code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
def __lowerCamelCase ( _lowercase , _lowercase ) -> int:
UpperCAmelCase : Any = word.split()
def justify(_lowercase , _lowercase , _lowercase ) -> str:
UpperCAmelCase : Any = max_width - width
UpperCAmelCase : List[str] = len(UpperCAmelCase_ )
if len(UpperCAmelCase_ ) == 1:
# if there is only word in line
# just insert overall_spaces_count for the remainder of line
return line[0] + " " * overall_spaces_count
else:
UpperCAmelCase : Union[str, Any] = words_count - 1
# num_spaces_between_words_list[i] : tells you to insert
# num_spaces_between_words_list[i] spaces
# after word on line[i]
UpperCAmelCase : Dict = spaces_to_insert_between_words * [
overall_spaces_count // spaces_to_insert_between_words
]
UpperCAmelCase : Tuple = (
overall_spaces_count % spaces_to_insert_between_words
)
# distribute spaces via round robin to the left words
for i in range(UpperCAmelCase_ ):
num_spaces_between_words_list[i] += 1
UpperCAmelCase : Tuple = []
for i in range(UpperCAmelCase_ ):
# add the word
aligned_words_list.append(line[i] )
# add the spaces to insert
aligned_words_list.append(num_spaces_between_words_list[i] * """ """ )
# just add the last word to the sentence
aligned_words_list.append(line[-1] )
# join the aligned words list to form a justified line
return "".join(UpperCAmelCase_ )
UpperCAmelCase : Optional[int] = []
UpperCAmelCase : Dict = []
UpperCAmelCase : Optional[Any] = 0
for word in words:
if width + len(UpperCAmelCase_ ) + len(UpperCAmelCase_ ) <= max_width:
# keep adding words until we can fill out max_width
# width = sum of length of all words (without overall_spaces_count)
# len(word) = length of current word
# len(line) = number of overall_spaces_count to insert between words
line.append(UpperCAmelCase_ )
width += len(UpperCAmelCase_ )
else:
# justify the line and add it to result
answer.append(justify(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) )
# reset new line and new width
UpperCAmelCase , UpperCAmelCase : Optional[int] = [word], len(UpperCAmelCase_ )
UpperCAmelCase : int = max_width - width - len(UpperCAmelCase_ )
answer.append(""" """.join(UpperCAmelCase_ ) + (remaining_spaces + 1) * """ """ )
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 353 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase ) -> int:
UpperCAmelCase : List[str] = 0
while num > 0:
digit_sum += num % 1_0
num //= 1_0
return digit_sum
def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int:
UpperCAmelCase : int = 1
UpperCAmelCase : str = 2
for i in range(2 , max_n + 1 ):
UpperCAmelCase : Tuple = pre_numerator
UpperCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1
UpperCAmelCase : Union[str, Any] = cur_numerator
UpperCAmelCase : Optional[int] = e_cont * pre_numerator + temp
return sum_digits(_lowercase )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 338 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available
a : Optional[Any] = {'''tokenization_herbert''': ['''HerbertTokenizer''']}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Union[str, Any] = ['''HerbertTokenizerFast''']
if TYPE_CHECKING:
from .tokenization_herbert import HerbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_herbert_fast import HerbertTokenizerFast
else:
import sys
a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 354 |
'''simple docstring'''
import random
import unittest
from torch.utils.data import BatchSampler, DataLoader, IterableDataset
from accelerate import Accelerator
from accelerate.data_loader import (
BatchSamplerShard,
DataLoaderDispatcher,
DataLoaderShard,
IterableDatasetShard,
SkipBatchSampler,
SkipDataLoader,
skip_first_batches,
)
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , A=0.0_1 , A=1000 ) -> List[str]:
UpperCAmelCase : List[Any] = p_stop
UpperCAmelCase : Optional[int] = max_length
def __iter__( self ) -> Union[str, Any]:
UpperCAmelCase : Dict = 0
UpperCAmelCase : Union[str, Any] = False
while not stop and count < self.max_length:
yield count
count += 1
UpperCAmelCase : Any = random.random() < self.p_stop
class UpperCamelCase_ ( unittest.TestCase ):
def _lowercase( self , A , A , A=False , A=True ) -> Union[str, Any]:
UpperCAmelCase : List[str] = [
BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A )
for i in range(2 )
]
UpperCAmelCase : List[str] = [list(A ) for batch_sampler_shard in batch_sampler_shards]
if not split_batches:
self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] )
self.assertListEqual(A , A )
def _lowercase( self ) -> Union[str, Any]:
# Check the shards when the dataset is a round multiple of total batch size.
UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Any = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A )
# Expected shouldn't change
self.check_batch_sampler_shards(A , A )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]],
]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Tuple = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]],
]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : List[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]],
]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : int = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A )
# Check the shards when the dataset is very small.
UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : List[Any] = [[], []]
self.check_batch_sampler_shards(A , A )
def _lowercase( self ) -> Tuple:
# Check the shards when the dataset is a round multiple of batch size.
UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : List[str] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A )
# Expected shouldn't change
self.check_batch_sampler_shards(A , A , split_batches=A )
# Check the shards when the dataset is not a round multiple of batch size.
UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : List[str] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Union[str, Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Any = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
# Check the shards when the dataset is very small.
UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Optional[Any] = [[[0, 1]], [[0, 1]]]
self.check_batch_sampler_shards(A , A , split_batches=A )
UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Any = [[], []]
self.check_batch_sampler_shards(A , A , split_batches=A )
def _lowercase( self ) -> Any:
# Check the shards when the dataset is a round multiple of total batch size.
UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A )
# Expected shouldn't change
self.check_batch_sampler_shards(A , A , even_batches=A )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : List[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Dict = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
UpperCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Union[str, Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
# Check the shards when the dataset is very small.
UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : str = [[[0, 1]], []]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Tuple = [[], []]
self.check_batch_sampler_shards(A , A , even_batches=A )
def _lowercase( self ) -> List[Any]:
# Check the shards when the dataset is a round multiple of batch size.
UpperCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : List[Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A )
# Expected shouldn't change
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
# Check the shards when the dataset is not a round multiple of batch size.
UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Optional[Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Dict = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Union[str, Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Dict = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
# Check the shards when the dataset is very small.
UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Dict = [[[0, 1]], []]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Dict = [[], []]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]]
UpperCAmelCase : List[str] = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )]
self.assertEqual(len(batch_sampler_shards[0] ) , 3 )
self.assertEqual(len(batch_sampler_shards[1] ) , 2 )
self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] )
self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] )
def _lowercase( self , A , A , A , A=False , A=2 , A=False ) -> Tuple:
random.seed(A )
UpperCAmelCase : Dict = list(A )
UpperCAmelCase : Any = [
IterableDatasetShard(
A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , )
for i in range(A )
]
UpperCAmelCase : Dict = []
for iterable_dataset_shard in iterable_dataset_shards:
# Since our random iterable dataset will be... random... we need to use a seed to get reproducible results.
random.seed(A )
iterable_dataset_lists.append(list(A ) )
UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size
# All iterable dataset shard should have the same length, a round multiple of shard_batch_size
UpperCAmelCase : List[Any] = iterable_dataset_lists[0]
for l in iterable_dataset_lists[1:]:
self.assertEqual(len(A ) , len(A ) )
self.assertTrue(len(A ) % shard_batch_size == 0 )
UpperCAmelCase : List[Any] = []
for idx in range(0 , len(A ) , A ):
for l in iterable_dataset_lists:
observed += l[idx : idx + shard_batch_size]
if not drop_last:
while len(A ) < len(A ):
reference += reference
self.assertListEqual(A , reference[: len(A )] )
def _lowercase( self ) -> str:
UpperCAmelCase : Tuple = 42
UpperCAmelCase : List[Any] = RandomIterableDataset()
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
# Edge case with a very small dataset
UpperCAmelCase : List[Any] = RandomIterableDataset(max_length=2 )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Any = SkipBatchSampler(A , 2 )
self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowercase( self ) -> int:
UpperCAmelCase : Any = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 )
self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : List[Any] = DataLoader(list(range(16 ) ) , batch_size=4 )
UpperCAmelCase : Optional[Any] = skip_first_batches(A , num_batches=2 )
self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 )
for idx, _ in enumerate(A ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(A ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
def _lowercase( self ) -> Dict:
Accelerator()
UpperCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 )
for idx, _ in enumerate(A ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(A ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
| 338 | 0 |
import unittest
from parameterized import parameterized
from transformers import LlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer
class UpperCamelCase_ :
def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Optional[Any]:
UpperCAmelCase : List[Any] = parent
UpperCAmelCase : List[str] = batch_size
UpperCAmelCase : Any = seq_length
UpperCAmelCase : Union[str, Any] = is_training
UpperCAmelCase : str = use_input_mask
UpperCAmelCase : Dict = use_token_type_ids
UpperCAmelCase : Any = use_labels
UpperCAmelCase : List[str] = vocab_size
UpperCAmelCase : Tuple = hidden_size
UpperCAmelCase : List[Any] = num_hidden_layers
UpperCAmelCase : str = num_attention_heads
UpperCAmelCase : Dict = intermediate_size
UpperCAmelCase : int = hidden_act
UpperCAmelCase : int = hidden_dropout_prob
UpperCAmelCase : List[str] = attention_probs_dropout_prob
UpperCAmelCase : Union[str, Any] = max_position_embeddings
UpperCAmelCase : Union[str, Any] = type_vocab_size
UpperCAmelCase : Optional[Any] = type_sequence_label_size
UpperCAmelCase : str = initializer_range
UpperCAmelCase : int = num_labels
UpperCAmelCase : Tuple = num_choices
UpperCAmelCase : Dict = scope
def _lowercase( self ) -> List[str]:
UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : List[str] = None
if self.use_input_mask:
UpperCAmelCase : int = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : Tuple = None
if self.use_token_type_ids:
UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase : Optional[Any] = None
UpperCAmelCase : List[str] = None
UpperCAmelCase : List[str] = None
if self.use_labels:
UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase : List[str] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowercase( self ) -> Any:
return LlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , )
def _lowercase( self , A , A , A , A , A , A , A ) -> Optional[Any]:
UpperCAmelCase : str = LlamaModel(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase : Any = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ )
UpperCAmelCase : Tuple = model(lowerCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[str]:
UpperCAmelCase : int = True
UpperCAmelCase : List[str] = LlamaModel(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase : List[Any] = model(
lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , )
UpperCAmelCase : List[str] = model(
lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , )
UpperCAmelCase : Union[str, Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> Any:
UpperCAmelCase : Optional[Any] = LlamaForCausalLM(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase : List[Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> Union[str, Any]:
UpperCAmelCase : Dict = True
UpperCAmelCase : int = True
UpperCAmelCase : Any = LlamaForCausalLM(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
# first forward pass
UpperCAmelCase : int = model(
lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , use_cache=lowerCamelCase_ , )
UpperCAmelCase : Union[str, Any] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
UpperCAmelCase : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase : str = torch.cat([input_mask, next_mask] , dim=-1 )
UpperCAmelCase : Dict = model(
lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , )["""hidden_states"""][0]
UpperCAmelCase : int = model(
lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , )["""hidden_states"""][0]
# select random slice
UpperCAmelCase : int = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase : int = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) )
def _lowercase( self ) -> Dict:
UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) : Union[str, Any] = config_and_inputs
UpperCAmelCase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
lowercase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else ()
lowercase = (LlamaForCausalLM,) if is_torch_available() else ()
lowercase = (
{
'feature-extraction': LlamaModel,
'text-classification': LlamaForSequenceClassification,
'text-generation': LlamaForCausalLM,
'zero-shot': LlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase = False
lowercase = False
def _lowercase( self ) -> Any:
UpperCAmelCase : str = LlamaModelTester(self )
UpperCAmelCase : List[Any] = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 )
def _lowercase( self ) -> int:
self.config_tester.run_common_tests()
def _lowercase( self ) -> str:
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase_ )
def _lowercase( self ) -> str:
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase : List[str] = type
self.model_tester.create_and_check_model(*lowerCamelCase_ )
def _lowercase( self ) -> Dict:
UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Optional[int] = 3
UpperCAmelCase : str = input_dict["""input_ids"""]
UpperCAmelCase : Any = input_ids.ne(1 ).to(lowerCamelCase_ )
UpperCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase : Tuple = LlamaForSequenceClassification(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase : Tuple = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _lowercase( self ) -> str:
UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Any = 3
UpperCAmelCase : Any = """single_label_classification"""
UpperCAmelCase : List[str] = input_dict["""input_ids"""]
UpperCAmelCase : Any = input_ids.ne(1 ).to(lowerCamelCase_ )
UpperCAmelCase : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase : Any = LlamaForSequenceClassification(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase : Dict = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Optional[Any] = 3
UpperCAmelCase : Optional[Any] = """multi_label_classification"""
UpperCAmelCase : List[Any] = input_dict["""input_ids"""]
UpperCAmelCase : Any = input_ids.ne(1 ).to(lowerCamelCase_ )
UpperCAmelCase : List[str] = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
UpperCAmelCase : int = LlamaForSequenceClassification(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase : Dict = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" )
def _lowercase( self ) -> Any:
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def _lowercase( self , A ) -> Any:
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : str = ids_tensor([1, 10] , config.vocab_size )
UpperCAmelCase : int = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
UpperCAmelCase : List[str] = LlamaModel(lowerCamelCase_ )
original_model.to(lowerCamelCase_ )
original_model.eval()
UpperCAmelCase : Dict = original_model(lowerCamelCase_ ).last_hidden_state
UpperCAmelCase : List[Any] = original_model(lowerCamelCase_ ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
UpperCAmelCase : Dict = {"""type""": scaling_type, """factor""": 1_0.0}
UpperCAmelCase : Union[str, Any] = LlamaModel(lowerCamelCase_ )
scaled_model.to(lowerCamelCase_ )
scaled_model.eval()
UpperCAmelCase : Tuple = scaled_model(lowerCamelCase_ ).last_hidden_state
UpperCAmelCase : Optional[int] = scaled_model(lowerCamelCase_ ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-5 ) )
else:
self.assertFalse(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-5 ) )
@require_torch
class UpperCamelCase_ ( unittest.TestCase ):
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def _lowercase( self ) -> str:
UpperCAmelCase : Union[str, Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338]
UpperCAmelCase : Dict = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" )
UpperCAmelCase : Optional[Any] = model(torch.tensor([input_ids] ) )
# Expected mean on dim = -1
UpperCAmelCase : Optional[Any] = torch.tensor([[-6.6_5_5_0, -4.1_2_2_7, -4.9_8_5_9, -3.2_4_0_6, 0.8_2_6_2, -3.0_0_3_3, 1.2_9_6_4, -3.3_6_9_9]] )
torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1e-2 , rtol=1e-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
UpperCAmelCase : List[Any] = torch.tensor([-1_2.8_2_8_1, -7.4_4_5_3, -0.4_6_3_9, -8.0_6_2_5, -7.2_5_0_0, -8.0_0_0_0, -6.4_8_8_3, -7.7_6_9_5, -7.8_4_3_8, -7.0_3_1_2, -6.2_1_8_8, -7.1_3_2_8, -1.8_4_9_6, 1.9_9_6_1, -8.6_2_5_0, -6.7_2_2_7, -1_2.8_2_8_1, -6.9_4_9_2, -7.0_7_4_2, -7.7_8_5_2, -7.5_8_2_0, -7.9_0_6_2, -6.9_3_7_5, -7.9_8_0_5, -8.3_4_3_8, -8.1_5_6_2, -8.0_4_6_9, -7.6_2_5_0, -7.7_4_2_2, -7.3_3_9_8,] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , lowerCamelCase_ , atol=1e-5 , rtol=1e-5 )
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : List[Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338]
UpperCAmelCase : Dict = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" )
UpperCAmelCase : Dict = model(torch.tensor(lowerCamelCase_ ) )
# Expected mean on dim = -1
UpperCAmelCase : int = torch.tensor([[-2.0_6_2_2, -1.2_7_9_4, -1.1_6_3_8, -0.9_7_8_8, -1.4_6_0_3, -1.0_2_3_8, -1.7_8_9_3, -1.4_4_1_1]] )
torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1e-2 , rtol=1e-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
UpperCAmelCase : Optional[Any] = torch.tensor([-8.1_4_0_6, -8.0_5_4_7, 2.7_4_6_1, -1.2_3_4_4, -0.1_4_4_8, -1.8_2_6_2, -1.0_0_2_0, -1.8_1_5_4, -1.6_8_9_5, -1.8_5_1_6, -2.3_5_7_4, -0.9_2_7_7, 3.7_5_9_8, 6.5_7_4_2, -1.2_9_9_8, -0.1_1_7_7, -8.1_4_0_6, -2.9_6_8_8, -2.9_1_9_9, -3.1_6_9_9, -3.5_2_5_4, -2.3_5_5_5, -2.7_9_8_8, -3.4_1_4_1, -2.8_2_6_2, -4.5_1_9_5, -3.3_3_7_9, -3.3_1_6_4, -2.7_8_3_2, -3.0_2_7_3] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , lowerCamelCase_ , atol=1e-5 , rtol=1e-5 )
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Any = [1, 306, 4658, 278, 6593, 310, 2834, 338]
UpperCAmelCase : List[str] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" )
UpperCAmelCase : str = model(torch.tensor(lowerCamelCase_ ) )
# Expected mean on dim = -1
UpperCAmelCase : Optional[int] = torch.tensor([[-0.8_5_6_2, -1.8_5_2_0, -0.7_5_5_1, -0.4_1_6_2, -1.5_1_6_1, -1.2_0_3_8, -2.4_8_2_3, -2.3_2_5_4]] )
torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1e-2 , rtol=1e-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
UpperCAmelCase : List[Any] = torch.tensor([-2.2_2_2_7, 4.8_8_2_8, 0.9_0_2_3, -0.4_5_7_8, -0.7_8_7_1, -0.1_0_3_3, -0.6_2_2_1, -0.5_7_8_6, -0.7_8_0_3, -1.0_6_7_4, -1.2_9_2_0, -0.1_5_7_0, 0.8_0_0_8, 2.0_7_2_3, -0.9_4_9_7, 0.2_7_7_1, -2.2_2_2_7, -0.7_6_1_2, -1.4_3_4_6, -1.2_0_6_1, -1.6_4_2_6, -0.3_0_0_0, -0.7_1_3_9, -1.1_9_3_4, -1.8_6_9_1, -1.6_9_7_3, -1.5_9_4_7, -1.2_7_0_5, -0.3_5_2_3, -0.5_5_1_3] )
# fmt: on
torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1e-2 , rtol=1e-2 )
@unittest.skip(
"""Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" )
@slow
def _lowercase( self ) -> str:
UpperCAmelCase : List[Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338]
UpperCAmelCase : Optional[Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" )
UpperCAmelCase : Dict = model(torch.tensor(lowerCamelCase_ ) )
UpperCAmelCase : Optional[Any] = torch.tensor(
[[-4.2_3_2_7, -3.3_3_6_0, -4.6_6_6_5, -4.7_6_3_1, -1.8_1_8_0, -3.4_1_7_0, -1.4_2_1_1, -3.1_8_1_0]] , dtype=torch.floataa )
torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1e-2 , rtol=1e-2 )
# fmt: off
UpperCAmelCase : Tuple = torch.tensor([-9.4_9_2_2, -3.9_5_5_1, 1.7_9_9_8, -5.6_7_5_8, -5.1_0_5_5, -5.8_9_8_4, -4.8_3_2_0, -6.8_0_8_6, -6.5_3_9_1, -5.6_1_7_2, -5.5_8_2_0, -5.5_3_5_2, 1.7_8_8_1, 3.6_2_8_9, -6.5_1_1_7, -3.4_7_8_5, -9.5_0_0_0, -6.0_3_5_2, -6.8_1_2_5, -6.0_1_9_5, -6.6_8_3_6, -5.4_7_2_7, -6.2_8_1_2, -6.0_3_9_1, -7.3_3_9_8, -7.4_2_9_7, -7.4_8_4_4, -6.5_8_2_0, -5.8_7_8_9, -5.5_3_1_2] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , lowerCamelCase_ , atol=1e-5 , rtol=1e-5 )
@unittest.skip("""Model is curently gated""" )
@slow
def _lowercase( self ) -> Any:
UpperCAmelCase : Optional[Any] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi"""
UpperCAmelCase : int = """Simply put, the theory of relativity states that """
UpperCAmelCase : List[str] = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" )
UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCamelCase_ , return_tensors="""pt""" )
UpperCAmelCase : Union[str, Any] = LlamaForCausalLM.from_pretrained(
"""meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=lowerCamelCase_ )
# greedy generation outputs
UpperCAmelCase : int = model.generate(lowerCamelCase_ , max_new_tokens=64 , top_p=lowerCamelCase_ , temperature=1 , do_sample=lowerCamelCase_ )
UpperCAmelCase : Optional[Any] = tokenizer.decode(generated_ids[0] , skip_special_tokens=lowerCamelCase_ )
self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
| 355 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
a : List[Any] = {
"""configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""],
"""tokenization_m2m_100""": ["""M2M100Tokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Any = [
"""M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""M2M100ForConditionalGeneration""",
"""M2M100Model""",
"""M2M100PreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 338 | 0 |
'''simple docstring'''
from __future__ import annotations
from decimal import Decimal
from math import * # noqa: F403
from sympy import diff
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase = 1_0**-1_0 ) -> float:
UpperCAmelCase : Optional[int] = a
while True:
UpperCAmelCase : Any = Decimal(__UpperCAmelCase ) - (
Decimal(eval(__UpperCAmelCase ) ) / Decimal(eval(str(diff(__UpperCAmelCase ) ) ) ) # noqa: S307
)
# This number dictates the accuracy of the answer
if abs(eval(__UpperCAmelCase ) ) < precision: # noqa: S307
return float(__UpperCAmelCase )
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''')
# Find root of polynomial
print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''')
# Find Square Root of 5
print(F'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''')
# Exponential Roots
print(F'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
| 356 |
'''simple docstring'''
from math import loga
def __lowerCamelCase ( _lowercase ) -> int:
if a < 0:
raise ValueError("""Input value must be a positive integer""" )
elif isinstance(_lowercase , _lowercase ):
raise TypeError("""Input value must be a 'int' type""" )
return 0 if (a == 0) else int(loga(a & -a ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 338 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
a : Tuple = {
'''configuration_gpt_neo''': ['''GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoConfig''', '''GPTNeoOnnxConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Any = [
'''GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GPTNeoForCausalLM''',
'''GPTNeoForQuestionAnswering''',
'''GPTNeoForSequenceClassification''',
'''GPTNeoForTokenClassification''',
'''GPTNeoModel''',
'''GPTNeoPreTrainedModel''',
'''load_tf_weights_in_gpt_neo''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : int = [
'''FlaxGPTNeoForCausalLM''',
'''FlaxGPTNeoModel''',
'''FlaxGPTNeoPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neo import (
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoForCausalLM,
GPTNeoForQuestionAnswering,
GPTNeoForSequenceClassification,
GPTNeoForTokenClassification,
GPTNeoModel,
GPTNeoPreTrainedModel,
load_tf_weights_in_gpt_neo,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel
else:
import sys
a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 357 |
'''simple docstring'''
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
a : Optional[int] = 1_0
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int:
for i in range(_lowercase , _lowercase ):
if array[i] == target:
return i
return -1
def __lowerCamelCase ( _lowercase , _lowercase ) -> int:
UpperCAmelCase : Tuple = 0
UpperCAmelCase : List[str] = len(_lowercase )
while left <= right:
if right - left < precision:
return lin_search(_lowercase , _lowercase , _lowercase , _lowercase )
UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1
UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
UpperCAmelCase : Any = one_third - 1
elif array[two_third] < target:
UpperCAmelCase : Tuple = two_third + 1
else:
UpperCAmelCase : int = one_third + 1
UpperCAmelCase : List[Any] = two_third - 1
else:
return -1
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int:
if left < right:
if right - left < precision:
return lin_search(_lowercase , _lowercase , _lowercase , _lowercase )
UpperCAmelCase : str = (left + right) // 3 + 1
UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
a : Any = input("""Enter numbers separated by comma:\n""").strip()
a : Any = [int(item.strip()) for item in user_input.split(""",""")]
assert collection == sorted(collection), F"List must be ordered.\n{collection}."
a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip())
a : Union[str, Any] = ite_ternary_search(collection, target)
a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(F'''Iterative search: {target} found at positions: {resulta}''')
print(F'''Recursive search: {target} found at positions: {resulta}''')
else:
print("""Not found""")
| 338 | 0 |
'''simple docstring'''
import math
from collections import defaultdict
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
def __lowerCamelCase ( _lowercase , _lowercase=0.999 , _lowercase="cosine" , ) -> Any:
if alpha_transform_type == "cosine":
def alpha_bar_fn(_lowercase ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(_lowercase ):
return math.exp(t * -12.0 )
else:
raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
UpperCAmelCase : Optional[Any] = []
for i in range(A_ ):
UpperCAmelCase : str = i / num_diffusion_timesteps
UpperCAmelCase : Union[str, Any] = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(A_ ) / alpha_bar_fn(A_ ) , A_ ) )
return torch.tensor(A_ , dtype=torch.floataa )
class UpperCamelCase_ ( a_ , a_ ):
lowercase = [e.name for e in KarrasDiffusionSchedulers]
lowercase = 2
@register_to_config
def __init__( self , A = 1000 , A = 0.0_0_0_8_5 , A = 0.0_1_2 , A = "linear" , A = None , A = "epsilon" , A = False , A = False , A = 1.0 , A = "linspace" , A = 0 , ) -> Optional[int]:
if trained_betas is not None:
UpperCAmelCase : Any = torch.tensor(lowercase_ , dtype=torch.floataa )
elif beta_schedule == "linear":
UpperCAmelCase : Any = torch.linspace(lowercase_ , lowercase_ , lowercase_ , dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
UpperCAmelCase : Optional[Any] = (
torch.linspace(beta_start**0.5 , beta_end**0.5 , lowercase_ , dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
UpperCAmelCase : List[str] = betas_for_alpha_bar(lowercase_ , alpha_transform_type="""cosine""" )
elif beta_schedule == "exp":
UpperCAmelCase : Optional[int] = betas_for_alpha_bar(lowercase_ , alpha_transform_type="""exp""" )
else:
raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' )
UpperCAmelCase : List[str] = 1.0 - self.betas
UpperCAmelCase : Any = torch.cumprod(self.alphas , dim=0 )
# set all values
self.set_timesteps(lowercase_ , lowercase_ , lowercase_ )
UpperCAmelCase : Optional[Any] = use_karras_sigmas
def _lowercase( self , A , A=None ) -> Tuple:
if schedule_timesteps is None:
UpperCAmelCase : Union[str, Any] = self.timesteps
UpperCAmelCase : Union[str, Any] = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
if len(self._index_counter ) == 0:
UpperCAmelCase : Union[str, Any] = 1 if len(lowercase_ ) > 1 else 0
else:
UpperCAmelCase : Dict = timestep.cpu().item() if torch.is_tensor(lowercase_ ) else timestep
UpperCAmelCase : Optional[int] = self._index_counter[timestep_int]
return indices[pos].item()
@property
def _lowercase( self ) -> str:
# standard deviation of the initial noise distribution
if self.config.timestep_spacing in ["linspace", "trailing"]:
return self.sigmas.max()
return (self.sigmas.max() ** 2 + 1) ** 0.5
def _lowercase( self , A , A , ) -> List[str]:
UpperCAmelCase : Optional[int] = self.index_for_timestep(lowercase_ )
UpperCAmelCase : Dict = self.sigmas[step_index]
UpperCAmelCase : int = sample / ((sigma**2 + 1) ** 0.5)
return sample
def _lowercase( self , A , A = None , A = None , ) -> List[str]:
UpperCAmelCase : List[Any] = num_inference_steps
UpperCAmelCase : int = num_train_timesteps or self.config.num_train_timesteps
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
UpperCAmelCase : Any = np.linspace(0 , num_train_timesteps - 1 , lowercase_ , dtype=lowercase_ )[::-1].copy()
elif self.config.timestep_spacing == "leading":
UpperCAmelCase : Dict = num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
UpperCAmelCase : Tuple = (np.arange(0 , lowercase_ ) * step_ratio).round()[::-1].copy().astype(lowercase_ )
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
UpperCAmelCase : str = num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
UpperCAmelCase : str = (np.arange(lowercase_ , 0 , -step_ratio )).round().copy().astype(lowercase_ )
timesteps -= 1
else:
raise ValueError(
f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' )
UpperCAmelCase : List[Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 )
UpperCAmelCase : str = np.log(lowercase_ )
UpperCAmelCase : int = np.interp(lowercase_ , np.arange(0 , len(lowercase_ ) ) , lowercase_ )
if self.config.use_karras_sigmas:
UpperCAmelCase : Any = self._convert_to_karras(in_sigmas=lowercase_ , num_inference_steps=self.num_inference_steps )
UpperCAmelCase : Optional[int] = np.array([self._sigma_to_t(lowercase_ , lowercase_ ) for sigma in sigmas] )
UpperCAmelCase : Dict = np.concatenate([sigmas, [0.0]] ).astype(np.floataa )
UpperCAmelCase : Union[str, Any] = torch.from_numpy(lowercase_ ).to(device=lowercase_ )
UpperCAmelCase : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] )
UpperCAmelCase : List[str] = torch.from_numpy(lowercase_ )
UpperCAmelCase : Tuple = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] )
if str(lowercase_ ).startswith("""mps""" ):
# mps does not support float64
UpperCAmelCase : List[str] = timesteps.to(lowercase_ , dtype=torch.floataa )
else:
UpperCAmelCase : Any = timesteps.to(device=lowercase_ )
# empty dt and derivative
UpperCAmelCase : Dict = None
UpperCAmelCase : Optional[int] = None
# for exp beta schedules, such as the one for `pipeline_shap_e.py`
# we need an index counter
UpperCAmelCase : Dict = defaultdict(lowercase_ )
def _lowercase( self , A , A ) -> List[Any]:
# get log sigma
UpperCAmelCase : List[Any] = np.log(lowercase_ )
# get distribution
UpperCAmelCase : List[Any] = log_sigma - log_sigmas[:, np.newaxis]
# get sigmas range
UpperCAmelCase : str = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 )
UpperCAmelCase : Any = low_idx + 1
UpperCAmelCase : Tuple = log_sigmas[low_idx]
UpperCAmelCase : Dict = log_sigmas[high_idx]
# interpolate sigmas
UpperCAmelCase : List[Any] = (low - log_sigma) / (low - high)
UpperCAmelCase : int = np.clip(lowercase_ , 0 , 1 )
# transform interpolation to time range
UpperCAmelCase : Any = (1 - w) * low_idx + w * high_idx
UpperCAmelCase : List[str] = t.reshape(sigma.shape )
return t
def _lowercase( self , A , A ) -> Any:
UpperCAmelCase : float = in_sigmas[-1].item()
UpperCAmelCase : float = in_sigmas[0].item()
UpperCAmelCase : str = 7.0 # 7.0 is the value used in the paper
UpperCAmelCase : Optional[int] = np.linspace(0 , 1 , lowercase_ )
UpperCAmelCase : List[Any] = sigma_min ** (1 / rho)
UpperCAmelCase : List[Any] = sigma_max ** (1 / rho)
UpperCAmelCase : List[str] = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas
@property
def _lowercase( self ) -> Any:
return self.dt is None
def _lowercase( self , A , A , A , A = True , ) -> str:
UpperCAmelCase : List[Any] = self.index_for_timestep(lowercase_ )
# advance index counter by 1
UpperCAmelCase : Dict = timestep.cpu().item() if torch.is_tensor(lowercase_ ) else timestep
self._index_counter[timestep_int] += 1
if self.state_in_first_order:
UpperCAmelCase : int = self.sigmas[step_index]
UpperCAmelCase : Dict = self.sigmas[step_index + 1]
else:
# 2nd order / Heun's method
UpperCAmelCase : Union[str, Any] = self.sigmas[step_index - 1]
UpperCAmelCase : List[Any] = self.sigmas[step_index]
# currently only gamma=0 is supported. This usually works best anyways.
# We can support gamma in the future but then need to scale the timestep before
# passing it to the model which requires a change in API
UpperCAmelCase : Union[str, Any] = 0
UpperCAmelCase : List[Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
UpperCAmelCase : List[Any] = sigma_hat if self.state_in_first_order else sigma_next
UpperCAmelCase : Any = sample - sigma_input * model_output
elif self.config.prediction_type == "v_prediction":
UpperCAmelCase : int = sigma_hat if self.state_in_first_order else sigma_next
UpperCAmelCase : Optional[int] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
sample / (sigma_input**2 + 1)
)
elif self.config.prediction_type == "sample":
UpperCAmelCase : int = model_output
else:
raise ValueError(
f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' )
if self.config.clip_sample:
UpperCAmelCase : Union[str, Any] = pred_original_sample.clamp(
-self.config.clip_sample_range , self.config.clip_sample_range )
if self.state_in_first_order:
# 2. Convert to an ODE derivative for 1st order
UpperCAmelCase : List[Any] = (sample - pred_original_sample) / sigma_hat
# 3. delta timestep
UpperCAmelCase : str = sigma_next - sigma_hat
# store for 2nd order step
UpperCAmelCase : Optional[int] = derivative
UpperCAmelCase : Dict = dt
UpperCAmelCase : Optional[Any] = sample
else:
# 2. 2nd order / Heun's method
UpperCAmelCase : List[str] = (sample - pred_original_sample) / sigma_next
UpperCAmelCase : int = (self.prev_derivative + derivative) / 2
# 3. take prev timestep & sample
UpperCAmelCase : str = self.dt
UpperCAmelCase : List[Any] = self.sample
# free dt and derivative
# Note, this puts the scheduler in "first order mode"
UpperCAmelCase : List[Any] = None
UpperCAmelCase : str = None
UpperCAmelCase : Optional[Any] = None
UpperCAmelCase : Union[str, Any] = sample + derivative * dt
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=lowercase_ )
def _lowercase( self , A , A , A , ) -> int:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
UpperCAmelCase : Tuple = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype )
if original_samples.device.type == "mps" and torch.is_floating_point(lowercase_ ):
# mps does not support float64
UpperCAmelCase : Dict = self.timesteps.to(original_samples.device , dtype=torch.floataa )
UpperCAmelCase : str = timesteps.to(original_samples.device , dtype=torch.floataa )
else:
UpperCAmelCase : int = self.timesteps.to(original_samples.device )
UpperCAmelCase : Union[str, Any] = timesteps.to(original_samples.device )
UpperCAmelCase : int = [self.index_for_timestep(lowercase_ , lowercase_ ) for t in timesteps]
UpperCAmelCase : Dict = sigmas[step_indices].flatten()
while len(sigma.shape ) < len(original_samples.shape ):
UpperCAmelCase : Optional[Any] = sigma.unsqueeze(-1 )
UpperCAmelCase : List[Any] = original_samples + noise * sigma
return noisy_samples
def __len__( self ) -> Union[str, Any]:
return self.config.num_train_timesteps
| 358 |
'''simple docstring'''
import numpy as np
class UpperCamelCase_ :
def __init__( self ) -> int:
UpperCAmelCase : str = (0, 0)
UpperCAmelCase : Union[str, Any] = None
UpperCAmelCase : Any = 0
UpperCAmelCase : int = 0
UpperCAmelCase : Optional[int] = 0
def __eq__( self , A ) -> Optional[Any]:
return self.position == cell.position
def _lowercase( self ) -> Tuple:
print(self.position )
class UpperCamelCase_ :
def __init__( self , A=(5, 5) ) -> Optional[Any]:
UpperCAmelCase : Union[str, Any] = np.zeros(A )
UpperCAmelCase : int = world_size[0]
UpperCAmelCase : List[str] = world_size[1]
def _lowercase( self ) -> List[Any]:
print(self.w )
def _lowercase( self , A ) -> Dict:
UpperCAmelCase : Optional[Any] = [
(-1, -1),
(-1, 0),
(-1, 1),
(0, -1),
(0, 1),
(1, -1),
(1, 0),
(1, 1),
]
UpperCAmelCase : List[Any] = cell.position[0]
UpperCAmelCase : Union[str, Any] = cell.position[1]
UpperCAmelCase : Optional[int] = []
for n in neughbour_cord:
UpperCAmelCase : Any = current_x + n[0]
UpperCAmelCase : Tuple = current_y + n[1]
if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit:
UpperCAmelCase : str = Cell()
UpperCAmelCase : List[str] = (x, y)
UpperCAmelCase : Dict = cell
neighbours.append(A )
return neighbours
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int:
UpperCAmelCase : List[Any] = []
UpperCAmelCase : Optional[int] = []
_open.append(_lowercase )
while _open:
UpperCAmelCase : Any = np.argmin([n.f for n in _open] )
UpperCAmelCase : Optional[int] = _open[min_f]
_closed.append(_open.pop(_lowercase ) )
if current == goal:
break
for n in world.get_neigbours(_lowercase ):
for c in _closed:
if c == n:
continue
UpperCAmelCase : List[str] = current.g + 1
UpperCAmelCase , UpperCAmelCase : List[str] = n.position
UpperCAmelCase , UpperCAmelCase : Dict = goal.position
UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2
UpperCAmelCase : Dict = n.h + n.g
for c in _open:
if c == n and c.f < n.f:
continue
_open.append(_lowercase )
UpperCAmelCase : Dict = []
while current.parent is not None:
path.append(current.position )
UpperCAmelCase : Optional[int] = current.parent
path.append(current.position )
return path[::-1]
if __name__ == "__main__":
a : List[str] = Gridworld()
# Start position and goal
a : Optional[int] = Cell()
a : Optional[Any] = (0, 0)
a : Optional[Any] = Cell()
a : str = (4, 4)
print(F'''path from {start.position} to {goal.position}''')
a : List[Any] = astar(world, start, goal)
# Just for visual reasons.
for i in s:
a : Any = 1
print(world.w)
| 338 | 0 |
'''simple docstring'''
from datetime import datetime
import requests
from bsa import BeautifulSoup
if __name__ == "__main__":
a : Tuple = input("""Enter image url: """).strip()
print(F'''Downloading image from {url} ...''')
a : Optional[int] = BeautifulSoup(requests.get(url).content, """html.parser""")
# The image URL is in the content field of the first meta tag with property og:image
a : Tuple = soup.find("""meta""", {"""property""": """og:image"""})["""content"""]
a : Dict = requests.get(image_url).content
a : int = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg'''
with open(file_name, """wb""") as fp:
fp.write(image_data)
print(F'''Done. Image saved to disk as {file_name}.''')
| 359 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import _LazyModule
a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]}
if TYPE_CHECKING:
from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer
else:
import sys
a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 338 | 0 |
'''simple docstring'''
from __future__ import annotations
def __lowerCamelCase ( _lowercase , _lowercase ) -> List[Any]:
if b == 0:
return (1, 0)
(UpperCAmelCase) : Dict = extended_euclid(_lowercase , a % b )
UpperCAmelCase : List[Any] = a // b
return (y, x - k * y)
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> str:
(UpperCAmelCase) : Optional[int] = extended_euclid(_lowercase , _lowercase )
UpperCAmelCase : Optional[Any] = na * na
UpperCAmelCase : Optional[int] = ra * x * na + ra * y * na
return (n % m + m) % m
def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[int]:
(UpperCAmelCase) : int = extended_euclid(_lowercase , _lowercase )
if b < 0:
UpperCAmelCase : str = (b % n + n) % n
return b
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]:
UpperCAmelCase : List[str] = invert_modulo(_lowercase , _lowercase ), invert_modulo(_lowercase , _lowercase )
UpperCAmelCase : Any = na * na
UpperCAmelCase : List[str] = ra * x * na + ra * y * na
return (n % m + m) % m
if __name__ == "__main__":
from doctest import testmod
testmod(name="""chinese_remainder_theorem""", verbose=True)
testmod(name="""chinese_remainder_theorem2""", verbose=True)
testmod(name="""invert_modulo""", verbose=True)
testmod(name="""extended_euclid""", verbose=True)
| 360 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
a : int = logging.get_logger(__name__)
a : int = {
"""openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""",
}
# fmt: off
a : Tuple = [
1, 2, 7, 8, 9, 1_0, 1_4, 2_5,
2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2,
6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5,
7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7,
1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1,
4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6,
1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1,
1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9,
3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1
]
a : Optional[int] = [
1, 2, 7, 8, 9, 1_0, 1_4, 2_5,
2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2,
6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3,
8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7,
3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7,
7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3,
1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5,
2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5,
4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2
]
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'whisper'
lowercase = ['past_key_values']
lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]:
UpperCAmelCase : str = vocab_size
UpperCAmelCase : Union[str, Any] = num_mel_bins
UpperCAmelCase : Tuple = d_model
UpperCAmelCase : Optional[int] = encoder_layers
UpperCAmelCase : List[str] = encoder_attention_heads
UpperCAmelCase : Optional[int] = decoder_layers
UpperCAmelCase : int = decoder_attention_heads
UpperCAmelCase : Optional[int] = decoder_ffn_dim
UpperCAmelCase : Union[str, Any] = encoder_ffn_dim
UpperCAmelCase : List[str] = dropout
UpperCAmelCase : Optional[Any] = attention_dropout
UpperCAmelCase : Optional[Any] = activation_dropout
UpperCAmelCase : Optional[Any] = activation_function
UpperCAmelCase : Optional[Any] = init_std
UpperCAmelCase : int = encoder_layerdrop
UpperCAmelCase : Dict = decoder_layerdrop
UpperCAmelCase : Optional[int] = use_cache
UpperCAmelCase : List[str] = encoder_layers
UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCAmelCase : Union[str, Any] = max_source_positions
UpperCAmelCase : Tuple = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
UpperCAmelCase : List[str] = classifier_proj_size
UpperCAmelCase : Optional[Any] = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase : Optional[Any] = apply_spec_augment
UpperCAmelCase : int = mask_time_prob
UpperCAmelCase : int = mask_time_length
UpperCAmelCase : Dict = mask_time_min_masks
UpperCAmelCase : List[str] = mask_feature_prob
UpperCAmelCase : Optional[int] = mask_feature_length
UpperCAmelCase : int = mask_feature_min_masks
UpperCAmelCase : List[Any] = median_filter_width
super().__init__(
pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , )
class UpperCamelCase_ ( __magic_name__ ):
@property
def _lowercase( self ) -> Mapping[str, Mapping[int, str]]:
UpperCAmelCase : str = OrderedDict(
[
("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}),
] )
if self.use_past:
UpperCAmelCase : List[Any] = {0: """batch"""}
else:
UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""}
if self.use_past:
self.fill_with_past_key_values_(A , direction="""inputs""" )
return common_inputs
def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]:
UpperCAmelCase : Optional[int] = OrderedDict()
UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , )
UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2]
UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length
UpperCAmelCase : Any = super().generate_dummy_inputs(
preprocessor.tokenizer , A , A , A , A )
UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" )
UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" )
if "past_key_values" in decoder_inputs:
UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" )
return dummy_inputs
@property
def _lowercase( self ) -> float:
return 1e-3
| 338 | 0 |
'''simple docstring'''
from math import acos, sin
from typing import List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from ...models import AutoencoderKL, UNetaDConditionModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from .mel import Mel
class UpperCamelCase_ ( __magic_name__ ):
lowercase = ['vqvae']
def __init__( self , A , A , A , A , ) -> Union[str, Any]:
super().__init__()
self.register_modules(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , mel=lowerCamelCase_ , vqvae=lowerCamelCase_ )
def _lowercase( self ) -> int:
return 50 if isinstance(self.scheduler , lowerCamelCase_ ) else 1000
@torch.no_grad()
def __call__( self , A = 1 , A = None , A = None , A = 0 , A = 0 , A = None , A = None , A = 0 , A = 0 , A = None , A = 0 , A = None , A = None , A=True , ) -> Union[
Union[AudioPipelineOutput, ImagePipelineOutput],
Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]],
]:
UpperCAmelCase : Optional[Any] = steps or self.get_default_steps()
self.scheduler.set_timesteps(lowerCamelCase_ )
UpperCAmelCase : Any = step_generator or generator
# For backwards compatibility
if type(self.unet.config.sample_size ) == int:
UpperCAmelCase : Any = (self.unet.config.sample_size, self.unet.config.sample_size)
if noise is None:
UpperCAmelCase : int = randn_tensor(
(
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size[0],
self.unet.config.sample_size[1],
) , generator=lowerCamelCase_ , device=self.device , )
UpperCAmelCase : Tuple = noise
UpperCAmelCase : str = None
if audio_file is not None or raw_audio is not None:
self.mel.load_audio(lowerCamelCase_ , lowerCamelCase_ )
UpperCAmelCase : List[str] = self.mel.audio_slice_to_image(lowerCamelCase_ )
UpperCAmelCase : str = np.frombuffer(input_image.tobytes() , dtype="""uint8""" ).reshape(
(input_image.height, input_image.width) )
UpperCAmelCase : Union[str, Any] = (input_image / 255) * 2 - 1
UpperCAmelCase : List[str] = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device )
if self.vqvae is not None:
UpperCAmelCase : List[str] = self.vqvae.encode(torch.unsqueeze(lowerCamelCase_ , 0 ) ).latent_dist.sample(
generator=lowerCamelCase_ )[0]
UpperCAmelCase : Union[str, Any] = self.vqvae.config.scaling_factor * input_images
if start_step > 0:
UpperCAmelCase : Union[str, Any] = self.scheduler.add_noise(lowerCamelCase_ , lowerCamelCase_ , self.scheduler.timesteps[start_step - 1] )
UpperCAmelCase : int = (
self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
)
UpperCAmelCase : Tuple = int(mask_start_secs * pixels_per_second )
UpperCAmelCase : Optional[int] = int(mask_end_secs * pixels_per_second )
UpperCAmelCase : Optional[int] = self.scheduler.add_noise(lowerCamelCase_ , lowerCamelCase_ , torch.tensor(self.scheduler.timesteps[start_step:] ) )
for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ):
if isinstance(self.unet , lowerCamelCase_ ):
UpperCAmelCase : Dict = self.unet(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )["""sample"""]
else:
UpperCAmelCase : Optional[Any] = self.unet(lowerCamelCase_ , lowerCamelCase_ )["""sample"""]
if isinstance(self.scheduler , lowerCamelCase_ ):
UpperCAmelCase : Any = self.scheduler.step(
model_output=lowerCamelCase_ , timestep=lowerCamelCase_ , sample=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , )["""prev_sample"""]
else:
UpperCAmelCase : Any = self.scheduler.step(
model_output=lowerCamelCase_ , timestep=lowerCamelCase_ , sample=lowerCamelCase_ , generator=lowerCamelCase_ , )["""prev_sample"""]
if mask is not None:
if mask_start > 0:
UpperCAmelCase : Union[str, Any] = mask[:, step, :, :mask_start]
if mask_end > 0:
UpperCAmelCase : Any = mask[:, step, :, -mask_end:]
if self.vqvae is not None:
# 0.18215 was scaling factor used in training to ensure unit variance
UpperCAmelCase : Any = 1 / self.vqvae.config.scaling_factor * images
UpperCAmelCase : Tuple = self.vqvae.decode(lowerCamelCase_ )["""sample"""]
UpperCAmelCase : List[Any] = (images / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase : Optional[int] = images.cpu().permute(0 , 2 , 3 , 1 ).numpy()
UpperCAmelCase : Optional[Any] = (images * 255).round().astype("""uint8""" )
UpperCAmelCase : Union[str, Any] = list(
(Image.fromarray(_[:, :, 0] ) for _ in images)
if images.shape[3] == 1
else (Image.fromarray(lowerCamelCase_ , mode="""RGB""" ).convert("""L""" ) for _ in images) )
UpperCAmelCase : Optional[int] = [self.mel.image_to_audio(lowerCamelCase_ ) for _ in images]
if not return_dict:
return images, (self.mel.get_sample_rate(), audios)
return BaseOutput(**AudioPipelineOutput(np.array(lowerCamelCase_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowerCamelCase_ ) )
@torch.no_grad()
def _lowercase( self , A , A = 50 ) -> np.ndarray:
assert isinstance(self.scheduler , lowerCamelCase_ )
self.scheduler.set_timesteps(lowerCamelCase_ )
UpperCAmelCase : List[str] = np.array(
[np.frombuffer(image.tobytes() , dtype="""uint8""" ).reshape((1, image.height, image.width) ) for image in images] )
UpperCAmelCase : int = (sample / 255) * 2 - 1
UpperCAmelCase : int = torch.Tensor(lowerCamelCase_ ).to(self.device )
for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ):
UpperCAmelCase : Optional[int] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
UpperCAmelCase : Optional[Any] = self.scheduler.alphas_cumprod[t]
UpperCAmelCase : Union[str, Any] = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
UpperCAmelCase : Optional[int] = 1 - alpha_prod_t
UpperCAmelCase : List[str] = self.unet(lowerCamelCase_ , lowerCamelCase_ )["""sample"""]
UpperCAmelCase : List[str] = (1 - alpha_prod_t_prev) ** 0.5 * model_output
UpperCAmelCase : Tuple = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
UpperCAmelCase : int = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output
return sample
@staticmethod
def _lowercase( A , A , A ) -> torch.Tensor:
UpperCAmelCase : str = acos(torch.dot(torch.flatten(lowerCamelCase_ ) , torch.flatten(lowerCamelCase_ ) ) / torch.norm(lowerCamelCase_ ) / torch.norm(lowerCamelCase_ ) )
return sin((1 - alpha) * theta ) * xa / sin(lowerCamelCase_ ) + sin(alpha * theta ) * xa / sin(lowerCamelCase_ )
| 361 |
'''simple docstring'''
a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ"""
def __lowerCamelCase ( ) -> None:
UpperCAmelCase : Optional[int] = input("""Enter message: """ )
UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ )
UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ )
if mode.lower().startswith("""e""" ):
UpperCAmelCase : List[str] = """encrypt"""
UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase )
elif mode.lower().startswith("""d""" ):
UpperCAmelCase : Tuple = """decrypt"""
UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase )
print(F'''\n{mode.title()}ed message:''' )
print(_lowercase )
def __lowerCamelCase ( _lowercase , _lowercase ) -> str:
return translate_message(_lowercase , _lowercase , """encrypt""" )
def __lowerCamelCase ( _lowercase , _lowercase ) -> str:
return translate_message(_lowercase , _lowercase , """decrypt""" )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str:
UpperCAmelCase : Optional[int] = []
UpperCAmelCase : Optional[Any] = 0
UpperCAmelCase : Tuple = key.upper()
for symbol in message:
UpperCAmelCase : Dict = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(_lowercase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(_lowercase ):
UpperCAmelCase : Optional[int] = 0
else:
translated.append(_lowercase )
return "".join(_lowercase )
if __name__ == "__main__":
main()
| 338 | 0 |
'''simple docstring'''
from __future__ import annotations
import pandas as pd
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> list[int]:
UpperCAmelCase : Optional[Any] = [0] * no_of_processes
UpperCAmelCase : Optional[int] = [0] * no_of_processes
# Copy the burst time into remaining_time[]
for i in range(__lowerCAmelCase ):
UpperCAmelCase : Tuple = burst_time[i]
UpperCAmelCase : Dict = 0
UpperCAmelCase : Dict = 0
UpperCAmelCase : Any = 9_9_9_9_9_9_9_9_9
UpperCAmelCase : Dict = 0
UpperCAmelCase : Optional[Any] = False
# Process until all processes are completed
while complete != no_of_processes:
for j in range(__lowerCAmelCase ):
if arrival_time[j] <= increment_time and remaining_time[j] > 0:
if remaining_time[j] < minm:
UpperCAmelCase : Dict = remaining_time[j]
UpperCAmelCase : int = j
UpperCAmelCase : Tuple = True
if not check:
increment_time += 1
continue
remaining_time[short] -= 1
UpperCAmelCase : int = remaining_time[short]
if minm == 0:
UpperCAmelCase : int = 9_9_9_9_9_9_9_9_9
if remaining_time[short] == 0:
complete += 1
UpperCAmelCase : Dict = False
# Find finish time of current process
UpperCAmelCase : List[Any] = increment_time + 1
# Calculate waiting time
UpperCAmelCase : Any = finish_time - arrival_time[short]
UpperCAmelCase : Dict = finar - burst_time[short]
if waiting_time[short] < 0:
UpperCAmelCase : List[str] = 0
# Increment time
increment_time += 1
return waiting_time
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> list[int]:
UpperCAmelCase : Optional[int] = [0] * no_of_processes
for i in range(__lowerCAmelCase ):
UpperCAmelCase : str = burst_time[i] + waiting_time[i]
return turn_around_time
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> None:
UpperCAmelCase : Optional[int] = 0
UpperCAmelCase : Optional[Any] = 0
for i in range(__lowerCAmelCase ):
UpperCAmelCase : str = total_waiting_time + waiting_time[i]
UpperCAmelCase : Union[str, Any] = total_turn_around_time + turn_around_time[i]
print(F'''Average waiting time = {total_waiting_time / no_of_processes:.5f}''' )
print("""Average turn around time =""" , total_turn_around_time / no_of_processes )
if __name__ == "__main__":
print("""Enter how many process you want to analyze""")
a = int(input())
a = [0] * no_of_processes
a = [0] * no_of_processes
a = list(range(1, no_of_processes + 1))
for i in range(no_of_processes):
print("""Enter the arrival time and burst time for process:--""" + str(i + 1))
a , a = map(int, input().split())
a = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
a = burst_time
a = no_of_processes
a = waiting_time
a = calculate_turnaroundtime(bt, n, wt)
calculate_average_times(waiting_time, turn_around_time, no_of_processes)
a = pd.DataFrame(
list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)),
columns=[
"""Process""",
"""BurstTime""",
"""ArrivalTime""",
"""WaitingTime""",
"""TurnAroundTime""",
],
)
# Printing the dataFrame
pd.set_option("""display.max_rows""", fcfs.shape[0] + 1)
print(fcfs)
| 362 |
'''simple docstring'''
import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
"""split_dict""" , [
SplitDict(),
SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ),
SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ),
SplitDict({"""train""": SplitInfo()} ),
] , )
def __lowerCamelCase ( _lowercase ) -> List[str]:
UpperCAmelCase : Optional[int] = split_dict._to_yaml_list()
assert len(_lowercase ) == len(_lowercase )
UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(_lowercase )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
UpperCAmelCase : List[str] = None
# the split name of split_dict takes over the name of the split info object
UpperCAmelCase : int = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
"""split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name="""my_dataset""" )] )
def __lowerCamelCase ( _lowercase ) -> List[str]:
# For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name"
# field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files
UpperCAmelCase : Optional[Any] = asdict(SplitDict({"""train""": split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 338 | 0 |
import argparse
import torch
from torch import nn
from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration
def __lowerCamelCase ( _lowercase ) -> Dict:
UpperCAmelCase : List[str] = [
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"decoder.output_projection.weight",
"_float_tensor",
"encoder.embed_positions._float_tensor",
"decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
state_dict.pop(_lowercase , _lowercase )
def __lowerCamelCase ( _lowercase ) -> Optional[int]:
UpperCAmelCase : Tuple = list(s_dict.keys() )
for key in keys:
if "transformer_layers" in key:
UpperCAmelCase : str = s_dict.pop(_lowercase )
elif "subsample" in key:
UpperCAmelCase : Optional[int] = s_dict.pop(_lowercase )
def __lowerCamelCase ( _lowercase ) -> List[str]:
UpperCAmelCase : List[Any] = emb.weight.shape
UpperCAmelCase : int = nn.Linear(_lowercase , _lowercase , bias=_lowercase )
UpperCAmelCase : Optional[Any] = emb.weight.data
return lin_layer
def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]:
UpperCAmelCase : List[Any] = torch.load(_lowercase , map_location="""cpu""" )
UpperCAmelCase : List[str] = mam_aaa["args"]
UpperCAmelCase : Dict = mam_aaa["model"]
UpperCAmelCase : List[str] = state_dict["decoder.output_projection.weight"]
remove_ignore_keys_(_lowercase )
rename_keys(_lowercase )
UpperCAmelCase : Dict = state_dict["decoder.embed_tokens.weight"].shape[0]
UpperCAmelCase : str = args.share_decoder_input_output_embed
UpperCAmelCase : Dict = [int(_lowercase ) for i in args.conv_kernel_sizes.split(""",""" )]
UpperCAmelCase : Any = SpeechaTextConfig(
vocab_size=_lowercase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , num_conv_layers=len(_lowercase ) , conv_channels=args.conv_channels , conv_kernel_sizes=_lowercase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=_lowercase , num_beams=5 , max_length=2_0_0 , use_cache=_lowercase , decoder_start_token_id=2 , early_stopping=_lowercase , )
UpperCAmelCase : Optional[Any] = SpeechaTextForConditionalGeneration(_lowercase )
UpperCAmelCase : Any = model.model.load_state_dict(_lowercase , strict=_lowercase )
if len(_lowercase ) > 0 and not set(_lowercase ) <= {
"encoder.embed_positions.weights",
"decoder.embed_positions.weights",
}:
raise ValueError(
"""Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,"""
F''' but all the following weights are missing {missing}''' )
if tie_embeds:
UpperCAmelCase : str = make_linear_from_emb(model.model.decoder.embed_tokens )
else:
UpperCAmelCase : Dict = lm_head_weights
model.save_pretrained(_lowercase )
if __name__ == "__main__":
a : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument("""--fairseq_path""", type=str, help="""Path to the fairseq model (.pt) file.""")
