpperCAmelCase : str = seq_length UpperCAmelCase : Union[str, Any] = is_training UpperCAmelCase : List[str] = use_attention_mask UpperCAmelCase : List[Any] = use_token_type_ids UpperCAmelCase : Tuple = use_labels UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Optional[int] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[Any] = intermediate_size UpperCAmelCase : Union[str, Any] = hidden_act UpperCAmelCase : List[str] = hidden_dropout_prob UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : Optional[int] = type_vocab_size UpperCAmelCase : str = type_sequence_label_size UpperCAmelCase : int = initializer_range UpperCAmelCase : Dict = num_choices def _lowercase( self ) -> str: UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[int] = None if self.use_attention_mask: UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Tuple = None if self.use_token_type_ids: UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = config_and_inputs UpperCAmelCase : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = FlaxAlbertModelTester(self ) @slow def _lowercase( self ) -> Union[str, Any]: for model_class_name in self.all_model_classes: UpperCAmelCase : int = model_class_name.from_pretrained("""albert-base-v2""" ) UpperCAmelCase : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(A ) @require_flax class UpperCamelCase_ ( unittest.TestCase ): @slow def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Dict = FlaxAlbertModel.from_pretrained("""albert-base-v2""" ) UpperCAmelCase : str = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) UpperCAmelCase : List[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCAmelCase : List[str] = model(A , attention_mask=A )[0] UpperCAmelCase : Dict = (1, 11, 768) self.assertEqual(output.shape , A ) UpperCAmelCase : List[str] = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , A , atol=1e-4 ) )
338
'''simple docstring''' a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowerCamelCase ( ) -> None: UpperCAmelCase : Optional[int] = input("""Enter message: """ ) UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ ) UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): UpperCAmelCase : List[str] = """encrypt""" UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase ) elif mode.lower().startswith("""d""" ): UpperCAmelCase : Tuple = """decrypt""" UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """encrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """decrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Tuple = key.upper() for symbol in message: UpperCAmelCase : Dict = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowercase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowercase ): UpperCAmelCase : Optional[int] = 0 else: translated.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": main()
338
1
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCamelCase_ ( __magic_name__ ): lowercase = ['image_processor', 'tokenizer'] lowercase = 'OwlViTImageProcessor' lowercase = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , A=None , A=None , **A ) -> List[Any]: UpperCAmelCase : str = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , A , ) UpperCAmelCase : List[Any] = kwargs.pop("""feature_extractor""" ) UpperCAmelCase : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(A , A ) def __call__( self , A=None , A=None , A=None , A="max_length" , A="np" , **A ) -> Tuple: if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(A , A ) or (isinstance(A , A ) and not isinstance(text[0] , A )): UpperCAmelCase : Dict = [self.tokenizer(A , padding=A , return_tensors=A , **A )] elif isinstance(A , A ) and isinstance(text[0] , A ): UpperCAmelCase : Union[str, Any] = [] # Maximum number of queries across batch UpperCAmelCase : int = max([len(A ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(A ) != max_num_queries: UpperCAmelCase : Union[str, Any] = t + [""" """] * (max_num_queries - len(A )) UpperCAmelCase : Optional[int] = self.tokenizer(A , padding=A , return_tensors=A , **A ) encodings.append(A ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": UpperCAmelCase : Tuple = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCAmelCase : Optional[Any] = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp UpperCAmelCase : Tuple = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCAmelCase : Optional[Any] = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch UpperCAmelCase : str = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) UpperCAmelCase : Tuple = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf UpperCAmelCase : Dict = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCAmelCase : Any = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) UpperCAmelCase : List[str] = BatchEncoding() UpperCAmelCase : Tuple = input_ids UpperCAmelCase : List[Any] = attention_mask if query_images is not None: UpperCAmelCase : str = BatchEncoding() UpperCAmelCase : List[str] = self.image_processor( A , return_tensors=A , **A ).pixel_values UpperCAmelCase : List[Any] = query_pixel_values if images is not None: UpperCAmelCase : Union[str, Any] = self.image_processor(A , return_tensors=A , **A ) if text is not None and images is not None: UpperCAmelCase : int = image_features.pixel_values return encoding elif query_images is not None and images is not None: UpperCAmelCase : Optional[Any] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**A ) , tensor_type=A ) def _lowercase( self , *A , **A ) -> str: return self.image_processor.post_process(*A , **A ) def _lowercase( self , *A , **A ) -> Union[str, Any]: return self.image_processor.post_process_object_detection(*A , **A ) def _lowercase( self , *A , **A ) -> List[Any]: return self.image_processor.post_process_image_guided_detection(*A , **A ) def _lowercase( self , *A , **A ) -> Optional[Any]: return self.tokenizer.batch_decode(*A , **A ) def _lowercase( self , *A , **A ) -> str: return self.tokenizer.decode(*A , **A ) @property def _lowercase( self ) -> Optional[int]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , A , ) return self.image_processor_class @property def _lowercase( self ) -> str: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , A , ) return self.image_processor
338
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Optional[int] = split_dict._to_yaml_list() assert len(_lowercase ) == len(_lowercase ) UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(_lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCAmelCase : List[str] = None # the split name of split_dict takes over the name of the split info object UpperCAmelCase : int = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name="""my_dataset""" )] ) def __lowerCamelCase ( _lowercase ) -> List[str]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files UpperCAmelCase : Optional[Any] = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
338
1
'''simple docstring''' import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () a : int = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). a : List[str] = [0, 2_5, 5_0] a : Any = [2_5, 5_0, 7_5] a : Optional[int] = fuzz.membership.trimf(X, abca) a : Dict = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. a : List[str] = np.ones(7_5) a : str = np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) a : Union[str, Any] = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) a : Optional[Any] = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) a : Tuple = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) a : List[str] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] a : List[str] = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) a : Optional[int] = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] a : Optional[Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] a : Dict = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("""Young""") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("""Middle aged""") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("""union""") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("""intersection""") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("""complement_a""") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("""difference a/b""") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("""alg_sum""") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("""alg_product""") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("""bdd_sum""") plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title("""bdd_difference""") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
338
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor a : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , **A ) -> None: warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , A , ) super().__init__(*A , **A )
338
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[str] = { """configuration_biogpt""": ["""BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BioGptConfig"""], """tokenization_biogpt""": ["""BioGptTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = [ """BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BioGptForCausalLM""", """BioGptForTokenClassification""", """BioGptForSequenceClassification""", """BioGptModel""", """BioGptPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys a : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a : Union[str, Any] = logging.get_logger(__name__) a : Union[str, Any] = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'detr' lowercase = ['past_key_values'] lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(A , A ): UpperCAmelCase : Any = backbone_config.get("""model_type""" ) UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : List[Any] = config_class.from_dict(A ) # set timm attributes to None UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = None, None, None UpperCAmelCase : Dict = use_timm_backbone UpperCAmelCase : Any = backbone_config UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : int = num_queries UpperCAmelCase : List[str] = d_model UpperCAmelCase : Tuple = encoder_ffn_dim UpperCAmelCase : Optional[Any] = encoder_layers UpperCAmelCase : Any = encoder_attention_heads UpperCAmelCase : Optional[Any] = decoder_ffn_dim UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : str = dropout UpperCAmelCase : Tuple = attention_dropout UpperCAmelCase : Dict = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : List[Any] = init_std UpperCAmelCase : str = init_xavier_std UpperCAmelCase : List[Any] = encoder_layerdrop UpperCAmelCase : int = decoder_layerdrop UpperCAmelCase : List[Any] = encoder_layers UpperCAmelCase : Union[str, Any] = auxiliary_loss UpperCAmelCase : str = position_embedding_type UpperCAmelCase : Union[str, Any] = backbone UpperCAmelCase : List[str] = use_pretrained_backbone UpperCAmelCase : Optional[int] = dilation # Hungarian matcher UpperCAmelCase : Union[str, Any] = class_cost UpperCAmelCase : Optional[Any] = bbox_cost UpperCAmelCase : List[Any] = giou_cost # Loss coefficients UpperCAmelCase : int = mask_loss_coefficient UpperCAmelCase : Optional[int] = dice_loss_coefficient UpperCAmelCase : Dict = bbox_loss_coefficient UpperCAmelCase : Any = giou_loss_coefficient UpperCAmelCase : Any = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def _lowercase( self ) -> int: return self.encoder_attention_heads @property def _lowercase( self ) -> int: return self.d_model @classmethod def _lowercase( cls , A , **A ) -> Dict: return cls(backbone_config=A , **A ) def _lowercase( self ) -> Dict[str, any]: UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase : Any = self.backbone_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowercase( self ) -> float: return 1e-5 @property def _lowercase( self ) -> int: return 12
338
1
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf a : Union[str, Any] = logging.get_logger(__name__) @dataclass class UpperCamelCase_ ( __magic_name__ ): lowercase = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self , **A ) -> Union[str, Any]: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: UpperCAmelCase : Tuple = deprecated_arg[3:] UpperCAmelCase : Union[str, Any] = not kwargs.pop(A ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) UpperCAmelCase : List[Any] = kwargs.pop("""tpu_name""" , self.tpu_name ) UpperCAmelCase : List[str] = kwargs.pop("""device_idx""" , self.device_idx ) UpperCAmelCase : Any = kwargs.pop("""eager_mode""" , self.eager_mode ) UpperCAmelCase : Union[str, Any] = kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**A ) lowercase = field( default=__magic_name__ , metadata={'help': 'Name of TPU'} , ) lowercase = field( default=0 , metadata={'help': 'CPU / GPU device index. Defaults to 0.'} , ) lowercase = field(default=__magic_name__ , metadata={'help': 'Benchmark models in eager model.'} ) lowercase = field( default=__magic_name__ , metadata={ 'help': 'Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.' } , ) @cached_property def _lowercase( self ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ["""tf"""] ) UpperCAmelCase : Tuple = None if self.tpu: try: if self.tpu_name: UpperCAmelCase : Optional[int] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: UpperCAmelCase : Optional[Any] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: UpperCAmelCase : Tuple = None return tpu @cached_property def _lowercase( self ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) UpperCAmelCase : List[Any] = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) UpperCAmelCase : Tuple = tf.distribute.OneDeviceStrategy(device=f'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU UpperCAmelCase : Union[str, Any] = tf.distribute.OneDeviceStrategy(device=f'''/cpu:{self.device_idx}''' ) return strategy @property def _lowercase( self ) -> bool: requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def _lowercase( self ) -> "tf.distribute.Strategy": requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def _lowercase( self ) -> Dict: requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def _lowercase( self ) -> int: requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _lowercase( self ) -> bool: return self.n_gpu > 0
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[str] = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Tuple: UpperCAmelCase : Any = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : int = seq_length UpperCAmelCase : List[Any] = is_training UpperCAmelCase : List[str] = use_input_mask UpperCAmelCase : str = use_token_type_ids UpperCAmelCase : int = use_labels UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : int = hidden_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Dict = intermediate_size UpperCAmelCase : int = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : Optional[int] = attention_probs_dropout_prob UpperCAmelCase : List[str] = max_position_embeddings UpperCAmelCase : Union[str, Any] = type_vocab_size UpperCAmelCase : Any = type_sequence_label_size UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Dict = num_labels UpperCAmelCase : int = num_choices UpperCAmelCase : Optional[int] = scope def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Tuple = None if self.use_input_mask: UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Tuple = None if self.use_token_type_ids: UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = None if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> Dict: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def _lowercase( self , A , A , A , A , A , A , A ) -> Tuple: UpperCAmelCase : Optional[int] = OpenLlamaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : str = model(A , attention_mask=A ) UpperCAmelCase : Optional[Any] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]: UpperCAmelCase : Dict = True UpperCAmelCase : Dict = OpenLlamaModel(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) UpperCAmelCase : Any = model( A , attention_mask=A , encoder_hidden_states=A , ) UpperCAmelCase : Dict = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[str]: UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() UpperCAmelCase : str = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> Optional[Any]: UpperCAmelCase : str = True UpperCAmelCase : Dict = True UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass UpperCAmelCase : List[str] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) UpperCAmelCase : Tuple = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : int = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : List[str] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0] UpperCAmelCase : int = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0] # select random slice UpperCAmelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = config_and_inputs UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowercase = (OpenLlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[int] = OpenLlamaModelTester(self ) UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self ) -> List[Any]: self.config_tester.run_common_tests() def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : List[str] = type self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> Tuple: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = 3 UpperCAmelCase : Optional[int] = input_dict["""input_ids"""] UpperCAmelCase : str = input_ids.ne(1 ).to(A ) UpperCAmelCase : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : str = 3 UpperCAmelCase : List[str] = """single_label_classification""" UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] UpperCAmelCase : Union[str, Any] = input_ids.ne(1 ).to(A ) UpperCAmelCase : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : List[str] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Optional[int] = 3 UpperCAmelCase : Dict = """multi_label_classification""" UpperCAmelCase : Optional[int] = input_dict["""input_ids"""] UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(A ) UpperCAmelCase : List[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase : Optional[int] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Optional[int] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def _lowercase( self ) -> str: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[str] = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase : List[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Tuple = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() UpperCAmelCase : Any = original_model(A ).last_hidden_state UpperCAmelCase : Tuple = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Union[str, Any] = {"""type""": scaling_type, """factor""": 1_0.0} UpperCAmelCase : List[str] = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() UpperCAmelCase : Optional[Any] = scaled_model(A ).last_hidden_state UpperCAmelCase : Tuple = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
338
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" ) if "model" in sd.keys(): UpperCAmelCase : Any = torch.load(_lowercase , map_location="""cpu""" )["""model"""] # pop unnecessary weights UpperCAmelCase : Union[str, Any] = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(_lowercase ) UpperCAmelCase : Tuple = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase : List[Any] = sd.pop(_lowercase ) UpperCAmelCase : Tuple = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase : List[str] = sd[key] # We split QKV in separate Q,K,V UpperCAmelCase : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" ) UpperCAmelCase : Tuple = key.replace(""".qkv_proj.""" , """.k_proj.""" ) UpperCAmelCase : int = key.replace(""".qkv_proj.""" , """.v_proj.""" ) UpperCAmelCase : Dict = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = torch.split(_lowercase , depth // 3 , dim=0 ) UpperCAmelCase : Tuple = q UpperCAmelCase : Tuple = k UpperCAmelCase : Any = v del sd[key] return sd @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Optional[Any]: UpperCAmelCase : Tuple = load_checkpoint(_lowercase ) if config is not None: UpperCAmelCase : Dict = OPTConfig.from_pretrained(_lowercase ) else: UpperCAmelCase : int = OPTConfig() UpperCAmelCase : List[Any] = OPTModel(_lowercase ).half().eval() model.load_state_dict(_lowercase ) # Check results Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") a : Union[str, Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
338
1
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class UpperCamelCase_ ( __magic_name__ ): lowercase = DistilBertTokenizer lowercase = DistilBertTokenizerFast lowercase = True @slow def _lowercase( self ) -> str: UpperCAmelCase : Any = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) UpperCAmelCase : Optional[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=A ) UpperCAmelCase : Tuple = tokenizer.encode("""multi-sequence build""" , add_special_tokens=A ) UpperCAmelCase : Dict = tokenizer.build_inputs_with_special_tokens(A ) UpperCAmelCase : List[str] = tokenizer.build_inputs_with_special_tokens(A , A ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
338
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : str = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'levit' def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int: super().__init__(**A ) UpperCAmelCase : Any = image_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : Tuple = kernel_size UpperCAmelCase : Optional[int] = stride UpperCAmelCase : Dict = padding UpperCAmelCase : List[Any] = hidden_sizes UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = depths UpperCAmelCase : Any = key_dim UpperCAmelCase : str = drop_path_rate UpperCAmelCase : List[Any] = patch_size UpperCAmelCase : str = attention_ratio UpperCAmelCase : Optional[Any] = mlp_ratio UpperCAmelCase : Dict = initializer_range UpperCAmelCase : int = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase( self ) -> float: return 1e-4
338
1
'''simple docstring''' import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase="attention" ) -> int: UpperCAmelCase : Tuple = params[F'''{prefix}/layers_{i}/{layer_name}/key/kernel'''] UpperCAmelCase : Dict = params[F'''{prefix}/layers_{i}/{layer_name}/out/kernel'''] UpperCAmelCase : Dict = params[F'''{prefix}/layers_{i}/{layer_name}/query/kernel'''] UpperCAmelCase : Dict = params[F'''{prefix}/layers_{i}/{layer_name}/value/kernel'''] return k, o, q, v def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=False ) -> Optional[Any]: if split_mlp_wi: UpperCAmelCase : Dict = params[F'''{prefix}/layers_{i}/mlp/wi_0/kernel'''] UpperCAmelCase : Any = params[F'''{prefix}/layers_{i}/mlp/wi_1/kernel'''] UpperCAmelCase : Any = (wi_a, wi_a) else: UpperCAmelCase : Optional[int] = params[F'''{prefix}/layers_{i}/mlp/wi/kernel'''] UpperCAmelCase : int = params[F'''{prefix}/layers_{i}/mlp/wo/kernel'''] return wi, wo def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: return params[F'''{prefix}/layers_{i}/{layer_name}/scale'''] def __lowerCamelCase ( _lowercase , *, _lowercase , _lowercase ) -> List[Any]: UpperCAmelCase : List[str] = traverse_util.flatten_dict(variables["""target"""] ) UpperCAmelCase : Optional[Any] = {"""/""".join(_lowercase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi UpperCAmelCase : List[str] = """encoder/layers_0/mlp/wi_0/kernel""" in old print("""Split MLP:""" , _lowercase ) UpperCAmelCase : int = collections.OrderedDict() # Shared embeddings. UpperCAmelCase : List[Any] = old["""token_embedder/embedding"""] # Encoder. for i in range(_lowercase ): # Block i, layer 0 (Self Attention). UpperCAmelCase : Dict = tax_layer_norm_lookup(_lowercase , _lowercase , """encoder""" , """pre_attention_layer_norm""" ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = tax_attention_lookup(_lowercase , _lowercase , """encoder""" , """attention""" ) UpperCAmelCase : Optional[Any] = layer_norm UpperCAmelCase : Tuple = k.T UpperCAmelCase : List[Any] = o.T UpperCAmelCase : List[Any] = q.T UpperCAmelCase : Optional[int] = v.T # Block i, layer 1 (MLP). UpperCAmelCase : List[str] = tax_layer_norm_lookup(_lowercase , _lowercase , """encoder""" , """pre_mlp_layer_norm""" ) UpperCAmelCase , UpperCAmelCase : Tuple = tax_mlp_lookup(_lowercase , _lowercase , """encoder""" , _lowercase ) UpperCAmelCase : str = layer_norm if split_mlp_wi: UpperCAmelCase : Union[str, Any] = wi[0].T UpperCAmelCase : str = wi[1].T else: UpperCAmelCase : str = wi.T UpperCAmelCase : Union[str, Any] = wo.T UpperCAmelCase : List[str] = old[ """encoder/relpos_bias/rel_embedding""" ].T UpperCAmelCase : Any = old["""encoder/encoder_norm/scale"""] if not is_encoder_only: # Decoder. for i in range(_lowercase ): # Block i, layer 0 (Self Attention). UpperCAmelCase : Union[str, Any] = tax_layer_norm_lookup(_lowercase , _lowercase , """decoder""" , """pre_self_attention_layer_norm""" ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = tax_attention_lookup(_lowercase , _lowercase , """decoder""" , """self_attention""" ) UpperCAmelCase : int = layer_norm UpperCAmelCase : str = k.T UpperCAmelCase : Tuple = o.T UpperCAmelCase : int = q.T UpperCAmelCase : Tuple = v.T # Block i, layer 1 (Cross Attention). UpperCAmelCase : Dict = tax_layer_norm_lookup(_lowercase , _lowercase , """decoder""" , """pre_cross_attention_layer_norm""" ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = tax_attention_lookup(_lowercase , _lowercase , """decoder""" , """encoder_decoder_attention""" ) UpperCAmelCase : int = layer_norm UpperCAmelCase : List[str] = k.T UpperCAmelCase : List[Any] = o.T UpperCAmelCase : Optional[Any] = q.T UpperCAmelCase : Any = v.T # Block i, layer 2 (MLP). UpperCAmelCase : Any = tax_layer_norm_lookup(_lowercase , _lowercase , """decoder""" , """pre_mlp_layer_norm""" ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = tax_mlp_lookup(_lowercase , _lowercase , """decoder""" , _lowercase ) UpperCAmelCase : List[str] = layer_norm if split_mlp_wi: UpperCAmelCase : Dict = wi[0].T UpperCAmelCase : List[Any] = wi[1].T else: UpperCAmelCase : Dict = wi.T UpperCAmelCase : int = wo.T UpperCAmelCase : int = old["""decoder/decoder_norm/scale"""] UpperCAmelCase : Optional[int] = old[ """decoder/relpos_bias/rel_embedding""" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: UpperCAmelCase : List[str] = old["""decoder/logits_dense/kernel"""].T return new def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : Optional[int] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: UpperCAmelCase : Tuple = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: UpperCAmelCase : Optional[int] = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) UpperCAmelCase : str = state_dict["""shared.weight"""] return state_dict def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> Tuple: UpperCAmelCase : Tuple = checkpoints.load_tax_checkpoint(_lowercase ) UpperCAmelCase : str = convert_tax_to_pytorch(_lowercase , num_layers=config.num_layers , is_encoder_only=_lowercase ) UpperCAmelCase : Any = make_state_dict(_lowercase , _lowercase ) model.load_state_dict(_lowercase , strict=_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase = False ) -> str: UpperCAmelCase : Dict = TaConfig.from_json_file(_lowercase ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: UpperCAmelCase : Union[str, Any] = TaEncoderModel(_lowercase ) else: UpperCAmelCase : Dict = TaForConditionalGeneration(_lowercase ) # Load weights from tf checkpoint load_tax_weights_in_ta(_lowercase , _lowercase , _lowercase , _lowercase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(_lowercase ) # Verify that we can load the checkpoint. model.from_pretrained(_lowercase ) print("""Done""" ) if __name__ == "__main__": a : Optional[int] = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) a : Optional[int] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
338
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) a : List[str] = """Hello, World!""" a : List[Any] = """en_XX""" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Dict = Path("""data_bin""" ) UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(_lowercase ) UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder UpperCAmelCase : Tuple = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , _lowercase ) UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight UpperCAmelCase : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase : List[str] = model.roberta.encoder.layer[i] UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i] # self attention UpperCAmelCase : Optional[Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias # intermediate UpperCAmelCase : Tuple = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) UpperCAmelCase : List[str] = xmod_layer.fca.weight UpperCAmelCase : str = xmod_layer.fca.bias # output UpperCAmelCase : Any = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) UpperCAmelCase : Dict = xmod_layer.fca.weight UpperCAmelCase : Dict = xmod_layer.fca.bias UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code] UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code] UpperCAmelCase : Any = from_adapter.fca.weight UpperCAmelCase : int = from_adapter.fca.bias UpperCAmelCase : Dict = from_adapter.fca.weight UpperCAmelCase : Dict = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias UpperCAmelCase : str = xmod.model.encoder.lm_head.weight UpperCAmelCase : str = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) UpperCAmelCase : Optional[int] = model(_lowercase )[0] if classification_head: UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) ) else: UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) a : List[str] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
338
1
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __lowerCamelCase ( _lowercase ) -> List[Any]: for i in range(0 , _lowercase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __lowerCamelCase ( _lowercase ) -> Dict: for i in range(_lowercase , 0 , -1 ): for _ in range(_lowercase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __lowerCamelCase ( _lowercase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowercase ) # upper half reverse_floyd(_lowercase ) # lower half if __name__ == "__main__": print(R"""| /\ | |- | |- |--| |\ /| |-""") print(R"""|/ \| |- |_ |_ |__| | \/ | |_""") a : List[Any] = 1 while K: a : int = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) a : Tuple = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
338
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __lowerCamelCase ( _lowercase ) -> List[Any]: for i in range(0 , _lowercase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __lowerCamelCase ( _lowercase ) -> Dict: for i in range(_lowercase , 0 , -1 ): for _ in range(_lowercase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __lowerCamelCase ( _lowercase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowercase ) # upper half reverse_floyd(_lowercase ) # lower half if __name__ == "__main__": print(R"""| /\ | |- | |- |--| |\ /| |-""") print(R"""|/ \| |- |_ |_ |__| | \/ | |_""") a : List[Any] = 1 while K: a : int = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) a : Tuple = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
338
1
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Optional[int] = split_dict._to_yaml_list() assert len(_lowercase ) == len(_lowercase ) UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(_lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCAmelCase : List[str] = None # the split name of split_dict takes over the name of the split info object UpperCAmelCase : int = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name="""my_dataset""" )] ) def __lowerCamelCase ( _lowercase ) -> List[str]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files UpperCAmelCase : Optional[Any] = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
338
