code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Any = word.split() def justify(_lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Any = max_width - width UpperCAmelCase : List[str] = len(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: UpperCAmelCase : Union[str, Any] = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] UpperCAmelCase : Dict = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] UpperCAmelCase : Tuple = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(UpperCAmelCase_ ): num_spaces_between_words_list[i] += 1 UpperCAmelCase : Tuple = [] for i in range(UpperCAmelCase_ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Dict = [] UpperCAmelCase : Optional[Any] = 0 for word in words: if width + len(UpperCAmelCase_ ) + len(UpperCAmelCase_ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(UpperCAmelCase_ ) width += len(UpperCAmelCase_ ) else: # justify the line and add it to result answer.append(justify(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ) # reset new line and new width UpperCAmelCase , UpperCAmelCase : Optional[int] = [word], len(UpperCAmelCase_ ) UpperCAmelCase : int = max_width - width - len(UpperCAmelCase_ ) answer.append(""" """.join(UpperCAmelCase_ ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
353
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : List[str] = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int: UpperCAmelCase : int = 1 UpperCAmelCase : str = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase : Tuple = pre_numerator UpperCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase : Union[str, Any] = cur_numerator UpperCAmelCase : Optional[int] = e_cont * pre_numerator + temp return sum_digits(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
338
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available a : Optional[Any] = {'''tokenization_herbert''': ['''HerbertTokenizer''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = ['''HerbertTokenizerFast'''] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
354
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=0.0_1 , A=1000 ) -> List[str]: UpperCAmelCase : List[Any] = p_stop UpperCAmelCase : Optional[int] = max_length def __iter__( self ) -> Union[str, Any]: UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = False while not stop and count < self.max_length: yield count count += 1 UpperCAmelCase : Any = random.random() < self.p_stop class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A , A=False , A=True ) -> Union[str, Any]: UpperCAmelCase : List[str] = [ BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A ) for i in range(2 ) ] UpperCAmelCase : List[str] = [list(A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] ) self.assertListEqual(A , A ) def _lowercase( self ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is very small. UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [[], []] self.check_batch_sampler_shards(A , A ) def _lowercase( self ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A ) def _lowercase( self ) -> Any: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : str = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [[], []] self.check_batch_sampler_shards(A , A , even_batches=A ) def _lowercase( self ) -> List[Any]: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCAmelCase : List[str] = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _lowercase( self , A , A , A , A=False , A=2 , A=False ) -> Tuple: random.seed(A ) UpperCAmelCase : Dict = list(A ) UpperCAmelCase : Any = [ IterableDatasetShard( A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , ) for i in range(A ) ] UpperCAmelCase : Dict = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(A ) iterable_dataset_lists.append(list(A ) ) UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCAmelCase : List[Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(A ) , len(A ) ) self.assertTrue(len(A ) % shard_batch_size == 0 ) UpperCAmelCase : List[Any] = [] for idx in range(0 , len(A ) , A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(A ) < len(A ): reference += reference self.assertListEqual(A , reference[: len(A )] ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = 42 UpperCAmelCase : List[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) # Edge case with a very small dataset UpperCAmelCase : List[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = SkipBatchSampler(A , 2 ) self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> int: UpperCAmelCase : Any = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) UpperCAmelCase : Optional[Any] = skip_first_batches(A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowercase( self ) -> Dict: Accelerator() UpperCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
338
0
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Optional[Any]: UpperCAmelCase : List[Any] = parent UpperCAmelCase : List[str] = batch_size UpperCAmelCase : Any = seq_length UpperCAmelCase : Union[str, Any] = is_training UpperCAmelCase : str = use_input_mask UpperCAmelCase : Dict = use_token_type_ids UpperCAmelCase : Any = use_labels UpperCAmelCase : List[str] = vocab_size UpperCAmelCase : Tuple = hidden_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : Dict = intermediate_size UpperCAmelCase : int = hidden_act UpperCAmelCase : int = hidden_dropout_prob UpperCAmelCase : List[str] = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = max_position_embeddings UpperCAmelCase : Union[str, Any] = type_vocab_size UpperCAmelCase : Optional[Any] = type_sequence_label_size UpperCAmelCase : str = initializer_range UpperCAmelCase : int = num_labels UpperCAmelCase : Tuple = num_choices UpperCAmelCase : Dict = scope def _lowercase( self ) -> List[str]: UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : List[str] = None if self.use_input_mask: UpperCAmelCase : int = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Tuple = None if self.use_token_type_ids: UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Optional[Any] = None UpperCAmelCase : List[str] = None UpperCAmelCase : List[str] = None if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> Any: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) def _lowercase( self , A , A , A , A , A , A , A ) -> Optional[Any]: UpperCAmelCase : str = LlamaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase : Any = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) UpperCAmelCase : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[str]: UpperCAmelCase : int = True UpperCAmelCase : List[str] = LlamaModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase : List[Any] = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , ) UpperCAmelCase : List[str] = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , ) UpperCAmelCase : Union[str, Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> Any: UpperCAmelCase : Optional[Any] = LlamaForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase : List[Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> Union[str, Any]: UpperCAmelCase : Dict = True UpperCAmelCase : int = True UpperCAmelCase : Any = LlamaForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() # first forward pass UpperCAmelCase : int = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , use_cache=lowerCamelCase_ , ) UpperCAmelCase : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : str = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : Dict = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , )["""hidden_states"""][0] UpperCAmelCase : int = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , )["""hidden_states"""][0] # select random slice UpperCAmelCase : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) ) def _lowercase( self ) -> Dict: UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () lowercase = (LlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': LlamaModel, 'text-classification': LlamaForSequenceClassification, 'text-generation': LlamaForCausalLM, 'zero-shot': LlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowercase( self ) -> Any: UpperCAmelCase : str = LlamaModelTester(self ) UpperCAmelCase : List[Any] = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def _lowercase( self ) -> int: self.config_tester.run_common_tests() def _lowercase( self ) -> str: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : List[str] = type self.model_tester.create_and_check_model(*lowerCamelCase_ ) def _lowercase( self ) -> Dict: UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Optional[int] = 3 UpperCAmelCase : str = input_dict["""input_ids"""] UpperCAmelCase : Any = input_ids.ne(1 ).to(lowerCamelCase_ ) UpperCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Tuple = LlamaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase : Tuple = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Any = 3 UpperCAmelCase : Any = """single_label_classification""" UpperCAmelCase : List[str] = input_dict["""input_ids"""] UpperCAmelCase : Any = input_ids.ne(1 ).to(lowerCamelCase_ ) UpperCAmelCase : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Any = LlamaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase : Dict = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Optional[Any] = 3 UpperCAmelCase : Optional[Any] = """multi_label_classification""" UpperCAmelCase : List[Any] = input_dict["""input_ids"""] UpperCAmelCase : Any = input_ids.ne(1 ).to(lowerCamelCase_ ) UpperCAmelCase : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase : int = LlamaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase : Dict = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def _lowercase( self ) -> Any: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowercase( self , A ) -> Any: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : str = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase : int = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : List[str] = LlamaModel(lowerCamelCase_ ) original_model.to(lowerCamelCase_ ) original_model.eval() UpperCAmelCase : Dict = original_model(lowerCamelCase_ ).last_hidden_state UpperCAmelCase : List[Any] = original_model(lowerCamelCase_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Dict = {"""type""": scaling_type, """factor""": 1_0.0} UpperCAmelCase : Union[str, Any] = LlamaModel(lowerCamelCase_ ) scaled_model.to(lowerCamelCase_ ) scaled_model.eval() UpperCAmelCase : Tuple = scaled_model(lowerCamelCase_ ).last_hidden_state UpperCAmelCase : Optional[int] = scaled_model(lowerCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-5 ) ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def _lowercase( self ) -> str: UpperCAmelCase : Union[str, Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] UpperCAmelCase : Dict = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" ) UpperCAmelCase : Optional[Any] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 UpperCAmelCase : Optional[Any] = torch.tensor([[-6.6_5_5_0, -4.1_2_2_7, -4.9_8_5_9, -3.2_4_0_6, 0.8_2_6_2, -3.0_0_3_3, 1.2_9_6_4, -3.3_6_9_9]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCAmelCase : List[Any] = torch.tensor([-1_2.8_2_8_1, -7.4_4_5_3, -0.4_6_3_9, -8.0_6_2_5, -7.2_5_0_0, -8.0_0_0_0, -6.4_8_8_3, -7.7_6_9_5, -7.8_4_3_8, -7.0_3_1_2, -6.2_1_8_8, -7.1_3_2_8, -1.8_4_9_6, 1.9_9_6_1, -8.6_2_5_0, -6.7_2_2_7, -1_2.8_2_8_1, -6.9_4_9_2, -7.0_7_4_2, -7.7_8_5_2, -7.5_8_2_0, -7.9_0_6_2, -6.9_3_7_5, -7.9_8_0_5, -8.3_4_3_8, -8.1_5_6_2, -8.0_4_6_9, -7.6_2_5_0, -7.7_4_2_2, -7.3_3_9_8,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCamelCase_ , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] UpperCAmelCase : Dict = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" ) UpperCAmelCase : Dict = model(torch.tensor(lowerCamelCase_ ) ) # Expected mean on dim = -1 UpperCAmelCase : int = torch.tensor([[-2.0_6_2_2, -1.2_7_9_4, -1.1_6_3_8, -0.9_7_8_8, -1.4_6_0_3, -1.0_2_3_8, -1.7_8_9_3, -1.4_4_1_1]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCAmelCase : Optional[Any] = torch.tensor([-8.1_4_0_6, -8.0_5_4_7, 2.7_4_6_1, -1.2_3_4_4, -0.1_4_4_8, -1.8_2_6_2, -1.0_0_2_0, -1.8_1_5_4, -1.6_8_9_5, -1.8_5_1_6, -2.3_5_7_4, -0.9_2_7_7, 3.7_5_9_8, 6.5_7_4_2, -1.2_9_9_8, -0.1_1_7_7, -8.1_4_0_6, -2.9_6_8_8, -2.9_1_9_9, -3.1_6_9_9, -3.5_2_5_4, -2.3_5_5_5, -2.7_9_8_8, -3.4_1_4_1, -2.8_2_6_2, -4.5_1_9_5, -3.3_3_7_9, -3.3_1_6_4, -2.7_8_3_2, -3.0_2_7_3] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCamelCase_ , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Any = [1, 306, 4658, 278, 6593, 310, 2834, 338] UpperCAmelCase : List[str] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" ) UpperCAmelCase : str = model(torch.tensor(lowerCamelCase_ ) ) # Expected mean on dim = -1 UpperCAmelCase : Optional[int] = torch.tensor([[-0.8_5_6_2, -1.8_5_2_0, -0.7_5_5_1, -0.4_1_6_2, -1.5_1_6_1, -1.2_0_3_8, -2.4_8_2_3, -2.3_2_5_4]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCAmelCase : List[Any] = torch.tensor([-2.2_2_2_7, 4.8_8_2_8, 0.9_0_2_3, -0.4_5_7_8, -0.7_8_7_1, -0.1_0_3_3, -0.6_2_2_1, -0.5_7_8_6, -0.7_8_0_3, -1.0_6_7_4, -1.2_9_2_0, -0.1_5_7_0, 0.8_0_0_8, 2.0_7_2_3, -0.9_4_9_7, 0.2_7_7_1, -2.2_2_2_7, -0.7_6_1_2, -1.4_3_4_6, -1.2_0_6_1, -1.6_4_2_6, -0.3_0_0_0, -0.7_1_3_9, -1.1_9_3_4, -1.8_6_9_1, -1.6_9_7_3, -1.5_9_4_7, -1.2_7_0_5, -0.3_5_2_3, -0.5_5_1_3] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1e-2 , rtol=1e-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def _lowercase( self ) -> str: UpperCAmelCase : List[Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] UpperCAmelCase : Optional[Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" ) UpperCAmelCase : Dict = model(torch.tensor(lowerCamelCase_ ) ) UpperCAmelCase : Optional[Any] = torch.tensor( [[-4.2_3_2_7, -3.3_3_6_0, -4.6_6_6_5, -4.7_6_3_1, -1.8_1_8_0, -3.4_1_7_0, -1.4_2_1_1, -3.1_8_1_0]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1e-2 , rtol=1e-2 ) # fmt: off UpperCAmelCase : Tuple = torch.tensor([-9.4_9_2_2, -3.9_5_5_1, 1.7_9_9_8, -5.6_7_5_8, -5.1_0_5_5, -5.8_9_8_4, -4.8_3_2_0, -6.8_0_8_6, -6.5_3_9_1, -5.6_1_7_2, -5.5_8_2_0, -5.5_3_5_2, 1.7_8_8_1, 3.6_2_8_9, -6.5_1_1_7, -3.4_7_8_5, -9.5_0_0_0, -6.0_3_5_2, -6.8_1_2_5, -6.0_1_9_5, -6.6_8_3_6, -5.4_7_2_7, -6.2_8_1_2, -6.0_3_9_1, -7.3_3_9_8, -7.4_2_9_7, -7.4_8_4_4, -6.5_8_2_0, -5.8_7_8_9, -5.5_3_1_2] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCamelCase_ , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Model is curently gated""" ) @slow def _lowercase( self ) -> Any: UpperCAmelCase : Optional[Any] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" UpperCAmelCase : int = """Simply put, the theory of relativity states that """ UpperCAmelCase : List[str] = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCamelCase_ , return_tensors="""pt""" ) UpperCAmelCase : Union[str, Any] = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=lowerCamelCase_ ) # greedy generation outputs UpperCAmelCase : int = model.generate(lowerCamelCase_ , max_new_tokens=64 , top_p=lowerCamelCase_ , temperature=1 , do_sample=lowerCamelCase_ ) UpperCAmelCase : Optional[Any] = tokenizer.decode(generated_ids[0] , skip_special_tokens=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
355
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[Any] = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
0
'''simple docstring''' from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def __lowerCamelCase ( _lowercase , _lowercase , _lowercase = 1_0**-1_0 ) -> float: UpperCAmelCase : Optional[int] = a while True: UpperCAmelCase : Any = Decimal(__UpperCAmelCase ) - ( Decimal(eval(__UpperCAmelCase ) ) / Decimal(eval(str(diff(__UpperCAmelCase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__UpperCAmelCase ) ) < precision: # noqa: S307 return float(__UpperCAmelCase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
356
'''simple docstring''' from math import loga def __lowerCamelCase ( _lowercase ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_lowercase , _lowercase ): raise TypeError("""Input value must be a 'int' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
338
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a : Tuple = { '''configuration_gpt_neo''': ['''GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoConfig''', '''GPTNeoOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ '''GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoForCausalLM''', '''GPTNeoForQuestionAnswering''', '''GPTNeoForSequenceClassification''', '''GPTNeoForTokenClassification''', '''GPTNeoModel''', '''GPTNeoPreTrainedModel''', '''load_tf_weights_in_gpt_neo''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ '''FlaxGPTNeoForCausalLM''', '''FlaxGPTNeoModel''', '''FlaxGPTNeoPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
357
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. a : Optional[int] = 1_0 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: for i in range(_lowercase , _lowercase ): if array[i] == target: return i return -1 def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = len(_lowercase ) while left <= right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1 UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase : Any = one_third - 1 elif array[two_third] < target: UpperCAmelCase : Tuple = two_third + 1 else: UpperCAmelCase : int = one_third + 1 UpperCAmelCase : List[Any] = two_third - 1 else: return -1 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: if left < right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : str = (left + right) // 3 + 1 UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() a : Any = input("""Enter numbers separated by comma:\n""").strip() a : Any = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip()) a : Union[str, Any] = ite_ternary_search(collection, target) a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
338
0