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
a : str = parser.parse_args()
convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
| 363 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
a : Dict = logging.get_logger(__name__)
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , *A , **A ) -> None:
warnings.warn(
"""The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use LayoutLMv2ImageProcessor instead.""" , A , )
super().__init__(*A , **A )
| 338 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import _LazyModule
a : Optional[Any] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]}
if TYPE_CHECKING:
from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer
else:
import sys
a : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 364 |
'''simple docstring'''
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
a : Union[str, Any] = logging.get_logger(__name__)
a : Union[str, Any] = {
"""facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""",
# See all DETR models at https://huggingface.co/models?filter=detr
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'detr'
lowercase = ['past_key_values']
lowercase = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]:
if backbone_config is not None and use_timm_backbone:
raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" )
if not use_timm_backbone:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] )
elif isinstance(A , A ):
UpperCAmelCase : Any = backbone_config.get("""model_type""" )
UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type]
UpperCAmelCase : List[Any] = config_class.from_dict(A )
# set timm attributes to None
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = None, None, None
UpperCAmelCase : Dict = use_timm_backbone
UpperCAmelCase : Any = backbone_config
UpperCAmelCase : List[Any] = num_channels
UpperCAmelCase : int = num_queries
UpperCAmelCase : List[str] = d_model
UpperCAmelCase : Tuple = encoder_ffn_dim
UpperCAmelCase : Optional[Any] = encoder_layers
UpperCAmelCase : Any = encoder_attention_heads
UpperCAmelCase : Optional[Any] = decoder_ffn_dim
UpperCAmelCase : Optional[int] = decoder_layers
UpperCAmelCase : Any = decoder_attention_heads
UpperCAmelCase : str = dropout
UpperCAmelCase : Tuple = attention_dropout
UpperCAmelCase : Dict = activation_dropout
UpperCAmelCase : Tuple = activation_function
UpperCAmelCase : List[Any] = init_std
UpperCAmelCase : str = init_xavier_std
UpperCAmelCase : List[Any] = encoder_layerdrop
UpperCAmelCase : int = decoder_layerdrop
UpperCAmelCase : List[Any] = encoder_layers
UpperCAmelCase : Union[str, Any] = auxiliary_loss
UpperCAmelCase : str = position_embedding_type
UpperCAmelCase : Union[str, Any] = backbone
UpperCAmelCase : List[str] = use_pretrained_backbone
UpperCAmelCase : Optional[int] = dilation
# Hungarian matcher
UpperCAmelCase : Union[str, Any] = class_cost
UpperCAmelCase : Optional[Any] = bbox_cost
UpperCAmelCase : List[Any] = giou_cost
# Loss coefficients
UpperCAmelCase : int = mask_loss_coefficient
UpperCAmelCase : Optional[int] = dice_loss_coefficient
UpperCAmelCase : Dict = bbox_loss_coefficient
UpperCAmelCase : Any = giou_loss_coefficient
UpperCAmelCase : Any = eos_coefficient
super().__init__(is_encoder_decoder=A , **A )
@property
def _lowercase( self ) -> int:
return self.encoder_attention_heads
@property
def _lowercase( self ) -> int:
return self.d_model
@classmethod
def _lowercase( cls , A , **A ) -> Dict:
return cls(backbone_config=A , **A )
def _lowercase( self ) -> Dict[str, any]:
UpperCAmelCase : Any = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
UpperCAmelCase : Any = self.backbone_config.to_dict()
UpperCAmelCase : Optional[Any] = self.__class__.model_type
return output
class UpperCamelCase_ ( __magic_name__ ):
lowercase = version.parse('1.11' )
@property
def _lowercase( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""pixel_mask""", {0: """batch"""}),
] )
@property
def _lowercase( self ) -> float:
return 1e-5
@property
def _lowercase( self ) -> int:
return 12
| 338 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
a = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ["""NllbTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ["""NllbTokenizerFast"""]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_nllb import NllbTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_nllb_fast import NllbTokenizerFast
else:
import sys
a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 365 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
a : List[str] = {
"""configuration_altclip""": [
"""ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""AltCLIPConfig""",
"""AltCLIPTextConfig""",
"""AltCLIPVisionConfig""",
],
"""processing_altclip""": ["""AltCLIPProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : List[Any] = [
"""ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""AltCLIPPreTrainedModel""",
"""AltCLIPModel""",
"""AltCLIPTextModel""",
"""AltCLIPVisionModel""",
]
if TYPE_CHECKING:
from .configuration_altclip import (
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
AltCLIPConfig,
AltCLIPTextConfig,
AltCLIPVisionConfig,
)
from .processing_altclip import AltCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_altclip import (
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
AltCLIPModel,
AltCLIPPreTrainedModel,
AltCLIPTextModel,
AltCLIPVisionModel,
)
else:
import sys
a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 338 | 0 |
'''simple docstring'''
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
a : List[str] = '\\n\n'
a : Any = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n'
a : List[Any] = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase_ ( datasets.Metric ):
def _lowercase( self ) -> Optional[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""input_texts""": datasets.Value("""string""" ),
} ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , )
def _lowercase( self , A , A , A = 16 , A = True , A=None ) -> Tuple:
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
UpperCAmelCase : Optional[Any] = """cuda"""
else:
UpperCAmelCase : Union[str, Any] = """cuda""" if torch.cuda.is_available() else """cpu"""
UpperCAmelCase : int = AutoModelForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase : Optional[Any] = model.to(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
UpperCAmelCase : int = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(SCREAMING_SNAKE_CASE_ ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
UpperCAmelCase : Any = model.config.max_length - 1
else:
UpperCAmelCase : int = model.config.max_length
UpperCAmelCase : List[Any] = tokenizer(
SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , return_attention_mask=SCREAMING_SNAKE_CASE_ , ).to(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase : int = encodings["""input_ids"""]
UpperCAmelCase : Optional[int] = encodings["""attention_mask"""]
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
UpperCAmelCase : Union[str, Any] = []
UpperCAmelCase : int = CrossEntropyLoss(reduction="""none""" )
for start_index in logging.tqdm(range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ):
UpperCAmelCase : str = min(start_index + batch_size , len(SCREAMING_SNAKE_CASE_ ) )
UpperCAmelCase : Any = encoded_texts[start_index:end_index]
UpperCAmelCase : str = attn_masks[start_index:end_index]
if add_start_token:
UpperCAmelCase : Tuple = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase : Dict = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 )
UpperCAmelCase : Optional[int] = torch.cat(
[torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(SCREAMING_SNAKE_CASE_ ), attn_mask] , dim=1 )
UpperCAmelCase : Dict = encoded_batch
with torch.no_grad():
UpperCAmelCase : Tuple = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ).logits
UpperCAmelCase : Optional[int] = out_logits[..., :-1, :].contiguous()
UpperCAmelCase : Any = labels[..., 1:].contiguous()
UpperCAmelCase : List[str] = attn_mask[..., 1:].contiguous()
UpperCAmelCase : List[Any] = torch.expa(
(loss_fct(shift_logits.transpose(1 , 2 ) , SCREAMING_SNAKE_CASE_ ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(SCREAMING_SNAKE_CASE_ )}
| 366 |
'''simple docstring'''
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
a : List[Any] = logging.get_logger(__name__)
def __lowerCamelCase ( _lowercase ) -> List[Any]:
UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" )
if "model" in sd.keys():
UpperCAmelCase : Any = torch.load(_lowercase , map_location="""cpu""" )["""model"""]
# pop unnecessary weights
UpperCAmelCase : Union[str, Any] = [
"""decoder.version""",
"""decoder.output_projection.weight""",
]
for key in keys_to_delete:
if key in sd:
sd.pop(_lowercase )
UpperCAmelCase : Tuple = {
"""decoder.project_in_dim.weight""": """decoder.project_in.weight""",
"""decoder.project_out_dim.weight""": """decoder.project_out.weight""",
"""decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""",
"""decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""",
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
UpperCAmelCase : List[Any] = sd.pop(_lowercase )
UpperCAmelCase : Tuple = list(sd.keys() )
for key in keys:
if ".qkv_proj." in key:
UpperCAmelCase : List[str] = sd[key]
# We split QKV in separate Q,K,V
UpperCAmelCase : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" )
UpperCAmelCase : Tuple = key.replace(""".qkv_proj.""" , """.k_proj.""" )
UpperCAmelCase : int = key.replace(""".qkv_proj.""" , """.v_proj.""" )
UpperCAmelCase : Dict = value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = torch.split(_lowercase , depth // 3 , dim=0 )
UpperCAmelCase : Tuple = q
UpperCAmelCase : Tuple = k
UpperCAmelCase : Any = v
del sd[key]
return sd
@torch.no_grad()
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Optional[Any]:
UpperCAmelCase : Tuple = load_checkpoint(_lowercase )
if config is not None:
UpperCAmelCase : Dict = OPTConfig.from_pretrained(_lowercase )
else:
UpperCAmelCase : int = OPTConfig()
UpperCAmelCase : List[Any] = OPTModel(_lowercase ).half().eval()
model.load_state_dict(_lowercase )
# Check results
Path(_lowercase ).mkdir(exist_ok=_lowercase )
model.save_pretrained(_lowercase )
if __name__ == "__main__":
a : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--fairseq_path""",
type=str,
help=(
"""path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:"""
""" https://huggingface.co/models?other=opt_metasq"""
),
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""")
a : Union[str, Any] = parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
| 338 | 0 |
'''simple docstring'''
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation
def __lowerCamelCase ( _lowercase ) -> Any:
UpperCAmelCase : str = 3_8_4
if "tiny" in model_name:
UpperCAmelCase : Optional[int] = [3, 3, 9, 3]
UpperCAmelCase : str = [9_6, 1_9_2, 3_8_4, 7_6_8]
if "small" in model_name:
UpperCAmelCase : Optional[Any] = [3, 3, 2_7, 3]
UpperCAmelCase : str = [9_6, 1_9_2, 3_8_4, 7_6_8]
if "base" in model_name:
UpperCAmelCase : Tuple = [3, 3, 2_7, 3]
UpperCAmelCase : int = [1_2_8, 2_5_6, 5_1_2, 1_0_2_4]
UpperCAmelCase : Union[str, Any] = 5_1_2
if "large" in model_name:
UpperCAmelCase : Tuple = [3, 3, 2_7, 3]
UpperCAmelCase : int = [1_9_2, 3_8_4, 7_6_8, 1_5_3_6]
UpperCAmelCase : int = 7_6_8
if "xlarge" in model_name:
UpperCAmelCase : Optional[int] = [3, 3, 2_7, 3]
UpperCAmelCase : Union[str, Any] = [2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8]
UpperCAmelCase : List[str] = 1_0_2_4
# set label information
UpperCAmelCase : Any = 1_5_0
UpperCAmelCase : Any = '''huggingface/label-files'''
UpperCAmelCase : List[Any] = '''ade20k-id2label.json'''
UpperCAmelCase : Union[str, Any] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" ) , """r""" ) )
UpperCAmelCase : Optional[int] = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()}
UpperCAmelCase : int = {v: k for k, v in idalabel.items()}
UpperCAmelCase : Optional[int] = ConvNextConfig(
depths=SCREAMING_SNAKE_CASE__ , hidden_sizes=SCREAMING_SNAKE_CASE__ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] )
UpperCAmelCase : Dict = UperNetConfig(
backbone_config=SCREAMING_SNAKE_CASE__ , auxiliary_in_channels=SCREAMING_SNAKE_CASE__ , num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ , )
return config
def __lowerCamelCase ( _lowercase ) -> int:
UpperCAmelCase : Any = []
# fmt: off
# stem
rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") )
rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") )
rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") )
rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F'''backbone.stages.{i}.{j}.gamma''', F'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.norm.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.norm.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') )
if i > 0:
rename_keys.append((F'''backbone.downsample_layers.{i}.0.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') )
rename_keys.append((F'''backbone.downsample_layers.{i}.0.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') )
rename_keys.append((F'''backbone.downsample_layers.{i}.1.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') )
rename_keys.append((F'''backbone.downsample_layers.{i}.1.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') )
rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') )
rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') )
# decode head
rename_keys.extend(
[
("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""),
("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""),
("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""),
("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""),
] )
# fmt: on
return rename_keys
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]:
UpperCAmelCase : List[Any] = dct.pop(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase : Optional[int] = val
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Tuple:
UpperCAmelCase : Optional[Any] = {
'''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''',
'''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''',
'''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''',
'''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''',
'''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''',
}
UpperCAmelCase : int = model_name_to_url[model_name]
UpperCAmelCase : int = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )['''state_dict''']
UpperCAmelCase : Optional[int] = get_upernet_config(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase : Dict = UperNetForSemanticSegmentation(SCREAMING_SNAKE_CASE__ )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
UpperCAmelCase : Any = state_dict.pop(SCREAMING_SNAKE_CASE__ )
if "bn" in key:
UpperCAmelCase : Optional[int] = key.replace("""bn""" , """batch_norm""" )
UpperCAmelCase : int = val
# rename keys
UpperCAmelCase : str = create_rename_keys(SCREAMING_SNAKE_CASE__ )
for src, dest in rename_keys:
rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
model.load_state_dict(SCREAMING_SNAKE_CASE__ )
# verify on image
UpperCAmelCase : str = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg'''
UpperCAmelCase : List[Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ).convert("""RGB""" )
UpperCAmelCase : Union[str, Any] = SegformerImageProcessor()
UpperCAmelCase : Union[str, Any] = processor(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).pixel_values
with torch.no_grad():
UpperCAmelCase : List[str] = model(SCREAMING_SNAKE_CASE__ )
if model_name == "upernet-convnext-tiny":
UpperCAmelCase : Optional[int] = torch.tensor(
[[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] )
elif model_name == "upernet-convnext-small":
UpperCAmelCase : List[str] = torch.tensor(
[[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] )
elif model_name == "upernet-convnext-base":
UpperCAmelCase : Optional[int] = torch.tensor(
[[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] )
elif model_name == "upernet-convnext-large":
UpperCAmelCase : Tuple = torch.tensor(
[[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] )
elif model_name == "upernet-convnext-xlarge":
UpperCAmelCase : int = torch.tensor(
[[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] )
print("""Logits:""" , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(SCREAMING_SNAKE_CASE__ )
print(F'''Saving processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(SCREAMING_SNAKE_CASE__ )
if push_to_hub:
print(F'''Pushing model and processor for {model_name} to hub''' )
model.push_to_hub(F'''openmmlab/{model_name}''' )
processor.push_to_hub(F'''openmmlab/{model_name}''' )
if __name__ == "__main__":
a : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""upernet-convnext-tiny""",
type=str,
choices=[F'''upernet-convnext-{size}''' for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]],
help="""Name of the ConvNext UperNet model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
a : int = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 367 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a : Union[str, Any] = logging.get_logger(__name__)
a : str = {
"""facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""",
# See all LeViT models at https://huggingface.co/models?filter=levit
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'levit'
def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int:
super().__init__(**A )
UpperCAmelCase : Any = image_size
UpperCAmelCase : Optional[int] = num_channels
UpperCAmelCase : Tuple = kernel_size
UpperCAmelCase : Optional[int] = stride
UpperCAmelCase : Dict = padding
UpperCAmelCase : List[Any] = hidden_sizes
UpperCAmelCase : List[Any] = num_attention_heads
UpperCAmelCase : Optional[int] = depths
UpperCAmelCase : Any = key_dim
UpperCAmelCase : str = drop_path_rate
UpperCAmelCase : List[Any] = patch_size
UpperCAmelCase : str = attention_ratio
UpperCAmelCase : Optional[Any] = mlp_ratio
UpperCAmelCase : Dict = initializer_range
UpperCAmelCase : int = [
["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
class UpperCamelCase_ ( __magic_name__ ):
lowercase = version.parse('1.11' )
@property
def _lowercase( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def _lowercase( self ) -> float:
return 1e-4
| 338 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a : Optional[int] = {
"configuration_whisper": ["WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP", "WhisperConfig", "WhisperOnnxConfig"],
"feature_extraction_whisper": ["WhisperFeatureExtractor"],
"processing_whisper": ["WhisperProcessor"],
"tokenization_whisper": ["WhisperTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : str = ["WhisperTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Optional[int] = [
"WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST",
"WhisperForConditionalGeneration",
"WhisperModel",
"WhisperPreTrainedModel",
"WhisperForAudioClassification",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Optional[Any] = [
"TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFWhisperForConditionalGeneration",
"TFWhisperModel",
"TFWhisperPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : str = [
"FlaxWhisperForConditionalGeneration",
"FlaxWhisperModel",
"FlaxWhisperPreTrainedModel",
"FlaxWhisperForAudioClassification",
]
if TYPE_CHECKING:
from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig
from .feature_extraction_whisper import WhisperFeatureExtractor
from .processing_whisper import WhisperProcessor
from .tokenization_whisper import WhisperTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_whisper_fast import WhisperTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_whisper import (
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
WhisperForAudioClassification,
WhisperForConditionalGeneration,
WhisperModel,
WhisperPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_whisper import (
TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWhisperForConditionalGeneration,
TFWhisperModel,
TFWhisperPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_whisper import (
FlaxWhisperForAudioClassification,
FlaxWhisperForConditionalGeneration,
FlaxWhisperModel,
FlaxWhisperPreTrainedModel,
)
else:
import sys
a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 368 |
'''simple docstring'''
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("""0.12.2"""):
raise Exception("""requires fairseq >= 0.12.2""")
if version.parse(fairseq.__version__) > version.parse("""2"""):
raise Exception("""requires fairseq < v2""")
logging.set_verbosity_info()
a : Dict = logging.get_logger(__name__)
a : List[str] = """Hello, World!"""
a : List[Any] = """en_XX"""
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict:
UpperCAmelCase : Dict = Path("""data_bin""" )
UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , )
xmod.eval() # disable dropout
print(_lowercase )
UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder
UpperCAmelCase : Tuple = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0]
print("""Our X-MOD config:""" , _lowercase )
UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase )
model.eval()
# Now let's copy all the weights.
# Embeddings
UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight
UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight
UpperCAmelCase : int = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight
UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
UpperCAmelCase : List[str] = model.roberta.encoder.layer[i]
UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i]
# self attention
UpperCAmelCase : Optional[Any] = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError("""Dimensions of self-attention weights do not match.""" )
UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight
UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias
UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight
UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias
UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight
UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias
# self-attention output
UpperCAmelCase : Optional[Any] = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError("""Dimensions of self-attention output weights do not match.""" )
UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight
UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias
UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight
UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias
# intermediate
UpperCAmelCase : Tuple = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError("""Dimensions of intermediate weights do not match.""" )
UpperCAmelCase : List[str] = xmod_layer.fca.weight
UpperCAmelCase : str = xmod_layer.fca.bias
# output
UpperCAmelCase : Any = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError("""Dimensions of feed-forward weights do not match.""" )
UpperCAmelCase : Dict = xmod_layer.fca.weight
UpperCAmelCase : Dict = xmod_layer.fca.bias
UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight
UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight
UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError("""Lists of language adapters do not match.""" )
for lang_code, adapter in xmod_layer.adapter_modules.items():
UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code]
UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code]
UpperCAmelCase : Any = from_adapter.fca.weight
UpperCAmelCase : int = from_adapter.fca.bias
UpperCAmelCase : Dict = from_adapter.fca.weight
UpperCAmelCase : Dict = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight
UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias
if classification_head:
UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight
UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias
UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight
UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias
else:
# LM Head
UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight
UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias
UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight
UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias
UpperCAmelCase : str = xmod.model.encoder.lm_head.weight
UpperCAmelCase : str = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(_lowercase )
UpperCAmelCase : Optional[int] = model(_lowercase )[0]
if classification_head:
UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) )
else:
UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item()
print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7
UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 )
print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" )
if not success:
raise Exception("""Something went wRoNg""" )
Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(_lowercase )
if __name__ == "__main__":
a : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--classification_head""", action="""store_true""", help="""Whether to convert a final classification head."""
)
a : List[str] = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 338 | 0 |
def __lowerCamelCase ( _lowercase ) -> str:
return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") )
def __lowerCamelCase ( _lowercase ) -> Tuple:
UpperCAmelCase : Union[str, Any] = credit_card_number
UpperCAmelCase : Optional[Any] = 0
UpperCAmelCase : Any = len(__UpperCamelCase ) - 2
for i in range(__UpperCamelCase , -1 , -2 ):
# double the value of every second digit
UpperCAmelCase : List[Any] = int(cc_number[i] )
digit *= 2
# If doubling of a number results in a two digit number
# i.e greater than 9(e.g., 6 × 2 = 12),
# then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6),
# to get a single digit number.
if digit > 9:
digit %= 1_0
digit += 1
UpperCAmelCase : List[Any] = cc_number[:i] + str(__UpperCamelCase ) + cc_number[i + 1 :]
total += digit
# Sum up the remaining digits
for i in range(len(__UpperCamelCase ) - 1 , -1 , -2 ):
total += int(cc_number[i] )
return total % 1_0 == 0
def __lowerCamelCase ( _lowercase ) -> Any:
UpperCAmelCase : str = F'''{credit_card_number} is an invalid credit card number because'''
if not credit_card_number.isdigit():
print(F'''{error_message} it has nonnumerical characters.''' )
return False
if not 1_3 <= len(__UpperCamelCase ) <= 1_6:
print(F'''{error_message} of its length.''' )
return False
if not validate_initial_digits(__UpperCamelCase ):
print(F'''{error_message} of its first two digits.''' )
return False
if not luhn_validation(__UpperCamelCase ):
print(F'''{error_message} it fails the Luhn check.''' )
return False
print(F'''{credit_card_number} is a valid credit card number.''' )
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
validate_credit_card_number("""4111111111111111""")
validate_credit_card_number("""32323""")
| 369 |
'''simple docstring'''
# Function to print upper half of diamond (pyramid)
def __lowerCamelCase ( _lowercase ) -> List[Any]:
for i in range(0 , _lowercase ):
for _ in range(0 , n - i - 1 ): # printing spaces
print(""" """ , end="""""" )
for _ in range(0 , i + 1 ): # printing stars
print("""* """ , end="""""" )
print()
def __lowerCamelCase ( _lowercase ) -> Dict:
for i in range(_lowercase , 0 , -1 ):
for _ in range(_lowercase , 0 , -1 ): # printing stars
print("""* """ , end="""""" )
print()
for _ in range(n - i + 1 , 0 , -1 ): # printing spaces
print(""" """ , end="""""" )
def __lowerCamelCase ( _lowercase ) -> List[Any]:
if n <= 0:
print(""" ... .... nothing printing :(""" )
return
floyd(_lowercase ) # upper half
reverse_floyd(_lowercase ) # lower half
if __name__ == "__main__":
print(R"""| /\ | |- | |- |--| |\ /| |-""")
print(R"""|/ \| |- |_ |_ |__| | \/ | |_""")
a : List[Any] = 1
while K:
a : int = int(input("""enter the number and , and see the magic : """))
print()
pretty_print(user_number)
a : Tuple = int(input("""press 0 to exit... and 1 to continue..."""))
print("""Good Bye...""")
| 338 | 0 |
from __future__ import annotations
def __lowerCamelCase ( _lowercase ) -> int:
return len(set(snake_case_ ) ) == len(snake_case_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 370 |
'''simple docstring'''
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
a : List[str] = logging.getLogger(__name__)
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , A , A , A , A=None ) -> Union[str, Any]:
super().__init__(
A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , )
UpperCAmelCase : Optional[Any] = None
def _lowercase( self , A ) -> List[Any]:
logger.info("""initializing retrieval""" )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info("""dist initialized""" )
# needs to be set manually
UpperCAmelCase : Tuple = self._infer_socket_ifname()
# avoid clash with the NCCL port
UpperCAmelCase : str = str(distributed_port + 1 )
UpperCAmelCase : Any = dist.new_group(ranks=A , backend="""gloo""" )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info("""dist not initialized / main""" )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def _lowercase( self ) -> Dict:
return dist.get_rank(group=self.process_group ) == 0
def _lowercase( self , A , A , A=torch.floataa ) -> str:
UpperCAmelCase : List[Any] = torch.empty(A , dtype=A )
dist.scatter(A , src=0 , scatter_list=A , group=self.process_group )
return target_tensor
def _lowercase( self ) -> Any:
UpperCAmelCase : List[Any] = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
UpperCAmelCase : Optional[int] = next((addr for addr in addrs if addr.startswith("""e""" )) , A )
return ifname
def _lowercase( self , A , A ) -> Tuple[np.ndarray, List[dict]]:
# single GPU training
if not dist.is_initialized():
UpperCAmelCase , UpperCAmelCase : str = self._main_retrieve(A , A )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A )
# distributed training
UpperCAmelCase : int = dist.get_world_size(group=self.process_group )
# gather logic
UpperCAmelCase : int = None
if self._is_main():
UpperCAmelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )]
dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group )
# scatter logic
UpperCAmelCase : List[Any] = question_hidden_states.shape[0]
UpperCAmelCase : Tuple = []
UpperCAmelCase : Any = []
if self._is_main():
assert len(A ) == world_size
UpperCAmelCase , UpperCAmelCase : Optional[int] = self._main_retrieve(torch.cat(A ).numpy() , A )
UpperCAmelCase , UpperCAmelCase : Optional[Any] = torch.tensor(A ), torch.tensor(A )
UpperCAmelCase : List[str] = self._chunk_tensor(A , A )
UpperCAmelCase : Union[str, Any] = self._chunk_tensor(A , A )
UpperCAmelCase : Tuple = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa )
UpperCAmelCase : Optional[Any] = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
| 338 | 0 |
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto.configuration_auto import CONFIG_MAPPING
a : List[str] = logging.get_logger(__name__)
class UpperCamelCase_ ( _a ):
lowercase = """upernet"""
def __init__( self , A=None , A=512 , A=0.0_2 , A=[1, 2, 3, 6] , A=True , A=0.4 , A=384 , A=256 , A=1 , A=False , A=255 , **A , ) -> List[Any]:
super().__init__(**__lowerCAmelCase )
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] )
elif isinstance(__lowerCAmelCase , __lowerCAmelCase ):
UpperCAmelCase : int = backbone_config.get("""model_type""" )
UpperCAmelCase : List[Any] = CONFIG_MAPPING[backbone_model_type]
UpperCAmelCase : Optional[int] = config_class.from_dict(__lowerCAmelCase )
UpperCAmelCase : Optional[Any] = backbone_config
UpperCAmelCase : List[str] = hidden_size
UpperCAmelCase : Optional[Any] = initializer_range
UpperCAmelCase : str = pool_scales
UpperCAmelCase : Optional[int] = use_auxiliary_head
UpperCAmelCase : Optional[int] = auxiliary_loss_weight
UpperCAmelCase : Optional[int] = auxiliary_in_channels
UpperCAmelCase : str = auxiliary_channels
UpperCAmelCase : str = auxiliary_num_convs
UpperCAmelCase : str = auxiliary_concat_input
UpperCAmelCase : int = loss_ignore_index
def _lowercase( self ) -> List[str]:
UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ )
UpperCAmelCase : Tuple = self.backbone_config.to_dict()
UpperCAmelCase : List[str] = self.__class__.model_type
return output
| 371 |
'''simple docstring'''
from typing import List, Optional
from tokenizers import ByteLevelBPETokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
a : List[Any] = logging.get_logger(__name__)
a : List[str] = {
"""vocab_file""": """vocab.json""",
"""merges_file""": """merges.txt""",
"""tokenizer_config_file""": """tokenizer_config.json""",
}
a : List[Any] = {
"""vocab_file""": {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"""
},
"""merges_file""": {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"""
},
"""tokenizer_config_file""": {
"""facebook/blenderbot_small-90M""": (
"""https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"""
)
},
}
a : List[Any] = {
"""facebook/blenderbot_small-90M""": 5_1_2,
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = BlenderbotSmallTokenizer
def __init__( self , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , A=True , **A , ) -> Union[str, Any]:
super().__init__(
ByteLevelBPETokenizer(
vocab=A , merges=A , add_prefix_space=A , trim_offsets=A , ) , bos_token=A , eos_token=A , unk_token=A , **A , )
UpperCAmelCase : Optional[Any] = add_prefix_space
def _lowercase( self , A , A=None ) -> Optional[Any]:
UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _lowercase( self , A , A = None ) -> List[int]:
UpperCAmelCase : Any = [self.sep_token_id]
UpperCAmelCase : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 338 | 0 |
'''simple docstring'''
from __future__ import annotations
from typing import TypedDict
class UpperCamelCase_ ( snake_case_ ):
lowercase = 42
lowercase = 42
def __lowerCamelCase ( _lowercase ) -> Dict:
if not isinstance(__a , __a ):
raise TypeError("""The parameter s type must be str.""" )
return [s[i:] + s[:i] for i in range(len(__a ) )]
def __lowerCamelCase ( _lowercase ) -> Tuple:
if not isinstance(__a , __a ):
raise TypeError("""The parameter s type must be str.""" )
if not s:
raise ValueError("""The parameter s must not be empty.""" )
UpperCAmelCase : Optional[Any] = all_rotations(__a )
rotations.sort() # sort the list of rotations in alphabetically order
# make a string composed of the last char of each rotation
UpperCAmelCase : BWTTransformDict = {
"bwt_string": "".join([word[-1] for word in rotations] ),
"idx_original_string": rotations.index(__a ),
}
return response
def __lowerCamelCase ( _lowercase , _lowercase ) -> int:
if not isinstance(__a , __a ):
raise TypeError("""The parameter bwt_string type must be str.""" )
if not bwt_string:
raise ValueError("""The parameter bwt_string must not be empty.""" )
try:
UpperCAmelCase : str = int(__a )
except ValueError:
raise TypeError(
"""The parameter idx_original_string type must be int or passive"""
""" of cast to int.""" )
if idx_original_string < 0:
raise ValueError("""The parameter idx_original_string must not be lower than 0.""" )
if idx_original_string >= len(__a ):
raise ValueError(
"""The parameter idx_original_string must be lower than""" """ len(bwt_string).""" )
UpperCAmelCase : Union[str, Any] = [''] * len(__a )
for _ in range(len(__a ) ):
for i in range(len(__a ) ):
UpperCAmelCase : Dict = bwt_string[i] + ordered_rotations[i]
ordered_rotations.sort()
return ordered_rotations[idx_original_string]
if __name__ == "__main__":
a : str = """Provide a string that I will generate its BWT transform: """
a : int = input(entry_msg).strip()
a : Any = bwt_transform(s)
print(
F'''Burrows Wheeler transform for string \'{s}\' results '''
F'''in \'{result['bwt_string']}\''''
)
a : str = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""])
print(
F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' '''
F'''we get original string \'{original_string}\''''
)
| 350 |
'''simple docstring'''
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , A , A , A = None , A = None , A = False , **A , ) -> Tuple:
super().__init__(features=A , cache_dir=A , keep_in_memory=A , **A )
UpperCAmelCase : Any = Sql(
cache_dir=A , features=A , sql=A , con=A , **A , )
def _lowercase( self ) -> Dict:
UpperCAmelCase : Any = None
UpperCAmelCase : Any = None
UpperCAmelCase : int = None
UpperCAmelCase : int = None
self.builder.download_and_prepare(
download_config=A , download_mode=A , verification_mode=A , base_path=A , )
# Build dataset for splits
UpperCAmelCase : str = self.builder.as_dataset(
split="""train""" , verification_mode=A , in_memory=self.keep_in_memory )
return dataset
class UpperCamelCase_ :
def __init__( self , A , A , A , A = None , A = None , **A , ) -> str:
if num_proc is not None and num_proc <= 0:
raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' )
UpperCAmelCase : Dict = dataset
UpperCAmelCase : List[Any] = name
UpperCAmelCase : Any = con
UpperCAmelCase : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
UpperCAmelCase : Optional[Any] = num_proc
UpperCAmelCase : str = to_sql_kwargs
def _lowercase( self ) -> int:
UpperCAmelCase : Any = self.to_sql_kwargs.pop("""sql""" , A )
UpperCAmelCase : str = self.to_sql_kwargs.pop("""con""" , A )
UpperCAmelCase : Union[str, Any] = self.to_sql_kwargs.pop("""index""" , A )
UpperCAmelCase : str = self._write(index=A , **self.to_sql_kwargs )
return written
def _lowercase( self , A ) -> Any:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = args
UpperCAmelCase : Union[str, Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs
UpperCAmelCase : int = query_table(
table=self.dataset.data , key=slice(A , offset + self.batch_size ) , indices=self.dataset._indices , )
UpperCAmelCase : Any = batch.to_pandas()
UpperCAmelCase : List[Any] = df.to_sql(self.name , self.con , index=A , **A )
return num_rows or len(A )
def _lowercase( self , A , **A ) -> int:
UpperCAmelCase : Optional[int] = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
UpperCAmelCase , UpperCAmelCase : List[str] = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , A , A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += num_rows
return written
| 338 | 0 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.utils import floats_tensor, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class UpperCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ):
lowercase = KandinskyVaaPipeline
lowercase = [
'image_embeds',
'negative_image_embeds',
]
lowercase = ['image_embeds', 'negative_image_embeds']
lowercase = [
'generator',
'height',
'width',
'latents',
'guidance_scale',
'num_inference_steps',
'return_dict',
'guidance_scale',
'num_images_per_prompt',
'output_type',
'return_dict',
]
lowercase = False
@property
def _lowercase( self ) -> Tuple:
return 32
@property
def _lowercase( self ) -> Any:
return 32
@property
def _lowercase( self ) -> str:
return self.time_input_dim
@property
def _lowercase( self ) -> Dict:
return self.time_input_dim * 4
@property
def _lowercase( self ) -> List[Any]:
return 100
@property
def _lowercase( self ) -> Union[str, Any]:
torch.manual_seed(0 )
UpperCAmelCase : Optional[int] = {
"""in_channels""": 4,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
UpperCAmelCase : Optional[int] = UNetaDConditionModel(**A )
return model
@property
def _lowercase( self ) -> Optional[int]:
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def _lowercase( self ) -> Any:
torch.manual_seed(0 )
UpperCAmelCase : str = VQModel(**self.dummy_movq_kwargs )
return model
def _lowercase( self ) -> List[str]:
UpperCAmelCase : int = self.dummy_unet
UpperCAmelCase : Union[str, Any] = self.dummy_movq
UpperCAmelCase : Optional[Any] = DDIMScheduler(
num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=A , set_alpha_to_one=A , steps_offset=1 , prediction_type="""epsilon""" , thresholding=A , )
UpperCAmelCase : List[Any] = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def _lowercase( self , A , A=0 ) -> Any:
UpperCAmelCase : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(A ) ).to(A )
UpperCAmelCase : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
A )
if str(A ).startswith("""mps""" ):
UpperCAmelCase : List[Any] = torch.manual_seed(A )
else:
UpperCAmelCase : Any = torch.Generator(device=A ).manual_seed(A )
UpperCAmelCase : str = {
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = """cpu"""
UpperCAmelCase : Optional[Any] = self.get_dummy_components()
UpperCAmelCase : List[Any] = self.pipeline_class(**A )
UpperCAmelCase : Optional[int] = pipe.to(A )
pipe.set_progress_bar_config(disable=A )
UpperCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs(A ) )
UpperCAmelCase : Dict = output.images
UpperCAmelCase : Dict = pipe(
**self.get_dummy_inputs(A ) , return_dict=A , )[0]
UpperCAmelCase : List[str] = image[0, -3:, -3:, -1]
UpperCAmelCase : str = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase : Dict = np.array(
[0.6_2_3_7_9_7_6, 1.0, 0.3_6_4_4_1_3_3_2, 1.0, 0.7_0_6_3_9_6_3_4, 0.2_9_8_7_7_1_8_6, 0.8_5_6_5_2_1_2_5, 0.5_2_1_6_8_4_3, 0.5_4_4_5_4_0_4_6] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class UpperCamelCase_ ( unittest.TestCase ):
def _lowercase( self ) -> str:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : int = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy""" )
UpperCAmelCase : str = KandinskyVaaPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(A )
UpperCAmelCase : Any = KandinskyVaaPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa )
UpperCAmelCase : Optional[Any] = pipeline.to(A )
pipeline.set_progress_bar_config(disable=A )
UpperCAmelCase : List[str] = """red cat, 4k photo"""
UpperCAmelCase : Optional[Any] = torch.Generator(device="""cuda""" ).manual_seed(0 )
UpperCAmelCase : int = pipe_prior(
A , generator=A , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
UpperCAmelCase : str = torch.Generator(device="""cuda""" ).manual_seed(0 )
UpperCAmelCase : Tuple = pipeline(
image_embeds=A , negative_image_embeds=A , generator=A , num_inference_steps=100 , output_type="""np""" , )
UpperCAmelCase : Union[str, Any] = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(A , A )
| 351 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel
@require_tf
class UpperCamelCase_ :
lowercase = MBartConfig
lowercase = {}
lowercase = 'gelu'
def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]:
UpperCAmelCase : Optional[int] = parent
UpperCAmelCase : Dict = batch_size
UpperCAmelCase : Tuple = seq_length
UpperCAmelCase : str = is_training
UpperCAmelCase : Optional[int] = use_labels
UpperCAmelCase : Optional[Any] = vocab_size
UpperCAmelCase : Union[str, Any] = hidden_size
UpperCAmelCase : Union[str, Any] = num_hidden_layers
UpperCAmelCase : List[Any] = num_attention_heads
UpperCAmelCase : Optional[int] = intermediate_size
UpperCAmelCase : Dict = hidden_dropout_prob
UpperCAmelCase : int = attention_probs_dropout_prob
UpperCAmelCase : Optional[int] = max_position_embeddings
UpperCAmelCase : Optional[Any] = eos_token_id
UpperCAmelCase : List[str] = pad_token_id
UpperCAmelCase : List[Any] = bos_token_id
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : str = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A )
return config, inputs_dict
def _lowercase( self , A , A ) -> List[str]:
UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder()
UpperCAmelCase : int = inputs_dict["""input_ids"""]
UpperCAmelCase : str = input_ids[:1, :]
UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :]
UpperCAmelCase : List[str] = inputs_dict["""head_mask"""]
UpperCAmelCase : List[Any] = 1
# first forward pass
UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A )
UpperCAmelCase , UpperCAmelCase : Optional[Any] = outputs.to_tuple()
UpperCAmelCase : int = past_key_values[1]
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]:
if attention_mask is None:
UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCAmelCase : int = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
lowercase = (
{
'conversational': TFMBartForConditionalGeneration,
'feature-extraction': TFMBartModel,
'summarization': TFMBartForConditionalGeneration,
'text2text-generation': TFMBartForConditionalGeneration,
'translation': TFMBartForConditionalGeneration,
}
if is_tf_available()
else {}
)
lowercase = True
lowercase = False
lowercase = False
def _lowercase( self , A , A , A , A , A ) -> int:
if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
# Exception encountered when calling layer '...'
return True
return False
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : int = TFMBartModelTester(self )
UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A )
def _lowercase( self ) -> Optional[int]:
self.config_tester.run_common_tests()
def _lowercase( self ) -> Dict:
UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*A )
@require_sentencepiece
@require_tokenizers
@require_tf
class UpperCamelCase_ ( unittest.TestCase ):
lowercase = [
' UN Chief Says There Is No Military Solution in Syria',
]
lowercase = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
]
lowercase = 'facebook/mbart-large-en-ro'
@cached_property
def _lowercase( self ) -> Any:
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def _lowercase( self , **A ) -> Any:
UpperCAmelCase : Optional[int] = self.translate_src_text(**A )
self.assertListEqual(self.expected_text , A )
def _lowercase( self , **A ) -> Optional[Any]:
UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" )
UpperCAmelCase : int = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 )
UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A )
return generated_words
@slow
def _lowercase( self ) -> List[Any]:
self._assert_generated_batch_equal_expected()
| 338 | 0 |
'''simple docstring'''
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
a : Optional[Any] = """\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n"""
a : str = """\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n"""
a : List[str] = """\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {\'pearson\': 1.0, \'spearmanr\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'cola\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n"""
def __lowerCamelCase ( _lowercase , _lowercase ) -> Any:
return float((preds == labels).mean() )
def __lowerCamelCase ( _lowercase , _lowercase ) -> str:
UpperCAmelCase : Optional[int] = simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase : Union[str, Any] = float(fa_score(y_true=lowerCAmelCase__ , y_pred=lowerCAmelCase__ ) )
return {
"accuracy": acc,
"f1": fa,
}
def __lowerCamelCase ( _lowercase , _lowercase ) -> Tuple:
UpperCAmelCase : str = float(pearsonr(lowerCAmelCase__ , lowerCAmelCase__ )[0] )
UpperCAmelCase : List[str] = float(spearmanr(lowerCAmelCase__ , lowerCAmelCase__ )[0] )
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase_ ( datasets.Metric ):
def _lowercase( self ) -> Union[str, Any]:
if self.config_name not in [
"sst2",
"mnli",
"mnli_mismatched",
"mnli_matched",
"cola",
"stsb",
"mrpc",
"qqp",
"qnli",
"rte",
"wnli",
"hans",
]:
raise KeyError(
"""You should supply a configuration name selected in """
"""[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """
"""\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ),
"""references""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ),
} ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , )
def _lowercase( self , A , A ) -> Optional[int]:
if self.config_name == "cola":
return {"matthews_correlation": matthews_corrcoef(snake_case_ , snake_case_ )}
elif self.config_name == "stsb":
return pearson_and_spearman(snake_case_ , snake_case_ )
elif self.config_name in ["mrpc", "qqp"]:
return acc_and_fa(snake_case_ , snake_case_ )
elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]:
return {"accuracy": simple_accuracy(snake_case_ , snake_case_ )}
else:
raise KeyError(
"""You should supply a configuration name selected in """
"""[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """
"""\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" )
| 352 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase , _lowercase ) -> bool:
UpperCAmelCase : Tuple = len(_lowercase ) + 1
UpperCAmelCase : List[Any] = len(_lowercase ) + 1
# dp is a 2d matrix where dp[i][j] denotes whether prefix string of
# length i of input_string matches with prefix string of length j of
# given pattern.
# "dp" stands for dynamic programming.
UpperCAmelCase : str = [[0 for i in range(_lowercase )] for j in range(_lowercase )]
# since string of zero length match pattern of zero length
UpperCAmelCase : int = 1
# since pattern of zero length will never match with string of non-zero length
for i in range(1 , _lowercase ):
UpperCAmelCase : str = 0
# since string of zero length will match with pattern where there
# is at least one * alternatively
for j in range(1 , _lowercase ):
UpperCAmelCase : Optional[Any] = dp[0][j - 2] if pattern[j - 1] == """*""" else 0
# now using bottom-up approach to find for all remaining lengths
for i in range(1 , _lowercase ):
for j in range(1 , _lowercase ):
if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".":
UpperCAmelCase : Union[str, Any] = dp[i - 1][j - 1]
elif pattern[j - 1] == "*":
if dp[i][j - 2] == 1:
UpperCAmelCase : List[Any] = 1
elif pattern[j - 2] in (input_string[i - 1], "."):
UpperCAmelCase : Optional[int] = dp[i - 1][j]
else:
UpperCAmelCase : Any = 0
else:
UpperCAmelCase : str = 0
return bool(dp[-1][-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
# inputing the strings
# input_string = input("input a string :")
# pattern = input("input a pattern :")
a : List[str] = """aab"""
a : Optional[int] = """c*a*b"""
# using function to check whether given string matches the given pattern
if match_pattern(input_string, pattern):
print(F'''{input_string} matches the given pattern {pattern}''')
else:
print(F'''{input_string} does not match with the given pattern {pattern}''')
| 338 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
a : Optional[Any] = {
"""configuration_data2vec_audio""": ["""DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecAudioConfig"""],
"""configuration_data2vec_text""": [
"""DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""Data2VecTextConfig""",
"""Data2VecTextOnnxConfig""",
],
"""configuration_data2vec_vision""": [
"""DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""Data2VecVisionConfig""",
"""Data2VecVisionOnnxConfig""",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Dict = [
"""DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Data2VecAudioForAudioFrameClassification""",
"""Data2VecAudioForCTC""",
"""Data2VecAudioForSequenceClassification""",
"""Data2VecAudioForXVector""",
"""Data2VecAudioModel""",
"""Data2VecAudioPreTrainedModel""",
]
a : List[Any] = [
"""DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Data2VecTextForCausalLM""",
"""Data2VecTextForMaskedLM""",
"""Data2VecTextForMultipleChoice""",
"""Data2VecTextForQuestionAnswering""",
"""Data2VecTextForSequenceClassification""",
"""Data2VecTextForTokenClassification""",
"""Data2VecTextModel""",
"""Data2VecTextPreTrainedModel""",
]
a : Dict = [
"""DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Data2VecVisionForImageClassification""",
"""Data2VecVisionForMaskedImageModeling""",
"""Data2VecVisionForSemanticSegmentation""",
"""Data2VecVisionModel""",
"""Data2VecVisionPreTrainedModel""",
]
if is_tf_available():
a : Optional[Any] = [
"""TFData2VecVisionForImageClassification""",
"""TFData2VecVisionForSemanticSegmentation""",
"""TFData2VecVisionModel""",
"""TFData2VecVisionPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig
from .configuration_dataavec_text import (
DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DataaVecTextConfig,
DataaVecTextOnnxConfig,
)
from .configuration_dataavec_vision import (
DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP,
DataaVecVisionConfig,
DataaVecVisionOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_dataavec_audio import (
DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecAudioForAudioFrameClassification,
DataaVecAudioForCTC,
DataaVecAudioForSequenceClassification,
DataaVecAudioForXVector,
DataaVecAudioModel,
DataaVecAudioPreTrainedModel,
)
from .modeling_dataavec_text import (
DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecTextForCausalLM,
DataaVecTextForMaskedLM,
DataaVecTextForMultipleChoice,
DataaVecTextForQuestionAnswering,
DataaVecTextForSequenceClassification,
DataaVecTextForTokenClassification,
DataaVecTextModel,
DataaVecTextPreTrainedModel,
)
from .modeling_dataavec_vision import (
DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecVisionForImageClassification,
DataaVecVisionForMaskedImageModeling,
DataaVecVisionForSemanticSegmentation,
DataaVecVisionModel,
DataaVecVisionPreTrainedModel,
)
if is_tf_available():
from .modeling_tf_dataavec_vision import (
TFDataaVecVisionForImageClassification,
TFDataaVecVisionForSemanticSegmentation,
TFDataaVecVisionModel,
TFDataaVecVisionPreTrainedModel,
)
else:
import sys
a : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 353 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase ) -> int:
UpperCAmelCase : List[str] = 0
while num > 0:
digit_sum += num % 1_0
num //= 1_0
return digit_sum
def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int:
UpperCAmelCase : int = 1
UpperCAmelCase : str = 2
for i in range(2 , max_n + 1 ):
UpperCAmelCase : Tuple = pre_numerator
UpperCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1
UpperCAmelCase : Union[str, Any] = cur_numerator
UpperCAmelCase : Optional[int] = e_cont * pre_numerator + temp
return sum_digits(_lowercase )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 338 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a : List[Any] = logging.get_logger(__name__)
a : Any = {
"xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json",
"xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json",
"xlm-roberta-large-finetuned-conll02-dutch": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json"
),
"xlm-roberta-large-finetuned-conll02-spanish": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json"
),
"xlm-roberta-large-finetuned-conll03-english": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json"
),
"xlm-roberta-large-finetuned-conll03-german": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json"
),
}
class UpperCamelCase_ ( lowercase_ ):
lowercase = "xlm-roberta"
def __init__( self , A=30522 , A=768 , A=12 , A=12 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=2 , A=0.0_2 , A=1e-12 , A=1 , A=0 , A=2 , A="absolute" , A=True , A=None , **A , ) -> Any:
super().__init__(pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , **a__ )
UpperCAmelCase : Tuple = vocab_size
UpperCAmelCase : int = hidden_size
UpperCAmelCase : Dict = num_hidden_layers
UpperCAmelCase : str = num_attention_heads
UpperCAmelCase : Any = hidden_act
UpperCAmelCase : int = intermediate_size
UpperCAmelCase : Any = hidden_dropout_prob
UpperCAmelCase : Dict = attention_probs_dropout_prob
UpperCAmelCase : int = max_position_embeddings
UpperCAmelCase : Optional[int] = type_vocab_size
UpperCAmelCase : int = initializer_range
UpperCAmelCase : Any = layer_norm_eps
UpperCAmelCase : str = position_embedding_type
UpperCAmelCase : List[Any] = use_cache
UpperCAmelCase : str = classifier_dropout
class UpperCamelCase_ ( lowercase_ ):
@property
def _lowercase( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
UpperCAmelCase : str = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 354 |
'''simple docstring'''
import random
import unittest
from torch.utils.data import BatchSampler, DataLoader, IterableDataset
from accelerate import Accelerator
from accelerate.data_loader import (
BatchSamplerShard,
DataLoaderDispatcher,
DataLoaderShard,
IterableDatasetShard,
SkipBatchSampler,
SkipDataLoader,
skip_first_batches,
)
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , A=0.0_1 , A=1000 ) -> List[str]:
UpperCAmelCase : List[Any] = p_stop
UpperCAmelCase : Optional[int] = max_length
def __iter__( self ) -> Union[str, Any]:
UpperCAmelCase : Dict = 0
UpperCAmelCase : Union[str, Any] = False
while not stop and count < self.max_length:
yield count
count += 1
UpperCAmelCase : Any = random.random() < self.p_stop
class UpperCamelCase_ ( unittest.TestCase ):
def _lowercase( self , A , A , A=False , A=True ) -> Union[str, Any]:
UpperCAmelCase : List[str] = [
BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A )
for i in range(2 )
]
UpperCAmelCase : List[str] = [list(A ) for batch_sampler_shard in batch_sampler_shards]
if not split_batches:
self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] )
self.assertListEqual(A , A )
def _lowercase( self ) -> Union[str, Any]:
# Check the shards when the dataset is a round multiple of total batch size.
UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Any = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A )
# Expected shouldn't change
self.check_batch_sampler_shards(A , A )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]],
]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Tuple = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]],
]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : List[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]],
]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : int = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A )
# Check the shards when the dataset is very small.
UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : List[Any] = [[], []]
self.check_batch_sampler_shards(A , A )
def _lowercase( self ) -> Tuple:
# Check the shards when the dataset is a round multiple of batch size.
UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : List[str] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A )
# Expected shouldn't change
self.check_batch_sampler_shards(A , A , split_batches=A )
# Check the shards when the dataset is not a round multiple of batch size.
UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : List[str] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Union[str, Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Any = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
# Check the shards when the dataset is very small.
UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Optional[Any] = [[[0, 1]], [[0, 1]]]
self.check_batch_sampler_shards(A , A , split_batches=A )
UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Any = [[], []]
self.check_batch_sampler_shards(A , A , split_batches=A )
def _lowercase( self ) -> Any:
# Check the shards when the dataset is a round multiple of total batch size.
UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A )
# Expected shouldn't change
self.check_batch_sampler_shards(A , A , even_batches=A )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : List[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Dict = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
UpperCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Union[str, Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
# Check the shards when the dataset is very small.
UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : str = [[[0, 1]], []]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Tuple = [[], []]
self.check_batch_sampler_shards(A , A , even_batches=A )
def _lowercase( self ) -> List[Any]:
# Check the shards when the dataset is a round multiple of batch size.
UpperCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : List[Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A )
# Expected shouldn't change
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
# Check the shards when the dataset is not a round multiple of batch size.
UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Optional[Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Dict = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Union[str, Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Dict = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
# Check the shards when the dataset is very small.
UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Dict = [[[0, 1]], []]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Dict = [[], []]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]]
UpperCAmelCase : List[str] = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )]
self.assertEqual(len(batch_sampler_shards[0] ) , 3 )
self.assertEqual(len(batch_sampler_shards[1] ) , 2 )
self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] )
self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] )
def _lowercase( self , A , A , A , A=False , A=2 , A=False ) -> Tuple:
random.seed(A )
UpperCAmelCase : Dict = list(A )
UpperCAmelCase : Any = [
IterableDatasetShard(
A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , )
for i in range(A )
]
UpperCAmelCase : Dict = []
for iterable_dataset_shard in iterable_dataset_shards:
# Since our random iterable dataset will be... random... we need to use a seed to get reproducible results.
random.seed(A )
iterable_dataset_lists.append(list(A ) )
UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size
# All iterable dataset shard should have the same length, a round multiple of shard_batch_size
UpperCAmelCase : List[Any] = iterable_dataset_lists[0]
for l in iterable_dataset_lists[1:]:
self.assertEqual(len(A ) , len(A ) )
self.assertTrue(len(A ) % shard_batch_size == 0 )
UpperCAmelCase : List[Any] = []
for idx in range(0 , len(A ) , A ):
for l in iterable_dataset_lists:
observed += l[idx : idx + shard_batch_size]
if not drop_last:
while len(A ) < len(A ):
reference += reference
self.assertListEqual(A , reference[: len(A )] )
def _lowercase( self ) -> str:
UpperCAmelCase : Tuple = 42
UpperCAmelCase : List[Any] = RandomIterableDataset()
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
# Edge case with a very small dataset
UpperCAmelCase : List[Any] = RandomIterableDataset(max_length=2 )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Any = SkipBatchSampler(A , 2 )
self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowercase( self ) -> int:
UpperCAmelCase : Any = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 )
self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : List[Any] = DataLoader(list(range(16 ) ) , batch_size=4 )
UpperCAmelCase : Optional[Any] = skip_first_batches(A , num_batches=2 )
self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 )
for idx, _ in enumerate(A ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(A ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
def _lowercase( self ) -> Dict:
Accelerator()
UpperCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 )
for idx, _ in enumerate(A ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(A ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
| 338 | 0 |
def __lowerCamelCase ( _lowercase ) -> str:
UpperCAmelCase : Optional[int] = int(_lowercase )
if n_element < 1:
UpperCAmelCase : Tuple = ValueError("""a should be a positive number""" )
raise my_error
UpperCAmelCase : Tuple = [1]
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = (0, 0, 0)
UpperCAmelCase : List[Any] = 1
while index < n_element:
while hamming_list[i] * 2 <= hamming_list[-1]:
i += 1
while hamming_list[j] * 3 <= hamming_list[-1]:
j += 1
while hamming_list[k] * 5 <= hamming_list[-1]:
k += 1
hamming_list.append(
min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) )
index += 1
return hamming_list
if __name__ == "__main__":
a : Optional[int] = input("""Enter the last number (nth term) of the Hamming Number Series: """)
print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""")
a : Optional[Any] = hamming(int(n))
print("""-----------------------------------------------------""")
print(F'''The list with nth numbers is: {hamming_numbers}''')
print("""-----------------------------------------------------""")
| 355 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
a : List[Any] = {
"""configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""],
"""tokenization_m2m_100""": ["""M2M100Tokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Any = [
"""M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""M2M100ForConditionalGeneration""",
"""M2M100Model""",
"""M2M100PreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 338 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a : int = {'configuration_opt': ['OPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OPTConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Optional[Any] = [
'OPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'OPTForCausalLM',
'OPTModel',
'OPTPreTrainedModel',
'OPTForSequenceClassification',
'OPTForQuestionAnswering',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Optional[int] = ['TFOPTForCausalLM', 'TFOPTModel', 'TFOPTPreTrainedModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : int = [
'FlaxOPTForCausalLM',
'FlaxOPTModel',
'FlaxOPTPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_opt import (
OPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OPTForCausalLM,
OPTForQuestionAnswering,
OPTForSequenceClassification,
OPTModel,
OPTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel
else:
import sys
a : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 356 |
'''simple docstring'''
from math import loga
def __lowerCamelCase ( _lowercase ) -> int:
if a < 0:
raise ValueError("""Input value must be a positive integer""" )
elif isinstance(_lowercase , _lowercase ):
raise TypeError("""Input value must be a 'int' type""" )
return 0 if (a == 0) else int(loga(a & -a ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 338 | 0 |
'''simple docstring'''
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class UpperCamelCase_ ( unittest.TestCase ):
def __init__( self , A , A=7 , A=3 , A=18 , A=30 , A=400 , A=True , A=None , A=True , ) -> Any:
UpperCAmelCase : int = size if size is not None else {'height': 18, 'width': 18}
UpperCAmelCase : List[str] = parent
UpperCAmelCase : Optional[Any] = batch_size
UpperCAmelCase : Optional[int] = num_channels
UpperCAmelCase : Dict = image_size
UpperCAmelCase : int = min_resolution
UpperCAmelCase : Tuple = max_resolution
UpperCAmelCase : List[str] = do_resize
UpperCAmelCase : Dict = size
UpperCAmelCase : Dict = do_normalize
def _lowercase( self ) -> List[Any]:
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4],
[-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = ImageGPTImageProcessor if is_vision_available() else None
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Dict = ImageGPTImageProcessingTester(self )
@property
def _lowercase( self ) -> Tuple:
return self.image_processor_tester.prepare_image_processor_dict()
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_A , """clusters""" ) )
self.assertTrue(hasattr(_A , """do_resize""" ) )
self.assertTrue(hasattr(_A , """size""" ) )
self.assertTrue(hasattr(_A , """do_normalize""" ) )
def _lowercase( self ) -> Any:
UpperCAmelCase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
UpperCAmelCase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def _lowercase( self ) -> int:
UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict )
UpperCAmelCase : Optional[int] = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(_A , obj[key] ) )
else:
self.assertEqual(obj[key] , _A )
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCAmelCase : List[Any] = os.path.join(_A , """image_processor.json""" )
image_processor_first.to_json_file(_A )
UpperCAmelCase : Optional[Any] = self.image_processing_class.from_json_file(_A ).to_dict()
UpperCAmelCase : Optional[int] = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(_A , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , _A )
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(_A )
UpperCAmelCase : Optional[int] = self.image_processing_class.from_pretrained(_A ).to_dict()
UpperCAmelCase : Any = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(_A , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , _A )
@unittest.skip("""ImageGPT requires clusters at initialization""" )
def _lowercase( self ) -> int:
pass
def __lowerCamelCase ( ) -> str:
UpperCAmelCase : Tuple = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" )
UpperCAmelCase : List[str] = Image.open(dataset[4]["""file"""] )
UpperCAmelCase : List[Any] = Image.open(dataset[5]["""file"""] )
UpperCAmelCase : Any = [imagea, imagea]
return images
@require_vision
@require_torch
class UpperCamelCase_ ( unittest.TestCase ):
@slow
def _lowercase( self ) -> Any:
UpperCAmelCase : Optional[int] = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" )
UpperCAmelCase : Union[str, Any] = prepare_images()
# test non-batched
UpperCAmelCase : List[Any] = image_processing(images[0] , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1024) )
UpperCAmelCase : int = [306, 191, 191]
self.assertEqual(encoding.input_ids[0, :3].tolist() , _A )
# test batched
UpperCAmelCase : List[str] = image_processing(_A , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1024) )
UpperCAmelCase : Any = [303, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , _A )
| 357 |
'''simple docstring'''
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
a : Optional[int] = 1_0
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int:
for i in range(_lowercase , _lowercase ):
if array[i] == target:
return i
return -1
def __lowerCamelCase ( _lowercase , _lowercase ) -> int:
UpperCAmelCase : Tuple = 0
UpperCAmelCase : List[str] = len(_lowercase )
while left <= right:
if right - left < precision:
return lin_search(_lowercase , _lowercase , _lowercase , _lowercase )
UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1
UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
UpperCAmelCase : Any = one_third - 1
elif array[two_third] < target:
UpperCAmelCase : Tuple = two_third + 1
else:
UpperCAmelCase : int = one_third + 1
UpperCAmelCase : List[Any] = two_third - 1
else:
return -1
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int:
if left < right:
if right - left < precision:
return lin_search(_lowercase , _lowercase , _lowercase , _lowercase )
UpperCAmelCase : str = (left + right) // 3 + 1
UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
a : Any = input("""Enter numbers separated by comma:\n""").strip()
a : Any = [int(item.strip()) for item in user_input.split(""",""")]
assert collection == sorted(collection), F"List must be ordered.\n{collection}."