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever a : List[str] = logging.getLogger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A=None ) -> Union[str, Any]: super().__init__( A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , ) UpperCAmelCase : Optional[Any] = None def _lowercase( self , A ) -> List[Any]: logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually UpperCAmelCase : Tuple = self._infer_socket_ifname() # avoid clash with the NCCL port UpperCAmelCase : str = str(distributed_port + 1 ) UpperCAmelCase : Any = dist.new_group(ranks=A , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _lowercase( self ) -> Dict: return dist.get_rank(group=self.process_group ) == 0 def _lowercase( self , A , A , A=torch.floataa ) -> str: UpperCAmelCase : List[Any] = torch.empty(A , dtype=A ) dist.scatter(A , src=0 , scatter_list=A , group=self.process_group ) return target_tensor def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names UpperCAmelCase : Optional[int] = next((addr for addr in addrs if addr.startswith("""e""" )) , A ) return ifname def _lowercase( self , A , A ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): UpperCAmelCase , UpperCAmelCase : str = self._main_retrieve(A , A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A ) # distributed training UpperCAmelCase : int = dist.get_world_size(group=self.process_group ) # gather logic UpperCAmelCase : int = None if self._is_main(): UpperCAmelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )] dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group ) # scatter logic UpperCAmelCase : List[Any] = question_hidden_states.shape[0] UpperCAmelCase : Tuple = [] UpperCAmelCase : Any = [] if self._is_main(): assert len(A ) == world_size UpperCAmelCase , UpperCAmelCase : Optional[int] = self._main_retrieve(torch.cat(A ).numpy() , A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = torch.tensor(A ), torch.tensor(A ) UpperCAmelCase : List[str] = self._chunk_tensor(A , A ) UpperCAmelCase : Union[str, Any] = self._chunk_tensor(A , A ) UpperCAmelCase : Tuple = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa ) UpperCAmelCase : Optional[Any] = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
338
1
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar a : str = TypeVar("""T""") a : Any = TypeVar("""U""") class UpperCamelCase_ ( Generic[T, U] ): def __init__( self , A , A ) -> List[str]: UpperCAmelCase : List[str] = key UpperCAmelCase : Union[str, Any] = val UpperCAmelCase : DoubleLinkedListNode[T, U] | None = None UpperCAmelCase : DoubleLinkedListNode[T, U] | None = None def __repr__( self ) -> str: return ( f'''Node: key: {self.key}, val: {self.val}, ''' f'''has next: {bool(self.next )}, has prev: {bool(self.prev )}''' ) class UpperCamelCase_ ( Generic[T, U] ): def __init__( self ) -> None: UpperCAmelCase : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(A , A ) UpperCAmelCase : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(A , A ) UpperCAmelCase , UpperCAmelCase : Any = self.rear, self.head def __repr__( self ) -> str: UpperCAmelCase : List[Any] = ["""DoubleLinkedList"""] UpperCAmelCase : Any = self.head while node.next is not None: rep.append(str(A ) ) UpperCAmelCase : str = node.next rep.append(str(self.rear ) ) return ",\n ".join(A ) def _lowercase( self , A ) -> None: UpperCAmelCase : Optional[int] = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None UpperCAmelCase : Tuple = node UpperCAmelCase : int = previous UpperCAmelCase : Optional[int] = node UpperCAmelCase : int = self.rear def _lowercase( self , A ) -> DoubleLinkedListNode[T, U] | None: if node.prev is None or node.next is None: return None UpperCAmelCase : List[Any] = node.next UpperCAmelCase : Optional[Any] = node.prev UpperCAmelCase : Dict = None UpperCAmelCase : int = None return node class UpperCamelCase_ ( Generic[T, U] ): lowercase = {} def __init__( self , A ) -> Dict: UpperCAmelCase : DoubleLinkedList[T, U] = DoubleLinkedList() UpperCAmelCase : Dict = capacity UpperCAmelCase : int = 0 UpperCAmelCase : str = 0 UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self ) -> str: return ( f'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' f'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__( self , A ) -> bool: return key in self.cache def _lowercase( self , A ) -> U | None: # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 UpperCAmelCase : DoubleLinkedListNode[T, U] = self.cache[key] UpperCAmelCase : Union[str, Any] = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(A ) return node.val self.miss += 1 return None def _lowercase( self , A , A ) -> None: if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity UpperCAmelCase : str = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(A ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 UpperCAmelCase : List[Any] = DoubleLinkedListNode(A , A ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value UpperCAmelCase : Tuple = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list UpperCAmelCase : Dict = value self.list.add(A ) @classmethod def _lowercase( cls , A = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: def cache_decorator_inner(A ) -> Callable[..., U]: def cache_decorator_wrapper(*A ) -> U: if func not in cls.decorator_function_to_instance_map: UpperCAmelCase : str = LRUCache(A ) UpperCAmelCase : Optional[int] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: UpperCAmelCase : Optional[Any] = func(*A ) cls.decorator_function_to_instance_map[func].put(args[0] , A ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(A , """cache_info""" , A ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
338
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : List[str] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } a : List[Any] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } a : List[Any] = { """facebook/blenderbot_small-90M""": 5_1_2, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = BlenderbotSmallTokenizer def __init__( self , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , A=True , **A , ) -> Union[str, Any]: super().__init__( ByteLevelBPETokenizer( vocab=A , merges=A , add_prefix_space=A , trim_offsets=A , ) , bos_token=A , eos_token=A , unk_token=A , **A , ) UpperCAmelCase : Optional[Any] = add_prefix_space def _lowercase( self , A , A=None ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
338
1
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a : Tuple = get_tests_dir("""fixtures/test_sentencepiece_with_bytefallback.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = GPTSwaTokenizer lowercase = False lowercase = True lowercase = False def _lowercase( self ) -> Any: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : Dict = GPTSwaTokenizer(A , eos_token="""<unk>""" , bos_token="""<unk>""" , pad_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase( self , A ) -> Optional[Any]: UpperCAmelCase : str = """This is a test""" UpperCAmelCase : Optional[Any] = """This is a test""" return input_text, output_text def _lowercase( self ) -> Optional[int]: UpperCAmelCase : List[str] = """<s>""" UpperCAmelCase : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(A ) , 2000 ) def _lowercase( self ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : str = GPTSwaTokenizer(A ) UpperCAmelCase : Union[str, Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(A , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [465, 287, 265, 631, 842] ) UpperCAmelCase : List[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) # fmt: off self.assertListEqual( A , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] , ) # fmt: on UpperCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual( A , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) UpperCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(A ) # fmt: off self.assertListEqual( A , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ) # fmt: on def _lowercase( self ) -> List[str]: UpperCAmelCase : Any = GPTSwaTokenizer(A ) UpperCAmelCase : Union[str, Any] = ["""This is a test""", """I was born in 92000, and this is falsé."""] UpperCAmelCase : Any = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(A , A ): self.assertListEqual(tokenizer.encode_fast(A ) , A ) # Test that decode_fast returns the input text for text, token_ids in zip(A , A ): self.assertEqual(tokenizer.decode_fast(A ) , A ) @slow def _lowercase( self ) -> int: UpperCAmelCase : List[Any] = [ """<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""", """Hey there, how are you doing this fine day?""", """This is a text with a trailing spaces followed by a dot .""", """Häj sväjs lillebrör! =)""", """Det är inget fel på Mr. Cool""", ] # fmt: off UpperCAmelCase : Optional[Any] = {"""input_ids""": [[63423, 5, 6811, 14954, 282, 816, 3821, 63466, 63425, 63462, 18, 63978, 678, 301, 1320, 63423, 63455, 63458, 18, 63982, 4246, 3940, 1901, 47789, 5547, 18994], [19630, 1100, 63446, 1342, 633, 544, 4488, 593, 5102, 2416, 63495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 58593, 22413, 9106, 546, 268, 33213, 63979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55130, 63450, 924, 63449, 2249, 4062, 1558, 318, 63504, 21498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 63443, 26801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""AI-Sweden/gpt-sw3-126m""" , sequences=A , )
338
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A = None , A = None , A = False , **A , ) -> Tuple: super().__init__(features=A , cache_dir=A , keep_in_memory=A , **A ) UpperCAmelCase : Any = Sql( cache_dir=A , features=A , sql=A , con=A , **A , ) def _lowercase( self ) -> Dict: UpperCAmelCase : Any = None UpperCAmelCase : Any = None UpperCAmelCase : int = None UpperCAmelCase : int = None self.builder.download_and_prepare( download_config=A , download_mode=A , verification_mode=A , base_path=A , ) # Build dataset for splits UpperCAmelCase : str = self.builder.as_dataset( split="""train""" , verification_mode=A , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase_ : def __init__( self , A , A , A , A = None , A = None , **A , ) -> str: if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) UpperCAmelCase : Dict = dataset UpperCAmelCase : List[Any] = name UpperCAmelCase : Any = con UpperCAmelCase : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase : Optional[Any] = num_proc UpperCAmelCase : str = to_sql_kwargs def _lowercase( self ) -> int: UpperCAmelCase : Any = self.to_sql_kwargs.pop("""sql""" , A ) UpperCAmelCase : str = self.to_sql_kwargs.pop("""con""" , A ) UpperCAmelCase : Union[str, Any] = self.to_sql_kwargs.pop("""index""" , A ) UpperCAmelCase : str = self._write(index=A , **self.to_sql_kwargs ) return written def _lowercase( self , A ) -> Any: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = args UpperCAmelCase : Union[str, Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs UpperCAmelCase : int = query_table( table=self.dataset.data , key=slice(A , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCAmelCase : Any = batch.to_pandas() UpperCAmelCase : List[Any] = df.to_sql(self.name , self.con , index=A , **A ) return num_rows or len(A ) def _lowercase( self , A , **A ) -> int: UpperCAmelCase : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: UpperCAmelCase , UpperCAmelCase : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , A , A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
338
1
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Dict = [] for part_id in partition_order: UpperCAmelCase : List[str] = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(_lowercase ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Any: UpperCAmelCase : Dict = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() UpperCAmelCase : Optional[int] = spark.range(1_0_0 ).repartition(1 ) UpperCAmelCase : Dict = Spark(_lowercase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=1_6 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 5_0 @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> List[Any]: UpperCAmelCase : Optional[int] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() UpperCAmelCase : Dict = spark.range(1_0 ).repartition(2 ) UpperCAmelCase : Optional[int] = [1, 0] UpperCAmelCase : Any = _generate_iterable_examples(_lowercase , _lowercase ) # Reverse the partitions. UpperCAmelCase : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowercase , _lowercase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): UpperCAmelCase , UpperCAmelCase : int = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Tuple: UpperCAmelCase : Tuple = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() UpperCAmelCase : Optional[int] = spark.range(1_0 ).repartition(1 ) UpperCAmelCase : Optional[Any] = SparkExamplesIterable(_lowercase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(_lowercase ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> List[str]: UpperCAmelCase : Optional[int] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() UpperCAmelCase : List[str] = spark.range(3_0 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: UpperCAmelCase : List[str] = lambda _lowercase : x.reverse() UpperCAmelCase : Dict = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowercase , [2, 1, 0] ) UpperCAmelCase : List[str] = SparkExamplesIterable(_lowercase ).shuffle_data_sources(_lowercase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(_lowercase ): UpperCAmelCase , UpperCAmelCase : int = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Union[str, Any]: UpperCAmelCase : int = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() UpperCAmelCase : str = spark.range(2_0 ).repartition(4 ) # Partitions 0 and 2 UpperCAmelCase : Any = SparkExamplesIterable(_lowercase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCAmelCase : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowercase , [0, 2] ) for i, (row_id, row_dict) in enumerate(_lowercase ): UpperCAmelCase , UpperCAmelCase : List[str] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 UpperCAmelCase : Dict = SparkExamplesIterable(_lowercase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCAmelCase : Dict = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowercase , [1, 3] ) for i, (row_id, row_dict) in enumerate(_lowercase ): UpperCAmelCase , UpperCAmelCase : Optional[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Optional[int]: UpperCAmelCase : Dict = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() UpperCAmelCase : Tuple = spark.range(1_0_0 ).repartition(1 ) UpperCAmelCase : Dict = Spark(_lowercase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_0_0
338
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCamelCase_ : lowercase = MBartConfig lowercase = {} lowercase = 'gelu' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : str = is_training UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Optional[Any] = eos_token_id UpperCAmelCase : List[str] = pad_token_id UpperCAmelCase : List[Any] = bos_token_id def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A ) return config, inputs_dict def _lowercase( self , A , A ) -> List[str]: UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder() UpperCAmelCase : int = inputs_dict["""input_ids"""] UpperCAmelCase : str = input_ids[:1, :] UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase : List[str] = inputs_dict["""head_mask"""] UpperCAmelCase : List[Any] = 1 # first forward pass UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = outputs.to_tuple() UpperCAmelCase : int = past_key_values[1] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]: if attention_mask is None: UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False def _lowercase( self , A , A , A , A , A ) -> int: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : int = TFMBartModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A ) def _lowercase( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase( self ) -> Dict: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_sentencepiece @require_tokenizers @require_tf class UpperCamelCase_ ( unittest.TestCase ): lowercase = [ ' UN Chief Says There Is No Military Solution in Syria', ] lowercase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] lowercase = 'facebook/mbart-large-en-ro' @cached_property def _lowercase( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowercase( self , **A ) -> Any: UpperCAmelCase : Optional[int] = self.translate_src_text(**A ) self.assertListEqual(self.expected_text , A ) def _lowercase( self , **A ) -> Optional[Any]: UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" ) UpperCAmelCase : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A ) return generated_words @slow def _lowercase( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
338
1
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) a : List[str] = """Hello, World!""" a : List[Any] = """en_XX""" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Dict = Path("""data_bin""" ) UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(_lowercase ) UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder UpperCAmelCase : Tuple = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , _lowercase ) UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight UpperCAmelCase : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase : List[str] = model.roberta.encoder.layer[i] UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i] # self attention UpperCAmelCase : Optional[Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias # intermediate UpperCAmelCase : Tuple = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) UpperCAmelCase : List[str] = xmod_layer.fca.weight UpperCAmelCase : str = xmod_layer.fca.bias # output UpperCAmelCase : Any = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) UpperCAmelCase : Dict = xmod_layer.fca.weight UpperCAmelCase : Dict = xmod_layer.fca.bias UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code] UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code] UpperCAmelCase : Any = from_adapter.fca.weight UpperCAmelCase : int = from_adapter.fca.bias UpperCAmelCase : Dict = from_adapter.fca.weight UpperCAmelCase : Dict = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias UpperCAmelCase : str = xmod.model.encoder.lm_head.weight UpperCAmelCase : str = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) UpperCAmelCase : Optional[int] = model(_lowercase )[0] if classification_head: UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) ) else: UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) a : List[str] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
338
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: UpperCAmelCase : Tuple = len(_lowercase ) + 1 UpperCAmelCase : List[Any] = len(_lowercase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase : str = [[0 for i in range(_lowercase )] for j in range(_lowercase )] # since string of zero length match pattern of zero length UpperCAmelCase : int = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowercase ): UpperCAmelCase : str = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowercase ): UpperCAmelCase : Optional[Any] = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowercase ): for j in range(1 , _lowercase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase : Union[str, Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase : List[Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase : Optional[int] = dp[i - 1][j] else: UpperCAmelCase : Any = 0 else: UpperCAmelCase : str = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") a : List[str] = """aab""" a : Optional[int] = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
338
1
'''simple docstring''' import collections import os import re from pathlib import Path a : Optional[Any] = """src/transformers""" # Matches is_xxx_available() a : int = re.compile(R"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} a : Any = re.compile(R"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] a : Tuple = re.compile(R"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available a : List[str] = re.compile(R"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") a : str = re.compile(R"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] a : Optional[int] = re.compile(R"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", a : Optional[Any] = re.compile(R"""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], a : Any = re.compile(R"""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo a : Dict = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: a : List[Any] = re.compile(R"""^\s*try:""") # Catches a line with else: a : str = re.compile(R"""^\s*else:""") def __lowerCamelCase ( _lowercase ) -> int: if _re_test_backend.search(_lowercase ) is None: return None UpperCAmelCase : Any = [b[0] for b in _re_backend.findall(_lowercase )] backends.sort() return "_and_".join(_lowercase ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: with open(_lowercase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCAmelCase : List[str] = f.readlines() UpperCAmelCase : List[Any] = 0 while line_index < len(_lowercase ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_lowercase ): return None # First grab the objects without a specific backend in _import_structure UpperCAmelCase : Union[str, Any] = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: UpperCAmelCase : Tuple = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_lowercase ): UpperCAmelCase : int = _re_one_line_import_struct.search(_lowercase ).groups()[0] UpperCAmelCase : Dict = re.findall(R"""\[([^\]]+)\]""" , _lowercase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue UpperCAmelCase : List[Any] = _re_import_struct_key_value.search(_lowercase ) if single_line_import_search is not None: UpperCAmelCase : Optional[Any] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(_lowercase ) > 0] objects.extend(_lowercase ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 UpperCAmelCase : Dict = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. UpperCAmelCase : int = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCAmelCase : Dict = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCAmelCase : Optional[int] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): UpperCAmelCase : str = lines[line_index] if _re_import_struct_add_one.search(_lowercase ) is not None: objects.append(_re_import_struct_add_one.search(_lowercase ).groups()[0] ) elif _re_import_struct_add_many.search(_lowercase ) is not None: UpperCAmelCase : Any = _re_import_struct_add_many.search(_lowercase ).groups()[0].split(""", """ ) UpperCAmelCase : Optional[int] = [obj[1:-1] for obj in imports if len(_lowercase ) > 0] objects.extend(_lowercase ) elif _re_between_brackets.search(_lowercase ) is not None: UpperCAmelCase : int = _re_between_brackets.search(_lowercase ).groups()[0].split(""", """ ) UpperCAmelCase : int = [obj[1:-1] for obj in imports if len(_lowercase ) > 0] objects.extend(_lowercase ) elif _re_quote_object.search(_lowercase ) is not None: objects.append(_re_quote_object.search(_lowercase ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 1_2 + """\"""" ): objects.append(line[1_3:-3] ) line_index += 1 UpperCAmelCase : Union[str, Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend UpperCAmelCase : Dict = [] while ( line_index < len(_lowercase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): UpperCAmelCase : Optional[Any] = lines[line_index] UpperCAmelCase : Optional[Any] = _re_import.search(_lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 UpperCAmelCase : Dict = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(_lowercase ): # If the line is an if is_backend_available, we grab all objects associated. UpperCAmelCase : Any = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCAmelCase : List[str] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCAmelCase : Union[str, Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): UpperCAmelCase : Dict = lines[line_index] UpperCAmelCase : Optional[Any] = _re_import.search(_lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 1_2 ): objects.append(line[1_2:-2] ) line_index += 1 UpperCAmelCase : Any = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __lowerCamelCase ( _lowercase , _lowercase ) -> int: def find_duplicates(_lowercase ): return [k for k, v in collections.Counter(_lowercase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] UpperCAmelCase : Optional[Any] = [] for key in import_dict_objects.keys(): UpperCAmelCase : Any = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) UpperCAmelCase : Tuple = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): UpperCAmelCase : Any = """base imports""" if key == """none""" else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def __lowerCamelCase ( ) -> str: UpperCAmelCase : List[Any] = [] for root, _, files in os.walk(_lowercase ): if "__init__.py" in files: UpperCAmelCase : List[Any] = os.path.join(_lowercase , """__init__.py""" ) UpperCAmelCase : int = parse_init(_lowercase ) if objects is not None: UpperCAmelCase : Optional[Any] = analyze_results(*_lowercase ) if len(_lowercase ) > 0: UpperCAmelCase : Optional[int] = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("""\n""".join(_lowercase ) ) if len(_lowercase ) > 0: raise ValueError("""\n\n""".join(_lowercase ) ) def __lowerCamelCase ( ) -> List[Any]: UpperCAmelCase : Any = [] for path, directories, files in os.walk(_lowercase ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(_lowercase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_lowercase ) / folder).glob("""*.py""" ) ) ) == 0: continue UpperCAmelCase : Tuple = str((Path(_lowercase ) / folder).relative_to(_lowercase ) ) UpperCAmelCase : Dict = short_path.replace(os.path.sep , """.""" ) submodules.append(_lowercase ) for fname in files: if fname == "__init__.py": continue UpperCAmelCase : str = str((Path(_lowercase ) / fname).relative_to(_lowercase ) ) UpperCAmelCase : Tuple = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(_lowercase ) return submodules a : Any = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", """models.esm.openfold_utils""", ] def __lowerCamelCase ( ) -> Union[str, Any]: # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import UpperCAmelCase : Optional[Any] = direct_transformers_import(_lowercase ) UpperCAmelCase : Optional[Any] = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(_lowercase , """__init__.py""" ) , """r""" ) as f: UpperCAmelCase : int = f.read() import_structure_keys.update(set(re.findall(R"""import_structure\[\"([^\"]*)\"\]""" , _lowercase ) ) ) UpperCAmelCase : Optional[Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(_lowercase ) > 0: UpperCAmelCase : Any = """\n""".join(F'''- {module}''' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" F'''{list_of_modules}\n''' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
338
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : List[str] = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int: UpperCAmelCase : int = 1 UpperCAmelCase : str = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase : Tuple = pre_numerator UpperCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase : Union[str, Any] = cur_numerator UpperCAmelCase : Optional[int] = e_cont * pre_numerator + temp return sum_digits(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
338
1
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a : Optional[int] = logging.get_logger(__name__) a : str = {"""vocab_file""": """spiece.model"""} a : Any = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", } } a : Union[str, Any] = { """albert-base-v1""": 5_1_2, """albert-large-v1""": 5_1_2, """albert-xlarge-v1""": 5_1_2, """albert-xxlarge-v1""": 5_1_2, """albert-base-v2""": 5_1_2, """albert-large-v2""": 5_1_2, """albert-xlarge-v2""": 5_1_2, """albert-xxlarge-v2""": 5_1_2, } a : List[Any] = """▁""" class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , A , A=True , A=True , A=False , A="[CLS]" , A="[SEP]" , A="<unk>" , A="[SEP]" , A="<pad>" , A="[CLS]" , A="[MASK]" , A = None , **A , ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. UpperCAmelCase : List[Any] = ( AddedToken(A , lstrip=A , rstrip=A , normalized=A ) if isinstance(A , A ) else mask_token ) UpperCAmelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) UpperCAmelCase : List[Any] = do_lower_case UpperCAmelCase : Dict = remove_space UpperCAmelCase : Optional[int] = keep_accents UpperCAmelCase : List[str] = vocab_file UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def _lowercase( self ) -> Tuple: return len(self.sp_model ) def _lowercase( self ) -> Tuple: UpperCAmelCase : int = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> int: UpperCAmelCase : int = self.__dict__.copy() UpperCAmelCase : int = None return state def __setstate__( self , A ) -> List[str]: UpperCAmelCase : Optional[int] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCAmelCase : Any = {} UpperCAmelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase( self , A ) -> List[str]: if self.remove_space: UpperCAmelCase : Tuple = """ """.join(inputs.strip().split() ) else: UpperCAmelCase : List[Any] = inputs UpperCAmelCase : int = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: UpperCAmelCase : str = unicodedata.normalize("""NFKD""" , A ) UpperCAmelCase : Optional[Any] = """""".join([c for c in outputs if not unicodedata.combining(A )] ) if self.do_lower_case: UpperCAmelCase : Optional[Any] = outputs.lower() return outputs def _lowercase( self , A ) -> List[str]: UpperCAmelCase : Dict = self.preprocess_text(A ) UpperCAmelCase : Tuple = self.sp_model.encode(A , out_type=A ) UpperCAmelCase : Dict = [] for piece in pieces: if len(A ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): UpperCAmelCase : int = self.sp_model.EncodeAsPieces(piece[:-1].replace(A , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: UpperCAmelCase : Any = cur_pieces[1:] else: UpperCAmelCase : Union[str, Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(A ) else: new_pieces.append(A ) return new_pieces def _lowercase( self , A ) -> Any: return self.sp_model.PieceToId(A ) def _lowercase( self , A ) -> Optional[int]: return self.sp_model.IdToPiece(A ) def _lowercase( self , A ) -> List[Any]: UpperCAmelCase : int = [] UpperCAmelCase : Union[str, Any] = """""" UpperCAmelCase : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token UpperCAmelCase : int = True UpperCAmelCase : List[Any] = [] else: current_sub_tokens.append(A ) UpperCAmelCase : List[str] = False out_string += self.sp_model.decode(A ) return out_string.strip() def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowercase( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is not None: return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Optional[Any] = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : int = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: UpperCAmelCase : int = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
338