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __lowerCamelCase ( _lowercase , _lowercase=0.999 , _lowercase="cosine" , ) -> Any: if alpha_transform_type == "cosine": def alpha_bar_fn(_lowercase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowercase ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) UpperCAmelCase : Optional[Any] = [] for i in range(A_ ): UpperCAmelCase : str = i / num_diffusion_timesteps UpperCAmelCase : Union[str, Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(A_ ) / alpha_bar_fn(A_ ) , A_ ) ) return torch.tensor(A_ , dtype=torch.floataa ) class UpperCamelCase_ ( a_ , a_ ): lowercase = [e.name for e in KarrasDiffusionSchedulers] lowercase = 2 @register_to_config def __init__( self , A = 1000 , A = 0.0_0_0_8_5 , A = 0.0_1_2 , A = "linear" , A = None , A = "epsilon" , A = False , A = False , A = 1.0 , A = "linspace" , A = 0 , ) -> Optional[int]: if trained_betas is not None: UpperCAmelCase : Any = torch.tensor(lowercase_ , dtype=torch.floataa ) elif beta_schedule == "linear": UpperCAmelCase : Any = torch.linspace(lowercase_ , lowercase_ , lowercase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCAmelCase : Optional[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowercase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCAmelCase : List[str] = betas_for_alpha_bar(lowercase_ , alpha_transform_type="""cosine""" ) elif beta_schedule == "exp": UpperCAmelCase : Optional[int] = betas_for_alpha_bar(lowercase_ , alpha_transform_type="""exp""" ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) UpperCAmelCase : List[str] = 1.0 - self.betas UpperCAmelCase : Any = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Optional[Any] = use_karras_sigmas def _lowercase( self , A , A=None ) -> Tuple: if schedule_timesteps is None: UpperCAmelCase : Union[str, Any] = self.timesteps UpperCAmelCase : Union[str, Any] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: UpperCAmelCase : Union[str, Any] = 1 if len(lowercase_ ) > 1 else 0 else: UpperCAmelCase : Dict = timestep.cpu().item() if torch.is_tensor(lowercase_ ) else timestep UpperCAmelCase : Optional[int] = self._index_counter[timestep_int] return indices[pos].item() @property def _lowercase( self ) -> str: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _lowercase( self , A , A , ) -> List[str]: UpperCAmelCase : Optional[int] = self.index_for_timestep(lowercase_ ) UpperCAmelCase : Dict = self.sigmas[step_index] UpperCAmelCase : int = sample / ((sigma**2 + 1) ** 0.5) return sample def _lowercase( self , A , A = None , A = None , ) -> List[str]: UpperCAmelCase : List[Any] = num_inference_steps UpperCAmelCase : int = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": UpperCAmelCase : Any = np.linspace(0 , num_train_timesteps - 1 , lowercase_ , dtype=lowercase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": UpperCAmelCase : Dict = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCAmelCase : Tuple = (np.arange(0 , lowercase_ ) * step_ratio).round()[::-1].copy().astype(lowercase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": UpperCAmelCase : str = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCAmelCase : str = (np.arange(lowercase_ , 0 , -step_ratio )).round().copy().astype(lowercase_ ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) UpperCAmelCase : List[Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) UpperCAmelCase : str = np.log(lowercase_ ) UpperCAmelCase : int = np.interp(lowercase_ , np.arange(0 , len(lowercase_ ) ) , lowercase_ ) if self.config.use_karras_sigmas: UpperCAmelCase : Any = self._convert_to_karras(in_sigmas=lowercase_ , num_inference_steps=self.num_inference_steps ) UpperCAmelCase : Optional[int] = np.array([self._sigma_to_t(lowercase_ , lowercase_ ) for sigma in sigmas] ) UpperCAmelCase : Dict = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) UpperCAmelCase : Union[str, Any] = torch.from_numpy(lowercase_ ).to(device=lowercase_ ) UpperCAmelCase : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) UpperCAmelCase : List[str] = torch.from_numpy(lowercase_ ) UpperCAmelCase : Tuple = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(lowercase_ ).startswith("""mps""" ): # mps does not support float64 UpperCAmelCase : List[str] = timesteps.to(lowercase_ , dtype=torch.floataa ) else: UpperCAmelCase : Any = timesteps.to(device=lowercase_ ) # empty dt and derivative UpperCAmelCase : Dict = None UpperCAmelCase : Optional[int] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter UpperCAmelCase : Dict = defaultdict(lowercase_ ) def _lowercase( self , A , A ) -> List[Any]: # get log sigma UpperCAmelCase : List[Any] = np.log(lowercase_ ) # get distribution UpperCAmelCase : List[Any] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range UpperCAmelCase : str = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) UpperCAmelCase : Any = low_idx + 1 UpperCAmelCase : Tuple = log_sigmas[low_idx] UpperCAmelCase : Dict = log_sigmas[high_idx] # interpolate sigmas UpperCAmelCase : List[Any] = (low - log_sigma) / (low - high) UpperCAmelCase : int = np.clip(lowercase_ , 0 , 1 ) # transform interpolation to time range UpperCAmelCase : Any = (1 - w) * low_idx + w * high_idx UpperCAmelCase : List[str] = t.reshape(sigma.shape ) return t def _lowercase( self , A , A ) -> Any: UpperCAmelCase : float = in_sigmas[-1].item() UpperCAmelCase : float = in_sigmas[0].item() UpperCAmelCase : str = 7.0 # 7.0 is the value used in the paper UpperCAmelCase : Optional[int] = np.linspace(0 , 1 , lowercase_ ) UpperCAmelCase : List[Any] = sigma_min ** (1 / rho) UpperCAmelCase : List[Any] = sigma_max ** (1 / rho) UpperCAmelCase : List[str] = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _lowercase( self ) -> Any: return self.dt is None def _lowercase( self , A , A , A , A = True , ) -> str: UpperCAmelCase : List[Any] = self.index_for_timestep(lowercase_ ) # advance index counter by 1 UpperCAmelCase : Dict = timestep.cpu().item() if torch.is_tensor(lowercase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: UpperCAmelCase : int = self.sigmas[step_index] UpperCAmelCase : Dict = self.sigmas[step_index + 1] else: # 2nd order / Heun's method UpperCAmelCase : Union[str, Any] = self.sigmas[step_index - 1] UpperCAmelCase : List[Any] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : List[Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": UpperCAmelCase : List[Any] = sigma_hat if self.state_in_first_order else sigma_next UpperCAmelCase : Any = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": UpperCAmelCase : int = sigma_hat if self.state_in_first_order else sigma_next UpperCAmelCase : Optional[int] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": UpperCAmelCase : int = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: UpperCAmelCase : Union[str, Any] = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order UpperCAmelCase : List[Any] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep UpperCAmelCase : str = sigma_next - sigma_hat # store for 2nd order step UpperCAmelCase : Optional[int] = derivative UpperCAmelCase : Dict = dt UpperCAmelCase : Optional[Any] = sample else: # 2. 2nd order / Heun's method UpperCAmelCase : List[str] = (sample - pred_original_sample) / sigma_next UpperCAmelCase : int = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample UpperCAmelCase : str = self.dt UpperCAmelCase : List[Any] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" UpperCAmelCase : List[Any] = None UpperCAmelCase : str = None UpperCAmelCase : Optional[Any] = None UpperCAmelCase : Union[str, Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowercase_ ) def _lowercase( self , A , A , A , ) -> int: # Make sure sigmas and timesteps have the same device and dtype as original_samples UpperCAmelCase : Tuple = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowercase_ ): # mps does not support float64 UpperCAmelCase : Dict = self.timesteps.to(original_samples.device , dtype=torch.floataa ) UpperCAmelCase : str = timesteps.to(original_samples.device , dtype=torch.floataa ) else: UpperCAmelCase : int = self.timesteps.to(original_samples.device ) UpperCAmelCase : Union[str, Any] = timesteps.to(original_samples.device ) UpperCAmelCase : int = [self.index_for_timestep(lowercase_ , lowercase_ ) for t in timesteps] UpperCAmelCase : Dict = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): UpperCAmelCase : Optional[Any] = sigma.unsqueeze(-1 ) UpperCAmelCase : List[Any] = original_samples + noise * sigma return noisy_samples def __len__( self ) -> Union[str, Any]: return self.config.num_train_timesteps
358
'''simple docstring''' import numpy as np class UpperCamelCase_ : def __init__( self ) -> int: UpperCAmelCase : str = (0, 0) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Any = 0 UpperCAmelCase : int = 0 UpperCAmelCase : Optional[int] = 0 def __eq__( self , A ) -> Optional[Any]: return self.position == cell.position def _lowercase( self ) -> Tuple: print(self.position ) class UpperCamelCase_ : def __init__( self , A=(5, 5) ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = np.zeros(A ) UpperCAmelCase : int = world_size[0] UpperCAmelCase : List[str] = world_size[1] def _lowercase( self ) -> List[Any]: print(self.w ) def _lowercase( self , A ) -> Dict: UpperCAmelCase : Optional[Any] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase : List[Any] = cell.position[0] UpperCAmelCase : Union[str, Any] = cell.position[1] UpperCAmelCase : Optional[int] = [] for n in neughbour_cord: UpperCAmelCase : Any = current_x + n[0] UpperCAmelCase : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase : str = Cell() UpperCAmelCase : List[str] = (x, y) UpperCAmelCase : Dict = cell neighbours.append(A ) return neighbours def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase : List[Any] = [] UpperCAmelCase : Optional[int] = [] _open.append(_lowercase ) while _open: UpperCAmelCase : Any = np.argmin([n.f for n in _open] ) UpperCAmelCase : Optional[int] = _open[min_f] _closed.append(_open.pop(_lowercase ) ) if current == goal: break for n in world.get_neigbours(_lowercase ): for c in _closed: if c == n: continue UpperCAmelCase : List[str] = current.g + 1 UpperCAmelCase , UpperCAmelCase : List[str] = n.position UpperCAmelCase , UpperCAmelCase : Dict = goal.position UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase : Dict = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_lowercase ) UpperCAmelCase : Dict = [] while current.parent is not None: path.append(current.position ) UpperCAmelCase : Optional[int] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": a : List[str] = Gridworld() # Start position and goal a : Optional[int] = Cell() a : Optional[Any] = (0, 0) a : Optional[Any] = Cell() a : str = (4, 4) print(F'''path from {start.position} to {goal.position}''') a : List[Any] = astar(world, start, goal) # Just for visual reasons. for i in s: a : Any = 1 print(world.w)
338
0
'''simple docstring''' from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": a : Tuple = input("""Enter image url: """).strip() print(F'''Downloading image from {url} ...''') a : Optional[int] = BeautifulSoup(requests.get(url).content, """html.parser""") # The image URL is in the content field of the first meta tag with property og:image a : Tuple = soup.find("""meta""", {"""property""": """og:image"""})["""content"""] a : Dict = requests.get(image_url).content a : int = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, """wb""") as fp: fp.write(image_data) print(F'''Done. Image saved to disk as {file_name}.''')
359
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
0
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( _lowercase , _lowercase ) -> List[Any]: if b == 0: return (1, 0) (UpperCAmelCase) : Dict = extended_euclid(_lowercase , a % b ) UpperCAmelCase : List[Any] = a // b return (y, x - k * y) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> str: (UpperCAmelCase) : Optional[int] = extended_euclid(_lowercase , _lowercase ) UpperCAmelCase : Optional[Any] = na * na UpperCAmelCase : Optional[int] = ra * x * na + ra * y * na return (n % m + m) % m def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[int]: (UpperCAmelCase) : int = extended_euclid(_lowercase , _lowercase ) if b < 0: UpperCAmelCase : str = (b % n + n) % n return b def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]: UpperCAmelCase : List[str] = invert_modulo(_lowercase , _lowercase ), invert_modulo(_lowercase , _lowercase ) UpperCAmelCase : Any = na * na UpperCAmelCase : List[str] = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
360
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a : int = logging.get_logger(__name__) a : int = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off a : Tuple = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] a : Optional[int] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class UpperCamelCase_ ( __magic_name__ ): lowercase = 'whisper' lowercase = ['past_key_values'] lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]: UpperCAmelCase : str = vocab_size UpperCAmelCase : Union[str, Any] = num_mel_bins UpperCAmelCase : Tuple = d_model UpperCAmelCase : Optional[int] = encoder_layers UpperCAmelCase : List[str] = encoder_attention_heads UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : int = decoder_attention_heads UpperCAmelCase : Optional[int] = decoder_ffn_dim UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : List[str] = dropout UpperCAmelCase : Optional[Any] = attention_dropout UpperCAmelCase : Optional[Any] = activation_dropout UpperCAmelCase : Optional[Any] = activation_function UpperCAmelCase : Optional[Any] = init_std UpperCAmelCase : int = encoder_layerdrop UpperCAmelCase : Dict = decoder_layerdrop UpperCAmelCase : Optional[int] = use_cache UpperCAmelCase : List[str] = encoder_layers UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Union[str, Any] = max_source_positions UpperCAmelCase : Tuple = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : List[str] = classifier_proj_size UpperCAmelCase : Optional[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : int = mask_time_prob UpperCAmelCase : int = mask_time_length UpperCAmelCase : Dict = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Optional[int] = mask_feature_length UpperCAmelCase : int = mask_feature_min_masks UpperCAmelCase : List[Any] = median_filter_width super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , ) class UpperCamelCase_ ( __magic_name__ ): @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : str = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase : List[Any] = {0: """batch"""} else: UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) return common_inputs def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Optional[int] = OrderedDict() UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , ) UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2] UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Any = super().generate_dummy_inputs( preprocessor.tokenizer , A , A , A , A ) UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" ) UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def _lowercase( self ) -> float: return 1e-3
338
0
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class UpperCamelCase_ ( __magic_name__ ): lowercase = ['vqvae'] def __init__( self , A , A , A , A , ) -> Union[str, Any]: super().__init__() self.register_modules(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , mel=lowerCamelCase_ , vqvae=lowerCamelCase_ ) def _lowercase( self ) -> int: return 50 if isinstance(self.scheduler , lowerCamelCase_ ) else 1000 @torch.no_grad() def __call__( self , A = 1 , A = None , A = None , A = 0 , A = 0 , A = None , A = None , A = 0 , A = 0 , A = None , A = 0 , A = None , A = None , A=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: UpperCAmelCase : Optional[Any] = steps or self.get_default_steps() self.scheduler.set_timesteps(lowerCamelCase_ ) UpperCAmelCase : Any = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: UpperCAmelCase : Any = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: UpperCAmelCase : int = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=lowerCamelCase_ , device=self.device , ) UpperCAmelCase : Tuple = noise UpperCAmelCase : str = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(lowerCamelCase_ , lowerCamelCase_ ) UpperCAmelCase : List[str] = self.mel.audio_slice_to_image(lowerCamelCase_ ) UpperCAmelCase : str = np.frombuffer(input_image.tobytes() , dtype="""uint8""" ).reshape( (input_image.height, input_image.width) ) UpperCAmelCase : Union[str, Any] = (input_image / 255) * 2 - 1 UpperCAmelCase : List[str] = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: UpperCAmelCase : List[str] = self.vqvae.encode(torch.unsqueeze(lowerCamelCase_ , 0 ) ).latent_dist.sample( generator=lowerCamelCase_ )[0] UpperCAmelCase : Union[str, Any] = self.vqvae.config.scaling_factor * input_images if start_step > 0: UpperCAmelCase : Union[str, Any] = self.scheduler.add_noise(lowerCamelCase_ , lowerCamelCase_ , self.scheduler.timesteps[start_step - 1] ) UpperCAmelCase : int = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) UpperCAmelCase : Tuple = int(mask_start_secs * pixels_per_second ) UpperCAmelCase : Optional[int] = int(mask_end_secs * pixels_per_second ) UpperCAmelCase : Optional[int] = self.scheduler.add_noise(lowerCamelCase_ , lowerCamelCase_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , lowerCamelCase_ ): UpperCAmelCase : Dict = self.unet(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )["""sample"""] else: UpperCAmelCase : Optional[Any] = self.unet(lowerCamelCase_ , lowerCamelCase_ )["""sample"""] if isinstance(self.scheduler , lowerCamelCase_ ): UpperCAmelCase : Any = self.scheduler.step( model_output=lowerCamelCase_ , timestep=lowerCamelCase_ , sample=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , )["""prev_sample"""] else: UpperCAmelCase : Any = self.scheduler.step( model_output=lowerCamelCase_ , timestep=lowerCamelCase_ , sample=lowerCamelCase_ , generator=lowerCamelCase_ , )["""prev_sample"""] if mask is not None: if mask_start > 0: UpperCAmelCase : Union[str, Any] = mask[:, step, :, :mask_start] if mask_end > 0: UpperCAmelCase : Any = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance UpperCAmelCase : Any = 1 / self.vqvae.config.scaling_factor * images UpperCAmelCase : Tuple = self.vqvae.decode(lowerCamelCase_ )["""sample"""] UpperCAmelCase : List[Any] = (images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase : Optional[int] = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() UpperCAmelCase : Optional[Any] = (images * 255).round().astype("""uint8""" ) UpperCAmelCase : Union[str, Any] = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(lowerCamelCase_ , mode="""RGB""" ).convert("""L""" ) for _ in images) ) UpperCAmelCase : Optional[int] = [self.mel.image_to_audio(lowerCamelCase_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(lowerCamelCase_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowerCamelCase_ ) ) @torch.no_grad() def _lowercase( self , A , A = 50 ) -> np.ndarray: assert isinstance(self.scheduler , lowerCamelCase_ ) self.scheduler.set_timesteps(lowerCamelCase_ ) UpperCAmelCase : List[str] = np.array( [np.frombuffer(image.tobytes() , dtype="""uint8""" ).reshape((1, image.height, image.width) ) for image in images] ) UpperCAmelCase : int = (sample / 255) * 2 - 1 UpperCAmelCase : int = torch.Tensor(lowerCamelCase_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): UpperCAmelCase : Optional[int] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps UpperCAmelCase : Optional[Any] = self.scheduler.alphas_cumprod[t] UpperCAmelCase : Union[str, Any] = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) UpperCAmelCase : Optional[int] = 1 - alpha_prod_t UpperCAmelCase : List[str] = self.unet(lowerCamelCase_ , lowerCamelCase_ )["""sample"""] UpperCAmelCase : List[str] = (1 - alpha_prod_t_prev) ** 0.5 * model_output UpperCAmelCase : Tuple = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) UpperCAmelCase : int = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def _lowercase( A , A , A ) -> torch.Tensor: UpperCAmelCase : str = acos(torch.dot(torch.flatten(lowerCamelCase_ ) , torch.flatten(lowerCamelCase_ ) ) / torch.norm(lowerCamelCase_ ) / torch.norm(lowerCamelCase_ ) ) return sin((1 - alpha) * theta ) * xa / sin(lowerCamelCase_ ) + sin(alpha * theta ) * xa / sin(lowerCamelCase_ )
361