a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip())
a : Union[str, Any] = ite_ternary_search(collection, target)
a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(F'''Iterative search: {target} found at positions: {resulta}''')
print(F'''Recursive search: {target} found at positions: {resulta}''')
else:
print("""Not found""")
| 338 | 0 |
'''simple docstring'''
import argparse
import requests
import torch
from PIL import Image
from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor
def __lowerCamelCase ( _lowercase ) -> str:
UpperCAmelCase : List[str] = SwinConfig(image_size=1_9_2 )
if "base" in model_name:
UpperCAmelCase : Dict = 6
UpperCAmelCase : int = 1_2_8
UpperCAmelCase : Any = (2, 2, 1_8, 2)
UpperCAmelCase : Tuple = (4, 8, 1_6, 3_2)
elif "large" in model_name:
UpperCAmelCase : int = 1_2
UpperCAmelCase : str = 1_9_2
UpperCAmelCase : Optional[Any] = (2, 2, 1_8, 2)
UpperCAmelCase : str = (6, 1_2, 2_4, 4_8)
else:
raise ValueError("""Model not supported, only supports base and large variants""" )
UpperCAmelCase : Tuple = window_size
UpperCAmelCase : Any = embed_dim
UpperCAmelCase : Optional[Any] = depths
UpperCAmelCase : Union[str, Any] = num_heads
return config
def __lowerCamelCase ( _lowercase ) -> List[Any]:
if "encoder.mask_token" in name:
UpperCAmelCase : List[Any] = name.replace("""encoder.mask_token""" , """embeddings.mask_token""" )
if "encoder.patch_embed.proj" in name:
UpperCAmelCase : Dict = name.replace("""encoder.patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "encoder.patch_embed.norm" in name:
UpperCAmelCase : Dict = name.replace("""encoder.patch_embed.norm""" , """embeddings.norm""" )
if "attn.proj" in name:
UpperCAmelCase : Any = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
UpperCAmelCase : Any = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
UpperCAmelCase : str = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
UpperCAmelCase : List[Any] = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
UpperCAmelCase : Any = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
UpperCAmelCase : Union[str, Any] = name.replace("""mlp.fc2""" , """output.dense""" )
if name == "encoder.norm.weight":
UpperCAmelCase : Tuple = 'layernorm.weight'
if name == "encoder.norm.bias":
UpperCAmelCase : Optional[Any] = 'layernorm.bias'
if "decoder" in name:
pass
else:
UpperCAmelCase : str = 'swin.' + name
return name
def __lowerCamelCase ( _lowercase , _lowercase ) -> List[str]:
for key in orig_state_dict.copy().keys():
UpperCAmelCase : int = orig_state_dict.pop(_A )
if "attn_mask" in key:
pass
elif "qkv" in key:
UpperCAmelCase : Union[str, Any] = key.split(""".""" )
UpperCAmelCase : Optional[int] = int(key_split[2] )
UpperCAmelCase : List[str] = int(key_split[4] )
UpperCAmelCase : Union[str, Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
UpperCAmelCase : List[Any] = val[:dim, :]
UpperCAmelCase : Tuple = val[
dim : dim * 2, :
]
UpperCAmelCase : str = val[-dim:, :]
else:
UpperCAmelCase : int = val[
:dim
]
UpperCAmelCase : Tuple = val[
dim : dim * 2
]
UpperCAmelCase : Any = val[
-dim:
]
else:
UpperCAmelCase : Dict = val
return orig_state_dict
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[Any]:
UpperCAmelCase : Dict = torch.load(_A , map_location="""cpu""" )['model']
UpperCAmelCase : Union[str, Any] = get_swin_config(_A )
UpperCAmelCase : Optional[int] = SwinForMaskedImageModeling(_A )
model.eval()
UpperCAmelCase : int = convert_state_dict(_A , _A )
model.load_state_dict(_A )
UpperCAmelCase : Optional[int] = 'http://images.cocodataset.org/val2017/000000039769.jpg'
UpperCAmelCase : Union[str, Any] = ViTImageProcessor(size={"""height""": 1_9_2, """width""": 1_9_2} )
UpperCAmelCase : List[str] = Image.open(requests.get(_A , stream=_A ).raw )
UpperCAmelCase : Optional[Any] = image_processor(images=_A , return_tensors="""pt""" )
with torch.no_grad():
UpperCAmelCase : Union[str, Any] = model(**_A ).logits
print(outputs.keys() )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(_A )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(_A )
if push_to_hub:
print(F'''Pushing model and image processor for {model_name} to hub''' )
model.push_to_hub(F'''microsoft/{model_name}''' )
image_processor.push_to_hub(F'''microsoft/{model_name}''' )
if __name__ == "__main__":
a : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""swin-base-simmim-window6-192""",
type=str,
choices=["""swin-base-simmim-window6-192""", """swin-large-simmim-window12-192"""],
help="""Name of the Swin SimMIM model you\'d like to convert.""",
)
parser.add_argument(
"""--checkpoint_path""",
default="""/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth""",
type=str,
help="""Path to the original PyTorch checkpoint (.pth file).""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
a : Optional[int] = parser.parse_args()
convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 358 |
'''simple docstring'''
import numpy as np
class UpperCamelCase_ :
def __init__( self ) -> int:
UpperCAmelCase : str = (0, 0)
UpperCAmelCase : Union[str, Any] = None
UpperCAmelCase : Any = 0
UpperCAmelCase : int = 0
UpperCAmelCase : Optional[int] = 0
def __eq__( self , A ) -> Optional[Any]:
return self.position == cell.position
def _lowercase( self ) -> Tuple:
print(self.position )
class UpperCamelCase_ :
def __init__( self , A=(5, 5) ) -> Optional[Any]:
UpperCAmelCase : Union[str, Any] = np.zeros(A )
UpperCAmelCase : int = world_size[0]
UpperCAmelCase : List[str] = world_size[1]
def _lowercase( self ) -> List[Any]:
print(self.w )
def _lowercase( self , A ) -> Dict:
UpperCAmelCase : Optional[Any] = [
(-1, -1),
(-1, 0),
(-1, 1),
(0, -1),
(0, 1),
(1, -1),
(1, 0),
(1, 1),
]
UpperCAmelCase : List[Any] = cell.position[0]
UpperCAmelCase : Union[str, Any] = cell.position[1]
UpperCAmelCase : Optional[int] = []
for n in neughbour_cord:
UpperCAmelCase : Any = current_x + n[0]
UpperCAmelCase : Tuple = current_y + n[1]
if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit:
UpperCAmelCase : str = Cell()
UpperCAmelCase : List[str] = (x, y)
UpperCAmelCase : Dict = cell
neighbours.append(A )
return neighbours
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int:
UpperCAmelCase : List[Any] = []
UpperCAmelCase : Optional[int] = []
_open.append(_lowercase )
while _open:
UpperCAmelCase : Any = np.argmin([n.f for n in _open] )
UpperCAmelCase : Optional[int] = _open[min_f]
_closed.append(_open.pop(_lowercase ) )
if current == goal:
break
for n in world.get_neigbours(_lowercase ):
for c in _closed:
if c == n:
continue
UpperCAmelCase : List[str] = current.g + 1
UpperCAmelCase , UpperCAmelCase : List[str] = n.position
UpperCAmelCase , UpperCAmelCase : Dict = goal.position
UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2
UpperCAmelCase : Dict = n.h + n.g
for c in _open:
if c == n and c.f < n.f:
continue
_open.append(_lowercase )
UpperCAmelCase : Dict = []
while current.parent is not None:
path.append(current.position )
UpperCAmelCase : Optional[int] = current.parent
path.append(current.position )
return path[::-1]
if __name__ == "__main__":
a : List[str] = Gridworld()
# Start position and goal
a : Optional[int] = Cell()
a : Optional[Any] = (0, 0)
a : Optional[Any] = Cell()
a : str = (4, 4)
print(F'''path from {start.position} to {goal.position}''')
a : List[Any] = astar(world, start, goal)
# Just for visual reasons.
for i in s:
a : Any = 1
print(world.w)
| 338 | 0 |
'''simple docstring'''
from __future__ import annotations
class UpperCamelCase_ :
def __init__( self , A ) -> Optional[int]:
UpperCAmelCase : str = data
UpperCAmelCase : Optional[int] = None
UpperCAmelCase : Optional[Any] = None
def __lowerCamelCase ( _lowercase ) -> Any: # In Order traversal of the tree
if tree:
display(tree.left )
print(tree.data )
display(tree.right )
def __lowerCamelCase ( _lowercase ) -> List[str]:
return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0
def __lowerCamelCase ( _lowercase ) -> List[str]:
if not tree:
return True
if tree.left and tree.right:
return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right )
else:
return not tree.left and not tree.right
def __lowerCamelCase ( ) -> str: # Main function for testing.
UpperCAmelCase : Tuple = Node(1 )
UpperCAmelCase : Optional[Any] = Node(2 )
UpperCAmelCase : Dict = Node(3 )
UpperCAmelCase : Optional[int] = Node(4 )
UpperCAmelCase : List[Any] = Node(5 )
UpperCAmelCase : str = Node(6 )
UpperCAmelCase : List[Any] = Node(7 )
UpperCAmelCase : str = Node(8 )
UpperCAmelCase : List[str] = Node(9 )
print(is_full_binary_tree(lowerCAmelCase__ ) )
print(depth_of_tree(lowerCAmelCase__ ) )
print("""Tree is: """ )
display(lowerCAmelCase__ )
if __name__ == "__main__":
main()
| 359 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import _LazyModule
a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]}
if TYPE_CHECKING:
from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer
else:
import sys
a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 338 | 0 |
'''simple docstring'''
import requests
a : Any = """YOUR API KEY"""
def __lowerCamelCase ( _lowercase , _lowercase = giphy_api_key ) -> list:
UpperCAmelCase : List[Any] = """+""".join(query.split() )
UpperCAmelCase : List[Any] = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}'''
UpperCAmelCase : Optional[Any] = requests.get(_lowercase ).json()["""data"""]
return [gif["url"] for gif in gifs]
if __name__ == "__main__":
print("""\n""".join(get_gifs("""space ship""")))
| 360 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
a : int = logging.get_logger(__name__)
a : int = {
"""openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""",
}
# fmt: off
a : Tuple = [
1, 2, 7, 8, 9, 1_0, 1_4, 2_5,
2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2,
6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5,
7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7,
1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1,
4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6,
1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1,
1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9,
3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1
]
a : Optional[int] = [
1, 2, 7, 8, 9, 1_0, 1_4, 2_5,
2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2,
6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3,
8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7,
3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7,
7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3,
1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5,
2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5,
4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2
]
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'whisper'
lowercase = ['past_key_values']
lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]:
UpperCAmelCase : str = vocab_size
UpperCAmelCase : Union[str, Any] = num_mel_bins
UpperCAmelCase : Tuple = d_model
UpperCAmelCase : Optional[int] = encoder_layers
UpperCAmelCase : List[str] = encoder_attention_heads
UpperCAmelCase : Optional[int] = decoder_layers
UpperCAmelCase : int = decoder_attention_heads
UpperCAmelCase : Optional[int] = decoder_ffn_dim
UpperCAmelCase : Union[str, Any] = encoder_ffn_dim
UpperCAmelCase : List[str] = dropout
UpperCAmelCase : Optional[Any] = attention_dropout
UpperCAmelCase : Optional[Any] = activation_dropout
UpperCAmelCase : Optional[Any] = activation_function
UpperCAmelCase : Optional[Any] = init_std
UpperCAmelCase : int = encoder_layerdrop
UpperCAmelCase : Dict = decoder_layerdrop
UpperCAmelCase : Optional[int] = use_cache
UpperCAmelCase : List[str] = encoder_layers
UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCAmelCase : Union[str, Any] = max_source_positions
UpperCAmelCase : Tuple = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
UpperCAmelCase : List[str] = classifier_proj_size
UpperCAmelCase : Optional[Any] = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase : Optional[Any] = apply_spec_augment
UpperCAmelCase : int = mask_time_prob
UpperCAmelCase : int = mask_time_length
UpperCAmelCase : Dict = mask_time_min_masks
UpperCAmelCase : List[str] = mask_feature_prob
UpperCAmelCase : Optional[int] = mask_feature_length
UpperCAmelCase : int = mask_feature_min_masks
UpperCAmelCase : List[Any] = median_filter_width
super().__init__(
pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , )
class UpperCamelCase_ ( __magic_name__ ):
@property
def _lowercase( self ) -> Mapping[str, Mapping[int, str]]:
UpperCAmelCase : str = OrderedDict(
[
("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}),
] )
if self.use_past:
UpperCAmelCase : List[Any] = {0: """batch"""}
else:
UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""}
if self.use_past:
self.fill_with_past_key_values_(A , direction="""inputs""" )
return common_inputs
def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]:
UpperCAmelCase : Optional[int] = OrderedDict()
UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , )
UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2]
UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length
UpperCAmelCase : Any = super().generate_dummy_inputs(
preprocessor.tokenizer , A , A , A , A )
UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" )
UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" )
if "past_key_values" in decoder_inputs:
UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" )
return dummy_inputs
@property
def _lowercase( self ) -> float:
return 1e-3
| 338 | 0 |
'''simple docstring'''
# Lint as: python3
# pylint: enable=line-too-long
# pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position
a : Dict = "2.13.1"
import platform
import pyarrow
from packaging import version
if version.parse(platform.python_version()) < version.parse("""3.7"""):
raise ImportWarning(
"""To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition."""
)
if version.parse(pyarrow.__version__).major < 8:
raise ImportWarning(
"""To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n"""
"""If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`."""
)
del platform
del pyarrow
del version
from .arrow_dataset import Dataset
from .arrow_reader import ReadInstruction
from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
from .combine import concatenate_datasets, interleave_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .download import *
from .features import *
from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled
from .info import DatasetInfo, MetricInfo
from .inspect import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
list_datasets,
list_metrics,
)
from .iterable_dataset import IterableDataset
from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric
from .metric import Metric
from .splits import (
NamedSplit,
NamedSplitAll,
Split,
SplitBase,
SplitDict,
SplitGenerator,
SplitInfo,
SubSplitInfo,
percent,
)
from .tasks import *
from .utils import *
from .utils import logging
# deprecated modules
from datasets import arrow_dataset as _arrow_dataset # isort:skip
from datasets import utils as _utils # isort:skip
from datasets.utils import download_manager as _deprecated_download_manager # isort:skip
a : str = concatenate_datasets
a : Dict = DownloadConfig
a : Union[str, Any] = DownloadManager
a : Dict = DownloadMode
a : str = DownloadConfig
a : Any = DownloadMode
a : Any = DownloadManager
del _arrow_dataset, _utils, _deprecated_download_manager
| 361 |
'''simple docstring'''
a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ"""
def __lowerCamelCase ( ) -> None:
UpperCAmelCase : Optional[int] = input("""Enter message: """ )
UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ )
UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ )
if mode.lower().startswith("""e""" ):
UpperCAmelCase : List[str] = """encrypt"""
UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase )
elif mode.lower().startswith("""d""" ):
UpperCAmelCase : Tuple = """decrypt"""
UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase )
print(F'''\n{mode.title()}ed message:''' )
print(_lowercase )
def __lowerCamelCase ( _lowercase , _lowercase ) -> str:
return translate_message(_lowercase , _lowercase , """encrypt""" )
def __lowerCamelCase ( _lowercase , _lowercase ) -> str:
return translate_message(_lowercase , _lowercase , """decrypt""" )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str:
UpperCAmelCase : Optional[int] = []
UpperCAmelCase : Optional[Any] = 0
UpperCAmelCase : Tuple = key.upper()
for symbol in message:
UpperCAmelCase : Dict = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(_lowercase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(_lowercase ):
UpperCAmelCase : Optional[int] = 0
else:
translated.append(_lowercase )
return "".join(_lowercase )
if __name__ == "__main__":
main()
| 338 | 0 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int:
def count_of_possible_combinations(_lowercase ) -> int:
if target < 0:
return 0
if target == 0:
return 1
return sum(count_of_possible_combinations(target - item ) for item in array )
return count_of_possible_combinations(__snake_case )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int:
def count_of_possible_combinations_with_dp_array(
_lowercase , _lowercase ) -> int:
if target < 0:
return 0
if target == 0:
return 1
if dp_array[target] != -1:
return dp_array[target]
UpperCAmelCase : Tuple = sum(
count_of_possible_combinations_with_dp_array(target - item , __snake_case )
for item in array )
UpperCAmelCase : Optional[Any] = answer
return answer
UpperCAmelCase : List[Any] = [-1] * (target + 1)
return count_of_possible_combinations_with_dp_array(__snake_case , __snake_case )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int:
UpperCAmelCase : str = [0] * (target + 1)
UpperCAmelCase : int = 1
for i in range(1 , target + 1 ):
for j in range(__snake_case ):
if i - array[j] >= 0:
dp_array[i] += dp_array[i - array[j]]
return dp_array[target]
if __name__ == "__main__":
import doctest
doctest.testmod()
a = 3
a = 5
a = [1, 2, 5]
print(combination_sum_iv(n, array, target))
| 362 |
'''simple docstring'''
import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
"""split_dict""" , [
SplitDict(),
SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ),
SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ),
SplitDict({"""train""": SplitInfo()} ),
] , )
def __lowerCamelCase ( _lowercase ) -> List[str]:
UpperCAmelCase : Optional[int] = split_dict._to_yaml_list()
assert len(_lowercase ) == len(_lowercase )
UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(_lowercase )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
UpperCAmelCase : List[str] = None
# the split name of split_dict takes over the name of the split info object
UpperCAmelCase : int = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
"""split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name="""my_dataset""" )] )
def __lowerCamelCase ( _lowercase ) -> List[str]:
# For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name"
# field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files
UpperCAmelCase : Optional[Any] = asdict(SplitDict({"""train""": split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 338 | 0 |
def __lowerCamelCase ( _lowercase , _lowercase ) -> float:
if mass < 0:
raise ValueError("""The mass of a body cannot be negative""" )
return 0.5 * mass * abs(UpperCAmelCase__ ) * abs(UpperCAmelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 363 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
a : Dict = logging.get_logger(__name__)
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , *A , **A ) -> None:
warnings.warn(
"""The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use LayoutLMv2ImageProcessor instead.""" , A , )
super().__init__(*A , **A )
| 338 | 0 |
'''simple docstring'''
import inspect
import unittest
from transformers import DPTConfig
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel
from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class UpperCamelCase_ :
def __init__( self , A , A=2 , A=32 , A=16 , A=3 , A=True , A=True , A=32 , A=4 , A=[0, 1, 2, 3] , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=0.0_2 , A=3 , A=[1, 384, 24, 24] , A=True , A=None , ) -> Dict:
UpperCAmelCase : Union[str, Any] = parent
UpperCAmelCase : int = batch_size
UpperCAmelCase : Tuple = image_size
UpperCAmelCase : List[Any] = patch_size
UpperCAmelCase : int = num_channels
UpperCAmelCase : Union[str, Any] = is_training
UpperCAmelCase : Optional[Any] = use_labels
UpperCAmelCase : Union[str, Any] = hidden_size
UpperCAmelCase : Union[str, Any] = num_hidden_layers
UpperCAmelCase : Dict = backbone_out_indices
UpperCAmelCase : List[str] = num_attention_heads
UpperCAmelCase : Any = intermediate_size
UpperCAmelCase : Dict = hidden_act
UpperCAmelCase : Tuple = hidden_dropout_prob
UpperCAmelCase : List[str] = attention_probs_dropout_prob
UpperCAmelCase : Optional[Any] = initializer_range
UpperCAmelCase : str = num_labels
UpperCAmelCase : Optional[Any] = backbone_featmap_shape
UpperCAmelCase : Optional[Any] = scope
UpperCAmelCase : Optional[int] = is_hybrid
# sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token)
UpperCAmelCase : List[str] = (image_size // patch_size) ** 2
UpperCAmelCase : Dict = num_patches + 1
def _lowercase( self ) -> List[str]:
UpperCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : Union[str, Any] = None
if self.use_labels:
UpperCAmelCase : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
UpperCAmelCase : Optional[int] = self.get_config()
return config, pixel_values, labels
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = {
"""global_padding""": """same""",
"""layer_type""": """bottleneck""",
"""depths""": [3, 4, 9],
"""out_features""": ["""stage1""", """stage2""", """stage3"""],
"""embedding_dynamic_padding""": True,
"""hidden_sizes""": [96, 192, 384, 768],
"""num_groups""": 2,
}
return DPTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_A , backbone_featmap_shape=self.backbone_featmap_shape , )
def _lowercase( self , A , A , A ) -> Dict:
UpperCAmelCase : List[str] = DPTModel(config=_A )
model.to(_A )
model.eval()
UpperCAmelCase : List[Any] = model(_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase( self , A , A , A ) -> List[str]:
UpperCAmelCase : int = self.num_labels
UpperCAmelCase : List[Any] = DPTForDepthEstimation(_A )
model.to(_A )
model.eval()
UpperCAmelCase : int = model(_A )
self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) )
def _lowercase( self , A , A , A ) -> Any:
UpperCAmelCase : Union[str, Any] = self.num_labels
UpperCAmelCase : Any = DPTForSemanticSegmentation(_A )
model.to(_A )
model.eval()
UpperCAmelCase : Dict = model(_A , labels=_A )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs
UpperCAmelCase : Any = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class UpperCamelCase_ ( snake_case__ , snake_case__ , unittest.TestCase ):
lowercase = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else ()
lowercase = (
{
"""depth-estimation""": DPTForDepthEstimation,
"""feature-extraction""": DPTModel,
"""image-segmentation""": DPTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowercase = False
lowercase = False
lowercase = False
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Dict = DPTModelTester(self )
UpperCAmelCase : str = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 )
def _lowercase( self ) -> Union[str, Any]:
self.config_tester.run_common_tests()
@unittest.skip(reason="""DPT does not use inputs_embeds""" )
def _lowercase( self ) -> List[str]:
pass
def _lowercase( self ) -> Dict:
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : int = model_class(_A )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCAmelCase : Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_A , nn.Linear ) )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : List[str] = model_class(_A )
UpperCAmelCase : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase : str = [*signature.parameters.keys()]
UpperCAmelCase : List[Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _A )
def _lowercase( self ) -> Any:
UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_depth_estimation(*_A )
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_A )
def _lowercase( self ) -> str:
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Tuple = True
if model_class in get_values(_A ):
continue
UpperCAmelCase : str = model_class(_A )
model.to(_A )
model.train()
UpperCAmelCase : Optional[Any] = self._prepare_for_class(_A , _A , return_labels=_A )
UpperCAmelCase : Dict = model(**_A ).loss
loss.backward()
def _lowercase( self ) -> Union[str, Any]:
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Tuple = False
UpperCAmelCase : Optional[int] = True
if model_class in get_values(_A ) or not model_class.supports_gradient_checkpointing:
continue
UpperCAmelCase : str = model_class(_A )
model.to(_A )
model.gradient_checkpointing_enable()
model.train()
UpperCAmelCase : Optional[Any] = self._prepare_for_class(_A , _A , return_labels=_A )
UpperCAmelCase : Union[str, Any] = model(**_A ).loss
loss.backward()
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Any = _config_zero_init(_A )
for model_class in self.all_model_classes:
UpperCAmelCase : Dict = model_class(config=_A )
# Skip the check for the backbone
UpperCAmelCase : str = []
for name, module in model.named_modules():
if module.__class__.__name__ == "DPTViTHybridEmbeddings":
UpperCAmelCase : Dict = [f'''{name}.{key}''' for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def _lowercase( self ) -> List[str]:
pass
@slow
def _lowercase( self ) -> List[str]:
for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]:
UpperCAmelCase : str = DPTModel.from_pretrained(_A )
self.assertIsNotNone(_A )
def _lowercase( self ) -> str:
UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : int = """add"""
with self.assertRaises(_A ):
UpperCAmelCase : List[Any] = DPTForDepthEstimation(_A )
def __lowerCamelCase ( ) -> Any:
"""simple docstring"""
UpperCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
@slow
class UpperCamelCase_ ( unittest.TestCase ):
def _lowercase( self ) -> int:
UpperCAmelCase : Tuple = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" )
UpperCAmelCase : Tuple = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(_A )
UpperCAmelCase : int = prepare_img()
UpperCAmelCase : Any = image_processor(images=_A , return_tensors="""pt""" ).to(_A )
# forward pass
with torch.no_grad():
UpperCAmelCase : Optional[int] = model(**_A )
UpperCAmelCase : Optional[int] = outputs.predicted_depth
# verify the predicted depth
UpperCAmelCase : List[str] = torch.Size((1, 384, 384) )
self.assertEqual(predicted_depth.shape , _A )
UpperCAmelCase : List[str] = torch.tensor(
[[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(_A )
self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , _A , atol=1e-4 ) )
| 364 |
'''simple docstring'''
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
a : Union[str, Any] = logging.get_logger(__name__)
a : Union[str, Any] = {
"""facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""",
# See all DETR models at https://huggingface.co/models?filter=detr
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'detr'
lowercase = ['past_key_values']
lowercase = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]:
if backbone_config is not None and use_timm_backbone:
raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" )
if not use_timm_backbone:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] )
elif isinstance(A , A ):
UpperCAmelCase : Any = backbone_config.get("""model_type""" )
UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type]
UpperCAmelCase : List[Any] = config_class.from_dict(A )
# set timm attributes to None
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = None, None, None
UpperCAmelCase : Dict = use_timm_backbone
UpperCAmelCase : Any = backbone_config
UpperCAmelCase : List[Any] = num_channels
UpperCAmelCase : int = num_queries
UpperCAmelCase : List[str] = d_model
UpperCAmelCase : Tuple = encoder_ffn_dim
UpperCAmelCase : Optional[Any] = encoder_layers
UpperCAmelCase : Any = encoder_attention_heads
UpperCAmelCase : Optional[Any] = decoder_ffn_dim
UpperCAmelCase : Optional[int] = decoder_layers
UpperCAmelCase : Any = decoder_attention_heads
UpperCAmelCase : str = dropout
UpperCAmelCase : Tuple = attention_dropout
UpperCAmelCase : Dict = activation_dropout
UpperCAmelCase : Tuple = activation_function
UpperCAmelCase : List[Any] = init_std
UpperCAmelCase : str = init_xavier_std
UpperCAmelCase : List[Any] = encoder_layerdrop
UpperCAmelCase : int = decoder_layerdrop
UpperCAmelCase : List[Any] = encoder_layers
UpperCAmelCase : Union[str, Any] = auxiliary_loss
UpperCAmelCase : str = position_embedding_type
UpperCAmelCase : Union[str, Any] = backbone
UpperCAmelCase : List[str] = use_pretrained_backbone
UpperCAmelCase : Optional[int] = dilation
# Hungarian matcher
UpperCAmelCase : Union[str, Any] = class_cost
UpperCAmelCase : Optional[Any] = bbox_cost
UpperCAmelCase : List[Any] = giou_cost
# Loss coefficients
UpperCAmelCase : int = mask_loss_coefficient
UpperCAmelCase : Optional[int] = dice_loss_coefficient
UpperCAmelCase : Dict = bbox_loss_coefficient
UpperCAmelCase : Any = giou_loss_coefficient
UpperCAmelCase : Any = eos_coefficient
super().__init__(is_encoder_decoder=A , **A )
@property
def _lowercase( self ) -> int:
return self.encoder_attention_heads
@property
def _lowercase( self ) -> int:
return self.d_model
@classmethod
def _lowercase( cls , A , **A ) -> Dict:
return cls(backbone_config=A , **A )
def _lowercase( self ) -> Dict[str, any]:
UpperCAmelCase : Any = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
UpperCAmelCase : Any = self.backbone_config.to_dict()
UpperCAmelCase : Optional[Any] = self.__class__.model_type
return output
class UpperCamelCase_ ( __magic_name__ ):
lowercase = version.parse('1.11' )
@property
def _lowercase( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""pixel_mask""", {0: """batch"""}),
] )
@property
def _lowercase( self ) -> float:
return 1e-5
@property
def _lowercase( self ) -> int:
return 12
| 338 | 0 |
'''simple docstring'''
import sys
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
a = """python tqdm regex requests packaging filelock numpy tokenizers""".split()
if sys.version_info < (3, 7):
pkgs_to_check_at_runtime.append("""dataclasses""")
if sys.version_info < (3, 8):
pkgs_to_check_at_runtime.append("""importlib_metadata""")
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''')
def __lowerCamelCase ( _lowercase , _lowercase=None ) -> Dict:
require_version(deps[pkg] , snake_case__ )
| 365 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
a : List[str] = {
"""configuration_altclip""": [
"""ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""AltCLIPConfig""",
"""AltCLIPTextConfig""",
"""AltCLIPVisionConfig""",
],
"""processing_altclip""": ["""AltCLIPProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : List[Any] = [
"""ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""AltCLIPPreTrainedModel""",
"""AltCLIPModel""",
"""AltCLIPTextModel""",
"""AltCLIPVisionModel""",
]
if TYPE_CHECKING:
from .configuration_altclip import (
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
AltCLIPConfig,
AltCLIPTextConfig,
AltCLIPVisionConfig,
)
from .processing_altclip import AltCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_altclip import (
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
AltCLIPModel,
AltCLIPPreTrainedModel,
AltCLIPTextModel,
AltCLIPVisionModel,
)
else:
import sys
a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 338 | 0 |
'''simple docstring'''
import pickle
import unittest
import torch
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils import require_cpu
@require_cpu
class UpperCamelCase_ ( unittest.TestCase ):
def _lowercase( self ) -> List[str]:
UpperCAmelCase : Union[str, Any] = torch.nn.Linear(10 , 10 )
UpperCAmelCase : Tuple = torch.optim.SGD(model.parameters() , 0.1 )
UpperCAmelCase : Tuple = Accelerator()
UpperCAmelCase : Optional[Any] = accelerator.prepare(A )
try:
pickle.loads(pickle.dumps(A ) )
except Exception as e:
self.fail(f'''Accelerated optimizer pickling failed with {e}''' )
AcceleratorState._reset_state()
| 366 |
'''simple docstring'''
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
a : List[Any] = logging.get_logger(__name__)
def __lowerCamelCase ( _lowercase ) -> List[Any]:
UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" )
if "model" in sd.keys():
UpperCAmelCase : Any = torch.load(_lowercase , map_location="""cpu""" )["""model"""]
# pop unnecessary weights
UpperCAmelCase : Union[str, Any] = [
"""decoder.version""",
"""decoder.output_projection.weight""",
]
for key in keys_to_delete:
if key in sd:
sd.pop(_lowercase )
UpperCAmelCase : Tuple = {
"""decoder.project_in_dim.weight""": """decoder.project_in.weight""",
"""decoder.project_out_dim.weight""": """decoder.project_out.weight""",
"""decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""",
"""decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""",
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
UpperCAmelCase : List[Any] = sd.pop(_lowercase )
UpperCAmelCase : Tuple = list(sd.keys() )
for key in keys:
if ".qkv_proj." in key:
UpperCAmelCase : List[str] = sd[key]
# We split QKV in separate Q,K,V
UpperCAmelCase : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" )
UpperCAmelCase : Tuple = key.replace(""".qkv_proj.""" , """.k_proj.""" )
UpperCAmelCase : int = key.replace(""".qkv_proj.""" , """.v_proj.""" )
UpperCAmelCase : Dict = value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = torch.split(_lowercase , depth // 3 , dim=0 )
UpperCAmelCase : Tuple = q
UpperCAmelCase : Tuple = k
UpperCAmelCase : Any = v
del sd[key]
return sd
@torch.no_grad()
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Optional[Any]:
UpperCAmelCase : Tuple = load_checkpoint(_lowercase )
if config is not None:
UpperCAmelCase : Dict = OPTConfig.from_pretrained(_lowercase )
else:
UpperCAmelCase : int = OPTConfig()
UpperCAmelCase : List[Any] = OPTModel(_lowercase ).half().eval()
model.load_state_dict(_lowercase )
# Check results
Path(_lowercase ).mkdir(exist_ok=_lowercase )
model.save_pretrained(_lowercase )
if __name__ == "__main__":
a : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--fairseq_path""",
type=str,
help=(
"""path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:"""
""" https://huggingface.co/models?other=opt_metasq"""
),
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""")
a : Union[str, Any] = parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
| 338 | 0 |
'''simple docstring'''
from datetime import datetime
import requests
def __lowerCamelCase ( _lowercase ) -> str:
UpperCAmelCase : int = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url='''
UpperCAmelCase : int = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src''']
return requests.get(_lowercase ).content
if __name__ == "__main__":
a : List[Any] = input("""Enter Video/IGTV url: """).strip()
a : List[Any] = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4'''
with open(file_name, """wb""") as fp:
fp.write(download_video(url))
print(F'''Done. Video saved to disk as {file_name}.''')
| 367 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a : Union[str, Any] = logging.get_logger(__name__)
a : str = {
"""facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""",
# See all LeViT models at https://huggingface.co/models?filter=levit
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'levit'
def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int:
super().__init__(**A )
UpperCAmelCase : Any = image_size
UpperCAmelCase : Optional[int] = num_channels
UpperCAmelCase : Tuple = kernel_size
UpperCAmelCase : Optional[int] = stride
UpperCAmelCase : Dict = padding
UpperCAmelCase : List[Any] = hidden_sizes
UpperCAmelCase : List[Any] = num_attention_heads
UpperCAmelCase : Optional[int] = depths
UpperCAmelCase : Any = key_dim
UpperCAmelCase : str = drop_path_rate
UpperCAmelCase : List[Any] = patch_size
UpperCAmelCase : str = attention_ratio
UpperCAmelCase : Optional[Any] = mlp_ratio
UpperCAmelCase : Dict = initializer_range
UpperCAmelCase : int = [
["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
class UpperCamelCase_ ( __magic_name__ ):
lowercase = version.parse('1.11' )
@property
def _lowercase( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def _lowercase( self ) -> float:
return 1e-4
| 338 | 0 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bart import BartTokenizer
a : Optional[int] = logging.get_logger(__name__)
a : Any = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
# See all BART models at https://huggingface.co/models?filter=bart
a : str = {
'vocab_file': {
'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json',
'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json',
'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json',
'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json',
'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json',
'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json',
},
'merges_file': {
'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt',
'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt',
'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt',
'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt',
'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt',
'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt',
},
'tokenizer_file': {
'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json',
'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json',
'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json',
'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json',
'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json',
'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json',
},
}
a : List[str] = {
'facebook/bart-base': 1_0_2_4,
'facebook/bart-large': 1_0_2_4,
'facebook/bart-large-mnli': 1_0_2_4,
'facebook/bart-large-cnn': 1_0_2_4,
'facebook/bart-large-xsum': 1_0_2_4,
'yjernite/bart_eli5': 1_0_2_4,
}
class UpperCamelCase_ ( UpperCamelCase__ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = ["""input_ids""", """attention_mask"""]
lowercase = BartTokenizer
def __init__( self , A=None , A=None , A=None , A="replace" , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A=False , A=True , **A , ) -> Dict:
super().__init__(
__a , __a , tokenizer_file=__a , errors=__a , bos_token=__a , eos_token=__a , sep_token=__a , cls_token=__a , unk_token=__a , pad_token=__a , mask_token=__a , add_prefix_space=__a , trim_offsets=__a , **__a , )
UpperCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("""add_prefix_space""" , __a ) != add_prefix_space:
UpperCAmelCase : List[Any] = getattr(__a , pre_tok_state.pop("""type""" ) )
UpperCAmelCase : Optional[Any] = add_prefix_space
UpperCAmelCase : Optional[Any] = pre_tok_class(**__a )
UpperCAmelCase : Any = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
UpperCAmelCase : str = """post_processor"""
UpperCAmelCase : List[str] = getattr(self.backend_tokenizer , __a , __a )
if tokenizer_component_instance:
UpperCAmelCase : Union[str, Any] = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
UpperCAmelCase : Tuple = tuple(state["""sep"""] )
if "cls" in state:
UpperCAmelCase : str = tuple(state["""cls"""] )
UpperCAmelCase : Union[str, Any] = False
if state.get("""add_prefix_space""" , __a ) != add_prefix_space:
UpperCAmelCase : List[str] = add_prefix_space
UpperCAmelCase : int = True
if state.get("""trim_offsets""" , __a ) != trim_offsets:
UpperCAmelCase : Union[str, Any] = trim_offsets
UpperCAmelCase : int = True
if changes_to_apply:
UpperCAmelCase : Dict = getattr(__a , state.pop("""type""" ) )
UpperCAmelCase : Any = component_class(**__a )
setattr(self.backend_tokenizer , __a , __a )
@property
def _lowercase( self ) -> str:
if self._mask_token is None:
if self.verbose:
logger.error("""Using mask_token, but it is not set yet.""" )
return None
return str(self._mask_token )
@mask_token.setter
def _lowercase( self , A ) -> List[str]:
UpperCAmelCase : Union[str, Any] = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else value
UpperCAmelCase : Optional[Any] = value
def _lowercase( self , *A , **A ) -> List[Any]:
UpperCAmelCase : Optional[int] = kwargs.get("""is_split_into_words""" , __a )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""" )
return super()._batch_encode_plus(*__a , **__a )
def _lowercase( self , *A , **A ) -> List[Any]:
UpperCAmelCase : Optional[int] = kwargs.get("""is_split_into_words""" , __a )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""" )
return super()._encode_plus(*__a , **__a )
def _lowercase( self , A , A = None ) -> Union[str, Any]:
UpperCAmelCase : Optional[int] = self._tokenizer.model.save(__a , name=__a )
return tuple(__a )
def _lowercase( self , A , A=None ) -> Optional[Any]:
UpperCAmelCase : Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _lowercase( self , A , A = None ) -> Tuple:
UpperCAmelCase : Any = [self.sep_token_id]
UpperCAmelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 368 |
'''simple docstring'''
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("""0.12.2"""):
raise Exception("""requires fairseq >= 0.12.2""")
if version.parse(fairseq.__version__) > version.parse("""2"""):
raise Exception("""requires fairseq < v2""")
logging.set_verbosity_info()
a : Dict = logging.get_logger(__name__)
a : List[str] = """Hello, World!"""
a : List[Any] = """en_XX"""
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict:
UpperCAmelCase : Dict = Path("""data_bin""" )
UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , )
xmod.eval() # disable dropout
print(_lowercase )
UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder
UpperCAmelCase : Tuple = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0]
print("""Our X-MOD config:""" , _lowercase )
UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase )
model.eval()
# Now let's copy all the weights.
# Embeddings
UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight
UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight
UpperCAmelCase : int = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight
UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
UpperCAmelCase : List[str] = model.roberta.encoder.layer[i]
UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i]
# self attention
UpperCAmelCase : Optional[Any] = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError("""Dimensions of self-attention weights do not match.""" )
UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight
UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias
UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight
UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias
UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight
UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias
# self-attention output
UpperCAmelCase : Optional[Any] = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError("""Dimensions of self-attention output weights do not match.""" )
UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight
UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias
UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight
UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias
# intermediate
UpperCAmelCase : Tuple = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError("""Dimensions of intermediate weights do not match.""" )
UpperCAmelCase : List[str] = xmod_layer.fca.weight
UpperCAmelCase : str = xmod_layer.fca.bias
# output
UpperCAmelCase : Any = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError("""Dimensions of feed-forward weights do not match.""" )
UpperCAmelCase : Dict = xmod_layer.fca.weight
UpperCAmelCase : Dict = xmod_layer.fca.bias
UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight
UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight
UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError("""Lists of language adapters do not match.""" )
for lang_code, adapter in xmod_layer.adapter_modules.items():
UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code]
UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code]
UpperCAmelCase : Any = from_adapter.fca.weight
UpperCAmelCase : int = from_adapter.fca.bias
UpperCAmelCase : Dict = from_adapter.fca.weight
UpperCAmelCase : Dict = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight
UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias
if classification_head:
UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight
UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias
UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight
UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias
else:
# LM Head
UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight
UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias
UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight
UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias
UpperCAmelCase : str = xmod.model.encoder.lm_head.weight
UpperCAmelCase : str = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(_lowercase )
UpperCAmelCase : Optional[int] = model(_lowercase )[0]
if classification_head:
UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) )
else:
UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item()
print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7
UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 )
print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" )
if not success:
raise Exception("""Something went wRoNg""" )
Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(_lowercase )
if __name__ == "__main__":
a : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--classification_head""", action="""store_true""", help="""Whether to convert a final classification head."""
)
a : List[str] = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 338 | 0 |
from binascii import hexlify
from hashlib import shaaaa
from os import urandom
# RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for
# Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526
a : Dict = {
# 1536-bit
5: {
"""prime""": int(
"""FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"""
+ """29024E088A67CC74020BBEA63B139B22514A08798E3404DD"""
+ """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"""
+ """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"""
+ """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"""
+ """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"""
+ """83655D23DCA3AD961C62F356208552BB9ED529077096966D"""
+ """670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF""",
base=1_6,
),
"""generator""": 2,
},
# 2048-bit
1_4: {
"""prime""": int(
"""FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"""
+ """29024E088A67CC74020BBEA63B139B22514A08798E3404DD"""
+ """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"""
+ """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"""
+ """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"""
+ """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"""
+ """83655D23DCA3AD961C62F356208552BB9ED529077096966D"""
+ """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"""
+ """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"""
+ """DE2BCBF6955817183995497CEA956AE515D2261898FA0510"""
+ """15728E5A8AACAA68FFFFFFFFFFFFFFFF""",
base=1_6,
),
"""generator""": 2,
},
# 3072-bit
1_5: {
"""prime""": int(
"""FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"""
+ """29024E088A67CC74020BBEA63B139B22514A08798E3404DD"""
+ """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"""
+ """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"""
+ """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"""
+ """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"""
+ """83655D23DCA3AD961C62F356208552BB9ED529077096966D"""
+ """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"""
+ """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"""
+ """DE2BCBF6955817183995497CEA956AE515D2261898FA0510"""
+ """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"""
+ """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"""
+ """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"""
+ """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"""
+ """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"""
+ """43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF""",
base=1_6,
),
"""generator""": 2,
},
# 4096-bit
1_6: {
"""prime""": int(
"""FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"""
+ """29024E088A67CC74020BBEA63B139B22514A08798E3404DD"""
+ """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"""
+ """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"""
+ """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"""
+ """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"""
+ """83655D23DCA3AD961C62F356208552BB9ED529077096966D"""
+ """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"""
+ """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"""
+ """DE2BCBF6955817183995497CEA956AE515D2261898FA0510"""
+ """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"""
+ """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"""
+ """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"""
+ """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"""
+ """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"""
+ """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"""
+ """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"""
+ """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"""
+ """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"""
+ """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"""
+ """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199"""
+ """FFFFFFFFFFFFFFFF""",
base=1_6,
),
"""generator""": 2,
},
# 6144-bit
1_7: {
"""prime""": int(
"""FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"""
+ """8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"""
+ """302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"""
+ """A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"""
+ """49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8"""
+ """FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D"""
+ """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C"""
+ """180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718"""
+ """3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D"""
+ """04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D"""
+ """B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226"""
+ """1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C"""
+ """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC"""
+ """E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26"""
+ """99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB"""
+ """04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2"""
+ """233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127"""
+ """D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"""
+ """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406"""
+ """AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918"""
+ """DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151"""
+ """2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03"""
+ """F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F"""
+ """BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"""
+ """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B"""
+ """B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632"""
+ """387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E"""
+ """6DCC4024FFFFFFFFFFFFFFFF""",
base=1_6,
),
"""generator""": 2,
},
# 8192-bit
1_8: {
"""prime""": int(
"""FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"""
+ """29024E088A67CC74020BBEA63B139B22514A08798E3404DD"""
+ """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"""
+ """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"""
+ """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"""
+ """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"""
+ """83655D23DCA3AD961C62F356208552BB9ED529077096966D"""
+ """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"""
+ """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"""
+ """DE2BCBF6955817183995497CEA956AE515D2261898FA0510"""
+ """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"""
+ """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"""
+ """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"""
+ """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"""
+ """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"""
+ """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"""
+ """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"""
+ """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"""
+ """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"""
+ """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"""
+ """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"""
+ """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD"""
+ """F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831"""
+ """179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B"""
+ """DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF"""
+ """5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6"""
+ """D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3"""
+ """23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"""
+ """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328"""
+ """06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C"""
+ """DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE"""
+ """12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4"""
+ """38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300"""
+ """741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568"""
+ """3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9"""
+ """22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B"""
+ """4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A"""
+ """062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36"""
+ """4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1"""
+ """B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92"""
+ """4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47"""
+ """9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71"""
+ """60C980DD98EDD3DFFFFFFFFFFFFFFFFF""",
base=1_6,
),
"""generator""": 2,
},
}
class UpperCamelCase_ :
def __init__( self , A = 14 ) -> str:
if group not in primes:
raise ValueError("""Unsupported Group""" )
UpperCAmelCase : str = primes[group]['prime']
UpperCAmelCase : Optional[int] = primes[group]['generator']
UpperCAmelCase : Tuple = int(hexlify(urandom(32 ) ) , base=16 )
def _lowercase( self ) -> str:
return hex(self.__private_key )[2:]
def _lowercase( self ) -> List[str]:
UpperCAmelCase : int = pow(self.generator , self.__private_key , self.prime )
return hex(_UpperCAmelCase )[2:]
def _lowercase( self , A ) -> List[str]:
# check if the other public key is valid based on NIST SP800-56
return (
2 <= key <= self.prime - 2
and pow(_UpperCAmelCase , (self.prime - 1) // 2 , self.prime ) == 1
)
def _lowercase( self , A ) -> Optional[Any]:
UpperCAmelCase : List[Any] = int(_UpperCAmelCase , base=16 )
if not self.is_valid_public_key(_UpperCAmelCase ):
raise ValueError("""Invalid public key""" )
UpperCAmelCase : Any = pow(_UpperCAmelCase , self.__private_key , self.prime )
return shaaaa(str(_UpperCAmelCase ).encode() ).hexdigest()
@staticmethod
def _lowercase( A , A ) -> Optional[Any]:
# check if the other public key is valid based on NIST SP800-56
return (
2 <= remote_public_key_str <= prime - 2
and pow(_UpperCAmelCase , (prime - 1) // 2 , _UpperCAmelCase ) == 1
)
@staticmethod
def _lowercase( A , A , A = 14 ) -> Optional[Any]:
UpperCAmelCase : str = int(_UpperCAmelCase , base=16 )
UpperCAmelCase : int = int(_UpperCAmelCase , base=16 )
UpperCAmelCase : Any = primes[group]['prime']
if not DiffieHellman.is_valid_public_key_static(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError("""Invalid public key""" )
UpperCAmelCase : List[str] = pow(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return shaaaa(str(_UpperCAmelCase ).encode() ).hexdigest()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 369 |
'''simple docstring'''
# Function to print upper half of diamond (pyramid)
def __lowerCamelCase ( _lowercase ) -> List[Any]:
for i in range(0 , _lowercase ):
for _ in range(0 , n - i - 1 ): # printing spaces
print(""" """ , end="""""" )
for _ in range(0 , i + 1 ): # printing stars
print("""* """ , end="""""" )
print()
def __lowerCamelCase ( _lowercase ) -> Dict:
for i in range(_lowercase , 0 , -1 ):
for _ in range(_lowercase , 0 , -1 ): # printing stars
print("""* """ , end="""""" )
print()
for _ in range(n - i + 1 , 0 , -1 ): # printing spaces
print(""" """ , end="""""" )
def __lowerCamelCase ( _lowercase ) -> List[Any]:
if n <= 0:
print(""" ... .... nothing printing :(""" )
return
floyd(_lowercase ) # upper half
reverse_floyd(_lowercase ) # lower half
if __name__ == "__main__":
print(R"""| /\ | |- | |- |--| |\ /| |-""")
print(R"""|/ \| |- |_ |_ |__| | \/ | |_""")
a : List[Any] = 1
while K:
a : int = int(input("""enter the number and , and see the magic : """))
print()
pretty_print(user_number)
a : Tuple = int(input("""press 0 to exit... and 1 to continue..."""))
print("""Good Bye...""")