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=0.0_1 , A=1000 ) -> List[str]: UpperCAmelCase : List[Any] = p_stop UpperCAmelCase : Optional[int] = max_length def __iter__( self ) -> Union[str, Any]: UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = False while not stop and count < self.max_length: yield count count += 1 UpperCAmelCase : Any = random.random() < self.p_stop class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A , A=False , A=True ) -> Union[str, Any]: UpperCAmelCase : List[str] = [ BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A ) for i in range(2 ) ] UpperCAmelCase : List[str] = [list(A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] ) self.assertListEqual(A , A ) def _lowercase( self ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is very small. UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [[], []] self.check_batch_sampler_shards(A , A ) def _lowercase( self ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A ) def _lowercase( self ) -> Any: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : str = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [[], []] self.check_batch_sampler_shards(A , A , even_batches=A ) def _lowercase( self ) -> List[Any]: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCAmelCase : List[str] = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _lowercase( self , A , A , A , A=False , A=2 , A=False ) -> Tuple: random.seed(A ) UpperCAmelCase : Dict = list(A ) UpperCAmelCase : Any = [ IterableDatasetShard( A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , ) for i in range(A ) ] UpperCAmelCase : Dict = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(A ) iterable_dataset_lists.append(list(A ) ) UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCAmelCase : List[Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(A ) , len(A ) ) self.assertTrue(len(A ) % shard_batch_size == 0 ) UpperCAmelCase : List[Any] = [] for idx in range(0 , len(A ) , A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(A ) < len(A ): reference += reference self.assertListEqual(A , reference[: len(A )] ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = 42 UpperCAmelCase : List[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) # Edge case with a very small dataset UpperCAmelCase : List[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = SkipBatchSampler(A , 2 ) self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> int: UpperCAmelCase : Any = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) UpperCAmelCase : Optional[Any] = skip_first_batches(A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowercase( self ) -> Dict: Accelerator() UpperCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
338
1
'''simple docstring''' from collections.abc import Sequence def __lowerCamelCase ( _lowercase = None ) -> int: if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) UpperCAmelCase : List[str] = nums[0] for i in range(1 , len(_lowercase ) ): UpperCAmelCase : Union[str, Any] = nums[i] UpperCAmelCase : str = max(_lowercase , ans + num , _lowercase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user a : int = int(input("""Enter number of elements : """).strip()) a : List[Any] = list(map(int, input("""\nEnter the numbers : """).strip().split()))[:n] print(max_subsequence_sum(array))
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[Any] = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black a : Dict = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. a : List[Any] = """ def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states """ class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Dict: UpperCAmelCase : List[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) UpperCAmelCase : Any = self.transformer_dir shutil.copy( os.path.join(A , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Any = """src/transformers""" shutil.rmtree(self.transformer_dir ) def _lowercase( self , A , A , A , A=None ) -> List[str]: UpperCAmelCase : str = comment + f'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: UpperCAmelCase : Any = comment + f'''\nclass {class_name}(nn.Module):\n''' + overwrite_result UpperCAmelCase : Union[str, Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) UpperCAmelCase : Dict = black.format_str(A , mode=A ) UpperCAmelCase : List[str] = os.path.join(self.transformer_dir , """new_code.py""" ) with open(A , """w""" , newline="""\n""" ) as f: f.write(A ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(A ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=A ) with open(A , """r""" ) as f: self.assertTrue(f.read() , A ) def _lowercase( self ) -> str: UpperCAmelCase : str = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(A , A ) def _lowercase( self ) -> Any: # Base copy consistency self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , A , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , A ) , ) # Copy consistency with a really long name UpperCAmelCase : Dict = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( f'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , f'''{long_class_name}LMPredictionHead''' , re.sub("""Bert""" , A , A ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , A , overwrite_result=re.sub("""Bert""" , """TestModel""" , A ) , ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] UpperCAmelCase : List[Any] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) UpperCAmelCase : List[str] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) UpperCAmelCase : List[Any] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) UpperCAmelCase , UpperCAmelCase : Any = check_copies.convert_to_localized_md( A , A , localized_readme["""format_model_list"""] ) self.assertFalse(A ) self.assertEqual(A , A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = check_copies.convert_to_localized_md( A , A , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(A ) UpperCAmelCase : List[Any] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) UpperCAmelCase : str = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) UpperCAmelCase : Any = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) UpperCAmelCase , UpperCAmelCase : Any = check_copies.convert_to_localized_md( A , A , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(A , A )
338
'''simple docstring''' from math import loga def __lowerCamelCase ( _lowercase ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_lowercase , _lowercase ): raise TypeError("""Input value must be a 'int' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
338
1
'''simple docstring''' import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A ) -> int: with open(A , encoding="""utf-8""" ) as input_file: UpperCAmelCase : Optional[Any] = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" ) UpperCAmelCase : str = input_file.read() UpperCAmelCase : Dict = regexp.search(A ) return match def _lowercase( self , A ) -> str: with open(A , encoding="""utf-8""" ) as input_file: UpperCAmelCase : Optional[int] = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL ) UpperCAmelCase : List[Any] = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCAmelCase : Optional[Any] = regexp.finditer(A ) UpperCAmelCase : Dict = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _lowercase( self ) -> List[str]: UpperCAmelCase : Optional[int] = Path("""./datasets""" ) UpperCAmelCase : str = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(A ) ): raise AssertionError(f'''open(...) must use utf-8 encoding in {dataset}''' ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : int = Path("""./datasets""" ) UpperCAmelCase : Tuple = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_print_statements(str(A ) ): raise AssertionError(f'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
338
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. a : Optional[int] = 1_0 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: for i in range(_lowercase , _lowercase ): if array[i] == target: return i return -1 def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = len(_lowercase ) while left <= right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1 UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase : Any = one_third - 1 elif array[two_third] < target: UpperCAmelCase : Tuple = two_third + 1 else: UpperCAmelCase : int = one_third + 1 UpperCAmelCase : List[Any] = two_third - 1 else: return -1 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: if left < right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : str = (left + right) // 3 + 1 UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() a : Any = input("""Enter numbers separated by comma:\n""").strip() a : Any = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip()) a : Union[str, Any] = ite_ternary_search(collection, target) a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
338
1
'''simple docstring''' import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__magic_name__ ) , 'Tatoeba directory does not exist.' ) class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _lowercase( self ) -> str: UpperCAmelCase : Tuple = tempfile.mkdtemp() return TatoebaConverter(save_dir=A ) @slow def _lowercase( self ) -> Union[str, Any]: self.resolver.convert_models(["""heb-eng"""] ) @slow def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase : str = self.resolver.write_model_card("""opus-mt-he-en""" , dry_run=A ) assert mmeta["long_pair"] == "heb-eng"
338
'''simple docstring''' import numpy as np class UpperCamelCase_ : def __init__( self ) -> int: UpperCAmelCase : str = (0, 0) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Any = 0 UpperCAmelCase : int = 0 UpperCAmelCase : Optional[int] = 0 def __eq__( self , A ) -> Optional[Any]: return self.position == cell.position def _lowercase( self ) -> Tuple: print(self.position ) class UpperCamelCase_ : def __init__( self , A=(5, 5) ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = np.zeros(A ) UpperCAmelCase : int = world_size[0] UpperCAmelCase : List[str] = world_size[1] def _lowercase( self ) -> List[Any]: print(self.w ) def _lowercase( self , A ) -> Dict: UpperCAmelCase : Optional[Any] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase : List[Any] = cell.position[0] UpperCAmelCase : Union[str, Any] = cell.position[1] UpperCAmelCase : Optional[int] = [] for n in neughbour_cord: UpperCAmelCase : Any = current_x + n[0] UpperCAmelCase : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase : str = Cell() UpperCAmelCase : List[str] = (x, y) UpperCAmelCase : Dict = cell neighbours.append(A ) return neighbours def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase : List[Any] = [] UpperCAmelCase : Optional[int] = [] _open.append(_lowercase ) while _open: UpperCAmelCase : Any = np.argmin([n.f for n in _open] ) UpperCAmelCase : Optional[int] = _open[min_f] _closed.append(_open.pop(_lowercase ) ) if current == goal: break for n in world.get_neigbours(_lowercase ): for c in _closed: if c == n: continue UpperCAmelCase : List[str] = current.g + 1 UpperCAmelCase , UpperCAmelCase : List[str] = n.position UpperCAmelCase , UpperCAmelCase : Dict = goal.position UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase : Dict = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_lowercase ) UpperCAmelCase : Dict = [] while current.parent is not None: path.append(current.position ) UpperCAmelCase : Optional[int] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": a : List[str] = Gridworld() # Start position and goal a : Optional[int] = Cell() a : Optional[Any] = (0, 0) a : Optional[Any] = Cell() a : str = (4, 4) print(F'''path from {start.position} to {goal.position}''') a : List[Any] = astar(world, start, goal) # Just for visual reasons. for i in s: a : Any = 1 print(world.w)
338
1
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : List[str] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } a : List[Any] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } a : List[Any] = { """facebook/blenderbot_small-90M""": 5_1_2, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = BlenderbotSmallTokenizer def __init__( self , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , A=True , **A , ) -> Union[str, Any]: super().__init__( ByteLevelBPETokenizer( vocab=A , merges=A , add_prefix_space=A , trim_offsets=A , ) , bos_token=A , eos_token=A , unk_token=A , **A , ) UpperCAmelCase : Optional[Any] = add_prefix_space def _lowercase( self , A , A=None ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = FunnelTokenizer lowercase = FunnelTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> Optional[int]: super().setUp() UpperCAmelCase : str = [ """<unk>""", """<cls>""", """<sep>""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] UpperCAmelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _lowercase( self , **A ) -> Union[str, Any]: return FunnelTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , **A ) -> List[Any]: return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> List[str]: UpperCAmelCase : Optional[Any] = """UNwant\u00E9d,running""" UpperCAmelCase : List[str] = """unwanted, running""" return input_text, output_text def _lowercase( self ) -> List[str]: UpperCAmelCase : List[str] = self.tokenizer_class(self.vocab_file ) UpperCAmelCase : int = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(A , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [7, 4, 5, 10, 8, 9] ) def _lowercase( self ) -> Dict: UpperCAmelCase : List[str] = self.get_tokenizers(do_lower_case=A ) for tokenizer in tokenizers: UpperCAmelCase : int = tokenizer("""UNwant\u00E9d,running""" ) UpperCAmelCase : str = len(inputs["""input_ids"""] ) - 1 self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len ) UpperCAmelCase : int = tokenizer("""UNwant\u00E9d,running""" , """UNwant\u00E9d,running""" ) self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len + [1] * sentence_len )
338
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a : int = logging.get_logger(__name__) a : int = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off a : Tuple = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] a : Optional[int] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class UpperCamelCase_ ( __magic_name__ ): lowercase = 'whisper' lowercase = ['past_key_values'] lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]: UpperCAmelCase : str = vocab_size UpperCAmelCase : Union[str, Any] = num_mel_bins UpperCAmelCase : Tuple = d_model UpperCAmelCase : Optional[int] = encoder_layers UpperCAmelCase : List[str] = encoder_attention_heads UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : int = decoder_attention_heads UpperCAmelCase : Optional[int] = decoder_ffn_dim UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : List[str] = dropout UpperCAmelCase : Optional[Any] = attention_dropout UpperCAmelCase : Optional[Any] = activation_dropout UpperCAmelCase : Optional[Any] = activation_function UpperCAmelCase : Optional[Any] = init_std UpperCAmelCase : int = encoder_layerdrop UpperCAmelCase : Dict = decoder_layerdrop UpperCAmelCase : Optional[int] = use_cache UpperCAmelCase : List[str] = encoder_layers UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Union[str, Any] = max_source_positions UpperCAmelCase : Tuple = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : List[str] = classifier_proj_size UpperCAmelCase : Optional[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : int = mask_time_prob UpperCAmelCase : int = mask_time_length UpperCAmelCase : Dict = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Optional[int] = mask_feature_length UpperCAmelCase : int = mask_feature_min_masks UpperCAmelCase : List[Any] = median_filter_width super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , ) class UpperCamelCase_ ( __magic_name__ ): @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : str = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase : List[Any] = {0: """batch"""} else: UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) return common_inputs def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Optional[int] = OrderedDict() UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , ) UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2] UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Any = super().generate_dummy_inputs( preprocessor.tokenizer , A , A , A , A ) UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" ) UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def _lowercase( self ) -> float: return 1e-3
338
1
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> str: if isinstance(_lowercase , _lowercase ): raise TypeError("""'float' object cannot be interpreted as an integer""" ) if isinstance(_lowercase , _lowercase ): raise TypeError("""'str' object cannot be interpreted as an integer""" ) if num == 0: return "0b0" UpperCAmelCase : int = False if num < 0: UpperCAmelCase : Union[str, Any] = True UpperCAmelCase : Tuple = -num UpperCAmelCase : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_lowercase ) for e in binary ) return "0b" + "".join(str(_lowercase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
338
'''simple docstring''' a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowerCamelCase ( ) -> None: UpperCAmelCase : Optional[int] = input("""Enter message: """ ) UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ ) UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): UpperCAmelCase : List[str] = """encrypt""" UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase ) elif mode.lower().startswith("""d""" ): UpperCAmelCase : Tuple = """decrypt""" UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """encrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """decrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Tuple = key.upper() for symbol in message: UpperCAmelCase : Dict = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowercase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowercase ): UpperCAmelCase : Optional[int] = 0 else: translated.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": main()
338
1
'''simple docstring''' import math def __lowerCamelCase ( _lowercase ) -> bool: UpperCAmelCase : int = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_lowercase ) def __lowerCamelCase ( _lowercase = 1 / 1_2_3_4_5 ) -> int: UpperCAmelCase : Tuple = 0 UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Any = 3 while True: UpperCAmelCase : Union[str, Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_lowercase ): UpperCAmelCase : str = int(_lowercase ) total_partitions += 1 if check_partition_perfect(_lowercase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_lowercase ) integer += 1 if __name__ == "__main__": print(F'''{solution() = }''')
338
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Optional[int] = split_dict._to_yaml_list() assert len(_lowercase ) == len(_lowercase ) UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(_lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCAmelCase : List[str] = None # the split name of split_dict takes over the name of the split info object UpperCAmelCase : int = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name="""my_dataset""" )] ) def __lowerCamelCase ( _lowercase ) -> List[str]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files UpperCAmelCase : Optional[Any] = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
338
1
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a : Optional[Any] = logging.get_logger(__name__) a : Union[str, Any] = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } a : Optional[Any] = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } a : List[str] = """</w>""" a : Dict = """@@ """ def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : int = set() UpperCAmelCase : str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase : str = char return pairs # Speech2Text2 has no max input length a : Any = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] def __init__( self , A , A="<s>" , A="<pad>" , A="</s>" , A="<unk>" , A=False , A=None , **A , ) -> Tuple: super().__init__( unk_token=A , bos_token=A , eos_token=A , pad_token=A , do_lower_case=A , **A , ) UpperCAmelCase : int = do_lower_case with open(A , encoding="""utf-8""" ) as vocab_handle: UpperCAmelCase : Tuple = json.load(A ) UpperCAmelCase : Union[str, Any] = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) UpperCAmelCase : Tuple = None UpperCAmelCase : Optional[int] = None else: with open(A , encoding="""utf-8""" ) as merges_handle: UpperCAmelCase : Tuple = merges_handle.read().split("""\n""" )[:-1] UpperCAmelCase : Dict = [tuple(merge.split()[:2] ) for merge in merges] UpperCAmelCase : List[str] = dict(zip(A , range(len(A ) ) ) ) UpperCAmelCase : Union[str, Any] = {} @property def _lowercase( self ) -> int: return len(self.decoder ) def _lowercase( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase( self , A ) -> Union[str, Any]: UpperCAmelCase : List[Any] = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] UpperCAmelCase : Union[str, Any] = get_pairs(A ) if not pairs: return token while True: UpperCAmelCase : Dict = min(A , key=lambda A : self.bpe_ranks.get(A , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase , UpperCAmelCase : Union[str, Any] = bigram UpperCAmelCase : str = [] UpperCAmelCase : Dict = 0 while i < len(A ): try: UpperCAmelCase : Dict = word.index(A , A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase : List[str] = j if word[i] == first and i < len(A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase : List[Any] = tuple(A ) UpperCAmelCase : Optional[int] = new_word if len(A ) == 1: break else: UpperCAmelCase : Optional[Any] = get_pairs(A ) UpperCAmelCase : str = """ """.join(A ) if word == "\n " + BPE_TOKEN_MERGES: UpperCAmelCase : List[Any] = """\n""" + BPE_TOKEN_MERGES if word.endswith(A ): UpperCAmelCase : List[Any] = word.replace(A , """""" ) UpperCAmelCase : Optional[int] = word.replace(""" """ , A ) UpperCAmelCase : Dict = word return word def _lowercase( self , A ) -> Tuple: if self.bpe_ranks is None: raise ValueError( """This tokenizer was instantiated without a `merges.txt` file, so""" """ that it can only be used for decoding, not for encoding.""" """Make sure to provide `merges.txt` file at instantiation to enable """ """encoding.""" ) if self.do_lower_case: UpperCAmelCase : Tuple = text.lower() UpperCAmelCase : Any = text.split() UpperCAmelCase : List[Any] = [] for token in text: if token: split_tokens.extend(list(self.bpe(A ).split(""" """ ) ) ) return split_tokens def _lowercase( self , A ) -> int: return self.encoder.get(A , self.encoder.get(self.unk_token ) ) def _lowercase( self , A ) -> str: UpperCAmelCase : List[Any] = self.decoder.get(A , self.unk_token ) return result def _lowercase( self , A ) -> str: UpperCAmelCase : Union[str, Any] = """ """.join(A ) # make sure @@ tokens are concatenated UpperCAmelCase : Any = """""".join(string.split(A ) ) return string def _lowercase( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase : List[str] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A , ensure_ascii=A ) + """\n""" ) UpperCAmelCase : List[Any] = 0 if self.bpe_ranks is None: return (vocab_file,) with open(A , """w""" , encoding="""utf-8""" ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) UpperCAmelCase : str = token_index writer.write(""" """.join(A ) + """\n""" ) index += 1 return (vocab_file, merges_file)
338
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor a : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , **A ) -> None: warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , A , ) super().__init__(*A , **A )
338
1
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase_ ( __magic_name__ ): lowercase = (DDPMScheduler,) def _lowercase( self , **A ) -> int: UpperCAmelCase : Optional[int] = { """num_train_timesteps""": 1000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**A ) return config def _lowercase( self ) -> Optional[int]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=A ) def _lowercase( self ) -> List[str]: for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=A , beta_end=A ) def _lowercase( self ) -> Union[str, Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=A ) def _lowercase( self ) -> Optional[Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=A ) def _lowercase( self ) -> List[str]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=A ) def _lowercase( self ) -> str: self.check_over_configs(thresholding=A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=A , prediction_type=A , sample_max_value=A , ) def _lowercase( self ) -> Tuple: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=A ) def _lowercase( self ) -> Dict: for t in [0, 500, 999]: self.check_over_forward(time_step=A ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Optional[int] = self.scheduler_classes[0] UpperCAmelCase : List[Any] = self.get_scheduler_config() UpperCAmelCase : Optional[int] = scheduler_class(**A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def _lowercase( self ) -> Optional[int]: UpperCAmelCase : List[Any] = self.scheduler_classes[0] UpperCAmelCase : int = self.get_scheduler_config() UpperCAmelCase : Tuple = scheduler_class(**A ) UpperCAmelCase : Optional[int] = len(A ) UpperCAmelCase : Optional[Any] = self.dummy_model() UpperCAmelCase : int = self.dummy_sample_deter UpperCAmelCase : Dict = torch.manual_seed(0 ) for t in reversed(range(A ) ): # 1. predict noise residual UpperCAmelCase : List[Any] = model(A , A ) # 2. predict previous mean of sample x_t-1 UpperCAmelCase : str = scheduler.step(A , A , A , generator=A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCAmelCase : List[str] = pred_prev_sample UpperCAmelCase : Any = torch.sum(torch.abs(A ) ) UpperCAmelCase : Dict = torch.mean(torch.abs(A ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def _lowercase( self ) -> Optional[int]: UpperCAmelCase : int = self.scheduler_classes[0] UpperCAmelCase : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""" ) UpperCAmelCase : Union[str, Any] = scheduler_class(**A ) UpperCAmelCase : Any = len(A ) UpperCAmelCase : Optional[Any] = self.dummy_model() UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter UpperCAmelCase : str = torch.manual_seed(0 ) for t in reversed(range(A ) ): # 1. predict noise residual UpperCAmelCase : List[Any] = model(A , A ) # 2. predict previous mean of sample x_t-1 UpperCAmelCase : List[str] = scheduler.step(A , A , A , generator=A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCAmelCase : Tuple = pred_prev_sample UpperCAmelCase : Any = torch.sum(torch.abs(A ) ) UpperCAmelCase : Any = torch.mean(torch.abs(A ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def _lowercase( self ) -> List[str]: UpperCAmelCase : Dict = self.scheduler_classes[0] UpperCAmelCase : Optional[int] = self.get_scheduler_config() UpperCAmelCase : Dict = scheduler_class(**A ) UpperCAmelCase : Union[str, Any] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=A ) UpperCAmelCase : List[Any] = scheduler.timesteps for i, timestep in enumerate(A ): if i == len(A ) - 1: UpperCAmelCase : Optional[int] = -1 else: UpperCAmelCase : Optional[int] = timesteps[i + 1] UpperCAmelCase : str = scheduler.previous_timestep(A ) UpperCAmelCase : Optional[int] = prev_t.item() self.assertEqual(A , A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[Any] = self.scheduler_classes[0] UpperCAmelCase : int = self.get_scheduler_config() UpperCAmelCase : Tuple = scheduler_class(**A ) UpperCAmelCase : Tuple = [100, 87, 50, 51, 0] with self.assertRaises(A , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=A ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = self.scheduler_classes[0] UpperCAmelCase : Optional[Any] = self.get_scheduler_config() UpperCAmelCase : int = scheduler_class(**A ) UpperCAmelCase : List[str] = [100, 87, 50, 1, 0] UpperCAmelCase : int = len(A ) with self.assertRaises(A , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=A , timesteps=A ) def _lowercase( self ) -> Any: UpperCAmelCase : int = self.scheduler_classes[0] UpperCAmelCase : str = self.get_scheduler_config() UpperCAmelCase : Optional[int] = scheduler_class(**A ) UpperCAmelCase : Union[str, Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( A , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=A )
338
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a : Union[str, Any] = logging.get_logger(__name__) a : Union[str, Any] = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'detr' lowercase = ['past_key_values'] lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(A , A ): UpperCAmelCase : Any = backbone_config.get("""model_type""" ) UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : List[Any] = config_class.from_dict(A ) # set timm attributes to None UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = None, None, None UpperCAmelCase : Dict = use_timm_backbone UpperCAmelCase : Any = backbone_config UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : int = num_queries UpperCAmelCase : List[str] = d_model UpperCAmelCase : Tuple = encoder_ffn_dim UpperCAmelCase : Optional[Any] = encoder_layers UpperCAmelCase : Any = encoder_attention_heads UpperCAmelCase : Optional[Any] = decoder_ffn_dim UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : str = dropout UpperCAmelCase : Tuple = attention_dropout UpperCAmelCase : Dict = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : List[Any] = init_std UpperCAmelCase : str = init_xavier_std UpperCAmelCase : List[Any] = encoder_layerdrop UpperCAmelCase : int = decoder_layerdrop UpperCAmelCase : List[Any] = encoder_layers UpperCAmelCase : Union[str, Any] = auxiliary_loss UpperCAmelCase : str = position_embedding_type UpperCAmelCase : Union[str, Any] = backbone UpperCAmelCase : List[str] = use_pretrained_backbone UpperCAmelCase : Optional[int] = dilation # Hungarian matcher UpperCAmelCase : Union[str, Any] = class_cost UpperCAmelCase : Optional[Any] = bbox_cost UpperCAmelCase : List[Any] = giou_cost # Loss coefficients UpperCAmelCase : int = mask_loss_coefficient UpperCAmelCase : Optional[int] = dice_loss_coefficient UpperCAmelCase : Dict = bbox_loss_coefficient UpperCAmelCase : Any = giou_loss_coefficient UpperCAmelCase : Any = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def _lowercase( self ) -> int: return self.encoder_attention_heads @property def _lowercase( self ) -> int: return self.d_model @classmethod def _lowercase( cls , A , **A ) -> Dict: return cls(backbone_config=A , **A ) def _lowercase( self ) -> Dict[str, any]: UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase : Any = self.backbone_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowercase( self ) -> float: return 1e-5 @property def _lowercase( self ) -> int: return 12
338
1
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer a : Tuple = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): lowercase = 'AutoTokenizer' lowercase = ['tokenizer'] lowercase = { 'semantic_prompt': 1, 'coarse_prompt': 2, 'fine_prompt': 2, } def __init__( self , A , A=None ) -> Union[str, Any]: super().__init__(A ) UpperCAmelCase : List[str] = speaker_embeddings @classmethod def _lowercase( cls , A , A="speaker_embeddings_path.json" , **A ) -> Union[str, Any]: if speaker_embeddings_dict_path is not None: UpperCAmelCase : Union[str, Any] = get_file_from_repo( A , A , subfolder=kwargs.pop("""subfolder""" , A ) , cache_dir=kwargs.pop("""cache_dir""" , A ) , force_download=kwargs.pop("""force_download""" , A ) , proxies=kwargs.pop("""proxies""" , A ) , resume_download=kwargs.pop("""resume_download""" , A ) , local_files_only=kwargs.pop("""local_files_only""" , A ) , use_auth_token=kwargs.pop("""use_auth_token""" , A ) , revision=kwargs.pop("""revision""" , A ) , ) if speaker_embeddings_path is None: logger.warning( f'''`{os.path.join(A , A )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) UpperCAmelCase : Optional[Any] = None else: with open(A ) as speaker_embeddings_json: UpperCAmelCase : Tuple = json.load(A ) else: UpperCAmelCase : int = None UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained(A , **A ) return cls(tokenizer=A , speaker_embeddings=A ) def _lowercase( self , A , A="speaker_embeddings_path.json" , A="speaker_embeddings" , A = False , **A , ) -> List[Any]: if self.speaker_embeddings is not None: os.makedirs(os.path.join(A , A , """v2""" ) , exist_ok=A ) UpperCAmelCase : Union[str, Any] = {} UpperCAmelCase : Union[str, Any] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": UpperCAmelCase : str = self._load_voice_preset(A ) UpperCAmelCase : int = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["""repo_or_path"""] , A , f'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=A , ) UpperCAmelCase : List[Any] = os.path.join(A , f'''{prompt_key}_{key}.npy''' ) UpperCAmelCase : List[Any] = tmp_dict with open(os.path.join(A , A ) , """w""" ) as fp: json.dump(A , A ) super().save_pretrained(A , A , **A ) def _lowercase( self , A = None , **A ) -> List[Any]: UpperCAmelCase : Tuple = self.speaker_embeddings[voice_preset] UpperCAmelCase : Optional[int] = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) UpperCAmelCase : Union[str, Any] = get_file_from_repo( self.speaker_embeddings.get("""repo_or_path""" , """/""" ) , voice_preset_paths[key] , subfolder=kwargs.pop("""subfolder""" , A ) , cache_dir=kwargs.pop("""cache_dir""" , A ) , force_download=kwargs.pop("""force_download""" , A ) , proxies=kwargs.pop("""proxies""" , A ) , resume_download=kwargs.pop("""resume_download""" , A ) , local_files_only=kwargs.pop("""local_files_only""" , A ) , use_auth_token=kwargs.pop("""use_auth_token""" , A ) , revision=kwargs.pop("""revision""" , A ) , ) if path is None: raise ValueError( f'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) UpperCAmelCase : Any = np.load(A ) return voice_preset_dict def _lowercase( self , A = None ) -> Optional[int]: for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self , A=None , A=None , A="pt" , A=256 , A=False , A=True , A=False , **A , ) -> List[Any]: if voice_preset is not None and not isinstance(A , A ): if ( isinstance(A , A ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): UpperCAmelCase : List[Any] = self._load_voice_preset(A ) else: if isinstance(A , A ) and not voice_preset.endswith(""".npz""" ): UpperCAmelCase : List[str] = voice_preset + """.npz""" UpperCAmelCase : int = np.load(A ) if voice_preset is not None: self._validate_voice_preset_dict(A , **A ) UpperCAmelCase : List[str] = BatchFeature(data=A , tensor_type=A ) UpperCAmelCase : List[str] = self.tokenizer( A , return_tensors=A , padding="""max_length""" , max_length=A , return_attention_mask=A , return_token_type_ids=A , add_special_tokens=A , **A , ) if voice_preset is not None: UpperCAmelCase : Optional[int] = voice_preset return encoded_text