'''simple docstring''' a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowerCamelCase ( ) -> None: UpperCAmelCase : Optional[int] = input("""Enter message: """ ) UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ ) UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): UpperCAmelCase : List[str] = """encrypt""" UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase ) elif mode.lower().startswith("""d""" ): UpperCAmelCase : Tuple = """decrypt""" UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """encrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """decrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Tuple = key.upper() for symbol in message: UpperCAmelCase : Dict = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowercase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowercase ): UpperCAmelCase : Optional[int] = 0 else: translated.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": main()
338
0
'''simple docstring''' from __future__ import annotations import pandas as pd def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> list[int]: UpperCAmelCase : Optional[Any] = [0] * no_of_processes UpperCAmelCase : Optional[int] = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(__lowerCAmelCase ): UpperCAmelCase : Tuple = burst_time[i] UpperCAmelCase : Dict = 0 UpperCAmelCase : Dict = 0 UpperCAmelCase : Any = 9_9_9_9_9_9_9_9_9 UpperCAmelCase : Dict = 0 UpperCAmelCase : Optional[Any] = False # Process until all processes are completed while complete != no_of_processes: for j in range(__lowerCAmelCase ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: UpperCAmelCase : Dict = remaining_time[j] UpperCAmelCase : int = j UpperCAmelCase : Tuple = True if not check: increment_time += 1 continue remaining_time[short] -= 1 UpperCAmelCase : int = remaining_time[short] if minm == 0: UpperCAmelCase : int = 9_9_9_9_9_9_9_9_9 if remaining_time[short] == 0: complete += 1 UpperCAmelCase : Dict = False # Find finish time of current process UpperCAmelCase : List[Any] = increment_time + 1 # Calculate waiting time UpperCAmelCase : Any = finish_time - arrival_time[short] UpperCAmelCase : Dict = finar - burst_time[short] if waiting_time[short] < 0: UpperCAmelCase : List[str] = 0 # Increment time increment_time += 1 return waiting_time def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> list[int]: UpperCAmelCase : Optional[int] = [0] * no_of_processes for i in range(__lowerCAmelCase ): UpperCAmelCase : str = burst_time[i] + waiting_time[i] return turn_around_time def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> None: UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : Optional[Any] = 0 for i in range(__lowerCAmelCase ): UpperCAmelCase : str = total_waiting_time + waiting_time[i] UpperCAmelCase : Union[str, Any] = total_turn_around_time + turn_around_time[i] print(F'''Average waiting time = {total_waiting_time / no_of_processes:.5f}''' ) print("""Average turn around time =""" , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("""Enter how many process you want to analyze""") a = int(input()) a = [0] * no_of_processes a = [0] * no_of_processes a = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("""Enter the arrival time and burst time for process:--""" + str(i + 1)) a , a = map(int, input().split()) a = calculate_waitingtime(arrival_time, burst_time, no_of_processes) a = burst_time a = no_of_processes a = waiting_time a = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) a = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ """Process""", """BurstTime""", """ArrivalTime""", """WaitingTime""", """TurnAroundTime""", ], ) # Printing the dataFrame pd.set_option("""display.max_rows""", fcfs.shape[0] + 1) print(fcfs)
362
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Optional[int] = split_dict._to_yaml_list() assert len(_lowercase ) == len(_lowercase ) UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(_lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCAmelCase : List[str] = None # the split name of split_dict takes over the name of the split info object UpperCAmelCase : int = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name="""my_dataset""" )] ) def __lowerCamelCase ( _lowercase ) -> List[str]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files UpperCAmelCase : Optional[Any] = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
338
0
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def __lowerCamelCase ( _lowercase ) -> Dict: UpperCAmelCase : List[str] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_lowercase , _lowercase ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: UpperCAmelCase : Tuple = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: UpperCAmelCase : str = s_dict.pop(_lowercase ) elif "subsample" in key: UpperCAmelCase : Optional[int] = s_dict.pop(_lowercase ) def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : List[Any] = emb.weight.shape UpperCAmelCase : int = nn.Linear(_lowercase , _lowercase , bias=_lowercase ) UpperCAmelCase : Optional[Any] = emb.weight.data return lin_layer def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : List[Any] = torch.load(_lowercase , map_location="""cpu""" ) UpperCAmelCase : List[str] = mam_aaa["args"] UpperCAmelCase : Dict = mam_aaa["model"] UpperCAmelCase : List[str] = state_dict["decoder.output_projection.weight"] remove_ignore_keys_(_lowercase ) rename_keys(_lowercase ) UpperCAmelCase : Dict = state_dict["decoder.embed_tokens.weight"].shape[0] UpperCAmelCase : str = args.share_decoder_input_output_embed UpperCAmelCase : Dict = [int(_lowercase ) for i in args.conv_kernel_sizes.split(""",""" )] UpperCAmelCase : Any = SpeechaTextConfig( vocab_size=_lowercase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , num_conv_layers=len(_lowercase ) , conv_channels=args.conv_channels , conv_kernel_sizes=_lowercase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=_lowercase , num_beams=5 , max_length=2_0_0 , use_cache=_lowercase , decoder_start_token_id=2 , early_stopping=_lowercase , ) UpperCAmelCase : Optional[Any] = SpeechaTextForConditionalGeneration(_lowercase ) UpperCAmelCase : Any = model.model.load_state_dict(_lowercase , strict=_lowercase ) if len(_lowercase ) > 0 and not set(_lowercase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" F''' but all the following weights are missing {missing}''' ) if tie_embeds: UpperCAmelCase : str = make_linear_from_emb(model.model.decoder.embed_tokens ) else: UpperCAmelCase : Dict = lm_head_weights model.save_pretrained(_lowercase ) if __name__ == "__main__": a : str = argparse.ArgumentParser() # Required parameters parser.add_argument("""--fairseq_path""", type=str, help="""Path to the fairseq model (.pt) file.""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") a : str = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
363
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor a : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , **A ) -> None: warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , A , ) super().__init__(*A , **A )
338
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a : Optional[Any] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
364
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a : Union[str, Any] = logging.get_logger(__name__) a : Union[str, Any] = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'detr' lowercase = ['past_key_values'] lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(A , A ): UpperCAmelCase : Any = backbone_config.get("""model_type""" ) UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : List[Any] = config_class.from_dict(A ) # set timm attributes to None UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = None, None, None UpperCAmelCase : Dict = use_timm_backbone UpperCAmelCase : Any = backbone_config UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : int = num_queries UpperCAmelCase : List[str] = d_model UpperCAmelCase : Tuple = encoder_ffn_dim UpperCAmelCase : Optional[Any] = encoder_layers UpperCAmelCase : Any = encoder_attention_heads UpperCAmelCase : Optional[Any] = decoder_ffn_dim UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : str = dropout UpperCAmelCase : Tuple = attention_dropout UpperCAmelCase : Dict = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : List[Any] = init_std UpperCAmelCase : str = init_xavier_std UpperCAmelCase : List[Any] = encoder_layerdrop UpperCAmelCase : int = decoder_layerdrop UpperCAmelCase : List[Any] = encoder_layers UpperCAmelCase : Union[str, Any] = auxiliary_loss UpperCAmelCase : str = position_embedding_type UpperCAmelCase : Union[str, Any] = backbone UpperCAmelCase : List[str] = use_pretrained_backbone UpperCAmelCase : Optional[int] = dilation # Hungarian matcher UpperCAmelCase : Union[str, Any] = class_cost UpperCAmelCase : Optional[Any] = bbox_cost UpperCAmelCase : List[Any] = giou_cost # Loss coefficients UpperCAmelCase : int = mask_loss_coefficient UpperCAmelCase : Optional[int] = dice_loss_coefficient UpperCAmelCase : Dict = bbox_loss_coefficient UpperCAmelCase : Any = giou_loss_coefficient UpperCAmelCase : Any = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def _lowercase( self ) -> int: return self.encoder_attention_heads @property def _lowercase( self ) -> int: return self.d_model @classmethod def _lowercase( cls , A , **A ) -> Dict: return cls(backbone_config=A , **A ) def _lowercase( self ) -> Dict[str, any]: UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase : Any = self.backbone_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowercase( self ) -> float: return 1e-5 @property def _lowercase( self ) -> int: return 12
338
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["""NllbTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["""NllbTokenizerFast"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
365
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[str] = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
0
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging a : List[str] = '\\n\n' a : Any = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' a : List[Any] = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , ) def _lowercase( self , A , A , A = 16 , A = True , A=None ) -> Tuple: if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": UpperCAmelCase : Optional[Any] = """cuda""" else: UpperCAmelCase : Union[str, Any] = """cuda""" if torch.cuda.is_available() else """cpu""" UpperCAmelCase : int = AutoModelForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase : Optional[Any] = model.to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: UpperCAmelCase : int = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(SCREAMING_SNAKE_CASE_ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" UpperCAmelCase : Any = model.config.max_length - 1 else: UpperCAmelCase : int = model.config.max_length UpperCAmelCase : List[Any] = tokenizer( SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , return_attention_mask=SCREAMING_SNAKE_CASE_ , ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase : int = encodings["""input_ids"""] UpperCAmelCase : Optional[int] = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : int = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ): UpperCAmelCase : str = min(start_index + batch_size , len(SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase : Any = encoded_texts[start_index:end_index] UpperCAmelCase : str = attn_masks[start_index:end_index] if add_start_token: UpperCAmelCase : Tuple = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase : Dict = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) UpperCAmelCase : Optional[int] = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(SCREAMING_SNAKE_CASE_ ), attn_mask] , dim=1 ) UpperCAmelCase : Dict = encoded_batch with torch.no_grad(): UpperCAmelCase : Tuple = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ).logits UpperCAmelCase : Optional[int] = out_logits[..., :-1, :].contiguous() UpperCAmelCase : Any = labels[..., 1:].contiguous() UpperCAmelCase : List[str] = attn_mask[..., 1:].contiguous() UpperCAmelCase : List[Any] = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , SCREAMING_SNAKE_CASE_ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(SCREAMING_SNAKE_CASE_ )}
366
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" ) if "model" in sd.keys(): UpperCAmelCase : Any = torch.load(_lowercase , map_location="""cpu""" )["""model"""] # pop unnecessary weights UpperCAmelCase : Union[str, Any] = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(_lowercase ) UpperCAmelCase : Tuple = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase : List[Any] = sd.pop(_lowercase ) UpperCAmelCase : Tuple = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase : List[str] = sd[key] # We split QKV in separate Q,K,V UpperCAmelCase : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" ) UpperCAmelCase : Tuple = key.replace(""".qkv_proj.""" , """.k_proj.""" ) UpperCAmelCase : int = key.replace(""".qkv_proj.""" , """.v_proj.""" ) UpperCAmelCase : Dict = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = torch.split(_lowercase , depth // 3 , dim=0 ) UpperCAmelCase : Tuple = q UpperCAmelCase : Tuple = k UpperCAmelCase : Any = v del sd[key] return sd @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Optional[Any]: UpperCAmelCase : Tuple = load_checkpoint(_lowercase ) if config is not None: UpperCAmelCase : Dict = OPTConfig.from_pretrained(_lowercase ) else: UpperCAmelCase : int = OPTConfig() UpperCAmelCase : List[Any] = OPTModel(_lowercase ).half().eval() model.load_state_dict(_lowercase ) # Check results Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") a : Union[str, Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
338
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : str = 3_8_4 if "tiny" in model_name: UpperCAmelCase : Optional[int] = [3, 3, 9, 3] UpperCAmelCase : str = [9_6, 1_9_2, 3_8_4, 7_6_8] if "small" in model_name: UpperCAmelCase : Optional[Any] = [3, 3, 2_7, 3] UpperCAmelCase : str = [9_6, 1_9_2, 3_8_4, 7_6_8] if "base" in model_name: UpperCAmelCase : Tuple = [3, 3, 2_7, 3] UpperCAmelCase : int = [1_2_8, 2_5_6, 5_1_2, 1_0_2_4] UpperCAmelCase : Union[str, Any] = 5_1_2 if "large" in model_name: UpperCAmelCase : Tuple = [3, 3, 2_7, 3] UpperCAmelCase : int = [1_9_2, 3_8_4, 7_6_8, 1_5_3_6] UpperCAmelCase : int = 7_6_8 if "xlarge" in model_name: UpperCAmelCase : Optional[int] = [3, 3, 2_7, 3] UpperCAmelCase : Union[str, Any] = [2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] UpperCAmelCase : List[str] = 1_0_2_4 # set label information UpperCAmelCase : Any = 1_5_0 UpperCAmelCase : Any = '''huggingface/label-files''' UpperCAmelCase : List[Any] = '''ade20k-id2label.json''' UpperCAmelCase : Union[str, Any] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Optional[int] = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} UpperCAmelCase : int = {v: k for k, v in idalabel.items()} UpperCAmelCase : Optional[int] = ConvNextConfig( depths=SCREAMING_SNAKE_CASE__ , hidden_sizes=SCREAMING_SNAKE_CASE__ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) UpperCAmelCase : Dict = UperNetConfig( backbone_config=SCREAMING_SNAKE_CASE__ , auxiliary_in_channels=SCREAMING_SNAKE_CASE__ , num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ , ) return config def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Any = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.{j}.gamma''', F'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((F'''backbone.downsample_layers.{i}.0.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.0.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : List[Any] = dct.pop(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase : Optional[int] = val def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Tuple: UpperCAmelCase : Optional[Any] = { '''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''', '''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''', '''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''', '''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''', '''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''', } UpperCAmelCase : int = model_name_to_url[model_name] UpperCAmelCase : int = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )['''state_dict'''] UpperCAmelCase : Optional[int] = get_upernet_config(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase : Dict = UperNetForSemanticSegmentation(SCREAMING_SNAKE_CASE__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): UpperCAmelCase : Any = state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "bn" in key: UpperCAmelCase : Optional[int] = key.replace("""bn""" , """batch_norm""" ) UpperCAmelCase : int = val # rename keys UpperCAmelCase : str = create_rename_keys(SCREAMING_SNAKE_CASE__ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # verify on image UpperCAmelCase : str = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' UpperCAmelCase : List[Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ).convert("""RGB""" ) UpperCAmelCase : Union[str, Any] = SegformerImageProcessor() UpperCAmelCase : Union[str, Any] = processor(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).pixel_values with torch.no_grad(): UpperCAmelCase : List[str] = model(SCREAMING_SNAKE_CASE__ ) if model_name == "upernet-convnext-tiny": UpperCAmelCase : Optional[int] = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": UpperCAmelCase : List[str] = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": UpperCAmelCase : Optional[int] = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": UpperCAmelCase : Tuple = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": UpperCAmelCase : int = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F'''upernet-convnext-{size}''' for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) a : int = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
367
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : str = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'levit' def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int: super().__init__(**A ) UpperCAmelCase : Any = image_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : Tuple = kernel_size UpperCAmelCase : Optional[int] = stride UpperCAmelCase : Dict = padding UpperCAmelCase : List[Any] = hidden_sizes UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = depths UpperCAmelCase : Any = key_dim UpperCAmelCase : str = drop_path_rate UpperCAmelCase : List[Any] = patch_size UpperCAmelCase : str = attention_ratio UpperCAmelCase : Optional[Any] = mlp_ratio UpperCAmelCase : Dict = initializer_range UpperCAmelCase : int = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase( self ) -> float: return 1e-4
338