| 338 | 0 |
def __lowerCamelCase ( _lowercase , _lowercase ) -> int:
return int((input_a, input_a).count(0 ) != 0 )
def __lowerCamelCase ( ) -> None:
assert nand_gate(0 , 0 ) == 1
assert nand_gate(0 , 1 ) == 1
assert nand_gate(1 , 0 ) == 1
assert nand_gate(1 , 1 ) == 0
if __name__ == "__main__":
print(nand_gate(0, 0))
print(nand_gate(0, 1))
print(nand_gate(1, 0))
print(nand_gate(1, 1))
| 370 |
'''simple docstring'''
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
a : List[str] = logging.getLogger(__name__)
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , A , A , A , A=None ) -> Union[str, Any]:
super().__init__(
A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , )
UpperCAmelCase : Optional[Any] = None
def _lowercase( self , A ) -> List[Any]:
logger.info("""initializing retrieval""" )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info("""dist initialized""" )
# needs to be set manually
UpperCAmelCase : Tuple = self._infer_socket_ifname()
# avoid clash with the NCCL port
UpperCAmelCase : str = str(distributed_port + 1 )
UpperCAmelCase : Any = dist.new_group(ranks=A , backend="""gloo""" )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info("""dist not initialized / main""" )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def _lowercase( self ) -> Dict:
return dist.get_rank(group=self.process_group ) == 0
def _lowercase( self , A , A , A=torch.floataa ) -> str:
UpperCAmelCase : List[Any] = torch.empty(A , dtype=A )
dist.scatter(A , src=0 , scatter_list=A , group=self.process_group )
return target_tensor
def _lowercase( self ) -> Any:
UpperCAmelCase : List[Any] = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
UpperCAmelCase : Optional[int] = next((addr for addr in addrs if addr.startswith("""e""" )) , A )
return ifname
def _lowercase( self , A , A ) -> Tuple[np.ndarray, List[dict]]:
# single GPU training
if not dist.is_initialized():
UpperCAmelCase , UpperCAmelCase : str = self._main_retrieve(A , A )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A )
# distributed training
UpperCAmelCase : int = dist.get_world_size(group=self.process_group )
# gather logic
UpperCAmelCase : int = None
if self._is_main():
UpperCAmelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )]
dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group )
# scatter logic
UpperCAmelCase : List[Any] = question_hidden_states.shape[0]
UpperCAmelCase : Tuple = []
UpperCAmelCase : Any = []
if self._is_main():
assert len(A ) == world_size
UpperCAmelCase , UpperCAmelCase : Optional[int] = self._main_retrieve(torch.cat(A ).numpy() , A )
UpperCAmelCase , UpperCAmelCase : Optional[Any] = torch.tensor(A ), torch.tensor(A )
UpperCAmelCase : List[str] = self._chunk_tensor(A , A )
UpperCAmelCase : Union[str, Any] = self._chunk_tensor(A , A )
UpperCAmelCase : Tuple = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa )
UpperCAmelCase : Optional[Any] = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
| 338 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
a : Optional[int] = logging.get_logger(__name__)
a : Optional[int] = {
'''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''',
# See all Nat models at https://huggingface.co/models?filter=nat
}
class UpperCamelCase_ ( lowerCamelCase_ , lowerCamelCase_ ):
lowercase = '''nat'''
lowercase = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self , A=4 , A=3 , A=64 , A=[3, 4, 6, 5] , A=[2, 4, 8, 16] , A=7 , A=3.0 , A=True , A=0.0 , A=0.0 , A=0.1 , A="gelu" , A=0.0_2 , A=1e-5 , A=0.0 , A=None , A=None , **A , ) -> Any:
super().__init__(**__snake_case )
UpperCAmelCase : Optional[int] = patch_size
UpperCAmelCase : Tuple = num_channels
UpperCAmelCase : str = embed_dim
UpperCAmelCase : Optional[Any] = depths
UpperCAmelCase : Tuple = len(__snake_case )
UpperCAmelCase : Union[str, Any] = num_heads
UpperCAmelCase : Optional[int] = kernel_size
UpperCAmelCase : Dict = mlp_ratio
UpperCAmelCase : str = qkv_bias
UpperCAmelCase : Union[str, Any] = hidden_dropout_prob
UpperCAmelCase : List[Any] = attention_probs_dropout_prob
UpperCAmelCase : Optional[Any] = drop_path_rate
UpperCAmelCase : List[str] = hidden_act
UpperCAmelCase : List[Any] = layer_norm_eps
UpperCAmelCase : int = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
UpperCAmelCase : str = int(embed_dim * 2 ** (len(__snake_case ) - 1) )
UpperCAmelCase : Tuple = layer_scale_init_value
UpperCAmelCase : str = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(__snake_case ) + 1 )]
UpperCAmelCase , UpperCAmelCase : Any = get_aligned_output_features_output_indices(
out_features=__snake_case , out_indices=__snake_case , stage_names=self.stage_names )
| 371 |
'''simple docstring'''
from typing import List, Optional
from tokenizers import ByteLevelBPETokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
a : List[Any] = logging.get_logger(__name__)
a : List[str] = {
"""vocab_file""": """vocab.json""",
"""merges_file""": """merges.txt""",
"""tokenizer_config_file""": """tokenizer_config.json""",
}
a : List[Any] = {
"""vocab_file""": {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"""
},
"""merges_file""": {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"""
},
"""tokenizer_config_file""": {
"""facebook/blenderbot_small-90M""": (
"""https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"""
)
},
}
a : List[Any] = {
"""facebook/blenderbot_small-90M""": 5_1_2,
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = BlenderbotSmallTokenizer
def __init__( self , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , A=True , **A , ) -> Union[str, Any]:
super().__init__(
ByteLevelBPETokenizer(
vocab=A , merges=A , add_prefix_space=A , trim_offsets=A , ) , bos_token=A , eos_token=A , unk_token=A , **A , )
UpperCAmelCase : Optional[Any] = add_prefix_space
def _lowercase( self , A , A=None ) -> Optional[Any]:
UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _lowercase( self , A , A = None ) -> List[int]:
UpperCAmelCase : Any = [self.sep_token_id]
UpperCAmelCase : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 338 | 0 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_xlnet import XLNetTokenizer
else:
a : Dict = None
a : Optional[int] = logging.get_logger(__name__)
a : int = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""}
a : List[Any] = {
"""vocab_file""": {
"""xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""",
"""xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""",
},
"""tokenizer_file""": {
"""xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json""",
"""xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json""",
},
}
a : Dict = {
"""xlnet-base-cased""": None,
"""xlnet-large-cased""": None,
}
a : Dict = """▁"""
# Segments (not really needed)
a : Dict = 0
a : Any = 1
a : Optional[Any] = 2
a : Tuple = 3
a : str = 4
class UpperCamelCase_ ( __magic_name__ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = 'left'
lowercase = XLNetTokenizer
def __init__( self , A=None , A=None , A=False , A=True , A=False , A="<s>" , A="</s>" , A="<unk>" , A="<sep>" , A="<pad>" , A="<cls>" , A="<mask>" , A=["<eop>", "<eod>"] , **A , ) -> Tuple:
# Mask token behave like a normal word, i.e. include the space before it
UpperCAmelCase : Any = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token
super().__init__(
vocab_file=A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , **A , )
UpperCAmelCase : Optional[Any] = 3
UpperCAmelCase : Union[str, Any] = do_lower_case
UpperCAmelCase : str = remove_space
UpperCAmelCase : List[str] = keep_accents
UpperCAmelCase : str = vocab_file
UpperCAmelCase : List[str] = False if not self.vocab_file else True
def _lowercase( self , A , A = None ) -> List[int]:
UpperCAmelCase : Any = [self.sep_token_id]
UpperCAmelCase : int = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _lowercase( self , A , A = None ) -> List[int]:
UpperCAmelCase : str = [self.sep_token_id]
UpperCAmelCase : Tuple = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _lowercase( self , A , A = None ) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCAmelCase : Union[str, Any] = os.path.join(
A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ):
copyfile(self.vocab_file , A )
return (out_vocab_file,)
| 350 |
'''simple docstring'''
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , A , A , A = None , A = None , A = False , **A , ) -> Tuple:
super().__init__(features=A , cache_dir=A , keep_in_memory=A , **A )
UpperCAmelCase : Any = Sql(
cache_dir=A , features=A , sql=A , con=A , **A , )
def _lowercase( self ) -> Dict:
UpperCAmelCase : Any = None
UpperCAmelCase : Any = None
UpperCAmelCase : int = None
UpperCAmelCase : int = None
self.builder.download_and_prepare(
download_config=A , download_mode=A , verification_mode=A , base_path=A , )
# Build dataset for splits
UpperCAmelCase : str = self.builder.as_dataset(
split="""train""" , verification_mode=A , in_memory=self.keep_in_memory )
return dataset
class UpperCamelCase_ :
def __init__( self , A , A , A , A = None , A = None , **A , ) -> str:
if num_proc is not None and num_proc <= 0:
raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' )
UpperCAmelCase : Dict = dataset
UpperCAmelCase : List[Any] = name
UpperCAmelCase : Any = con
UpperCAmelCase : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
UpperCAmelCase : Optional[Any] = num_proc
UpperCAmelCase : str = to_sql_kwargs
def _lowercase( self ) -> int:
UpperCAmelCase : Any = self.to_sql_kwargs.pop("""sql""" , A )
UpperCAmelCase : str = self.to_sql_kwargs.pop("""con""" , A )
UpperCAmelCase : Union[str, Any] = self.to_sql_kwargs.pop("""index""" , A )
UpperCAmelCase : str = self._write(index=A , **self.to_sql_kwargs )
return written
def _lowercase( self , A ) -> Any:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = args
UpperCAmelCase : Union[str, Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs
UpperCAmelCase : int = query_table(
table=self.dataset.data , key=slice(A , offset + self.batch_size ) , indices=self.dataset._indices , )
UpperCAmelCase : Any = batch.to_pandas()
UpperCAmelCase : List[Any] = df.to_sql(self.name , self.con , index=A , **A )
return num_rows or len(A )
def _lowercase( self , A , **A ) -> int:
UpperCAmelCase : Optional[int] = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
UpperCAmelCase , UpperCAmelCase : List[str] = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , A , A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += num_rows
return written
| 338 | 0 |
'''simple docstring'''
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCamelCase_ :
def __init__( self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.0_2 , A=["stage2", "stage3", "stage4"] , A=3 , A=None , ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = parent
UpperCAmelCase : Union[str, Any] = batch_size
UpperCAmelCase : Union[str, Any] = image_size
UpperCAmelCase : Tuple = num_channels
UpperCAmelCase : int = num_stages
UpperCAmelCase : Dict = hidden_sizes
UpperCAmelCase : str = depths
UpperCAmelCase : Union[str, Any] = is_training
UpperCAmelCase : Dict = use_labels
UpperCAmelCase : Dict = intermediate_size
UpperCAmelCase : Any = hidden_act
UpperCAmelCase : Any = type_sequence_label_size
UpperCAmelCase : List[str] = initializer_range
UpperCAmelCase : List[Any] = out_features
UpperCAmelCase : Optional[Any] = num_labels
UpperCAmelCase : int = scope
UpperCAmelCase : int = num_stages
def _lowercase( self ) -> Dict:
UpperCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : Dict = None
if self.use_labels:
UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase : str = self.get_config()
return config, pixel_values, labels
def _lowercase( self ) -> Tuple:
return ConvNextConfig(
num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , )
def _lowercase( self ) -> List[str]:
return UperNetConfig(
backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=A , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=A , loss_ignore_index=255 , num_labels=self.num_labels , )
def _lowercase( self , A , A , A ) -> Any:
UpperCAmelCase : Any = UperNetForSemanticSegmentation(config=A )
model.to(A )
model.eval()
UpperCAmelCase : Optional[int] = model(A )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs()
(
UpperCAmelCase
) : Optional[int] = config_and_inputs
UpperCAmelCase : Any = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowercase = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
lowercase = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {}
lowercase = False
lowercase = False
lowercase = False
lowercase = False
lowercase = False
lowercase = False
def _lowercase( self ) -> Any:
UpperCAmelCase : List[str] = UperNetModelTester(self )
UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 )
def _lowercase( self ) -> Tuple:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _lowercase( self ) -> List[str]:
return
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : Union[str, Any] = model_class(A )
UpperCAmelCase : Any = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase : Union[str, Any] = [*signature.parameters.keys()]
UpperCAmelCase : List[str] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , A )
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*A )
@unittest.skip(reason="""UperNet does not use inputs_embeds""" )
def _lowercase( self ) -> Dict:
pass
@unittest.skip(reason="""UperNet does not support input and output embeddings""" )
def _lowercase( self ) -> Any:
pass
@unittest.skip(reason="""UperNet does not have a base model""" )
def _lowercase( self ) -> Dict:
pass
@unittest.skip(reason="""UperNet does not have a base model""" )
def _lowercase( self ) -> List[Any]:
pass
@require_torch_multi_gpu
@unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def _lowercase( self ) -> List[Any]:
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def _lowercase( self ) -> Any:
pass
def _lowercase( self ) -> Dict:
def check_hidden_states_output(A , A , A ):
UpperCAmelCase : str = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
UpperCAmelCase : str = model(**self._prepare_for_class(A , A ) )
UpperCAmelCase : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCAmelCase : int = self.model_tester.num_stages
self.assertEqual(len(A ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : Dict = True
check_hidden_states_output(A , A , A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase : List[Any] = True
check_hidden_states_output(A , A , A )
def _lowercase( self ) -> Dict:
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Optional[int] = _config_zero_init(A )
UpperCAmelCase : Dict = _config_zero_init(configs_no_init.backbone_config )
for model_class in self.all_model_classes:
UpperCAmelCase : int = model_class(config=A )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@unittest.skip(reason="""UperNet does not have tied weights""" )
def _lowercase( self ) -> Any:
pass
@slow
def _lowercase( self ) -> Tuple:
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : List[str] = UperNetForSemanticSegmentation.from_pretrained(A )
self.assertIsNotNone(A )
def __lowerCamelCase ( ) -> Any:
UpperCAmelCase : Tuple = hf_hub_download(
repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" )
UpperCAmelCase : Any = Image.open(_lowercase ).convert("""RGB""" )
return image
@require_torch
@require_vision
@slow
class UpperCamelCase_ ( unittest.TestCase ):
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" )
UpperCAmelCase : Dict = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(A )
UpperCAmelCase : Optional[Any] = prepare_img()
UpperCAmelCase : int = processor(images=A , return_tensors="""pt""" ).to(A )
with torch.no_grad():
UpperCAmelCase : Dict = model(**A )
UpperCAmelCase : str = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , A )
UpperCAmelCase : Optional[Any] = torch.tensor(
[[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , A , atol=1e-4 ) )
def _lowercase( self ) -> str:
UpperCAmelCase : Any = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" )
UpperCAmelCase : List[str] = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(A )
UpperCAmelCase : Any = prepare_img()
UpperCAmelCase : int = processor(images=A , return_tensors="""pt""" ).to(A )
with torch.no_grad():
UpperCAmelCase : List[Any] = model(**A )
UpperCAmelCase : int = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , A )
UpperCAmelCase : Dict = torch.tensor(
[[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , A , atol=1e-4 ) )
| 351 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel
@require_tf
class UpperCamelCase_ :
lowercase = MBartConfig
lowercase = {}
lowercase = 'gelu'
def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]:
UpperCAmelCase : Optional[int] = parent
UpperCAmelCase : Dict = batch_size
UpperCAmelCase : Tuple = seq_length
UpperCAmelCase : str = is_training
UpperCAmelCase : Optional[int] = use_labels
UpperCAmelCase : Optional[Any] = vocab_size
UpperCAmelCase : Union[str, Any] = hidden_size
UpperCAmelCase : Union[str, Any] = num_hidden_layers
UpperCAmelCase : List[Any] = num_attention_heads
UpperCAmelCase : Optional[int] = intermediate_size
UpperCAmelCase : Dict = hidden_dropout_prob
UpperCAmelCase : int = attention_probs_dropout_prob
UpperCAmelCase : Optional[int] = max_position_embeddings
UpperCAmelCase : Optional[Any] = eos_token_id
UpperCAmelCase : List[str] = pad_token_id
UpperCAmelCase : List[Any] = bos_token_id
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : str = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A )
return config, inputs_dict
def _lowercase( self , A , A ) -> List[str]:
UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder()
UpperCAmelCase : int = inputs_dict["""input_ids"""]
UpperCAmelCase : str = input_ids[:1, :]
UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :]
UpperCAmelCase : List[str] = inputs_dict["""head_mask"""]
UpperCAmelCase : List[Any] = 1
# first forward pass
UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A )
UpperCAmelCase , UpperCAmelCase : Optional[Any] = outputs.to_tuple()
UpperCAmelCase : int = past_key_values[1]
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]:
if attention_mask is None:
UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCAmelCase : int = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
lowercase = (
{
'conversational': TFMBartForConditionalGeneration,
'feature-extraction': TFMBartModel,
'summarization': TFMBartForConditionalGeneration,
'text2text-generation': TFMBartForConditionalGeneration,
'translation': TFMBartForConditionalGeneration,
}
if is_tf_available()
else {}
)
lowercase = True
lowercase = False
lowercase = False
def _lowercase( self , A , A , A , A , A ) -> int:
if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
# Exception encountered when calling layer '...'
return True
return False
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : int = TFMBartModelTester(self )
UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A )
def _lowercase( self ) -> Optional[int]:
self.config_tester.run_common_tests()
def _lowercase( self ) -> Dict:
UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*A )
@require_sentencepiece
@require_tokenizers
@require_tf
class UpperCamelCase_ ( unittest.TestCase ):
lowercase = [
' UN Chief Says There Is No Military Solution in Syria',
]
lowercase = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
]
lowercase = 'facebook/mbart-large-en-ro'
@cached_property
def _lowercase( self ) -> Any:
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def _lowercase( self , **A ) -> Any:
UpperCAmelCase : Optional[int] = self.translate_src_text(**A )
self.assertListEqual(self.expected_text , A )
def _lowercase( self , **A ) -> Optional[Any]:
UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" )
UpperCAmelCase : int = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 )
UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A )
return generated_words
@slow
def _lowercase( self ) -> List[Any]:
self._assert_generated_batch_equal_expected()
| 338 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import _LazyModule
a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]}
if TYPE_CHECKING:
from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer
else:
import sys
a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 352 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase , _lowercase ) -> bool:
UpperCAmelCase : Tuple = len(_lowercase ) + 1
UpperCAmelCase : List[Any] = len(_lowercase ) + 1
# dp is a 2d matrix where dp[i][j] denotes whether prefix string of
# length i of input_string matches with prefix string of length j of
# given pattern.
# "dp" stands for dynamic programming.
UpperCAmelCase : str = [[0 for i in range(_lowercase )] for j in range(_lowercase )]
# since string of zero length match pattern of zero length
UpperCAmelCase : int = 1
# since pattern of zero length will never match with string of non-zero length
for i in range(1 , _lowercase ):
UpperCAmelCase : str = 0
# since string of zero length will match with pattern where there
# is at least one * alternatively
for j in range(1 , _lowercase ):
UpperCAmelCase : Optional[Any] = dp[0][j - 2] if pattern[j - 1] == """*""" else 0
# now using bottom-up approach to find for all remaining lengths
for i in range(1 , _lowercase ):
for j in range(1 , _lowercase ):
if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".":
UpperCAmelCase : Union[str, Any] = dp[i - 1][j - 1]
elif pattern[j - 1] == "*":
if dp[i][j - 2] == 1:
UpperCAmelCase : List[Any] = 1
elif pattern[j - 2] in (input_string[i - 1], "."):
UpperCAmelCase : Optional[int] = dp[i - 1][j]
else:
UpperCAmelCase : Any = 0
else:
UpperCAmelCase : str = 0
return bool(dp[-1][-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
# inputing the strings
# input_string = input("input a string :")
# pattern = input("input a pattern :")
a : List[str] = """aab"""
a : Optional[int] = """c*a*b"""
# using function to check whether given string matches the given pattern
if match_pattern(input_string, pattern):
print(F'''{input_string} matches the given pattern {pattern}''')
else:
print(F'''{input_string} does not match with the given pattern {pattern}''')
| 338 | 0 |
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class UpperCamelCase_ ( __magic_name__ ):
lowercase = ['''image_processor''', '''tokenizer''']
lowercase = '''CLIPImageProcessor'''
lowercase = ('''CLIPTokenizer''', '''CLIPTokenizerFast''')
def __init__( self , A=None , A=None , **A ) -> Union[str, Any]:
UpperCAmelCase : int = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , A , )
UpperCAmelCase : List[Any] = kwargs.pop("""feature_extractor""" )
UpperCAmelCase : int = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(A , A )
def __call__( self , A=None , A=None , A=None , **A ) -> Tuple:
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
UpperCAmelCase : int = self.tokenizer(A , return_tensors=A , **A )
if images is not None:
UpperCAmelCase : List[str] = self.image_processor(A , return_tensors=A , **A )
if text is not None and images is not None:
UpperCAmelCase : Any = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**A ) , tensor_type=A )
def _lowercase( self , *A , **A ) -> str:
return self.tokenizer.batch_decode(*A , **A )
def _lowercase( self , *A , **A ) -> List[str]:
return self.tokenizer.decode(*A , **A )
@property
def _lowercase( self ) -> Dict:
UpperCAmelCase : Dict = self.tokenizer.model_input_names
UpperCAmelCase : Tuple = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def _lowercase( self ) -> Optional[int]:
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , A , )
return self.image_processor_class
@property
def _lowercase( self ) -> Optional[int]:
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , A , )
return self.image_processor
| 353 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase ) -> int:
UpperCAmelCase : List[str] = 0
while num > 0:
digit_sum += num % 1_0
num //= 1_0
return digit_sum
def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int:
UpperCAmelCase : int = 1
UpperCAmelCase : str = 2
for i in range(2 , max_n + 1 ):
UpperCAmelCase : Tuple = pre_numerator
UpperCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1
UpperCAmelCase : Union[str, Any] = cur_numerator
UpperCAmelCase : Optional[int] = e_cont * pre_numerator + temp
return sum_digits(_lowercase )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 338 | 0 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase ) -> int:
UpperCAmelCase : List[str] = 0
while num > 0:
digit_sum += num % 1_0
num //= 1_0
return digit_sum
def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int:
UpperCAmelCase : int = 1
UpperCAmelCase : str = 2
for i in range(2 , max_n + 1 ):
UpperCAmelCase : Tuple = pre_numerator
UpperCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1
UpperCAmelCase : Union[str, Any] = cur_numerator
UpperCAmelCase : Optional[int] = e_cont * pre_numerator + temp
return sum_digits(_lowercase )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 354 |
'''simple docstring'''
import random
import unittest
from torch.utils.data import BatchSampler, DataLoader, IterableDataset
from accelerate import Accelerator
from accelerate.data_loader import (
BatchSamplerShard,
DataLoaderDispatcher,
DataLoaderShard,
IterableDatasetShard,
SkipBatchSampler,
SkipDataLoader,
skip_first_batches,
)
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , A=0.0_1 , A=1000 ) -> List[str]:
UpperCAmelCase : List[Any] = p_stop
UpperCAmelCase : Optional[int] = max_length
def __iter__( self ) -> Union[str, Any]:
UpperCAmelCase : Dict = 0
UpperCAmelCase : Union[str, Any] = False
while not stop and count < self.max_length:
yield count
count += 1
UpperCAmelCase : Any = random.random() < self.p_stop
class UpperCamelCase_ ( unittest.TestCase ):
def _lowercase( self , A , A , A=False , A=True ) -> Union[str, Any]:
UpperCAmelCase : List[str] = [
BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A )
for i in range(2 )
]
UpperCAmelCase : List[str] = [list(A ) for batch_sampler_shard in batch_sampler_shards]
if not split_batches:
self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] )
self.assertListEqual(A , A )
def _lowercase( self ) -> Union[str, Any]:
# Check the shards when the dataset is a round multiple of total batch size.
UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Any = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A )
# Expected shouldn't change
self.check_batch_sampler_shards(A , A )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]],
]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Tuple = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]],
]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : List[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]],
]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : int = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A )
# Check the shards when the dataset is very small.
UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : List[Any] = [[], []]
self.check_batch_sampler_shards(A , A )
def _lowercase( self ) -> Tuple:
# Check the shards when the dataset is a round multiple of batch size.
UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : List[str] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A )
# Expected shouldn't change
self.check_batch_sampler_shards(A , A , split_batches=A )
# Check the shards when the dataset is not a round multiple of batch size.
UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : List[str] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Union[str, Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Any = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
# Check the shards when the dataset is very small.
UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Optional[Any] = [[[0, 1]], [[0, 1]]]
self.check_batch_sampler_shards(A , A , split_batches=A )
UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Any = [[], []]
self.check_batch_sampler_shards(A , A , split_batches=A )
def _lowercase( self ) -> Any:
# Check the shards when the dataset is a round multiple of total batch size.
UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A )
# Expected shouldn't change
self.check_batch_sampler_shards(A , A , even_batches=A )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : List[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Dict = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
UpperCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Union[str, Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
# Check the shards when the dataset is very small.
UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : str = [[[0, 1]], []]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Tuple = [[], []]
self.check_batch_sampler_shards(A , A , even_batches=A )
def _lowercase( self ) -> List[Any]:
# Check the shards when the dataset is a round multiple of batch size.
UpperCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : List[Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A )
# Expected shouldn't change
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
# Check the shards when the dataset is not a round multiple of batch size.
UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Optional[Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Dict = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Union[str, Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Dict = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
# Check the shards when the dataset is very small.
UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Dict = [[[0, 1]], []]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Dict = [[], []]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]]
UpperCAmelCase : List[str] = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )]
self.assertEqual(len(batch_sampler_shards[0] ) , 3 )
self.assertEqual(len(batch_sampler_shards[1] ) , 2 )
self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] )
self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] )
def _lowercase( self , A , A , A , A=False , A=2 , A=False ) -> Tuple:
random.seed(A )
UpperCAmelCase : Dict = list(A )
UpperCAmelCase : Any = [
IterableDatasetShard(
A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , )
for i in range(A )
]
UpperCAmelCase : Dict = []
for iterable_dataset_shard in iterable_dataset_shards:
# Since our random iterable dataset will be... random... we need to use a seed to get reproducible results.
random.seed(A )
iterable_dataset_lists.append(list(A ) )
UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size
# All iterable dataset shard should have the same length, a round multiple of shard_batch_size
UpperCAmelCase : List[Any] = iterable_dataset_lists[0]
for l in iterable_dataset_lists[1:]:
self.assertEqual(len(A ) , len(A ) )
self.assertTrue(len(A ) % shard_batch_size == 0 )
UpperCAmelCase : List[Any] = []
for idx in range(0 , len(A ) , A ):
for l in iterable_dataset_lists:
observed += l[idx : idx + shard_batch_size]
if not drop_last:
while len(A ) < len(A ):
reference += reference
self.assertListEqual(A , reference[: len(A )] )
def _lowercase( self ) -> str:
UpperCAmelCase : Tuple = 42
UpperCAmelCase : List[Any] = RandomIterableDataset()
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
# Edge case with a very small dataset
UpperCAmelCase : List[Any] = RandomIterableDataset(max_length=2 )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Any = SkipBatchSampler(A , 2 )
self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowercase( self ) -> int:
UpperCAmelCase : Any = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 )
self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : List[Any] = DataLoader(list(range(16 ) ) , batch_size=4 )
UpperCAmelCase : Optional[Any] = skip_first_batches(A , num_batches=2 )
self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 )
for idx, _ in enumerate(A ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(A ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
def _lowercase( self ) -> Dict:
Accelerator()
UpperCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 )
for idx, _ in enumerate(A ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(A ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
| 338 | 0 |
from __future__ import annotations
def __lowerCamelCase ( _lowercase , _lowercase ) -> list[int]:
UpperCAmelCase : Dict = 0
UpperCAmelCase : Union[str, Any] = len(_lowercase ) - 1
while i < j:
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
UpperCAmelCase : Dict = i + 1
else:
UpperCAmelCase : List[str] = j - 1
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F'''{two_pointer([2, 7, 1_1, 1_5], 9) = }''')
| 355 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
a : List[Any] = {
"""configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""],
"""tokenization_m2m_100""": ["""M2M100Tokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Any = [
"""M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""M2M100ForConditionalGeneration""",
"""M2M100Model""",
"""M2M100PreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 338 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
a : Optional[int] = {
"""configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""],
"""tokenization_xlm""": ["""XLMTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Tuple = [
"""XLM_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""XLMForMultipleChoice""",
"""XLMForQuestionAnswering""",
"""XLMForQuestionAnsweringSimple""",
"""XLMForSequenceClassification""",
"""XLMForTokenClassification""",
"""XLMModel""",
"""XLMPreTrainedModel""",
"""XLMWithLMHeadModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Optional[int] = [
"""TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFXLMForMultipleChoice""",
"""TFXLMForQuestionAnsweringSimple""",
"""TFXLMForSequenceClassification""",
"""TFXLMForTokenClassification""",
"""TFXLMMainLayer""",
"""TFXLMModel""",
"""TFXLMPreTrainedModel""",
"""TFXLMWithLMHeadModel""",
]
if TYPE_CHECKING:
from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig
from .tokenization_xlm import XLMTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm import (
XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMPreTrainedModel,
XLMWithLMHeadModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm import (
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMForMultipleChoice,
TFXLMForQuestionAnsweringSimple,
TFXLMForSequenceClassification,
TFXLMForTokenClassification,
TFXLMMainLayer,
TFXLMModel,
TFXLMPreTrainedModel,
TFXLMWithLMHeadModel,
)
else:
import sys
a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 356 |
'''simple docstring'''
from math import loga
def __lowerCamelCase ( _lowercase ) -> int:
if a < 0:
raise ValueError("""Input value must be a positive integer""" )
elif isinstance(_lowercase , _lowercase ):
raise TypeError("""Input value must be a 'int' type""" )
return 0 if (a == 0) else int(loga(a & -a ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 338 | 0 |
'''simple docstring'''
import inspect
from typing import Optional, Union
import numpy as np
import PIL
import torch
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import (
PIL_INTERPOLATION,
randn_tensor,
)
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]:
if isinstance(_lowercase , torch.Tensor ):
return image
elif isinstance(_lowercase , PIL.Image.Image ):
UpperCAmelCase : Tuple = [image]
if isinstance(image[0] , PIL.Image.Image ):
UpperCAmelCase : List[str] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image]
UpperCAmelCase : List[Any] = np.concatenate(_lowercase , axis=0 )
UpperCAmelCase : List[Any] = np.array(_lowercase ).astype(np.floataa ) / 255.0
UpperCAmelCase : List[str] = image.transpose(0 , 3 , 1 , 2 )
UpperCAmelCase : int = 2.0 * image - 1.0
UpperCAmelCase : str = torch.from_numpy(_lowercase )
elif isinstance(image[0] , torch.Tensor ):
UpperCAmelCase : str = torch.cat(_lowercase , dim=0 )
return image
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=0.9995 ) -> Tuple:
if not isinstance(_lowercase , np.ndarray ):
UpperCAmelCase : Tuple = True
UpperCAmelCase : Union[str, Any] = va.device
UpperCAmelCase : List[str] = va.cpu().numpy()
UpperCAmelCase : List[Any] = va.cpu().numpy()
UpperCAmelCase : Optional[Any] = np.sum(va * va / (np.linalg.norm(_lowercase ) * np.linalg.norm(_lowercase )) )
if np.abs(_lowercase ) > DOT_THRESHOLD:
UpperCAmelCase : str = (1 - t) * va + t * va
else:
UpperCAmelCase : Dict = np.arccos(_lowercase )
UpperCAmelCase : Union[str, Any] = np.sin(_lowercase )
UpperCAmelCase : List[str] = theta_a * t
UpperCAmelCase : Union[str, Any] = np.sin(_lowercase )
UpperCAmelCase : Optional[Any] = np.sin(theta_a - theta_t ) / sin_theta_a
UpperCAmelCase : Dict = sin_theta_t / sin_theta_a
UpperCAmelCase : List[Any] = sa * va + sa * va
if inputs_are_torch:
UpperCAmelCase : str = torch.from_numpy(_lowercase ).to(_lowercase )
return va
def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]:
UpperCAmelCase : Union[str, Any] = F.normalize(_lowercase , dim=-1 )
UpperCAmelCase : Optional[int] = F.normalize(_lowercase , dim=-1 )
return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 )
def __lowerCamelCase ( _lowercase , _lowercase ) -> List[Any]:
for param in model.parameters():
UpperCAmelCase : Optional[int] = value
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , A , A , A , A , A , A , A , A=None , A=None , A=None , ) -> List[Any]:
super().__init__()
self.register_modules(
vae=A , text_encoder=A , clip_model=A , tokenizer=A , unet=A , scheduler=A , feature_extractor=A , coca_model=A , coca_tokenizer=A , coca_transform=A , )
UpperCAmelCase : Optional[Any] = (
feature_extractor.size
if isinstance(feature_extractor.size , A )
else feature_extractor.size["""shortest_edge"""]
)
UpperCAmelCase : Any = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std )
set_requires_grad(self.text_encoder , A )
set_requires_grad(self.clip_model , A )
def _lowercase( self , A = "auto" ) -> int:
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
UpperCAmelCase : Optional[int] = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(A )
def _lowercase( self ) -> Optional[Any]:
self.enable_attention_slicing(A )
def _lowercase( self ) -> List[str]:
set_requires_grad(self.vae , A )
def _lowercase( self ) -> str:
set_requires_grad(self.vae , A )
def _lowercase( self ) -> Tuple:
set_requires_grad(self.unet , A )
def _lowercase( self ) -> Optional[int]:
set_requires_grad(self.unet , A )
def _lowercase( self , A , A , A ) -> Any:
# get the original timestep using init_timestep
UpperCAmelCase : Dict = min(int(num_inference_steps * strength ) , A )
UpperCAmelCase : Optional[Any] = max(num_inference_steps - init_timestep , 0 )
UpperCAmelCase : Dict = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def _lowercase( self , A , A , A , A , A , A=None ) -> Dict:
if not isinstance(A , torch.Tensor ):
raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(A )}''' )
UpperCAmelCase : Tuple = image.to(device=A , dtype=A )
if isinstance(A , A ):
UpperCAmelCase : Optional[Any] = [
self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(A )
]
UpperCAmelCase : List[str] = torch.cat(A , dim=0 )
else:
UpperCAmelCase : List[Any] = self.vae.encode(A ).latent_dist.sample(A )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
UpperCAmelCase : Tuple = 0.1_8_2_1_5 * init_latents
UpperCAmelCase : Optional[int] = init_latents.repeat_interleave(A , dim=0 )
UpperCAmelCase : Tuple = randn_tensor(init_latents.shape , generator=A , device=A , dtype=A )
# get latents
UpperCAmelCase : str = self.scheduler.add_noise(A , A , A )
UpperCAmelCase : str = init_latents
return latents
def _lowercase( self , A ) -> Tuple:
UpperCAmelCase : str = self.coca_transform(A ).unsqueeze(0 )
with torch.no_grad(), torch.cuda.amp.autocast():
UpperCAmelCase : List[str] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) )
UpperCAmelCase : Dict = self.coca_tokenizer.decode(generated[0].cpu().numpy() )
return generated.split("""<end_of_text>""" )[0].replace("""<start_of_text>""" , """""" ).rstrip(""" .,""" )
def _lowercase( self , A , A ) -> int:
UpperCAmelCase : Optional[Any] = self.feature_extractor.preprocess(A )
UpperCAmelCase : Any = torch.from_numpy(clip_image_input["""pixel_values"""][0] ).unsqueeze(0 ).to(self.device ).half()
UpperCAmelCase : str = self.clip_model.get_image_features(A )
UpperCAmelCase : str = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A )
UpperCAmelCase : Tuple = image_embeddings_clip.repeat_interleave(A , dim=0 )
return image_embeddings_clip
@torch.enable_grad()
def _lowercase( self , A , A , A , A , A , A , A , ) -> str:
UpperCAmelCase : Optional[Any] = latents.detach().requires_grad_()
UpperCAmelCase : str = self.scheduler.scale_model_input(A , A )
# predict the noise residual
UpperCAmelCase : str = self.unet(A , A , encoder_hidden_states=A ).sample
if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ):
UpperCAmelCase : Dict = self.scheduler.alphas_cumprod[timestep]
UpperCAmelCase : str = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
UpperCAmelCase : Dict = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5
UpperCAmelCase : Optional[Any] = torch.sqrt(A )
UpperCAmelCase : Optional[Any] = pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler , A ):
UpperCAmelCase : List[Any] = self.scheduler.sigmas[index]
UpperCAmelCase : Dict = latents - sigma * noise_pred
else:
raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
UpperCAmelCase : Optional[Any] = 1 / 0.1_8_2_1_5 * sample
UpperCAmelCase : str = self.vae.decode(A ).sample
UpperCAmelCase : int = (image / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase : Union[str, Any] = transforms.Resize(self.feature_extractor_size )(A )
UpperCAmelCase : Union[str, Any] = self.normalize(A ).to(latents.dtype )
UpperCAmelCase : str = self.clip_model.get_image_features(A )
UpperCAmelCase : Tuple = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A )
UpperCAmelCase : List[Any] = spherical_dist_loss(A , A ).mean() * clip_guidance_scale
UpperCAmelCase : Any = -torch.autograd.grad(A , A )[0]
if isinstance(self.scheduler , A ):
UpperCAmelCase : List[str] = latents.detach() + grads * (sigma**2)
UpperCAmelCase : List[str] = noise_pred_original
else:
UpperCAmelCase : Any = noise_pred_original - torch.sqrt(A ) * grads
return noise_pred, latents
@torch.no_grad()
def __call__( self , A , A , A = None , A = None , A = 512 , A = 512 , A = 0.6 , A = 50 , A = 7.5 , A = 1 , A = 0.0 , A = 100 , A = None , A = "pil" , A = True , A = 0.8 , A = 0.1 , A = 0.1 , ) -> List[Any]:
if isinstance(A , A ) and len(A ) != batch_size:
raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(A )} generators.''' )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' )
if isinstance(A , torch.Generator ) and batch_size > 1:
UpperCAmelCase : Any = [generator] + [None] * (batch_size - 1)
UpperCAmelCase : Any = [
("""model""", self.coca_model is None),
("""tokenizer""", self.coca_tokenizer is None),
("""transform""", self.coca_transform is None),
]
UpperCAmelCase : int = [x[0] for x in coca_is_none if x[1]]
UpperCAmelCase : str = """, """.join(A )
# generate prompts with coca model if prompt is None
if content_prompt is None:
if len(A ):
raise ValueError(
f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.'''
f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' )
UpperCAmelCase : Optional[int] = self.get_image_description(A )
if style_prompt is None:
if len(A ):
raise ValueError(
f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.'''
f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' )
UpperCAmelCase : Union[str, Any] = self.get_image_description(A )
# get prompt text embeddings for content and style
UpperCAmelCase : List[Any] = self.tokenizer(
A , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors="""pt""" , )
UpperCAmelCase : Dict = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0]
UpperCAmelCase : str = self.tokenizer(
A , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors="""pt""" , )
UpperCAmelCase : Optional[int] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0]
UpperCAmelCase : Any = slerp(A , A , A )
# duplicate text embeddings for each generation per prompt
UpperCAmelCase : Any = text_embeddings.repeat_interleave(A , dim=0 )
# set timesteps
UpperCAmelCase : Union[str, Any] = """offset""" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() )
UpperCAmelCase : str = {}
if accepts_offset:
UpperCAmelCase : List[str] = 1
self.scheduler.set_timesteps(A , **A )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
self.scheduler.timesteps.to(self.device )
UpperCAmelCase : Tuple = self.get_timesteps(A , A , self.device )
UpperCAmelCase : Dict = timesteps[:1].repeat(A )
# Preprocess image
UpperCAmelCase : int = preprocess(A , A , A )
UpperCAmelCase : Dict = self.prepare_latents(
A , A , A , text_embeddings.dtype , self.device , A )
UpperCAmelCase : str = preprocess(A , A , A )
UpperCAmelCase : Any = self.prepare_latents(
A , A , A , text_embeddings.dtype , self.device , A )
UpperCAmelCase : List[str] = slerp(A , A , A )
if clip_guidance_scale > 0:
UpperCAmelCase : Optional[Any] = self.get_clip_image_embeddings(A , A )
UpperCAmelCase : Optional[Any] = self.get_clip_image_embeddings(A , A )
UpperCAmelCase : Tuple = slerp(
A , A , A )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
UpperCAmelCase : List[str] = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
UpperCAmelCase : Union[str, Any] = content_text_input.input_ids.shape[-1]
UpperCAmelCase : List[str] = self.tokenizer([""""""] , padding="""max_length""" , max_length=A , return_tensors="""pt""" )
UpperCAmelCase : List[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt
UpperCAmelCase : str = uncond_embeddings.repeat_interleave(A , dim=0 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
UpperCAmelCase : List[Any] = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
UpperCAmelCase : Optional[int] = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
UpperCAmelCase : Dict = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
UpperCAmelCase : Dict = torch.randn(A , generator=A , device="""cpu""" , dtype=A ).to(
self.device )
else:
UpperCAmelCase : Optional[int] = torch.randn(A , generator=A , device=self.device , dtype=A )
else:
if latents.shape != latents_shape:
raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' )
UpperCAmelCase : Tuple = latents.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
UpperCAmelCase : int = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
UpperCAmelCase : int = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
UpperCAmelCase : Dict = {}
if accepts_eta:
UpperCAmelCase : Any = eta
# check if the scheduler accepts generator
UpperCAmelCase : Tuple = """generator""" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
if accepts_generator:
UpperCAmelCase : Optional[Any] = generator
with self.progress_bar(total=A ):
for i, t in enumerate(A ):
# expand the latents if we are doing classifier free guidance
UpperCAmelCase : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
UpperCAmelCase : List[str] = self.scheduler.scale_model_input(A , A )
# predict the noise residual
UpperCAmelCase : Union[str, Any] = self.unet(A , A , encoder_hidden_states=A ).sample
# perform classifier free guidance
if do_classifier_free_guidance:
UpperCAmelCase : Tuple = noise_pred.chunk(2 )
UpperCAmelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
UpperCAmelCase : List[Any] = (
text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings
)
UpperCAmelCase : int = self.cond_fn(
A , A , A , A , A , A , A , )
# compute the previous noisy sample x_t -> x_t-1
UpperCAmelCase : Tuple = self.scheduler.step(A , A , A , **A ).prev_sample
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
UpperCAmelCase : int = 1 / 0.1_8_2_1_5 * latents
UpperCAmelCase : Tuple = self.vae.decode(A ).sample
UpperCAmelCase : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCAmelCase : Optional[Any] = self.numpy_to_pil(A )
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
| 357 |
'''simple docstring'''
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
a : Optional[int] = 1_0
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int:
for i in range(_lowercase , _lowercase ):
if array[i] == target:
return i
return -1
def __lowerCamelCase ( _lowercase , _lowercase ) -> int:
UpperCAmelCase : Tuple = 0
UpperCAmelCase : List[str] = len(_lowercase )
while left <= right:
if right - left < precision:
return lin_search(_lowercase , _lowercase , _lowercase , _lowercase )
UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1
UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
UpperCAmelCase : Any = one_third - 1
elif array[two_third] < target:
UpperCAmelCase : Tuple = two_third + 1
else:
UpperCAmelCase : int = one_third + 1
UpperCAmelCase : List[Any] = two_third - 1
else:
return -1
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int:
if left < right:
if right - left < precision:
return lin_search(_lowercase , _lowercase , _lowercase , _lowercase )
UpperCAmelCase : str = (left + right) // 3 + 1
UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
a : Any = input("""Enter numbers separated by comma:\n""").strip()
a : Any = [int(item.strip()) for item in user_input.split(""",""")]
assert collection == sorted(collection), F"List must be ordered.\n{collection}."
a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip())
a : Union[str, Any] = ite_ternary_search(collection, target)
a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(F'''Iterative search: {target} found at positions: {resulta}''')
print(F'''Recursive search: {target} found at positions: {resulta}''')
else:
print("""Not found""")
| 338 | 0 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase , _lowercase ) -> List[str]:
return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2
def __lowerCamelCase ( _lowercase , _lowercase=0 ) -> Union[str, Any]:
return sorted(_lowercase , key=lambda _lowercase : x[column] )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=float("""inf""" ) ) -> Tuple:
for i in range(points_counts - 1 ):
for j in range(i + 1 , _lowercase ):
UpperCAmelCase : Optional[int] = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
UpperCAmelCase : List[Any] = current_dis
return min_dis
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=float("""inf""" ) ) -> Optional[int]:
for i in range(min(6 , points_counts - 1 ) , _lowercase ):
for j in range(max(0 , i - 6 ) , _lowercase ):
UpperCAmelCase : Tuple = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
UpperCAmelCase : Dict = current_dis
return min_dis
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]:
# base case
if points_counts <= 3:
return dis_between_closest_pair(_lowercase , _lowercase )
# recursion
UpperCAmelCase : List[Any] = points_counts // 2
UpperCAmelCase : Dict = closest_pair_of_points_sqr(
_lowercase , points_sorted_on_y[:mid] , _lowercase )
UpperCAmelCase : str = closest_pair_of_points_sqr(
_lowercase , points_sorted_on_y[mid:] , points_counts - mid )
UpperCAmelCase : List[str] = min(_lowercase , _lowercase )
UpperCAmelCase : Any = []
for point in points_sorted_on_x:
if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis:
cross_strip.append(_lowercase )
UpperCAmelCase : Dict = dis_between_closest_in_strip(
_lowercase , len(_lowercase ) , _lowercase )
return min(_lowercase , _lowercase )
def __lowerCamelCase ( _lowercase , _lowercase ) -> Tuple:
UpperCAmelCase : Union[str, Any] = column_based_sort(_lowercase , column=0 )
UpperCAmelCase : Tuple = column_based_sort(_lowercase , column=1 )
return (
closest_pair_of_points_sqr(
_lowercase , _lowercase , _lowercase )
) ** 0.5
if __name__ == "__main__":
a : Union[str, Any] = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)]
print("""Distance:""", closest_pair_of_points(points, len(points)))
| 358 |
'''simple docstring'''
import numpy as np
class UpperCamelCase_ :
def __init__( self ) -> int:
UpperCAmelCase : str = (0, 0)
UpperCAmelCase : Union[str, Any] = None
UpperCAmelCase : Any = 0
UpperCAmelCase : int = 0
UpperCAmelCase : Optional[int] = 0
def __eq__( self , A ) -> Optional[Any]:
return self.position == cell.position
def _lowercase( self ) -> Tuple:
print(self.position )
class UpperCamelCase_ :
def __init__( self , A=(5, 5) ) -> Optional[Any]:
UpperCAmelCase : Union[str, Any] = np.zeros(A )
UpperCAmelCase : int = world_size[0]
UpperCAmelCase : List[str] = world_size[1]
def _lowercase( self ) -> List[Any]:
print(self.w )
def _lowercase( self , A ) -> Dict:
UpperCAmelCase : Optional[Any] = [
(-1, -1),
(-1, 0),
(-1, 1),
(0, -1),
(0, 1),
(1, -1),
(1, 0),
(1, 1),
]
UpperCAmelCase : List[Any] = cell.position[0]
UpperCAmelCase : Union[str, Any] = cell.position[1]
UpperCAmelCase : Optional[int] = []
for n in neughbour_cord:
UpperCAmelCase : Any = current_x + n[0]
UpperCAmelCase : Tuple = current_y + n[1]
if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit:
UpperCAmelCase : str = Cell()
UpperCAmelCase : List[str] = (x, y)
UpperCAmelCase : Dict = cell
neighbours.append(A )
return neighbours
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int:
UpperCAmelCase : List[Any] = []
UpperCAmelCase : Optional[int] = []
_open.append(_lowercase )
while _open:
UpperCAmelCase : Any = np.argmin([n.f for n in _open] )
UpperCAmelCase : Optional[int] = _open[min_f]
_closed.append(_open.pop(_lowercase ) )
if current == goal:
break
for n in world.get_neigbours(_lowercase ):
for c in _closed:
if c == n:
continue
UpperCAmelCase : List[str] = current.g + 1
UpperCAmelCase , UpperCAmelCase : List[str] = n.position
UpperCAmelCase , UpperCAmelCase : Dict = goal.position
UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2
UpperCAmelCase : Dict = n.h + n.g
for c in _open:
if c == n and c.f < n.f:
continue
_open.append(_lowercase )
UpperCAmelCase : Dict = []
while current.parent is not None:
path.append(current.position )
UpperCAmelCase : Optional[int] = current.parent
path.append(current.position )
return path[::-1]
if __name__ == "__main__":
a : List[str] = Gridworld()
# Start position and goal
a : Optional[int] = Cell()
a : Optional[Any] = (0, 0)
a : Optional[Any] = Cell()
a : str = (4, 4)
print(F'''path from {start.position} to {goal.position}''')
a : List[Any] = astar(world, start, goal)
# Just for visual reasons.
for i in s:
a : Any = 1
print(world.w)
| 338 | 0 |
'''simple docstring'''
from __future__ import annotations
from functools import lru_cache
from math import ceil
a : Union[str, Any] = 1_0_0
a : Dict = set(range(3, NUM_PRIMES, 2))
primes.add(2)
a : int
for prime in range(3, ceil(NUM_PRIMES**0.5), 2):
if prime not in primes:
continue
primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime)))
@lru_cache(maxsize=1_0_0 )
def __lowerCamelCase ( _lowercase ) -> set[int]:
if number_to_partition < 0:
return set()
elif number_to_partition == 0:
return {1}
UpperCAmelCase : set[int] = set()
UpperCAmelCase : int
UpperCAmelCase : int
for prime in primes:
if prime > number_to_partition:
continue
for sub in partition(number_to_partition - prime ):
ret.add(sub * prime )
return ret
def __lowerCamelCase ( _lowercase = 5_0_0_0 ) -> int | None:
for number_to_partition in range(1 , _lowercase ):
if len(partition(_lowercase ) ) > number_unique_partitions:
return number_to_partition
return None
if __name__ == "__main__":
print(F'''{solution() = }''')
| 359 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import _LazyModule
a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]}
if TYPE_CHECKING:
from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer
else:
import sys
a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 338 | 0 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import Tuple
from ..utils import cached_property, is_tf_available, logging, requires_backends
from .benchmark_args_utils import BenchmarkArguments
if is_tf_available():
import tensorflow as tf
a : Union[str, Any] = logging.get_logger(__name__)
@dataclass
class UpperCamelCase_ ( __magic_name__ ):
lowercase = [
'no_inference',
'no_cuda',
'no_tpu',
'no_speed',
'no_memory',
'no_env_print',
'no_multi_process',
]
def __init__( self , **A ) -> Union[str, Any]:
for deprecated_arg in self.deprecated_args:
if deprecated_arg in kwargs:
UpperCAmelCase : Tuple = deprecated_arg[3:]
UpperCAmelCase : Union[str, Any] = not kwargs.pop(A )
logger.warning(
f'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or'''
f''' {positive_arg}={kwargs[positive_arg]}''' )
UpperCAmelCase : List[Any] = kwargs.pop("""tpu_name""" , self.tpu_name )
UpperCAmelCase : List[str] = kwargs.pop("""device_idx""" , self.device_idx )
UpperCAmelCase : Any = kwargs.pop("""eager_mode""" , self.eager_mode )
UpperCAmelCase : Union[str, Any] = kwargs.pop("""use_xla""" , self.use_xla )
super().__init__(**A )
lowercase = field(
default=__magic_name__ , metadata={'help': 'Name of TPU'} , )
lowercase = field(
default=0 , metadata={'help': 'CPU / GPU device index. Defaults to 0.'} , )
lowercase = field(default=__magic_name__ , metadata={'help': 'Benchmark models in eager model.'} )
lowercase = field(
default=__magic_name__ , metadata={
'help': 'Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.'