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[str] = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
'''simple docstring''' from __future__ import annotations from fractions import Fraction def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: return ( num != den and num % 1_0 == den // 1_0 and (num // 1_0) / (den % 1_0) == num / den ) def __lowerCamelCase ( _lowercase ) -> list[str]: UpperCAmelCase : List[str] = [] UpperCAmelCase : str = 1_1 UpperCAmelCase : str = int("""1""" + """0""" * digit_len ) for num in range(_lowercase , _lowercase ): while den <= 9_9: if (num != den) and (num % 1_0 == den // 1_0) and (den % 1_0 != 0): if is_digit_cancelling(_lowercase , _lowercase ): solutions.append(F'''{num}/{den}''' ) den += 1 num += 1 UpperCAmelCase : Any = 1_0 return solutions def __lowerCamelCase ( _lowercase = 2 ) -> int: UpperCAmelCase : List[Any] = 1.0 for fraction in fraction_list(_lowercase ): UpperCAmelCase : int = Fraction(_lowercase ) result *= frac.denominator / frac.numerator return int(_lowercase ) if __name__ == "__main__": print(solution())
338
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" ) if "model" in sd.keys(): UpperCAmelCase : Any = torch.load(_lowercase , map_location="""cpu""" )["""model"""] # pop unnecessary weights UpperCAmelCase : Union[str, Any] = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(_lowercase ) UpperCAmelCase : Tuple = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase : List[Any] = sd.pop(_lowercase ) UpperCAmelCase : Tuple = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase : List[str] = sd[key] # We split QKV in separate Q,K,V UpperCAmelCase : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" ) UpperCAmelCase : Tuple = key.replace(""".qkv_proj.""" , """.k_proj.""" ) UpperCAmelCase : int = key.replace(""".qkv_proj.""" , """.v_proj.""" ) UpperCAmelCase : Dict = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = torch.split(_lowercase , depth // 3 , dim=0 ) UpperCAmelCase : Tuple = q UpperCAmelCase : Tuple = k UpperCAmelCase : Any = v del sd[key] return sd @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Optional[Any]: UpperCAmelCase : Tuple = load_checkpoint(_lowercase ) if config is not None: UpperCAmelCase : Dict = OPTConfig.from_pretrained(_lowercase ) else: UpperCAmelCase : int = OPTConfig() UpperCAmelCase : List[Any] = OPTModel(_lowercase ).half().eval() model.load_state_dict(_lowercase ) # Check results Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") a : Union[str, Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
338
1
'''simple docstring''' def __lowerCamelCase ( _lowercase = 1 , _lowercase = 1_0_0_0 ) -> int: UpperCAmelCase : List[str] = 1 UpperCAmelCase : Tuple = 0 for divide_by_number in range(_lowercase , digit + 1 ): UpperCAmelCase : list[int] = [] UpperCAmelCase : str = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(_lowercase ): UpperCAmelCase : int = len(_lowercase ) UpperCAmelCase : Optional[Any] = divide_by_number else: has_been_divided.append(_lowercase ) UpperCAmelCase : List[Any] = now_divide * 1_0 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
338
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : str = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'levit' def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int: super().__init__(**A ) UpperCAmelCase : Any = image_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : Tuple = kernel_size UpperCAmelCase : Optional[int] = stride UpperCAmelCase : Dict = padding UpperCAmelCase : List[Any] = hidden_sizes UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = depths UpperCAmelCase : Any = key_dim UpperCAmelCase : str = drop_path_rate UpperCAmelCase : List[Any] = patch_size UpperCAmelCase : str = attention_ratio UpperCAmelCase : Optional[Any] = mlp_ratio UpperCAmelCase : Dict = initializer_range UpperCAmelCase : int = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase( self ) -> float: return 1e-4
338
1
'''simple docstring''' from __future__ import annotations from typing import Any class UpperCamelCase_ : def __init__( self , A ) -> None: UpperCAmelCase : List[Any] = num_of_nodes UpperCAmelCase : list[list[int]] = [] UpperCAmelCase : dict[int, int] = {} def _lowercase( self , A , A , A ) -> None: self.m_edges.append([u_node, v_node, weight] ) def _lowercase( self , A ) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _lowercase( self , A ) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: UpperCAmelCase : Union[str, Any] = self.find_component(A ) def _lowercase( self , A , A , A ) -> None: if component_size[u_node] <= component_size[v_node]: UpperCAmelCase : Optional[int] = v_node component_size[v_node] += component_size[u_node] self.set_component(A ) elif component_size[u_node] >= component_size[v_node]: UpperCAmelCase : List[str] = self.find_component(A ) component_size[u_node] += component_size[v_node] self.set_component(A ) def _lowercase( self ) -> None: UpperCAmelCase : List[Any] = [] UpperCAmelCase : List[Any] = 0 UpperCAmelCase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) UpperCAmelCase : Any = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = edge UpperCAmelCase : Optional[Any] = self.m_component[u] UpperCAmelCase : Tuple = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): UpperCAmelCase : int = [u, v, w] for edge in minimum_weight_edge: if isinstance(A , A ): UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = edge UpperCAmelCase : str = self.m_component[u] UpperCAmelCase : Optional[int] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(A , A , A ) print(f'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 UpperCAmelCase : Optional[Any] = [-1] * self.m_num_of_nodes print(f'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def __lowerCamelCase ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
338
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) a : List[str] = """Hello, World!""" a : List[Any] = """en_XX""" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Dict = Path("""data_bin""" ) UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(_lowercase ) UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder UpperCAmelCase : Tuple = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , _lowercase ) UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight UpperCAmelCase : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase : List[str] = model.roberta.encoder.layer[i] UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i] # self attention UpperCAmelCase : Optional[Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias # intermediate UpperCAmelCase : Tuple = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) UpperCAmelCase : List[str] = xmod_layer.fca.weight UpperCAmelCase : str = xmod_layer.fca.bias # output UpperCAmelCase : Any = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) UpperCAmelCase : Dict = xmod_layer.fca.weight UpperCAmelCase : Dict = xmod_layer.fca.bias UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code] UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code] UpperCAmelCase : Any = from_adapter.fca.weight UpperCAmelCase : int = from_adapter.fca.bias UpperCAmelCase : Dict = from_adapter.fca.weight UpperCAmelCase : Dict = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias UpperCAmelCase : str = xmod.model.encoder.lm_head.weight UpperCAmelCase : str = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) UpperCAmelCase : Optional[int] = model(_lowercase )[0] if classification_head: UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) ) else: UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) a : List[str] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
338
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __lowerCamelCase ( _lowercase ) -> List[Any]: for i in range(0 , _lowercase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __lowerCamelCase ( _lowercase ) -> Dict: for i in range(_lowercase , 0 , -1 ): for _ in range(_lowercase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __lowerCamelCase ( _lowercase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowercase ) # upper half reverse_floyd(_lowercase ) # lower half if __name__ == "__main__": print(R"""| /\ | |- | |- |--| |\ /| |-""") print(R"""|/ \| |- |_ |_ |__| | \/ | |_""") a : List[Any] = 1 while K: a : int = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) a : Tuple = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
338
1
'''simple docstring''' from math import sqrt def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0 ) -> int: UpperCAmelCase : int = 0 UpperCAmelCase : int = 0 UpperCAmelCase : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_lowercase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F'''{solution() = }''')
338
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever a : List[str] = logging.getLogger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A=None ) -> Union[str, Any]: super().__init__( A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , ) UpperCAmelCase : Optional[Any] = None def _lowercase( self , A ) -> List[Any]: logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually UpperCAmelCase : Tuple = self._infer_socket_ifname() # avoid clash with the NCCL port UpperCAmelCase : str = str(distributed_port + 1 ) UpperCAmelCase : Any = dist.new_group(ranks=A , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _lowercase( self ) -> Dict: return dist.get_rank(group=self.process_group ) == 0 def _lowercase( self , A , A , A=torch.floataa ) -> str: UpperCAmelCase : List[Any] = torch.empty(A , dtype=A ) dist.scatter(A , src=0 , scatter_list=A , group=self.process_group ) return target_tensor def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names UpperCAmelCase : Optional[int] = next((addr for addr in addrs if addr.startswith("""e""" )) , A ) return ifname def _lowercase( self , A , A ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): UpperCAmelCase , UpperCAmelCase : str = self._main_retrieve(A , A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A ) # distributed training UpperCAmelCase : int = dist.get_world_size(group=self.process_group ) # gather logic UpperCAmelCase : int = None if self._is_main(): UpperCAmelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )] dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group ) # scatter logic UpperCAmelCase : List[Any] = question_hidden_states.shape[0] UpperCAmelCase : Tuple = [] UpperCAmelCase : Any = [] if self._is_main(): assert len(A ) == world_size UpperCAmelCase , UpperCAmelCase : Optional[int] = self._main_retrieve(torch.cat(A ).numpy() , A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = torch.tensor(A ), torch.tensor(A ) UpperCAmelCase : List[str] = self._chunk_tensor(A , A ) UpperCAmelCase : Union[str, Any] = self._chunk_tensor(A , A ) UpperCAmelCase : Tuple = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa ) UpperCAmelCase : Optional[Any] = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
338
1
'''simple docstring''' import random def __lowerCamelCase ( _lowercase , _lowercase , _lowercase = False ) -> dict: UpperCAmelCase : dict = {i: [] for i in range(_lowercase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_lowercase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_lowercase ): for j in range(i + 1 , _lowercase ): if random.random() < probability: graph[i].append(_lowercase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_lowercase ) return graph def __lowerCamelCase ( _lowercase ) -> dict: return { i: [j for j in range(_lowercase ) if i != j] for i in range(_lowercase ) } if __name__ == "__main__": import doctest doctest.testmod()
338
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : List[str] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } a : List[Any] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } a : List[Any] = { """facebook/blenderbot_small-90M""": 5_1_2, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = BlenderbotSmallTokenizer def __init__( self , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , A=True , **A , ) -> Union[str, Any]: super().__init__( ByteLevelBPETokenizer( vocab=A , merges=A , add_prefix_space=A , trim_offsets=A , ) , bos_token=A , eos_token=A , unk_token=A , **A , ) UpperCAmelCase : Optional[Any] = add_prefix_space def _lowercase( self , A , A=None ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
338
1
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( _lowercase ) -> list: if len(_lowercase ) == 0: return [] UpperCAmelCase , UpperCAmelCase : Union[str, Any] = min(_lowercase ), max(_lowercase ) UpperCAmelCase : str = int(max_value - min_value ) + 1 UpperCAmelCase : list[list] = [[] for _ in range(_lowercase )] for i in my_list: buckets[int(i - min_value )].append(_lowercase ) return [v for bucket in buckets for v in sorted(_lowercase )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
338
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A = None , A = None , A = False , **A , ) -> Tuple: super().__init__(features=A , cache_dir=A , keep_in_memory=A , **A ) UpperCAmelCase : Any = Sql( cache_dir=A , features=A , sql=A , con=A , **A , ) def _lowercase( self ) -> Dict: UpperCAmelCase : Any = None UpperCAmelCase : Any = None UpperCAmelCase : int = None UpperCAmelCase : int = None self.builder.download_and_prepare( download_config=A , download_mode=A , verification_mode=A , base_path=A , ) # Build dataset for splits UpperCAmelCase : str = self.builder.as_dataset( split="""train""" , verification_mode=A , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase_ : def __init__( self , A , A , A , A = None , A = None , **A , ) -> str: if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) UpperCAmelCase : Dict = dataset UpperCAmelCase : List[Any] = name UpperCAmelCase : Any = con UpperCAmelCase : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase : Optional[Any] = num_proc UpperCAmelCase : str = to_sql_kwargs def _lowercase( self ) -> int: UpperCAmelCase : Any = self.to_sql_kwargs.pop("""sql""" , A ) UpperCAmelCase : str = self.to_sql_kwargs.pop("""con""" , A ) UpperCAmelCase : Union[str, Any] = self.to_sql_kwargs.pop("""index""" , A ) UpperCAmelCase : str = self._write(index=A , **self.to_sql_kwargs ) return written def _lowercase( self , A ) -> Any: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = args UpperCAmelCase : Union[str, Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs UpperCAmelCase : int = query_table( table=self.dataset.data , key=slice(A , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCAmelCase : Any = batch.to_pandas() UpperCAmelCase : List[Any] = df.to_sql(self.name , self.con , index=A , **A ) return num_rows or len(A ) def _lowercase( self , A , **A ) -> int: UpperCAmelCase : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: UpperCAmelCase , UpperCAmelCase : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , A , A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
338
1
'''simple docstring''' import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures a : Tuple = logging.get_logger(__name__) @dataclass class UpperCamelCase_ : lowercase = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) lowercase = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) lowercase = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase = field( default=__magic_name__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def _lowercase( self ) -> Dict: UpperCAmelCase : List[str] = self.task_name.lower() class UpperCamelCase_ ( __magic_name__ ): lowercase = 'train' lowercase = 'dev' lowercase = 'test' class UpperCamelCase_ ( __magic_name__ ): lowercase = 42 lowercase = 42 lowercase = 42 def __init__( self , A , A , A = None , A = Split.train , A = None , ) -> Any: warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , A , ) UpperCAmelCase : Dict = args UpperCAmelCase : Tuple = glue_processors[args.task_name]() UpperCAmelCase : Dict = glue_output_modes[args.task_name] if isinstance(A , A ): try: UpperCAmelCase : Any = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file UpperCAmelCase : Tuple = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , ) UpperCAmelCase : str = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = label_list[2], label_list[1] UpperCAmelCase : Tuple = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase : Optional[Any] = cached_features_file + """.lock""" with FileLock(A ): if os.path.exists(A ) and not args.overwrite_cache: UpperCAmelCase : int = time.time() UpperCAmelCase : str = torch.load(A ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) else: logger.info(f'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: UpperCAmelCase : str = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: UpperCAmelCase : Dict = self.processor.get_test_examples(args.data_dir ) else: UpperCAmelCase : Tuple = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: UpperCAmelCase : int = examples[:limit_length] UpperCAmelCase : str = glue_convert_examples_to_features( A , A , max_length=args.max_seq_length , label_list=A , output_mode=self.output_mode , ) UpperCAmelCase : Union[str, Any] = time.time() torch.save(self.features , A ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> List[Any]: return len(self.features ) def __getitem__( self , A ) -> InputFeatures: return self.features[i] def _lowercase( self ) -> Optional[Any]: return self.label_list
338
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCamelCase_ : lowercase = MBartConfig lowercase = {} lowercase = 'gelu' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : str = is_training UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Optional[Any] = eos_token_id UpperCAmelCase : List[str] = pad_token_id UpperCAmelCase : List[Any] = bos_token_id def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A ) return config, inputs_dict def _lowercase( self , A , A ) -> List[str]: UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder() UpperCAmelCase : int = inputs_dict["""input_ids"""] UpperCAmelCase : str = input_ids[:1, :] UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase : List[str] = inputs_dict["""head_mask"""] UpperCAmelCase : List[Any] = 1 # first forward pass UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = outputs.to_tuple() UpperCAmelCase : int = past_key_values[1] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]: if attention_mask is None: UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False def _lowercase( self , A , A , A , A , A ) -> int: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : int = TFMBartModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A ) def _lowercase( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase( self ) -> Dict: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_sentencepiece @require_tokenizers @require_tf class UpperCamelCase_ ( unittest.TestCase ): lowercase = [ ' UN Chief Says There Is No Military Solution in Syria', ] lowercase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] lowercase = 'facebook/mbart-large-en-ro' @cached_property def _lowercase( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowercase( self , **A ) -> Any: UpperCAmelCase : Optional[int] = self.translate_src_text(**A ) self.assertListEqual(self.expected_text , A ) def _lowercase( self , **A ) -> Optional[Any]: UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" ) UpperCAmelCase : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A ) return generated_words @slow def _lowercase( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
338
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a : Any = { """configuration_conditional_detr""": [ """CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConditionalDetrConfig""", """ConditionalDetrOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = ["""ConditionalDetrFeatureExtractor"""] a : Tuple = ["""ConditionalDetrImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ """CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConditionalDetrForObjectDetection""", """ConditionalDetrForSegmentation""", """ConditionalDetrModel""", """ConditionalDetrPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: UpperCAmelCase : Tuple = len(_lowercase ) + 1 UpperCAmelCase : List[Any] = len(_lowercase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase : str = [[0 for i in range(_lowercase )] for j in range(_lowercase )] # since string of zero length match pattern of zero length UpperCAmelCase : int = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowercase ): UpperCAmelCase : str = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowercase ): UpperCAmelCase : Optional[Any] = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowercase ): for j in range(1 , _lowercase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase : Union[str, Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase : List[Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase : Optional[int] = dp[i - 1][j] else: UpperCAmelCase : Any = 0 else: UpperCAmelCase : str = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") a : List[str] = """aab""" a : Optional[int] = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
338
1
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[str]: # Load configuration defined in the metadata file with open(_lowercase ) as metadata_file: UpperCAmelCase : Any = json.load(_lowercase ) UpperCAmelCase : Any = LukeConfig(use_entity_aware_attention=_lowercase , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" )["""module"""] # Load the entity vocab file UpperCAmelCase : Any = load_original_entity_vocab(_lowercase ) # add an entry for [MASK2] UpperCAmelCase : Any = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 UpperCAmelCase : Optional[int] = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks UpperCAmelCase : Dict = AddedToken("""<ent>""" , lstrip=_lowercase , rstrip=_lowercase ) UpperCAmelCase : int = AddedToken("""<ent2>""" , lstrip=_lowercase , rstrip=_lowercase ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(_lowercase ) with open(os.path.join(_lowercase , """tokenizer_config.json""" ) , """r""" ) as f: UpperCAmelCase : Optional[Any] = json.load(_lowercase ) UpperCAmelCase : int = """MLukeTokenizer""" with open(os.path.join(_lowercase , """tokenizer_config.json""" ) , """w""" ) as f: json.dump(_lowercase , _lowercase ) with open(os.path.join(_lowercase , MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(_lowercase , _lowercase ) UpperCAmelCase : Optional[Any] = MLukeTokenizer.from_pretrained(_lowercase ) # Initialize the embeddings of the special tokens UpperCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(["""@"""] )[0] UpperCAmelCase : str = tokenizer.convert_tokens_to_ids(["""#"""] )[0] UpperCAmelCase : List[Any] = state_dict["""embeddings.word_embeddings.weight"""] UpperCAmelCase : Optional[Any] = word_emb[ent_init_index].unsqueeze(0 ) UpperCAmelCase : List[str] = word_emb[enta_init_index].unsqueeze(0 ) UpperCAmelCase : List[str] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: UpperCAmelCase : Any = state_dict[bias_name] UpperCAmelCase : Dict = decoder_bias[ent_init_index].unsqueeze(0 ) UpperCAmelCase : Optional[int] = decoder_bias[enta_init_index].unsqueeze(0 ) UpperCAmelCase : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: UpperCAmelCase : int = F'''encoder.layer.{layer_index}.attention.self.''' UpperCAmelCase : Union[str, Any] = state_dict[prefix + matrix_name] UpperCAmelCase : Dict = state_dict[prefix + matrix_name] UpperCAmelCase : List[str] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks UpperCAmelCase : int = state_dict["""entity_embeddings.entity_embeddings.weight"""] UpperCAmelCase : str = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) UpperCAmelCase : List[str] = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' UpperCAmelCase : Tuple = state_dict["""entity_predictions.bias"""] UpperCAmelCase : List[str] = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) UpperCAmelCase : Dict = torch.cat([entity_prediction_bias, entity_mask_bias] ) UpperCAmelCase : Any = LukeForMaskedLM(config=_lowercase ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) UpperCAmelCase : Any = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): UpperCAmelCase : int = state_dict[key] else: UpperCAmelCase : List[str] = state_dict[key] UpperCAmelCase , UpperCAmelCase : int = model.load_state_dict(_lowercase , strict=_lowercase ) if set(_lowercase ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(_lowercase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs UpperCAmelCase : List[Any] = MLukeTokenizer.from_pretrained(_lowercase , task="""entity_classification""" ) UpperCAmelCase : Dict = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" UpperCAmelCase : Dict = (0, 9) UpperCAmelCase : Union[str, Any] = tokenizer(_lowercase , entity_spans=[span] , return_tensors="""pt""" ) UpperCAmelCase : Dict = model(**_lowercase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base UpperCAmelCase : str = torch.Size((1, 3_3, 7_6_8) ) UpperCAmelCase : str = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _lowercase , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base UpperCAmelCase : Tuple = torch.Size((1, 1, 7_6_8) ) UpperCAmelCase : int = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _lowercase , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction UpperCAmelCase : Dict = MLukeTokenizer.from_pretrained(_lowercase ) UpperCAmelCase : Union[str, Any] = """Tokyo is the capital of <mask>.""" UpperCAmelCase : List[str] = (2_4, 3_0) UpperCAmelCase : Tuple = tokenizer(_lowercase , entity_spans=[span] , return_tensors="""pt""" ) UpperCAmelCase : str = model(**_lowercase ) UpperCAmelCase : Union[str, Any] = encoding["""input_ids"""][0].tolist() UpperCAmelCase : Union[str, Any] = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) UpperCAmelCase : Optional[Any] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_lowercase ) UpperCAmelCase : int = outputs.entity_logits[0][0].argmax().item() UpperCAmelCase : Dict = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(_lowercase ) ) model.save_pretrained(_lowercase ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: UpperCAmelCase : Optional[Any] = ["""[MASK]""", """[PAD]""", """[UNK]"""] UpperCAmelCase : str = [json.loads(_lowercase ) for line in open(_lowercase )] UpperCAmelCase : str = {} for entry in data: UpperCAmelCase : Dict = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: UpperCAmelCase : Optional[int] = entity_id break UpperCAmelCase : Optional[int] = F'''{language}:{entity_name}''' UpperCAmelCase : Optional[int] = entity_id return new_mapping if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) a : Optional[Any] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
338
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : List[str] = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int: UpperCAmelCase : int = 1 UpperCAmelCase : str = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase : Tuple = pre_numerator UpperCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase : Union[str, Any] = cur_numerator UpperCAmelCase : Optional[int] = e_cont * pre_numerator + temp return sum_digits(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
338
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a : int = logging.get_logger(__name__) a : int = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off a : Tuple = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] a : Optional[int] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class UpperCamelCase_ ( __magic_name__ ): lowercase = 'whisper' lowercase = ['past_key_values'] lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]: UpperCAmelCase : str = vocab_size UpperCAmelCase : Union[str, Any] = num_mel_bins UpperCAmelCase : Tuple = d_model UpperCAmelCase : Optional[int] = encoder_layers UpperCAmelCase : List[str] = encoder_attention_heads UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : int = decoder_attention_heads UpperCAmelCase : Optional[int] = decoder_ffn_dim UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : List[str] = dropout UpperCAmelCase : Optional[Any] = attention_dropout UpperCAmelCase : Optional[Any] = activation_dropout UpperCAmelCase : Optional[Any] = activation_function UpperCAmelCase : Optional[Any] = init_std UpperCAmelCase : int = encoder_layerdrop UpperCAmelCase : Dict = decoder_layerdrop UpperCAmelCase : Optional[int] = use_cache UpperCAmelCase : List[str] = encoder_layers UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Union[str, Any] = max_source_positions UpperCAmelCase : Tuple = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : List[str] = classifier_proj_size UpperCAmelCase : Optional[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : int = mask_time_prob UpperCAmelCase : int = mask_time_length UpperCAmelCase : Dict = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Optional[int] = mask_feature_length UpperCAmelCase : int = mask_feature_min_masks UpperCAmelCase : List[Any] = median_filter_width super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , ) class UpperCamelCase_ ( __magic_name__ ): @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : str = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase : List[Any] = {0: """batch"""} else: UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) return common_inputs def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Optional[int] = OrderedDict() UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , ) UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2] UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Any = super().generate_dummy_inputs( preprocessor.tokenizer , A , A , A , A ) UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" ) UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def _lowercase( self ) -> float: return 1e-3
338