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Optional[int] = { "configuration_whisper": ["WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP", "WhisperConfig", "WhisperOnnxConfig"], "feature_extraction_whisper": ["WhisperFeatureExtractor"], "processing_whisper": ["WhisperProcessor"], "tokenization_whisper": ["WhisperTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = ["WhisperTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = [ "WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST", "WhisperForConditionalGeneration", "WhisperModel", "WhisperPreTrainedModel", "WhisperForAudioClassification", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ "TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWhisperForConditionalGeneration", "TFWhisperModel", "TFWhisperPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = [ "FlaxWhisperForConditionalGeneration", "FlaxWhisperModel", "FlaxWhisperPreTrainedModel", "FlaxWhisperForAudioClassification", ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
368
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) a : List[str] = """Hello, World!""" a : List[Any] = """en_XX""" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Dict = Path("""data_bin""" ) UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(_lowercase ) UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder UpperCAmelCase : Tuple = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , _lowercase ) UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight UpperCAmelCase : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase : List[str] = model.roberta.encoder.layer[i] UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i] # self attention UpperCAmelCase : Optional[Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias # intermediate UpperCAmelCase : Tuple = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) UpperCAmelCase : List[str] = xmod_layer.fca.weight UpperCAmelCase : str = xmod_layer.fca.bias # output UpperCAmelCase : Any = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) UpperCAmelCase : Dict = xmod_layer.fca.weight UpperCAmelCase : Dict = xmod_layer.fca.bias UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code] UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code] UpperCAmelCase : Any = from_adapter.fca.weight UpperCAmelCase : int = from_adapter.fca.bias UpperCAmelCase : Dict = from_adapter.fca.weight UpperCAmelCase : Dict = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias UpperCAmelCase : str = xmod.model.encoder.lm_head.weight UpperCAmelCase : str = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) UpperCAmelCase : Optional[int] = model(_lowercase )[0] if classification_head: UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) ) else: UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) a : List[str] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
338
0
def __lowerCamelCase ( _lowercase ) -> str: return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def __lowerCamelCase ( _lowercase ) -> Tuple: UpperCAmelCase : Union[str, Any] = credit_card_number UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Any = len(__UpperCamelCase ) - 2 for i in range(__UpperCamelCase , -1 , -2 ): # double the value of every second digit UpperCAmelCase : List[Any] = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 1_0 digit += 1 UpperCAmelCase : List[Any] = cc_number[:i] + str(__UpperCamelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__UpperCamelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 1_0 == 0 def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : str = F'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(F'''{error_message} it has nonnumerical characters.''' ) return False if not 1_3 <= len(__UpperCamelCase ) <= 1_6: print(F'''{error_message} of its length.''' ) return False if not validate_initial_digits(__UpperCamelCase ): print(F'''{error_message} of its first two digits.''' ) return False if not luhn_validation(__UpperCamelCase ): print(F'''{error_message} it fails the Luhn check.''' ) return False print(F'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
369
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __lowerCamelCase ( _lowercase ) -> List[Any]: for i in range(0 , _lowercase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __lowerCamelCase ( _lowercase ) -> Dict: for i in range(_lowercase , 0 , -1 ): for _ in range(_lowercase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __lowerCamelCase ( _lowercase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowercase ) # upper half reverse_floyd(_lowercase ) # lower half if __name__ == "__main__": print(R"""| /\ | |- | |- |--| |\ /| |-""") print(R"""|/ \| |- |_ |_ |__| | \/ | |_""") a : List[Any] = 1 while K: a : int = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) a : Tuple = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
338
0
from __future__ import annotations def __lowerCamelCase ( _lowercase ) -> int: return len(set(snake_case_ ) ) == len(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
370
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever a : List[str] = logging.getLogger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A=None ) -> Union[str, Any]: super().__init__( A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , ) UpperCAmelCase : Optional[Any] = None def _lowercase( self , A ) -> List[Any]: logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually UpperCAmelCase : Tuple = self._infer_socket_ifname() # avoid clash with the NCCL port UpperCAmelCase : str = str(distributed_port + 1 ) UpperCAmelCase : Any = dist.new_group(ranks=A , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _lowercase( self ) -> Dict: return dist.get_rank(group=self.process_group ) == 0 def _lowercase( self , A , A , A=torch.floataa ) -> str: UpperCAmelCase : List[Any] = torch.empty(A , dtype=A ) dist.scatter(A , src=0 , scatter_list=A , group=self.process_group ) return target_tensor def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names UpperCAmelCase : Optional[int] = next((addr for addr in addrs if addr.startswith("""e""" )) , A ) return ifname def _lowercase( self , A , A ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): UpperCAmelCase , UpperCAmelCase : str = self._main_retrieve(A , A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A ) # distributed training UpperCAmelCase : int = dist.get_world_size(group=self.process_group ) # gather logic UpperCAmelCase : int = None if self._is_main(): UpperCAmelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )] dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group ) # scatter logic UpperCAmelCase : List[Any] = question_hidden_states.shape[0] UpperCAmelCase : Tuple = [] UpperCAmelCase : Any = [] if self._is_main(): assert len(A ) == world_size UpperCAmelCase , UpperCAmelCase : Optional[int] = self._main_retrieve(torch.cat(A ).numpy() , A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = torch.tensor(A ), torch.tensor(A ) UpperCAmelCase : List[str] = self._chunk_tensor(A , A ) UpperCAmelCase : Union[str, Any] = self._chunk_tensor(A , A ) UpperCAmelCase : Tuple = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa ) UpperCAmelCase : Optional[Any] = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
338
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING a : List[str] = logging.get_logger(__name__) class UpperCamelCase_ ( _a ): lowercase = """upernet""" def __init__( self , A=None , A=512 , A=0.0_2 , A=[1, 2, 3, 6] , A=True , A=0.4 , A=384 , A=256 , A=1 , A=False , A=255 , **A , ) -> List[Any]: super().__init__(**__lowerCAmelCase ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCAmelCase : int = backbone_config.get("""model_type""" ) UpperCAmelCase : List[Any] = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : Optional[int] = config_class.from_dict(__lowerCAmelCase ) UpperCAmelCase : Optional[Any] = backbone_config UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : str = pool_scales UpperCAmelCase : Optional[int] = use_auxiliary_head UpperCAmelCase : Optional[int] = auxiliary_loss_weight UpperCAmelCase : Optional[int] = auxiliary_in_channels UpperCAmelCase : str = auxiliary_channels UpperCAmelCase : str = auxiliary_num_convs UpperCAmelCase : str = auxiliary_concat_input UpperCAmelCase : int = loss_ignore_index def _lowercase( self ) -> List[str]: UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Tuple = self.backbone_config.to_dict() UpperCAmelCase : List[str] = self.__class__.model_type return output
371
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : List[str] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } a : List[Any] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } a : List[Any] = { """facebook/blenderbot_small-90M""": 5_1_2, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = BlenderbotSmallTokenizer def __init__( self , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , A=True , **A , ) -> Union[str, Any]: super().__init__( ByteLevelBPETokenizer( vocab=A , merges=A , add_prefix_space=A , trim_offsets=A , ) , bos_token=A , eos_token=A , unk_token=A , **A , ) UpperCAmelCase : Optional[Any] = add_prefix_space def _lowercase( self , A , A=None ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
338
0
'''simple docstring''' from __future__ import annotations from typing import TypedDict class UpperCamelCase_ ( snake_case_ ): lowercase = 42 lowercase = 42 def __lowerCamelCase ( _lowercase ) -> Dict: if not isinstance(__a , __a ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(__a ) )] def __lowerCamelCase ( _lowercase ) -> Tuple: if not isinstance(__a , __a ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) UpperCAmelCase : Optional[Any] = all_rotations(__a ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation UpperCAmelCase : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__a ), } return response def __lowerCamelCase ( _lowercase , _lowercase ) -> int: if not isinstance(__a , __a ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: UpperCAmelCase : str = int(__a ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(__a ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) UpperCAmelCase : Union[str, Any] = [''] * len(__a ) for _ in range(len(__a ) ): for i in range(len(__a ) ): UpperCAmelCase : Dict = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": a : str = """Provide a string that I will generate its BWT transform: """ a : int = input(entry_msg).strip() a : Any = bwt_transform(s) print( F'''Burrows Wheeler transform for string \'{s}\' results ''' F'''in \'{result['bwt_string']}\'''' ) a : str = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' F'''we get original string \'{original_string}\'''' )
350
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A = None , A = None , A = False , **A , ) -> Tuple: super().__init__(features=A , cache_dir=A , keep_in_memory=A , **A ) UpperCAmelCase : Any = Sql( cache_dir=A , features=A , sql=A , con=A , **A , ) def _lowercase( self ) -> Dict: UpperCAmelCase : Any = None UpperCAmelCase : Any = None UpperCAmelCase : int = None UpperCAmelCase : int = None self.builder.download_and_prepare( download_config=A , download_mode=A , verification_mode=A , base_path=A , ) # Build dataset for splits UpperCAmelCase : str = self.builder.as_dataset( split="""train""" , verification_mode=A , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase_ : def __init__( self , A , A , A , A = None , A = None , **A , ) -> str: if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) UpperCAmelCase : Dict = dataset UpperCAmelCase : List[Any] = name UpperCAmelCase : Any = con UpperCAmelCase : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase : Optional[Any] = num_proc UpperCAmelCase : str = to_sql_kwargs def _lowercase( self ) -> int: UpperCAmelCase : Any = self.to_sql_kwargs.pop("""sql""" , A ) UpperCAmelCase : str = self.to_sql_kwargs.pop("""con""" , A ) UpperCAmelCase : Union[str, Any] = self.to_sql_kwargs.pop("""index""" , A ) UpperCAmelCase : str = self._write(index=A , **self.to_sql_kwargs ) return written def _lowercase( self , A ) -> Any: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = args UpperCAmelCase : Union[str, Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs UpperCAmelCase : int = query_table( table=self.dataset.data , key=slice(A , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCAmelCase : Any = batch.to_pandas() UpperCAmelCase : List[Any] = df.to_sql(self.name , self.con , index=A , **A ) return num_rows or len(A ) def _lowercase( self , A , **A ) -> int: UpperCAmelCase : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: UpperCAmelCase , UpperCAmelCase : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , A , A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
338
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = KandinskyVaaPipeline lowercase = [ 'image_embeds', 'negative_image_embeds', ] lowercase = ['image_embeds', 'negative_image_embeds'] lowercase = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowercase = False @property def _lowercase( self ) -> Tuple: return 32 @property def _lowercase( self ) -> Any: return 32 @property def _lowercase( self ) -> str: return self.time_input_dim @property def _lowercase( self ) -> Dict: return self.time_input_dim * 4 @property def _lowercase( self ) -> List[Any]: return 100 @property def _lowercase( self ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } UpperCAmelCase : Optional[int] = UNetaDConditionModel(**A ) return model @property def _lowercase( self ) -> Optional[int]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowercase( self ) -> Any: torch.manual_seed(0 ) UpperCAmelCase : str = VQModel(**self.dummy_movq_kwargs ) return model def _lowercase( self ) -> List[str]: UpperCAmelCase : int = self.dummy_unet UpperCAmelCase : Union[str, Any] = self.dummy_movq UpperCAmelCase : Optional[Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=A , set_alpha_to_one=A , steps_offset=1 , prediction_type="""epsilon""" , thresholding=A , ) UpperCAmelCase : List[Any] = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _lowercase( self , A , A=0 ) -> Any: UpperCAmelCase : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(A ) ).to(A ) UpperCAmelCase : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( A ) if str(A ).startswith("""mps""" ): UpperCAmelCase : List[Any] = torch.manual_seed(A ) else: UpperCAmelCase : Any = torch.Generator(device=A ).manual_seed(A ) UpperCAmelCase : str = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = """cpu""" UpperCAmelCase : Optional[Any] = self.get_dummy_components() UpperCAmelCase : List[Any] = self.pipeline_class(**A ) UpperCAmelCase : Optional[int] = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs(A ) ) UpperCAmelCase : Dict = output.images UpperCAmelCase : Dict = pipe( **self.get_dummy_inputs(A ) , return_dict=A , )[0] UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] UpperCAmelCase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Dict = np.array( [0.6_2_3_7_9_7_6, 1.0, 0.3_6_4_4_1_3_3_2, 1.0, 0.7_0_6_3_9_6_3_4, 0.2_9_8_7_7_1_8_6, 0.8_5_6_5_2_1_2_5, 0.5_2_1_6_8_4_3, 0.5_4_4_5_4_0_4_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase( self ) -> List[Any]: UpperCAmelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy""" ) UpperCAmelCase : str = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(A ) UpperCAmelCase : Any = KandinskyVaaPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) UpperCAmelCase : Optional[Any] = pipeline.to(A ) pipeline.set_progress_bar_config(disable=A ) UpperCAmelCase : List[str] = """red cat, 4k photo""" UpperCAmelCase : Optional[Any] = torch.Generator(device="""cuda""" ).manual_seed(0 ) UpperCAmelCase : int = pipe_prior( A , generator=A , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() UpperCAmelCase : str = torch.Generator(device="""cuda""" ).manual_seed(0 ) UpperCAmelCase : Tuple = pipeline( image_embeds=A , negative_image_embeds=A , generator=A , num_inference_steps=100 , output_type="""np""" , ) UpperCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(A , A )
351
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCamelCase_ : lowercase = MBartConfig lowercase = {} lowercase = 'gelu' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : str = is_training UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Optional[Any] = eos_token_id UpperCAmelCase : List[str] = pad_token_id UpperCAmelCase : List[Any] = bos_token_id def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A ) return config, inputs_dict def _lowercase( self , A , A ) -> List[str]: UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder() UpperCAmelCase : int = inputs_dict["""input_ids"""] UpperCAmelCase : str = input_ids[:1, :] UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase : List[str] = inputs_dict["""head_mask"""] UpperCAmelCase : List[Any] = 1 # first forward pass UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = outputs.to_tuple() UpperCAmelCase : int = past_key_values[1] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]: if attention_mask is None: UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False def _lowercase( self , A , A , A , A , A ) -> int: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : int = TFMBartModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A ) def _lowercase( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase( self ) -> Dict: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_sentencepiece @require_tokenizers @require_tf class UpperCamelCase_ ( unittest.TestCase ): lowercase = [ ' UN Chief Says There Is No Military Solution in Syria', ] lowercase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] lowercase = 'facebook/mbart-large-en-ro' @cached_property def _lowercase( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowercase( self , **A ) -> Any: UpperCAmelCase : Optional[int] = self.translate_src_text(**A ) self.assertListEqual(self.expected_text , A ) def _lowercase( self , **A ) -> Optional[Any]: UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" ) UpperCAmelCase : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A ) return generated_words @slow def _lowercase( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
338
0
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets a : Optional[Any] = """\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n""" a : str = """\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n""" a : List[str] = """\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {\'pearson\': 1.0, \'spearmanr\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'cola\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n""" def __lowerCamelCase ( _lowercase , _lowercase ) -> Any: return float((preds == labels).mean() ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: UpperCAmelCase : Optional[int] = simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase : Union[str, Any] = float(fa_score(y_true=lowerCAmelCase__ , y_pred=lowerCAmelCase__ ) ) return { "accuracy": acc, "f1": fa, } def __lowerCamelCase ( _lowercase , _lowercase ) -> Tuple: UpperCAmelCase : str = float(pearsonr(lowerCAmelCase__ , lowerCAmelCase__ )[0] ) UpperCAmelCase : List[str] = float(spearmanr(lowerCAmelCase__ , lowerCAmelCase__ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Union[str, Any]: if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , ) def _lowercase( self , A , A ) -> Optional[int]: if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(snake_case_ , snake_case_ )} elif self.config_name == "stsb": return pearson_and_spearman(snake_case_ , snake_case_ ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(snake_case_ , snake_case_ ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(snake_case_ , snake_case_ )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" )