} , )
@cached_property
def _lowercase( self ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]:
requires_backends(self , ["""tf"""] )
UpperCAmelCase : Tuple = None
if self.tpu:
try:
if self.tpu_name:
UpperCAmelCase : Optional[int] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name )
else:
UpperCAmelCase : Optional[Any] = tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
UpperCAmelCase : Tuple = None
return tpu
@cached_property
def _lowercase( self ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]:
requires_backends(self , ["""tf"""] )
if self.is_tpu:
tf.config.experimental_connect_to_cluster(self._setup_tpu )
tf.tpu.experimental.initialize_tpu_system(self._setup_tpu )
UpperCAmelCase : List[Any] = tf.distribute.TPUStrategy(self._setup_tpu )
else:
# currently no multi gpu is allowed
if self.is_gpu:
# TODO: Currently only single GPU is supported
tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" )
UpperCAmelCase : Tuple = tf.distribute.OneDeviceStrategy(device=f'''/gpu:{self.device_idx}''' )
else:
tf.config.set_visible_devices([] , """GPU""" ) # disable GPU
UpperCAmelCase : Union[str, Any] = tf.distribute.OneDeviceStrategy(device=f'''/cpu:{self.device_idx}''' )
return strategy
@property
def _lowercase( self ) -> bool:
requires_backends(self , ["""tf"""] )
return self._setup_tpu is not None
@property
def _lowercase( self ) -> "tf.distribute.Strategy":
requires_backends(self , ["""tf"""] )
return self._setup_strategy
@property
def _lowercase( self ) -> Dict:
requires_backends(self , ["""tf"""] )
return tf.config.list_physical_devices("""GPU""" )
@property
def _lowercase( self ) -> int:
requires_backends(self , ["""tf"""] )
if self.cuda:
return len(self.gpu_list )
return 0
@property
def _lowercase( self ) -> bool:
return self.n_gpu > 0
| 360 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
a : int = logging.get_logger(__name__)
a : int = {
"""openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""",
}
# fmt: off
a : Tuple = [
1, 2, 7, 8, 9, 1_0, 1_4, 2_5,
2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2,
6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5,
7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7,
1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1,
4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6,
1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1,
1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9,
3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1
]
a : Optional[int] = [
1, 2, 7, 8, 9, 1_0, 1_4, 2_5,
2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2,
6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3,
8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7,
3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7,
7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3,
1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5,
2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5,
4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2
]
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'whisper'
lowercase = ['past_key_values']
lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]:
UpperCAmelCase : str = vocab_size
UpperCAmelCase : Union[str, Any] = num_mel_bins
UpperCAmelCase : Tuple = d_model
UpperCAmelCase : Optional[int] = encoder_layers
UpperCAmelCase : List[str] = encoder_attention_heads
UpperCAmelCase : Optional[int] = decoder_layers
UpperCAmelCase : int = decoder_attention_heads
UpperCAmelCase : Optional[int] = decoder_ffn_dim
UpperCAmelCase : Union[str, Any] = encoder_ffn_dim
UpperCAmelCase : List[str] = dropout
UpperCAmelCase : Optional[Any] = attention_dropout
UpperCAmelCase : Optional[Any] = activation_dropout
UpperCAmelCase : Optional[Any] = activation_function
UpperCAmelCase : Optional[Any] = init_std
UpperCAmelCase : int = encoder_layerdrop
UpperCAmelCase : Dict = decoder_layerdrop
UpperCAmelCase : Optional[int] = use_cache
UpperCAmelCase : List[str] = encoder_layers
UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCAmelCase : Union[str, Any] = max_source_positions
UpperCAmelCase : Tuple = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
UpperCAmelCase : List[str] = classifier_proj_size
UpperCAmelCase : Optional[Any] = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase : Optional[Any] = apply_spec_augment
UpperCAmelCase : int = mask_time_prob
UpperCAmelCase : int = mask_time_length
UpperCAmelCase : Dict = mask_time_min_masks
UpperCAmelCase : List[str] = mask_feature_prob
UpperCAmelCase : Optional[int] = mask_feature_length
UpperCAmelCase : int = mask_feature_min_masks
UpperCAmelCase : List[Any] = median_filter_width
super().__init__(
pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , )
class UpperCamelCase_ ( __magic_name__ ):
@property
def _lowercase( self ) -> Mapping[str, Mapping[int, str]]:
UpperCAmelCase : str = OrderedDict(
[
("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}),
] )
if self.use_past:
UpperCAmelCase : List[Any] = {0: """batch"""}
else:
UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""}
if self.use_past:
self.fill_with_past_key_values_(A , direction="""inputs""" )
return common_inputs
def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]:
UpperCAmelCase : Optional[int] = OrderedDict()
UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , )
UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2]
UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length
UpperCAmelCase : Any = super().generate_dummy_inputs(
preprocessor.tokenizer , A , A , A , A )
UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" )
UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" )
if "past_key_values" in decoder_inputs:
UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" )
return dummy_inputs
@property
def _lowercase( self ) -> float:
return 1e-3
| 338 | 0 |
'''simple docstring'''
import logging
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEncoder,
BertModel,
BertPreTrainedModel,
)
a : List[Any] = logging.getLogger(__name__)
class UpperCamelCase_ ( __magic_name__ ):
def _lowercase( self , A , A , A=None , A=None ) -> Optional[Any]:
UpperCAmelCase : Optional[Any] = self.layer[current_layer](A , A , head_mask[current_layer] )
UpperCAmelCase : Tuple = layer_outputs[0]
return hidden_states
@add_start_docstrings(
'The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.' , __magic_name__ , )
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , A ) -> int:
super().__init__(A )
UpperCAmelCase : Union[str, Any] = BertEncoderWithPabee(A )
self.init_weights()
UpperCAmelCase : int = 0
UpperCAmelCase : Any = 0
UpperCAmelCase : Tuple = 0
UpperCAmelCase : List[str] = 0
def _lowercase( self , A ) -> str:
UpperCAmelCase : Optional[Any] = threshold
def _lowercase( self , A ) -> int:
UpperCAmelCase : str = patience
def _lowercase( self ) -> Any:
UpperCAmelCase : Union[str, Any] = 0
UpperCAmelCase : List[Any] = 0
def _lowercase( self ) -> Dict:
UpperCAmelCase : int = self.inference_layers_num / self.inference_instances_num
UpperCAmelCase : Tuple = (
f'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up ='''
f''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***'''
)
print(A )
@add_start_docstrings_to_model_forward(A )
def _lowercase( self , A=None , A=None , A=None , A=None , A=None , A=None , A=None , A=None , A=None , A=None , A=False , ) -> Any:
if input_ids is not None and inputs_embeds is not None:
raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" )
elif input_ids is not None:
UpperCAmelCase : List[str] = input_ids.size()
elif inputs_embeds is not None:
UpperCAmelCase : str = inputs_embeds.size()[:-1]
else:
raise ValueError("""You have to specify either input_ids or inputs_embeds""" )
UpperCAmelCase : List[Any] = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
UpperCAmelCase : str = torch.ones(A , device=A )
if token_type_ids is None:
UpperCAmelCase : Optional[Any] = torch.zeros(A , dtype=torch.long , device=A )
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
UpperCAmelCase : torch.Tensor = self.get_extended_attention_mask(A , A , A )
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
UpperCAmelCase : Optional[int] = encoder_hidden_states.size()
UpperCAmelCase : Optional[Any] = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
UpperCAmelCase : Union[str, Any] = torch.ones(A , device=A )
UpperCAmelCase : List[str] = self.invert_attention_mask(A )
else:
UpperCAmelCase : Any = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
UpperCAmelCase : str = self.get_head_mask(A , self.config.num_hidden_layers )
UpperCAmelCase : int = self.embeddings(
input_ids=A , position_ids=A , token_type_ids=A , inputs_embeds=A )
UpperCAmelCase : List[str] = embedding_output
if self.training:
UpperCAmelCase : Union[str, Any] = []
for i in range(self.config.num_hidden_layers ):
UpperCAmelCase : Any = self.encoder.adaptive_forward(
A , current_layer=A , attention_mask=A , head_mask=A )
UpperCAmelCase : Optional[int] = self.pooler(A )
UpperCAmelCase : Union[str, Any] = output_layers[i](output_dropout(A ) )
res.append(A )
elif self.patience == 0: # Use all layers for inference
UpperCAmelCase : Tuple = self.encoder(
A , attention_mask=A , head_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , )
UpperCAmelCase : Optional[int] = self.pooler(encoder_outputs[0] )
UpperCAmelCase : Tuple = [output_layers[self.config.num_hidden_layers - 1](A )]
else:
UpperCAmelCase : Tuple = 0
UpperCAmelCase : Tuple = None
UpperCAmelCase : str = 0
for i in range(self.config.num_hidden_layers ):
calculated_layer_num += 1
UpperCAmelCase : List[Any] = self.encoder.adaptive_forward(
A , current_layer=A , attention_mask=A , head_mask=A )
UpperCAmelCase : int = self.pooler(A )
UpperCAmelCase : Dict = output_layers[i](A )
if regression:
UpperCAmelCase : Optional[int] = logits.detach()
if patient_result is not None:
UpperCAmelCase : Dict = patient_result.detach()
if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold:
patient_counter += 1
else:
UpperCAmelCase : Dict = 0
else:
UpperCAmelCase : str = logits.detach().argmax(dim=1 )
if patient_result is not None:
UpperCAmelCase : int = patient_result.detach().argmax(dim=1 )
if (patient_result is not None) and torch.all(labels.eq(A ) ):
patient_counter += 1
else:
UpperCAmelCase : Tuple = 0
UpperCAmelCase : Optional[int] = logits
if patient_counter == self.patience:
break
UpperCAmelCase : List[Any] = [patient_result]
self.inference_layers_num += calculated_layer_num
self.inference_instances_num += 1
return res
@add_start_docstrings(
'Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. ' , __magic_name__ , )
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , A ) -> int:
super().__init__(A )
UpperCAmelCase : Optional[int] = config.num_labels
UpperCAmelCase : Dict = BertModelWithPabee(A )
UpperCAmelCase : Union[str, Any] = nn.Dropout(config.hidden_dropout_prob )
UpperCAmelCase : Optional[Any] = nn.ModuleList(
[nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] )
self.init_weights()
@add_start_docstrings_to_model_forward(A )
def _lowercase( self , A=None , A=None , A=None , A=None , A=None , A=None , A=None , ) -> str:
UpperCAmelCase : Any = self.bert(
input_ids=A , attention_mask=A , token_type_ids=A , position_ids=A , head_mask=A , inputs_embeds=A , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , )
UpperCAmelCase : Dict = (logits[-1],)
if labels is not None:
UpperCAmelCase : Optional[Any] = None
UpperCAmelCase : Optional[int] = 0
for ix, logits_item in enumerate(A ):
if self.num_labels == 1:
# We are doing regression
UpperCAmelCase : Tuple = MSELoss()
UpperCAmelCase : Optional[int] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) )
else:
UpperCAmelCase : Tuple = CrossEntropyLoss()
UpperCAmelCase : Tuple = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) )
if total_loss is None:
UpperCAmelCase : Dict = loss
else:
total_loss += loss * (ix + 1)
total_weights += ix + 1
UpperCAmelCase : int = (total_loss / total_weights,) + outputs
return outputs
| 361 |
'''simple docstring'''
a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ"""
def __lowerCamelCase ( ) -> None:
UpperCAmelCase : Optional[int] = input("""Enter message: """ )
UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ )
UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ )
if mode.lower().startswith("""e""" ):
UpperCAmelCase : List[str] = """encrypt"""
UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase )
elif mode.lower().startswith("""d""" ):
UpperCAmelCase : Tuple = """decrypt"""
UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase )
print(F'''\n{mode.title()}ed message:''' )
print(_lowercase )
def __lowerCamelCase ( _lowercase , _lowercase ) -> str:
return translate_message(_lowercase , _lowercase , """encrypt""" )
def __lowerCamelCase ( _lowercase , _lowercase ) -> str:
return translate_message(_lowercase , _lowercase , """decrypt""" )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str:
UpperCAmelCase : Optional[int] = []
UpperCAmelCase : Optional[Any] = 0
UpperCAmelCase : Tuple = key.upper()
for symbol in message:
UpperCAmelCase : Dict = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(_lowercase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(_lowercase ):
UpperCAmelCase : Optional[int] = 0
else:
translated.append(_lowercase )
return "".join(_lowercase )
if __name__ == "__main__":
main()
| 338 | 0 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase , _lowercase ) -> Any:
UpperCAmelCase : Optional[Any] = """"""
for i in table:
res += inp[i - 1]
return res
def __lowerCamelCase ( _lowercase ) -> Tuple:
return data[1:] + data[0]
def __lowerCamelCase ( _lowercase , _lowercase ) -> Any:
UpperCAmelCase : List[str] = """"""
for i in range(len(_lowercase ) ):
if a[i] == b[i]:
res += "0"
else:
res += "1"
return res
def __lowerCamelCase ( _lowercase , _lowercase ) -> Dict:
UpperCAmelCase : Union[str, Any] = int("""0b""" + data[0] + data[-1] , 2 )
UpperCAmelCase : List[str] = int("""0b""" + data[1:3] , 2 )
return bin(s[row][col] )[2:]
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[str]:
UpperCAmelCase : Dict = message[:4]
UpperCAmelCase : List[str] = message[4:]
UpperCAmelCase : Union[str, Any] = apply_table(_lowercase , _lowercase )
UpperCAmelCase : Union[str, Any] = xor(_lowercase , _lowercase )
UpperCAmelCase : List[str] = apply_sbox(_lowercase , temp[:4] ) # noqa: E741
UpperCAmelCase : Union[str, Any] = apply_sbox(_lowercase , temp[4:] )
UpperCAmelCase : Tuple = """0""" * (2 - len(_lowercase )) + l # noqa: E741
UpperCAmelCase : Optional[Any] = """0""" * (2 - len(_lowercase )) + r
UpperCAmelCase : Union[str, Any] = apply_table(l + r , _lowercase )
UpperCAmelCase : Any = xor(_lowercase , _lowercase )
return temp + right
if __name__ == "__main__":
a = input("""Enter 10 bit key: """)
a = input("""Enter 8 bit message: """)
a = [6, 3, 7, 4, 8, 5, 1_0, 9]
a = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6]
a = [2, 4, 3, 1]
a = [2, 6, 3, 1, 4, 8, 5, 7]
a = [4, 1, 3, 5, 7, 2, 8, 6]
a = [4, 1, 2, 3, 2, 3, 4, 1]
a = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]]
a = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]]
# key generation
a = apply_table(key, paa_table)
a = temp[:5]
a = temp[5:]
a = left_shift(left)
a = left_shift(right)
a = apply_table(left + right, pa_table)
a = left_shift(left)
a = left_shift(right)
a = left_shift(left)
a = left_shift(right)
a = apply_table(left + right, pa_table)
# encryption
a = apply_table(message, IP)
a = function(expansion, sa, sa, keya, temp)
a = temp[4:] + temp[:4]
a = function(expansion, sa, sa, keya, temp)
a = apply_table(temp, IP_inv)
print("""Cipher text is:""", CT)
# decryption
a = apply_table(CT, IP)
a = function(expansion, sa, sa, keya, temp)
a = temp[4:] + temp[:4]
a = function(expansion, sa, sa, keya, temp)
a = apply_table(temp, IP_inv)
print("""Plain text after decypting is:""", PT)
| 362 |
'''simple docstring'''
import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
"""split_dict""" , [
SplitDict(),
SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ),
SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ),
SplitDict({"""train""": SplitInfo()} ),
] , )
def __lowerCamelCase ( _lowercase ) -> List[str]:
UpperCAmelCase : Optional[int] = split_dict._to_yaml_list()
assert len(_lowercase ) == len(_lowercase )
UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(_lowercase )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
UpperCAmelCase : List[str] = None
# the split name of split_dict takes over the name of the split info object
UpperCAmelCase : int = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
"""split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name="""my_dataset""" )] )
def __lowerCamelCase ( _lowercase ) -> List[str]:
# For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name"
# field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files
UpperCAmelCase : Optional[Any] = asdict(SplitDict({"""train""": split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 338 | 0 |
from typing import List, Optional
from tokenizers import ByteLevelBPETokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
a : List[Any] = logging.get_logger(__name__)
a : List[str] = {
"""vocab_file""": """vocab.json""",
"""merges_file""": """merges.txt""",
"""tokenizer_config_file""": """tokenizer_config.json""",
}
a : List[Any] = {
"""vocab_file""": {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"""
},
"""merges_file""": {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"""
},
"""tokenizer_config_file""": {
"""facebook/blenderbot_small-90M""": (
"""https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"""
)
},
}
a : List[Any] = {
"""facebook/blenderbot_small-90M""": 5_1_2,
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = BlenderbotSmallTokenizer
def __init__( self , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , A=True , **A , ) -> Union[str, Any]:
super().__init__(
ByteLevelBPETokenizer(
vocab=A , merges=A , add_prefix_space=A , trim_offsets=A , ) , bos_token=A , eos_token=A , unk_token=A , **A , )
UpperCAmelCase : Optional[Any] = add_prefix_space
def _lowercase( self , A , A=None ) -> Optional[Any]:
UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _lowercase( self , A , A = None ) -> List[int]:
UpperCAmelCase : Any = [self.sep_token_id]
UpperCAmelCase : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 363 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
a : Dict = logging.get_logger(__name__)
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , *A , **A ) -> None:
warnings.warn(
"""The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use LayoutLMv2ImageProcessor instead.""" , A , )
super().__init__(*A , **A )
| 338 | 0 |
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a : List[str] = logging.get_logger(__name__)
a : Dict = {
"""facebook/wav2vec2-base-960h""": """https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json""",
# See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'wav2vec2'
def __init__( self , A=32 , A=768 , A=12 , A=12 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=0.1 , A=0.0 , A=0.0 , A=0.1 , A=0.1 , A=0.0_2 , A=1e-5 , A="group" , A="gelu" , A=(512, 512, 512, 512, 512, 512, 512) , A=(5, 2, 2, 2, 2, 2, 2) , A=(10, 3, 3, 3, 3, 2, 2) , A=False , A=128 , A=16 , A=False , A=True , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=320 , A=2 , A=0.1 , A=100 , A=256 , A=256 , A=0.1 , A="sum" , A=False , A=False , A=256 , A=(512, 512, 512, 512, 1500) , A=(5, 3, 3, 1, 1) , A=(1, 2, 3, 1, 1) , A=512 , A=0 , A=1 , A=2 , A=False , A=3 , A=2 , A=3 , A=None , A=None , **A , ) -> str:
super().__init__(**A , pad_token_id=A , bos_token_id=A , eos_token_id=A )
UpperCAmelCase : Dict = hidden_size
UpperCAmelCase : str = feat_extract_norm
UpperCAmelCase : Any = feat_extract_activation
UpperCAmelCase : List[Any] = list(A )
UpperCAmelCase : str = list(A )
UpperCAmelCase : Optional[Any] = list(A )
UpperCAmelCase : Union[str, Any] = conv_bias
UpperCAmelCase : List[Any] = num_conv_pos_embeddings
UpperCAmelCase : str = num_conv_pos_embedding_groups
UpperCAmelCase : Optional[Any] = len(self.conv_dim )
UpperCAmelCase : Any = num_hidden_layers
UpperCAmelCase : Union[str, Any] = intermediate_size
UpperCAmelCase : Optional[Any] = hidden_act
UpperCAmelCase : Tuple = num_attention_heads
UpperCAmelCase : Union[str, Any] = hidden_dropout
UpperCAmelCase : Tuple = attention_dropout
UpperCAmelCase : Union[str, Any] = activation_dropout
UpperCAmelCase : Any = feat_proj_dropout
UpperCAmelCase : Tuple = final_dropout
UpperCAmelCase : Tuple = layerdrop
UpperCAmelCase : Any = layer_norm_eps
UpperCAmelCase : Dict = initializer_range
UpperCAmelCase : Any = vocab_size
UpperCAmelCase : Tuple = do_stable_layer_norm
UpperCAmelCase : str = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"""Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="""
""" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="""
f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase : List[Any] = apply_spec_augment
UpperCAmelCase : List[str] = mask_time_prob
UpperCAmelCase : Any = mask_time_length
UpperCAmelCase : List[Any] = mask_time_min_masks
UpperCAmelCase : Optional[int] = mask_feature_prob
UpperCAmelCase : Union[str, Any] = mask_feature_length
UpperCAmelCase : List[Any] = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
UpperCAmelCase : List[str] = num_codevectors_per_group
UpperCAmelCase : List[str] = num_codevector_groups
UpperCAmelCase : List[str] = contrastive_logits_temperature
UpperCAmelCase : Optional[int] = feat_quantizer_dropout
UpperCAmelCase : List[Any] = num_negatives
UpperCAmelCase : Optional[int] = codevector_dim
UpperCAmelCase : int = proj_codevector_dim
UpperCAmelCase : Optional[Any] = diversity_loss_weight
# ctc loss
UpperCAmelCase : Tuple = ctc_loss_reduction
UpperCAmelCase : str = ctc_zero_infinity
# adapter
UpperCAmelCase : int = add_adapter
UpperCAmelCase : str = adapter_kernel_size
UpperCAmelCase : Tuple = adapter_stride
UpperCAmelCase : Dict = num_adapter_layers
UpperCAmelCase : Tuple = output_hidden_size or hidden_size
UpperCAmelCase : Optional[Any] = adapter_attn_dim
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
UpperCAmelCase : Optional[Any] = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
UpperCAmelCase : List[str] = list(A )
UpperCAmelCase : Union[str, Any] = list(A )
UpperCAmelCase : int = list(A )
UpperCAmelCase : Any = xvector_output_dim
@property
def _lowercase( self ) -> Tuple:
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 364 |
'''simple docstring'''
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
a : Union[str, Any] = logging.get_logger(__name__)
a : Union[str, Any] = {
"""facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""",
# See all DETR models at https://huggingface.co/models?filter=detr
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'detr'
lowercase = ['past_key_values']
lowercase = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]:
if backbone_config is not None and use_timm_backbone:
raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" )
if not use_timm_backbone:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] )
elif isinstance(A , A ):
UpperCAmelCase : Any = backbone_config.get("""model_type""" )
UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type]
UpperCAmelCase : List[Any] = config_class.from_dict(A )
# set timm attributes to None
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = None, None, None
UpperCAmelCase : Dict = use_timm_backbone
UpperCAmelCase : Any = backbone_config
UpperCAmelCase : List[Any] = num_channels
UpperCAmelCase : int = num_queries
UpperCAmelCase : List[str] = d_model
UpperCAmelCase : Tuple = encoder_ffn_dim
UpperCAmelCase : Optional[Any] = encoder_layers
UpperCAmelCase : Any = encoder_attention_heads
UpperCAmelCase : Optional[Any] = decoder_ffn_dim
UpperCAmelCase : Optional[int] = decoder_layers
UpperCAmelCase : Any = decoder_attention_heads
UpperCAmelCase : str = dropout
UpperCAmelCase : Tuple = attention_dropout
UpperCAmelCase : Dict = activation_dropout
UpperCAmelCase : Tuple = activation_function
UpperCAmelCase : List[Any] = init_std
UpperCAmelCase : str = init_xavier_std
UpperCAmelCase : List[Any] = encoder_layerdrop
UpperCAmelCase : int = decoder_layerdrop
UpperCAmelCase : List[Any] = encoder_layers
UpperCAmelCase : Union[str, Any] = auxiliary_loss
UpperCAmelCase : str = position_embedding_type
UpperCAmelCase : Union[str, Any] = backbone
UpperCAmelCase : List[str] = use_pretrained_backbone
UpperCAmelCase : Optional[int] = dilation
# Hungarian matcher
UpperCAmelCase : Union[str, Any] = class_cost
UpperCAmelCase : Optional[Any] = bbox_cost
UpperCAmelCase : List[Any] = giou_cost
# Loss coefficients
UpperCAmelCase : int = mask_loss_coefficient
UpperCAmelCase : Optional[int] = dice_loss_coefficient
UpperCAmelCase : Dict = bbox_loss_coefficient
UpperCAmelCase : Any = giou_loss_coefficient
UpperCAmelCase : Any = eos_coefficient
super().__init__(is_encoder_decoder=A , **A )
@property
def _lowercase( self ) -> int:
return self.encoder_attention_heads
@property
def _lowercase( self ) -> int:
return self.d_model
@classmethod
def _lowercase( cls , A , **A ) -> Dict:
return cls(backbone_config=A , **A )
def _lowercase( self ) -> Dict[str, any]:
UpperCAmelCase : Any = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
UpperCAmelCase : Any = self.backbone_config.to_dict()
UpperCAmelCase : Optional[Any] = self.__class__.model_type
return output
class UpperCamelCase_ ( __magic_name__ ):
lowercase = version.parse('1.11' )
@property
def _lowercase( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""pixel_mask""", {0: """batch"""}),
] )
@property
def _lowercase( self ) -> float:
return 1e-5
@property
def _lowercase( self ) -> int:
return 12
| 338 | 0 |
'''simple docstring'''
import argparse
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration
a = [
# tf -> hf
("""/""", """."""),
("""layer_""", """layers."""),
("""kernel""", """weight"""),
("""beta""", """bias"""),
("""gamma""", """weight"""),
("""pegasus""", """model"""),
]
a = [
(""".output.dense""", """.fc2"""),
("""intermediate.LayerNorm""", """final_layer_norm"""),
("""intermediate.dense""", """fc1"""),
]
a = (
INIT_COMMON
+ [
("""attention.self.LayerNorm""", """self_attn_layer_norm"""),
("""attention.output.dense""", """self_attn.out_proj"""),
("""attention.self""", """self_attn"""),
("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""),
("""attention.encdec_output.dense""", """encoder_attn.out_proj"""),
("""attention.encdec""", """encoder_attn"""),
("""key""", """k_proj"""),
("""value""", """v_proj"""),
("""query""", """q_proj"""),
("""decoder.LayerNorm""", """decoder.layernorm_embedding"""),
]
+ END_COMMON
)
a = (
INIT_COMMON
+ [
("""embeddings.word_embeddings""", """shared.weight"""),
("""embeddings.position_embeddings""", """embed_positions.weight"""),
("""attention.self.LayerNorm""", """self_attn_layer_norm"""),
("""attention.output.dense""", """self_attn.output"""),
("""attention.self""", """self_attn.self"""),
("""encoder.LayerNorm""", """encoder.layernorm_embedding"""),
]
+ END_COMMON
)
a = [
"""encdec/key/bias""",
"""encdec/query/bias""",
"""encdec/value/bias""",
"""self/key/bias""",
"""self/query/bias""",
"""self/value/bias""",
"""encdec_output/dense/bias""",
"""attention/output/dense/bias""",
]
def __lowerCamelCase ( _lowercase , _lowercase ) -> int:
for tf_name, hf_name in patterns:
UpperCAmelCase : Union[str, Any] = k.replace(_lowercase , _lowercase )
return k
def __lowerCamelCase ( _lowercase , _lowercase ) -> BigBirdPegasusForConditionalGeneration:
UpperCAmelCase : Any = BigBirdPegasusConfig(**_lowercase )
UpperCAmelCase : Any = BigBirdPegasusForConditionalGeneration(_lowercase )
UpperCAmelCase : Optional[Any] = torch_model.state_dict()
UpperCAmelCase : Optional[int] = {}
# separating decoder weights
UpperCAmelCase : Union[str, Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("""pegasus/decoder""" )}
UpperCAmelCase : List[Any] = {k: tf_weights[k] for k in tf_weights if not k.startswith("""pegasus/decoder""" )}
for k, v in tqdm(decoder_weights.items() , """tf -> hf conversion""" ):
UpperCAmelCase : str = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE]
if any(_lowercase ):
continue
UpperCAmelCase : int = DECODER_PATTERNS
UpperCAmelCase : Union[str, Any] = rename_state_dict_key(_lowercase , _lowercase )
if new_k not in state_dict:
raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' )
if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ):
UpperCAmelCase : int = v.T
UpperCAmelCase : List[str] = torch.from_numpy(_lowercase )
assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}'''
for k, v in tqdm(remaining_weights.items() , """tf -> hf conversion""" ):
UpperCAmelCase : str = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE]
if any(_lowercase ):
continue
UpperCAmelCase : int = REMAINING_PATTERNS
UpperCAmelCase : Dict = rename_state_dict_key(_lowercase , _lowercase )
if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings":
raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' )
if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ):
UpperCAmelCase : List[Any] = v.T
UpperCAmelCase : Dict = torch.from_numpy(_lowercase )
if k != "pegasus/embeddings/position_embeddings":
assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}'''
UpperCAmelCase : Any = mapping["""model.embed_positions.weight"""]
UpperCAmelCase : List[str] = mapping.pop("""model.embed_positions.weight""" )
UpperCAmelCase : Optional[int] = torch_model.load_state_dict(_lowercase , strict=_lowercase )
UpperCAmelCase : Tuple = [
k
for k in missing
if k
not in [
"""final_logits_bias""",
"""model.encoder.embed_tokens.weight""",
"""model.decoder.embed_tokens.weight""",
"""lm_head.weight""",
]
]
assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}'''
assert extra == [], F'''no matches found for the following tf keys {extra}'''
return torch_model
def __lowerCamelCase ( _lowercase ) -> Dict:
UpperCAmelCase : Dict = tf.train.list_variables(_lowercase )
UpperCAmelCase : List[str] = {}
UpperCAmelCase : List[Any] = ["""global_step"""]
for name, shape in tqdm(_lowercase , desc="""converting tf checkpoint to dict""" ):
UpperCAmelCase : Dict = any(pat in name for pat in ignore_name )
if skip_key:
continue
UpperCAmelCase : Dict = tf.train.load_variable(_lowercase , _lowercase )
UpperCAmelCase : str = array
return tf_weights
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict:
UpperCAmelCase : Dict = get_tf_weights_as_numpy(_lowercase )
UpperCAmelCase : int = convert_bigbird_pegasus(_lowercase , _lowercase )
torch_model.save_pretrained(_lowercase )
if __name__ == "__main__":
a = argparse.ArgumentParser()
parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""")
parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""")
a = parser.parse_args()
a = {}
convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
| 365 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
a : List[str] = {
"""configuration_altclip""": [
"""ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""AltCLIPConfig""",
"""AltCLIPTextConfig""",
"""AltCLIPVisionConfig""",
],
"""processing_altclip""": ["""AltCLIPProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : List[Any] = [
"""ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""AltCLIPPreTrainedModel""",
"""AltCLIPModel""",
"""AltCLIPTextModel""",
"""AltCLIPVisionModel""",
]
if TYPE_CHECKING:
from .configuration_altclip import (
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
AltCLIPConfig,
AltCLIPTextConfig,
AltCLIPVisionConfig,
)
from .processing_altclip import AltCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_altclip import (
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
AltCLIPModel,
AltCLIPPreTrainedModel,
AltCLIPTextModel,
AltCLIPVisionModel,
)
else:
import sys
a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 338 | 0 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ConditionalDetrImageProcessor
class UpperCamelCase_ ( unittest.TestCase ):
def __init__( self , A , A=7 , A=3 , A=30 , A=400 , A=True , A=None , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , A=True , A=1 / 255 , A=True , ) -> Optional[Any]:
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
UpperCAmelCase : str = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333}
UpperCAmelCase : str = parent
UpperCAmelCase : List[str] = batch_size
UpperCAmelCase : Tuple = num_channels
UpperCAmelCase : Union[str, Any] = min_resolution
UpperCAmelCase : str = max_resolution
UpperCAmelCase : Dict = do_resize
UpperCAmelCase : List[Any] = size
UpperCAmelCase : List[str] = do_normalize
UpperCAmelCase : str = image_mean
UpperCAmelCase : Optional[Any] = image_std
UpperCAmelCase : Dict = do_rescale
UpperCAmelCase : Optional[Any] = rescale_factor
UpperCAmelCase : Union[str, Any] = do_pad
def _lowercase( self ) -> Union[str, Any]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def _lowercase( self , A , A=False ) -> Any:
if not batched:
UpperCAmelCase : List[str] = image_inputs[0]
if isinstance(A , Image.Image ):
UpperCAmelCase : Union[str, Any] = image.size
else:
UpperCAmelCase : Tuple = image.shape[1], image.shape[2]
if w < h:
UpperCAmelCase : Optional[Any] = int(self.size["""shortest_edge"""] * h / w )
UpperCAmelCase : Any = self.size["""shortest_edge"""]
elif w > h:
UpperCAmelCase : Dict = self.size["""shortest_edge"""]
UpperCAmelCase : Union[str, Any] = int(self.size["""shortest_edge"""] * w / h )
else:
UpperCAmelCase : Optional[int] = self.size["""shortest_edge"""]
UpperCAmelCase : Tuple = self.size["""shortest_edge"""]
else:
UpperCAmelCase : Union[str, Any] = []
for image in image_inputs:
UpperCAmelCase : List[str] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
UpperCAmelCase : List[Any] = max(A , key=lambda A : item[0] )[0]
UpperCAmelCase : Tuple = max(A , key=lambda A : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = ConditionalDetrImageProcessor if is_vision_available() else None
def _lowercase( self ) -> Dict:
UpperCAmelCase : Optional[int] = ConditionalDetrImageProcessingTester(self )
@property
def _lowercase( self ) -> str:
return self.image_processor_tester.prepare_image_processor_dict()
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A , """image_mean""" ) )
self.assertTrue(hasattr(A , """image_std""" ) )
self.assertTrue(hasattr(A , """do_normalize""" ) )
self.assertTrue(hasattr(A , """do_resize""" ) )
self.assertTrue(hasattr(A , """size""" ) )
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} )
self.assertEqual(image_processor.do_pad , A )
UpperCAmelCase : int = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} )
self.assertEqual(image_processor.do_pad , A )
def _lowercase( self ) -> str:
pass
def _lowercase( self ) -> Union[str, Any]:
# Initialize image_processing
UpperCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A , Image.Image )
# Test not batched input
UpperCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
UpperCAmelCase : str = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase : Any = self.image_processor_tester.get_expected_values(A , batched=A )
UpperCAmelCase : List[Any] = image_processing(A , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _lowercase( self ) -> Optional[Any]:
# Initialize image_processing
UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A )
for image in image_inputs:
self.assertIsInstance(A , np.ndarray )
# Test not batched input
UpperCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
UpperCAmelCase : List[Any] = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase : Dict = image_processing(A , return_tensors="""pt""" ).pixel_values
UpperCAmelCase : Tuple = self.image_processor_tester.get_expected_values(A , batched=A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _lowercase( self ) -> Optional[int]:
# Initialize image_processing
UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A )
for image in image_inputs:
self.assertIsInstance(A , torch.Tensor )
# Test not batched input
UpperCAmelCase : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
UpperCAmelCase : Tuple = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase : Tuple = image_processing(A , return_tensors="""pt""" ).pixel_values
UpperCAmelCase : Dict = self.image_processor_tester.get_expected_values(A , batched=A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def _lowercase( self ) -> List[Any]:
# prepare image and target
UpperCAmelCase : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f:
UpperCAmelCase : str = json.loads(f.read() )
UpperCAmelCase : Optional[int] = {"""image_id""": 39769, """annotations""": target}
# encode them
UpperCAmelCase : Optional[int] = ConditionalDetrImageProcessor.from_pretrained("""microsoft/conditional-detr-resnet-50""" )
UpperCAmelCase : Tuple = image_processing(images=A , annotations=A , return_tensors="""pt""" )
# verify pixel values
UpperCAmelCase : Dict = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["""pixel_values"""].shape , A )
UpperCAmelCase : Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , A , atol=1e-4 ) )
# verify area
UpperCAmelCase : List[str] = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , A ) )
# verify boxes
UpperCAmelCase : Tuple = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , A )
UpperCAmelCase : Any = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , A , atol=1e-3 ) )
# verify image_id
UpperCAmelCase : Union[str, Any] = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , A ) )
# verify is_crowd
UpperCAmelCase : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , A ) )
# verify class_labels
UpperCAmelCase : Tuple = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , A ) )
# verify orig_size
UpperCAmelCase : Any = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , A ) )
# verify size
UpperCAmelCase : Dict = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , A ) )
@slow
def _lowercase( self ) -> Optional[Any]:
# prepare image, target and masks_path
UpperCAmelCase : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f:
UpperCAmelCase : str = json.loads(f.read() )
UpperCAmelCase : Tuple = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target}
UpperCAmelCase : Any = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" )
# encode them
UpperCAmelCase : str = ConditionalDetrImageProcessor(format="""coco_panoptic""" )
UpperCAmelCase : Any = image_processing(images=A , annotations=A , masks_path=A , return_tensors="""pt""" )
# verify pixel values
UpperCAmelCase : List[str] = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["""pixel_values"""].shape , A )
UpperCAmelCase : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , A , atol=1e-4 ) )
# verify area
UpperCAmelCase : Dict = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , A ) )
# verify boxes
UpperCAmelCase : Tuple = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , A )
UpperCAmelCase : List[str] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , A , atol=1e-3 ) )
# verify image_id
UpperCAmelCase : Dict = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , A ) )
# verify is_crowd
UpperCAmelCase : int = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , A ) )
# verify class_labels
UpperCAmelCase : int = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , A ) )
# verify masks
UpperCAmelCase : Optional[Any] = 822873
self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , A )
# verify orig_size
UpperCAmelCase : int = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , A ) )
# verify size
UpperCAmelCase : Union[str, Any] = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , A ) )
| 366 |
'''simple docstring'''
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
a : List[Any] = logging.get_logger(__name__)
def __lowerCamelCase ( _lowercase ) -> List[Any]:
UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" )
if "model" in sd.keys():
UpperCAmelCase : Any = torch.load(_lowercase , map_location="""cpu""" )["""model"""]
# pop unnecessary weights
UpperCAmelCase : Union[str, Any] = [
"""decoder.version""",
"""decoder.output_projection.weight""",
]
for key in keys_to_delete:
if key in sd:
sd.pop(_lowercase )
UpperCAmelCase : Tuple = {
"""decoder.project_in_dim.weight""": """decoder.project_in.weight""",
"""decoder.project_out_dim.weight""": """decoder.project_out.weight""",
"""decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""",
"""decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""",
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
UpperCAmelCase : List[Any] = sd.pop(_lowercase )
UpperCAmelCase : Tuple = list(sd.keys() )
for key in keys:
if ".qkv_proj." in key:
UpperCAmelCase : List[str] = sd[key]
# We split QKV in separate Q,K,V
UpperCAmelCase : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" )
UpperCAmelCase : Tuple = key.replace(""".qkv_proj.""" , """.k_proj.""" )
UpperCAmelCase : int = key.replace(""".qkv_proj.""" , """.v_proj.""" )
UpperCAmelCase : Dict = value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = torch.split(_lowercase , depth // 3 , dim=0 )
UpperCAmelCase : Tuple = q
UpperCAmelCase : Tuple = k
UpperCAmelCase : Any = v
del sd[key]
return sd
@torch.no_grad()
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Optional[Any]:
UpperCAmelCase : Tuple = load_checkpoint(_lowercase )
if config is not None:
UpperCAmelCase : Dict = OPTConfig.from_pretrained(_lowercase )
else:
UpperCAmelCase : int = OPTConfig()
UpperCAmelCase : List[Any] = OPTModel(_lowercase ).half().eval()
model.load_state_dict(_lowercase )
# Check results
Path(_lowercase ).mkdir(exist_ok=_lowercase )
model.save_pretrained(_lowercase )
if __name__ == "__main__":
a : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--fairseq_path""",
type=str,
help=(
"""path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:"""
""" https://huggingface.co/models?other=opt_metasq"""
),
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""")
a : Union[str, Any] = parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
| 338 | 0 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int:
try:
UpperCAmelCase : List[str] = int(_lowercase )
except (TypeError, ValueError):
raise TypeError("""Parameter n must be int or castable to int.""" )
if n <= 0:
raise ValueError("""Parameter n must be greater than or equal to one.""" )
UpperCAmelCase : Dict = 2
UpperCAmelCase : Dict = 0
if n == 2:
return 2
while n > 2:
while n % i != 0:
i += 1
UpperCAmelCase : int = i
while n % i == 0:
UpperCAmelCase : Optional[int] = n // i
i += 1
return int(_lowercase )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 367 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a : Union[str, Any] = logging.get_logger(__name__)
a : str = {
"""facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""",
# See all LeViT models at https://huggingface.co/models?filter=levit
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'levit'
def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int:
super().__init__(**A )
UpperCAmelCase : Any = image_size
UpperCAmelCase : Optional[int] = num_channels
UpperCAmelCase : Tuple = kernel_size
UpperCAmelCase : Optional[int] = stride
UpperCAmelCase : Dict = padding
UpperCAmelCase : List[Any] = hidden_sizes
UpperCAmelCase : List[Any] = num_attention_heads
UpperCAmelCase : Optional[int] = depths
UpperCAmelCase : Any = key_dim
UpperCAmelCase : str = drop_path_rate
UpperCAmelCase : List[Any] = patch_size
UpperCAmelCase : str = attention_ratio
UpperCAmelCase : Optional[Any] = mlp_ratio
UpperCAmelCase : Dict = initializer_range
UpperCAmelCase : int = [
["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
class UpperCamelCase_ ( __magic_name__ ):
lowercase = version.parse('1.11' )
@property
def _lowercase( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def _lowercase( self ) -> float:
return 1e-4
| 338 | 0 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase , _lowercase = False ) -> bool:
if n == 2:
return True
if not n % 2 or n < 2:
return False
if n > 5 and n % 1_0 not in (1, 3, 7, 9): # can quickly check last digit
return False
if n > 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1 and not allow_probable:
raise ValueError(
"""Warning: upper bound of deterministic test is exceeded. """
"""Pass allow_probable=True to allow probabilistic test. """
"""A return value of True indicates a probable prime.""" )
# array bounds provided by analysis
UpperCAmelCase : Tuple = [
2_0_4_7,
1_3_7_3_6_5_3,
2_5_3_2_6_0_0_1,
3_2_1_5_0_3_1_7_5_1,
2_1_5_2_3_0_2_8_9_8_7_4_7,
3_4_7_4_7_4_9_6_6_0_3_8_3,
3_4_1_5_5_0_0_7_1_7_2_8_3_2_1,
1,
3_8_2_5_1_2_3_0_5_6_5_4_6_4_1_3_0_5_1,
1,
1,
3_1_8_6_6_5_8_5_7_8_3_4_0_3_1_1_5_1_1_6_7_4_6_1,
3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1,
]
UpperCAmelCase : str = [2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1]
for idx, _p in enumerate(_lowercase , 1 ):
if n < _p:
# then we have our last prime to check
UpperCAmelCase : int = primes[:idx]
break
UpperCAmelCase : Any = n - 1, 0
# break up n -1 into a power of 2 (s) and
# remaining odd component
# essentially, solve for d * 2 ** s == n - 1
while d % 2 == 0:
d //= 2
s += 1
for prime in plist:
UpperCAmelCase : str = False
for r in range(_lowercase ):
UpperCAmelCase : Any = pow(_lowercase , d * 2**r , _lowercase )
# see article for analysis explanation for m
if (r == 0 and m == 1) or ((m + 1) % n == 0):
UpperCAmelCase : Any = True
# this loop will not determine compositeness
break
if pr:
continue
# if pr is False, then the above loop never evaluated to true,
# and the n MUST be composite
return False
return True
def __lowerCamelCase ( ) -> None:
assert not miller_rabin(5_6_1 )
assert miller_rabin(5_6_3 )
# 2047
assert not miller_rabin(8_3_8_2_0_1 )
assert miller_rabin(8_3_8_2_0_7 )
# 1_373_653
assert not miller_rabin(1_7_3_1_6_0_0_1 )
assert miller_rabin(1_7_3_1_6_0_1_7 )
# 25_326_001
assert not miller_rabin(3_0_7_8_3_8_6_6_4_1 )
assert miller_rabin(3_0_7_8_3_8_6_6_5_3 )
# 3_215_031_751
assert not miller_rabin(1_7_1_3_0_4_5_5_7_4_8_0_1 )
assert miller_rabin(1_7_1_3_0_4_5_5_7_4_8_1_9 )
# 2_152_302_898_747
assert not miller_rabin(2_7_7_9_7_9_9_7_2_8_3_0_7 )
assert miller_rabin(2_7_7_9_7_9_9_7_2_8_3_2_7 )
# 3_474_749_660_383
assert not miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_4_4_1 )
assert miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_5_2_7 )
# 341_550_071_728_321
assert not miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_5_1 )
assert miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_9_1 )
# 3_825_123_056_546_413_051
assert not miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_8_6_7 )
assert miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_9_5_1 )
# 318_665_857_834_031_151_167_461
assert not miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_3_3 )
assert miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_5_9 )
# 3_317_044_064_679_887_385_961_981
# upper limit for probabilistic test
if __name__ == "__main__":
test_miller_rabin()
| 368 |
'''simple docstring'''
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("""0.12.2"""):
raise Exception("""requires fairseq >= 0.12.2""")
if version.parse(fairseq.__version__) > version.parse("""2"""):
raise Exception("""requires fairseq < v2""")
logging.set_verbosity_info()
a : Dict = logging.get_logger(__name__)
a : List[str] = """Hello, World!"""
a : List[Any] = """en_XX"""
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict:
UpperCAmelCase : Dict = Path("""data_bin""" )
UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , )
xmod.eval() # disable dropout
print(_lowercase )
UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder
UpperCAmelCase : Tuple = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0]
print("""Our X-MOD config:""" , _lowercase )
UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase )
model.eval()
# Now let's copy all the weights.
# Embeddings
UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight
UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight
UpperCAmelCase : int = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight
UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
UpperCAmelCase : List[str] = model.roberta.encoder.layer[i]
UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i]
# self attention
UpperCAmelCase : Optional[Any] = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError("""Dimensions of self-attention weights do not match.""" )
UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight
UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias
UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight
UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias
UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight
UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias
# self-attention output
UpperCAmelCase : Optional[Any] = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError("""Dimensions of self-attention output weights do not match.""" )
UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight
UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias
UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight
UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias
# intermediate
UpperCAmelCase : Tuple = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError("""Dimensions of intermediate weights do not match.""" )
UpperCAmelCase : List[str] = xmod_layer.fca.weight
UpperCAmelCase : str = xmod_layer.fca.bias
# output
UpperCAmelCase : Any = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError("""Dimensions of feed-forward weights do not match.""" )
UpperCAmelCase : Dict = xmod_layer.fca.weight
UpperCAmelCase : Dict = xmod_layer.fca.bias
UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight
UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight
UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError("""Lists of language adapters do not match.""" )
for lang_code, adapter in xmod_layer.adapter_modules.items():
UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code]
UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code]
UpperCAmelCase : Any = from_adapter.fca.weight
UpperCAmelCase : int = from_adapter.fca.bias
UpperCAmelCase : Dict = from_adapter.fca.weight
UpperCAmelCase : Dict = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight
UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias
if classification_head:
UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight
UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias
UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight
UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias
else:
# LM Head
UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight
UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias
UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight
UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias
UpperCAmelCase : str = xmod.model.encoder.lm_head.weight
UpperCAmelCase : str = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(_lowercase )
UpperCAmelCase : Optional[int] = model(_lowercase )[0]
if classification_head:
UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) )
else:
UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item()
print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7
UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 )
print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" )
if not success:
raise Exception("""Something went wRoNg""" )
Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(_lowercase )
if __name__ == "__main__":
a : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--classification_head""", action="""store_true""", help="""Whether to convert a final classification head."""
)
a : List[str] = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 338 | 0 |
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from transformers import CLIPImageProcessor, CLIPVisionModel
from ...models import PriorTransformer
from ...pipelines import DiffusionPipeline
from ...schedulers import HeunDiscreteScheduler
from ...utils import (
BaseOutput,
is_accelerate_available,
logging,
randn_tensor,
replace_example_docstring,
)
from .renderer import ShapERenderer
a : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name
a : int = """
Examples:
```py
>>> from PIL import Image
>>> import torch
>>> from diffusers import DiffusionPipeline
>>> from diffusers.utils import export_to_gif, load_image
>>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")
>>> repo = \"openai/shap-e-img2img\"
>>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)
>>> pipe = pipe.to(device)
>>> guidance_scale = 3.0
>>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"
>>> image = load_image(image_url).convert(\"RGB\")
>>> images = pipe(
... image,
... guidance_scale=guidance_scale,
... num_inference_steps=64,
... frame_size=256,
... ).images
>>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")
```
"""
@dataclass
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 42
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , A , A , A , A , A , ) -> Union[str, Any]:
super().__init__()
self.register_modules(
prior=A , image_encoder=A , image_processor=A , scheduler=A , renderer=A , )
def _lowercase( self , A , A , A , A , A , A ) -> Any:
if latents is None:
UpperCAmelCase : Optional[Any] = randn_tensor(A , generator=A , device=A , dtype=A )
else:
if latents.shape != shape:
raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' )
UpperCAmelCase : Union[str, Any] = latents.to(A )
UpperCAmelCase : Any = latents * scheduler.init_noise_sigma
return latents
def _lowercase( self , A=0 ) -> Optional[int]:
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""" )
UpperCAmelCase : Union[str, Any] = torch.device(f'''cuda:{gpu_id}''' )
UpperCAmelCase : Dict = [self.image_encoder, self.prior]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(A , A )
@property
def _lowercase( self ) -> str:
if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ):
return self.device
for module in self.image_encoder.modules():
if (
hasattr(A , """_hf_hook""" )
and hasattr(module._hf_hook , """execution_device""" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
def _lowercase( self , A , A , A , A , ) -> Optional[Any]:
if isinstance(A , A ) and isinstance(image[0] , torch.Tensor ):
UpperCAmelCase : Union[str, Any] = torch.cat(A , axis=0 ) if image[0].ndim == 4 else torch.stack(A , axis=0 )
if not isinstance(A , torch.Tensor ):
UpperCAmelCase : Optional[Any] = self.image_processor(A , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 )
UpperCAmelCase : List[Any] = image.to(dtype=self.image_encoder.dtype , device=A )
UpperCAmelCase : Optional[int] = self.image_encoder(A )["""last_hidden_state"""]
UpperCAmelCase : Tuple = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256
UpperCAmelCase : Tuple = image_embeds.repeat_interleave(A , dim=0 )
if do_classifier_free_guidance:
UpperCAmelCase : Optional[int] = torch.zeros_like(A )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
UpperCAmelCase : Any = torch.cat([negative_image_embeds, image_embeds] )
return image_embeds
@torch.no_grad()
@replace_example_docstring(A )
def __call__( self , A , A = 1 , A = 25 , A = None , A = None , A = 4.0 , A = 64 , A = "pil" , A = True , ) -> str:
if isinstance(A , PIL.Image.Image ):
UpperCAmelCase : Union[str, Any] = 1
elif isinstance(A , torch.Tensor ):
UpperCAmelCase : Any = image.shape[0]
elif isinstance(A , A ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ):
UpperCAmelCase : Any = len(A )
else:
raise ValueError(
f'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(A )}''' )
UpperCAmelCase : Tuple = self._execution_device
UpperCAmelCase : str = batch_size * num_images_per_prompt
UpperCAmelCase : Optional[int] = guidance_scale > 1.0
UpperCAmelCase : int = self._encode_image(A , A , A , A )
# prior
self.scheduler.set_timesteps(A , device=A )
UpperCAmelCase : Union[str, Any] = self.scheduler.timesteps
UpperCAmelCase : Optional[Any] = self.prior.config.num_embeddings
UpperCAmelCase : int = self.prior.config.embedding_dim
UpperCAmelCase : Optional[Any] = self.prepare_latents(
(batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , A , A , A , self.scheduler , )
# YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim
UpperCAmelCase : Dict = latents.reshape(latents.shape[0] , A , A )
for i, t in enumerate(self.progress_bar(A ) ):
# expand the latents if we are doing classifier free guidance
UpperCAmelCase : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
UpperCAmelCase : str = self.scheduler.scale_model_input(A , A )
UpperCAmelCase : int = self.prior(
A , timestep=A , proj_embedding=A , ).predicted_image_embedding
# remove the variance
UpperCAmelCase : Optional[Any] = noise_pred.split(
scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim
if do_classifier_free_guidance is not None:
UpperCAmelCase : Dict = noise_pred.chunk(2 )
UpperCAmelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond)
UpperCAmelCase : Tuple = self.scheduler.step(
A , timestep=A , sample=A , ).prev_sample
if output_type == "latent":
return ShapEPipelineOutput(images=A )
UpperCAmelCase : Union[str, Any] = []
for i, latent in enumerate(A ):
print()
UpperCAmelCase : List[str] = self.renderer.decode(
latent[None, :] , A , size=A , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , )
images.append(A )
UpperCAmelCase : Any = torch.stack(A )
if output_type not in ["np", "pil"]:
raise ValueError(f'''Only the output types `pil` and `np` are supported not output_type={output_type}''' )
UpperCAmelCase : Dict = images.cpu().numpy()
if output_type == "pil":
UpperCAmelCase : Optional[int] = [self.numpy_to_pil(A ) for image in images]
# Offload last model to CPU
if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (images,)
return ShapEPipelineOutput(images=A )
| 369 |
'''simple docstring'''
# Function to print upper half of diamond (pyramid)
def __lowerCamelCase ( _lowercase ) -> List[Any]:
for i in range(0 , _lowercase ):
for _ in range(0 , n - i - 1 ): # printing spaces
print(""" """ , end="""""" )
for _ in range(0 , i + 1 ): # printing stars
print("""* """ , end="""""" )
print()
def __lowerCamelCase ( _lowercase ) -> Dict:
for i in range(_lowercase , 0 , -1 ):
for _ in range(_lowercase , 0 , -1 ): # printing stars
print("""* """ , end="""""" )
print()
for _ in range(n - i + 1 , 0 , -1 ): # printing spaces
print(""" """ , end="""""" )
def __lowerCamelCase ( _lowercase ) -> List[Any]:
if n <= 0:
print(""" ... .... nothing printing :(""" )
return
floyd(_lowercase ) # upper half
reverse_floyd(_lowercase ) # lower half
if __name__ == "__main__":
print(R"""| /\ | |- | |- |--| |\ /| |-""")
print(R"""|/ \| |- |_ |_ |__| | \/ | |_""")
a : List[Any] = 1
while K:
a : int = int(input("""enter the number and , and see the magic : """))
print()
pretty_print(user_number)
a : Tuple = int(input("""press 0 to exit... and 1 to continue..."""))
print("""Good Bye...""")
| 338 | 0 |
import pprint
import requests
a : int = """https://zenquotes.io/api"""
def __lowerCamelCase ( ) -> list:
return requests.get(API_ENDPOINT_URL + """/today""" ).json()
def __lowerCamelCase ( ) -> list:
return requests.get(API_ENDPOINT_URL + """/random""" ).json()
if __name__ == "__main__":
a : int = random_quotes()
pprint.pprint(response)
| 370 |
'''simple docstring'''
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
a : List[str] = logging.getLogger(__name__)
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , A , A , A , A=None ) -> Union[str, Any]:
super().__init__(
A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , )
UpperCAmelCase : Optional[Any] = None
def _lowercase( self , A ) -> List[Any]:
logger.info("""initializing retrieval""" )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info("""dist initialized""" )
# needs to be set manually
UpperCAmelCase : Tuple = self._infer_socket_ifname()
# avoid clash with the NCCL port
UpperCAmelCase : str = str(distributed_port + 1 )
UpperCAmelCase : Any = dist.new_group(ranks=A , backend="""gloo""" )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info("""dist not initialized / main""" )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def _lowercase( self ) -> Dict:
return dist.get_rank(group=self.process_group ) == 0
def _lowercase( self , A , A , A=torch.floataa ) -> str:
UpperCAmelCase : List[Any] = torch.empty(A , dtype=A )
dist.scatter(A , src=0 , scatter_list=A , group=self.process_group )
return target_tensor
def _lowercase( self ) -> Any:
UpperCAmelCase : List[Any] = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
UpperCAmelCase : Optional[int] = next((addr for addr in addrs if addr.startswith("""e""" )) , A )
return ifname
def _lowercase( self , A , A ) -> Tuple[np.ndarray, List[dict]]:
# single GPU training
if not dist.is_initialized():
UpperCAmelCase , UpperCAmelCase : str = self._main_retrieve(A , A )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A )
# distributed training
UpperCAmelCase : int = dist.get_world_size(group=self.process_group )
# gather logic
UpperCAmelCase : int = None
if self._is_main():
UpperCAmelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )]
dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group )
# scatter logic
UpperCAmelCase : List[Any] = question_hidden_states.shape[0]
UpperCAmelCase : Tuple = []
UpperCAmelCase : Any = []
if self._is_main():
assert len(A ) == world_size
UpperCAmelCase , UpperCAmelCase : Optional[int] = self._main_retrieve(torch.cat(A ).numpy() , A )
UpperCAmelCase , UpperCAmelCase : Optional[Any] = torch.tensor(A ), torch.tensor(A )
UpperCAmelCase : List[str] = self._chunk_tensor(A , A )
UpperCAmelCase : Union[str, Any] = self._chunk_tensor(A , A )
UpperCAmelCase : Tuple = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa )
UpperCAmelCase : Optional[Any] = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
| 338 | 0 |
'''simple docstring'''
import argparse
import json
import os
from collections import OrderedDict
import torch
from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[str]:
# Load configuration defined in the metadata file
with open(_lowercase ) as metadata_file:
UpperCAmelCase : Any = json.load(_lowercase )
UpperCAmelCase : Any = LukeConfig(use_entity_aware_attention=_lowercase , **metadata["""model_config"""] )
# Load in the weights from the checkpoint_path
UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" )["""module"""]
# Load the entity vocab file
UpperCAmelCase : Any = load_original_entity_vocab(_lowercase )
# add an entry for [MASK2]
UpperCAmelCase : Any = max(entity_vocab.values() ) + 1
config.entity_vocab_size += 1
UpperCAmelCase : Optional[int] = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] )
# Add special tokens to the token vocabulary for downstream tasks
UpperCAmelCase : Dict = AddedToken("""<ent>""" , lstrip=_lowercase , rstrip=_lowercase )
UpperCAmelCase : int = AddedToken("""<ent2>""" , lstrip=_lowercase , rstrip=_lowercase )
tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} )
config.vocab_size += 2
print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' )
tokenizer.save_pretrained(_lowercase )
with open(os.path.join(_lowercase , """tokenizer_config.json""" ) , """r""" ) as f:
UpperCAmelCase : Optional[Any] = json.load(_lowercase )
UpperCAmelCase : int = """MLukeTokenizer"""
with open(os.path.join(_lowercase , """tokenizer_config.json""" ) , """w""" ) as f:
json.dump(_lowercase , _lowercase )
with open(os.path.join(_lowercase , MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f:
json.dump(_lowercase , _lowercase )
UpperCAmelCase : Optional[Any] = MLukeTokenizer.from_pretrained(_lowercase )
# Initialize the embeddings of the special tokens
UpperCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(["""@"""] )[0]
UpperCAmelCase : str = tokenizer.convert_tokens_to_ids(["""#"""] )[0]
UpperCAmelCase : List[Any] = state_dict["""embeddings.word_embeddings.weight"""]
UpperCAmelCase : Optional[Any] = word_emb[ent_init_index].unsqueeze(0 )
UpperCAmelCase : List[str] = word_emb[enta_init_index].unsqueeze(0 )
UpperCAmelCase : List[str] = torch.cat([word_emb, ent_emb, enta_emb] )
# add special tokens for 'entity_predictions.bias'
for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]:
UpperCAmelCase : Any = state_dict[bias_name]
UpperCAmelCase : Dict = decoder_bias[ent_init_index].unsqueeze(0 )
UpperCAmelCase : Optional[int] = decoder_bias[enta_init_index].unsqueeze(0 )
UpperCAmelCase : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] )
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers ):
for matrix_name in ["query.weight", "query.bias"]:
UpperCAmelCase : int = F'''encoder.layer.{layer_index}.attention.self.'''
UpperCAmelCase : Union[str, Any] = state_dict[prefix + matrix_name]
UpperCAmelCase : Dict = state_dict[prefix + matrix_name]
UpperCAmelCase : List[str] = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
UpperCAmelCase : int = state_dict["""entity_embeddings.entity_embeddings.weight"""]
UpperCAmelCase : str = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 )
UpperCAmelCase : List[str] = torch.cat([entity_emb, entity_mask_emb] )
# add [MASK2] for 'entity_predictions.bias'
UpperCAmelCase : Tuple = state_dict["""entity_predictions.bias"""]
UpperCAmelCase : List[str] = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 )
UpperCAmelCase : Dict = torch.cat([entity_prediction_bias, entity_mask_bias] )
UpperCAmelCase : Any = LukeForMaskedLM(config=_lowercase ).eval()
state_dict.pop("""entity_predictions.decoder.weight""" )
state_dict.pop("""lm_head.decoder.weight""" )
state_dict.pop("""lm_head.decoder.bias""" )
UpperCAmelCase : Any = OrderedDict()
for key, value in state_dict.items():
if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )):
UpperCAmelCase : int = state_dict[key]
else:
UpperCAmelCase : List[str] = state_dict[key]
UpperCAmelCase : int = model.load_state_dict(_lowercase , strict=_lowercase )
if set(_lowercase ) != {"luke.embeddings.position_ids"}:
raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' )
if set(_lowercase ) != {
"lm_head.decoder.weight",
"lm_head.decoder.bias",
"entity_predictions.decoder.weight",
}:
raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' )
model.tie_weights()
assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all()
assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all()
# Check outputs
UpperCAmelCase : List[Any] = MLukeTokenizer.from_pretrained(_lowercase , task="""entity_classification""" )
UpperCAmelCase : Dict = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)."""
UpperCAmelCase : Dict = (0, 9)
UpperCAmelCase : Union[str, Any] = tokenizer(_lowercase , entity_spans=[span] , return_tensors="""pt""" )
UpperCAmelCase : Dict = model(**_lowercase )
# Verify word hidden states
if model_size == "large":
raise NotImplementedError
else: # base
UpperCAmelCase : str = torch.Size((1, 3_3, 7_6_8) )
UpperCAmelCase : str = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] )
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' )
if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _lowercase , atol=1e-4 ):
raise ValueError
# Verify entity hidden states
if model_size == "large":
raise NotImplementedError
else: # base
UpperCAmelCase : Tuple = torch.Size((1, 1, 7_6_8) )
UpperCAmelCase : int = torch.tensor([[-0.1482, 0.0609, 0.0322]] )
if not (outputs.entity_last_hidden_state.shape == expected_shape):
raise ValueError(
F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is'''
F''' {expected_shape}''' )
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _lowercase , atol=1e-4 ):
raise ValueError
# Verify masked word/entity prediction
UpperCAmelCase : Dict = MLukeTokenizer.from_pretrained(_lowercase )
UpperCAmelCase : Union[str, Any] = """Tokyo is the capital of <mask>."""
UpperCAmelCase : List[str] = (2_4, 3_0)
UpperCAmelCase : Tuple = tokenizer(_lowercase , entity_spans=[span] , return_tensors="""pt""" )
UpperCAmelCase : str = model(**_lowercase )
UpperCAmelCase : Union[str, Any] = encoding["""input_ids"""][0].tolist()
UpperCAmelCase : Union[str, Any] = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) )
UpperCAmelCase : Optional[Any] = outputs.logits[0][mask_position_id].argmax(dim=-1 )
assert "Japan" == tokenizer.decode(_lowercase )
UpperCAmelCase : int = outputs.entity_logits[0][0].argmax().item()
UpperCAmelCase : Dict = [
entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id
]
assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan"
# Finally, save our PyTorch model and tokenizer
print("""Saving PyTorch model to {}""".format(_lowercase ) )
model.save_pretrained(_lowercase )
def __lowerCamelCase ( _lowercase ) -> Optional[int]:
UpperCAmelCase : Optional[Any] = ["""[MASK]""", """[PAD]""", """[UNK]"""]
UpperCAmelCase : str = [json.loads(_lowercase ) for line in open(_lowercase )]
UpperCAmelCase : str = {}
for entry in data:
UpperCAmelCase : Dict = entry["""id"""]
for entity_name, language in entry["entities"]:
if entity_name in SPECIAL_TOKENS:
UpperCAmelCase : Optional[int] = entity_id
break
UpperCAmelCase : Optional[int] = F'''{language}:{entity_name}'''
UpperCAmelCase : Optional[int] = entity_id
return new_mapping
if __name__ == "__main__":
a : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""")
parser.add_argument(
"""--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration."""
)
parser.add_argument(
"""--entity_vocab_path""",
default=None,
type=str,
help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model."""
)
parser.add_argument(
"""--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted."""