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=0.0_1 , A=1000 ) -> List[str]: UpperCAmelCase : List[Any] = p_stop UpperCAmelCase : Optional[int] = max_length def __iter__( self ) -> Union[str, Any]: UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = False while not stop and count < self.max_length: yield count count += 1 UpperCAmelCase : Any = random.random() < self.p_stop class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A , A=False , A=True ) -> Union[str, Any]: UpperCAmelCase : List[str] = [ BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A ) for i in range(2 ) ] UpperCAmelCase : List[str] = [list(A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] ) self.assertListEqual(A , A ) def _lowercase( self ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is very small. UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [[], []] self.check_batch_sampler_shards(A , A ) def _lowercase( self ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A ) def _lowercase( self ) -> Any: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : str = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [[], []] self.check_batch_sampler_shards(A , A , even_batches=A ) def _lowercase( self ) -> List[Any]: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCAmelCase : List[str] = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _lowercase( self , A , A , A , A=False , A=2 , A=False ) -> Tuple: random.seed(A ) UpperCAmelCase : Dict = list(A ) UpperCAmelCase : Any = [ IterableDatasetShard( A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , ) for i in range(A ) ] UpperCAmelCase : Dict = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(A ) iterable_dataset_lists.append(list(A ) ) UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCAmelCase : List[Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(A ) , len(A ) ) self.assertTrue(len(A ) % shard_batch_size == 0 ) UpperCAmelCase : List[Any] = [] for idx in range(0 , len(A ) , A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(A ) < len(A ): reference += reference self.assertListEqual(A , reference[: len(A )] ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = 42 UpperCAmelCase : List[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) # Edge case with a very small dataset UpperCAmelCase : List[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = SkipBatchSampler(A , 2 ) self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> int: UpperCAmelCase : Any = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) UpperCAmelCase : Optional[Any] = skip_first_batches(A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowercase( self ) -> Dict: Accelerator() UpperCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
338
1
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = IFPipeline lowercase = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} lowercase = TEXT_TO_IMAGE_BATCH_PARAMS lowercase = PipelineTesterMixin.required_optional_params - {'latents'} def _lowercase( self ) -> int: return self._get_dummy_components() def _lowercase( self , A , A=0 ) -> Optional[Any]: if str(A ).startswith("""mps""" ): UpperCAmelCase : Optional[Any] = torch.manual_seed(A ) else: UpperCAmelCase : List[Any] = torch.Generator(device=A ).manual_seed(A ) UpperCAmelCase : List[str] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _lowercase( self ) -> Any: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _lowercase( self ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _lowercase( self ) -> Tuple: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _lowercase( self ) -> Any: self._test_save_load_local() def _lowercase( self ) -> Optional[Any]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _lowercase( self ) -> Union[str, Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase( self ) -> Optional[Any]: # if UpperCAmelCase : List[Any] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa ) UpperCAmelCase : Optional[Any] = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=A , tokenizer=A ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""" ) UpperCAmelCase , UpperCAmelCase : List[Any] = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() UpperCAmelCase : str = None UpperCAmelCase : Dict = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(A , A , A , A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img UpperCAmelCase : Union[str, Any] = IFImgaImgPipeline(**pipe_a.components ) UpperCAmelCase : Any = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(A , A , A , A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting UpperCAmelCase : List[str] = IFInpaintingPipeline(**pipe_a.components ) UpperCAmelCase : int = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(A , A , A , A ) def _lowercase( self , A , A , A , A ) -> str: # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase : Any = pipe_a( prompt_embeds=A , negative_prompt_embeds=A , num_inference_steps=2 , generator=A , output_type="""np""" , ) UpperCAmelCase : Dict = output.images[0] assert image.shape == (64, 64, 3) UpperCAmelCase : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 UpperCAmelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""" ) assert_mean_pixel_difference(A , A ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase : Optional[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(A ) UpperCAmelCase : List[Any] = pipe_a( prompt_embeds=A , negative_prompt_embeds=A , image=A , generator=A , num_inference_steps=2 , output_type="""np""" , ) UpperCAmelCase : Optional[Any] = output.images[0] assert image.shape == (256, 256, 3) UpperCAmelCase : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCAmelCase : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(A , A ) def _lowercase( self , A , A , A , A ) -> Union[str, Any]: # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(A ) UpperCAmelCase : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase : List[Any] = pipe_a( prompt_embeds=A , negative_prompt_embeds=A , image=A , num_inference_steps=2 , generator=A , output_type="""np""" , ) UpperCAmelCase : Any = output.images[0] assert image.shape == (64, 64, 3) UpperCAmelCase : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCAmelCase : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""" ) assert_mean_pixel_difference(A , A ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase : Any = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(A ) UpperCAmelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(A ) UpperCAmelCase : Optional[Any] = pipe_a( prompt_embeds=A , negative_prompt_embeds=A , image=A , original_image=A , generator=A , num_inference_steps=2 , output_type="""np""" , ) UpperCAmelCase : Tuple = output.images[0] assert image.shape == (256, 256, 3) UpperCAmelCase : Optional[int] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCAmelCase : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(A , A ) def _lowercase( self , A , A , A , A ) -> Tuple: # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(A ) UpperCAmelCase : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(A ) UpperCAmelCase : Optional[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe_a( prompt_embeds=A , negative_prompt_embeds=A , image=A , mask_image=A , num_inference_steps=2 , generator=A , output_type="""np""" , ) UpperCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (64, 64, 3) UpperCAmelCase : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCAmelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""" ) assert_mean_pixel_difference(A , A ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase : Any = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(A ) UpperCAmelCase : Any = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(A ) UpperCAmelCase : str = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(A ) UpperCAmelCase : str = pipe_a( prompt_embeds=A , negative_prompt_embeds=A , image=A , mask_image=A , original_image=A , generator=A , num_inference_steps=2 , output_type="""np""" , ) UpperCAmelCase : int = output.images[0] assert image.shape == (256, 256, 3) UpperCAmelCase : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCAmelCase : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(A , A ) def __lowerCamelCase ( ) -> Dict: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[Any] = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> int: if not isinstance(_lowercase , _lowercase ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) UpperCAmelCase : Optional[Any] = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
338
'''simple docstring''' from math import loga def __lowerCamelCase ( _lowercase ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_lowercase , _lowercase ): raise TypeError("""Input value must be a 'int' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
338
1
'''simple docstring''' import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL a : List[str] = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> Tuple[int, int]: def constraint_to_multiple_of(_lowercase , _lowercase , _lowercase=0 , _lowercase=None ): UpperCAmelCase : str = round(val / multiple ) * multiple if max_val is not None and x > max_val: UpperCAmelCase : Optional[Any] = math.floor(val / multiple ) * multiple if x < min_val: UpperCAmelCase : int = math.ceil(val / multiple ) * multiple return x UpperCAmelCase : Tuple = (output_size, output_size) if isinstance(_lowercase , _lowercase ) else output_size UpperCAmelCase , UpperCAmelCase : Optional[int] = get_image_size(_lowercase ) UpperCAmelCase , UpperCAmelCase : List[Any] = output_size # determine new height and width UpperCAmelCase : Any = output_height / input_height UpperCAmelCase : Dict = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width UpperCAmelCase : Tuple = scale_width else: # fit height UpperCAmelCase : Optional[Any] = scale_height UpperCAmelCase : Any = constraint_to_multiple_of(scale_height * input_height , multiple=_lowercase ) UpperCAmelCase : Dict = constraint_to_multiple_of(scale_width * input_width , multiple=_lowercase ) return (new_height, new_width) class UpperCamelCase_ ( __magic_name__ ): lowercase = ['pixel_values'] def __init__( self , A = True , A = None , A = PILImageResampling.BILINEAR , A = False , A = 1 , A = True , A = 1 / 255 , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) UpperCAmelCase : int = size if size is not None else {"""height""": 384, """width""": 384} UpperCAmelCase : str = get_size_dict(A ) UpperCAmelCase : Optional[Any] = do_resize UpperCAmelCase : int = size UpperCAmelCase : str = keep_aspect_ratio UpperCAmelCase : Optional[Any] = ensure_multiple_of UpperCAmelCase : Tuple = resample UpperCAmelCase : List[Any] = do_rescale UpperCAmelCase : Any = rescale_factor UpperCAmelCase : Optional[int] = do_normalize UpperCAmelCase : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase( self , A , A , A = False , A = 1 , A = PILImageResampling.BICUBIC , A = None , **A , ) -> np.ndarray: UpperCAmelCase : List[str] = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) UpperCAmelCase : List[Any] = get_resize_output_image_size( A , output_size=(size["""height"""], size["""width"""]) , keep_aspect_ratio=A , multiple=A , ) return resize(A , size=A , resample=A , data_format=A , **A ) def _lowercase( self , A , A , A = None , **A , ) -> int: return rescale(A , scale=A , data_format=A , **A ) def _lowercase( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def _lowercase( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: UpperCAmelCase : List[Any] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase : Optional[Any] = size if size is not None else self.size UpperCAmelCase : Optional[int] = get_size_dict(A ) UpperCAmelCase : Tuple = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio UpperCAmelCase : str = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of UpperCAmelCase : Tuple = resample if resample is not None else self.resample UpperCAmelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase : int = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase : List[str] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase : List[Any] = image_std if image_std is not None else self.image_std UpperCAmelCase : Union[str, Any] = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. UpperCAmelCase : Union[str, Any] = [to_numpy_array(A ) for image in images] if do_resize: UpperCAmelCase : int = [self.resize(image=A , size=A , resample=A ) for image in images] if do_rescale: UpperCAmelCase : List[Any] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: UpperCAmelCase : Union[str, Any] = [self.normalize(image=A , mean=A , std=A ) for image in images] UpperCAmelCase : List[str] = [to_channel_dimension_format(A , A ) for image in images] UpperCAmelCase : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A ) def _lowercase( self , A , A = None ) -> List[str]: UpperCAmelCase : List[str] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A ) != len(A ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(A ): UpperCAmelCase : Optional[int] = target_sizes.numpy() UpperCAmelCase : List[Any] = [] for idx in range(len(A ) ): UpperCAmelCase : Optional[int] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=A ) UpperCAmelCase : List[str] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A ) else: UpperCAmelCase : Tuple = logits.argmax(dim=1 ) UpperCAmelCase : Union[str, Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
338
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. a : Optional[int] = 1_0 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: for i in range(_lowercase , _lowercase ): if array[i] == target: return i return -1 def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = len(_lowercase ) while left <= right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1 UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase : Any = one_third - 1 elif array[two_third] < target: UpperCAmelCase : Tuple = two_third + 1 else: UpperCAmelCase : int = one_third + 1 UpperCAmelCase : List[Any] = two_third - 1 else: return -1 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: if left < right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : str = (left + right) // 3 + 1 UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() a : Any = input("""Enter numbers separated by comma:\n""").strip() a : Any = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip()) a : Union[str, Any] = ite_ternary_search(collection, target) a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
338
1
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="""%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s""", datefmt="""%Y-%m-%d %H:%M:%S""", level=os.environ.get("""LOGLEVEL""", """INFO""").upper(), stream=sys.stdout, ) a : Optional[int] = logging.getLogger(__name__) a : Dict = {"""facebook/bart-base""": BartForConditionalGeneration} a : Tuple = {"""facebook/bart-base""": BartTokenizer} def __lowerCamelCase ( ) -> Any: UpperCAmelCase : List[Any] = argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""" ) parser.add_argument( """--validation_file""" , type=_lowercase , default=_lowercase , help="""A csv or a json file containing the validation data.""" ) parser.add_argument( """--max_length""" , type=_lowercase , default=5 , help="""The maximum total input sequence length after tokenization.""" , ) parser.add_argument( """--num_beams""" , type=_lowercase , default=_lowercase , help=( """Number of beams to use for evaluation. This argument will be """ """passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.""" ) , ) parser.add_argument( """--model_name_or_path""" , type=_lowercase , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=_lowercase , ) parser.add_argument( """--config_name""" , type=_lowercase , default=_lowercase , help="""Pretrained config name or path if not the same as model_name""" , ) parser.add_argument( """--device""" , type=_lowercase , default="""cpu""" , help="""Device where the model will be run""" , ) parser.add_argument("""--output_file_path""" , type=_lowercase , default=_lowercase , help="""Where to store the final ONNX file.""" ) UpperCAmelCase : Optional[Any] = parser.parse_args() return args def __lowerCamelCase ( _lowercase , _lowercase="cpu" ) -> int: UpperCAmelCase : Union[str, Any] = model_dict[model_name].from_pretrained(_lowercase ).to(_lowercase ) UpperCAmelCase : Tuple = tokenizer_dict[model_name].from_pretrained(_lowercase ) if model_name in ["facebook/bart-base"]: UpperCAmelCase : List[Any] = 0 UpperCAmelCase : str = None UpperCAmelCase : Tuple = 0 return huggingface_model, tokenizer def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Tuple: model.eval() UpperCAmelCase : Tuple = None UpperCAmelCase : Union[str, Any] = torch.jit.script(BARTBeamSearchGenerator(_lowercase ) ) with torch.no_grad(): UpperCAmelCase : int = """My friends are cool but they eat too many carbs.""" UpperCAmelCase : Dict = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_0_2_4 , return_tensors="""pt""" ).to(model.device ) UpperCAmelCase : List[Any] = model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=_lowercase , max_length=_lowercase , early_stopping=_lowercase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _lowercase , ( inputs["""input_ids"""], inputs["""attention_mask"""], num_beams, max_length, model.config.decoder_start_token_id, ) , _lowercase , opset_version=1_4 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """seq"""}, """output_ids""": {0: """batch""", 1: """seq_out"""}, } , example_outputs=_lowercase , ) logger.info("""Model exported to {}""".format(_lowercase ) ) UpperCAmelCase : Optional[int] = remove_dup_initializers(os.path.abspath(_lowercase ) ) logger.info("""Deduplicated and optimized model written to {}""".format(_lowercase ) ) UpperCAmelCase : Union[str, Any] = onnxruntime.InferenceSession(_lowercase ) UpperCAmelCase : List[str] = ort_sess.run( _lowercase , { """input_ids""": inputs["""input_ids"""].cpu().numpy(), """attention_mask""": inputs["""attention_mask"""].cpu().numpy(), """num_beams""": np.array(_lowercase ), """max_length""": np.array(_lowercase ), """decoder_start_token_id""": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info("""Model outputs from torch and ONNX Runtime are similar.""" ) logger.info("""Success.""" ) def __lowerCamelCase ( ) -> Optional[int]: UpperCAmelCase : Any = parse_args() UpperCAmelCase : str = 5 UpperCAmelCase : Optional[Any] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() UpperCAmelCase : Dict = torch.device(args.device ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = load_model_tokenizer(args.model_name_or_path , _lowercase ) if model.config.decoder_start_token_id is None: raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""" ) model.to(_lowercase ) if args.max_length: UpperCAmelCase : Optional[int] = args.max_length if args.num_beams: UpperCAmelCase : int = args.num_beams if args.output_file_path: UpperCAmelCase : Tuple = args.output_file_path else: UpperCAmelCase : int = """BART.onnx""" logger.info("""Exporting model to ONNX""" ) export_and_validate_model(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) if __name__ == "__main__": main()
338
'''simple docstring''' import numpy as np class UpperCamelCase_ : def __init__( self ) -> int: UpperCAmelCase : str = (0, 0) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Any = 0 UpperCAmelCase : int = 0 UpperCAmelCase : Optional[int] = 0 def __eq__( self , A ) -> Optional[Any]: return self.position == cell.position def _lowercase( self ) -> Tuple: print(self.position ) class UpperCamelCase_ : def __init__( self , A=(5, 5) ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = np.zeros(A ) UpperCAmelCase : int = world_size[0] UpperCAmelCase : List[str] = world_size[1] def _lowercase( self ) -> List[Any]: print(self.w ) def _lowercase( self , A ) -> Dict: UpperCAmelCase : Optional[Any] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase : List[Any] = cell.position[0] UpperCAmelCase : Union[str, Any] = cell.position[1] UpperCAmelCase : Optional[int] = [] for n in neughbour_cord: UpperCAmelCase : Any = current_x + n[0] UpperCAmelCase : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase : str = Cell() UpperCAmelCase : List[str] = (x, y) UpperCAmelCase : Dict = cell neighbours.append(A ) return neighbours def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase : List[Any] = [] UpperCAmelCase : Optional[int] = [] _open.append(_lowercase ) while _open: UpperCAmelCase : Any = np.argmin([n.f for n in _open] ) UpperCAmelCase : Optional[int] = _open[min_f] _closed.append(_open.pop(_lowercase ) ) if current == goal: break for n in world.get_neigbours(_lowercase ): for c in _closed: if c == n: continue UpperCAmelCase : List[str] = current.g + 1 UpperCAmelCase , UpperCAmelCase : List[str] = n.position UpperCAmelCase , UpperCAmelCase : Dict = goal.position UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase : Dict = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_lowercase ) UpperCAmelCase : Dict = [] while current.parent is not None: path.append(current.position ) UpperCAmelCase : Optional[int] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": a : List[str] = Gridworld() # Start position and goal a : Optional[int] = Cell() a : Optional[Any] = (0, 0) a : Optional[Any] = Cell() a : str = (4, 4) print(F'''path from {start.position} to {goal.position}''') a : List[Any] = astar(world, start, goal) # Just for visual reasons. for i in s: a : Any = 1 print(world.w)
338
1
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = LxmertTokenizer lowercase = LxmertTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> int: super().setUp() UpperCAmelCase : str = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _lowercase( self , A ) -> str: UpperCAmelCase : Dict = """UNwant\u00E9d,running""" UpperCAmelCase : str = """unwanted, running""" return input_text, output_text def _lowercase( self ) -> str: UpperCAmelCase : Optional[Any] = self.tokenizer_class(self.vocab_file ) UpperCAmelCase : Tuple = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(A , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [7, 4, 5, 10, 8, 9] ) def _lowercase( self ) -> Any: if not self.test_rust_tokenizer: return UpperCAmelCase : List[str] = self.get_tokenizer() UpperCAmelCase : List[str] = self.get_rust_tokenizer() UpperCAmelCase : str = """I was born in 92000, and this is falsé.""" UpperCAmelCase : Any = tokenizer.tokenize(A ) UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(A ) self.assertListEqual(A , A ) UpperCAmelCase : Tuple = tokenizer.encode(A , add_special_tokens=A ) UpperCAmelCase : List[Any] = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) UpperCAmelCase : List[Any] = self.get_rust_tokenizer() UpperCAmelCase : Optional[Any] = tokenizer.encode(A ) UpperCAmelCase : List[Any] = rust_tokenizer.encode(A ) self.assertListEqual(A , A )
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
'''simple docstring''' # Imports import numpy as np class UpperCamelCase_ : def __init__( self , A=None , A=None , A=None , A=None , A=None ) -> Union[str, Any]: self.set_matricies(red=A , green=A , blue=A , red_edge=A , nir=A ) def _lowercase( self , A=None , A=None , A=None , A=None , A=None ) -> Dict: if red is not None: UpperCAmelCase : Optional[Any] = red if green is not None: UpperCAmelCase : Optional[Any] = green if blue is not None: UpperCAmelCase : List[Any] = blue if red_edge is not None: UpperCAmelCase : Dict = red_edge if nir is not None: UpperCAmelCase : str = nir return True def _lowercase( self , A="" , A=None , A=None , A=None , A=None , A=None ) -> List[Any]: self.set_matricies(red=A , green=A , blue=A , red_edge=A , nir=A ) UpperCAmelCase : Tuple = { """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def _lowercase( self ) -> int: return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _lowercase( self ) -> Optional[int]: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _lowercase( self ) -> Any: return self.nir * (self.red / (self.green**2)) def _lowercase( self ) -> int: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _lowercase( self ) -> Any: return (self.nir - self.red) / (self.nir + self.red) def _lowercase( self ) -> Optional[Any]: return (self.nir - self.blue) / (self.nir + self.blue) def _lowercase( self ) -> Dict: return (self.redEdge - self.red) / (self.redEdge + self.red) def _lowercase( self ) -> Dict: return (self.nir - self.green) / (self.nir + self.green) def _lowercase( self ) -> str: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _lowercase( self ) -> List[Any]: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _lowercase( self ) -> List[str]: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _lowercase( self ) -> int: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _lowercase( self , A=0.0_8 , A=1.2_2 , A=0.0_3 ) -> List[str]: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _lowercase( self ) -> List[str]: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _lowercase( self ) -> Union[str, Any]: return (self.nir / self.green) - 1 def _lowercase( self ) -> Dict: return (self.nir / self.redEdge) - 1 def _lowercase( self ) -> str: return (self.red - self.blue) / self.red def _lowercase( self ) -> Any: UpperCAmelCase : Optional[Any] = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _lowercase( self ) -> int: return self.nir - self.green def _lowercase( self ) -> str: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _lowercase( self ) -> Dict: UpperCAmelCase : Optional[int] = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _lowercase( self , A=0.1_6 ) -> Any: return (self.nir - self.green) / (self.nir + self.green + y) def _lowercase( self , A=0.5 ) -> Optional[int]: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _lowercase( self ) -> Optional[int]: return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _lowercase( self , A=None , A=None ) -> Union[str, Any]: return (self.nir - b) / (a * self.red) def _lowercase( self ) -> Any: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _lowercase( self ) -> Optional[Any]: return (self.red + self.green + self.blue) / 3_0.5 def _lowercase( self ) -> Dict: return self.nir / self.red def _lowercase( self ) -> List[str]: return (self.rvi() - 1) / (self.rvi() + 1) def _lowercase( self ) -> List[Any]: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _lowercase( self ) -> Dict: return self.green / (self.nir + self.red + self.green) def _lowercase( self ) -> Any: return self.nir / (self.nir + self.red + self.green) def _lowercase( self ) -> int: return self.red / (self.nir + self.red + self.green) def _lowercase( self ) -> Tuple: return (self.green - self.red) / (self.green + self.red) def _lowercase( self ) -> Union[str, Any]: return (self.red - self.green) / (self.red + self.green) def _lowercase( self ) -> List[str]: UpperCAmelCase : Union[str, Any] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) UpperCAmelCase : Optional[Any] = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _lowercase( self ) -> Tuple: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _lowercase( self ) -> str: return self.nir / self.red def _lowercase( self ) -> Optional[int]: return (self.ndvi() + 0.5) ** (1 / 2) def _lowercase( self ) -> List[str]: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
338
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a : int = logging.get_logger(__name__) a : int = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off a : Tuple = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] a : Optional[int] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class UpperCamelCase_ ( __magic_name__ ): lowercase = 'whisper' lowercase = ['past_key_values'] lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]: UpperCAmelCase : str = vocab_size UpperCAmelCase : Union[str, Any] = num_mel_bins UpperCAmelCase : Tuple = d_model UpperCAmelCase : Optional[int] = encoder_layers UpperCAmelCase : List[str] = encoder_attention_heads UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : int = decoder_attention_heads UpperCAmelCase : Optional[int] = decoder_ffn_dim UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : List[str] = dropout UpperCAmelCase : Optional[Any] = attention_dropout UpperCAmelCase : Optional[Any] = activation_dropout UpperCAmelCase : Optional[Any] = activation_function UpperCAmelCase : Optional[Any] = init_std UpperCAmelCase : int = encoder_layerdrop UpperCAmelCase : Dict = decoder_layerdrop UpperCAmelCase : Optional[int] = use_cache UpperCAmelCase : List[str] = encoder_layers UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Union[str, Any] = max_source_positions UpperCAmelCase : Tuple = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : List[str] = classifier_proj_size UpperCAmelCase : Optional[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : int = mask_time_prob UpperCAmelCase : int = mask_time_length UpperCAmelCase : Dict = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Optional[int] = mask_feature_length UpperCAmelCase : int = mask_feature_min_masks UpperCAmelCase : List[Any] = median_filter_width super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , ) class UpperCamelCase_ ( __magic_name__ ): @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : str = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase : List[Any] = {0: """batch"""} else: UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) return common_inputs def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Optional[int] = OrderedDict() UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , ) UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2] UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Any = super().generate_dummy_inputs( preprocessor.tokenizer , A , A , A , A ) UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" ) UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def _lowercase( self ) -> float: return 1e-3
338
1