352
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: UpperCAmelCase : Tuple = len(_lowercase ) + 1 UpperCAmelCase : List[Any] = len(_lowercase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase : str = [[0 for i in range(_lowercase )] for j in range(_lowercase )] # since string of zero length match pattern of zero length UpperCAmelCase : int = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowercase ): UpperCAmelCase : str = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowercase ): UpperCAmelCase : Optional[Any] = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowercase ): for j in range(1 , _lowercase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase : Union[str, Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase : List[Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase : Optional[int] = dp[i - 1][j] else: UpperCAmelCase : Any = 0 else: UpperCAmelCase : str = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") a : List[str] = """aab""" a : Optional[int] = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
338
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a : Optional[Any] = { """configuration_data2vec_audio""": ["""DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecAudioConfig"""], """configuration_data2vec_text""": [ """DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecTextConfig""", """Data2VecTextOnnxConfig""", ], """configuration_data2vec_vision""": [ """DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecVisionConfig""", """Data2VecVisionOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = [ """DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecAudioForAudioFrameClassification""", """Data2VecAudioForCTC""", """Data2VecAudioForSequenceClassification""", """Data2VecAudioForXVector""", """Data2VecAudioModel""", """Data2VecAudioPreTrainedModel""", ] a : List[Any] = [ """DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecTextForCausalLM""", """Data2VecTextForMaskedLM""", """Data2VecTextForMultipleChoice""", """Data2VecTextForQuestionAnswering""", """Data2VecTextForSequenceClassification""", """Data2VecTextForTokenClassification""", """Data2VecTextModel""", """Data2VecTextPreTrainedModel""", ] a : Dict = [ """DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecVisionForImageClassification""", """Data2VecVisionForMaskedImageModeling""", """Data2VecVisionForSemanticSegmentation""", """Data2VecVisionModel""", """Data2VecVisionPreTrainedModel""", ] if is_tf_available(): a : Optional[Any] = [ """TFData2VecVisionForImageClassification""", """TFData2VecVisionForSemanticSegmentation""", """TFData2VecVisionModel""", """TFData2VecVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys a : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
353
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : List[str] = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int: UpperCAmelCase : int = 1 UpperCAmelCase : str = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase : Tuple = pre_numerator UpperCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase : Union[str, Any] = cur_numerator UpperCAmelCase : Optional[int] = e_cont * pre_numerator + temp return sum_digits(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
338
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : List[Any] = logging.get_logger(__name__) a : Any = { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" ), } class UpperCamelCase_ ( lowercase_ ): lowercase = "xlm-roberta" def __init__( self , A=30522 , A=768 , A=12 , A=12 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=2 , A=0.0_2 , A=1e-12 , A=1 , A=0 , A=2 , A="absolute" , A=True , A=None , **A , ) -> Any: super().__init__(pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , **a__ ) UpperCAmelCase : Tuple = vocab_size UpperCAmelCase : int = hidden_size UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : Any = hidden_act UpperCAmelCase : int = intermediate_size UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : Dict = attention_probs_dropout_prob UpperCAmelCase : int = max_position_embeddings UpperCAmelCase : Optional[int] = type_vocab_size UpperCAmelCase : int = initializer_range UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : str = position_embedding_type UpperCAmelCase : List[Any] = use_cache UpperCAmelCase : str = classifier_dropout class UpperCamelCase_ ( lowercase_ ): @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCAmelCase : str = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
354
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=0.0_1 , A=1000 ) -> List[str]: UpperCAmelCase : List[Any] = p_stop UpperCAmelCase : Optional[int] = max_length def __iter__( self ) -> Union[str, Any]: UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = False while not stop and count < self.max_length: yield count count += 1 UpperCAmelCase : Any = random.random() < self.p_stop class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A , A=False , A=True ) -> Union[str, Any]: UpperCAmelCase : List[str] = [ BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A ) for i in range(2 ) ] UpperCAmelCase : List[str] = [list(A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] ) self.assertListEqual(A , A ) def _lowercase( self ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is very small. UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [[], []] self.check_batch_sampler_shards(A , A ) def _lowercase( self ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A ) def _lowercase( self ) -> Any: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : str = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [[], []] self.check_batch_sampler_shards(A , A , even_batches=A ) def _lowercase( self ) -> List[Any]: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCAmelCase : List[str] = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _lowercase( self , A , A , A , A=False , A=2 , A=False ) -> Tuple: random.seed(A ) UpperCAmelCase : Dict = list(A ) UpperCAmelCase : Any = [ IterableDatasetShard( A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , ) for i in range(A ) ] UpperCAmelCase : Dict = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(A ) iterable_dataset_lists.append(list(A ) ) UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCAmelCase : List[Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(A ) , len(A ) ) self.assertTrue(len(A ) % shard_batch_size == 0 ) UpperCAmelCase : List[Any] = [] for idx in range(0 , len(A ) , A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(A ) < len(A ): reference += reference self.assertListEqual(A , reference[: len(A )] ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = 42 UpperCAmelCase : List[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) # Edge case with a very small dataset UpperCAmelCase : List[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = SkipBatchSampler(A , 2 ) self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> int: UpperCAmelCase : Any = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) UpperCAmelCase : Optional[Any] = skip_first_batches(A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowercase( self ) -> Dict: Accelerator() UpperCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
338
0
def __lowerCamelCase ( _lowercase ) -> str: UpperCAmelCase : Optional[int] = int(_lowercase ) if n_element < 1: UpperCAmelCase : Tuple = ValueError("""a should be a positive number""" ) raise my_error UpperCAmelCase : Tuple = [1] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = (0, 0, 0) UpperCAmelCase : List[Any] = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": a : Optional[int] = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") a : Optional[Any] = hamming(int(n)) print("""-----------------------------------------------------""") print(F'''The list with nth numbers is: {hamming_numbers}''') print("""-----------------------------------------------------""")
355
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[Any] = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : int = {'configuration_opt': ['OPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OPTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ 'OPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OPTForCausalLM', 'OPTModel', 'OPTPreTrainedModel', 'OPTForSequenceClassification', 'OPTForQuestionAnswering', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = ['TFOPTForCausalLM', 'TFOPTModel', 'TFOPTPreTrainedModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ 'FlaxOPTForCausalLM', 'FlaxOPTModel', 'FlaxOPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys a : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
356
'''simple docstring''' from math import loga def __lowerCamelCase ( _lowercase ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_lowercase , _lowercase ): raise TypeError("""Input value must be a 'int' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
338
0
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class UpperCamelCase_ ( unittest.TestCase ): def __init__( self , A , A=7 , A=3 , A=18 , A=30 , A=400 , A=True , A=None , A=True , ) -> Any: UpperCAmelCase : int = size if size is not None else {'height': 18, 'width': 18} UpperCAmelCase : List[str] = parent UpperCAmelCase : Optional[Any] = batch_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : Dict = image_size UpperCAmelCase : int = min_resolution UpperCAmelCase : Tuple = max_resolution UpperCAmelCase : List[str] = do_resize UpperCAmelCase : Dict = size UpperCAmelCase : Dict = do_normalize def _lowercase( self ) -> List[Any]: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = ImageGPTImageProcessor if is_vision_available() else None def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Dict = ImageGPTImageProcessingTester(self ) @property def _lowercase( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , """clusters""" ) ) self.assertTrue(hasattr(_A , """do_resize""" ) ) self.assertTrue(hasattr(_A , """size""" ) ) self.assertTrue(hasattr(_A , """do_normalize""" ) ) def _lowercase( self ) -> Any: UpperCAmelCase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) UpperCAmelCase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def _lowercase( self ) -> int: UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) UpperCAmelCase : Optional[int] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(_A , obj[key] ) ) else: self.assertEqual(obj[key] , _A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : List[Any] = os.path.join(_A , """image_processor.json""" ) image_processor_first.to_json_file(_A ) UpperCAmelCase : Optional[Any] = self.image_processing_class.from_json_file(_A ).to_dict() UpperCAmelCase : Optional[int] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_A , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(_A ) UpperCAmelCase : Optional[int] = self.image_processing_class.from_pretrained(_A ).to_dict() UpperCAmelCase : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_A , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _A ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def _lowercase( self ) -> int: pass def __lowerCamelCase ( ) -> str: UpperCAmelCase : Tuple = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) UpperCAmelCase : List[str] = Image.open(dataset[4]["""file"""] ) UpperCAmelCase : List[Any] = Image.open(dataset[5]["""file"""] ) UpperCAmelCase : Any = [imagea, imagea] return images @require_vision @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def _lowercase( self ) -> Any: UpperCAmelCase : Optional[int] = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) UpperCAmelCase : Union[str, Any] = prepare_images() # test non-batched UpperCAmelCase : List[Any] = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) UpperCAmelCase : int = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , _A ) # test batched UpperCAmelCase : List[str] = image_processing(_A , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) UpperCAmelCase : Any = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , _A )
357
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. a : Optional[int] = 1_0 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: for i in range(_lowercase , _lowercase ): if array[i] == target: return i return -1 def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = len(_lowercase ) while left <= right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1 UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase : Any = one_third - 1 elif array[two_third] < target: UpperCAmelCase : Tuple = two_third + 1 else: UpperCAmelCase : int = one_third + 1 UpperCAmelCase : List[Any] = two_third - 1 else: return -1 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: if left < right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : str = (left + right) // 3 + 1 UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() a : Any = input("""Enter numbers separated by comma:\n""").strip() a : Any = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip()) a : Union[str, Any] = ite_ternary_search(collection, target) a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
338
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def __lowerCamelCase ( _lowercase ) -> str: UpperCAmelCase : List[str] = SwinConfig(image_size=1_9_2 ) if "base" in model_name: UpperCAmelCase : Dict = 6 UpperCAmelCase : int = 1_2_8 UpperCAmelCase : Any = (2, 2, 1_8, 2) UpperCAmelCase : Tuple = (4, 8, 1_6, 3_2) elif "large" in model_name: UpperCAmelCase : int = 1_2 UpperCAmelCase : str = 1_9_2 UpperCAmelCase : Optional[Any] = (2, 2, 1_8, 2) UpperCAmelCase : str = (6, 1_2, 2_4, 4_8) else: raise ValueError("""Model not supported, only supports base and large variants""" ) UpperCAmelCase : Tuple = window_size UpperCAmelCase : Any = embed_dim UpperCAmelCase : Optional[Any] = depths UpperCAmelCase : Union[str, Any] = num_heads return config def __lowerCamelCase ( _lowercase ) -> List[Any]: if "encoder.mask_token" in name: UpperCAmelCase : List[Any] = name.replace("""encoder.mask_token""" , """embeddings.mask_token""" ) if "encoder.patch_embed.proj" in name: UpperCAmelCase : Dict = name.replace("""encoder.patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "encoder.patch_embed.norm" in name: UpperCAmelCase : Dict = name.replace("""encoder.patch_embed.norm""" , """embeddings.norm""" ) if "attn.proj" in name: UpperCAmelCase : Any = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: UpperCAmelCase : Any = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: UpperCAmelCase : str = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: UpperCAmelCase : List[Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: UpperCAmelCase : Any = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: UpperCAmelCase : Union[str, Any] = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": UpperCAmelCase : Tuple = 'layernorm.weight' if name == "encoder.norm.bias": UpperCAmelCase : Optional[Any] = 'layernorm.bias' if "decoder" in name: pass else: UpperCAmelCase : str = 'swin.' + name return name def __lowerCamelCase ( _lowercase , _lowercase ) -> List[str]: for key in orig_state_dict.copy().keys(): UpperCAmelCase : int = orig_state_dict.pop(_A ) if "attn_mask" in key: pass elif "qkv" in key: UpperCAmelCase : Union[str, Any] = key.split(""".""" ) UpperCAmelCase : Optional[int] = int(key_split[2] ) UpperCAmelCase : List[str] = int(key_split[4] ) UpperCAmelCase : Union[str, Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCAmelCase : List[Any] = val[:dim, :] UpperCAmelCase : Tuple = val[ dim : dim * 2, : ] UpperCAmelCase : str = val[-dim:, :] else: UpperCAmelCase : int = val[ :dim ] UpperCAmelCase : Tuple = val[ dim : dim * 2 ] UpperCAmelCase : Any = val[ -dim: ] else: UpperCAmelCase : Dict = val return orig_state_dict def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : Dict = torch.load(_A , map_location="""cpu""" )['model'] UpperCAmelCase : Union[str, Any] = get_swin_config(_A ) UpperCAmelCase : Optional[int] = SwinForMaskedImageModeling(_A ) model.eval() UpperCAmelCase : int = convert_state_dict(_A , _A ) model.load_state_dict(_A ) UpperCAmelCase : Optional[int] = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCAmelCase : Union[str, Any] = ViTImageProcessor(size={"""height""": 1_9_2, """width""": 1_9_2} ) UpperCAmelCase : List[str] = Image.open(requests.get(_A , stream=_A ).raw ) UpperCAmelCase : Optional[Any] = image_processor(images=_A , return_tensors="""pt""" ) with torch.no_grad(): UpperCAmelCase : Union[str, Any] = model(**_A ).logits print(outputs.keys() ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_A ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_A ) if push_to_hub: print(F'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(F'''microsoft/{model_name}''' ) image_processor.push_to_hub(F'''microsoft/{model_name}''' ) if __name__ == "__main__": a : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""swin-base-simmim-window6-192""", type=str, choices=["""swin-base-simmim-window6-192""", """swin-large-simmim-window12-192"""], help="""Name of the Swin SimMIM model you\'d like to convert.""", ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth""", type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) a : Optional[int] = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
358
'''simple docstring''' import numpy as np class UpperCamelCase_ : def __init__( self ) -> int: UpperCAmelCase : str = (0, 0) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Any = 0 UpperCAmelCase : int = 0 UpperCAmelCase : Optional[int] = 0 def __eq__( self , A ) -> Optional[Any]: return self.position == cell.position def _lowercase( self ) -> Tuple: print(self.position ) class UpperCamelCase_ : def __init__( self , A=(5, 5) ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = np.zeros(A ) UpperCAmelCase : int = world_size[0] UpperCAmelCase : List[str] = world_size[1] def _lowercase( self ) -> List[Any]: print(self.w ) def _lowercase( self , A ) -> Dict: UpperCAmelCase : Optional[Any] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase : List[Any] = cell.position[0] UpperCAmelCase : Union[str, Any] = cell.position[1] UpperCAmelCase : Optional[int] = [] for n in neughbour_cord: UpperCAmelCase : Any = current_x + n[0] UpperCAmelCase : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase : str = Cell() UpperCAmelCase : List[str] = (x, y) UpperCAmelCase : Dict = cell neighbours.append(A ) return neighbours def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase : List[Any] = [] UpperCAmelCase : Optional[int] = [] _open.append(_lowercase ) while _open: UpperCAmelCase : Any = np.argmin([n.f for n in _open] ) UpperCAmelCase : Optional[int] = _open[min_f] _closed.append(_open.pop(_lowercase ) ) if current == goal: break for n in world.get_neigbours(_lowercase ): for c in _closed: if c == n: continue UpperCAmelCase : List[str] = current.g + 1 UpperCAmelCase , UpperCAmelCase : List[str] = n.position UpperCAmelCase , UpperCAmelCase : Dict = goal.position UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase : Dict = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_lowercase ) UpperCAmelCase : Dict = [] while current.parent is not None: path.append(current.position ) UpperCAmelCase : Optional[int] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": a : List[str] = Gridworld() # Start position and goal a : Optional[int] = Cell() a : Optional[Any] = (0, 0) a : Optional[Any] = Cell() a : str = (4, 4) print(F'''path from {start.position} to {goal.position}''') a : List[Any] = astar(world, start, goal) # Just for visual reasons. for i in s: a : Any = 1 print(world.w)