)
a : Optional[Any] = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
)
| 371 |
'''simple docstring'''
from typing import List, Optional
from tokenizers import ByteLevelBPETokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
a : List[Any] = logging.get_logger(__name__)
a : List[str] = {
"""vocab_file""": """vocab.json""",
"""merges_file""": """merges.txt""",
"""tokenizer_config_file""": """tokenizer_config.json""",
}
a : List[Any] = {
"""vocab_file""": {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"""
},
"""merges_file""": {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"""
},
"""tokenizer_config_file""": {
"""facebook/blenderbot_small-90M""": (
"""https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"""
)
},
}
a : List[Any] = {
"""facebook/blenderbot_small-90M""": 5_1_2,
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = BlenderbotSmallTokenizer
def __init__( self , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , A=True , **A , ) -> Union[str, Any]:
super().__init__(
ByteLevelBPETokenizer(
vocab=A , merges=A , add_prefix_space=A , trim_offsets=A , ) , bos_token=A , eos_token=A , unk_token=A , **A , )
UpperCAmelCase : Optional[Any] = add_prefix_space
def _lowercase( self , A , A=None ) -> Optional[Any]:
UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _lowercase( self , A , A = None ) -> List[int]:
UpperCAmelCase : Any = [self.sep_token_id]
UpperCAmelCase : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 338 | 0 |
'''simple docstring'''
import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
"""split_dict""" , [
SplitDict(),
SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ),
SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ),
SplitDict({"""train""": SplitInfo()} ),
] , )
def __lowerCamelCase ( _lowercase ) -> List[str]:
UpperCAmelCase : Optional[int] = split_dict._to_yaml_list()
assert len(_lowercase ) == len(_lowercase )
UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(_lowercase )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
UpperCAmelCase : List[str] = None
# the split name of split_dict takes over the name of the split info object
UpperCAmelCase : int = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
"""split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name="""my_dataset""" )] )
def __lowerCamelCase ( _lowercase ) -> List[str]:
# For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name"
# field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files
UpperCAmelCase : Optional[Any] = asdict(SplitDict({"""train""": split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 350 |
'''simple docstring'''
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , A , A , A = None , A = None , A = False , **A , ) -> Tuple:
super().__init__(features=A , cache_dir=A , keep_in_memory=A , **A )
UpperCAmelCase : Any = Sql(
cache_dir=A , features=A , sql=A , con=A , **A , )
def _lowercase( self ) -> Dict:
UpperCAmelCase : Any = None
UpperCAmelCase : Any = None
UpperCAmelCase : int = None
UpperCAmelCase : int = None
self.builder.download_and_prepare(
download_config=A , download_mode=A , verification_mode=A , base_path=A , )
# Build dataset for splits
UpperCAmelCase : str = self.builder.as_dataset(
split="""train""" , verification_mode=A , in_memory=self.keep_in_memory )
return dataset
class UpperCamelCase_ :
def __init__( self , A , A , A , A = None , A = None , **A , ) -> str:
if num_proc is not None and num_proc <= 0:
raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' )
UpperCAmelCase : Dict = dataset
UpperCAmelCase : List[Any] = name
UpperCAmelCase : Any = con
UpperCAmelCase : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
UpperCAmelCase : Optional[Any] = num_proc
UpperCAmelCase : str = to_sql_kwargs
def _lowercase( self ) -> int:
UpperCAmelCase : Any = self.to_sql_kwargs.pop("""sql""" , A )
UpperCAmelCase : str = self.to_sql_kwargs.pop("""con""" , A )
UpperCAmelCase : Union[str, Any] = self.to_sql_kwargs.pop("""index""" , A )
UpperCAmelCase : str = self._write(index=A , **self.to_sql_kwargs )
return written
def _lowercase( self , A ) -> Any:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = args
UpperCAmelCase : Union[str, Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs
UpperCAmelCase : int = query_table(
table=self.dataset.data , key=slice(A , offset + self.batch_size ) , indices=self.dataset._indices , )
UpperCAmelCase : Any = batch.to_pandas()
UpperCAmelCase : List[Any] = df.to_sql(self.name , self.con , index=A , **A )
return num_rows or len(A )
def _lowercase( self , A , **A ) -> int:
UpperCAmelCase : Optional[int] = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
UpperCAmelCase , UpperCAmelCase : List[str] = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , A , A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += num_rows
return written
| 338 | 0 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase ) -> int:
if a < 0:
raise ValueError("""Input value must be a positive integer""" )
elif isinstance(_lowercase , _lowercase ):
raise TypeError("""Input value must be a 'int' type""" )
return bin(_lowercase ).count("""1""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 351 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel
@require_tf
class UpperCamelCase_ :
lowercase = MBartConfig
lowercase = {}
lowercase = 'gelu'
def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]:
UpperCAmelCase : Optional[int] = parent
UpperCAmelCase : Dict = batch_size
UpperCAmelCase : Tuple = seq_length
UpperCAmelCase : str = is_training
UpperCAmelCase : Optional[int] = use_labels
UpperCAmelCase : Optional[Any] = vocab_size
UpperCAmelCase : Union[str, Any] = hidden_size
UpperCAmelCase : Union[str, Any] = num_hidden_layers
UpperCAmelCase : List[Any] = num_attention_heads
UpperCAmelCase : Optional[int] = intermediate_size
UpperCAmelCase : Dict = hidden_dropout_prob
UpperCAmelCase : int = attention_probs_dropout_prob
UpperCAmelCase : Optional[int] = max_position_embeddings
UpperCAmelCase : Optional[Any] = eos_token_id
UpperCAmelCase : List[str] = pad_token_id
UpperCAmelCase : List[Any] = bos_token_id
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : str = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A )
return config, inputs_dict
def _lowercase( self , A , A ) -> List[str]:
UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder()
UpperCAmelCase : int = inputs_dict["""input_ids"""]
UpperCAmelCase : str = input_ids[:1, :]
UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :]
UpperCAmelCase : List[str] = inputs_dict["""head_mask"""]
UpperCAmelCase : List[Any] = 1
# first forward pass
UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A )
UpperCAmelCase , UpperCAmelCase : Optional[Any] = outputs.to_tuple()
UpperCAmelCase : int = past_key_values[1]
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]:
if attention_mask is None:
UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCAmelCase : int = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
lowercase = (
{
'conversational': TFMBartForConditionalGeneration,
'feature-extraction': TFMBartModel,
'summarization': TFMBartForConditionalGeneration,
'text2text-generation': TFMBartForConditionalGeneration,
'translation': TFMBartForConditionalGeneration,
}
if is_tf_available()
else {}
)
lowercase = True
lowercase = False
lowercase = False
def _lowercase( self , A , A , A , A , A ) -> int:
if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
# Exception encountered when calling layer '...'
return True
return False
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : int = TFMBartModelTester(self )
UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A )
def _lowercase( self ) -> Optional[int]:
self.config_tester.run_common_tests()
def _lowercase( self ) -> Dict:
UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*A )
@require_sentencepiece
@require_tokenizers
@require_tf
class UpperCamelCase_ ( unittest.TestCase ):
lowercase = [
' UN Chief Says There Is No Military Solution in Syria',
]
lowercase = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
]
lowercase = 'facebook/mbart-large-en-ro'
@cached_property
def _lowercase( self ) -> Any:
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def _lowercase( self , **A ) -> Any:
UpperCAmelCase : Optional[int] = self.translate_src_text(**A )
self.assertListEqual(self.expected_text , A )
def _lowercase( self , **A ) -> Optional[Any]:
UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" )
UpperCAmelCase : int = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 )
UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A )
return generated_words
@slow
def _lowercase( self ) -> List[Any]:
self._assert_generated_batch_equal_expected()
| 338 | 0 |
'''simple docstring'''
import math
import time
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , *A , A=None , A=None , **A ) -> Optional[Any]:
super().__init__(*A , **A )
UpperCAmelCase : List[Any] = eval_examples
UpperCAmelCase : Optional[Any] = post_process_function
def _lowercase( self , A=None , A=None , A=None , A = "eval" ) -> Union[str, Any]:
UpperCAmelCase : Optional[int] = self.eval_dataset if eval_dataset is None else eval_dataset
UpperCAmelCase : Dict = self.get_eval_dataloader(A )
UpperCAmelCase : List[str] = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
UpperCAmelCase : List[Any] = self.compute_metrics
UpperCAmelCase : List[Any] = None
UpperCAmelCase : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
UpperCAmelCase : List[str] = time.time()
try:
UpperCAmelCase : Any = eval_loop(
A , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A , metric_key_prefix=A , )
finally:
UpperCAmelCase : List[str] = compute_metrics
UpperCAmelCase : Optional[Any] = self.args.eval_batch_size * self.args.world_size
if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
A , A , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
UpperCAmelCase : Dict = self.post_process_function(A , A , output.predictions )
UpperCAmelCase : Any = self.compute_metrics(A )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f'''{metric_key_prefix}_''' ):
UpperCAmelCase : Tuple = metrics.pop(A )
metrics.update(output.metrics )
else:
UpperCAmelCase : List[Any] = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(A )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
UpperCAmelCase : Dict = self.callback_handler.on_evaluate(self.args , self.state , self.control , A )
return metrics
def _lowercase( self , A , A , A=None , A = "test" ) -> Union[str, Any]:
UpperCAmelCase : List[Any] = self.get_test_dataloader(A )
# Temporarily disable metric computation, we will do it in the loop here.
UpperCAmelCase : Union[str, Any] = self.compute_metrics
UpperCAmelCase : int = None
UpperCAmelCase : int = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
UpperCAmelCase : List[str] = time.time()
try:
UpperCAmelCase : Tuple = eval_loop(
A , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A , metric_key_prefix=A , )
finally:
UpperCAmelCase : List[str] = compute_metrics
UpperCAmelCase : Union[str, Any] = self.args.eval_batch_size * self.args.world_size
if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
A , A , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
UpperCAmelCase : List[Any] = self.post_process_function(A , A , output.predictions , """predict""" )
UpperCAmelCase : str = self.compute_metrics(A )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f'''{metric_key_prefix}_''' ):
UpperCAmelCase : Tuple = metrics.pop(A )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=A )
| 352 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase , _lowercase ) -> bool:
UpperCAmelCase : Tuple = len(_lowercase ) + 1
UpperCAmelCase : List[Any] = len(_lowercase ) + 1
# dp is a 2d matrix where dp[i][j] denotes whether prefix string of
# length i of input_string matches with prefix string of length j of
# given pattern.
# "dp" stands for dynamic programming.
UpperCAmelCase : str = [[0 for i in range(_lowercase )] for j in range(_lowercase )]
# since string of zero length match pattern of zero length
UpperCAmelCase : int = 1
# since pattern of zero length will never match with string of non-zero length
for i in range(1 , _lowercase ):
UpperCAmelCase : str = 0
# since string of zero length will match with pattern where there
# is at least one * alternatively
for j in range(1 , _lowercase ):
UpperCAmelCase : Optional[Any] = dp[0][j - 2] if pattern[j - 1] == """*""" else 0
# now using bottom-up approach to find for all remaining lengths
for i in range(1 , _lowercase ):
for j in range(1 , _lowercase ):
if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".":
UpperCAmelCase : Union[str, Any] = dp[i - 1][j - 1]
elif pattern[j - 1] == "*":
if dp[i][j - 2] == 1:
UpperCAmelCase : List[Any] = 1
elif pattern[j - 2] in (input_string[i - 1], "."):
UpperCAmelCase : Optional[int] = dp[i - 1][j]
else:
UpperCAmelCase : Any = 0
else:
UpperCAmelCase : str = 0
return bool(dp[-1][-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
# inputing the strings
# input_string = input("input a string :")
# pattern = input("input a pattern :")
a : List[str] = """aab"""
a : Optional[int] = """c*a*b"""
# using function to check whether given string matches the given pattern
if match_pattern(input_string, pattern):
print(F'''{input_string} matches the given pattern {pattern}''')
else:
print(F'''{input_string} does not match with the given pattern {pattern}''')
| 338 | 0 |
'''simple docstring'''
import math
def __lowerCamelCase ( _lowercase ) -> list:
UpperCAmelCase : List[str] = [True] * n
UpperCAmelCase : Tuple = False
UpperCAmelCase : List[str] = False
UpperCAmelCase : List[str] = True
for i in range(3 , int(n**0.5 + 1 ) , 2 ):
UpperCAmelCase : Dict = i * 2
while index < n:
UpperCAmelCase : Tuple = False
UpperCAmelCase : Dict = index + i
UpperCAmelCase : Union[str, Any] = [2]
for i in range(3 , _lowercase , 2 ):
if is_prime[i]:
primes.append(_lowercase )
return primes
def __lowerCamelCase ( _lowercase = 9_9_9_9_6_6_6_6_3_3_3_3 ) -> int:
UpperCAmelCase : Dict = math.floor(math.sqrt(_lowercase ) ) + 1_0_0
UpperCAmelCase : List[str] = prime_sieve(_lowercase )
UpperCAmelCase : Dict = 0
UpperCAmelCase : List[str] = 0
UpperCAmelCase : str = primes[prime_index]
while (last_prime**2) <= limit:
UpperCAmelCase : Any = primes[prime_index + 1]
UpperCAmelCase : Any = last_prime**2
UpperCAmelCase : List[Any] = next_prime**2
# Get numbers divisible by lps(current)
UpperCAmelCase : Optional[Any] = lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
UpperCAmelCase : Optional[Any] = upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
UpperCAmelCase : Optional[int] = 0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
UpperCAmelCase : List[str] = next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| 353 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase ) -> int:
UpperCAmelCase : List[str] = 0
while num > 0:
digit_sum += num % 1_0
num //= 1_0
return digit_sum
def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int:
UpperCAmelCase : int = 1
UpperCAmelCase : str = 2
for i in range(2 , max_n + 1 ):
UpperCAmelCase : Tuple = pre_numerator
UpperCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1
UpperCAmelCase : Union[str, Any] = cur_numerator
UpperCAmelCase : Optional[int] = e_cont * pre_numerator + temp
return sum_digits(_lowercase )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 338 | 0 |
'''simple docstring'''
import random
import unittest
import torch
from diffusers import IFInpaintingSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowercase = IFInpaintingSuperResolutionPipeline
lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'}
lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} )
lowercase = PipelineTesterMixin.required_optional_params - {'latents'}
def _lowercase( self ) -> List[str]:
return self._get_superresolution_dummy_components()
def _lowercase( self , A , A=0 ) -> Tuple:
if str(A ).startswith("""mps""" ):
UpperCAmelCase : int = torch.manual_seed(A )
else:
UpperCAmelCase : Optional[Any] = torch.Generator(device=A ).manual_seed(A )
UpperCAmelCase : int = floats_tensor((1, 3, 16, 16) , rng=random.Random(A ) ).to(A )
UpperCAmelCase : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A )
UpperCAmelCase : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A )
UpperCAmelCase : Optional[Any] = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""original_image""": original_image,
"""mask_image""": mask_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def _lowercase( self ) -> Optional[Any]:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
def _lowercase( self ) -> Tuple:
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" )
def _lowercase( self ) -> Dict:
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1 )
def _lowercase( self ) -> int:
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def _lowercase( self ) -> Tuple:
self._test_save_load_local()
def _lowercase( self ) -> int:
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
| 354 |
'''simple docstring'''
import random
import unittest
from torch.utils.data import BatchSampler, DataLoader, IterableDataset
from accelerate import Accelerator
from accelerate.data_loader import (
BatchSamplerShard,
DataLoaderDispatcher,
DataLoaderShard,
IterableDatasetShard,
SkipBatchSampler,
SkipDataLoader,
skip_first_batches,
)
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , A=0.0_1 , A=1000 ) -> List[str]:
UpperCAmelCase : List[Any] = p_stop
UpperCAmelCase : Optional[int] = max_length
def __iter__( self ) -> Union[str, Any]:
UpperCAmelCase : Dict = 0
UpperCAmelCase : Union[str, Any] = False
while not stop and count < self.max_length:
yield count
count += 1
UpperCAmelCase : Any = random.random() < self.p_stop
class UpperCamelCase_ ( unittest.TestCase ):
def _lowercase( self , A , A , A=False , A=True ) -> Union[str, Any]:
UpperCAmelCase : List[str] = [
BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A )
for i in range(2 )
]
UpperCAmelCase : List[str] = [list(A ) for batch_sampler_shard in batch_sampler_shards]
if not split_batches:
self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] )
self.assertListEqual(A , A )
def _lowercase( self ) -> Union[str, Any]:
# Check the shards when the dataset is a round multiple of total batch size.
UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Any = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A )
# Expected shouldn't change
self.check_batch_sampler_shards(A , A )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]],
]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Tuple = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]],
]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : List[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]],
]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : int = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A )
# Check the shards when the dataset is very small.
UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : List[Any] = [[], []]
self.check_batch_sampler_shards(A , A )
def _lowercase( self ) -> Tuple:
# Check the shards when the dataset is a round multiple of batch size.
UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : List[str] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A )
# Expected shouldn't change
self.check_batch_sampler_shards(A , A , split_batches=A )
# Check the shards when the dataset is not a round multiple of batch size.
UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : List[str] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Union[str, Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Any = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
# Check the shards when the dataset is very small.
UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Optional[Any] = [[[0, 1]], [[0, 1]]]
self.check_batch_sampler_shards(A , A , split_batches=A )
UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Any = [[], []]
self.check_batch_sampler_shards(A , A , split_batches=A )
def _lowercase( self ) -> Any:
# Check the shards when the dataset is a round multiple of total batch size.
UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A )
# Expected shouldn't change
self.check_batch_sampler_shards(A , A , even_batches=A )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : List[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Dict = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
UpperCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Union[str, Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
# Check the shards when the dataset is very small.
UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : str = [[[0, 1]], []]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Tuple = [[], []]
self.check_batch_sampler_shards(A , A , even_batches=A )
def _lowercase( self ) -> List[Any]:
# Check the shards when the dataset is a round multiple of batch size.
UpperCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : List[Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A )
# Expected shouldn't change
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
# Check the shards when the dataset is not a round multiple of batch size.
UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Optional[Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Dict = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Union[str, Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Dict = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
# Check the shards when the dataset is very small.
UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Dict = [[[0, 1]], []]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Dict = [[], []]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]]
UpperCAmelCase : List[str] = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )]
self.assertEqual(len(batch_sampler_shards[0] ) , 3 )
self.assertEqual(len(batch_sampler_shards[1] ) , 2 )
self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] )
self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] )
def _lowercase( self , A , A , A , A=False , A=2 , A=False ) -> Tuple:
random.seed(A )
UpperCAmelCase : Dict = list(A )
UpperCAmelCase : Any = [
IterableDatasetShard(
A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , )
for i in range(A )
]
UpperCAmelCase : Dict = []
for iterable_dataset_shard in iterable_dataset_shards:
# Since our random iterable dataset will be... random... we need to use a seed to get reproducible results.
random.seed(A )
iterable_dataset_lists.append(list(A ) )
UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size
# All iterable dataset shard should have the same length, a round multiple of shard_batch_size
UpperCAmelCase : List[Any] = iterable_dataset_lists[0]
for l in iterable_dataset_lists[1:]:
self.assertEqual(len(A ) , len(A ) )
self.assertTrue(len(A ) % shard_batch_size == 0 )
UpperCAmelCase : List[Any] = []
for idx in range(0 , len(A ) , A ):
for l in iterable_dataset_lists:
observed += l[idx : idx + shard_batch_size]
if not drop_last:
while len(A ) < len(A ):
reference += reference
self.assertListEqual(A , reference[: len(A )] )
def _lowercase( self ) -> str:
UpperCAmelCase : Tuple = 42
UpperCAmelCase : List[Any] = RandomIterableDataset()
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
# Edge case with a very small dataset
UpperCAmelCase : List[Any] = RandomIterableDataset(max_length=2 )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Any = SkipBatchSampler(A , 2 )
self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowercase( self ) -> int:
UpperCAmelCase : Any = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 )
self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : List[Any] = DataLoader(list(range(16 ) ) , batch_size=4 )
UpperCAmelCase : Optional[Any] = skip_first_batches(A , num_batches=2 )
self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 )
for idx, _ in enumerate(A ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(A ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
def _lowercase( self ) -> Dict:
Accelerator()
UpperCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 )
for idx, _ in enumerate(A ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(A ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
| 338 | 0 |
import argparse
import logging
import os
from datetime import datetime
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader, RandomSampler, TensorDataset
from tqdm import tqdm
from transformers import GPTaLMHeadModel
a : List[Any] = logging.getLogger(__name__)
def __lowerCamelCase ( _lowercase , _lowercase ) -> str:
# save results
if os.path.exists(_lowercase ):
if os.path.exists(os.path.join(_lowercase , """config.json""" ) ) and os.path.isfile(
os.path.join(_lowercase , """config.json""" ) ):
os.remove(os.path.join(_lowercase , """config.json""" ) )
if os.path.exists(os.path.join(_lowercase , """pytorch_model.bin""" ) ) and os.path.isfile(
os.path.join(_lowercase , """pytorch_model.bin""" ) ):
os.remove(os.path.join(_lowercase , """pytorch_model.bin""" ) )
else:
os.makedirs(_lowercase )
model.save_pretrained(_lowercase )
def __lowerCamelCase ( _lowercase , _lowercase=False ) -> List[Any]:
UpperCAmelCase : Tuple = 2
if unlogit:
UpperCAmelCase : Any = torch.pow(_lowercase , _lowercase )
UpperCAmelCase : Any = p * torch.log(_lowercase )
UpperCAmelCase : List[Any] = 0
return -plogp.sum(dim=-1 )
def __lowerCamelCase ( _lowercase ) -> Any:
logger.info("""lv, h >\t""" + """\t""".join(F'''{x + 1}''' for x in range(len(_lowercase ) ) ) )
for row in range(len(_lowercase ) ):
if tensor.dtype != torch.long:
logger.info(F'''layer {row + 1}:\t''' + """\t""".join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) )
else:
logger.info(F'''layer {row + 1}:\t''' + """\t""".join(F'''{x:d}''' for x in tensor[row].cpu().data ) )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=True , _lowercase=True , _lowercase=None , _lowercase=False ) -> int:
UpperCAmelCase : Any = model.config.num_hidden_layers, model.config.num_attention_heads
UpperCAmelCase : int = torch.zeros(_lowercase , _lowercase ).to(args.device )
UpperCAmelCase : Union[str, Any] = torch.zeros(_lowercase , _lowercase ).to(args.device )
if head_mask is None:
UpperCAmelCase : Optional[Any] = torch.ones(_lowercase , _lowercase ).to(args.device )
head_mask.requires_grad_(requires_grad=_lowercase )
# If actually pruned attention multi-head, set head mask to None to avoid shape mismatch
if actually_pruned:
UpperCAmelCase : List[str] = None
UpperCAmelCase : List[str] = 0.0
UpperCAmelCase : List[Any] = 0.0
for step, inputs in enumerate(tqdm(_lowercase , desc="""Iteration""" , disable=args.local_rank not in [-1, 0] ) ):
UpperCAmelCase : List[Any] = tuple(t.to(args.device ) for t in inputs )
(UpperCAmelCase ) : Dict = inputs
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
UpperCAmelCase : Optional[int] = model(_lowercase , labels=_lowercase , head_mask=_lowercase )
# (loss), lm_logits, presents, (all hidden_states), (attentions)
UpperCAmelCase : Optional[int] = (
outputs[0],
outputs[1],
outputs[-1],
) # Loss and logits are the first, attention the last
loss.backward() # Backpropagate to populate the gradients in the head mask
total_loss += loss.detach().cpu().numpy()
if compute_entropy:
for layer, attn in enumerate(_lowercase ):
UpperCAmelCase : Union[str, Any] = entropy(attn.detach() , _lowercase )
attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach()
if compute_importance:
head_importance += head_mask.grad.abs().detach()
tot_tokens += torch.ones_like(_lowercase ).float().detach().sum().data
# Normalize
attn_entropy /= tot_tokens
head_importance /= tot_tokens
# Layerwise importance normalization
if not args.dont_normalize_importance_by_layer:
UpperCAmelCase : List[Any] = 2
UpperCAmelCase : Any = torch.pow(torch.pow(_lowercase , _lowercase ).sum(-1 ) , 1 / exponent )
head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20
if not args.dont_normalize_global_importance:
UpperCAmelCase : Union[str, Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())
# Print matrices
if compute_entropy:
logger.info("""Attention entropies""" )
print_ad_tensor(_lowercase )
if compute_importance:
logger.info("""Head importance scores""" )
print_ad_tensor(_lowercase )
logger.info("""Head ranked by importance scores""" )
UpperCAmelCase : str = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device )
UpperCAmelCase : Tuple = torch.arange(
head_importance.numel() , device=args.device )
UpperCAmelCase : Any = head_ranks.view_as(_lowercase )
print_ad_tensor(_lowercase )
return attn_entropy, head_importance, total_loss
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int:
UpperCAmelCase : Optional[int] = compute_heads_importance(_lowercase , _lowercase , _lowercase , compute_entropy=_lowercase )
UpperCAmelCase : List[Any] = 1 / loss # instead of downsteam score use the LM loss
logger.info("""Pruning: original score: %f, threshold: %f""" , _lowercase , original_score * args.masking_threshold )
UpperCAmelCase : Optional[Any] = torch.ones_like(_lowercase )
UpperCAmelCase : Optional[Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) )
UpperCAmelCase : Dict = original_score
while current_score >= original_score * args.masking_threshold:
UpperCAmelCase : Any = new_head_mask.clone().detach() # save current head mask
# heads from least important to most - keep only not-masked heads
UpperCAmelCase : Tuple = float("""Inf""" )
UpperCAmelCase : List[str] = head_importance.view(-1 ).sort()[1]
if len(_lowercase ) <= num_to_mask:
print("""BREAK BY num_to_mask""" )
break
# mask heads
UpperCAmelCase : Tuple = current_heads_to_mask[:num_to_mask]
logger.info("""Heads to mask: %s""" , str(current_heads_to_mask.tolist() ) )
UpperCAmelCase : Tuple = new_head_mask.view(-1 )
UpperCAmelCase : Dict = 0.0
UpperCAmelCase : Optional[int] = new_head_mask.view_as(_lowercase )
UpperCAmelCase : Any = new_head_mask.clone().detach()
print_ad_tensor(_lowercase )
# Compute metric and head importance again
UpperCAmelCase : Union[str, Any] = compute_heads_importance(
_lowercase , _lowercase , _lowercase , compute_entropy=_lowercase , head_mask=_lowercase )
UpperCAmelCase : Optional[int] = 1 / loss
logger.info(
"""Masking: current score: %f, remaining heads %d (%.1f percents)""" , _lowercase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_0_0 , )
logger.info("""Final head mask""" )
print_ad_tensor(_lowercase )
np.save(os.path.join(args.output_dir , """head_mask.npy""" ) , head_mask.detach().cpu().numpy() )
return head_mask
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> str:
UpperCAmelCase : str = datetime.now()
UpperCAmelCase : List[str] = compute_heads_importance(
_lowercase , _lowercase , _lowercase , compute_entropy=_lowercase , compute_importance=_lowercase , head_mask=_lowercase )
UpperCAmelCase : List[Any] = 1 / loss
UpperCAmelCase : List[str] = datetime.now() - before_time
UpperCAmelCase : str = sum(p.numel() for p in model.parameters() )
UpperCAmelCase : Dict = {
layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(_lowercase ) )
}
for k, v in heads_to_prune.items():
if isinstance(_lowercase , _lowercase ):
UpperCAmelCase : Optional[int] = [
v,
]
assert sum(len(_lowercase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item()
model.prune_heads(_lowercase )
UpperCAmelCase : Optional[int] = sum(p.numel() for p in model.parameters() )
UpperCAmelCase : Any = datetime.now()
UpperCAmelCase : Tuple = compute_heads_importance(
_lowercase , _lowercase , _lowercase , compute_entropy=_lowercase , compute_importance=_lowercase , head_mask=_lowercase , actually_pruned=_lowercase , )
UpperCAmelCase : List[Any] = 1 / loss
UpperCAmelCase : Optional[int] = datetime.now() - before_time
logger.info(
"""Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)""" , _lowercase , _lowercase , pruned_num_params / original_num_params * 1_0_0 , )
logger.info("""Pruning: score with masking: %f score with pruning: %f""" , _lowercase , _lowercase )
logger.info("""Pruning: speed ratio (original timing / new timing): %f percents""" , original_time / new_time * 1_0_0 )
save_model(_lowercase , args.output_dir )
def __lowerCamelCase ( ) -> int:
UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--data_dir""" , default=_lowercase , type=_lowercase , required=_lowercase , help="""The input data dir. Should contain the .tsv files (or other data files) for the task.""" , )
parser.add_argument(
"""--model_name_or_path""" , default=_lowercase , type=_lowercase , required=_lowercase , help="""Path to pretrained model or model identifier from huggingface.co/models""" , )
parser.add_argument(
"""--output_dir""" , default=_lowercase , type=_lowercase , required=_lowercase , help="""The output directory where the model predictions and checkpoints will be written.""" , )
# Other parameters
parser.add_argument(
"""--config_name""" , default="""""" , type=_lowercase , help="""Pretrained config name or path if not the same as model_name_or_path""" , )
parser.add_argument(
"""--tokenizer_name""" , default="""""" , type=_lowercase , help="""Pretrained tokenizer name or path if not the same as model_name_or_path""" , )
parser.add_argument(
"""--cache_dir""" , default=_lowercase , type=_lowercase , help="""Where do you want to store the pre-trained models downloaded from s3""" , )
parser.add_argument(
"""--data_subset""" , type=_lowercase , default=-1 , help="""If > 0: limit the data to a subset of data_subset instances.""" )
parser.add_argument(
"""--overwrite_output_dir""" , action="""store_true""" , help="""Whether to overwrite data in output directory""" )
parser.add_argument(
"""--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" )
parser.add_argument(
"""--dont_normalize_importance_by_layer""" , action="""store_true""" , help="""Don't normalize importance score by layers""" )
parser.add_argument(
"""--dont_normalize_global_importance""" , action="""store_true""" , help="""Don't normalize all importance scores between 0 and 1""" , )
parser.add_argument(
"""--try_masking""" , action="""store_true""" , help="""Whether to try to mask head until a threshold of accuracy.""" )
parser.add_argument(
"""--masking_threshold""" , default=0.9 , type=_lowercase , help="""masking threshold in term of metrics (stop masking when metric < threshold * original metric value).""" , )
parser.add_argument(
"""--masking_amount""" , default=0.1 , type=_lowercase , help="""Amount to heads to masking at each masking step.""" )
parser.add_argument("""--metric_name""" , default="""acc""" , type=_lowercase , help="""Metric to use for head masking.""" )
parser.add_argument(
"""--max_seq_length""" , default=1_2_8 , type=_lowercase , help=(
"""The maximum total input sequence length after WordPiece tokenization. \n"""
"""Sequences longer than this will be truncated, sequences shorter padded."""
) , )
parser.add_argument("""--batch_size""" , default=1 , type=_lowercase , help="""Batch size.""" )
parser.add_argument("""--seed""" , type=_lowercase , default=4_2 )
parser.add_argument("""--local_rank""" , type=_lowercase , default=-1 , help="""local_rank for distributed training on gpus""" )
parser.add_argument("""--no_cuda""" , action="""store_true""" , help="""Whether not to use CUDA when available""" )
parser.add_argument("""--server_ip""" , type=_lowercase , default="""""" , help="""Can be used for distant debugging.""" )
parser.add_argument("""--server_port""" , type=_lowercase , default="""""" , help="""Can be used for distant debugging.""" )
UpperCAmelCase : List[str] = parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("""Waiting for debugger attach""" )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_lowercase )
ptvsd.wait_for_attach()
# Setup devices and distributed training
if args.local_rank == -1 or args.no_cuda:
UpperCAmelCase : List[Any] = torch.device("""cuda""" if torch.cuda.is_available() and not args.no_cuda else """cpu""" )
UpperCAmelCase : Dict = 0 if args.no_cuda else torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank )
UpperCAmelCase : Tuple = torch.device("""cuda""" , args.local_rank )
UpperCAmelCase : str = 1
torch.distributed.init_process_group(backend="""nccl""" ) # Initializes the distributed backend
# Setup logging
logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN )
logger.info("""device: {} n_gpu: {}, distributed: {}""".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) )
UpperCAmelCase : Dict = GPTaLMHeadModel.from_pretrained(args.model_name_or_path )
# Distributed and parallel training
model.to(args.device )
if args.local_rank != -1:
UpperCAmelCase : Tuple = nn.parallel.DistributedDataParallel(
_lowercase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=_lowercase )
elif args.n_gpu > 1:
UpperCAmelCase : Dict = nn.DataParallel(_lowercase )
# Print/save training arguments
os.makedirs(args.output_dir , exist_ok=_lowercase )
torch.save(_lowercase , os.path.join(args.output_dir , """run_args.bin""" ) )
logger.info("""Training/evaluation parameters %s""" , _lowercase )
# Prepare dataset
UpperCAmelCase : List[str] = np.concatenate(
[
np.loadtxt(args.data_dir , dtype=np.intaa ),
] )
UpperCAmelCase : str = (torch.from_numpy(_lowercase ),)
UpperCAmelCase : Union[str, Any] = TensorDataset(*_lowercase )
UpperCAmelCase : List[str] = RandomSampler(_lowercase )
UpperCAmelCase : Any = DataLoader(_lowercase , sampler=_lowercase , batch_size=args.batch_size )
# Compute head entropy and importance score
compute_heads_importance(_lowercase , _lowercase , _lowercase )
# Try head masking (set heads to zero until the score goes under a threshole)
# and head pruning (remove masked heads and see the effect on the network)
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
UpperCAmelCase : Optional[Any] = mask_heads(_lowercase , _lowercase , _lowercase )
prune_heads(_lowercase , _lowercase , _lowercase , _lowercase )
if __name__ == "__main__":
main()
| 355 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
a : List[Any] = {
"""configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""],
"""tokenization_m2m_100""": ["""M2M100Tokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Any = [
"""M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""M2M100ForConditionalGeneration""",
"""M2M100Model""",
"""M2M100PreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 338 | 0 |
'''simple docstring'''
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCamelCase_ ( __magic_name__ ):
lowercase = (DDPMScheduler,)
def _lowercase( self , **A ) -> int:
UpperCAmelCase : Optional[int] = {
"""num_train_timesteps""": 1000,
"""beta_start""": 0.0_0_0_1,
"""beta_end""": 0.0_2,
"""beta_schedule""": """linear""",
"""variance_type""": """fixed_small""",
"""clip_sample""": True,
}
config.update(**A )
return config
def _lowercase( self ) -> Optional[int]:
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=A )
def _lowercase( self ) -> List[str]:
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ):
self.check_over_configs(beta_start=A , beta_end=A )
def _lowercase( self ) -> Union[str, Any]:
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=A )
def _lowercase( self ) -> Optional[Any]:
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=A )
def _lowercase( self ) -> List[str]:
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=A )
def _lowercase( self ) -> str:
self.check_over_configs(thresholding=A )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=A , prediction_type=A , sample_max_value=A , )
def _lowercase( self ) -> Tuple:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=A )
def _lowercase( self ) -> Dict:
for t in [0, 500, 999]:
self.check_over_forward(time_step=A )
def _lowercase( self ) -> List[str]:
UpperCAmelCase : Optional[int] = self.scheduler_classes[0]
UpperCAmelCase : List[Any] = self.get_scheduler_config()
UpperCAmelCase : Optional[int] = scheduler_class(**A )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : List[Any] = self.scheduler_classes[0]
UpperCAmelCase : int = self.get_scheduler_config()
UpperCAmelCase : Tuple = scheduler_class(**A )
UpperCAmelCase : Optional[int] = len(A )
UpperCAmelCase : Optional[Any] = self.dummy_model()
UpperCAmelCase : int = self.dummy_sample_deter
UpperCAmelCase : Dict = torch.manual_seed(0 )
for t in reversed(range(A ) ):
# 1. predict noise residual
UpperCAmelCase : List[Any] = model(A , A )
# 2. predict previous mean of sample x_t-1
UpperCAmelCase : str = scheduler.step(A , A , A , generator=A ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
UpperCAmelCase : List[str] = pred_prev_sample
UpperCAmelCase : Any = torch.sum(torch.abs(A ) )
UpperCAmelCase : Dict = torch.mean(torch.abs(A ) )
assert abs(result_sum.item() - 258.9606 ) < 1e-2
assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : int = self.scheduler_classes[0]
UpperCAmelCase : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""" )
UpperCAmelCase : Union[str, Any] = scheduler_class(**A )
UpperCAmelCase : Any = len(A )
UpperCAmelCase : Optional[Any] = self.dummy_model()
UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter
UpperCAmelCase : str = torch.manual_seed(0 )
for t in reversed(range(A ) ):
# 1. predict noise residual
UpperCAmelCase : List[Any] = model(A , A )
# 2. predict previous mean of sample x_t-1
UpperCAmelCase : List[str] = scheduler.step(A , A , A , generator=A ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
UpperCAmelCase : Tuple = pred_prev_sample
UpperCAmelCase : Any = torch.sum(torch.abs(A ) )
UpperCAmelCase : Any = torch.mean(torch.abs(A ) )
assert abs(result_sum.item() - 202.0296 ) < 1e-2
assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3
def _lowercase( self ) -> List[str]:
UpperCAmelCase : Dict = self.scheduler_classes[0]
UpperCAmelCase : Optional[int] = self.get_scheduler_config()
UpperCAmelCase : Dict = scheduler_class(**A )
UpperCAmelCase : Union[str, Any] = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=A )
UpperCAmelCase : List[Any] = scheduler.timesteps
for i, timestep in enumerate(A ):
if i == len(A ) - 1:
UpperCAmelCase : Optional[int] = -1
else:
UpperCAmelCase : Optional[int] = timesteps[i + 1]
UpperCAmelCase : str = scheduler.previous_timestep(A )
UpperCAmelCase : Optional[int] = prev_t.item()
self.assertEqual(A , A )
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Optional[Any] = self.scheduler_classes[0]
UpperCAmelCase : int = self.get_scheduler_config()
UpperCAmelCase : Tuple = scheduler_class(**A )
UpperCAmelCase : Tuple = [100, 87, 50, 51, 0]
with self.assertRaises(A , msg="""`custom_timesteps` must be in descending order.""" ):
scheduler.set_timesteps(timesteps=A )
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : List[str] = self.scheduler_classes[0]
UpperCAmelCase : Optional[Any] = self.get_scheduler_config()
UpperCAmelCase : int = scheduler_class(**A )
UpperCAmelCase : List[str] = [100, 87, 50, 1, 0]
UpperCAmelCase : int = len(A )
with self.assertRaises(A , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ):
scheduler.set_timesteps(num_inference_steps=A , timesteps=A )
def _lowercase( self ) -> Any:
UpperCAmelCase : int = self.scheduler_classes[0]
UpperCAmelCase : str = self.get_scheduler_config()
UpperCAmelCase : Optional[int] = scheduler_class(**A )
UpperCAmelCase : Union[str, Any] = [scheduler.config.num_train_timesteps]
with self.assertRaises(
A , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ):
scheduler.set_timesteps(timesteps=A )
| 356 |
'''simple docstring'''
from math import loga
def __lowerCamelCase ( _lowercase ) -> int:
if a < 0:
raise ValueError("""Input value must be a positive integer""" )
elif isinstance(_lowercase , _lowercase ):
raise TypeError("""Input value must be a 'int' type""" )
return 0 if (a == 0) else int(loga(a & -a ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 338 | 0 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase ) -> float:
return 1_0 - x * x
def __lowerCamelCase ( _lowercase , _lowercase ) -> float:
# Bolzano theory in order to find if there is a root between a and b
if equation(_lowercase ) * equation(_lowercase ) >= 0:
raise ValueError("""Wrong space!""" )
UpperCAmelCase : Any = a
while (b - a) >= 0.01:
# Find middle point
UpperCAmelCase : str = (a + b) / 2
# Check if middle point is root
if equation(_lowercase ) == 0.0:
break
# Decide the side to repeat the steps
if equation(_lowercase ) * equation(_lowercase ) < 0:
UpperCAmelCase : Union[str, Any] = c
else:
UpperCAmelCase : Any = c
return c
if __name__ == "__main__":
import doctest
doctest.testmod()
print(bisection(-2, 5))
print(bisection(0, 6))
| 357 |
'''simple docstring'''
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
a : Optional[int] = 1_0
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int:
for i in range(_lowercase , _lowercase ):
if array[i] == target:
return i
return -1
def __lowerCamelCase ( _lowercase , _lowercase ) -> int:
UpperCAmelCase : Tuple = 0
UpperCAmelCase : List[str] = len(_lowercase )
while left <= right:
if right - left < precision:
return lin_search(_lowercase , _lowercase , _lowercase , _lowercase )
UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1
UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
UpperCAmelCase : Any = one_third - 1
elif array[two_third] < target:
UpperCAmelCase : Tuple = two_third + 1
else:
UpperCAmelCase : int = one_third + 1
UpperCAmelCase : List[Any] = two_third - 1
else:
return -1
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int:
if left < right:
if right - left < precision:
return lin_search(_lowercase , _lowercase , _lowercase , _lowercase )
UpperCAmelCase : str = (left + right) // 3 + 1
UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
a : Any = input("""Enter numbers separated by comma:\n""").strip()
a : Any = [int(item.strip()) for item in user_input.split(""",""")]
assert collection == sorted(collection), F"List must be ordered.\n{collection}."
a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip())
a : Union[str, Any] = ite_ternary_search(collection, target)
a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(F'''Iterative search: {target} found at positions: {resulta}''')
print(F'''Recursive search: {target} found at positions: {resulta}''')
else:
print("""Not found""")
| 338 | 0 |
'''simple docstring'''
import inspect
import re
from hashlib import shaaaa
from typing import Dict, List
from .arrow import arrow
from .audiofolder import audiofolder
from .csv import csv
from .imagefolder import imagefolder
from .json import json
from .pandas import pandas
from .parquet import parquet
from .sql import sql # noqa F401
from .text import text
def __lowerCamelCase ( _lowercase ) -> str:
UpperCAmelCase : Tuple = []
for line in lines:
UpperCAmelCase : List[str] = re.sub(R"""#.*""" , """""" , _lowercase ) # remove comments
if line:
filtered_lines.append(_lowercase )
UpperCAmelCase : Optional[int] = """\n""".join(_lowercase )
# Make a hash from all this code
UpperCAmelCase : Optional[Any] = full_str.encode("""utf-8""" )
return shaaaa(_lowercase ).hexdigest()
# get importable module names and hash for caching
a : str = {
"""csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())),
"""json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())),
"""pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())),
"""parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())),
"""arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())),
"""text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())),
"""imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())),
"""audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())),
}
# Used to infer the module to use based on the data files extensions
a : int = {
""".csv""": ("""csv""", {}),
""".tsv""": ("""csv""", {"""sep""": """\t"""}),
""".json""": ("""json""", {}),
""".jsonl""": ("""json""", {}),
""".parquet""": ("""parquet""", {}),
""".arrow""": ("""arrow""", {}),
""".txt""": ("""text""", {}),
}
_EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
a : str = {"""imagefolder""", """audiofolder"""}
# Used to filter data files based on extensions given a module name
a : Dict[str, List[str]] = {}
for _ext, (_module, _) in _EXTENSION_TO_MODULE.items():
_MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext)
_MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""")
_MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
| 358 |
'''simple docstring'''
import numpy as np
class UpperCamelCase_ :
def __init__( self ) -> int:
UpperCAmelCase : str = (0, 0)
UpperCAmelCase : Union[str, Any] = None
UpperCAmelCase : Any = 0
UpperCAmelCase : int = 0
UpperCAmelCase : Optional[int] = 0
def __eq__( self , A ) -> Optional[Any]:
return self.position == cell.position
def _lowercase( self ) -> Tuple:
print(self.position )
class UpperCamelCase_ :
def __init__( self , A=(5, 5) ) -> Optional[Any]:
UpperCAmelCase : Union[str, Any] = np.zeros(A )
UpperCAmelCase : int = world_size[0]
UpperCAmelCase : List[str] = world_size[1]
def _lowercase( self ) -> List[Any]:
print(self.w )
def _lowercase( self , A ) -> Dict:
UpperCAmelCase : Optional[Any] = [
(-1, -1),
(-1, 0),
(-1, 1),
(0, -1),
(0, 1),
(1, -1),
(1, 0),
(1, 1),
]
UpperCAmelCase : List[Any] = cell.position[0]
UpperCAmelCase : Union[str, Any] = cell.position[1]
UpperCAmelCase : Optional[int] = []
for n in neughbour_cord:
UpperCAmelCase : Any = current_x + n[0]
UpperCAmelCase : Tuple = current_y + n[1]
if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit:
UpperCAmelCase : str = Cell()
UpperCAmelCase : List[str] = (x, y)
UpperCAmelCase : Dict = cell
neighbours.append(A )
return neighbours
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int:
UpperCAmelCase : List[Any] = []
UpperCAmelCase : Optional[int] = []
_open.append(_lowercase )
while _open:
UpperCAmelCase : Any = np.argmin([n.f for n in _open] )
UpperCAmelCase : Optional[int] = _open[min_f]
_closed.append(_open.pop(_lowercase ) )
if current == goal:
break
for n in world.get_neigbours(_lowercase ):
for c in _closed:
if c == n:
continue
UpperCAmelCase : List[str] = current.g + 1
UpperCAmelCase , UpperCAmelCase : List[str] = n.position
UpperCAmelCase , UpperCAmelCase : Dict = goal.position
UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2
UpperCAmelCase : Dict = n.h + n.g
for c in _open:
if c == n and c.f < n.f:
continue
_open.append(_lowercase )
UpperCAmelCase : Dict = []
while current.parent is not None:
path.append(current.position )
UpperCAmelCase : Optional[int] = current.parent
path.append(current.position )
return path[::-1]
if __name__ == "__main__":
a : List[str] = Gridworld()
# Start position and goal
a : Optional[int] = Cell()
a : Optional[Any] = (0, 0)
a : Optional[Any] = Cell()
a : str = (4, 4)
print(F'''path from {start.position} to {goal.position}''')
a : List[Any] = astar(world, start, goal)
# Just for visual reasons.
for i in s:
a : Any = 1
print(world.w)
| 338 | 0 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase ) -> int:
assert column_title.isupper()
UpperCAmelCase : Dict = 0
UpperCAmelCase : Tuple = len(_lowercase ) - 1
UpperCAmelCase : Tuple = 0
while index >= 0:
UpperCAmelCase : Optional[int] = (ord(column_title[index] ) - 6_4) * pow(2_6 , _lowercase )
answer += value
power += 1
index -= 1
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 359 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import _LazyModule
a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]}
if TYPE_CHECKING:
from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer
else:
import sys
a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 338 | 0 |
'''simple docstring'''
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class UpperCamelCase_ ( __magic_name__ ):
lowercase = ['image_processor', 'tokenizer']
lowercase = 'OwlViTImageProcessor'
lowercase = ('CLIPTokenizer', 'CLIPTokenizerFast')
def __init__( self , A=None , A=None , **A ) -> List[Any]:
UpperCAmelCase : str = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , A , )
UpperCAmelCase : List[Any] = kwargs.pop("""feature_extractor""" )
UpperCAmelCase : List[Any] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(A , A )
def __call__( self , A=None , A=None , A=None , A="max_length" , A="np" , **A ) -> Tuple:
if text is None and query_images is None and images is None:
raise ValueError(
"""You have to specify at least one text or query image or image. All three cannot be none.""" )
if text is not None:
if isinstance(A , A ) or (isinstance(A , A ) and not isinstance(text[0] , A )):
UpperCAmelCase : Dict = [self.tokenizer(A , padding=A , return_tensors=A , **A )]
elif isinstance(A , A ) and isinstance(text[0] , A ):
UpperCAmelCase : Union[str, Any] = []
# Maximum number of queries across batch
UpperCAmelCase : int = max([len(A ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(A ) != max_num_queries:
UpperCAmelCase : Union[str, Any] = t + [""" """] * (max_num_queries - len(A ))
UpperCAmelCase : Optional[int] = self.tokenizer(A , padding=A , return_tensors=A , **A )
encodings.append(A )
else:
raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" )
if return_tensors == "np":
UpperCAmelCase : Tuple = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
UpperCAmelCase : Optional[Any] = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
UpperCAmelCase : Tuple = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
UpperCAmelCase : Optional[Any] = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
UpperCAmelCase : str = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 )
UpperCAmelCase : Tuple = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
UpperCAmelCase : Dict = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
UpperCAmelCase : Any = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
else:
raise ValueError("""Target return tensor type could not be returned""" )
UpperCAmelCase : List[str] = BatchEncoding()
UpperCAmelCase : Tuple = input_ids
UpperCAmelCase : List[Any] = attention_mask
if query_images is not None:
UpperCAmelCase : str = BatchEncoding()
UpperCAmelCase : List[str] = self.image_processor(
A , return_tensors=A , **A ).pixel_values
UpperCAmelCase : List[Any] = query_pixel_values
if images is not None:
UpperCAmelCase : Union[str, Any] = self.image_processor(A , return_tensors=A , **A )
if text is not None and images is not None:
UpperCAmelCase : int = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
UpperCAmelCase : Optional[Any] = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**A ) , tensor_type=A )
def _lowercase( self , *A , **A ) -> str:
return self.image_processor.post_process(*A , **A )
def _lowercase( self , *A , **A ) -> Union[str, Any]:
return self.image_processor.post_process_object_detection(*A , **A )
def _lowercase( self , *A , **A ) -> List[Any]:
return self.image_processor.post_process_image_guided_detection(*A , **A )
def _lowercase( self , *A , **A ) -> Optional[Any]:
return self.tokenizer.batch_decode(*A , **A )
def _lowercase( self , *A , **A ) -> str:
return self.tokenizer.decode(*A , **A )
@property
def _lowercase( self ) -> Optional[int]:
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , A , )
return self.image_processor_class
@property
def _lowercase( self ) -> str:
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , A , )
return self.image_processor
| 360 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
a : int = logging.get_logger(__name__)
a : int = {
"""openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""",
}
# fmt: off
a : Tuple = [
1, 2, 7, 8, 9, 1_0, 1_4, 2_5,
2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2,
6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5,
7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7,
1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1,
4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6,
1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1,
1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9,
3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1
]
a : Optional[int] = [
1, 2, 7, 8, 9, 1_0, 1_4, 2_5,
2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2,
6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3,
8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7,
3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7,
7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3,
1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5,
2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5,
4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2
]
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'whisper'
lowercase = ['past_key_values']
lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]:
UpperCAmelCase : str = vocab_size
UpperCAmelCase : Union[str, Any] = num_mel_bins
UpperCAmelCase : Tuple = d_model
UpperCAmelCase : Optional[int] = encoder_layers
UpperCAmelCase : List[str] = encoder_attention_heads
UpperCAmelCase : Optional[int] = decoder_layers
UpperCAmelCase : int = decoder_attention_heads
UpperCAmelCase : Optional[int] = decoder_ffn_dim
UpperCAmelCase : Union[str, Any] = encoder_ffn_dim
UpperCAmelCase : List[str] = dropout
UpperCAmelCase : Optional[Any] = attention_dropout
UpperCAmelCase : Optional[Any] = activation_dropout
UpperCAmelCase : Optional[Any] = activation_function
UpperCAmelCase : Optional[Any] = init_std
UpperCAmelCase : int = encoder_layerdrop
UpperCAmelCase : Dict = decoder_layerdrop
UpperCAmelCase : Optional[int] = use_cache
UpperCAmelCase : List[str] = encoder_layers
UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCAmelCase : Union[str, Any] = max_source_positions
UpperCAmelCase : Tuple = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
UpperCAmelCase : List[str] = classifier_proj_size
UpperCAmelCase : Optional[Any] = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase : Optional[Any] = apply_spec_augment
UpperCAmelCase : int = mask_time_prob
UpperCAmelCase : int = mask_time_length
UpperCAmelCase : Dict = mask_time_min_masks
UpperCAmelCase : List[str] = mask_feature_prob
UpperCAmelCase : Optional[int] = mask_feature_length
UpperCAmelCase : int = mask_feature_min_masks
UpperCAmelCase : List[Any] = median_filter_width
super().__init__(
pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , )
class UpperCamelCase_ ( __magic_name__ ):
@property
def _lowercase( self ) -> Mapping[str, Mapping[int, str]]:
UpperCAmelCase : str = OrderedDict(
[
("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}),
] )
if self.use_past:
UpperCAmelCase : List[Any] = {0: """batch"""}
else:
UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""}
if self.use_past:
self.fill_with_past_key_values_(A , direction="""inputs""" )
return common_inputs
def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]:
UpperCAmelCase : Optional[int] = OrderedDict()
UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , )
UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2]
UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length
UpperCAmelCase : Any = super().generate_dummy_inputs(
preprocessor.tokenizer , A , A , A , A )
UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" )
UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" )
if "past_key_values" in decoder_inputs:
UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" )
return dummy_inputs
@property
def _lowercase( self ) -> float:
return 1e-3
| 338 | 0 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_clip import CLIPImageProcessor
a : Dict = logging.get_logger(__name__)
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , *A , **A ) -> None:
warnings.warn(
"""The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use CLIPImageProcessor instead.""" , A , )
super().__init__(*A , **A )
| 361 |
'''simple docstring'''
a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ"""
def __lowerCamelCase ( ) -> None:
UpperCAmelCase : Optional[int] = input("""Enter message: """ )
UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ )
UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ )
if mode.lower().startswith("""e""" ):
UpperCAmelCase : List[str] = """encrypt"""
UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase )
elif mode.lower().startswith("""d""" ):
UpperCAmelCase : Tuple = """decrypt"""
UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase )
print(F'''\n{mode.title()}ed message:''' )
print(_lowercase )
def __lowerCamelCase ( _lowercase , _lowercase ) -> str:
return translate_message(_lowercase , _lowercase , """encrypt""" )
def __lowerCamelCase ( _lowercase , _lowercase ) -> str:
return translate_message(_lowercase , _lowercase , """decrypt""" )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str:
UpperCAmelCase : Optional[int] = []
UpperCAmelCase : Optional[Any] = 0
UpperCAmelCase : Tuple = key.upper()
for symbol in message:
UpperCAmelCase : Dict = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(_lowercase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(_lowercase ):
UpperCAmelCase : Optional[int] = 0
else:
translated.append(_lowercase )
return "".join(_lowercase )
if __name__ == "__main__":
main()
| 338 | 0 |
'''simple docstring'''
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
a = 4
a = 3
class UpperCamelCase_ ( __magic_name__ ):
pass
def __lowerCamelCase ( _lowercase ) -> Union[str, Any]:
for shard in shards:
for i in range(_lowercase ):
yield {"i": i, "shard": shard}
def __lowerCamelCase ( ) -> int:
UpperCAmelCase : Tuple = int(os.environ["""RANK"""] )
UpperCAmelCase : List[str] = int(os.environ["""WORLD_SIZE"""] )
UpperCAmelCase : List[str] = ArgumentParser()
parser.add_argument("""--streaming""" , type=_lowercase )
parser.add_argument("""--local_rank""" , type=_lowercase )
parser.add_argument("""--num_workers""" , type=_lowercase , default=0 )
UpperCAmelCase : Optional[int] = parser.parse_args()
UpperCAmelCase : Optional[Any] = args.streaming
UpperCAmelCase : Union[str, Any] = args.num_workers
UpperCAmelCase : Dict = {"""shards""": [F'''shard_{shard_idx}''' for shard_idx in range(_lowercase )]}
UpperCAmelCase : Union[str, Any] = IterableDataset.from_generator(_lowercase , gen_kwargs=_lowercase )
if not streaming:
UpperCAmelCase : Optional[Any] = Dataset.from_list(list(_lowercase ) )
UpperCAmelCase : int = split_dataset_by_node(_lowercase , rank=_lowercase , world_size=_lowercase )
UpperCAmelCase : Optional[Any] = torch.utils.data.DataLoader(_lowercase , num_workers=_lowercase )
UpperCAmelCase : str = NUM_SHARDS * NUM_ITEMS_PER_SHARD
UpperCAmelCase : Union[str, Any] = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
UpperCAmelCase : Any = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(F'''local_size {local_size} != expected_local_size {expected_local_size}''' )
if __name__ == "__main__":
main()
| 362 |
'''simple docstring'''
import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
"""split_dict""" , [
SplitDict(),
SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ),
SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ),
SplitDict({"""train""": SplitInfo()} ),
] , )
def __lowerCamelCase ( _lowercase ) -> List[str]:
UpperCAmelCase : Optional[int] = split_dict._to_yaml_list()
assert len(_lowercase ) == len(_lowercase )
UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(_lowercase )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
UpperCAmelCase : List[str] = None
# the split name of split_dict takes over the name of the split info object
UpperCAmelCase : int = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
"""split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name="""my_dataset""" )] )
def __lowerCamelCase ( _lowercase ) -> List[str]:
# For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name"
# field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files
UpperCAmelCase : Optional[Any] = asdict(SplitDict({"""train""": split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 338 | 0 |
def __lowerCamelCase ( _lowercase ) -> int:
if n == 1 or not isinstance(_lowercase , _lowercase ):
return 0
elif n == 2:
return 1
else:
UpperCAmelCase : Any = [0, 1]
for i in range(2 , n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def __lowerCamelCase ( _lowercase ) -> int:
UpperCAmelCase : List[Any] = 0
UpperCAmelCase : Dict = 2
while digits < n:
index += 1
UpperCAmelCase : Tuple = len(str(fibonacci(_lowercase ) ) )
return index
def __lowerCamelCase ( _lowercase = 1_0_0_0 ) -> int:
return fibonacci_digits_index(_lowercase )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 363 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
a : Dict = logging.get_logger(__name__)
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , *A , **A ) -> None:
warnings.warn(
"""The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use LayoutLMv2ImageProcessor instead.""" , A , )
super().__init__(*A , **A )
| 338 | 0 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase , _lowercase ) -> str:
"""simple docstring"""
return "\n".join(
F'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1 ) )
if __name__ == "__main__":
print(multiplication_table(number=5, number_of_terms=1_0))
| 364 |
'''simple docstring'''
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
a : Union[str, Any] = logging.get_logger(__name__)
a : Union[str, Any] = {
"""facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""",
# See all DETR models at https://huggingface.co/models?filter=detr
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'detr'
lowercase = ['past_key_values']
lowercase = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]:
if backbone_config is not None and use_timm_backbone:
raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" )
if not use_timm_backbone:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] )
elif isinstance(A , A ):
UpperCAmelCase : Any = backbone_config.get("""model_type""" )
UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type]
UpperCAmelCase : List[Any] = config_class.from_dict(A )
# set timm attributes to None
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = None, None, None
UpperCAmelCase : Dict = use_timm_backbone
UpperCAmelCase : Any = backbone_config
UpperCAmelCase : List[Any] = num_channels
UpperCAmelCase : int = num_queries
UpperCAmelCase : List[str] = d_model
UpperCAmelCase : Tuple = encoder_ffn_dim
UpperCAmelCase : Optional[Any] = encoder_layers
UpperCAmelCase : Any = encoder_attention_heads
UpperCAmelCase : Optional[Any] = decoder_ffn_dim
UpperCAmelCase : Optional[int] = decoder_layers
UpperCAmelCase : Any = decoder_attention_heads
UpperCAmelCase : str = dropout
UpperCAmelCase : Tuple = attention_dropout
UpperCAmelCase : Dict = activation_dropout
UpperCAmelCase : Tuple = activation_function
UpperCAmelCase : List[Any] = init_std
UpperCAmelCase : str = init_xavier_std
UpperCAmelCase : List[Any] = encoder_layerdrop
UpperCAmelCase : int = decoder_layerdrop
UpperCAmelCase : List[Any] = encoder_layers
UpperCAmelCase : Union[str, Any] = auxiliary_loss
UpperCAmelCase : str = position_embedding_type
UpperCAmelCase : Union[str, Any] = backbone
UpperCAmelCase : List[str] = use_pretrained_backbone
UpperCAmelCase : Optional[int] = dilation
# Hungarian matcher
UpperCAmelCase : Union[str, Any] = class_cost
UpperCAmelCase : Optional[Any] = bbox_cost
UpperCAmelCase : List[Any] = giou_cost
# Loss coefficients
UpperCAmelCase : int = mask_loss_coefficient
UpperCAmelCase : Optional[int] = dice_loss_coefficient
UpperCAmelCase : Dict = bbox_loss_coefficient
UpperCAmelCase : Any = giou_loss_coefficient
UpperCAmelCase : Any = eos_coefficient
super().__init__(is_encoder_decoder=A , **A )
@property
def _lowercase( self ) -> int:
return self.encoder_attention_heads
@property
def _lowercase( self ) -> int:
return self.d_model
@classmethod
def _lowercase( cls , A , **A ) -> Dict:
return cls(backbone_config=A , **A )
def _lowercase( self ) -> Dict[str, any]:
UpperCAmelCase : Any = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
UpperCAmelCase : Any = self.backbone_config.to_dict()
UpperCAmelCase : Optional[Any] = self.__class__.model_type
return output
class UpperCamelCase_ ( __magic_name__ ):
lowercase = version.parse('1.11' )
@property
def _lowercase( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""pixel_mask""", {0: """batch"""}),
] )
@property
def _lowercase( self ) -> float:
return 1e-5
@property
def _lowercase( self ) -> int:
return 12
| 338 | 0 |
'''simple docstring'''
from __future__ import annotations
from fractions import Fraction
def __lowerCamelCase ( _lowercase , _lowercase ) -> bool:
return (
num != den and num % 1_0 == den // 1_0 and (num // 1_0) / (den % 1_0) == num / den
)
def __lowerCamelCase ( _lowercase ) -> list[str]:
UpperCAmelCase : List[str] = []
UpperCAmelCase : str = 1_1
UpperCAmelCase : str = int("""1""" + """0""" * digit_len )
for num in range(_lowercase , _lowercase ):
while den <= 9_9:
if (num != den) and (num % 1_0 == den // 1_0) and (den % 1_0 != 0):
if is_digit_cancelling(_lowercase , _lowercase ):
solutions.append(F'''{num}/{den}''' )
den += 1
num += 1
UpperCAmelCase : Any = 1_0
return solutions
def __lowerCamelCase ( _lowercase = 2 ) -> int:
UpperCAmelCase : List[Any] = 1.0
for fraction in fraction_list(_lowercase ):
UpperCAmelCase : int = Fraction(_lowercase )
result *= frac.denominator / frac.numerator
return int(_lowercase )
if __name__ == "__main__":
print(solution())
| 365 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
a : List[str] = {
"""configuration_altclip""": [
"""ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""AltCLIPConfig""",
"""AltCLIPTextConfig""",
"""AltCLIPVisionConfig""",
],
"""processing_altclip""": ["""AltCLIPProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : List[Any] = [
"""ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""AltCLIPPreTrainedModel""",
"""AltCLIPModel""",
"""AltCLIPTextModel""",
"""AltCLIPVisionModel""",
]
if TYPE_CHECKING:
from .configuration_altclip import (
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
AltCLIPConfig,
AltCLIPTextConfig,
AltCLIPVisionConfig,
)
from .processing_altclip import AltCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_altclip import (
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
AltCLIPModel,
AltCLIPPreTrainedModel,
AltCLIPTextModel,
AltCLIPVisionModel,
)
else:
import sys
a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 338 | 0 |
'''simple docstring'''
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
import pandas as pd
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
BartForSequenceClassification,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TapexTokenizer,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("""4.17.0.dev0""")
require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""")
a : Tuple = logging.getLogger(__name__)
@dataclass
class UpperCamelCase_ :
lowercase = field(
default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} )
lowercase = field(
default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , )
lowercase = field(
default=1_024 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
lowercase = field(
default=__magic_name__ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} )
lowercase = field(
default=__magic_name__ , metadata={
'help': (
'Whether to pad all samples to `max_seq_length`. '
'If False, will pad the samples dynamically when batching to the maximum length in the batch.'