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = 1 UpperCAmelCase : int = 3 UpperCAmelCase : Optional[int] = (32, 32) UpperCAmelCase : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A ) return image @property def _lowercase( self ) -> str: torch.manual_seed(0 ) UpperCAmelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def _lowercase( self ) -> Optional[int]: torch.manual_seed(0 ) UpperCAmelCase : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def _lowercase( self ) -> Optional[int]: torch.manual_seed(0 ) UpperCAmelCase : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(A ) @property def _lowercase( self ) -> List[str]: def extract(*A , **A ): class UpperCamelCase_ : def __init__( self ) -> List[str]: UpperCAmelCase : Dict = torch.ones([0] ) def _lowercase( self , A ) -> Optional[Any]: self.pixel_values.to(A ) return self return Out() return extract def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet UpperCAmelCase : Union[str, Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=A , set_alpha_to_one=A , ) UpperCAmelCase : Union[str, Any] = self.dummy_vae UpperCAmelCase : List[Any] = self.dummy_text_encoder UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk UpperCAmelCase : Tuple = StableDiffusionPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) UpperCAmelCase : Optional[int] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : Optional[int] = """A painting of a squirrel eating a burger""" UpperCAmelCase : Optional[Any] = torch.Generator(device=A ).manual_seed(0 ) UpperCAmelCase : List[str] = sd_pipe([prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) UpperCAmelCase : int = output.images UpperCAmelCase : List[str] = torch.Generator(device=A ).manual_seed(0 ) UpperCAmelCase : Any = sd_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=A , )[0] UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Union[str, Any] = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : Optional[int] = self.dummy_cond_unet UpperCAmelCase : int = PNDMScheduler(skip_prk_steps=A ) UpperCAmelCase : Union[str, Any] = self.dummy_vae UpperCAmelCase : str = self.dummy_text_encoder UpperCAmelCase : List[str] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk UpperCAmelCase : int = StableDiffusionPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) UpperCAmelCase : int = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : int = """A painting of a squirrel eating a burger""" UpperCAmelCase : Any = torch.Generator(device=A ).manual_seed(0 ) UpperCAmelCase : Any = sd_pipe([prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) UpperCAmelCase : Tuple = output.images UpperCAmelCase : List[Any] = torch.Generator(device=A ).manual_seed(0 ) UpperCAmelCase : Any = sd_pipe( [prompt] , generator=A , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=A , )[0] UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] UpperCAmelCase : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : str = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase( self ) -> List[str]: UpperCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=A ) assert isinstance(A , A ) assert isinstance(pipe.scheduler , A ) assert pipe.safety_checker is None UpperCAmelCase : str = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(A ) UpperCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained(A ) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCAmelCase : Dict = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet UpperCAmelCase : str = PNDMScheduler(skip_prk_steps=A ) UpperCAmelCase : Union[str, Any] = self.dummy_vae UpperCAmelCase : Dict = self.dummy_text_encoder UpperCAmelCase : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 UpperCAmelCase : Optional[Any] = unet.half() UpperCAmelCase : Tuple = vae.half() UpperCAmelCase : Dict = bert.half() # make sure here that pndm scheduler skips prk UpperCAmelCase : Dict = StableDiffusionPipeline( unet=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , safety_checker=A , feature_extractor=self.dummy_extractor , ) UpperCAmelCase : List[str] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : Tuple = """A painting of a squirrel eating a burger""" UpperCAmelCase : Tuple = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase( self ) -> Dict: UpperCAmelCase : Union[str, Any] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=A ) UpperCAmelCase : Any = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase : int = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : str = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) UpperCAmelCase : str = 4003660346 UpperCAmelCase : Optional[int] = 7 # without safety guidance (sld_guidance_scale = 0) UpperCAmelCase : str = torch.manual_seed(A ) UpperCAmelCase : Tuple = sd_pipe( [prompt] , generator=A , guidance_scale=A , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCAmelCase : str = output.images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] UpperCAmelCase : Optional[int] = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) UpperCAmelCase : int = torch.manual_seed(A ) UpperCAmelCase : int = sd_pipe( [prompt] , generator=A , guidance_scale=A , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCAmelCase : Optional[int] = output.images UpperCAmelCase : str = image[0, -3:, -3:, -1] UpperCAmelCase : Union[str, Any] = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=A ) UpperCAmelCase : Dict = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase : List[Any] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : str = """padme amidala taking a bath artwork, safe for work, no nudity""" UpperCAmelCase : Union[str, Any] = 2734971755 UpperCAmelCase : Dict = 7 UpperCAmelCase : List[str] = torch.manual_seed(A ) UpperCAmelCase : Union[str, Any] = sd_pipe( [prompt] , generator=A , guidance_scale=A , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCAmelCase : Any = output.images UpperCAmelCase : Dict = image[0, -3:, -3:, -1] UpperCAmelCase : int = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 UpperCAmelCase : int = torch.manual_seed(A ) UpperCAmelCase : List[str] = sd_pipe( [prompt] , generator=A , guidance_scale=A , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCAmelCase : str = output.images UpperCAmelCase : str = image[0, -3:, -3:, -1] UpperCAmelCase : Dict = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase( self ) -> Tuple: UpperCAmelCase : Optional[Any] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) UpperCAmelCase : List[Any] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : Union[str, Any] = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) UpperCAmelCase : str = 1044355234 UpperCAmelCase : int = 12 UpperCAmelCase : Optional[Any] = torch.manual_seed(A ) UpperCAmelCase : List[Any] = sd_pipe( [prompt] , generator=A , guidance_scale=A , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCAmelCase : str = output.images UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] UpperCAmelCase : Tuple = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 UpperCAmelCase : int = torch.manual_seed(A ) UpperCAmelCase : int = sd_pipe( [prompt] , generator=A , guidance_scale=A , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCAmelCase : str = output.images UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase : Optional[int] = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
338
'''simple docstring''' a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowerCamelCase ( ) -> None: UpperCAmelCase : Optional[int] = input("""Enter message: """ ) UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ ) UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): UpperCAmelCase : List[str] = """encrypt""" UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase ) elif mode.lower().startswith("""d""" ): UpperCAmelCase : Tuple = """decrypt""" UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """encrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """decrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Tuple = key.upper() for symbol in message: UpperCAmelCase : Dict = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowercase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowercase ): UpperCAmelCase : Optional[int] = 0 else: translated.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": main()
338
1
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_lowercase , _lowercase ): raise TypeError("""Input value must be a 'int' type""" ) return bin(_lowercase ).count("""1""" ) if __name__ == "__main__": import doctest doctest.testmod()
338
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Optional[int] = split_dict._to_yaml_list() assert len(_lowercase ) == len(_lowercase ) UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(_lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCAmelCase : List[str] = None # the split name of split_dict takes over the name of the split info object UpperCAmelCase : int = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name="""my_dataset""" )] ) def __lowerCamelCase ( _lowercase ) -> List[str]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files UpperCAmelCase : Optional[Any] = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
338
1
'''simple docstring''' import unittest import numpy as np def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase = None , ) -> np.ndarray: UpperCAmelCase : Dict = np.shape(_lowercase ) UpperCAmelCase : Optional[int] = np.shape(_lowercase ) UpperCAmelCase : Dict = np.shape(_lowercase ) if shape_a[0] != shape_b[0]: UpperCAmelCase : Tuple = ( """Expected the same number of rows for A and B. """ F'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(_lowercase ) if shape_b[1] != shape_c[1]: UpperCAmelCase : Optional[int] = ( """Expected the same number of columns for B and C. """ F'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(_lowercase ) UpperCAmelCase : Any = pseudo_inv if a_inv is None: try: UpperCAmelCase : List[Any] = np.linalg.inv(_lowercase ) except np.linalg.LinAlgError: raise ValueError( """Input matrix A is not invertible. Cannot compute Schur complement.""" ) return mat_c - mat_b.T @ a_inv @ mat_b class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> None: UpperCAmelCase : Optional[int] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase : int = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase : int = np.array([[2, 1], [6, 3]] ) UpperCAmelCase : int = schur_complement(A , A , A ) UpperCAmelCase : int = np.block([[a, b], [b.T, c]] ) UpperCAmelCase : str = np.linalg.det(A ) UpperCAmelCase : Optional[int] = np.linalg.det(A ) UpperCAmelCase : Any = np.linalg.det(A ) self.assertAlmostEqual(A , det_a * det_s ) def _lowercase( self ) -> None: UpperCAmelCase : Optional[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase : List[Any] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase : Any = np.array([[2, 1], [6, 3]] ) with self.assertRaises(A ): schur_complement(A , A , A ) def _lowercase( self ) -> None: UpperCAmelCase : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase : Optional[int] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase : Optional[int] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(A ): schur_complement(A , A , A ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
338
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor a : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , **A ) -> None: warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , A , ) super().__init__(*A , **A )
338
1
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase_ ( __magic_name__ ): lowercase = (CMStochasticIterativeScheduler,) lowercase = 10 def _lowercase( self , **A ) -> Tuple: UpperCAmelCase : List[str] = { """num_train_timesteps""": 201, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } config.update(**A ) return config def _lowercase( self ) -> Dict: UpperCAmelCase : List[str] = 10 UpperCAmelCase : Optional[int] = self.get_scheduler_config() UpperCAmelCase : List[str] = self.scheduler_classes[0](**A ) scheduler.set_timesteps(A ) UpperCAmelCase : str = scheduler.timesteps[0] UpperCAmelCase : Optional[Any] = scheduler.timesteps[1] UpperCAmelCase : Any = self.dummy_sample UpperCAmelCase : Tuple = 0.1 * sample UpperCAmelCase : Optional[Any] = scheduler.step(A , A , A ).prev_sample UpperCAmelCase : int = scheduler.step(A , A , A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _lowercase( self ) -> Optional[Any]: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=A ) def _lowercase( self ) -> Union[str, Any]: for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=A ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = self.scheduler_classes[0] UpperCAmelCase : int = self.get_scheduler_config() UpperCAmelCase : Any = scheduler_class(**A ) UpperCAmelCase : Optional[Any] = 1 scheduler.set_timesteps(A ) UpperCAmelCase : List[Any] = scheduler.timesteps UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : List[Any] = self.dummy_model() UpperCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(A ): # 1. scale model input UpperCAmelCase : str = scheduler.scale_model_input(A , A ) # 2. predict noise residual UpperCAmelCase : List[Any] = model(A , A ) # 3. predict previous sample x_t-1 UpperCAmelCase : List[Any] = scheduler.step(A , A , A , generator=A ).prev_sample UpperCAmelCase : List[Any] = pred_prev_sample UpperCAmelCase : List[str] = torch.sum(torch.abs(A ) ) UpperCAmelCase : Optional[int] = torch.mean(torch.abs(A ) ) assert abs(result_sum.item() - 1_9_2.7_6_1_4 ) < 1e-2 assert abs(result_mean.item() - 0.2_5_1_0 ) < 1e-3 def _lowercase( self ) -> Dict: UpperCAmelCase : Optional[int] = self.scheduler_classes[0] UpperCAmelCase : Tuple = self.get_scheduler_config() UpperCAmelCase : Tuple = scheduler_class(**A ) UpperCAmelCase : List[Any] = [106, 0] scheduler.set_timesteps(timesteps=A ) UpperCAmelCase : Optional[int] = scheduler.timesteps UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase : List[Any] = self.dummy_model() UpperCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input UpperCAmelCase : Tuple = scheduler.scale_model_input(A , A ) # 2. predict noise residual UpperCAmelCase : List[str] = model(A , A ) # 3. predict previous sample x_t-1 UpperCAmelCase : Tuple = scheduler.step(A , A , A , generator=A ).prev_sample UpperCAmelCase : int = pred_prev_sample UpperCAmelCase : Any = torch.sum(torch.abs(A ) ) UpperCAmelCase : Any = torch.mean(torch.abs(A ) ) assert abs(result_sum.item() - 3_4_7.6_3_5_7 ) < 1e-2 assert abs(result_mean.item() - 0.4_5_2_7 ) < 1e-3 def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : str = self.scheduler_classes[0] UpperCAmelCase : Dict = self.get_scheduler_config() UpperCAmelCase : Dict = scheduler_class(**A ) UpperCAmelCase : List[str] = [39, 30, 12, 15, 0] with self.assertRaises(A , msg="""`timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=A ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = self.scheduler_classes[0] UpperCAmelCase : str = self.get_scheduler_config() UpperCAmelCase : Union[str, Any] = scheduler_class(**A ) UpperCAmelCase : int = [39, 30, 12, 1, 0] UpperCAmelCase : Union[str, Any] = len(A ) with self.assertRaises(A , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=A , timesteps=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Tuple = self.scheduler_classes[0] UpperCAmelCase : int = self.get_scheduler_config() UpperCAmelCase : Dict = scheduler_class(**A ) UpperCAmelCase : Tuple = [scheduler.config.num_train_timesteps] with self.assertRaises( A , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=A )
338
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a : Union[str, Any] = logging.get_logger(__name__) a : Union[str, Any] = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'detr' lowercase = ['past_key_values'] lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(A , A ): UpperCAmelCase : Any = backbone_config.get("""model_type""" ) UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : List[Any] = config_class.from_dict(A ) # set timm attributes to None UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = None, None, None UpperCAmelCase : Dict = use_timm_backbone UpperCAmelCase : Any = backbone_config UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : int = num_queries UpperCAmelCase : List[str] = d_model UpperCAmelCase : Tuple = encoder_ffn_dim UpperCAmelCase : Optional[Any] = encoder_layers UpperCAmelCase : Any = encoder_attention_heads UpperCAmelCase : Optional[Any] = decoder_ffn_dim UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : str = dropout UpperCAmelCase : Tuple = attention_dropout UpperCAmelCase : Dict = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : List[Any] = init_std UpperCAmelCase : str = init_xavier_std UpperCAmelCase : List[Any] = encoder_layerdrop UpperCAmelCase : int = decoder_layerdrop UpperCAmelCase : List[Any] = encoder_layers UpperCAmelCase : Union[str, Any] = auxiliary_loss UpperCAmelCase : str = position_embedding_type UpperCAmelCase : Union[str, Any] = backbone UpperCAmelCase : List[str] = use_pretrained_backbone UpperCAmelCase : Optional[int] = dilation # Hungarian matcher UpperCAmelCase : Union[str, Any] = class_cost UpperCAmelCase : Optional[Any] = bbox_cost UpperCAmelCase : List[Any] = giou_cost # Loss coefficients UpperCAmelCase : int = mask_loss_coefficient UpperCAmelCase : Optional[int] = dice_loss_coefficient UpperCAmelCase : Dict = bbox_loss_coefficient UpperCAmelCase : Any = giou_loss_coefficient UpperCAmelCase : Any = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def _lowercase( self ) -> int: return self.encoder_attention_heads @property def _lowercase( self ) -> int: return self.d_model @classmethod def _lowercase( cls , A , **A ) -> Dict: return cls(backbone_config=A , **A ) def _lowercase( self ) -> Dict[str, any]: UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase : Any = self.backbone_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowercase( self ) -> float: return 1e-5 @property def _lowercase( self ) -> int: return 12
338
1
'''simple docstring''' from dataclasses import dataclass, field from typing import Optional @dataclass class UpperCamelCase_ : lowercase = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be trained.'} ) lowercase = field( default='./' , metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} ) lowercase = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path of training dataset.'} ) lowercase = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowercase = field(default=2 , metadata={'help': 'Batch size for training.'} ) lowercase = field(default=2 , metadata={'help': 'Batch size for evaluation.'} ) lowercase = field(default=0.1 , metadata={'help': 'Value of weight decay.'} ) lowercase = field( default=10_000 , metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} ) lowercase = field(default=2e-4 , metadata={'help': 'Learning rate fo training.'} ) lowercase = field(default='cosine' , metadata={'help': 'Learning rate.'} ) lowercase = field( default=750 , metadata={'help': 'Number of warmup steps in the learning rate schedule.'} ) lowercase = field( default=16 , metadata={'help': 'Number of gradient accumulation steps.'} ) lowercase = field( default=__magic_name__ , metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} ) lowercase = field(default=50_000 , metadata={'help': 'Maximum number of training steps.'} ) lowercase = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowercase = field(default=1_024 , metadata={'help': 'Sequence lengths used for training.'} ) lowercase = field(default=1 , metadata={'help': 'Training seed.'} ) lowercase = field( default=1_024 , metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} , ) lowercase = field( default=__magic_name__ , metadata={'help': 'States path if the training should continue from a checkpoint folder.'} ) lowercase = field(default=__magic_name__ , metadata={'help': 'If True the data is pretokenized.'} ) @dataclass class UpperCamelCase_ : lowercase = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowercase = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowercase = field(default=2 , metadata={'help': 'Batch size used for evaluation.'} ) lowercase = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowercase = field(default=1_024 , metadata={'help': 'Length of sequences to be evaluated.'} ) lowercase = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) @dataclass class UpperCamelCase_ : lowercase = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowercase = field(default=__magic_name__ , metadata={'help': 'Number of workers used for code evaluation.'} ) lowercase = field( default=__magic_name__ , metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} , ) lowercase = field( default=__magic_name__ , metadata={'help': 'Sample from the language model\'s output distribution.'} ) lowercase = field(default=0.2 , metadata={'help': 'Sampling temperature used for generation.'} ) lowercase = field(default=256 , metadata={'help': 'Maximum number of newly generated tokens.'} ) lowercase = field(default=0 , metadata={'help': 'Top-k parameter used for generation.'} ) lowercase = field(default=0.95 , metadata={'help': 'Top-p parameter used for nucleus sampling.'} ) lowercase = field(default=10 , metadata={'help': 'Number of generations to run in parallel.'} ) lowercase = field( default=200 , metadata={'help': 'Number of completions to generate for each sample.'} ) lowercase = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) lowercase = field( default='eval_results.json' , metadata={'help': 'Random seed used for evaluation.'} ) lowercase = field( default='0' , metadata={'help': 'Allow `code_eval` to execute Python code on machine'} ) lowercase = field( default=-1 , metadata={ 'help': ( 'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive' ' number corresponds to which GPU device id to run on.' ) } , ) @dataclass class UpperCamelCase_ : lowercase = field( default=__magic_name__ , metadata={ 'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.' } , ) lowercase = field( default='transformersbook/codeparrot' , metadata={'help': 'Folder or name of dataset to process.'} ) lowercase = field( default='codeparrot-clean' , metadata={'help': 'Folder to save processed processed dataset.'} ) lowercase = field( default=100_000 , metadata={'help': 'Number of files to save per JSON output file.'} ) lowercase = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowercase = field( default=1_000 , metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} ) lowercase = field( default=100 , metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} ) lowercase = field( default=0.25 , metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} ) lowercase = field( default=1.5 , metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} ) lowercase = field( default=0.7 , metadata={'help': 'Probability for filtering config, test and uncommon files.'} ) lowercase = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} , ) lowercase = field( default=__magic_name__ , metadata={'help': 'If True, near-duplicate samples are removed.'} ) lowercase = field( default=0.85 , metadata={'help': 'Jaccard threshold for near-duplicate samples.'} ) @dataclass class UpperCamelCase_ : lowercase = field( default='gpt2' , metadata={'help': 'Base tokenizer to build new tokenizer from.'} ) lowercase = field( default='transformersbook/codeparrot-train' , metadata={'help': 'Dataset to train tokenizer on.'} ) lowercase = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowercase = field(default=200_000 , metadata={'help': 'Number of examples to train tokenizer on.'} ) lowercase = field( default=32_768 , metadata={'help': 'Number of examples to train the tokenizer on.'} ) lowercase = field(default='codeparrot' , metadata={'help': 'Name of new tokenizer.'} ) lowercase = field(default=__magic_name__ , metadata={'help': 'Push saved tokenizer to the hub.'} ) @dataclass class UpperCamelCase_ : lowercase = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} ) lowercase = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path to the dataset to pretokenize.'} ) lowercase = field( default='tokenized-codeparrot-train' , metadata={'help': 'Repo name of the pretokenized data.'} ) lowercase = field(default=__magic_name__ , metadata={'help': 'Number of workers used for code evaluation.'} ) @dataclass class UpperCamelCase_ : lowercase = field( default='gpt2-large' , metadata={'help': 'Configuration to use for model initialization.'} ) lowercase = field( default='codeparrot/codeparrot' , metadata={'help': 'Tokenizer attached to model.'} ) lowercase = field(default='codeparrot' , metadata={'help': 'Name of the created model.'} ) lowercase = field(default=__magic_name__ , metadata={'help': 'Push saved tokenizer to the hub.'} )
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[str] = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
'''simple docstring''' import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a : Dict = 2 class UpperCamelCase_ : def __init__( self , *, # begin keyword-only arguments A="<s>" , A="<pad>" , A="</s>" , A="<unk>" , A=None , ) -> Any: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = bos, unk, pad, eos UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Dict = {} UpperCAmelCase : List[Any] = self.add_symbol(A ) UpperCAmelCase : List[str] = self.add_symbol(A ) UpperCAmelCase : int = self.add_symbol(A ) UpperCAmelCase : List[Any] = self.add_symbol(A ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(A ) UpperCAmelCase : List[str] = len(self.symbols ) def __eq__( self , A ) -> Tuple: return self.indices == other.indices def __getitem__( self , A ) -> Optional[Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ) -> Optional[int]: return len(self.symbols ) def __contains__( self , A ) -> List[Any]: return sym in self.indices @classmethod def _lowercase( cls , A ) -> Optional[Any]: UpperCAmelCase : List[Any] = cls() d.add_from_file(A ) return d def _lowercase( self , A , A=1 , A=False ) -> List[str]: if word in self.indices and not overwrite: UpperCAmelCase : List[Any] = self.indices[word] UpperCAmelCase : int = self.count[idx] + n return idx else: UpperCAmelCase : Optional[int] = len(self.symbols ) UpperCAmelCase : List[str] = idx self.symbols.append(A ) self.count.append(A ) return idx def _lowercase( self , A ) -> Dict: return 0 def _lowercase( self , A ) -> Optional[Any]: if isinstance(A , A ): try: with open(A , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(A ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(A ) ) return UpperCAmelCase : str = f.readlines() UpperCAmelCase : Optional[Any] = self._load_meta(A ) for line in lines[indices_start_line:]: try: UpperCAmelCase , UpperCAmelCase : str = line.rstrip().rsplit(""" """ , 1 ) if field == "#fairseq:overwrite": UpperCAmelCase : Any = True UpperCAmelCase , UpperCAmelCase : str = line.rsplit(""" """ , 1 ) else: UpperCAmelCase : Dict = False UpperCAmelCase : List[Any] = int(A ) UpperCAmelCase : Any = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(A ) ) self.add_symbol(A , n=A , overwrite=A ) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" ) def __lowerCamelCase ( _lowercase ) -> Optional[Any]: # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} UpperCAmelCase : Optional[Any] = dict((re.sub(R"""@@$""" , """""" , _lowercase ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" , """</w>""" , _lowercase ), v) for k, v in d.items() ) UpperCAmelCase : int = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] UpperCAmelCase : Optional[Any] = d[k] # restore return da def __lowerCamelCase ( _lowercase , _lowercase ) -> Any: # prep if not os.path.exists(_lowercase ): raise ValueError(F'''path {biogpt_checkpoint_path} does not exist!''' ) os.makedirs(_lowercase , exist_ok=_lowercase ) print(F'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models UpperCAmelCase : Optional[int] = os.path.join(_lowercase , """checkpoint.pt""" ) if not os.path.isfile(_lowercase ): raise ValueError(F'''path to the file {checkpoint_file} does not exist!''' ) UpperCAmelCase : Optional[int] = torch.load(_lowercase , map_location="""cpu""" ) UpperCAmelCase : List[Any] = chkpt["""cfg"""]["""model"""] # dicts UpperCAmelCase : List[Any] = os.path.join(_lowercase , """dict.txt""" ) if not os.path.isfile(_lowercase ): raise ValueError(F'''path to the file {dict_file} does not exist!''' ) UpperCAmelCase : Any = Dictionary.load(_lowercase ) UpperCAmelCase : Dict = rewrite_dict_keys(src_dict.indices ) UpperCAmelCase : Optional[int] = len(_lowercase ) UpperCAmelCase : Dict = os.path.join(_lowercase , VOCAB_FILES_NAMES["""vocab_file"""] ) print(F'''Generating {src_vocab_file} of {src_vocab_size} records''' ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(_lowercase , ensure_ascii=_lowercase , indent=_lowercase ) ) # merges_file (bpecodes) UpperCAmelCase : Tuple = os.path.join(_lowercase , """bpecodes""" ) if not os.path.isfile(_lowercase ): raise ValueError(F'''path to the file {bpecodes_file} does not exist!''' ) UpperCAmelCase : List[Any] = os.path.join(_lowercase , VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(_lowercase , _lowercase ) # model config UpperCAmelCase : List[str] = os.path.join(_lowercase , """config.json""" ) UpperCAmelCase : Optional[Any] = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1e-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(F'''Generating {biogpt_model_config_file}''' ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(_lowercase , ensure_ascii=_lowercase , indent=_lowercase ) ) # tokenizer config UpperCAmelCase : Tuple = os.path.join(_lowercase , _lowercase ) UpperCAmelCase : Optional[Any] = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 1_0_2_4, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(F'''Generating {biogpt_tokenizer_config_file}''' ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(_lowercase , ensure_ascii=_lowercase , indent=_lowercase ) ) # model UpperCAmelCase : Any = chkpt["""model"""] # remove unneeded keys UpperCAmelCase : Optional[int] = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(_lowercase , _lowercase ) UpperCAmelCase : int = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): UpperCAmelCase : Tuple = model_state_dict.pop(_lowercase ) else: UpperCAmelCase : Tuple = model_state_dict.pop(_lowercase ) UpperCAmelCase : List[Any] = BioGptConfig.from_pretrained(_lowercase ) UpperCAmelCase : Any = BioGptForCausalLM(_lowercase ) # check that it loads ok model_new.load_state_dict(_lowercase ) # save UpperCAmelCase : Union[str, Any] = os.path.join(_lowercase , _lowercase ) print(F'''Generating {pytorch_weights_dump_path}''' ) torch.save(_lowercase , _lowercase ) print("""Conversion is done!""" ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a : Optional[int] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
338
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" ) if "model" in sd.keys(): UpperCAmelCase : Any = torch.load(_lowercase , map_location="""cpu""" )["""model"""] # pop unnecessary weights UpperCAmelCase : Union[str, Any] = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(_lowercase ) UpperCAmelCase : Tuple = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase : List[Any] = sd.pop(_lowercase ) UpperCAmelCase : Tuple = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase : List[str] = sd[key] # We split QKV in separate Q,K,V UpperCAmelCase : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" ) UpperCAmelCase : Tuple = key.replace(""".qkv_proj.""" , """.k_proj.""" ) UpperCAmelCase : int = key.replace(""".qkv_proj.""" , """.v_proj.""" ) UpperCAmelCase : Dict = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = torch.split(_lowercase , depth // 3 , dim=0 ) UpperCAmelCase : Tuple = q UpperCAmelCase : Tuple = k UpperCAmelCase : Any = v del sd[key] return sd @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Optional[Any]: UpperCAmelCase : Tuple = load_checkpoint(_lowercase ) if config is not None: UpperCAmelCase : Dict = OPTConfig.from_pretrained(_lowercase ) else: UpperCAmelCase : int = OPTConfig() UpperCAmelCase : List[Any] = OPTModel(_lowercase ).half().eval() model.load_state_dict(_lowercase ) # Check results Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") a : Union[str, Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
338
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCamelCase_ : lowercase = MBartConfig lowercase = {} lowercase = 'gelu' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : str = is_training UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Optional[Any] = eos_token_id UpperCAmelCase : List[str] = pad_token_id UpperCAmelCase : List[Any] = bos_token_id def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A ) return config, inputs_dict def _lowercase( self , A , A ) -> List[str]: UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder() UpperCAmelCase : int = inputs_dict["""input_ids"""] UpperCAmelCase : str = input_ids[:1, :] UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase : List[str] = inputs_dict["""head_mask"""] UpperCAmelCase : List[Any] = 1 # first forward pass UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = outputs.to_tuple() UpperCAmelCase : int = past_key_values[1] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]: if attention_mask is None: UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False def _lowercase( self , A , A , A , A , A ) -> int: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : int = TFMBartModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A ) def _lowercase( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase( self ) -> Dict: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_sentencepiece @require_tokenizers @require_tf class UpperCamelCase_ ( unittest.TestCase ): lowercase = [ ' UN Chief Says There Is No Military Solution in Syria', ] lowercase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] lowercase = 'facebook/mbart-large-en-ro' @cached_property def _lowercase( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowercase( self , **A ) -> Any: UpperCAmelCase : Optional[int] = self.translate_src_text(**A ) self.assertListEqual(self.expected_text , A ) def _lowercase( self , **A ) -> Optional[Any]: UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" ) UpperCAmelCase : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A ) return generated_words @slow def _lowercase( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