338
0
'''simple docstring''' from __future__ import annotations class UpperCamelCase_ : def __init__( self , A ) -> Optional[int]: UpperCAmelCase : str = data UpperCAmelCase : Optional[int] = None UpperCAmelCase : Optional[Any] = None def __lowerCamelCase ( _lowercase ) -> Any: # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def __lowerCamelCase ( _lowercase ) -> List[str]: return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def __lowerCamelCase ( _lowercase ) -> List[str]: if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def __lowerCamelCase ( ) -> str: # Main function for testing. UpperCAmelCase : Tuple = Node(1 ) UpperCAmelCase : Optional[Any] = Node(2 ) UpperCAmelCase : Dict = Node(3 ) UpperCAmelCase : Optional[int] = Node(4 ) UpperCAmelCase : List[Any] = Node(5 ) UpperCAmelCase : str = Node(6 ) UpperCAmelCase : List[Any] = Node(7 ) UpperCAmelCase : str = Node(8 ) UpperCAmelCase : List[str] = Node(9 ) print(is_full_binary_tree(lowerCAmelCase__ ) ) print(depth_of_tree(lowerCAmelCase__ ) ) print("""Tree is: """ ) display(lowerCAmelCase__ ) if __name__ == "__main__": main()
359
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
0
'''simple docstring''' import requests a : Any = """YOUR API KEY""" def __lowerCamelCase ( _lowercase , _lowercase = giphy_api_key ) -> list: UpperCAmelCase : List[Any] = """+""".join(query.split() ) UpperCAmelCase : List[Any] = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' UpperCAmelCase : Optional[Any] = requests.get(_lowercase ).json()["""data"""] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("""\n""".join(get_gifs("""space ship""")))
360
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a : int = logging.get_logger(__name__) a : int = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off a : Tuple = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] a : Optional[int] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class UpperCamelCase_ ( __magic_name__ ): lowercase = 'whisper' lowercase = ['past_key_values'] lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]: UpperCAmelCase : str = vocab_size UpperCAmelCase : Union[str, Any] = num_mel_bins UpperCAmelCase : Tuple = d_model UpperCAmelCase : Optional[int] = encoder_layers UpperCAmelCase : List[str] = encoder_attention_heads UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : int = decoder_attention_heads UpperCAmelCase : Optional[int] = decoder_ffn_dim UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : List[str] = dropout UpperCAmelCase : Optional[Any] = attention_dropout UpperCAmelCase : Optional[Any] = activation_dropout UpperCAmelCase : Optional[Any] = activation_function UpperCAmelCase : Optional[Any] = init_std UpperCAmelCase : int = encoder_layerdrop UpperCAmelCase : Dict = decoder_layerdrop UpperCAmelCase : Optional[int] = use_cache UpperCAmelCase : List[str] = encoder_layers UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Union[str, Any] = max_source_positions UpperCAmelCase : Tuple = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : List[str] = classifier_proj_size UpperCAmelCase : Optional[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : int = mask_time_prob UpperCAmelCase : int = mask_time_length UpperCAmelCase : Dict = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Optional[int] = mask_feature_length UpperCAmelCase : int = mask_feature_min_masks UpperCAmelCase : List[Any] = median_filter_width super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , ) class UpperCamelCase_ ( __magic_name__ ): @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : str = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase : List[Any] = {0: """batch"""} else: UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) return common_inputs def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Optional[int] = OrderedDict() UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , ) UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2] UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Any = super().generate_dummy_inputs( preprocessor.tokenizer , A , A , A , A ) UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" ) UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def _lowercase( self ) -> float: return 1e-3
338
0
'''simple docstring''' # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position a : Dict = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip a : str = concatenate_datasets a : Dict = DownloadConfig a : Union[str, Any] = DownloadManager a : Dict = DownloadMode a : str = DownloadConfig a : Any = DownloadMode a : Any = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
361
'''simple docstring''' a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowerCamelCase ( ) -> None: UpperCAmelCase : Optional[int] = input("""Enter message: """ ) UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ ) UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): UpperCAmelCase : List[str] = """encrypt""" UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase ) elif mode.lower().startswith("""d""" ): UpperCAmelCase : Tuple = """decrypt""" UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """encrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """decrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Tuple = key.upper() for symbol in message: UpperCAmelCase : Dict = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowercase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowercase ): UpperCAmelCase : Optional[int] = 0 else: translated.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": main()
338
0
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: def count_of_possible_combinations(_lowercase ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(__snake_case ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: def count_of_possible_combinations_with_dp_array( _lowercase , _lowercase ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] UpperCAmelCase : Tuple = sum( count_of_possible_combinations_with_dp_array(target - item , __snake_case ) for item in array ) UpperCAmelCase : Optional[Any] = answer return answer UpperCAmelCase : List[Any] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(__snake_case , __snake_case ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase : str = [0] * (target + 1) UpperCAmelCase : int = 1 for i in range(1 , target + 1 ): for j in range(__snake_case ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() a = 3 a = 5 a = [1, 2, 5] print(combination_sum_iv(n, array, target))
362
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Optional[int] = split_dict._to_yaml_list() assert len(_lowercase ) == len(_lowercase ) UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(_lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCAmelCase : List[str] = None # the split name of split_dict takes over the name of the split info object UpperCAmelCase : int = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name="""my_dataset""" )] ) def __lowerCamelCase ( _lowercase ) -> List[str]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files UpperCAmelCase : Optional[Any] = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
338
0
def __lowerCamelCase ( _lowercase , _lowercase ) -> float: if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(UpperCAmelCase__ ) * abs(UpperCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
363
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor a : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , **A ) -> None: warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , A , ) super().__init__(*A , **A )
338
0
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCamelCase_ : def __init__( self , A , A=2 , A=32 , A=16 , A=3 , A=True , A=True , A=32 , A=4 , A=[0, 1, 2, 3] , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=0.0_2 , A=3 , A=[1, 384, 24, 24] , A=True , A=None , ) -> Dict: UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : int = batch_size UpperCAmelCase : Tuple = image_size UpperCAmelCase : List[Any] = patch_size UpperCAmelCase : int = num_channels UpperCAmelCase : Union[str, Any] = is_training UpperCAmelCase : Optional[Any] = use_labels UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : Dict = backbone_out_indices UpperCAmelCase : List[str] = num_attention_heads UpperCAmelCase : Any = intermediate_size UpperCAmelCase : Dict = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[str] = attention_probs_dropout_prob UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : str = num_labels UpperCAmelCase : Optional[Any] = backbone_featmap_shape UpperCAmelCase : Optional[Any] = scope UpperCAmelCase : Optional[int] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase : List[str] = (image_size // patch_size) ** 2 UpperCAmelCase : Dict = num_patches + 1 def _lowercase( self ) -> List[str]: UpperCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Union[str, Any] = None if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [96, 192, 384, 768], """num_groups""": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_A , backbone_featmap_shape=self.backbone_featmap_shape , ) def _lowercase( self , A , A , A ) -> Dict: UpperCAmelCase : List[str] = DPTModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase : List[Any] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A ) -> List[str]: UpperCAmelCase : int = self.num_labels UpperCAmelCase : List[Any] = DPTForDepthEstimation(_A ) model.to(_A ) model.eval() UpperCAmelCase : int = model(_A ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : Union[str, Any] = self.num_labels UpperCAmelCase : Any = DPTForSemanticSegmentation(_A ) model.to(_A ) model.eval() UpperCAmelCase : Dict = model(_A , labels=_A ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs UpperCAmelCase : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ ( snake_case__ , snake_case__ , unittest.TestCase ): lowercase = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowercase = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> List[Any]: UpperCAmelCase : Dict = DPTModelTester(self ) UpperCAmelCase : str = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def _lowercase( self ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def _lowercase( self ) -> List[str]: pass def _lowercase( self ) -> Dict: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , nn.Linear ) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[str] = model_class(_A ) UpperCAmelCase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : str = [*signature.parameters.keys()] UpperCAmelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _A ) def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_A ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_A ) def _lowercase( self ) -> str: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = True if model_class in get_values(_A ): continue UpperCAmelCase : str = model_class(_A ) model.to(_A ) model.train() UpperCAmelCase : Optional[Any] = self._prepare_for_class(_A , _A , return_labels=_A ) UpperCAmelCase : Dict = model(**_A ).loss loss.backward() def _lowercase( self ) -> Union[str, Any]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = False UpperCAmelCase : Optional[int] = True if model_class in get_values(_A ) or not model_class.supports_gradient_checkpointing: continue UpperCAmelCase : str = model_class(_A ) model.to(_A ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase : Optional[Any] = self._prepare_for_class(_A , _A , return_labels=_A ) UpperCAmelCase : Union[str, Any] = model(**_A ).loss loss.backward() def _lowercase( self ) -> Optional[int]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Any = _config_zero_init(_A ) for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(config=_A ) # Skip the check for the backbone UpperCAmelCase : str = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": UpperCAmelCase : Dict = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _lowercase( self ) -> List[str]: pass @slow def _lowercase( self ) -> List[str]: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: UpperCAmelCase : str = DPTModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : int = """add""" with self.assertRaises(_A ): UpperCAmelCase : List[Any] = DPTForDepthEstimation(_A ) def __lowerCamelCase ( ) -> Any: """simple docstring""" UpperCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> int: UpperCAmelCase : Tuple = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) UpperCAmelCase : Tuple = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(_A ) UpperCAmelCase : int = prepare_img() UpperCAmelCase : Any = image_processor(images=_A , return_tensors="""pt""" ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[int] = model(**_A ) UpperCAmelCase : Optional[int] = outputs.predicted_depth # verify the predicted depth UpperCAmelCase : List[str] = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , _A ) UpperCAmelCase : List[str] = torch.tensor( [[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(_A ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , _A , atol=1e-4 ) )
364
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a : Union[str, Any] = logging.get_logger(__name__) a : Union[str, Any] = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'detr' lowercase = ['past_key_values'] lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(A , A ): UpperCAmelCase : Any = backbone_config.get("""model_type""" ) UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : List[Any] = config_class.from_dict(A ) # set timm attributes to None UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = None, None, None UpperCAmelCase : Dict = use_timm_backbone UpperCAmelCase : Any = backbone_config UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : int = num_queries UpperCAmelCase : List[str] = d_model UpperCAmelCase : Tuple = encoder_ffn_dim UpperCAmelCase : Optional[Any] = encoder_layers UpperCAmelCase : Any = encoder_attention_heads UpperCAmelCase : Optional[Any] = decoder_ffn_dim UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : str = dropout UpperCAmelCase : Tuple = attention_dropout UpperCAmelCase : Dict = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : List[Any] = init_std UpperCAmelCase : str = init_xavier_std UpperCAmelCase : List[Any] = encoder_layerdrop UpperCAmelCase : int = decoder_layerdrop UpperCAmelCase : List[Any] = encoder_layers UpperCAmelCase : Union[str, Any] = auxiliary_loss UpperCAmelCase : str = position_embedding_type UpperCAmelCase : Union[str, Any] = backbone UpperCAmelCase : List[str] = use_pretrained_backbone UpperCAmelCase : Optional[int] = dilation # Hungarian matcher UpperCAmelCase : Union[str, Any] = class_cost UpperCAmelCase : Optional[Any] = bbox_cost UpperCAmelCase : List[Any] = giou_cost # Loss coefficients UpperCAmelCase : int = mask_loss_coefficient UpperCAmelCase : Optional[int] = dice_loss_coefficient UpperCAmelCase : Dict = bbox_loss_coefficient UpperCAmelCase : Any = giou_loss_coefficient UpperCAmelCase : Any = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def _lowercase( self ) -> int: return self.encoder_attention_heads @property def _lowercase( self ) -> int: return self.d_model @classmethod def _lowercase( cls , A , **A ) -> Dict: return cls(backbone_config=A , **A ) def _lowercase( self ) -> Dict[str, any]: UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase : Any = self.backbone_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowercase( self ) -> float: return 1e-5 @property def _lowercase( self ) -> int: return 12
338
0
'''simple docstring''' import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers a = """python tqdm regex requests packaging filelock numpy tokenizers""".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def __lowerCamelCase ( _lowercase , _lowercase=None ) -> Dict: require_version(deps[pkg] , snake_case__ )
365
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[str] = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
0
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> List[str]: UpperCAmelCase : Union[str, Any] = torch.nn.Linear(10 , 10 ) UpperCAmelCase : Tuple = torch.optim.SGD(model.parameters() , 0.1 ) UpperCAmelCase : Tuple = Accelerator() UpperCAmelCase : Optional[Any] = accelerator.prepare(A ) try: pickle.loads(pickle.dumps(A ) ) except Exception as e: self.fail(f'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
366
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" ) if "model" in sd.keys(): UpperCAmelCase : Any = torch.load(_lowercase , map_location="""cpu""" )["""model"""] # pop unnecessary weights UpperCAmelCase : Union[str, Any] = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(_lowercase ) UpperCAmelCase : Tuple = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase : List[Any] = sd.pop(_lowercase ) UpperCAmelCase : Tuple = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase : List[str] = sd[key] # We split QKV in separate Q,K,V UpperCAmelCase : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" ) UpperCAmelCase : Tuple = key.replace(""".qkv_proj.""" , """.k_proj.""" ) UpperCAmelCase : int = key.replace(""".qkv_proj.""" , """.v_proj.""" ) UpperCAmelCase : Dict = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = torch.split(_lowercase , depth // 3 , dim=0 ) UpperCAmelCase : Tuple = q UpperCAmelCase : Tuple = k UpperCAmelCase : Any = v del sd[key] return sd @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Optional[Any]: UpperCAmelCase : Tuple = load_checkpoint(_lowercase ) if config is not None: UpperCAmelCase : Dict = OPTConfig.from_pretrained(_lowercase ) else: UpperCAmelCase : int = OPTConfig() UpperCAmelCase : List[Any] = OPTModel(_lowercase ).half().eval() model.load_state_dict(_lowercase ) # Check results Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") a : Union[str, Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
338
0
'''simple docstring''' from datetime import datetime import requests def __lowerCamelCase ( _lowercase ) -> str: UpperCAmelCase : int = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' UpperCAmelCase : int = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src'''] return requests.get(_lowercase ).content if __name__ == "__main__": a : List[Any] = input("""Enter Video/IGTV url: """).strip() a : List[Any] = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(F'''Done. Video saved to disk as {file_name}.''')