)
} , )
lowercase = field(
default=__magic_name__ , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of training examples to this '
'value if set.'
)
} , )
lowercase = field(
default=__magic_name__ , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of evaluation examples to this '
'value if set.'
)
} , )
lowercase = field(
default=__magic_name__ , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of prediction examples to this '
'value if set.'
)
} , )
lowercase = field(
default=__magic_name__ , metadata={'help': 'A csv or a json file containing the training data.'} )
lowercase = field(
default=__magic_name__ , metadata={'help': 'A csv or a json file containing the validation data.'} )
lowercase = field(default=__magic_name__ , metadata={'help': 'A csv or a json file containing the test data.'} )
def _lowercase( self ) -> str:
if self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" )
else:
UpperCAmelCase : Optional[int] = self.train_file.split(""".""" )[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
UpperCAmelCase : List[str] = self.validation_file.split(""".""" )[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class UpperCamelCase_ :
lowercase = field(
default=__magic_name__ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
lowercase = field(
default=__magic_name__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
lowercase = field(
default=__magic_name__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
lowercase = field(
default=__magic_name__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , )
lowercase = field(
default=__magic_name__ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , )
lowercase = field(
default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , )
lowercase = field(
default=__magic_name__ , metadata={
'help': (
'Will use the token generated when running `huggingface-cli login` (necessary to use this script '
'with private models).'
)
} , )
def __lowerCamelCase ( ) -> str:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
UpperCAmelCase : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
UpperCAmelCase : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
UpperCAmelCase : int = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
UpperCAmelCase : int = training_args.get_process_log_level()
logger.setLevel(_lowercase )
datasets.utils.logging.set_verbosity(_lowercase )
transformers.utils.logging.set_verbosity(_lowercase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(F'''Training/evaluation parameters {training_args}''' )
# Detecting last checkpoint.
UpperCAmelCase : Tuple = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
UpperCAmelCase : Optional[Any] = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
UpperCAmelCase : str = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
UpperCAmelCase : Tuple = {"""train""": data_args.train_file, """validation""": data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
UpperCAmelCase : Any = data_args.train_file.split(""".""" )[-1]
UpperCAmelCase : Tuple = data_args.test_file.split(""".""" )[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
UpperCAmelCase : int = data_args.test_file
else:
raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" )
for key in data_files.keys():
logger.info(F'''load a local file for {key}: {data_files[key]}''' )
if data_args.train_file.endswith(""".csv""" ):
# Loading a dataset from local csv files
UpperCAmelCase : str = load_dataset("""csv""" , data_files=_lowercase , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from local json files
UpperCAmelCase : Optional[int] = load_dataset("""json""" , data_files=_lowercase , cache_dir=model_args.cache_dir )
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
UpperCAmelCase : Optional[int] = raw_datasets["""train"""].features["""label"""].names
UpperCAmelCase : Union[str, Any] = len(_lowercase )
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
UpperCAmelCase : int = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# load tapex tokenizer
UpperCAmelCase : int = TapexTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_lowercase , )
UpperCAmelCase : str = BartForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# Padding strategy
if data_args.pad_to_max_length:
UpperCAmelCase : List[Any] = """max_length"""
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
UpperCAmelCase : Union[str, Any] = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
UpperCAmelCase : Any = {"""Refused""": 0, """Entailed""": 1}
UpperCAmelCase : str = {0: """Refused""", 1: """Entailed"""}
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the'''
F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' )
UpperCAmelCase : Any = min(data_args.max_seq_length , tokenizer.model_max_length )
def preprocess_tabfact_function(_lowercase ):
# Tokenize the texts
def _convert_table_text_to_pandas(_lowercase ):
UpperCAmelCase : Optional[int] = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )]
UpperCAmelCase : Optional[int] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] )
return _table_pd
UpperCAmelCase : Optional[Any] = examples["""statement"""]
UpperCAmelCase : Any = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) )
UpperCAmelCase : int = tokenizer(_lowercase , _lowercase , padding=_lowercase , max_length=_lowercase , truncation=_lowercase )
UpperCAmelCase : Optional[Any] = examples["""label"""]
return result
with training_args.main_process_first(desc="""dataset map pre-processing""" ):
UpperCAmelCase : Optional[Any] = raw_datasets.map(
_lowercase , batched=_lowercase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , )
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("""--do_train requires a train dataset""" )
UpperCAmelCase : Any = raw_datasets["""train"""]
if data_args.max_train_samples is not None:
UpperCAmelCase : Any = train_dataset.select(range(data_args.max_train_samples ) )
if training_args.do_eval:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError("""--do_eval requires a validation dataset""" )
UpperCAmelCase : Union[str, Any] = raw_datasets["""validation"""]
if data_args.max_eval_samples is not None:
UpperCAmelCase : List[str] = eval_dataset.select(range(data_args.max_eval_samples ) )
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError("""--do_predict requires a test dataset""" )
UpperCAmelCase : List[str] = raw_datasets["""test"""]
if data_args.max_predict_samples is not None:
UpperCAmelCase : Union[str, Any] = predict_dataset.select(range(data_args.max_predict_samples ) )
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(_lowercase ) ) , 3 ):
logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''' )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(_lowercase ):
UpperCAmelCase : Optional[Any] = p.predictions[0] if isinstance(p.predictions , _lowercase ) else p.predictions
UpperCAmelCase : Any = np.argmax(_lowercase , axis=1 )
return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()}
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
UpperCAmelCase : Tuple = default_data_collator
elif training_args.fpaa:
UpperCAmelCase : Tuple = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 )
else:
UpperCAmelCase : Dict = None
# Initialize our Trainer
UpperCAmelCase : int = Trainer(
model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_lowercase , tokenizer=_lowercase , data_collator=_lowercase , )
# Training
if training_args.do_train:
UpperCAmelCase : Optional[int] = None
if training_args.resume_from_checkpoint is not None:
UpperCAmelCase : Optional[int] = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
UpperCAmelCase : Dict = last_checkpoint
UpperCAmelCase : str = trainer.train(resume_from_checkpoint=_lowercase )
UpperCAmelCase : List[Any] = train_result.metrics
UpperCAmelCase : Optional[Any] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase )
)
UpperCAmelCase : Dict = min(_lowercase , len(_lowercase ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("""train""" , _lowercase )
trainer.save_metrics("""train""" , _lowercase )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
UpperCAmelCase : Union[str, Any] = trainer.evaluate(eval_dataset=_lowercase )
UpperCAmelCase : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase )
UpperCAmelCase : Any = min(_lowercase , len(_lowercase ) )
trainer.log_metrics("""eval""" , _lowercase )
trainer.save_metrics("""eval""" , _lowercase )
if training_args.do_predict:
logger.info("""*** Predict ***""" )
# Removing the `label` columns because it contains -1 and Trainer won't like that.
UpperCAmelCase : Tuple = predict_dataset.remove_columns("""label""" )
UpperCAmelCase : List[str] = trainer.predict(_lowercase , metric_key_prefix="""predict""" ).predictions
UpperCAmelCase : Dict = np.argmax(_lowercase , axis=1 )
UpperCAmelCase : Any = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" )
if trainer.is_world_process_zero():
with open(_lowercase , """w""" ) as writer:
logger.info("""***** Predict Results *****""" )
writer.write("""index\tprediction\n""" )
for index, item in enumerate(_lowercase ):
UpperCAmelCase : Tuple = label_list[item]
writer.write(F'''{index}\t{item}\n''' )
UpperCAmelCase : Any = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""}
if training_args.push_to_hub:
trainer.push_to_hub(**_lowercase )
else:
trainer.create_model_card(**_lowercase )
def __lowerCamelCase ( _lowercase ) -> str:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 366 |
'''simple docstring'''
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
a : List[Any] = logging.get_logger(__name__)
def __lowerCamelCase ( _lowercase ) -> List[Any]:
UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" )
if "model" in sd.keys():
UpperCAmelCase : Any = torch.load(_lowercase , map_location="""cpu""" )["""model"""]
# pop unnecessary weights
UpperCAmelCase : Union[str, Any] = [
"""decoder.version""",
"""decoder.output_projection.weight""",
]
for key in keys_to_delete:
if key in sd:
sd.pop(_lowercase )
UpperCAmelCase : Tuple = {
"""decoder.project_in_dim.weight""": """decoder.project_in.weight""",
"""decoder.project_out_dim.weight""": """decoder.project_out.weight""",
"""decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""",
"""decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""",
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
UpperCAmelCase : List[Any] = sd.pop(_lowercase )
UpperCAmelCase : Tuple = list(sd.keys() )
for key in keys:
if ".qkv_proj." in key:
UpperCAmelCase : List[str] = sd[key]
# We split QKV in separate Q,K,V
UpperCAmelCase : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" )
UpperCAmelCase : Tuple = key.replace(""".qkv_proj.""" , """.k_proj.""" )
UpperCAmelCase : int = key.replace(""".qkv_proj.""" , """.v_proj.""" )
UpperCAmelCase : Dict = value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = torch.split(_lowercase , depth // 3 , dim=0 )
UpperCAmelCase : Tuple = q
UpperCAmelCase : Tuple = k
UpperCAmelCase : Any = v
del sd[key]
return sd
@torch.no_grad()
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Optional[Any]:
UpperCAmelCase : Tuple = load_checkpoint(_lowercase )
if config is not None:
UpperCAmelCase : Dict = OPTConfig.from_pretrained(_lowercase )
else:
UpperCAmelCase : int = OPTConfig()
UpperCAmelCase : List[Any] = OPTModel(_lowercase ).half().eval()
model.load_state_dict(_lowercase )
# Check results
Path(_lowercase ).mkdir(exist_ok=_lowercase )
model.save_pretrained(_lowercase )
if __name__ == "__main__":
a : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--fairseq_path""",
type=str,
help=(
"""path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:"""
""" https://huggingface.co/models?other=opt_metasq"""
),
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""")
a : Union[str, Any] = parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
| 338 | 0 |
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
a : Tuple = logging.get_logger(__name__)
a : Optional[int] = {
"""Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""",
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'instructblip_vision_model'
def __init__( self , A=1408 , A=6144 , A=39 , A=16 , A=224 , A=14 , A="gelu" , A=1e-6 , A=0.0 , A=1e-10 , A=True , **A , ) -> List[Any]:
super().__init__(**A )
UpperCAmelCase : Optional[Any] = hidden_size
UpperCAmelCase : Dict = intermediate_size
UpperCAmelCase : Tuple = num_hidden_layers
UpperCAmelCase : Any = num_attention_heads
UpperCAmelCase : Optional[Any] = patch_size
UpperCAmelCase : List[Any] = image_size
UpperCAmelCase : Union[str, Any] = initializer_range
UpperCAmelCase : Optional[int] = attention_dropout
UpperCAmelCase : List[str] = layer_norm_eps
UpperCAmelCase : Optional[int] = hidden_act
UpperCAmelCase : List[Any] = qkv_bias
@classmethod
def _lowercase( cls , A , **A ) -> "PretrainedConfig":
cls._set_token_in_kwargs(A )
UpperCAmelCase : Union[str, Any] = cls.get_config_dict(A , **A )
# get the vision config dict if we are loading from InstructBlipConfig
if config_dict.get("""model_type""" ) == "instructblip":
UpperCAmelCase : int = config_dict["""vision_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(A , **A )
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'instructblip_qformer'
def __init__( self , A=30522 , A=768 , A=12 , A=12 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=0.0_2 , A=1e-12 , A=0 , A="absolute" , A=2 , A=1408 , **A , ) -> Any:
super().__init__(pad_token_id=A , **A )
UpperCAmelCase : Union[str, Any] = vocab_size
UpperCAmelCase : Tuple = hidden_size
UpperCAmelCase : Tuple = num_hidden_layers
UpperCAmelCase : Dict = num_attention_heads
UpperCAmelCase : str = hidden_act
UpperCAmelCase : Optional[Any] = intermediate_size
UpperCAmelCase : Tuple = hidden_dropout_prob
UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob
UpperCAmelCase : Any = max_position_embeddings
UpperCAmelCase : Any = initializer_range
UpperCAmelCase : int = layer_norm_eps
UpperCAmelCase : List[str] = position_embedding_type
UpperCAmelCase : Any = cross_attention_frequency
UpperCAmelCase : int = encoder_hidden_size
@classmethod
def _lowercase( cls , A , **A ) -> "PretrainedConfig":
cls._set_token_in_kwargs(A )
UpperCAmelCase : Optional[int] = cls.get_config_dict(A , **A )
# get the qformer config dict if we are loading from InstructBlipConfig
if config_dict.get("""model_type""" ) == "instructblip":
UpperCAmelCase : Dict = config_dict["""qformer_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(A , **A )
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'instructblip'
lowercase = True
def __init__( self , A=None , A=None , A=None , A=32 , **A ) -> Optional[Any]:
super().__init__(**A )
if vision_config is None:
UpperCAmelCase : Tuple = {}
logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" )
if qformer_config is None:
UpperCAmelCase : int = {}
logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" )
if text_config is None:
UpperCAmelCase : Any = {}
logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" )
UpperCAmelCase : int = InstructBlipVisionConfig(**A )
UpperCAmelCase : int = InstructBlipQFormerConfig(**A )
UpperCAmelCase : Optional[int] = text_config["""model_type"""] if """model_type""" in text_config else """opt"""
UpperCAmelCase : Optional[Any] = CONFIG_MAPPING[text_model_type](**A )
UpperCAmelCase : int = self.text_config.tie_word_embeddings
UpperCAmelCase : str = self.text_config.is_encoder_decoder
UpperCAmelCase : str = num_query_tokens
UpperCAmelCase : Optional[int] = self.vision_config.hidden_size
UpperCAmelCase : Tuple = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
UpperCAmelCase : Optional[int] = 1.0
UpperCAmelCase : Optional[Any] = 0.0_2
@classmethod
def _lowercase( cls , A , A , A , **A , ) -> Any:
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **A , )
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : int = copy.deepcopy(self.__dict__ )
UpperCAmelCase : Union[str, Any] = self.vision_config.to_dict()
UpperCAmelCase : Optional[int] = self.qformer_config.to_dict()
UpperCAmelCase : Optional[int] = self.text_config.to_dict()
UpperCAmelCase : int = self.__class__.model_type
return output
| 367 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a : Union[str, Any] = logging.get_logger(__name__)
a : str = {
"""facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""",
# See all LeViT models at https://huggingface.co/models?filter=levit
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'levit'
def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int:
super().__init__(**A )
UpperCAmelCase : Any = image_size
UpperCAmelCase : Optional[int] = num_channels
UpperCAmelCase : Tuple = kernel_size
UpperCAmelCase : Optional[int] = stride
UpperCAmelCase : Dict = padding
UpperCAmelCase : List[Any] = hidden_sizes
UpperCAmelCase : List[Any] = num_attention_heads
UpperCAmelCase : Optional[int] = depths
UpperCAmelCase : Any = key_dim
UpperCAmelCase : str = drop_path_rate
UpperCAmelCase : List[Any] = patch_size
UpperCAmelCase : str = attention_ratio
UpperCAmelCase : Optional[Any] = mlp_ratio
UpperCAmelCase : Dict = initializer_range
UpperCAmelCase : int = [
["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
class UpperCamelCase_ ( __magic_name__ ):
lowercase = version.parse('1.11' )
@property
def _lowercase( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def _lowercase( self ) -> float:
return 1e-4
| 338 | 0 |
'''simple docstring'''
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , )
@pytest.mark.usefixtures('sm_env' )
@parameterized_class(
[
{
'framework': 'pytorch',
'script': 'run_glue.py',
'model_name_or_path': 'distilbert-base-cased',
'instance_type': 'ml.p3.16xlarge',
'results': {'train_runtime': 650, 'eval_accuracy': 0.7, 'eval_loss': 0.6},
},
{
'framework': 'pytorch',
'script': 'run_ddp.py',
'model_name_or_path': 'distilbert-base-cased',
'instance_type': 'ml.p3.16xlarge',
'results': {'train_runtime': 600, 'eval_accuracy': 0.7, 'eval_loss': 0.6},
},
{
'framework': 'tensorflow',
'script': 'run_tf_dist.py',
'model_name_or_path': 'distilbert-base-cased',
'instance_type': 'ml.p3.16xlarge',
'results': {'train_runtime': 600, 'eval_accuracy': 0.6, 'eval_loss': 0.7},
},
] )
class UpperCamelCase_ ( unittest.TestCase ):
def _lowercase( self ) -> int:
if self.framework == "pytorch":
subprocess.run(
f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="""utf-8""" , check=A , )
assert hasattr(self , """env""" )
def _lowercase( self , A ) -> Optional[int]:
UpperCAmelCase : List[str] = f'''{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}'''
# distributed data settings
UpperCAmelCase : Optional[int] = {"""smdistributed""": {"""dataparallel""": {"""enabled""": True}}} if self.script != """run_ddp.py""" else None
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=A , instance_count=A , instance_type=self.instance_type , debugger_hook_config=A , hyperparameters={**self.env.distributed_hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=A , py_version="""py36""" , )
def _lowercase( self , A ) -> Tuple:
TrainingJobAnalytics(A ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' )
@parameterized.expand([(2,)] )
def _lowercase( self , A ) -> str:
# create estimator
UpperCAmelCase : int = self.create_estimator(A )
# run training
estimator.fit()
# result dataframe
UpperCAmelCase : Optional[Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
UpperCAmelCase : Union[str, Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] )
UpperCAmelCase : str = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
UpperCAmelCase : Dict = (
Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy )
assert all(t <= self.results["""eval_loss"""] for t in eval_loss )
# dump tests result into json file to share in PR
with open(f'''{estimator.latest_training_job.name}.json''' , """w""" ) as outfile:
json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , A )
| 368 |
'''simple docstring'''
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("""0.12.2"""):
raise Exception("""requires fairseq >= 0.12.2""")
if version.parse(fairseq.__version__) > version.parse("""2"""):
raise Exception("""requires fairseq < v2""")
logging.set_verbosity_info()
a : Dict = logging.get_logger(__name__)
a : List[str] = """Hello, World!"""
a : List[Any] = """en_XX"""
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict:
UpperCAmelCase : Dict = Path("""data_bin""" )
UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , )
xmod.eval() # disable dropout
print(_lowercase )
UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder
UpperCAmelCase : Tuple = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0]
print("""Our X-MOD config:""" , _lowercase )
UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase )
model.eval()
# Now let's copy all the weights.
# Embeddings
UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight
UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight
UpperCAmelCase : int = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight
UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
UpperCAmelCase : List[str] = model.roberta.encoder.layer[i]
UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i]
# self attention
UpperCAmelCase : Optional[Any] = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError("""Dimensions of self-attention weights do not match.""" )
UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight
UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias
UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight
UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias
UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight
UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias
# self-attention output
UpperCAmelCase : Optional[Any] = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError("""Dimensions of self-attention output weights do not match.""" )
UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight
UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias
UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight
UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias
# intermediate
UpperCAmelCase : Tuple = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError("""Dimensions of intermediate weights do not match.""" )
UpperCAmelCase : List[str] = xmod_layer.fca.weight
UpperCAmelCase : str = xmod_layer.fca.bias
# output
UpperCAmelCase : Any = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError("""Dimensions of feed-forward weights do not match.""" )
UpperCAmelCase : Dict = xmod_layer.fca.weight
UpperCAmelCase : Dict = xmod_layer.fca.bias
UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight
UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight
UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError("""Lists of language adapters do not match.""" )
for lang_code, adapter in xmod_layer.adapter_modules.items():
UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code]
UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code]
UpperCAmelCase : Any = from_adapter.fca.weight
UpperCAmelCase : int = from_adapter.fca.bias
UpperCAmelCase : Dict = from_adapter.fca.weight
UpperCAmelCase : Dict = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight
UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias
if classification_head:
UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight
UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias
UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight
UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias
else:
# LM Head
UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight
UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias
UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight
UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias
UpperCAmelCase : str = xmod.model.encoder.lm_head.weight
UpperCAmelCase : str = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(_lowercase )
UpperCAmelCase : Optional[int] = model(_lowercase )[0]
if classification_head:
UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) )
else:
UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item()
print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7
UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 )
print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" )
if not success:
raise Exception("""Something went wRoNg""" )
Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(_lowercase )
if __name__ == "__main__":
a : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--classification_head""", action="""store_true""", help="""Whether to convert a final classification head."""
)
a : List[str] = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 338 | 0 |
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
a : Union[str, Any] = logging.get_logger(__name__)
a : Union[str, Any] = {
"""facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""",
# See all DETR models at https://huggingface.co/models?filter=detr
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'detr'
lowercase = ['past_key_values']
lowercase = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]:
if backbone_config is not None and use_timm_backbone:
raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" )
if not use_timm_backbone:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] )
elif isinstance(A , A ):
UpperCAmelCase : Any = backbone_config.get("""model_type""" )
UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type]
UpperCAmelCase : List[Any] = config_class.from_dict(A )
# set timm attributes to None
UpperCAmelCase : Any = None, None, None
UpperCAmelCase : Dict = use_timm_backbone
UpperCAmelCase : Any = backbone_config
UpperCAmelCase : List[Any] = num_channels
UpperCAmelCase : int = num_queries
UpperCAmelCase : List[str] = d_model
UpperCAmelCase : Tuple = encoder_ffn_dim
UpperCAmelCase : Optional[Any] = encoder_layers
UpperCAmelCase : Any = encoder_attention_heads
UpperCAmelCase : Optional[Any] = decoder_ffn_dim
UpperCAmelCase : Optional[int] = decoder_layers
UpperCAmelCase : Any = decoder_attention_heads
UpperCAmelCase : str = dropout
UpperCAmelCase : Tuple = attention_dropout
UpperCAmelCase : Dict = activation_dropout
UpperCAmelCase : Tuple = activation_function
UpperCAmelCase : List[Any] = init_std
UpperCAmelCase : str = init_xavier_std
UpperCAmelCase : List[Any] = encoder_layerdrop
UpperCAmelCase : int = decoder_layerdrop
UpperCAmelCase : List[Any] = encoder_layers
UpperCAmelCase : Union[str, Any] = auxiliary_loss
UpperCAmelCase : str = position_embedding_type
UpperCAmelCase : Union[str, Any] = backbone
UpperCAmelCase : List[str] = use_pretrained_backbone
UpperCAmelCase : Optional[int] = dilation
# Hungarian matcher
UpperCAmelCase : Union[str, Any] = class_cost
UpperCAmelCase : Optional[Any] = bbox_cost
UpperCAmelCase : List[Any] = giou_cost
# Loss coefficients
UpperCAmelCase : int = mask_loss_coefficient
UpperCAmelCase : Optional[int] = dice_loss_coefficient
UpperCAmelCase : Dict = bbox_loss_coefficient
UpperCAmelCase : Any = giou_loss_coefficient
UpperCAmelCase : Any = eos_coefficient
super().__init__(is_encoder_decoder=A , **A )
@property
def _lowercase( self ) -> int:
return self.encoder_attention_heads
@property
def _lowercase( self ) -> int:
return self.d_model
@classmethod
def _lowercase( cls , A , **A ) -> Dict:
return cls(backbone_config=A , **A )
def _lowercase( self ) -> Dict[str, any]:
UpperCAmelCase : Any = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
UpperCAmelCase : Any = self.backbone_config.to_dict()
UpperCAmelCase : Optional[Any] = self.__class__.model_type
return output
class UpperCamelCase_ ( __magic_name__ ):
lowercase = version.parse('1.11' )
@property
def _lowercase( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""pixel_mask""", {0: """batch"""}),
] )
@property
def _lowercase( self ) -> float:
return 1e-5
@property
def _lowercase( self ) -> int:
return 12
| 369 |
'''simple docstring'''
# Function to print upper half of diamond (pyramid)
def __lowerCamelCase ( _lowercase ) -> List[Any]:
for i in range(0 , _lowercase ):
for _ in range(0 , n - i - 1 ): # printing spaces
print(""" """ , end="""""" )
for _ in range(0 , i + 1 ): # printing stars
print("""* """ , end="""""" )
print()
def __lowerCamelCase ( _lowercase ) -> Dict:
for i in range(_lowercase , 0 , -1 ):
for _ in range(_lowercase , 0 , -1 ): # printing stars
print("""* """ , end="""""" )
print()
for _ in range(n - i + 1 , 0 , -1 ): # printing spaces
print(""" """ , end="""""" )
def __lowerCamelCase ( _lowercase ) -> List[Any]:
if n <= 0:
print(""" ... .... nothing printing :(""" )
return
floyd(_lowercase ) # upper half
reverse_floyd(_lowercase ) # lower half
if __name__ == "__main__":
print(R"""| /\ | |- | |- |--| |\ /| |-""")
print(R"""|/ \| |- |_ |_ |__| | \/ | |_""")
a : List[Any] = 1
while K:
a : int = int(input("""enter the number and , and see the magic : """))
print()
pretty_print(user_number)
a : Tuple = int(input("""press 0 to exit... and 1 to continue..."""))
print("""Good Bye...""")
| 338 | 0 |
def __lowerCamelCase ( _lowercase , _lowercase ) -> str:
if b == 0:
return 1
if (b % 2) == 0:
return actual_power(_lowercase , int(b / 2 ) ) * actual_power(_lowercase , int(b / 2 ) )
else:
return a * actual_power(_lowercase , int(b / 2 ) ) * actual_power(_lowercase , int(b / 2 ) )
def __lowerCamelCase ( _lowercase , _lowercase ) -> float:
if b < 0:
return 1 / actual_power(_lowercase , _lowercase )
return actual_power(_lowercase , _lowercase )
if __name__ == "__main__":
print(power(-2, -3))
| 370 |
'''simple docstring'''
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
a : List[str] = logging.getLogger(__name__)
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , A , A , A , A=None ) -> Union[str, Any]:
super().__init__(
A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , )
UpperCAmelCase : Optional[Any] = None
def _lowercase( self , A ) -> List[Any]:
logger.info("""initializing retrieval""" )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info("""dist initialized""" )
# needs to be set manually
UpperCAmelCase : Tuple = self._infer_socket_ifname()
# avoid clash with the NCCL port
UpperCAmelCase : str = str(distributed_port + 1 )
UpperCAmelCase : Any = dist.new_group(ranks=A , backend="""gloo""" )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info("""dist not initialized / main""" )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def _lowercase( self ) -> Dict:
return dist.get_rank(group=self.process_group ) == 0
def _lowercase( self , A , A , A=torch.floataa ) -> str:
UpperCAmelCase : List[Any] = torch.empty(A , dtype=A )
dist.scatter(A , src=0 , scatter_list=A , group=self.process_group )
return target_tensor
def _lowercase( self ) -> Any:
UpperCAmelCase : List[Any] = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
UpperCAmelCase : Optional[int] = next((addr for addr in addrs if addr.startswith("""e""" )) , A )
return ifname
def _lowercase( self , A , A ) -> Tuple[np.ndarray, List[dict]]:
# single GPU training
if not dist.is_initialized():
UpperCAmelCase , UpperCAmelCase : str = self._main_retrieve(A , A )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A )
# distributed training
UpperCAmelCase : int = dist.get_world_size(group=self.process_group )
# gather logic
UpperCAmelCase : int = None
if self._is_main():
UpperCAmelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )]
dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group )
# scatter logic
UpperCAmelCase : List[Any] = question_hidden_states.shape[0]
UpperCAmelCase : Tuple = []
UpperCAmelCase : Any = []
if self._is_main():
assert len(A ) == world_size
UpperCAmelCase , UpperCAmelCase : Optional[int] = self._main_retrieve(torch.cat(A ).numpy() , A )
UpperCAmelCase , UpperCAmelCase : Optional[Any] = torch.tensor(A ), torch.tensor(A )
UpperCAmelCase : List[str] = self._chunk_tensor(A , A )
UpperCAmelCase : Union[str, Any] = self._chunk_tensor(A , A )
UpperCAmelCase : Tuple = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa )
UpperCAmelCase : Optional[Any] = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
| 338 | 0 |
'''simple docstring'''
import argparse
from pathlib import Path
from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , ) -> str:
if config_name_or_path is None:
UpperCAmelCase : List[str] = """facebook/rag-token-base""" if model_type == """rag_token""" else """facebook/rag-sequence-base"""
if generator_tokenizer_name_or_path is None:
UpperCAmelCase : List[Any] = generator_name_or_path
if question_encoder_tokenizer_name_or_path is None:
UpperCAmelCase : Union[str, Any] = question_encoder_name_or_path
UpperCAmelCase : Tuple = RagTokenForGeneration if model_type == """rag_token""" else RagSequenceForGeneration
# Save model.
UpperCAmelCase : Optional[int] = RagConfig.from_pretrained(_lowercase )
UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained(_lowercase )
UpperCAmelCase : int = AutoConfig.from_pretrained(_lowercase )
UpperCAmelCase : Tuple = gen_config
UpperCAmelCase : Optional[int] = question_encoder_config
UpperCAmelCase : Optional[Any] = model_class.from_pretrained_question_encoder_generator(
_lowercase , _lowercase , config=_lowercase )
rag_model.save_pretrained(_lowercase )
# Sanity check.
model_class.from_pretrained(_lowercase )
# Save tokenizers.
UpperCAmelCase : Any = AutoTokenizer.from_pretrained(_lowercase )
gen_tokenizer.save_pretrained(dest_dir / """generator_tokenizer/""" )
UpperCAmelCase : int = AutoTokenizer.from_pretrained(_lowercase )
question_encoder_tokenizer.save_pretrained(dest_dir / """question_encoder_tokenizer/""" )
if __name__ == "__main__":
a : List[Any] = argparse.ArgumentParser()
parser.add_argument(
"""--model_type""",
choices=["""rag_sequence""", """rag_token"""],
required=True,
type=str,
help="""RAG model type: rag_sequence, rag_token""",
)
parser.add_argument("""--dest""", type=str, required=True, help="""Path to the output checkpoint directory.""")
parser.add_argument("""--generator_name_or_path""", type=str, required=True, help="""Generator model identifier""")
parser.add_argument(
"""--question_encoder_name_or_path""", type=str, required=True, help="""Question encoder model identifier"""
)
parser.add_argument(
"""--generator_tokenizer_name_or_path""",
type=str,
help="""Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``""",
)
parser.add_argument(
"""--question_encoder_tokenizer_name_or_path""",
type=str,
help="""Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``""",
)
parser.add_argument(
"""--config_name_or_path""",
type=str,
help=(
"""Identifier of the model config to use, if not provided, resolves to a base config for a given"""
""" ``model_type``"""
),
)
a : str = parser.parse_args()
a : int = Path(args.dest)
dest_dir.mkdir(exist_ok=True)
consolidate(
args.model_type,
args.generator_name_or_path,
args.question_encoder_name_or_path,
dest_dir,
args.config_name_or_path,
args.generator_tokenizer_name_or_path,
args.question_encoder_tokenizer_name_or_path,
)
| 371 |
'''simple docstring'''
from typing import List, Optional
from tokenizers import ByteLevelBPETokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
a : List[Any] = logging.get_logger(__name__)
a : List[str] = {
"""vocab_file""": """vocab.json""",
"""merges_file""": """merges.txt""",
"""tokenizer_config_file""": """tokenizer_config.json""",
}
a : List[Any] = {
"""vocab_file""": {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"""
},
"""merges_file""": {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"""
},
"""tokenizer_config_file""": {
"""facebook/blenderbot_small-90M""": (
"""https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"""
)
},
}
a : List[Any] = {
"""facebook/blenderbot_small-90M""": 5_1_2,
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = BlenderbotSmallTokenizer
def __init__( self , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , A=True , **A , ) -> Union[str, Any]:
super().__init__(
ByteLevelBPETokenizer(
vocab=A , merges=A , add_prefix_space=A , trim_offsets=A , ) , bos_token=A , eos_token=A , unk_token=A , **A , )
UpperCAmelCase : Optional[Any] = add_prefix_space
def _lowercase( self , A , A=None ) -> Optional[Any]:
UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _lowercase( self , A , A = None ) -> List[int]:
UpperCAmelCase : Any = [self.sep_token_id]
UpperCAmelCase : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 338 | 0 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import AlbertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.albert.modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
)
class UpperCamelCase_ ( unittest.TestCase ):
def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=4 , ) -> Tuple:
UpperCAmelCase : Union[str, Any] = parent
UpperCAmelCase : Optional[Any] = batch_size
UpperCAmelCase : str = seq_length
UpperCAmelCase : Union[str, Any] = is_training
UpperCAmelCase : List[str] = use_attention_mask
UpperCAmelCase : List[Any] = use_token_type_ids
UpperCAmelCase : Tuple = use_labels
UpperCAmelCase : Optional[Any] = vocab_size
UpperCAmelCase : Union[str, Any] = hidden_size
UpperCAmelCase : Optional[int] = num_hidden_layers
UpperCAmelCase : List[Any] = num_attention_heads
UpperCAmelCase : Optional[Any] = intermediate_size
UpperCAmelCase : Union[str, Any] = hidden_act
UpperCAmelCase : List[str] = hidden_dropout_prob
UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob
UpperCAmelCase : Dict = max_position_embeddings
UpperCAmelCase : Optional[int] = type_vocab_size
UpperCAmelCase : str = type_sequence_label_size
UpperCAmelCase : int = initializer_range
UpperCAmelCase : Dict = num_choices
def _lowercase( self ) -> str:
UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : Optional[int] = None
if self.use_attention_mask:
UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : Tuple = None
if self.use_token_type_ids:
UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase : Union[str, Any] = AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
UpperCAmelCase : str = config_and_inputs
UpperCAmelCase : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_flax
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = (
(
FlaxAlbertModel,
FlaxAlbertForPreTraining,
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : List[str] = FlaxAlbertModelTester(self )
@slow
def _lowercase( self ) -> Union[str, Any]:
for model_class_name in self.all_model_classes:
UpperCAmelCase : int = model_class_name.from_pretrained("""albert-base-v2""" )
UpperCAmelCase : List[str] = model(np.ones((1, 1) ) )
self.assertIsNotNone(A )
@require_flax
class UpperCamelCase_ ( unittest.TestCase ):
@slow
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Dict = FlaxAlbertModel.from_pretrained("""albert-base-v2""" )
UpperCAmelCase : str = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
UpperCAmelCase : List[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
UpperCAmelCase : List[str] = model(A , attention_mask=A )[0]
UpperCAmelCase : Dict = (1, 11, 768)
self.assertEqual(output.shape , A )
UpperCAmelCase : List[str] = np.array(
[[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , A , atol=1e-4 ) )
| 350 |
'''simple docstring'''
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , A , A , A = None , A = None , A = False , **A , ) -> Tuple:
super().__init__(features=A , cache_dir=A , keep_in_memory=A , **A )
UpperCAmelCase : Any = Sql(
cache_dir=A , features=A , sql=A , con=A , **A , )
def _lowercase( self ) -> Dict:
UpperCAmelCase : Any = None
UpperCAmelCase : Any = None
UpperCAmelCase : int = None
UpperCAmelCase : int = None
self.builder.download_and_prepare(
download_config=A , download_mode=A , verification_mode=A , base_path=A , )
# Build dataset for splits
UpperCAmelCase : str = self.builder.as_dataset(
split="""train""" , verification_mode=A , in_memory=self.keep_in_memory )
return dataset
class UpperCamelCase_ :
def __init__( self , A , A , A , A = None , A = None , **A , ) -> str:
if num_proc is not None and num_proc <= 0:
raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' )
UpperCAmelCase : Dict = dataset
UpperCAmelCase : List[Any] = name
UpperCAmelCase : Any = con
UpperCAmelCase : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
UpperCAmelCase : Optional[Any] = num_proc
UpperCAmelCase : str = to_sql_kwargs
def _lowercase( self ) -> int:
UpperCAmelCase : Any = self.to_sql_kwargs.pop("""sql""" , A )
UpperCAmelCase : str = self.to_sql_kwargs.pop("""con""" , A )
UpperCAmelCase : Union[str, Any] = self.to_sql_kwargs.pop("""index""" , A )
UpperCAmelCase : str = self._write(index=A , **self.to_sql_kwargs )
return written
def _lowercase( self , A ) -> Any:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = args
UpperCAmelCase : Union[str, Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs
UpperCAmelCase : int = query_table(
table=self.dataset.data , key=slice(A , offset + self.batch_size ) , indices=self.dataset._indices , )
UpperCAmelCase : Any = batch.to_pandas()
UpperCAmelCase : List[Any] = df.to_sql(self.name , self.con , index=A , **A )
return num_rows or len(A )
def _lowercase( self , A , **A ) -> int:
UpperCAmelCase : Optional[int] = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
UpperCAmelCase , UpperCAmelCase : List[str] = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , A , A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += num_rows
return written
| 338 | 0 |
'''simple docstring'''
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class UpperCamelCase_ ( unittest.TestCase ):
def _lowercase( self , A ) -> Any:
for model_result in results.values():
for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ):
UpperCAmelCase : int = model_result["""result"""][batch_size][sequence_length]
self.assertIsNotNone(A )
def _lowercase( self ) -> List[str]:
UpperCAmelCase : List[str] = """sshleifer/tiny-gpt2"""
UpperCAmelCase : Optional[Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , )
UpperCAmelCase : Optional[Any] = PyTorchBenchmark(A )
UpperCAmelCase : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : int = """sgugger/tiny-distilbert-classification"""
UpperCAmelCase : Any = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , only_pretrain_model=A , )
UpperCAmelCase : List[str] = PyTorchBenchmark(A )
UpperCAmelCase : List[str] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _lowercase( self ) -> Dict:
UpperCAmelCase : Tuple = """sshleifer/tiny-gpt2"""
UpperCAmelCase : Tuple = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=A , inference=A , torchscript=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , )
UpperCAmelCase : int = PyTorchBenchmark(A )
UpperCAmelCase : Any = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" )
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : List[str] = """sshleifer/tiny-gpt2"""
UpperCAmelCase : List[Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=A , inference=A , fpaa=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , )
UpperCAmelCase : List[str] = PyTorchBenchmark(A )
UpperCAmelCase : Union[str, Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Optional[Any] = """sshleifer/tiny-gpt2"""
UpperCAmelCase : Dict = AutoConfig.from_pretrained(A )
# set architectures equal to `None`
UpperCAmelCase : Tuple = None
UpperCAmelCase : Optional[int] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , )
UpperCAmelCase : Dict = PyTorchBenchmark(A , configs=[config] )
UpperCAmelCase : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _lowercase( self ) -> str:
UpperCAmelCase : Any = """sshleifer/tiny-gpt2"""
UpperCAmelCase : Tuple = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , )
UpperCAmelCase : Optional[int] = PyTorchBenchmark(A )
UpperCAmelCase : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" )
def _lowercase( self ) -> Any:
UpperCAmelCase : int = """sshleifer/tiny-gpt2"""
UpperCAmelCase : Optional[Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , fpaa=A , multi_process=A , )
UpperCAmelCase : List[str] = PyTorchBenchmark(A )
UpperCAmelCase : Union[str, Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Union[str, Any] = """sshleifer/tiny-gpt2"""
UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(A )
UpperCAmelCase : Union[str, Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , )
UpperCAmelCase : Optional[Any] = PyTorchBenchmark(A , configs=[config] )
UpperCAmelCase : Optional[int] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _lowercase( self ) -> List[str]:
UpperCAmelCase : Optional[int] = """sshleifer/tinier_bart"""
UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained(A )
UpperCAmelCase : Union[str, Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , )
UpperCAmelCase : Optional[Any] = PyTorchBenchmark(A , configs=[config] )
UpperCAmelCase : List[str] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Optional[Any] = """sshleifer/tiny-gpt2"""
UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(A )
UpperCAmelCase : Dict = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , )
UpperCAmelCase : Optional[Any] = PyTorchBenchmark(A , configs=[config] )
UpperCAmelCase : Tuple = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Optional[Any] = """sshleifer/tinier_bart"""
UpperCAmelCase : int = AutoConfig.from_pretrained(A )
UpperCAmelCase : Optional[Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , )
UpperCAmelCase : Any = PyTorchBenchmark(A , configs=[config] )
UpperCAmelCase : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _lowercase( self ) -> Tuple:
UpperCAmelCase : str = """sshleifer/tiny-gpt2"""
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase : Optional[int] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=A , inference=A , save_to_csv=A , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(A , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(A , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(A , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(A , """train_time.csv""" ) , env_info_csv_file=os.path.join(A , """env.csv""" ) , multi_process=A , )
UpperCAmelCase : Dict = PyTorchBenchmark(A )
benchmark.run()
self.assertTrue(Path(os.path.join(A , """inf_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(A , """train_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(A , """inf_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(A , """train_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(A , """env.csv""" ) ).exists() )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Any = """sshleifer/tiny-gpt2"""
def _check_summary_is_not_empty(A ):
self.assertTrue(hasattr(A , """sequential""" ) )
self.assertTrue(hasattr(A , """cumulative""" ) )
self.assertTrue(hasattr(A , """current""" ) )
self.assertTrue(hasattr(A , """total""" ) )
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase : Dict = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(A , """log.txt""" ) , log_print=A , trace_memory_line_by_line=A , multi_process=A , )
UpperCAmelCase : str = PyTorchBenchmark(A )
UpperCAmelCase : Union[str, Any] = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(A , """log.txt""" ) ).exists() )
| 351 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel
@require_tf
class UpperCamelCase_ :
lowercase = MBartConfig
lowercase = {}
lowercase = 'gelu'
def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]:
UpperCAmelCase : Optional[int] = parent
UpperCAmelCase : Dict = batch_size
UpperCAmelCase : Tuple = seq_length
UpperCAmelCase : str = is_training
UpperCAmelCase : Optional[int] = use_labels
UpperCAmelCase : Optional[Any] = vocab_size
UpperCAmelCase : Union[str, Any] = hidden_size
UpperCAmelCase : Union[str, Any] = num_hidden_layers
UpperCAmelCase : List[Any] = num_attention_heads
UpperCAmelCase : Optional[int] = intermediate_size
UpperCAmelCase : Dict = hidden_dropout_prob
UpperCAmelCase : int = attention_probs_dropout_prob
UpperCAmelCase : Optional[int] = max_position_embeddings
UpperCAmelCase : Optional[Any] = eos_token_id
UpperCAmelCase : List[str] = pad_token_id
UpperCAmelCase : List[Any] = bos_token_id
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : str = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A )
return config, inputs_dict
def _lowercase( self , A , A ) -> List[str]:
UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder()
UpperCAmelCase : int = inputs_dict["""input_ids"""]
UpperCAmelCase : str = input_ids[:1, :]
UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :]
UpperCAmelCase : List[str] = inputs_dict["""head_mask"""]
UpperCAmelCase : List[Any] = 1
# first forward pass
UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A )
UpperCAmelCase , UpperCAmelCase : Optional[Any] = outputs.to_tuple()
UpperCAmelCase : int = past_key_values[1]
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]:
if attention_mask is None:
UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCAmelCase : int = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
lowercase = (
{
'conversational': TFMBartForConditionalGeneration,
'feature-extraction': TFMBartModel,
'summarization': TFMBartForConditionalGeneration,
'text2text-generation': TFMBartForConditionalGeneration,
'translation': TFMBartForConditionalGeneration,
}
if is_tf_available()
else {}
)
lowercase = True
lowercase = False
lowercase = False
def _lowercase( self , A , A , A , A , A ) -> int:
if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
# Exception encountered when calling layer '...'
return True
return False
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : int = TFMBartModelTester(self )
UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A )
def _lowercase( self ) -> Optional[int]:
self.config_tester.run_common_tests()
def _lowercase( self ) -> Dict:
UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*A )
@require_sentencepiece
@require_tokenizers
@require_tf
class UpperCamelCase_ ( unittest.TestCase ):
lowercase = [
' UN Chief Says There Is No Military Solution in Syria',
]
lowercase = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
]
lowercase = 'facebook/mbart-large-en-ro'
@cached_property
def _lowercase( self ) -> Any:
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def _lowercase( self , **A ) -> Any:
UpperCAmelCase : Optional[int] = self.translate_src_text(**A )
self.assertListEqual(self.expected_text , A )
def _lowercase( self , **A ) -> Optional[Any]:
UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" )
UpperCAmelCase : int = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 )
UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A )
return generated_words
@slow
def _lowercase( self ) -> List[Any]:
self._assert_generated_batch_equal_expected()
| 338 | 0 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel
@require_tf
class UpperCamelCase_ :
lowercase = MBartConfig
lowercase = {}
lowercase = 'gelu'
def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]:
UpperCAmelCase : Optional[int] = parent
UpperCAmelCase : Dict = batch_size
UpperCAmelCase : Tuple = seq_length
UpperCAmelCase : str = is_training
UpperCAmelCase : Optional[int] = use_labels
UpperCAmelCase : Optional[Any] = vocab_size
UpperCAmelCase : Union[str, Any] = hidden_size
UpperCAmelCase : Union[str, Any] = num_hidden_layers
UpperCAmelCase : List[Any] = num_attention_heads
UpperCAmelCase : Optional[int] = intermediate_size
UpperCAmelCase : Dict = hidden_dropout_prob
UpperCAmelCase : int = attention_probs_dropout_prob
UpperCAmelCase : Optional[int] = max_position_embeddings
UpperCAmelCase : Optional[Any] = eos_token_id
UpperCAmelCase : List[str] = pad_token_id
UpperCAmelCase : List[Any] = bos_token_id
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : str = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A )
return config, inputs_dict
def _lowercase( self , A , A ) -> List[str]:
UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder()
UpperCAmelCase : int = inputs_dict["""input_ids"""]
UpperCAmelCase : str = input_ids[:1, :]
UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :]
UpperCAmelCase : List[str] = inputs_dict["""head_mask"""]
UpperCAmelCase : List[Any] = 1
# first forward pass
UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A )
UpperCAmelCase : Optional[Any] = outputs.to_tuple()
UpperCAmelCase : int = past_key_values[1]
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]:
if attention_mask is None:
UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCAmelCase : int = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
lowercase = (
{
'conversational': TFMBartForConditionalGeneration,
'feature-extraction': TFMBartModel,
'summarization': TFMBartForConditionalGeneration,
'text2text-generation': TFMBartForConditionalGeneration,
'translation': TFMBartForConditionalGeneration,
}
if is_tf_available()
else {}
)
lowercase = True
lowercase = False
lowercase = False
def _lowercase( self , A , A , A , A , A ) -> int:
if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
# Exception encountered when calling layer '...'
return True
return False
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : int = TFMBartModelTester(self )
UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A )
def _lowercase( self ) -> Optional[int]:
self.config_tester.run_common_tests()
def _lowercase( self ) -> Dict:
UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*A )
@require_sentencepiece
@require_tokenizers
@require_tf
class UpperCamelCase_ ( unittest.TestCase ):
lowercase = [
' UN Chief Says There Is No Military Solution in Syria',
]
lowercase = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
]
lowercase = 'facebook/mbart-large-en-ro'
@cached_property
def _lowercase( self ) -> Any:
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def _lowercase( self , **A ) -> Any:
UpperCAmelCase : Optional[int] = self.translate_src_text(**A )
self.assertListEqual(self.expected_text , A )
def _lowercase( self , **A ) -> Optional[Any]:
UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" )
UpperCAmelCase : int = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 )
UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A )
return generated_words
@slow
def _lowercase( self ) -> List[Any]:
self._assert_generated_batch_equal_expected()
| 352 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase , _lowercase ) -> bool:
UpperCAmelCase : Tuple = len(_lowercase ) + 1
UpperCAmelCase : List[Any] = len(_lowercase ) + 1
# dp is a 2d matrix where dp[i][j] denotes whether prefix string of
# length i of input_string matches with prefix string of length j of
# given pattern.
# "dp" stands for dynamic programming.
UpperCAmelCase : str = [[0 for i in range(_lowercase )] for j in range(_lowercase )]
# since string of zero length match pattern of zero length
UpperCAmelCase : int = 1
# since pattern of zero length will never match with string of non-zero length
for i in range(1 , _lowercase ):
UpperCAmelCase : str = 0
# since string of zero length will match with pattern where there
# is at least one * alternatively
for j in range(1 , _lowercase ):
UpperCAmelCase : Optional[Any] = dp[0][j - 2] if pattern[j - 1] == """*""" else 0
# now using bottom-up approach to find for all remaining lengths
for i in range(1 , _lowercase ):
for j in range(1 , _lowercase ):
if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".":
UpperCAmelCase : Union[str, Any] = dp[i - 1][j - 1]
elif pattern[j - 1] == "*":
if dp[i][j - 2] == 1:
UpperCAmelCase : List[Any] = 1
elif pattern[j - 2] in (input_string[i - 1], "."):
UpperCAmelCase : Optional[int] = dp[i - 1][j]
else:
UpperCAmelCase : Any = 0
else:
UpperCAmelCase : str = 0
return bool(dp[-1][-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
# inputing the strings
# input_string = input("input a string :")
# pattern = input("input a pattern :")
a : List[str] = """aab"""
a : Optional[int] = """c*a*b"""
# using function to check whether given string matches the given pattern
if match_pattern(input_string, pattern):
print(F'''{input_string} matches the given pattern {pattern}''')
else:
print(F'''{input_string} does not match with the given pattern {pattern}''')
| 338 | 0 |
'''simple docstring'''
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
a : Dict = 2
class UpperCamelCase_ :
def __init__( self , *, # begin keyword-only arguments
A="<s>" , A="<pad>" , A="</s>" , A="<unk>" , A=None , ) -> Any:
UpperCAmelCase : List[str] = bos, unk, pad, eos
UpperCAmelCase : Union[str, Any] = []
UpperCAmelCase : Optional[int] = []
UpperCAmelCase : Dict = {}
UpperCAmelCase : List[Any] = self.add_symbol(A )
UpperCAmelCase : List[str] = self.add_symbol(A )
UpperCAmelCase : int = self.add_symbol(A )
UpperCAmelCase : List[Any] = self.add_symbol(A )
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(A )
UpperCAmelCase : List[str] = len(self.symbols )
def __eq__( self , A ) -> Tuple:
return self.indices == other.indices
def __getitem__( self , A ) -> Optional[Any]:
if idx < len(self.symbols ):
return self.symbols[idx]
return self.unk_word
def __len__( self ) -> Optional[int]:
return len(self.symbols )
def __contains__( self , A ) -> List[Any]:
return sym in self.indices
@classmethod
def _lowercase( cls , A ) -> Optional[Any]:
UpperCAmelCase : List[Any] = cls()
d.add_from_file(A )
return d
def _lowercase( self , A , A=1 , A=False ) -> List[str]:
if word in self.indices and not overwrite:
UpperCAmelCase : List[Any] = self.indices[word]
UpperCAmelCase : int = self.count[idx] + n
return idx
else:
UpperCAmelCase : Optional[int] = len(self.symbols )
UpperCAmelCase : List[str] = idx
self.symbols.append(A )
self.count.append(A )
return idx
def _lowercase( self , A ) -> Dict:
return 0
def _lowercase( self , A ) -> Optional[Any]:
if isinstance(A , A ):
try:
with open(A , """r""" , encoding="""utf-8""" ) as fd:
self.add_from_file(A )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(A ) )
return
UpperCAmelCase : str = f.readlines()
UpperCAmelCase : Optional[Any] = self._load_meta(A )
for line in lines[indices_start_line:]:
try:
UpperCAmelCase : str = line.rstrip().rsplit(""" """ , 1 )
if field == "#fairseq:overwrite":
UpperCAmelCase : Any = True
UpperCAmelCase : str = line.rsplit(""" """ , 1 )
else:
UpperCAmelCase : Dict = False
UpperCAmelCase : List[Any] = int(A )
UpperCAmelCase : Any = line
if word in self and not overwrite:
raise RuntimeError(
"""Duplicate word found when loading Dictionary: '{}'. """
"""Duplicate words can overwrite earlier ones by adding the """
"""#fairseq:overwrite flag at the end of the corresponding row """
"""in the dictionary file. If using the Camembert model, please """
"""download an updated copy of the model file.""".format(A ) )
self.add_symbol(A , n=A , overwrite=A )
except ValueError:
raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" )
def __lowerCamelCase ( _lowercase ) -> Optional[Any]:
# (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up,
# e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7}
UpperCAmelCase : Optional[Any] = dict((re.sub(R"""@@$""" , """""" , _lowercase ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" , """</w>""" , _lowercase ), v) for k, v in d.items() )
UpperCAmelCase : int = """<s> <pad> </s> <unk>""".split()
# restore the special tokens
for k in keep_keys:
del da[F'''{k}</w>''']
UpperCAmelCase : Optional[Any] = d[k] # restore
return da
def __lowerCamelCase ( _lowercase , _lowercase ) -> Any:
# prep
if not os.path.exists(_lowercase ):
raise ValueError(F'''path {biogpt_checkpoint_path} does not exist!''' )
os.makedirs(_lowercase , exist_ok=_lowercase )
print(F'''Writing results to {pytorch_dump_folder_path}''' )
# handle various types of models
UpperCAmelCase : Optional[int] = os.path.join(_lowercase , """checkpoint.pt""" )
if not os.path.isfile(_lowercase ):
raise ValueError(F'''path to the file {checkpoint_file} does not exist!''' )
UpperCAmelCase : Optional[int] = torch.load(_lowercase , map_location="""cpu""" )
UpperCAmelCase : List[Any] = chkpt["""cfg"""]["""model"""]
# dicts
UpperCAmelCase : List[Any] = os.path.join(_lowercase , """dict.txt""" )
if not os.path.isfile(_lowercase ):
raise ValueError(F'''path to the file {dict_file} does not exist!''' )
UpperCAmelCase : Any = Dictionary.load(_lowercase )
UpperCAmelCase : Dict = rewrite_dict_keys(src_dict.indices )
UpperCAmelCase : Optional[int] = len(_lowercase )
UpperCAmelCase : Dict = os.path.join(_lowercase , VOCAB_FILES_NAMES["""vocab_file"""] )
print(F'''Generating {src_vocab_file} of {src_vocab_size} records''' )
with open(_lowercase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(_lowercase , ensure_ascii=_lowercase , indent=_lowercase ) )
# merges_file (bpecodes)
UpperCAmelCase : Tuple = os.path.join(_lowercase , """bpecodes""" )
if not os.path.isfile(_lowercase ):
raise ValueError(F'''path to the file {bpecodes_file} does not exist!''' )
UpperCAmelCase : List[Any] = os.path.join(_lowercase , VOCAB_FILES_NAMES["""merges_file"""] )
shutil.copyfile(_lowercase , _lowercase )
# model config
UpperCAmelCase : List[str] = os.path.join(_lowercase , """config.json""" )
UpperCAmelCase : Optional[Any] = {
"""activation_dropout""": args["""activation_dropout"""],
"""architectures""": ["""BioGptForCausalLM"""],
"""attention_probs_dropout_prob""": args["""attention_dropout"""],
"""bos_token_id""": 0,
"""eos_token_id""": 2,
"""hidden_act""": args["""activation_fn"""],
"""hidden_dropout_prob""": args["""dropout"""],
"""hidden_size""": args["""decoder_embed_dim"""],
"""initializer_range""": 0.02,
"""intermediate_size""": args["""decoder_ffn_embed_dim"""],
"""layer_norm_eps""": 1e-12,
"""layerdrop""": args["""decoder_layerdrop"""],
"""max_position_embeddings""": args["""max_target_positions"""],
"""model_type""": """biogpt""",
"""num_attention_heads""": args["""decoder_attention_heads"""],
"""num_hidden_layers""": args["""decoder_layers"""],
"""pad_token_id""": 1,
"""scale_embedding""": not args["""no_scale_embedding"""],
"""tie_word_embeddings""": args["""share_decoder_input_output_embed"""],
"""vocab_size""": src_vocab_size,
}
# good hparam defaults to start with
print(F'''Generating {biogpt_model_config_file}''' )
with open(_lowercase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(_lowercase , ensure_ascii=_lowercase , indent=_lowercase ) )
# tokenizer config
UpperCAmelCase : Tuple = os.path.join(_lowercase , _lowercase )
UpperCAmelCase : Optional[Any] = {
"""bos_token""": """<s>""",
"""eos_token""": """</s>""",
"""model_max_length""": 1_0_2_4,
"""pad_token""": """<pad>""",
"""special_tokens_map_file""": None,
"""tokenizer_class""": """BioGptTokenizer""",
"""unk_token""": """<unk>""",
}
print(F'''Generating {biogpt_tokenizer_config_file}''' )
with open(_lowercase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(_lowercase , ensure_ascii=_lowercase , indent=_lowercase ) )
# model
UpperCAmelCase : Any = chkpt["""model"""]
# remove unneeded keys
UpperCAmelCase : Optional[int] = [
"""decoder.version""",
]
for k in ignore_keys:
model_state_dict.pop(_lowercase , _lowercase )
UpperCAmelCase : int = list(model_state_dict.keys() )
for layer_name in layer_names:
if layer_name.endswith("""output_projection.weight""" ):
UpperCAmelCase : Tuple = model_state_dict.pop(_lowercase )
else:
UpperCAmelCase : Tuple = model_state_dict.pop(_lowercase )
UpperCAmelCase : List[Any] = BioGptConfig.from_pretrained(_lowercase )
UpperCAmelCase : Any = BioGptForCausalLM(_lowercase )
# check that it loads ok
model_new.load_state_dict(_lowercase )
# save
UpperCAmelCase : Union[str, Any] = os.path.join(_lowercase , _lowercase )
print(F'''Generating {pytorch_weights_dump_path}''' )
torch.save(_lowercase , _lowercase )
print("""Conversion is done!""" )
if __name__ == "__main__":
a : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--biogpt_checkpoint_path""",
default=None,
type=str,
required=True,
help=(
"""Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,"""
""" bpecodes, etc."""