338
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : str = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'levit' def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int: super().__init__(**A ) UpperCAmelCase : Any = image_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : Tuple = kernel_size UpperCAmelCase : Optional[int] = stride UpperCAmelCase : Dict = padding UpperCAmelCase : List[Any] = hidden_sizes UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = depths UpperCAmelCase : Any = key_dim UpperCAmelCase : str = drop_path_rate UpperCAmelCase : List[Any] = patch_size UpperCAmelCase : str = attention_ratio UpperCAmelCase : Optional[Any] = mlp_ratio UpperCAmelCase : Dict = initializer_range UpperCAmelCase : int = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase( self ) -> float: return 1e-4
338
1
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> str: if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) UpperCAmelCase : Tuple = """""" while len(_lowercase ) % 3 != 0: UpperCAmelCase : Dict = """0""" + bin_string UpperCAmelCase : str = [ bin_string[index : index + 3] for index in range(len(_lowercase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: UpperCAmelCase : Optional[Any] = 0 for index, val in enumerate(_lowercase ): oct_val += int(2 ** (2 - index) * int(_lowercase ) ) oct_string += str(_lowercase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
338
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) a : List[str] = """Hello, World!""" a : List[Any] = """en_XX""" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Dict = Path("""data_bin""" ) UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(_lowercase ) UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder UpperCAmelCase : Tuple = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , _lowercase ) UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight UpperCAmelCase : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase : List[str] = model.roberta.encoder.layer[i] UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i] # self attention UpperCAmelCase : Optional[Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias # intermediate UpperCAmelCase : Tuple = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) UpperCAmelCase : List[str] = xmod_layer.fca.weight UpperCAmelCase : str = xmod_layer.fca.bias # output UpperCAmelCase : Any = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) UpperCAmelCase : Dict = xmod_layer.fca.weight UpperCAmelCase : Dict = xmod_layer.fca.bias UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code] UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code] UpperCAmelCase : Any = from_adapter.fca.weight UpperCAmelCase : int = from_adapter.fca.bias UpperCAmelCase : Dict = from_adapter.fca.weight UpperCAmelCase : Dict = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias UpperCAmelCase : str = xmod.model.encoder.lm_head.weight UpperCAmelCase : str = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) UpperCAmelCase : Optional[int] = model(_lowercase )[0] if classification_head: UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) ) else: UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) a : List[str] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
338
1
'''simple docstring''' from __future__ import annotations import time a : Tuple = list[tuple[int, int]] a : Any = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] a : Optional[int] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class UpperCamelCase_ : def __init__( self , A , A , A , A , A ) -> Any: UpperCAmelCase : int = pos_x UpperCAmelCase : int = pos_y UpperCAmelCase : Tuple = (pos_y, pos_x) UpperCAmelCase : Optional[int] = goal_x UpperCAmelCase : str = goal_y UpperCAmelCase : Union[str, Any] = parent class UpperCamelCase_ : def __init__( self , A , A ) -> List[str]: UpperCAmelCase : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , A ) UpperCAmelCase : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , A ) UpperCAmelCase : str = [self.start] UpperCAmelCase : List[str] = False def _lowercase( self ) -> Path | None: while self.node_queue: UpperCAmelCase : Dict = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: UpperCAmelCase : Any = True return self.retrace_path(A ) UpperCAmelCase : Optional[Any] = self.get_successors(A ) for node in successors: self.node_queue.append(A ) if not self.reached: return [self.start.pos] return None def _lowercase( self , A ) -> list[Node]: UpperCAmelCase : Union[str, Any] = [] for action in delta: UpperCAmelCase : List[Any] = parent.pos_x + action[1] UpperCAmelCase : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(A , A , self.target.pos_y , self.target.pos_x , A ) ) return successors def _lowercase( self , A ) -> Path: UpperCAmelCase : Optional[int] = node UpperCAmelCase : Tuple = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase : int = current_node.parent path.reverse() return path class UpperCamelCase_ : def __init__( self , A , A ) -> Optional[Any]: UpperCAmelCase : Any = BreadthFirstSearch(A , A ) UpperCAmelCase : Optional[int] = BreadthFirstSearch(A , A ) UpperCAmelCase : str = False def _lowercase( self ) -> Path | None: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: UpperCAmelCase : List[Any] = self.fwd_bfs.node_queue.pop(0 ) UpperCAmelCase : List[Any] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: UpperCAmelCase : List[Any] = True return self.retrace_bidirectional_path( A , A ) UpperCAmelCase : Tuple = current_bwd_node UpperCAmelCase : List[str] = current_fwd_node UpperCAmelCase : Tuple = { self.fwd_bfs: self.fwd_bfs.get_successors(A ), self.bwd_bfs: self.bwd_bfs.get_successors(A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase( self , A , A ) -> Path: UpperCAmelCase : Tuple = self.fwd_bfs.retrace_path(A ) UpperCAmelCase : str = self.bwd_bfs.retrace_path(A ) bwd_path.pop() bwd_path.reverse() UpperCAmelCase : Optional[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() a : List[Any] = (0, 0) a : Tuple = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) a : Optional[int] = time.time() a : List[Any] = BreadthFirstSearch(init, goal) a : str = bfs.search() a : Union[str, Any] = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) a : List[Any] = time.time() a : Any = BidirectionalBreadthFirstSearch(init, goal) a : Any = bd_bfs.search() a : Optional[int] = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
338
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __lowerCamelCase ( _lowercase ) -> List[Any]: for i in range(0 , _lowercase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __lowerCamelCase ( _lowercase ) -> Dict: for i in range(_lowercase , 0 , -1 ): for _ in range(_lowercase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __lowerCamelCase ( _lowercase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowercase ) # upper half reverse_floyd(_lowercase ) # lower half if __name__ == "__main__": print(R"""| /\ | |- | |- |--| |\ /| |-""") print(R"""|/ \| |- |_ |_ |__| | \/ | |_""") a : List[Any] = 1 while K: a : int = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) a : Tuple = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
338
1
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) a : List[Any] = logging.getLogger(__name__) class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A , A , A=None , A=None ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = self.layer[current_layer](A , A , head_mask[current_layer] ) UpperCAmelCase : Tuple = layer_outputs[0] return hidden_states @add_start_docstrings( 'The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.' , __magic_name__ , ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A ) -> int: super().__init__(A ) UpperCAmelCase : Union[str, Any] = BertEncoderWithPabee(A ) self.init_weights() UpperCAmelCase : int = 0 UpperCAmelCase : Any = 0 UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = 0 def _lowercase( self , A ) -> str: UpperCAmelCase : Optional[Any] = threshold def _lowercase( self , A ) -> int: UpperCAmelCase : str = patience def _lowercase( self ) -> Any: UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : List[Any] = 0 def _lowercase( self ) -> Dict: UpperCAmelCase : int = self.inference_layers_num / self.inference_instances_num UpperCAmelCase : Tuple = ( f'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' f''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(A ) @add_start_docstrings_to_model_forward(A ) def _lowercase( self , A=None , A=None , A=None , A=None , A=None , A=None , A=None , A=None , A=None , A=None , A=False , ) -> Any: if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: UpperCAmelCase : List[str] = input_ids.size() elif inputs_embeds is not None: UpperCAmelCase : str = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) UpperCAmelCase : List[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: UpperCAmelCase : str = torch.ones(A , device=A ) if token_type_ids is None: UpperCAmelCase : Optional[Any] = torch.zeros(A , dtype=torch.long , device=A ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. UpperCAmelCase : torch.Tensor = self.get_extended_attention_mask(A , A , A ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = encoder_hidden_states.size() UpperCAmelCase : Optional[Any] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: UpperCAmelCase : Union[str, Any] = torch.ones(A , device=A ) UpperCAmelCase : List[str] = self.invert_attention_mask(A ) else: UpperCAmelCase : Any = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] UpperCAmelCase : str = self.get_head_mask(A , self.config.num_hidden_layers ) UpperCAmelCase : int = self.embeddings( input_ids=A , position_ids=A , token_type_ids=A , inputs_embeds=A ) UpperCAmelCase : List[str] = embedding_output if self.training: UpperCAmelCase : Union[str, Any] = [] for i in range(self.config.num_hidden_layers ): UpperCAmelCase : Any = self.encoder.adaptive_forward( A , current_layer=A , attention_mask=A , head_mask=A ) UpperCAmelCase : Optional[int] = self.pooler(A ) UpperCAmelCase : Union[str, Any] = output_layers[i](output_dropout(A ) ) res.append(A ) elif self.patience == 0: # Use all layers for inference UpperCAmelCase : Tuple = self.encoder( A , attention_mask=A , head_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) UpperCAmelCase : Optional[int] = self.pooler(encoder_outputs[0] ) UpperCAmelCase : Tuple = [output_layers[self.config.num_hidden_layers - 1](A )] else: UpperCAmelCase : Tuple = 0 UpperCAmelCase : Tuple = None UpperCAmelCase : str = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 UpperCAmelCase : List[Any] = self.encoder.adaptive_forward( A , current_layer=A , attention_mask=A , head_mask=A ) UpperCAmelCase : int = self.pooler(A ) UpperCAmelCase : Dict = output_layers[i](A ) if regression: UpperCAmelCase : Optional[int] = logits.detach() if patient_result is not None: UpperCAmelCase : Dict = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: UpperCAmelCase : Dict = 0 else: UpperCAmelCase : str = logits.detach().argmax(dim=1 ) if patient_result is not None: UpperCAmelCase : int = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(A ) ): patient_counter += 1 else: UpperCAmelCase : Tuple = 0 UpperCAmelCase : Optional[int] = logits if patient_counter == self.patience: break UpperCAmelCase : List[Any] = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( 'Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. ' , __magic_name__ , ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A ) -> int: super().__init__(A ) UpperCAmelCase : Optional[int] = config.num_labels UpperCAmelCase : Dict = BertModelWithPabee(A ) UpperCAmelCase : Union[str, Any] = nn.Dropout(config.hidden_dropout_prob ) UpperCAmelCase : Optional[Any] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(A ) def _lowercase( self , A=None , A=None , A=None , A=None , A=None , A=None , A=None , ) -> str: UpperCAmelCase : Any = self.bert( input_ids=A , attention_mask=A , token_type_ids=A , position_ids=A , head_mask=A , inputs_embeds=A , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) UpperCAmelCase : Dict = (logits[-1],) if labels is not None: UpperCAmelCase : Optional[Any] = None UpperCAmelCase : Optional[int] = 0 for ix, logits_item in enumerate(A ): if self.num_labels == 1: # We are doing regression UpperCAmelCase : Tuple = MSELoss() UpperCAmelCase : Optional[int] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: UpperCAmelCase : Tuple = CrossEntropyLoss() UpperCAmelCase : Tuple = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: UpperCAmelCase : Dict = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 UpperCAmelCase : int = (total_loss / total_weights,) + outputs return outputs
338
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever a : List[str] = logging.getLogger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A=None ) -> Union[str, Any]: super().__init__( A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , ) UpperCAmelCase : Optional[Any] = None def _lowercase( self , A ) -> List[Any]: logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually UpperCAmelCase : Tuple = self._infer_socket_ifname() # avoid clash with the NCCL port UpperCAmelCase : str = str(distributed_port + 1 ) UpperCAmelCase : Any = dist.new_group(ranks=A , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _lowercase( self ) -> Dict: return dist.get_rank(group=self.process_group ) == 0 def _lowercase( self , A , A , A=torch.floataa ) -> str: UpperCAmelCase : List[Any] = torch.empty(A , dtype=A ) dist.scatter(A , src=0 , scatter_list=A , group=self.process_group ) return target_tensor def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names UpperCAmelCase : Optional[int] = next((addr for addr in addrs if addr.startswith("""e""" )) , A ) return ifname def _lowercase( self , A , A ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): UpperCAmelCase , UpperCAmelCase : str = self._main_retrieve(A , A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A ) # distributed training UpperCAmelCase : int = dist.get_world_size(group=self.process_group ) # gather logic UpperCAmelCase : int = None if self._is_main(): UpperCAmelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )] dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group ) # scatter logic UpperCAmelCase : List[Any] = question_hidden_states.shape[0] UpperCAmelCase : Tuple = [] UpperCAmelCase : Any = [] if self._is_main(): assert len(A ) == world_size UpperCAmelCase , UpperCAmelCase : Optional[int] = self._main_retrieve(torch.cat(A ).numpy() , A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = torch.tensor(A ), torch.tensor(A ) UpperCAmelCase : List[str] = self._chunk_tensor(A , A ) UpperCAmelCase : Union[str, Any] = self._chunk_tensor(A , A ) UpperCAmelCase : Tuple = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa ) UpperCAmelCase : Optional[Any] = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
338
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
338
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : List[str] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } a : List[Any] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } a : List[Any] = { """facebook/blenderbot_small-90M""": 5_1_2, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = BlenderbotSmallTokenizer def __init__( self , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , A=True , **A , ) -> Union[str, Any]: super().__init__( ByteLevelBPETokenizer( vocab=A , merges=A , add_prefix_space=A , trim_offsets=A , ) , bos_token=A , eos_token=A , unk_token=A , **A , ) UpperCAmelCase : Optional[Any] = add_prefix_space def _lowercase( self , A , A=None ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
338
1
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : Tuple = len(_lowercase ) for i in range(length - 1 ): UpperCAmelCase : Tuple = i for k in range(i + 1 , _lowercase ): if collection[k] < collection[least]: UpperCAmelCase : Any = k if least != i: UpperCAmelCase , UpperCAmelCase : int = (collection[i], collection[least]) return collection if __name__ == "__main__": a : Tuple = input("""Enter numbers separated by a comma:\n""").strip() a : Optional[Any] = [int(item) for item in user_input.split(""",""")] print(selection_sort(unsorted))
338
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A = None , A = None , A = False , **A , ) -> Tuple: super().__init__(features=A , cache_dir=A , keep_in_memory=A , **A ) UpperCAmelCase : Any = Sql( cache_dir=A , features=A , sql=A , con=A , **A , ) def _lowercase( self ) -> Dict: UpperCAmelCase : Any = None UpperCAmelCase : Any = None UpperCAmelCase : int = None UpperCAmelCase : int = None self.builder.download_and_prepare( download_config=A , download_mode=A , verification_mode=A , base_path=A , ) # Build dataset for splits UpperCAmelCase : str = self.builder.as_dataset( split="""train""" , verification_mode=A , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase_ : def __init__( self , A , A , A , A = None , A = None , **A , ) -> str: if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) UpperCAmelCase : Dict = dataset UpperCAmelCase : List[Any] = name UpperCAmelCase : Any = con UpperCAmelCase : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase : Optional[Any] = num_proc UpperCAmelCase : str = to_sql_kwargs def _lowercase( self ) -> int: UpperCAmelCase : Any = self.to_sql_kwargs.pop("""sql""" , A ) UpperCAmelCase : str = self.to_sql_kwargs.pop("""con""" , A ) UpperCAmelCase : Union[str, Any] = self.to_sql_kwargs.pop("""index""" , A ) UpperCAmelCase : str = self._write(index=A , **self.to_sql_kwargs ) return written def _lowercase( self , A ) -> Any: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = args UpperCAmelCase : Union[str, Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs UpperCAmelCase : int = query_table( table=self.dataset.data , key=slice(A , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCAmelCase : Any = batch.to_pandas() UpperCAmelCase : List[Any] = df.to_sql(self.name , self.con , index=A , **A ) return num_rows or len(A ) def _lowercase( self , A , **A ) -> int: UpperCAmelCase : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: UpperCAmelCase , UpperCAmelCase : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , A , A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
338
1
'''simple docstring''' import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger a : List[str] = get_logger(__name__) class UpperCamelCase_ ( enum.Enum ): lowercase = 'all_checks' lowercase = 'basic_checks' lowercase = 'no_checks' class UpperCamelCase_ ( __magic_name__ ): pass class UpperCamelCase_ ( __magic_name__ ): pass class UpperCamelCase_ ( __magic_name__ ): pass class UpperCamelCase_ ( __magic_name__ ): pass def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Union[str, Any]: if expected_checksums is None: logger.info("""Unable to verify checksums.""" ) return if len(set(_lowercase ) - set(_lowercase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(_lowercase ) - set(_lowercase ) ) ) if len(set(_lowercase ) - set(_lowercase ) ) > 0: raise UnexpectedDownloadedFile(str(set(_lowercase ) - set(_lowercase ) ) ) UpperCAmelCase : str = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] UpperCAmelCase : Dict = """ for """ + verification_name if verification_name is not None else """""" if len(_lowercase ) > 0: raise NonMatchingChecksumError( F'''Checksums didn\'t match{for_verification_name}:\n''' F'''{bad_urls}\n''' """Set `verification_mode='no_checks'` to skip checksums verification and ignore this error""" ) logger.info("""All the checksums matched successfully""" + for_verification_name ) class UpperCamelCase_ ( __magic_name__ ): pass class UpperCamelCase_ ( __magic_name__ ): pass class UpperCamelCase_ ( __magic_name__ ): pass class UpperCamelCase_ ( __magic_name__ ): pass def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: if expected_splits is None: logger.info("""Unable to verify splits sizes.""" ) return if len(set(_lowercase ) - set(_lowercase ) ) > 0: raise ExpectedMoreSplits(str(set(_lowercase ) - set(_lowercase ) ) ) if len(set(_lowercase ) - set(_lowercase ) ) > 0: raise UnexpectedSplits(str(set(_lowercase ) - set(_lowercase ) ) ) UpperCAmelCase : Dict = [ {"""expected""": expected_splits[name], """recorded""": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(_lowercase ) > 0: raise NonMatchingSplitsSizesError(str(_lowercase ) ) logger.info("""All the splits matched successfully.""" ) def __lowerCamelCase ( _lowercase , _lowercase = True ) -> dict: if record_checksum: UpperCAmelCase : Any = shaaaa() with open(_lowercase , """rb""" ) as f: for chunk in iter(lambda: f.read(1 << 2_0 ) , B"""""" ): m.update(_lowercase ) UpperCAmelCase : Union[str, Any] = m.hexdigest() else: UpperCAmelCase : Dict = None return {"num_bytes": os.path.getsize(_lowercase ), "checksum": checksum} def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
338
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCamelCase_ : lowercase = MBartConfig lowercase = {} lowercase = 'gelu' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : str = is_training UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Optional[Any] = eos_token_id UpperCAmelCase : List[str] = pad_token_id UpperCAmelCase : List[Any] = bos_token_id def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A ) return config, inputs_dict def _lowercase( self , A , A ) -> List[str]: UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder() UpperCAmelCase : int = inputs_dict["""input_ids"""] UpperCAmelCase : str = input_ids[:1, :] UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase : List[str] = inputs_dict["""head_mask"""] UpperCAmelCase : List[Any] = 1 # first forward pass UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = outputs.to_tuple() UpperCAmelCase : int = past_key_values[1] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]: if attention_mask is None: UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False def _lowercase( self , A , A , A , A , A ) -> int: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : int = TFMBartModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A ) def _lowercase( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase( self ) -> Dict: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_sentencepiece @require_tokenizers @require_tf class UpperCamelCase_ ( unittest.TestCase ): lowercase = [ ' UN Chief Says There Is No Military Solution in Syria', ] lowercase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] lowercase = 'facebook/mbart-large-en-ro' @cached_property def _lowercase( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowercase( self , **A ) -> Any: UpperCAmelCase : Optional[int] = self.translate_src_text(**A ) self.assertListEqual(self.expected_text , A ) def _lowercase( self , **A ) -> Optional[Any]: UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" ) UpperCAmelCase : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A ) return generated_words @slow def _lowercase( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
338
1
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , A=None , A=None , **A ) -> Optional[Any]: super().__init__(*A , **A ) UpperCAmelCase : List[Any] = eval_examples UpperCAmelCase : Optional[Any] = post_process_function def _lowercase( self , A=None , A=None , A=None , A = "eval" ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = self.eval_dataset if eval_dataset is None else eval_dataset UpperCAmelCase : Dict = self.get_eval_dataloader(A ) UpperCAmelCase : List[str] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase : List[Any] = self.compute_metrics UpperCAmelCase : List[Any] = None UpperCAmelCase : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase : List[str] = time.time() try: UpperCAmelCase : Any = eval_loop( A , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A , metric_key_prefix=A , ) finally: UpperCAmelCase : List[str] = compute_metrics UpperCAmelCase : Optional[Any] = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( A , A , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCAmelCase : Dict = self.post_process_function(A , A , output.predictions ) UpperCAmelCase : Any = self.compute_metrics(A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): UpperCAmelCase : Tuple = metrics.pop(A ) metrics.update(output.metrics ) else: UpperCAmelCase : List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(A ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCAmelCase : Dict = self.callback_handler.on_evaluate(self.args , self.state , self.control , A ) return metrics def _lowercase( self , A , A , A=None , A = "test" ) -> Union[str, Any]: UpperCAmelCase : List[Any] = self.get_test_dataloader(A ) # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase : Union[str, Any] = self.compute_metrics UpperCAmelCase : int = None UpperCAmelCase : int = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase : List[str] = time.time() try: UpperCAmelCase : Tuple = eval_loop( A , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A , metric_key_prefix=A , ) finally: UpperCAmelCase : List[str] = compute_metrics UpperCAmelCase : Union[str, Any] = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( A , A , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCAmelCase : List[Any] = self.post_process_function(A , A , output.predictions , """predict""" ) UpperCAmelCase : str = self.compute_metrics(A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): UpperCAmelCase : Tuple = metrics.pop(A ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=A )
338
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: UpperCAmelCase : Tuple = len(_lowercase ) + 1 UpperCAmelCase : List[Any] = len(_lowercase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase : str = [[0 for i in range(_lowercase )] for j in range(_lowercase )] # since string of zero length match pattern of zero length UpperCAmelCase : int = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowercase ): UpperCAmelCase : str = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowercase ): UpperCAmelCase : Optional[Any] = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowercase ): for j in range(1 , _lowercase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase : Union[str, Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase : List[Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase : Optional[int] = dp[i - 1][j] else: UpperCAmelCase : Any = 0 else: UpperCAmelCase : str = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") a : List[str] = """aab""" a : Optional[int] = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
338
1
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __lowerCamelCase ( _lowercase , _lowercase ) -> int: assert isinstance(_lowercase , _lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : Optional[int] = tmp_path / """cache""" UpperCAmelCase : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : int = ParquetDatasetReader(_lowercase , cache_dir=_lowercase , keep_in_memory=_lowercase ).read() _check_parquet_dataset(_lowercase , _lowercase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Any: UpperCAmelCase : str = tmp_path / """cache""" UpperCAmelCase : Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCAmelCase : Union[str, Any] = features.copy() if features else default_expected_features UpperCAmelCase : Optional[Any] = ( Features({feature: Value(_lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Optional[int] = ParquetDatasetReader(_lowercase , features=_lowercase , cache_dir=_lowercase ).read() _check_parquet_dataset(_lowercase , _lowercase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : int = tmp_path / """cache""" UpperCAmelCase : List[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCAmelCase : str = ParquetDatasetReader(_lowercase , cache_dir=_lowercase , split=_lowercase ).read() _check_parquet_dataset(_lowercase , _lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Any: if issubclass(_lowercase , _lowercase ): UpperCAmelCase : Union[str, Any] = parquet_path elif issubclass(_lowercase , _lowercase ): UpperCAmelCase : int = [parquet_path] UpperCAmelCase : Tuple = tmp_path / """cache""" UpperCAmelCase : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCAmelCase : Optional[Any] = ParquetDatasetReader(_lowercase , cache_dir=_lowercase ).read() _check_parquet_dataset(_lowercase , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=("train",) ) -> List[str]: assert isinstance(_lowercase , _lowercase ) for split in splits: UpperCAmelCase : List[str] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[Any]: UpperCAmelCase : Optional[int] = tmp_path / """cache""" UpperCAmelCase : Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : List[str] = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=_lowercase , keep_in_memory=_lowercase ).read() _check_parquet_datasetdict(_lowercase , _lowercase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Any: UpperCAmelCase : Any = tmp_path / """cache""" UpperCAmelCase : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCAmelCase : Optional[Any] = features.copy() if features else default_expected_features UpperCAmelCase : List[str] = ( Features({feature: Value(_lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Any = ParquetDatasetReader({"""train""": parquet_path} , features=_lowercase , cache_dir=_lowercase ).read() _check_parquet_datasetdict(_lowercase , _lowercase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: if split: UpperCAmelCase : List[Any] = {split: parquet_path} else: UpperCAmelCase : List[str] = """train""" UpperCAmelCase : Tuple = {"""train""": parquet_path, """test""": parquet_path} UpperCAmelCase : Union[str, Any] = tmp_path / """cache""" UpperCAmelCase : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCAmelCase : List[Any] = ParquetDatasetReader(_lowercase , cache_dir=_lowercase ).read() _check_parquet_datasetdict(_lowercase , _lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : List[Any] = ParquetDatasetWriter(_lowercase , tmp_path / """foo.parquet""" ) assert writer.write() > 0 UpperCAmelCase : Optional[Any] = pq.ParquetFile(tmp_path / """foo.parquet""" ) UpperCAmelCase : List[str] = pf.read() assert dataset.data.table == output_table def __lowerCamelCase ( _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Dict = str(shared_datadir / """test_image_rgb.jpg""" ) UpperCAmelCase : List[Any] = {"""image""": [image_path]} UpperCAmelCase : List[str] = Features({"""image""": Image()} ) UpperCAmelCase : Optional[Any] = Dataset.from_dict(_lowercase , features=_lowercase ) UpperCAmelCase : int = ParquetDatasetWriter(_lowercase , tmp_path / """foo.parquet""" ) assert writer.write() > 0 UpperCAmelCase : Optional[Any] = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features UpperCAmelCase : Union[str, Any] = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=_lowercase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: assert get_writer_batch_size(_lowercase ) == expected
338
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : List[str] = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int: UpperCAmelCase : int = 1 UpperCAmelCase : str = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase : Tuple = pre_numerator UpperCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase : Union[str, Any] = cur_numerator UpperCAmelCase : Optional[int] = e_cont * pre_numerator + temp return sum_digits(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
338
1