367
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : str = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'levit' def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int: super().__init__(**A ) UpperCAmelCase : Any = image_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : Tuple = kernel_size UpperCAmelCase : Optional[int] = stride UpperCAmelCase : Dict = padding UpperCAmelCase : List[Any] = hidden_sizes UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = depths UpperCAmelCase : Any = key_dim UpperCAmelCase : str = drop_path_rate UpperCAmelCase : List[Any] = patch_size UpperCAmelCase : str = attention_ratio UpperCAmelCase : Optional[Any] = mlp_ratio UpperCAmelCase : Dict = initializer_range UpperCAmelCase : int = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase( self ) -> float: return 1e-4
338
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer a : Optional[int] = logging.get_logger(__name__) a : Any = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all BART models at https://huggingface.co/models?filter=bart a : str = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, 'tokenizer_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json', }, } a : List[str] = { 'facebook/bart-base': 1_0_2_4, 'facebook/bart-large': 1_0_2_4, 'facebook/bart-large-mnli': 1_0_2_4, 'facebook/bart-large-cnn': 1_0_2_4, 'facebook/bart-large-xsum': 1_0_2_4, 'yjernite/bart_eli5': 1_0_2_4, } class UpperCamelCase_ ( UpperCamelCase__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["""input_ids""", """attention_mask"""] lowercase = BartTokenizer def __init__( self , A=None , A=None , A=None , A="replace" , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A=False , A=True , **A , ) -> Dict: super().__init__( __a , __a , tokenizer_file=__a , errors=__a , bos_token=__a , eos_token=__a , sep_token=__a , cls_token=__a , unk_token=__a , pad_token=__a , mask_token=__a , add_prefix_space=__a , trim_offsets=__a , **__a , ) UpperCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __a ) != add_prefix_space: UpperCAmelCase : List[Any] = getattr(__a , pre_tok_state.pop("""type""" ) ) UpperCAmelCase : Optional[Any] = add_prefix_space UpperCAmelCase : Optional[Any] = pre_tok_class(**__a ) UpperCAmelCase : Any = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCAmelCase : str = """post_processor""" UpperCAmelCase : List[str] = getattr(self.backend_tokenizer , __a , __a ) if tokenizer_component_instance: UpperCAmelCase : Union[str, Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCAmelCase : Tuple = tuple(state["""sep"""] ) if "cls" in state: UpperCAmelCase : str = tuple(state["""cls"""] ) UpperCAmelCase : Union[str, Any] = False if state.get("""add_prefix_space""" , __a ) != add_prefix_space: UpperCAmelCase : List[str] = add_prefix_space UpperCAmelCase : int = True if state.get("""trim_offsets""" , __a ) != trim_offsets: UpperCAmelCase : Union[str, Any] = trim_offsets UpperCAmelCase : int = True if changes_to_apply: UpperCAmelCase : Dict = getattr(__a , state.pop("""type""" ) ) UpperCAmelCase : Any = component_class(**__a ) setattr(self.backend_tokenizer , __a , __a ) @property def _lowercase( self ) -> str: if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def _lowercase( self , A ) -> List[str]: UpperCAmelCase : Union[str, Any] = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else value UpperCAmelCase : Optional[Any] = value def _lowercase( self , *A , **A ) -> List[Any]: UpperCAmelCase : Optional[int] = kwargs.get("""is_split_into_words""" , __a ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*__a , **__a ) def _lowercase( self , *A , **A ) -> List[Any]: UpperCAmelCase : Optional[int] = kwargs.get("""is_split_into_words""" , __a ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*__a , **__a ) def _lowercase( self , A , A = None ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = self._tokenizer.model.save(__a , name=__a ) return tuple(__a ) def _lowercase( self , A , A=None ) -> Optional[Any]: UpperCAmelCase : Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase( self , A , A = None ) -> Tuple: UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
368
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) a : List[str] = """Hello, World!""" a : List[Any] = """en_XX""" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Dict = Path("""data_bin""" ) UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(_lowercase ) UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder UpperCAmelCase : Tuple = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , _lowercase ) UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight UpperCAmelCase : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase : List[str] = model.roberta.encoder.layer[i] UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i] # self attention UpperCAmelCase : Optional[Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias # intermediate UpperCAmelCase : Tuple = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) UpperCAmelCase : List[str] = xmod_layer.fca.weight UpperCAmelCase : str = xmod_layer.fca.bias # output UpperCAmelCase : Any = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) UpperCAmelCase : Dict = xmod_layer.fca.weight UpperCAmelCase : Dict = xmod_layer.fca.bias UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code] UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code] UpperCAmelCase : Any = from_adapter.fca.weight UpperCAmelCase : int = from_adapter.fca.bias UpperCAmelCase : Dict = from_adapter.fca.weight UpperCAmelCase : Dict = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias UpperCAmelCase : str = xmod.model.encoder.lm_head.weight UpperCAmelCase : str = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) UpperCAmelCase : Optional[int] = model(_lowercase )[0] if classification_head: UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) ) else: UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) a : List[str] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
338
0
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 a : Dict = { # 1536-bit 5: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF""", base=1_6, ), """generator""": 2, }, # 2048-bit 1_4: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AACAA68FFFFFFFFFFFFFFFF""", base=1_6, ), """generator""": 2, }, # 3072-bit 1_5: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF""", base=1_6, ), """generator""": 2, }, # 4096-bit 1_6: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7""" + """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA""" + """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6""" + """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED""" + """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9""" + """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199""" + """FFFFFFFFFFFFFFFF""", base=1_6, ), """generator""": 2, }, # 6144-bit 1_7: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08""" + """8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B""" + """302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9""" + """A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6""" + """49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8""" + """FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C""" + """180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718""" + """3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D""" + """04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D""" + """B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226""" + """1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC""" + """E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26""" + """99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB""" + """04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2""" + """233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127""" + """D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492""" + """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406""" + """AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918""" + """DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151""" + """2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03""" + """F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F""" + """BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA""" + """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B""" + """B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632""" + """387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E""" + """6DCC4024FFFFFFFFFFFFFFFF""", base=1_6, ), """generator""": 2, }, # 8192-bit 1_8: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7""" + """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA""" + """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6""" + """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED""" + """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9""" + """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492""" + """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD""" + """F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831""" + """179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B""" + """DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF""" + """5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6""" + """D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3""" + """23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA""" + """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328""" + """06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C""" + """DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE""" + """12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4""" + """38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300""" + """741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568""" + """3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9""" + """22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B""" + """4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A""" + """062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36""" + """4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1""" + """B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92""" + """4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47""" + """9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71""" + """60C980DD98EDD3DFFFFFFFFFFFFFFFFF""", base=1_6, ), """generator""": 2, }, } class UpperCamelCase_ : def __init__( self , A = 14 ) -> str: if group not in primes: raise ValueError("""Unsupported Group""" ) UpperCAmelCase : str = primes[group]['prime'] UpperCAmelCase : Optional[int] = primes[group]['generator'] UpperCAmelCase : Tuple = int(hexlify(urandom(32 ) ) , base=16 ) def _lowercase( self ) -> str: return hex(self.__private_key )[2:] def _lowercase( self ) -> List[str]: UpperCAmelCase : int = pow(self.generator , self.__private_key , self.prime ) return hex(_UpperCAmelCase )[2:] def _lowercase( self , A ) -> List[str]: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(_UpperCAmelCase , (self.prime - 1) // 2 , self.prime ) == 1 ) def _lowercase( self , A ) -> Optional[Any]: UpperCAmelCase : List[Any] = int(_UpperCAmelCase , base=16 ) if not self.is_valid_public_key(_UpperCAmelCase ): raise ValueError("""Invalid public key""" ) UpperCAmelCase : Any = pow(_UpperCAmelCase , self.__private_key , self.prime ) return shaaaa(str(_UpperCAmelCase ).encode() ).hexdigest() @staticmethod def _lowercase( A , A ) -> Optional[Any]: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(_UpperCAmelCase , (prime - 1) // 2 , _UpperCAmelCase ) == 1 ) @staticmethod def _lowercase( A , A , A = 14 ) -> Optional[Any]: UpperCAmelCase : str = int(_UpperCAmelCase , base=16 ) UpperCAmelCase : int = int(_UpperCAmelCase , base=16 ) UpperCAmelCase : Any = primes[group]['prime'] if not DiffieHellman.is_valid_public_key_static(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("""Invalid public key""" ) UpperCAmelCase : List[str] = pow(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return shaaaa(str(_UpperCAmelCase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
369
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __lowerCamelCase ( _lowercase ) -> List[Any]: for i in range(0 , _lowercase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __lowerCamelCase ( _lowercase ) -> Dict: for i in range(_lowercase , 0 , -1 ): for _ in range(_lowercase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __lowerCamelCase ( _lowercase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowercase ) # upper half reverse_floyd(_lowercase ) # lower half if __name__ == "__main__": print(R"""| /\ | |- | |- |--| |\ /| |-""") print(R"""|/ \| |- |_ |_ |__| | \/ | |_""") a : List[Any] = 1 while K: a : int = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) a : Tuple = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
338
0
def __lowerCamelCase ( _lowercase , _lowercase ) -> int: return int((input_a, input_a).count(0 ) != 0 ) def __lowerCamelCase ( ) -> None: assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
370
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever a : List[str] = logging.getLogger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A=None ) -> Union[str, Any]: super().__init__( A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , ) UpperCAmelCase : Optional[Any] = None def _lowercase( self , A ) -> List[Any]: logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually UpperCAmelCase : Tuple = self._infer_socket_ifname() # avoid clash with the NCCL port UpperCAmelCase : str = str(distributed_port + 1 ) UpperCAmelCase : Any = dist.new_group(ranks=A , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _lowercase( self ) -> Dict: return dist.get_rank(group=self.process_group ) == 0 def _lowercase( self , A , A , A=torch.floataa ) -> str: UpperCAmelCase : List[Any] = torch.empty(A , dtype=A ) dist.scatter(A , src=0 , scatter_list=A , group=self.process_group ) return target_tensor def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names UpperCAmelCase : Optional[int] = next((addr for addr in addrs if addr.startswith("""e""" )) , A ) return ifname def _lowercase( self , A , A ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): UpperCAmelCase , UpperCAmelCase : str = self._main_retrieve(A , A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A ) # distributed training UpperCAmelCase : int = dist.get_world_size(group=self.process_group ) # gather logic UpperCAmelCase : int = None if self._is_main(): UpperCAmelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )] dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group ) # scatter logic UpperCAmelCase : List[Any] = question_hidden_states.shape[0] UpperCAmelCase : Tuple = [] UpperCAmelCase : Any = [] if self._is_main(): assert len(A ) == world_size UpperCAmelCase , UpperCAmelCase : Optional[int] = self._main_retrieve(torch.cat(A ).numpy() , A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = torch.tensor(A ), torch.tensor(A ) UpperCAmelCase : List[str] = self._chunk_tensor(A , A ) UpperCAmelCase : Union[str, Any] = self._chunk_tensor(A , A ) UpperCAmelCase : Tuple = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa ) UpperCAmelCase : Optional[Any] = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
338
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a : Optional[int] = logging.get_logger(__name__) a : Optional[int] = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class UpperCamelCase_ ( lowerCamelCase_ , lowerCamelCase_ ): lowercase = '''nat''' lowercase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , A=4 , A=3 , A=64 , A=[3, 4, 6, 5] , A=[2, 4, 8, 16] , A=7 , A=3.0 , A=True , A=0.0 , A=0.0 , A=0.1 , A="gelu" , A=0.0_2 , A=1e-5 , A=0.0 , A=None , A=None , **A , ) -> Any: super().__init__(**__snake_case ) UpperCAmelCase : Optional[int] = patch_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : str = embed_dim UpperCAmelCase : Optional[Any] = depths UpperCAmelCase : Tuple = len(__snake_case ) UpperCAmelCase : Union[str, Any] = num_heads UpperCAmelCase : Optional[int] = kernel_size UpperCAmelCase : Dict = mlp_ratio UpperCAmelCase : str = qkv_bias UpperCAmelCase : Union[str, Any] = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Optional[Any] = drop_path_rate UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : List[Any] = layer_norm_eps UpperCAmelCase : int = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase : str = int(embed_dim * 2 ** (len(__snake_case ) - 1) ) UpperCAmelCase : Tuple = layer_scale_init_value UpperCAmelCase : str = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(__snake_case ) + 1 )] UpperCAmelCase , UpperCAmelCase : Any = get_aligned_output_features_output_indices( out_features=__snake_case , out_indices=__snake_case , stage_names=self.stage_names )
371
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : List[str] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } a : List[Any] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } a : List[Any] = { """facebook/blenderbot_small-90M""": 5_1_2, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = BlenderbotSmallTokenizer def __init__( self , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , A=True , **A , ) -> Union[str, Any]: super().__init__( ByteLevelBPETokenizer( vocab=A , merges=A , add_prefix_space=A , trim_offsets=A , ) , bos_token=A , eos_token=A , unk_token=A , **A , ) UpperCAmelCase : Optional[Any] = add_prefix_space def _lowercase( self , A , A=None ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
338
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: a : Dict = None a : Optional[int] = logging.get_logger(__name__) a : int = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} a : List[Any] = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", }, """tokenizer_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json""", }, } a : Dict = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } a : Dict = """▁""" # Segments (not really needed) a : Dict = 0 a : Any = 1 a : Optional[Any] = 2 a : Tuple = 3 a : str = 4 class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = 'left' lowercase = XLNetTokenizer def __init__( self , A=None , A=None , A=False , A=True , A=False , A="<s>" , A="</s>" , A="<unk>" , A="<sep>" , A="<pad>" , A="<cls>" , A="<mask>" , A=["<eop>", "<eod>"] , **A , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Any = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( vocab_file=A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , **A , ) UpperCAmelCase : Optional[Any] = 3 UpperCAmelCase : Union[str, Any] = do_lower_case UpperCAmelCase : str = remove_space UpperCAmelCase : List[str] = keep_accents UpperCAmelCase : str = vocab_file UpperCAmelCase : List[str] = False if not self.vocab_file else True def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : str = [self.sep_token_id] UpperCAmelCase : Tuple = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowercase( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : Union[str, Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
350