),
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
a : Optional[int] = parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 353 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase ) -> int:
UpperCAmelCase : List[str] = 0
while num > 0:
digit_sum += num % 1_0
num //= 1_0
return digit_sum
def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int:
UpperCAmelCase : int = 1
UpperCAmelCase : str = 2
for i in range(2 , max_n + 1 ):
UpperCAmelCase : Tuple = pre_numerator
UpperCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1
UpperCAmelCase : Union[str, Any] = cur_numerator
UpperCAmelCase : Optional[int] = e_cont * pre_numerator + temp
return sum_digits(_lowercase )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 338 | 0 |
'''simple docstring'''
from sklearn.metrics import mean_squared_error
import datasets
a : int = """\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
"""
a : Dict = """\
Mean Squared Error(MSE) is the average of the square of difference between the predicted
and actual values.
"""
a : Union[str, Any] = """
Args:
predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
references: array-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
sample_weight: array-like of shape (n_samples,), default=None
Sample weights.
multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"
Defines aggregating of multiple output values. Array-like value defines weights used to average errors.
\"raw_values\" : Returns a full set of errors in case of multioutput input.
\"uniform_average\" : Errors of all outputs are averaged with uniform weight.
squared : bool, default=True
If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.
Returns:
mse : mean squared error.
Examples:
>>> mse_metric = datasets.load_metric(\"mse\")
>>> predictions = [2.5, 0.0, 2, 8]
>>> references = [3, -0.5, 2, 7]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'mse': 0.375}
>>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)
>>> print(rmse_result)
{'mse': 0.6123724356957945}
If you're using multi-dimensional lists, then set the config as follows :
>>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")
>>> predictions = [[0.5, 1], [-1, 1], [7, -6]]
>>> references = [[0, 2], [-1, 2], [8, -5]]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'mse': 0.7083333333333334}
>>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{'mse': array([0.41666667, 1. ])}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase_ ( datasets.Metric ):
def _lowercase( self ) -> Optional[int]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
"""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html"""
] , )
def _lowercase( self ) -> List[Any]:
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value("""float""" ) ),
"references": datasets.Sequence(datasets.Value("""float""" ) ),
}
else:
return {
"predictions": datasets.Value("""float""" ),
"references": datasets.Value("""float""" ),
}
def _lowercase( self , A , A , A=None , A="uniform_average" , A=True ) -> Union[str, Any]:
UpperCAmelCase : Optional[Any] = mean_squared_error(
A , A , sample_weight=A , multioutput=A , squared=A )
return {"mse": mse}
| 354 |
'''simple docstring'''
import random
import unittest
from torch.utils.data import BatchSampler, DataLoader, IterableDataset
from accelerate import Accelerator
from accelerate.data_loader import (
BatchSamplerShard,
DataLoaderDispatcher,
DataLoaderShard,
IterableDatasetShard,
SkipBatchSampler,
SkipDataLoader,
skip_first_batches,
)
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , A=0.0_1 , A=1000 ) -> List[str]:
UpperCAmelCase : List[Any] = p_stop
UpperCAmelCase : Optional[int] = max_length
def __iter__( self ) -> Union[str, Any]:
UpperCAmelCase : Dict = 0
UpperCAmelCase : Union[str, Any] = False
while not stop and count < self.max_length:
yield count
count += 1
UpperCAmelCase : Any = random.random() < self.p_stop
class UpperCamelCase_ ( unittest.TestCase ):
def _lowercase( self , A , A , A=False , A=True ) -> Union[str, Any]:
UpperCAmelCase : List[str] = [
BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A )
for i in range(2 )
]
UpperCAmelCase : List[str] = [list(A ) for batch_sampler_shard in batch_sampler_shards]
if not split_batches:
self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] )
self.assertListEqual(A , A )
def _lowercase( self ) -> Union[str, Any]:
# Check the shards when the dataset is a round multiple of total batch size.
UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Any = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A )
# Expected shouldn't change
self.check_batch_sampler_shards(A , A )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]],
]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Tuple = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]],
]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : List[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]],
]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : int = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A )
# Check the shards when the dataset is very small.
UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : List[Any] = [[], []]
self.check_batch_sampler_shards(A , A )
def _lowercase( self ) -> Tuple:
# Check the shards when the dataset is a round multiple of batch size.
UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : List[str] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A )
# Expected shouldn't change
self.check_batch_sampler_shards(A , A , split_batches=A )
# Check the shards when the dataset is not a round multiple of batch size.
UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : List[str] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Union[str, Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Any = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
# Check the shards when the dataset is very small.
UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Optional[Any] = [[[0, 1]], [[0, 1]]]
self.check_batch_sampler_shards(A , A , split_batches=A )
UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Any = [[], []]
self.check_batch_sampler_shards(A , A , split_batches=A )
def _lowercase( self ) -> Any:
# Check the shards when the dataset is a round multiple of total batch size.
UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A )
# Expected shouldn't change
self.check_batch_sampler_shards(A , A , even_batches=A )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : List[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Dict = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
UpperCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Union[str, Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
# Check the shards when the dataset is very small.
UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : str = [[[0, 1]], []]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Tuple = [[], []]
self.check_batch_sampler_shards(A , A , even_batches=A )
def _lowercase( self ) -> List[Any]:
# Check the shards when the dataset is a round multiple of batch size.
UpperCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : List[Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A )
# Expected shouldn't change
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
# Check the shards when the dataset is not a round multiple of batch size.
UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Optional[Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Dict = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Union[str, Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Dict = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
# Check the shards when the dataset is very small.
UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Dict = [[[0, 1]], []]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Dict = [[], []]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]]
UpperCAmelCase : List[str] = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )]
self.assertEqual(len(batch_sampler_shards[0] ) , 3 )
self.assertEqual(len(batch_sampler_shards[1] ) , 2 )
self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] )
self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] )
def _lowercase( self , A , A , A , A=False , A=2 , A=False ) -> Tuple:
random.seed(A )
UpperCAmelCase : Dict = list(A )
UpperCAmelCase : Any = [
IterableDatasetShard(
A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , )
for i in range(A )
]
UpperCAmelCase : Dict = []
for iterable_dataset_shard in iterable_dataset_shards:
# Since our random iterable dataset will be... random... we need to use a seed to get reproducible results.
random.seed(A )
iterable_dataset_lists.append(list(A ) )
UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size
# All iterable dataset shard should have the same length, a round multiple of shard_batch_size
UpperCAmelCase : List[Any] = iterable_dataset_lists[0]
for l in iterable_dataset_lists[1:]:
self.assertEqual(len(A ) , len(A ) )
self.assertTrue(len(A ) % shard_batch_size == 0 )
UpperCAmelCase : List[Any] = []
for idx in range(0 , len(A ) , A ):
for l in iterable_dataset_lists:
observed += l[idx : idx + shard_batch_size]
if not drop_last:
while len(A ) < len(A ):
reference += reference
self.assertListEqual(A , reference[: len(A )] )
def _lowercase( self ) -> str:
UpperCAmelCase : Tuple = 42
UpperCAmelCase : List[Any] = RandomIterableDataset()
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
# Edge case with a very small dataset
UpperCAmelCase : List[Any] = RandomIterableDataset(max_length=2 )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Any = SkipBatchSampler(A , 2 )
self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowercase( self ) -> int:
UpperCAmelCase : Any = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 )
self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : List[Any] = DataLoader(list(range(16 ) ) , batch_size=4 )
UpperCAmelCase : Optional[Any] = skip_first_batches(A , num_batches=2 )
self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 )
for idx, _ in enumerate(A ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(A ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
def _lowercase( self ) -> Dict:
Accelerator()
UpperCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 )
for idx, _ in enumerate(A ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(A ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
| 338 | 0 |
import itertools
import json
import os
import unittest
from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = RobertaTokenizer
lowercase = RobertaTokenizerFast
lowercase = True
lowercase = {'cls_token': '<s>'}
def _lowercase( self ) -> int:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCAmelCase : int = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""<unk>""",
]
UpperCAmelCase : List[Any] = dict(zip(A , range(len(A ) ) ) )
UpperCAmelCase : Union[str, Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
UpperCAmelCase : Optional[int] = {"""unk_token""": """<unk>"""}
UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
UpperCAmelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(A ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(A ) )
def _lowercase( self , **A ) -> Union[str, Any]:
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **A )
def _lowercase( self , **A ) -> Any:
kwargs.update(self.special_tokens_map )
return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **A )
def _lowercase( self , A ) -> List[str]:
UpperCAmelCase : int = """lower newer"""
UpperCAmelCase : List[str] = """lower newer"""
return input_text, output_text
def _lowercase( self ) -> Any:
UpperCAmelCase : int = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map )
UpperCAmelCase : Any = """lower newer"""
UpperCAmelCase : Optional[int] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""]
UpperCAmelCase : Union[str, Any] = tokenizer.tokenize(A ) # , add_prefix_space=True)
self.assertListEqual(A , A )
UpperCAmelCase : str = tokens + [tokenizer.unk_token]
UpperCAmelCase : List[str] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Optional[Any] = self.get_tokenizer()
self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=A ) , [0, 31414, 232, 328, 2] )
self.assertListEqual(
tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=A ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , )
@slow
def _lowercase( self ) -> int:
UpperCAmelCase : List[str] = self.tokenizer_class.from_pretrained("""roberta-base""" )
UpperCAmelCase : Tuple = tokenizer.encode("""sequence builders""" , add_special_tokens=A )
UpperCAmelCase : Optional[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=A )
UpperCAmelCase : Tuple = tokenizer.encode(
"""sequence builders""" , add_special_tokens=A , add_prefix_space=A )
UpperCAmelCase : Dict = tokenizer.encode(
"""sequence builders""" , """multi-sequence build""" , add_special_tokens=A , add_prefix_space=A )
UpperCAmelCase : Any = tokenizer.build_inputs_with_special_tokens(A )
UpperCAmelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(A , A )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : List[str] = self.get_tokenizer()
UpperCAmelCase : List[str] = """Encode this sequence."""
UpperCAmelCase : Optional[int] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]]
# Testing encoder arguments
UpperCAmelCase : str = tokenizer.encode(A , add_special_tokens=A , add_prefix_space=A )
UpperCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(A , A )
UpperCAmelCase : Union[str, Any] = tokenizer.encode(A , add_special_tokens=A , add_prefix_space=A )
UpperCAmelCase : int = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(A , A )
tokenizer.add_special_tokens({"""bos_token""": """<s>"""} )
UpperCAmelCase : str = tokenizer.encode(A , add_special_tokens=A )
UpperCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(A , A )
# Testing spaces after special tokens
UpperCAmelCase : int = """<mask>"""
tokenizer.add_special_tokens(
{"""mask_token""": AddedToken(A , lstrip=A , rstrip=A )} ) # mask token has a left space
UpperCAmelCase : List[Any] = tokenizer.convert_tokens_to_ids(A )
UpperCAmelCase : Union[str, Any] = """Encode <mask> sequence"""
UpperCAmelCase : Any = """Encode <mask>sequence"""
UpperCAmelCase : Tuple = tokenizer.encode(A )
UpperCAmelCase : Dict = encoded.index(A )
UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(A , A )
UpperCAmelCase : List[Any] = tokenizer.encode(A )
UpperCAmelCase : List[Any] = encoded.index(A )
UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(A , A )
def _lowercase( self ) -> List[str]:
pass
def _lowercase( self ) -> Tuple:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(A , **A )
UpperCAmelCase : Dict = self.tokenizer_class.from_pretrained(A , **A )
UpperCAmelCase : str = """A, <mask> AllenNLP sentence."""
UpperCAmelCase : List[Any] = tokenizer_r.encode_plus(A , add_special_tokens=A , return_token_type_ids=A )
UpperCAmelCase : Dict = tokenizer_p.encode_plus(A , add_special_tokens=A , return_token_type_ids=A )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , )
UpperCAmelCase : str = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] )
UpperCAmelCase : int = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] )
self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] )
self.assertSequenceEqual(
A , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
self.assertSequenceEqual(
A , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
def _lowercase( self ) -> Optional[int]:
for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ):
UpperCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname , use_fast=A , add_prefix_space=A , trim_offsets=A )
UpperCAmelCase : List[str] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
UpperCAmelCase : Tuple = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , A )
self.assertEqual(post_processor_state["""add_prefix_space"""] , A )
self.assertEqual(post_processor_state["""trim_offsets"""] , A )
def _lowercase( self ) -> Dict:
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and
# `trim_offsets`
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
UpperCAmelCase : Dict = """hello""" # `hello` is a token in the vocabulary of `pretrained_name`
UpperCAmelCase : str = f'''{text_of_1_token} {text_of_1_token}'''
UpperCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained(
A , use_fast=A , add_prefix_space=A , trim_offsets=A )
UpperCAmelCase : Optional[Any] = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(A ) + 1, len(A ) + 1 + len(A )) , )
UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
A , use_fast=A , add_prefix_space=A , trim_offsets=A )
UpperCAmelCase : Optional[Any] = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(A ) + 1, len(A ) + 1 + len(A )) , )
UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(
A , use_fast=A , add_prefix_space=A , trim_offsets=A )
UpperCAmelCase : Union[str, Any] = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(A ), len(A ) + 1 + len(A )) , )
UpperCAmelCase : str = self.rust_tokenizer_class.from_pretrained(
A , use_fast=A , add_prefix_space=A , trim_offsets=A )
UpperCAmelCase : List[str] = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(A ), len(A ) + 1 + len(A )) , )
UpperCAmelCase : str = f''' {text}'''
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(
A , use_fast=A , add_prefix_space=A , trim_offsets=A )
UpperCAmelCase : Optional[Any] = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(A )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(A ) + 1, 1 + len(A ) + 1 + len(A )) , )
UpperCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(
A , use_fast=A , add_prefix_space=A , trim_offsets=A )
UpperCAmelCase : int = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(A )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(A ), 1 + len(A ) + 1 + len(A )) , )
UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
A , use_fast=A , add_prefix_space=A , trim_offsets=A )
UpperCAmelCase : Dict = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(A )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(A ), 1 + len(A ) + 1 + len(A )) , )
| 355 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
a : List[Any] = {
"""configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""],
"""tokenization_m2m_100""": ["""M2M100Tokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Any = [
"""M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""M2M100ForConditionalGeneration""",
"""M2M100Model""",
"""M2M100PreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 338 | 0 |
'''simple docstring'''
import os
import tempfile
import unittest
from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter
from transformers.testing_utils import slow
from transformers.utils import cached_property
@unittest.skipUnless(os.path.exists(__magic_name__ ) , 'Tatoeba directory does not exist.' )
class UpperCamelCase_ ( unittest.TestCase ):
@cached_property
def _lowercase( self ) -> str:
UpperCAmelCase : Tuple = tempfile.mkdtemp()
return TatoebaConverter(save_dir=A )
@slow
def _lowercase( self ) -> Union[str, Any]:
self.resolver.convert_models(["""heb-eng"""] )
@slow
def _lowercase( self ) -> str:
UpperCAmelCase : str = self.resolver.write_model_card("""opus-mt-he-en""" , dry_run=A )
assert mmeta["long_pair"] == "heb-eng"
| 356 |
'''simple docstring'''
from math import loga
def __lowerCamelCase ( _lowercase ) -> int:
if a < 0:
raise ValueError("""Input value must be a positive integer""" )
elif isinstance(_lowercase , _lowercase ):
raise TypeError("""Input value must be a 'int' type""" )
return 0 if (a == 0) else int(loga(a & -a ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 338 | 0 |
'''simple docstring'''
import argparse
import logging
import os
import sys
import numpy as np
import onnxruntime
import torch
from bart_onnx.generation_onnx import BARTBeamSearchGenerator
from bart_onnx.reduce_onnx_size import remove_dup_initializers
import transformers
from transformers import BartForConditionalGeneration, BartTokenizer
logging.basicConfig(
format="""%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s""",
datefmt="""%Y-%m-%d %H:%M:%S""",
level=os.environ.get("""LOGLEVEL""", """INFO""").upper(),
stream=sys.stdout,
)
a : Optional[int] = logging.getLogger(__name__)
a : Dict = {"""facebook/bart-base""": BartForConditionalGeneration}
a : Tuple = {"""facebook/bart-base""": BartTokenizer}
def __lowerCamelCase ( ) -> Any:
UpperCAmelCase : List[Any] = argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""" )
parser.add_argument(
"""--validation_file""" , type=_lowercase , default=_lowercase , help="""A csv or a json file containing the validation data.""" )
parser.add_argument(
"""--max_length""" , type=_lowercase , default=5 , help="""The maximum total input sequence length after tokenization.""" , )
parser.add_argument(
"""--num_beams""" , type=_lowercase , default=_lowercase , help=(
"""Number of beams to use for evaluation. This argument will be """
"""passed to ``model.generate``, which is used during ``evaluate`` and ``predict``."""
) , )
parser.add_argument(
"""--model_name_or_path""" , type=_lowercase , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=_lowercase , )
parser.add_argument(
"""--config_name""" , type=_lowercase , default=_lowercase , help="""Pretrained config name or path if not the same as model_name""" , )
parser.add_argument(
"""--device""" , type=_lowercase , default="""cpu""" , help="""Device where the model will be run""" , )
parser.add_argument("""--output_file_path""" , type=_lowercase , default=_lowercase , help="""Where to store the final ONNX file.""" )
UpperCAmelCase : Optional[Any] = parser.parse_args()
return args
def __lowerCamelCase ( _lowercase , _lowercase="cpu" ) -> int:
UpperCAmelCase : Union[str, Any] = model_dict[model_name].from_pretrained(_lowercase ).to(_lowercase )
UpperCAmelCase : Tuple = tokenizer_dict[model_name].from_pretrained(_lowercase )
if model_name in ["facebook/bart-base"]:
UpperCAmelCase : List[Any] = 0
UpperCAmelCase : str = None
UpperCAmelCase : Tuple = 0
return huggingface_model, tokenizer
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Tuple:
model.eval()
UpperCAmelCase : Tuple = None
UpperCAmelCase : Union[str, Any] = torch.jit.script(BARTBeamSearchGenerator(_lowercase ) )
with torch.no_grad():
UpperCAmelCase : int = """My friends are cool but they eat too many carbs."""
UpperCAmelCase : Dict = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_0_2_4 , return_tensors="""pt""" ).to(model.device )
UpperCAmelCase : List[Any] = model.generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=_lowercase , max_length=_lowercase , early_stopping=_lowercase , decoder_start_token_id=model.config.decoder_start_token_id , )
torch.onnx.export(
_lowercase , (
inputs["""input_ids"""],
inputs["""attention_mask"""],
num_beams,
max_length,
model.config.decoder_start_token_id,
) , _lowercase , opset_version=1_4 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={
"""input_ids""": {0: """batch""", 1: """seq"""},
"""output_ids""": {0: """batch""", 1: """seq_out"""},
} , example_outputs=_lowercase , )
logger.info("""Model exported to {}""".format(_lowercase ) )
UpperCAmelCase : Optional[int] = remove_dup_initializers(os.path.abspath(_lowercase ) )
logger.info("""Deduplicated and optimized model written to {}""".format(_lowercase ) )
UpperCAmelCase : Union[str, Any] = onnxruntime.InferenceSession(_lowercase )
UpperCAmelCase : List[str] = ort_sess.run(
_lowercase , {
"""input_ids""": inputs["""input_ids"""].cpu().numpy(),
"""attention_mask""": inputs["""attention_mask"""].cpu().numpy(),
"""num_beams""": np.array(_lowercase ),
"""max_length""": np.array(_lowercase ),
"""decoder_start_token_id""": np.array(model.config.decoder_start_token_id ),
} , )
np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 )
logger.info("""Model outputs from torch and ONNX Runtime are similar.""" )
logger.info("""Success.""" )
def __lowerCamelCase ( ) -> Optional[int]:
UpperCAmelCase : Any = parse_args()
UpperCAmelCase : str = 5
UpperCAmelCase : Optional[Any] = 4
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , )
logger.setLevel(logging.INFO )
transformers.utils.logging.set_verbosity_error()
UpperCAmelCase : Dict = torch.device(args.device )
UpperCAmelCase : Union[str, Any] = load_model_tokenizer(args.model_name_or_path , _lowercase )
if model.config.decoder_start_token_id is None:
raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""" )
model.to(_lowercase )
if args.max_length:
UpperCAmelCase : Optional[int] = args.max_length
if args.num_beams:
UpperCAmelCase : int = args.num_beams
if args.output_file_path:
UpperCAmelCase : Tuple = args.output_file_path
else:
UpperCAmelCase : int = """BART.onnx"""
logger.info("""Exporting model to ONNX""" )
export_and_validate_model(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase )
if __name__ == "__main__":
main()
| 357 |
'''simple docstring'''
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
a : Optional[int] = 1_0
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int:
for i in range(_lowercase , _lowercase ):
if array[i] == target:
return i
return -1
def __lowerCamelCase ( _lowercase , _lowercase ) -> int:
UpperCAmelCase : Tuple = 0
UpperCAmelCase : List[str] = len(_lowercase )
while left <= right:
if right - left < precision:
return lin_search(_lowercase , _lowercase , _lowercase , _lowercase )
UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1
UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
UpperCAmelCase : Any = one_third - 1
elif array[two_third] < target:
UpperCAmelCase : Tuple = two_third + 1
else:
UpperCAmelCase : int = one_third + 1
UpperCAmelCase : List[Any] = two_third - 1
else:
return -1
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int:
if left < right:
if right - left < precision:
return lin_search(_lowercase , _lowercase , _lowercase , _lowercase )
UpperCAmelCase : str = (left + right) // 3 + 1
UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
a : Any = input("""Enter numbers separated by comma:\n""").strip()
a : Any = [int(item.strip()) for item in user_input.split(""",""")]
assert collection == sorted(collection), F"List must be ordered.\n{collection}."
a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip())
a : Union[str, Any] = ite_ternary_search(collection, target)
a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(F'''Iterative search: {target} found at positions: {resulta}''')
print(F'''Recursive search: {target} found at positions: {resulta}''')
else:
print("""Not found""")
| 338 | 0 |
'''simple docstring'''
import torch
from diffusers import CMStochasticIterativeScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCamelCase_ ( __magic_name__ ):
lowercase = (CMStochasticIterativeScheduler,)
lowercase = 10
def _lowercase( self , **A ) -> Tuple:
UpperCAmelCase : List[str] = {
"""num_train_timesteps""": 201,
"""sigma_min""": 0.0_0_2,
"""sigma_max""": 80.0,
}
config.update(**A )
return config
def _lowercase( self ) -> Dict:
UpperCAmelCase : List[str] = 10
UpperCAmelCase : Optional[int] = self.get_scheduler_config()
UpperCAmelCase : List[str] = self.scheduler_classes[0](**A )
scheduler.set_timesteps(A )
UpperCAmelCase : str = scheduler.timesteps[0]
UpperCAmelCase : Optional[Any] = scheduler.timesteps[1]
UpperCAmelCase : Any = self.dummy_sample
UpperCAmelCase : Tuple = 0.1 * sample
UpperCAmelCase : Optional[Any] = scheduler.step(A , A , A ).prev_sample
UpperCAmelCase : int = scheduler.step(A , A , A ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def _lowercase( self ) -> Optional[Any]:
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=A )
def _lowercase( self ) -> Union[str, Any]:
for clip_denoised in [True, False]:
self.check_over_configs(clip_denoised=A )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Optional[Any] = self.scheduler_classes[0]
UpperCAmelCase : int = self.get_scheduler_config()
UpperCAmelCase : Any = scheduler_class(**A )
UpperCAmelCase : Optional[Any] = 1
scheduler.set_timesteps(A )
UpperCAmelCase : List[Any] = scheduler.timesteps
UpperCAmelCase : str = torch.manual_seed(0 )
UpperCAmelCase : List[Any] = self.dummy_model()
UpperCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma
for i, t in enumerate(A ):
# 1. scale model input
UpperCAmelCase : str = scheduler.scale_model_input(A , A )
# 2. predict noise residual
UpperCAmelCase : List[Any] = model(A , A )
# 3. predict previous sample x_t-1
UpperCAmelCase : List[Any] = scheduler.step(A , A , A , generator=A ).prev_sample
UpperCAmelCase : List[Any] = pred_prev_sample
UpperCAmelCase : List[str] = torch.sum(torch.abs(A ) )
UpperCAmelCase : Optional[int] = torch.mean(torch.abs(A ) )
assert abs(result_sum.item() - 192.7614 ) < 1e-2
assert abs(result_mean.item() - 0.2_5_1_0 ) < 1e-3
def _lowercase( self ) -> Dict:
UpperCAmelCase : Optional[int] = self.scheduler_classes[0]
UpperCAmelCase : Tuple = self.get_scheduler_config()
UpperCAmelCase : Tuple = scheduler_class(**A )
UpperCAmelCase : List[Any] = [106, 0]
scheduler.set_timesteps(timesteps=A )
UpperCAmelCase : Optional[int] = scheduler.timesteps
UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 )
UpperCAmelCase : List[Any] = self.dummy_model()
UpperCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma
for t in timesteps:
# 1. scale model input
UpperCAmelCase : Tuple = scheduler.scale_model_input(A , A )
# 2. predict noise residual
UpperCAmelCase : List[str] = model(A , A )
# 3. predict previous sample x_t-1
UpperCAmelCase : Tuple = scheduler.step(A , A , A , generator=A ).prev_sample
UpperCAmelCase : int = pred_prev_sample
UpperCAmelCase : Any = torch.sum(torch.abs(A ) )
UpperCAmelCase : Any = torch.mean(torch.abs(A ) )
assert abs(result_sum.item() - 347.6357 ) < 1e-2
assert abs(result_mean.item() - 0.4_5_2_7 ) < 1e-3
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : str = self.scheduler_classes[0]
UpperCAmelCase : Dict = self.get_scheduler_config()
UpperCAmelCase : Dict = scheduler_class(**A )
UpperCAmelCase : List[str] = [39, 30, 12, 15, 0]
with self.assertRaises(A , msg="""`timesteps` must be in descending order.""" ):
scheduler.set_timesteps(timesteps=A )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Optional[int] = self.scheduler_classes[0]
UpperCAmelCase : str = self.get_scheduler_config()
UpperCAmelCase : Union[str, Any] = scheduler_class(**A )
UpperCAmelCase : int = [39, 30, 12, 1, 0]
UpperCAmelCase : Union[str, Any] = len(A )
with self.assertRaises(A , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ):
scheduler.set_timesteps(num_inference_steps=A , timesteps=A )
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Tuple = self.scheduler_classes[0]
UpperCAmelCase : int = self.get_scheduler_config()
UpperCAmelCase : Dict = scheduler_class(**A )
UpperCAmelCase : Tuple = [scheduler.config.num_train_timesteps]
with self.assertRaises(
A , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ):
scheduler.set_timesteps(timesteps=A )
| 358 |
'''simple docstring'''
import numpy as np
class UpperCamelCase_ :
def __init__( self ) -> int:
UpperCAmelCase : str = (0, 0)
UpperCAmelCase : Union[str, Any] = None
UpperCAmelCase : Any = 0
UpperCAmelCase : int = 0
UpperCAmelCase : Optional[int] = 0
def __eq__( self , A ) -> Optional[Any]:
return self.position == cell.position
def _lowercase( self ) -> Tuple:
print(self.position )
class UpperCamelCase_ :
def __init__( self , A=(5, 5) ) -> Optional[Any]:
UpperCAmelCase : Union[str, Any] = np.zeros(A )
UpperCAmelCase : int = world_size[0]
UpperCAmelCase : List[str] = world_size[1]
def _lowercase( self ) -> List[Any]:
print(self.w )
def _lowercase( self , A ) -> Dict:
UpperCAmelCase : Optional[Any] = [
(-1, -1),
(-1, 0),
(-1, 1),
(0, -1),
(0, 1),
(1, -1),
(1, 0),
(1, 1),
]
UpperCAmelCase : List[Any] = cell.position[0]
UpperCAmelCase : Union[str, Any] = cell.position[1]
UpperCAmelCase : Optional[int] = []
for n in neughbour_cord:
UpperCAmelCase : Any = current_x + n[0]
UpperCAmelCase : Tuple = current_y + n[1]
if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit:
UpperCAmelCase : str = Cell()
UpperCAmelCase : List[str] = (x, y)
UpperCAmelCase : Dict = cell
neighbours.append(A )
return neighbours
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int:
UpperCAmelCase : List[Any] = []
UpperCAmelCase : Optional[int] = []
_open.append(_lowercase )
while _open:
UpperCAmelCase : Any = np.argmin([n.f for n in _open] )
UpperCAmelCase : Optional[int] = _open[min_f]
_closed.append(_open.pop(_lowercase ) )
if current == goal:
break
for n in world.get_neigbours(_lowercase ):
for c in _closed:
if c == n:
continue
UpperCAmelCase : List[str] = current.g + 1
UpperCAmelCase , UpperCAmelCase : List[str] = n.position
UpperCAmelCase , UpperCAmelCase : Dict = goal.position
UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2
UpperCAmelCase : Dict = n.h + n.g
for c in _open:
if c == n and c.f < n.f:
continue
_open.append(_lowercase )
UpperCAmelCase : Dict = []
while current.parent is not None:
path.append(current.position )
UpperCAmelCase : Optional[int] = current.parent
path.append(current.position )
return path[::-1]
if __name__ == "__main__":
a : List[str] = Gridworld()
# Start position and goal
a : Optional[int] = Cell()
a : Optional[Any] = (0, 0)
a : Optional[Any] = Cell()
a : str = (4, 4)
print(F'''path from {start.position} to {goal.position}''')
a : List[Any] = astar(world, start, goal)
# Just for visual reasons.
for i in s:
a : Any = 1
print(world.w)
| 338 | 0 |
'''simple docstring'''
import functools
import logging
import os
import sys
import threading
from logging import (
CRITICAL, # NOQA
DEBUG, # NOQA
ERROR, # NOQA
FATAL, # NOQA
INFO, # NOQA
NOTSET, # NOQA
WARN, # NOQA
WARNING, # NOQA
)
from typing import Optional
import huggingface_hub.utils as hf_hub_utils
from tqdm import auto as tqdm_lib
a : Union[str, Any] = threading.Lock()
a : Optional[logging.Handler] = None
a : List[str] = {
"""debug""": logging.DEBUG,
"""info""": logging.INFO,
"""warning""": logging.WARNING,
"""error""": logging.ERROR,
"""critical""": logging.CRITICAL,
}
a : Any = logging.WARNING
a : str = True
def __lowerCamelCase ( ) -> Dict:
UpperCAmelCase : Optional[Any] = os.getenv("""TRANSFORMERS_VERBOSITY""" , _lowercase )
if env_level_str:
if env_level_str in log_levels:
return log_levels[env_level_str]
else:
logging.getLogger().warning(
F'''Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, '''
F'''has to be one of: { ', '.join(log_levels.keys() ) }''' )
return _default_log_level
def __lowerCamelCase ( ) -> str:
return __name__.split(""".""" )[0]
def __lowerCamelCase ( ) -> logging.Logger:
return logging.getLogger(_get_library_name() )
def __lowerCamelCase ( ) -> None:
global _default_handler
with _lock:
if _default_handler:
# This library has already configured the library root logger.
return
UpperCAmelCase : Tuple = logging.StreamHandler() # Set sys.stderr as stream.
UpperCAmelCase : Any = sys.stderr.flush
# Apply our default configuration to the library root logger.
UpperCAmelCase : int = _get_library_root_logger()
library_root_logger.addHandler(_default_handler )
library_root_logger.setLevel(_get_default_logging_level() )
UpperCAmelCase : Union[str, Any] = False
def __lowerCamelCase ( ) -> None:
global _default_handler
with _lock:
if not _default_handler:
return
UpperCAmelCase : List[str] = _get_library_root_logger()
library_root_logger.removeHandler(_default_handler )
library_root_logger.setLevel(logging.NOTSET )
UpperCAmelCase : int = None
def __lowerCamelCase ( ) -> Union[str, Any]:
return log_levels
def __lowerCamelCase ( _lowercase = None ) -> logging.Logger:
if name is None:
UpperCAmelCase : List[Any] = _get_library_name()
_configure_library_root_logger()
return logging.getLogger(_lowercase )
def __lowerCamelCase ( ) -> int:
_configure_library_root_logger()
return _get_library_root_logger().getEffectiveLevel()
def __lowerCamelCase ( _lowercase ) -> None:
_configure_library_root_logger()
_get_library_root_logger().setLevel(_lowercase )
def __lowerCamelCase ( ) -> Any:
return set_verbosity(_lowercase )
def __lowerCamelCase ( ) -> Optional[int]:
return set_verbosity(_lowercase )
def __lowerCamelCase ( ) -> int:
return set_verbosity(_lowercase )
def __lowerCamelCase ( ) -> List[str]:
return set_verbosity(_lowercase )
def __lowerCamelCase ( ) -> None:
_configure_library_root_logger()
assert _default_handler is not None
_get_library_root_logger().removeHandler(_default_handler )
def __lowerCamelCase ( ) -> None:
_configure_library_root_logger()
assert _default_handler is not None
_get_library_root_logger().addHandler(_default_handler )
def __lowerCamelCase ( _lowercase ) -> None:
_configure_library_root_logger()
assert handler is not None
_get_library_root_logger().addHandler(_lowercase )
def __lowerCamelCase ( _lowercase ) -> None:
_configure_library_root_logger()
assert handler is not None and handler not in _get_library_root_logger().handlers
_get_library_root_logger().removeHandler(_lowercase )
def __lowerCamelCase ( ) -> None:
_configure_library_root_logger()
UpperCAmelCase : int = False
def __lowerCamelCase ( ) -> None:
_configure_library_root_logger()
UpperCAmelCase : Optional[int] = True
def __lowerCamelCase ( ) -> None:
UpperCAmelCase : str = _get_library_root_logger().handlers
for handler in handlers:
UpperCAmelCase : List[str] = logging.Formatter("""[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s""" )
handler.setFormatter(_lowercase )
def __lowerCamelCase ( ) -> None:
UpperCAmelCase : Dict = _get_library_root_logger().handlers
for handler in handlers:
handler.setFormatter(_lowercase )
def __lowerCamelCase ( self , *_lowercase , **_lowercase ) -> Tuple:
UpperCAmelCase : Optional[Any] = os.getenv("""TRANSFORMERS_NO_ADVISORY_WARNINGS""" , _lowercase )
if no_advisory_warnings:
return
self.warning(*_lowercase , **_lowercase )
a : List[Any] = warning_advice
@functools.lru_cache(_lowercase )
def __lowerCamelCase ( self , *_lowercase , **_lowercase ) -> int:
self.warning(*_lowercase , **_lowercase )
a : Union[str, Any] = warning_once
class UpperCamelCase_ :
def __init__( self , *A , **A ) -> Optional[Any]: # pylint: disable=unused-argument
UpperCAmelCase : Any = args[0] if args else None
def __iter__( self ) -> int:
return iter(self._iterator )
def __getattr__( self , A ) -> Optional[Any]:
def empty_fn(*A , **A ): # pylint: disable=unused-argument
return
return empty_fn
def __enter__( self ) -> List[Any]:
return self
def __exit__( self , A , A , A ) -> Any:
return
class UpperCamelCase_ :
def __call__( self , *A , **A ) -> List[Any]:
if _tqdm_active:
return tqdm_lib.tqdm(*A , **A )
else:
return EmptyTqdm(*A , **A )
def _lowercase( self , *A , **A ) -> Any:
UpperCAmelCase : Any = None
if _tqdm_active:
return tqdm_lib.tqdm.set_lock(*A , **A )
def _lowercase( self ) -> int:
if _tqdm_active:
return tqdm_lib.tqdm.get_lock()
a : Tuple = _tqdm_cls()
def __lowerCamelCase ( ) -> bool:
global _tqdm_active
return bool(_tqdm_active )
def __lowerCamelCase ( ) -> Any:
global _tqdm_active
UpperCAmelCase : int = True
hf_hub_utils.enable_progress_bars()
def __lowerCamelCase ( ) -> Optional[Any]:
global _tqdm_active
UpperCAmelCase : Optional[int] = False
hf_hub_utils.disable_progress_bars()
| 359 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import _LazyModule
a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]}
if TYPE_CHECKING:
from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer
else:
import sys
a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 338 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a : Tuple = logging.get_logger(__name__)
a : Optional[int] = {
"""edbeeching/decision-transformer-gym-hopper-medium""": (
"""https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json"""
),
# See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'decision_transformer'
lowercase = ['past_key_values']
lowercase = {
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , A=17 , A=4 , A=128 , A=4096 , A=True , A=1 , A=1024 , A=3 , A=1 , A=None , A="relu" , A=0.1 , A=0.1 , A=0.1 , A=1e-5 , A=0.0_2 , A=True , A=True , A=50256 , A=50256 , A=False , A=False , **A , ) -> Union[str, Any]:
UpperCAmelCase : Optional[Any] = state_dim
UpperCAmelCase : Optional[int] = act_dim
UpperCAmelCase : Optional[Any] = hidden_size
UpperCAmelCase : List[str] = max_ep_len
UpperCAmelCase : Optional[Any] = action_tanh
UpperCAmelCase : List[str] = vocab_size
UpperCAmelCase : Union[str, Any] = n_positions
UpperCAmelCase : List[str] = n_layer
UpperCAmelCase : str = n_head
UpperCAmelCase : Any = n_inner
UpperCAmelCase : Optional[int] = activation_function
UpperCAmelCase : Tuple = resid_pdrop
UpperCAmelCase : List[str] = embd_pdrop
UpperCAmelCase : Dict = attn_pdrop
UpperCAmelCase : List[Any] = layer_norm_epsilon
UpperCAmelCase : Any = initializer_range
UpperCAmelCase : int = scale_attn_weights
UpperCAmelCase : int = use_cache
UpperCAmelCase : Any = scale_attn_by_inverse_layer_idx
UpperCAmelCase : List[str] = reorder_and_upcast_attn
UpperCAmelCase : List[Any] = bos_token_id
UpperCAmelCase : str = eos_token_id
super().__init__(bos_token_id=A , eos_token_id=A , **A )
| 360 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
a : int = logging.get_logger(__name__)
a : int = {
"""openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""",
}
# fmt: off
a : Tuple = [
1, 2, 7, 8, 9, 1_0, 1_4, 2_5,
2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2,
6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5,
7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7,
1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1,
4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6,
1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1,
1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9,
3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1
]
a : Optional[int] = [
1, 2, 7, 8, 9, 1_0, 1_4, 2_5,
2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2,
6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3,
8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7,
3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7,
7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3,
1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5,
2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5,
4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2
]
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'whisper'
lowercase = ['past_key_values']
lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]:
UpperCAmelCase : str = vocab_size
UpperCAmelCase : Union[str, Any] = num_mel_bins
UpperCAmelCase : Tuple = d_model
UpperCAmelCase : Optional[int] = encoder_layers
UpperCAmelCase : List[str] = encoder_attention_heads
UpperCAmelCase : Optional[int] = decoder_layers
UpperCAmelCase : int = decoder_attention_heads
UpperCAmelCase : Optional[int] = decoder_ffn_dim
UpperCAmelCase : Union[str, Any] = encoder_ffn_dim
UpperCAmelCase : List[str] = dropout
UpperCAmelCase : Optional[Any] = attention_dropout
UpperCAmelCase : Optional[Any] = activation_dropout
UpperCAmelCase : Optional[Any] = activation_function
UpperCAmelCase : Optional[Any] = init_std
UpperCAmelCase : int = encoder_layerdrop
UpperCAmelCase : Dict = decoder_layerdrop
UpperCAmelCase : Optional[int] = use_cache
UpperCAmelCase : List[str] = encoder_layers
UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCAmelCase : Union[str, Any] = max_source_positions
UpperCAmelCase : Tuple = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
UpperCAmelCase : List[str] = classifier_proj_size
UpperCAmelCase : Optional[Any] = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase : Optional[Any] = apply_spec_augment
UpperCAmelCase : int = mask_time_prob
UpperCAmelCase : int = mask_time_length
UpperCAmelCase : Dict = mask_time_min_masks
UpperCAmelCase : List[str] = mask_feature_prob
UpperCAmelCase : Optional[int] = mask_feature_length
UpperCAmelCase : int = mask_feature_min_masks
UpperCAmelCase : List[Any] = median_filter_width
super().__init__(
pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , )
class UpperCamelCase_ ( __magic_name__ ):
@property
def _lowercase( self ) -> Mapping[str, Mapping[int, str]]:
UpperCAmelCase : str = OrderedDict(
[
("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}),
] )
if self.use_past:
UpperCAmelCase : List[Any] = {0: """batch"""}
else:
UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""}
if self.use_past:
self.fill_with_past_key_values_(A , direction="""inputs""" )
return common_inputs
def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]:
UpperCAmelCase : Optional[int] = OrderedDict()
UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , )
UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2]
UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length
UpperCAmelCase : Any = super().generate_dummy_inputs(
preprocessor.tokenizer , A , A , A , A )
UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" )
UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" )
if "past_key_values" in decoder_inputs:
UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" )
return dummy_inputs
@property
def _lowercase( self ) -> float:
return 1e-3
| 338 | 0 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase ) -> bool:
return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number
if __name__ == "__main__":
print("""Program to check whether a number is a Perfect number or not...""")
a : Optional[Any] = int(input("""Enter number: """).strip())
print(F'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
| 361 |
'''simple docstring'''
a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ"""
def __lowerCamelCase ( ) -> None:
UpperCAmelCase : Optional[int] = input("""Enter message: """ )
UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ )
UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ )
if mode.lower().startswith("""e""" ):
UpperCAmelCase : List[str] = """encrypt"""
UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase )
elif mode.lower().startswith("""d""" ):
UpperCAmelCase : Tuple = """decrypt"""
UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase )
print(F'''\n{mode.title()}ed message:''' )
print(_lowercase )
def __lowerCamelCase ( _lowercase , _lowercase ) -> str:
return translate_message(_lowercase , _lowercase , """encrypt""" )
def __lowerCamelCase ( _lowercase , _lowercase ) -> str:
return translate_message(_lowercase , _lowercase , """decrypt""" )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str:
UpperCAmelCase : Optional[int] = []
UpperCAmelCase : Optional[Any] = 0
UpperCAmelCase : Tuple = key.upper()
for symbol in message:
UpperCAmelCase : Dict = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(_lowercase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(_lowercase ):
UpperCAmelCase : Optional[int] = 0
else:
translated.append(_lowercase )
return "".join(_lowercase )
if __name__ == "__main__":
main()
| 338 | 0 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_segformer import SegformerImageProcessor
a = logging.get_logger(__name__)
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , *A , **A ) -> None:
warnings.warn(
"""The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use SegformerImageProcessor instead.""" , A , )
super().__init__(*A , **A )
| 362 |
'''simple docstring'''
import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
"""split_dict""" , [
SplitDict(),
SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ),
SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ),
SplitDict({"""train""": SplitInfo()} ),
] , )
def __lowerCamelCase ( _lowercase ) -> List[str]:
UpperCAmelCase : Optional[int] = split_dict._to_yaml_list()
assert len(_lowercase ) == len(_lowercase )
UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(_lowercase )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
UpperCAmelCase : List[str] = None
# the split name of split_dict takes over the name of the split info object
UpperCAmelCase : int = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
"""split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name="""my_dataset""" )] )
def __lowerCamelCase ( _lowercase ) -> List[str]:
# For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name"
# field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files
UpperCAmelCase : Optional[Any] = asdict(SplitDict({"""train""": split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 338 | 0 |
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[Any]:
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
UpperCAmelCase : Tuple = mf_knapsack(i - 1 , _lowercase , _lowercase , _lowercase )
else:
UpperCAmelCase : Dict = max(
mf_knapsack(i - 1 , _lowercase , _lowercase , _lowercase ) , mf_knapsack(i - 1 , _lowercase , _lowercase , j - wt[i - 1] ) + val[i - 1] , )
UpperCAmelCase : Tuple = val
return f[i][j]
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> str:
UpperCAmelCase : List[str] = [[0] * (w + 1) for _ in range(n + 1 )]
for i in range(1 , n + 1 ):
for w_ in range(1 , w + 1 ):
if wt[i - 1] <= w_:
UpperCAmelCase : str = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] )
else:
UpperCAmelCase : Optional[Any] = dp[i - 1][w_]
return dp[n][w_], dp
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int:
if not (isinstance(_lowercase , (list, tuple) ) and isinstance(_lowercase , (list, tuple) )):
raise ValueError(
"""Both the weights and values vectors must be either lists or tuples""" )
UpperCAmelCase : Optional[int] = len(_lowercase )
if num_items != len(_lowercase ):
UpperCAmelCase : Optional[Any] = (
"""The number of weights must be the same as the number of values.\n"""
F'''But got {num_items} weights and {len(_lowercase )} values'''
)
raise ValueError(_lowercase )
for i in range(_lowercase ):
if not isinstance(wt[i] , _lowercase ):
UpperCAmelCase : Union[str, Any] = (
"""All weights must be integers but got weight of """
F'''type {type(wt[i] )} at index {i}'''
)
raise TypeError(_lowercase )
UpperCAmelCase : List[Any] = knapsack(_lowercase , _lowercase , _lowercase , _lowercase )
UpperCAmelCase : set = set()
_construct_solution(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase )
return optimal_val, example_optional_set
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]:
# for the current item i at a maximum weight j to be part of an optimal subset,
# the optimal value at (i, j) must be greater than the optimal value at (i-1, j).
# where i - 1 means considering only the previous items at the given maximum weight
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(_lowercase , _lowercase , i - 1 , _lowercase , _lowercase )
else:
optimal_set.add(_lowercase )
_construct_solution(_lowercase , _lowercase , i - 1 , j - wt[i - 1] , _lowercase )
if __name__ == "__main__":
a : str = [3, 2, 4, 4]
a : str = [4, 3, 2, 3]
a : List[str] = 4
a : Optional[Any] = 6
a : Optional[int] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
a : List[str] = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
a : Optional[Any] = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print("""optimal_value = """, optimal_solution)
print("""An optimal subset corresponding to the optimal value""", optimal_subset)
| 363 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
a : Dict = logging.get_logger(__name__)
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , *A , **A ) -> None:
warnings.warn(
"""The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use LayoutLMv2ImageProcessor instead.""" , A , )
super().__init__(*A , **A )
| 338 | 0 |
'''simple docstring'''
from collections.abc import Sequence
def __lowerCamelCase ( _lowercase = None ) -> int:
"""simple docstring"""
if nums is None or not nums:
raise ValueError("""Input sequence should not be empty""" )
UpperCAmelCase : List[str] = nums[0]
for i in range(1 , len(_lowercase ) ):
UpperCAmelCase : Union[str, Any] = nums[i]
UpperCAmelCase : str = max(_lowercase , ans + num , _lowercase )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
a : int = int(input("""Enter number of elements : """).strip())
a : List[Any] = list(map(int, input("""\nEnter the numbers : """).strip().split()))[:n]
print(max_subsequence_sum(array))
| 364 |
'''simple docstring'''
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
a : Union[str, Any] = logging.get_logger(__name__)
a : Union[str, Any] = {
"""facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""",
# See all DETR models at https://huggingface.co/models?filter=detr
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'detr'
lowercase = ['past_key_values']
lowercase = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]:
if backbone_config is not None and use_timm_backbone:
raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" )
if not use_timm_backbone:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] )
elif isinstance(A , A ):
UpperCAmelCase : Any = backbone_config.get("""model_type""" )
UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type]
UpperCAmelCase : List[Any] = config_class.from_dict(A )
# set timm attributes to None
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = None, None, None
UpperCAmelCase : Dict = use_timm_backbone
UpperCAmelCase : Any = backbone_config
UpperCAmelCase : List[Any] = num_channels
UpperCAmelCase : int = num_queries
UpperCAmelCase : List[str] = d_model
UpperCAmelCase : Tuple = encoder_ffn_dim
UpperCAmelCase : Optional[Any] = encoder_layers
UpperCAmelCase : Any = encoder_attention_heads
UpperCAmelCase : Optional[Any] = decoder_ffn_dim
UpperCAmelCase : Optional[int] = decoder_layers
UpperCAmelCase : Any = decoder_attention_heads
UpperCAmelCase : str = dropout
UpperCAmelCase : Tuple = attention_dropout
UpperCAmelCase : Dict = activation_dropout
UpperCAmelCase : Tuple = activation_function
UpperCAmelCase : List[Any] = init_std
UpperCAmelCase : str = init_xavier_std
UpperCAmelCase : List[Any] = encoder_layerdrop
UpperCAmelCase : int = decoder_layerdrop
UpperCAmelCase : List[Any] = encoder_layers
UpperCAmelCase : Union[str, Any] = auxiliary_loss
UpperCAmelCase : str = position_embedding_type
UpperCAmelCase : Union[str, Any] = backbone
UpperCAmelCase : List[str] = use_pretrained_backbone
UpperCAmelCase : Optional[int] = dilation
# Hungarian matcher
UpperCAmelCase : Union[str, Any] = class_cost
UpperCAmelCase : Optional[Any] = bbox_cost
UpperCAmelCase : List[Any] = giou_cost
# Loss coefficients
UpperCAmelCase : int = mask_loss_coefficient
UpperCAmelCase : Optional[int] = dice_loss_coefficient
UpperCAmelCase : Dict = bbox_loss_coefficient
UpperCAmelCase : Any = giou_loss_coefficient
UpperCAmelCase : Any = eos_coefficient
super().__init__(is_encoder_decoder=A , **A )
@property
def _lowercase( self ) -> int:
return self.encoder_attention_heads
@property
def _lowercase( self ) -> int:
return self.d_model
@classmethod
def _lowercase( cls , A , **A ) -> Dict:
return cls(backbone_config=A , **A )
def _lowercase( self ) -> Dict[str, any]:
UpperCAmelCase : Any = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
UpperCAmelCase : Any = self.backbone_config.to_dict()
UpperCAmelCase : Optional[Any] = self.__class__.model_type
return output
class UpperCamelCase_ ( __magic_name__ ):
lowercase = version.parse('1.11' )
@property
def _lowercase( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""pixel_mask""", {0: """batch"""}),
] )
@property
def _lowercase( self ) -> float:
return 1e-5
@property
def _lowercase( self ) -> int:
return 12
| 338 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.