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: UpperCAmelCase : Tuple = len(_lowercase ) + 1 UpperCAmelCase : List[Any] = len(_lowercase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase : str = [[0 for i in range(_lowercase )] for j in range(_lowercase )] # since string of zero length match pattern of zero length UpperCAmelCase : int = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowercase ): UpperCAmelCase : str = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowercase ): UpperCAmelCase : Optional[Any] = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowercase ): for j in range(1 , _lowercase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase : Union[str, Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase : List[Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase : Optional[int] = dp[i - 1][j] else: UpperCAmelCase : Any = 0 else: UpperCAmelCase : str = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") a : List[str] = """aab""" a : Optional[int] = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
338
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=0.0_1 , A=1000 ) -> List[str]: UpperCAmelCase : List[Any] = p_stop UpperCAmelCase : Optional[int] = max_length def __iter__( self ) -> Union[str, Any]: UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = False while not stop and count < self.max_length: yield count count += 1 UpperCAmelCase : Any = random.random() < self.p_stop class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A , A=False , A=True ) -> Union[str, Any]: UpperCAmelCase : List[str] = [ BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A ) for i in range(2 ) ] UpperCAmelCase : List[str] = [list(A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] ) self.assertListEqual(A , A ) def _lowercase( self ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is very small. UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [[], []] self.check_batch_sampler_shards(A , A ) def _lowercase( self ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A ) def _lowercase( self ) -> Any: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : str = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [[], []] self.check_batch_sampler_shards(A , A , even_batches=A ) def _lowercase( self ) -> List[Any]: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCAmelCase : List[str] = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _lowercase( self , A , A , A , A=False , A=2 , A=False ) -> Tuple: random.seed(A ) UpperCAmelCase : Dict = list(A ) UpperCAmelCase : Any = [ IterableDatasetShard( A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , ) for i in range(A ) ] UpperCAmelCase : Dict = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(A ) iterable_dataset_lists.append(list(A ) ) UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCAmelCase : List[Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(A ) , len(A ) ) self.assertTrue(len(A ) % shard_batch_size == 0 ) UpperCAmelCase : List[Any] = [] for idx in range(0 , len(A ) , A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(A ) < len(A ): reference += reference self.assertListEqual(A , reference[: len(A )] ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = 42 UpperCAmelCase : List[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) # Edge case with a very small dataset UpperCAmelCase : List[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = SkipBatchSampler(A , 2 ) self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> int: UpperCAmelCase : Any = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) UpperCAmelCase : Optional[Any] = skip_first_batches(A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowercase( self ) -> Dict: Accelerator() UpperCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
338
1
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : List[str] = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int: UpperCAmelCase : int = 1 UpperCAmelCase : str = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase : Tuple = pre_numerator UpperCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase : Union[str, Any] = cur_numerator UpperCAmelCase : Optional[int] = e_cont * pre_numerator + temp return sum_digits(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[Any] = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
'''simple docstring''' import math import sys import cva import numpy as np def __lowerCamelCase ( _lowercase , _lowercase ) -> np.ndarray: # For applying gaussian function for each element in matrix. UpperCAmelCase : str = math.sqrt(_lowercase ) UpperCAmelCase : Optional[Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> np.ndarray: UpperCAmelCase : List[Any] = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __lowerCamelCase ( _lowercase , _lowercase ) -> np.ndarray: # Creates a gaussian kernel of given dimension. UpperCAmelCase : Optional[int] = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _lowercase ): for j in range(0 , _lowercase ): UpperCAmelCase : int = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_lowercase , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , ) -> np.ndarray: UpperCAmelCase : List[str] = np.zeros(img.shape ) UpperCAmelCase : Optional[Any] = get_gauss_kernel(_lowercase , _lowercase ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): UpperCAmelCase : Any = get_slice(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : Optional[Any] = img_s - img_s[kernel_size // 2, kernel_size // 2] UpperCAmelCase : int = vec_gaussian(_lowercase , _lowercase ) UpperCAmelCase : List[str] = np.multiply(_lowercase , _lowercase ) UpperCAmelCase : int = np.multiply(_lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = np.sum(_lowercase ) / np.sum(_lowercase ) UpperCAmelCase : str = val return imga def __lowerCamelCase ( _lowercase ) -> tuple: UpperCAmelCase : Union[str, Any] = args[1] if args[1:] else """../image_data/lena.jpg""" UpperCAmelCase : int = float(args[2] ) if args[2:] else 1.0 UpperCAmelCase : int = float(args[3] ) if args[3:] else 1.0 if args[4:]: UpperCAmelCase : Dict = int(args[4] ) UpperCAmelCase : Union[str, Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: UpperCAmelCase : Union[str, Any] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": a , a , a , a : List[Any] = parse_args(sys.argv) a : Optional[Any] = cva.imread(filename, 0) cva.imshow("""input image""", img) a : Dict = img / 2_5_5 a : Tuple = out.astype("""float32""") a : Optional[int] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) a : List[Any] = out * 2_5_5 a : str = np.uinta(out) cva.imshow("""output image""", out) cva.waitKey(0) cva.destroyAllWindows()
338
'''simple docstring''' from math import loga def __lowerCamelCase ( _lowercase ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_lowercase , _lowercase ): raise TypeError("""Input value must be a 'int' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
338
1
'''simple docstring''' import argparse import collections import json import os import re import string import sys import numpy as np a : Tuple = re.compile(R"""\b(a|an|the)\b""", re.UNICODE) a : int = None def __lowerCamelCase ( ) -> Optional[Any]: UpperCAmelCase : List[str] = argparse.ArgumentParser("""Official evaluation script for SQuAD version 2.0.""" ) parser.add_argument("""data_file""" , metavar="""data.json""" , help="""Input data JSON file.""" ) parser.add_argument("""pred_file""" , metavar="""pred.json""" , help="""Model predictions.""" ) parser.add_argument( """--out-file""" , """-o""" , metavar="""eval.json""" , help="""Write accuracy metrics to file (default is stdout).""" ) parser.add_argument( """--na-prob-file""" , """-n""" , metavar="""na_prob.json""" , help="""Model estimates of probability of no answer.""" ) parser.add_argument( """--na-prob-thresh""" , """-t""" , type=_lowercase , default=1.0 , help="""Predict \"\" if no-answer probability exceeds this (default = 1.0).""" , ) parser.add_argument( """--out-image-dir""" , """-p""" , metavar="""out_images""" , default=_lowercase , help="""Save precision-recall curves to directory.""" ) parser.add_argument("""--verbose""" , """-v""" , action="""store_true""" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def __lowerCamelCase ( _lowercase ) -> Optional[Any]: UpperCAmelCase : Optional[int] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: UpperCAmelCase : Union[str, Any] = bool(qa["""answers"""]["""text"""] ) return qid_to_has_ans def __lowerCamelCase ( _lowercase ) -> Dict: def remove_articles(_lowercase ): return ARTICLES_REGEX.sub(""" """ , _lowercase ) def white_space_fix(_lowercase ): return " ".join(text.split() ) def remove_punc(_lowercase ): UpperCAmelCase : Dict = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowercase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) ) def __lowerCamelCase ( _lowercase ) -> List[str]: if not s: return [] return normalize_answer(_lowercase ).split() def __lowerCamelCase ( _lowercase , _lowercase ) -> List[Any]: return int(normalize_answer(_lowercase ) == normalize_answer(_lowercase ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[int]: UpperCAmelCase : Optional[Any] = get_tokens(_lowercase ) UpperCAmelCase : str = get_tokens(_lowercase ) UpperCAmelCase : Dict = collections.Counter(_lowercase ) & collections.Counter(_lowercase ) UpperCAmelCase : Any = sum(common.values() ) if len(_lowercase ) == 0 or len(_lowercase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 UpperCAmelCase : Tuple = 1.0 * num_same / len(_lowercase ) UpperCAmelCase : Union[str, Any] = 1.0 * num_same / len(_lowercase ) UpperCAmelCase : Any = (2 * precision * recall) / (precision + recall) return fa def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[int]: UpperCAmelCase : int = {} UpperCAmelCase : Union[str, Any] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: UpperCAmelCase : str = qa["""id"""] UpperCAmelCase : str = [t for t in qa["""answers"""]["""text"""] if normalize_answer(_lowercase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string UpperCAmelCase : Dict = [""""""] if qid not in preds: print(F'''Missing prediction for {qid}''' ) continue UpperCAmelCase : Optional[Any] = preds[qid] # Take max over all gold answers UpperCAmelCase : List[Any] = max(compute_exact(_lowercase , _lowercase ) for a in gold_answers ) UpperCAmelCase : str = max(compute_fa(_lowercase , _lowercase ) for a in gold_answers ) return exact_scores, fa_scores def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : List[Any] = {} for qid, s in scores.items(): UpperCAmelCase : Dict = na_probs[qid] > na_prob_thresh if pred_na: UpperCAmelCase : Union[str, Any] = float(not qid_to_has_ans[qid] ) else: UpperCAmelCase : str = s return new_scores def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Dict: if not qid_list: UpperCAmelCase : Tuple = len(_lowercase ) return collections.OrderedDict( [ ("""exact""", 100.0 * sum(exact_scores.values() ) / total), ("""f1""", 100.0 * sum(fa_scores.values() ) / total), ("""total""", total), ] ) else: UpperCAmelCase : int = len(_lowercase ) return collections.OrderedDict( [ ("""exact""", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("""f1""", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("""total""", total), ] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: for k in new_eval: UpperCAmelCase : int = new_eval[k] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]: plt.step(_lowercase , _lowercase , color="""b""" , alpha=0.2 , where="""post""" ) plt.fill_between(_lowercase , _lowercase , step="""post""" , alpha=0.2 , color="""b""" ) plt.xlabel("""Recall""" ) plt.ylabel("""Precision""" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(_lowercase ) plt.savefig(_lowercase ) plt.clf() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None ) -> str: UpperCAmelCase : Optional[Any] = sorted(_lowercase , key=lambda _lowercase : na_probs[k] ) UpperCAmelCase : List[str] = 0.0 UpperCAmelCase : List[Any] = 1.0 UpperCAmelCase : Union[str, Any] = 0.0 UpperCAmelCase : List[str] = [1.0] UpperCAmelCase : Union[str, Any] = [0.0] UpperCAmelCase : Optional[int] = 0.0 for i, qid in enumerate(_lowercase ): if qid_to_has_ans[qid]: true_pos += scores[qid] UpperCAmelCase : int = true_pos / float(i + 1 ) UpperCAmelCase : List[str] = true_pos / float(_lowercase ) if i == len(_lowercase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(_lowercase ) recalls.append(_lowercase ) if out_image: plot_pr_curve(_lowercase , _lowercase , _lowercase , _lowercase ) return {"ap": 100.0 * avg_prec} def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> int: if out_image_dir and not os.path.exists(_lowercase ): os.makedirs(_lowercase ) UpperCAmelCase : List[str] = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return UpperCAmelCase : List[str] = make_precision_recall_eval( _lowercase , _lowercase , _lowercase , _lowercase , out_image=os.path.join(_lowercase , """pr_exact.png""" ) , title="""Precision-Recall curve for Exact Match score""" , ) UpperCAmelCase : Optional[Any] = make_precision_recall_eval( _lowercase , _lowercase , _lowercase , _lowercase , out_image=os.path.join(_lowercase , """pr_f1.png""" ) , title="""Precision-Recall curve for F1 score""" , ) UpperCAmelCase : Union[str, Any] = {k: float(_lowercase ) for k, v in qid_to_has_ans.items()} UpperCAmelCase : int = make_precision_recall_eval( _lowercase , _lowercase , _lowercase , _lowercase , out_image=os.path.join(_lowercase , """pr_oracle.png""" ) , title="""Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)""" , ) merge_eval(_lowercase , _lowercase , """pr_exact""" ) merge_eval(_lowercase , _lowercase , """pr_f1""" ) merge_eval(_lowercase , _lowercase , """pr_oracle""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[int]: if not qid_list: return UpperCAmelCase : int = [na_probs[k] for k in qid_list] UpperCAmelCase : Tuple = np.ones_like(_lowercase ) / float(len(_lowercase ) ) plt.hist(_lowercase , weights=_lowercase , bins=2_0 , range=(0.0, 1.0) ) plt.xlabel("""Model probability of no-answer""" ) plt.ylabel("""Proportion of dataset""" ) plt.title(F'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(_lowercase , F'''na_prob_hist_{name}.png''' ) ) plt.clf() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> Any: UpperCAmelCase : Tuple = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) UpperCAmelCase : Optional[Any] = num_no_ans UpperCAmelCase : Any = cur_score UpperCAmelCase : int = 0.0 UpperCAmelCase : str = sorted(_lowercase , key=lambda _lowercase : na_probs[k] ) for i, qid in enumerate(_lowercase ): if qid not in scores: continue if qid_to_has_ans[qid]: UpperCAmelCase : Optional[int] = scores[qid] else: if preds[qid]: UpperCAmelCase : Optional[int] = -1 else: UpperCAmelCase : int = 0 cur_score += diff if cur_score > best_score: UpperCAmelCase : List[str] = cur_score UpperCAmelCase : str = na_probs[qid] return 100.0 * best_score / len(_lowercase ), best_thresh def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase , UpperCAmelCase : Optional[Any] = find_best_thresh(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase , UpperCAmelCase : Any = find_best_thresh(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : List[str] = best_exact UpperCAmelCase : str = exact_thresh UpperCAmelCase : Any = best_fa UpperCAmelCase : str = fa_thresh def __lowerCamelCase ( ) -> Dict: with open(OPTS.data_file ) as f: UpperCAmelCase : List[str] = json.load(_lowercase ) UpperCAmelCase : List[str] = dataset_json["""data"""] with open(OPTS.pred_file ) as f: UpperCAmelCase : Tuple = json.load(_lowercase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: UpperCAmelCase : Union[str, Any] = json.load(_lowercase ) else: UpperCAmelCase : Union[str, Any] = {k: 0.0 for k in preds} UpperCAmelCase : Dict = make_qid_to_has_ans(_lowercase ) # maps qid to True/False UpperCAmelCase : Tuple = [k for k, v in qid_to_has_ans.items() if v] UpperCAmelCase : Tuple = [k for k, v in qid_to_has_ans.items() if not v] UpperCAmelCase , UpperCAmelCase : List[str] = get_raw_scores(_lowercase , _lowercase ) UpperCAmelCase : List[Any] = apply_no_ans_threshold(_lowercase , _lowercase , _lowercase , OPTS.na_prob_thresh ) UpperCAmelCase : int = apply_no_ans_threshold(_lowercase , _lowercase , _lowercase , OPTS.na_prob_thresh ) UpperCAmelCase : int = make_eval_dict(_lowercase , _lowercase ) if has_ans_qids: UpperCAmelCase : Dict = make_eval_dict(_lowercase , _lowercase , qid_list=_lowercase ) merge_eval(_lowercase , _lowercase , """HasAns""" ) if no_ans_qids: UpperCAmelCase : List[str] = make_eval_dict(_lowercase , _lowercase , qid_list=_lowercase ) merge_eval(_lowercase , _lowercase , """NoAns""" ) if OPTS.na_prob_file: find_all_best_thresh(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , OPTS.out_image_dir ) histogram_na_prob(_lowercase , _lowercase , OPTS.out_image_dir , """hasAns""" ) histogram_na_prob(_lowercase , _lowercase , OPTS.out_image_dir , """noAns""" ) if OPTS.out_file: with open(OPTS.out_file , """w""" ) as f: json.dump(_lowercase , _lowercase ) else: print(json.dumps(_lowercase , indent=2 ) ) if __name__ == "__main__": a : Union[str, Any] = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("""Agg""") import matplotlib.pyplot as plt main()
338
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. a : Optional[int] = 1_0 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: for i in range(_lowercase , _lowercase ): if array[i] == target: return i return -1 def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = len(_lowercase ) while left <= right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1 UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase : Any = one_third - 1 elif array[two_third] < target: UpperCAmelCase : Tuple = two_third + 1 else: UpperCAmelCase : int = one_third + 1 UpperCAmelCase : List[Any] = two_third - 1 else: return -1 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: if left < right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : str = (left + right) // 3 + 1 UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() a : Any = input("""Enter numbers separated by comma:\n""").strip() a : Any = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip()) a : Union[str, Any] = ite_ternary_search(collection, target) a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
338
1
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> float: return round(float(moles / volume ) * nfactor ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> float: return round(float((moles * 0.0821 * temperature) / (volume) ) ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> float: return round(float((moles * 0.0821 * temperature) / (pressure) ) ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> float: return round(float((pressure * volume) / (0.0821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
338
'''simple docstring''' import numpy as np class UpperCamelCase_ : def __init__( self ) -> int: UpperCAmelCase : str = (0, 0) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Any = 0 UpperCAmelCase : int = 0 UpperCAmelCase : Optional[int] = 0 def __eq__( self , A ) -> Optional[Any]: return self.position == cell.position def _lowercase( self ) -> Tuple: print(self.position ) class UpperCamelCase_ : def __init__( self , A=(5, 5) ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = np.zeros(A ) UpperCAmelCase : int = world_size[0] UpperCAmelCase : List[str] = world_size[1] def _lowercase( self ) -> List[Any]: print(self.w ) def _lowercase( self , A ) -> Dict: UpperCAmelCase : Optional[Any] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase : List[Any] = cell.position[0] UpperCAmelCase : Union[str, Any] = cell.position[1] UpperCAmelCase : Optional[int] = [] for n in neughbour_cord: UpperCAmelCase : Any = current_x + n[0] UpperCAmelCase : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase : str = Cell() UpperCAmelCase : List[str] = (x, y) UpperCAmelCase : Dict = cell neighbours.append(A ) return neighbours def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase : List[Any] = [] UpperCAmelCase : Optional[int] = [] _open.append(_lowercase ) while _open: UpperCAmelCase : Any = np.argmin([n.f for n in _open] ) UpperCAmelCase : Optional[int] = _open[min_f] _closed.append(_open.pop(_lowercase ) ) if current == goal: break for n in world.get_neigbours(_lowercase ): for c in _closed: if c == n: continue UpperCAmelCase : List[str] = current.g + 1 UpperCAmelCase , UpperCAmelCase : List[str] = n.position UpperCAmelCase , UpperCAmelCase : Dict = goal.position UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase : Dict = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_lowercase ) UpperCAmelCase : Dict = [] while current.parent is not None: path.append(current.position ) UpperCAmelCase : Optional[int] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": a : List[str] = Gridworld() # Start position and goal a : Optional[int] = Cell() a : Optional[Any] = (0, 0) a : Optional[Any] = Cell() a : str = (4, 4) print(F'''path from {start.position} to {goal.position}''') a : List[Any] = astar(world, start, goal) # Just for visual reasons. for i in s: a : Any = 1 print(world.w)
338
1
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[Any]: global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: UpperCAmelCase : Tuple = mf_knapsack(i - 1 , _lowercase , _lowercase , _lowercase ) else: UpperCAmelCase : Dict = max( mf_knapsack(i - 1 , _lowercase , _lowercase , _lowercase ) , mf_knapsack(i - 1 , _lowercase , _lowercase , j - wt[i - 1] ) + val[i - 1] , ) UpperCAmelCase : Tuple = val return f[i][j] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : List[str] = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: UpperCAmelCase : str = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: UpperCAmelCase : Optional[Any] = dp[i - 1][w_] return dp[n][w_], dp def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: if not (isinstance(_lowercase , (list, tuple) ) and isinstance(_lowercase , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) UpperCAmelCase : Optional[int] = len(_lowercase ) if num_items != len(_lowercase ): UpperCAmelCase : Optional[Any] = ( """The number of weights must be the same as the number of values.\n""" F'''But got {num_items} weights and {len(_lowercase )} values''' ) raise ValueError(_lowercase ) for i in range(_lowercase ): if not isinstance(wt[i] , _lowercase ): UpperCAmelCase : Union[str, Any] = ( """All weights must be integers but got weight of """ F'''type {type(wt[i] )} at index {i}''' ) raise TypeError(_lowercase ) UpperCAmelCase , UpperCAmelCase : List[Any] = knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : set = set() _construct_solution(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) return optimal_val, example_optional_set def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(_lowercase , _lowercase , i - 1 , _lowercase , _lowercase ) else: optimal_set.add(_lowercase ) _construct_solution(_lowercase , _lowercase , i - 1 , j - wt[i - 1] , _lowercase ) if __name__ == "__main__": a : str = [3, 2, 4, 4] a : str = [4, 3, 2, 3] a : List[str] = 4 a : Optional[Any] = 6 a : Optional[int] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] a , a : List[str] = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 a , a : Optional[Any] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> int: if n == 1 or not isinstance(_lowercase , _lowercase ): return 0 elif n == 2: return 1 else: UpperCAmelCase : Any = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : List[Any] = 0 UpperCAmelCase : Dict = 2 while digits < n: index += 1 UpperCAmelCase : Tuple = len(str(fibonacci(_lowercase ) ) ) return index def __lowerCamelCase ( _lowercase = 1_0_0_0 ) -> int: return fibonacci_digits_index(_lowercase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
338
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a : int = logging.get_logger(__name__) a : int = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off a : Tuple = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] a : Optional[int] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class UpperCamelCase_ ( __magic_name__ ): lowercase = 'whisper' lowercase = ['past_key_values'] lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]: UpperCAmelCase : str = vocab_size UpperCAmelCase : Union[str, Any] = num_mel_bins UpperCAmelCase : Tuple = d_model UpperCAmelCase : Optional[int] = encoder_layers UpperCAmelCase : List[str] = encoder_attention_heads UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : int = decoder_attention_heads UpperCAmelCase : Optional[int] = decoder_ffn_dim UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : List[str] = dropout UpperCAmelCase : Optional[Any] = attention_dropout UpperCAmelCase : Optional[Any] = activation_dropout UpperCAmelCase : Optional[Any] = activation_function UpperCAmelCase : Optional[Any] = init_std UpperCAmelCase : int = encoder_layerdrop UpperCAmelCase : Dict = decoder_layerdrop UpperCAmelCase : Optional[int] = use_cache UpperCAmelCase : List[str] = encoder_layers UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Union[str, Any] = max_source_positions UpperCAmelCase : Tuple = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : List[str] = classifier_proj_size UpperCAmelCase : Optional[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : int = mask_time_prob UpperCAmelCase : int = mask_time_length UpperCAmelCase : Dict = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Optional[int] = mask_feature_length UpperCAmelCase : int = mask_feature_min_masks UpperCAmelCase : List[Any] = median_filter_width super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , ) class UpperCamelCase_ ( __magic_name__ ): @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : str = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase : List[Any] = {0: """batch"""} else: UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) return common_inputs def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Optional[int] = OrderedDict() UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , ) UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2] UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Any = super().generate_dummy_inputs( preprocessor.tokenizer , A , A , A , A ) UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" ) UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def _lowercase( self ) -> float: return 1e-3
338
1
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. a : Optional[int] = 1_0 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: for i in range(_lowercase , _lowercase ): if array[i] == target: return i return -1 def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = len(_lowercase ) while left <= right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1 UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase : Any = one_third - 1 elif array[two_third] < target: UpperCAmelCase : Tuple = two_third + 1 else: UpperCAmelCase : int = one_third + 1 UpperCAmelCase : List[Any] = two_third - 1 else: return -1 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: if left < right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : str = (left + right) // 3 + 1 UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() a : Any = input("""Enter numbers separated by comma:\n""").strip() a : Any = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip()) a : Union[str, Any] = ite_ternary_search(collection, target) a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
338
'''simple docstring''' a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowerCamelCase ( ) -> None: UpperCAmelCase : Optional[int] = input("""Enter message: """ ) UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ ) UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): UpperCAmelCase : List[str] = """encrypt""" UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase ) elif mode.lower().startswith("""d""" ): UpperCAmelCase : Tuple = """decrypt""" UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """encrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """decrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Tuple = key.upper() for symbol in message: UpperCAmelCase : Dict = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowercase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowercase ): UpperCAmelCase : Optional[int] = 0 else: translated.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": main()
338
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a : Union[str, Any] = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): lowercase = ['pixel_values'] def __init__( self , A = True , A = None , A = PILImageResampling.BILINEAR , A = True , A = None , A = True , A = 1 / 255 , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) UpperCAmelCase : Union[str, Any] = size if size is not None else {"""shortest_edge""": 256} UpperCAmelCase : Dict = get_size_dict(A , default_to_square=A ) UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} UpperCAmelCase : Optional[Any] = get_size_dict(A ) UpperCAmelCase : Optional[Any] = do_resize UpperCAmelCase : List[str] = size UpperCAmelCase : int = resample UpperCAmelCase : List[Any] = do_center_crop UpperCAmelCase : str = crop_size UpperCAmelCase : List[str] = do_rescale UpperCAmelCase : List[Any] = rescale_factor UpperCAmelCase : Optional[Any] = do_normalize UpperCAmelCase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase( self , A , A , A = PILImageResampling.BICUBIC , A = None , **A , ) -> np.ndarray: UpperCAmelCase : Any = get_size_dict(A , default_to_square=A ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) UpperCAmelCase : Any = get_resize_output_image_size(A , size=size["""shortest_edge"""] , default_to_square=A ) return resize(A , size=A , resample=A , data_format=A , **A ) def _lowercase( self , A , A , A = None , **A , ) -> np.ndarray: UpperCAmelCase : Optional[int] = get_size_dict(A ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def _lowercase( self , A , A , A = None , **A ) -> np.ndarray: return rescale(A , scale=A , data_format=A , **A ) def _lowercase( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def _lowercase( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> List[Any]: UpperCAmelCase : List[Any] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase : Any = size if size is not None else self.size UpperCAmelCase : int = get_size_dict(A , default_to_square=A ) UpperCAmelCase : Optional[Any] = resample if resample is not None else self.resample UpperCAmelCase : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase : Tuple = crop_size if crop_size is not None else self.crop_size UpperCAmelCase : str = get_size_dict(A ) UpperCAmelCase : List[Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase : Any = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase : Optional[int] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase : Optional[int] = image_std if image_std is not None else self.image_std UpperCAmelCase : int = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. UpperCAmelCase : List[Any] = [to_numpy_array(A ) for image in images] if do_resize: UpperCAmelCase : List[Any] = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: UpperCAmelCase : Any = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: UpperCAmelCase : Any = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: UpperCAmelCase : List[Any] = [self.normalize(image=A , mean=A , std=A ) for image in images] UpperCAmelCase : str = [to_channel_dimension_format(A , A ) for image in images] UpperCAmelCase : Union[str, Any] = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
338
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Optional[int] = split_dict._to_yaml_list() assert len(_lowercase ) == len(_lowercase ) UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(_lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCAmelCase : List[str] = None # the split name of split_dict takes over the name of the split info object UpperCAmelCase : int = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name="""my_dataset""" )] ) def __lowerCamelCase ( _lowercase ) -> List[str]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files UpperCAmelCase : Optional[Any] = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
338
1