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A = None , A = None , A = False , **A , ) -> Tuple: super().__init__(features=A , cache_dir=A , keep_in_memory=A , **A ) UpperCAmelCase : Any = Sql( cache_dir=A , features=A , sql=A , con=A , **A , ) def _lowercase( self ) -> Dict: UpperCAmelCase : Any = None UpperCAmelCase : Any = None UpperCAmelCase : int = None UpperCAmelCase : int = None self.builder.download_and_prepare( download_config=A , download_mode=A , verification_mode=A , base_path=A , ) # Build dataset for splits UpperCAmelCase : str = self.builder.as_dataset( split="""train""" , verification_mode=A , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase_ : def __init__( self , A , A , A , A = None , A = None , **A , ) -> str: if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) UpperCAmelCase : Dict = dataset UpperCAmelCase : List[Any] = name UpperCAmelCase : Any = con UpperCAmelCase : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase : Optional[Any] = num_proc UpperCAmelCase : str = to_sql_kwargs def _lowercase( self ) -> int: UpperCAmelCase : Any = self.to_sql_kwargs.pop("""sql""" , A ) UpperCAmelCase : str = self.to_sql_kwargs.pop("""con""" , A ) UpperCAmelCase : Union[str, Any] = self.to_sql_kwargs.pop("""index""" , A ) UpperCAmelCase : str = self._write(index=A , **self.to_sql_kwargs ) return written def _lowercase( self , A ) -> Any: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = args UpperCAmelCase : Union[str, Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs UpperCAmelCase : int = query_table( table=self.dataset.data , key=slice(A , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCAmelCase : Any = batch.to_pandas() UpperCAmelCase : List[Any] = df.to_sql(self.name , self.con , index=A , **A ) return num_rows or len(A ) def _lowercase( self , A , **A ) -> int: UpperCAmelCase : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: UpperCAmelCase , UpperCAmelCase : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , A , A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
338
0
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : def __init__( self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.0_2 , A=["stage2", "stage3", "stage4"] , A=3 , A=None , ) -> Optional[Any]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Union[str, Any] = batch_size UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : int = num_stages UpperCAmelCase : Dict = hidden_sizes UpperCAmelCase : str = depths UpperCAmelCase : Union[str, Any] = is_training UpperCAmelCase : Dict = use_labels UpperCAmelCase : Dict = intermediate_size UpperCAmelCase : Any = hidden_act UpperCAmelCase : Any = type_sequence_label_size UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : List[Any] = out_features UpperCAmelCase : Optional[Any] = num_labels UpperCAmelCase : int = scope UpperCAmelCase : int = num_stages def _lowercase( self ) -> Dict: UpperCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Dict = None if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : str = self.get_config() return config, pixel_values, labels def _lowercase( self ) -> Tuple: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def _lowercase( self ) -> List[str]: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=A , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=A , loss_ignore_index=255 , num_labels=self.num_labels , ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : Any = UperNetForSemanticSegmentation(config=A ) model.to(A ) model.eval() UpperCAmelCase : Optional[int] = model(A ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( UpperCAmelCase ) : Optional[int] = config_and_inputs UpperCAmelCase : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Any: UpperCAmelCase : List[str] = UperNetModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def _lowercase( self ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase( self ) -> List[str]: return def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Union[str, Any] = model_class(A ) UpperCAmelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Union[str, Any] = [*signature.parameters.keys()] UpperCAmelCase : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def _lowercase( self ) -> Dict: pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def _lowercase( self ) -> Any: pass @unittest.skip(reason="""UperNet does not have a base model""" ) def _lowercase( self ) -> Dict: pass @unittest.skip(reason="""UperNet does not have a base model""" ) def _lowercase( self ) -> List[Any]: pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def _lowercase( self ) -> List[Any]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _lowercase( self ) -> Any: pass def _lowercase( self ) -> Dict: def check_hidden_states_output(A , A , A ): UpperCAmelCase : str = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase : str = model(**self._prepare_for_class(A , A ) ) UpperCAmelCase : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : int = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Dict = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : List[Any] = True check_hidden_states_output(A , A , A ) def _lowercase( self ) -> Dict: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Optional[int] = _config_zero_init(A ) UpperCAmelCase : Dict = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(config=A ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def _lowercase( self ) -> Any: pass @slow def _lowercase( self ) -> Tuple: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : List[str] = UperNetForSemanticSegmentation.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ) -> Any: UpperCAmelCase : Tuple = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) UpperCAmelCase : Any = Image.open(_lowercase ).convert("""RGB""" ) return image @require_torch @require_vision @slow class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) UpperCAmelCase : Dict = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(A ) UpperCAmelCase : Optional[Any] = prepare_img() UpperCAmelCase : int = processor(images=A , return_tensors="""pt""" ).to(A ) with torch.no_grad(): UpperCAmelCase : Dict = model(**A ) UpperCAmelCase : str = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , A ) UpperCAmelCase : Optional[Any] = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , A , atol=1e-4 ) ) def _lowercase( self ) -> str: UpperCAmelCase : Any = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) UpperCAmelCase : List[str] = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(A ) UpperCAmelCase : Any = prepare_img() UpperCAmelCase : int = processor(images=A , return_tensors="""pt""" ).to(A ) with torch.no_grad(): UpperCAmelCase : List[Any] = model(**A ) UpperCAmelCase : int = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , A ) UpperCAmelCase : Dict = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , A , atol=1e-4 ) )
351
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCamelCase_ : lowercase = MBartConfig lowercase = {} lowercase = 'gelu' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : str = is_training UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Optional[Any] = eos_token_id UpperCAmelCase : List[str] = pad_token_id UpperCAmelCase : List[Any] = bos_token_id def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A ) return config, inputs_dict def _lowercase( self , A , A ) -> List[str]: UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder() UpperCAmelCase : int = inputs_dict["""input_ids"""] UpperCAmelCase : str = input_ids[:1, :] UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase : List[str] = inputs_dict["""head_mask"""] UpperCAmelCase : List[Any] = 1 # first forward pass UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = outputs.to_tuple() UpperCAmelCase : int = past_key_values[1] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]: if attention_mask is None: UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False def _lowercase( self , A , A , A , A , A ) -> int: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : int = TFMBartModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A ) def _lowercase( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase( self ) -> Dict: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_sentencepiece @require_tokenizers @require_tf class UpperCamelCase_ ( unittest.TestCase ): lowercase = [ ' UN Chief Says There Is No Military Solution in Syria', ] lowercase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] lowercase = 'facebook/mbart-large-en-ro' @cached_property def _lowercase( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowercase( self , **A ) -> Any: UpperCAmelCase : Optional[int] = self.translate_src_text(**A ) self.assertListEqual(self.expected_text , A ) def _lowercase( self , **A ) -> Optional[Any]: UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" ) UpperCAmelCase : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A ) return generated_words @slow def _lowercase( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
338
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
352
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: UpperCAmelCase : Tuple = len(_lowercase ) + 1 UpperCAmelCase : List[Any] = len(_lowercase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase : str = [[0 for i in range(_lowercase )] for j in range(_lowercase )] # since string of zero length match pattern of zero length UpperCAmelCase : int = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowercase ): UpperCAmelCase : str = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowercase ): UpperCAmelCase : Optional[Any] = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowercase ): for j in range(1 , _lowercase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase : Union[str, Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase : List[Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase : Optional[int] = dp[i - 1][j] else: UpperCAmelCase : Any = 0 else: UpperCAmelCase : str = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") a : List[str] = """aab""" a : Optional[int] = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
338
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase_ ( __magic_name__ ): lowercase = ['''image_processor''', '''tokenizer'''] lowercase = '''CLIPImageProcessor''' lowercase = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self , A=None , A=None , **A ) -> Union[str, Any]: UpperCAmelCase : int = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , A , ) UpperCAmelCase : List[Any] = kwargs.pop("""feature_extractor""" ) UpperCAmelCase : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(A , A ) def __call__( self , A=None , A=None , A=None , **A ) -> Tuple: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: UpperCAmelCase : int = self.tokenizer(A , return_tensors=A , **A ) if images is not None: UpperCAmelCase : List[str] = self.image_processor(A , return_tensors=A , **A ) if text is not None and images is not None: UpperCAmelCase : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**A ) , tensor_type=A ) def _lowercase( self , *A , **A ) -> str: return self.tokenizer.batch_decode(*A , **A ) def _lowercase( self , *A , **A ) -> List[str]: return self.tokenizer.decode(*A , **A ) @property def _lowercase( self ) -> Dict: UpperCAmelCase : Dict = self.tokenizer.model_input_names UpperCAmelCase : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowercase( self ) -> Optional[int]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , A , ) return self.image_processor_class @property def _lowercase( self ) -> Optional[int]: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , A , ) return self.image_processor
353
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : List[str] = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int: UpperCAmelCase : int = 1 UpperCAmelCase : str = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase : Tuple = pre_numerator UpperCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase : Union[str, Any] = cur_numerator UpperCAmelCase : Optional[int] = e_cont * pre_numerator + temp return sum_digits(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
338
0
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : List[str] = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int: UpperCAmelCase : int = 1 UpperCAmelCase : str = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase : Tuple = pre_numerator UpperCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase : Union[str, Any] = cur_numerator UpperCAmelCase : Optional[int] = e_cont * pre_numerator + temp return sum_digits(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
354
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=0.0_1 , A=1000 ) -> List[str]: UpperCAmelCase : List[Any] = p_stop UpperCAmelCase : Optional[int] = max_length def __iter__( self ) -> Union[str, Any]: UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = False while not stop and count < self.max_length: yield count count += 1 UpperCAmelCase : Any = random.random() < self.p_stop class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A , A=False , A=True ) -> Union[str, Any]: UpperCAmelCase : List[str] = [ BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A ) for i in range(2 ) ] UpperCAmelCase : List[str] = [list(A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] ) self.assertListEqual(A , A ) def _lowercase( self ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is very small. UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [[], []] self.check_batch_sampler_shards(A , A ) def _lowercase( self ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A ) def _lowercase( self ) -> Any: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : str = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [[], []] self.check_batch_sampler_shards(A , A , even_batches=A ) def _lowercase( self ) -> List[Any]: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCAmelCase : List[str] = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _lowercase( self , A , A , A , A=False , A=2 , A=False ) -> Tuple: random.seed(A ) UpperCAmelCase : Dict = list(A ) UpperCAmelCase : Any = [ IterableDatasetShard( A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , ) for i in range(A ) ] UpperCAmelCase : Dict = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(A ) iterable_dataset_lists.append(list(A ) ) UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCAmelCase : List[Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(A ) , len(A ) ) self.assertTrue(len(A ) % shard_batch_size == 0 ) UpperCAmelCase : List[Any] = [] for idx in range(0 , len(A ) , A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(A ) < len(A ): reference += reference self.assertListEqual(A , reference[: len(A )] ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = 42 UpperCAmelCase : List[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) # Edge case with a very small dataset UpperCAmelCase : List[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = SkipBatchSampler(A , 2 ) self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> int: UpperCAmelCase : Any = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) UpperCAmelCase : Optional[Any] = skip_first_batches(A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowercase( self ) -> Dict: Accelerator() UpperCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
338
0
from __future__ import annotations def __lowerCamelCase ( _lowercase , _lowercase ) -> list[int]: UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = len(_lowercase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: UpperCAmelCase : Dict = i + 1 else: UpperCAmelCase : List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'''{two_pointer([2, 7, 1_1, 1_5], 9) = }''')
355
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[Any] = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a : Optional[int] = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
356
'''simple docstring''' from math import loga def __lowerCamelCase ( _lowercase ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_lowercase , _lowercase ): raise TypeError("""Input value must be a 'int' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
338
0
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]: if isinstance(_lowercase , torch.Tensor ): return image elif isinstance(_lowercase , PIL.Image.Image ): UpperCAmelCase : Tuple = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCAmelCase : List[str] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] UpperCAmelCase : List[Any] = np.concatenate(_lowercase , axis=0 ) UpperCAmelCase : List[Any] = np.array(_lowercase ).astype(np.floataa ) / 255.0 UpperCAmelCase : List[str] = image.transpose(0 , 3 , 1 , 2 ) UpperCAmelCase : int = 2.0 * image - 1.0 UpperCAmelCase : str = torch.from_numpy(_lowercase ) elif isinstance(image[0] , torch.Tensor ): UpperCAmelCase : str = torch.cat(_lowercase , dim=0 ) return image def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=0.9995 ) -> Tuple: if not isinstance(_lowercase , np.ndarray ): UpperCAmelCase : Tuple = True UpperCAmelCase : Union[str, Any] = va.device UpperCAmelCase : List[str] = va.cpu().numpy() UpperCAmelCase : List[Any] = va.cpu().numpy() UpperCAmelCase : Optional[Any] = np.sum(va * va / (np.linalg.norm(_lowercase ) * np.linalg.norm(_lowercase )) ) if np.abs(_lowercase ) > DOT_THRESHOLD: UpperCAmelCase : str = (1 - t) * va + t * va else: UpperCAmelCase : Dict = np.arccos(_lowercase ) UpperCAmelCase : Union[str, Any] = np.sin(_lowercase ) UpperCAmelCase : List[str] = theta_a * t UpperCAmelCase : Union[str, Any] = np.sin(_lowercase ) UpperCAmelCase : Optional[Any] = np.sin(theta_a - theta_t ) / sin_theta_a UpperCAmelCase : Dict = sin_theta_t / sin_theta_a UpperCAmelCase : List[Any] = sa * va + sa * va if inputs_are_torch: UpperCAmelCase : str = torch.from_numpy(_lowercase ).to(_lowercase ) return va def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = F.normalize(_lowercase , dim=-1 ) UpperCAmelCase : Optional[int] = F.normalize(_lowercase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def __lowerCamelCase ( _lowercase , _lowercase ) -> List[Any]: for param in model.parameters(): UpperCAmelCase : Optional[int] = value class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A , A , A , A , A=None , A=None , A=None , ) -> List[Any]: super().__init__() self.register_modules( vae=A , text_encoder=A , clip_model=A , tokenizer=A , unet=A , scheduler=A , feature_extractor=A , coca_model=A , coca_tokenizer=A , coca_transform=A , ) UpperCAmelCase : Optional[Any] = ( feature_extractor.size if isinstance(feature_extractor.size , A ) else feature_extractor.size["""shortest_edge"""] ) UpperCAmelCase : Any = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , A ) set_requires_grad(self.clip_model , A ) def _lowercase( self , A = "auto" ) -> int: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase : Optional[int] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def _lowercase( self ) -> Optional[Any]: self.enable_attention_slicing(A ) def _lowercase( self ) -> List[str]: set_requires_grad(self.vae , A ) def _lowercase( self ) -> str: set_requires_grad(self.vae , A ) def _lowercase( self ) -> Tuple: set_requires_grad(self.unet , A ) def _lowercase( self ) -> Optional[int]: set_requires_grad(self.unet , A ) def _lowercase( self , A , A , A ) -> Any: # get the original timestep using init_timestep UpperCAmelCase : Dict = min(int(num_inference_steps * strength ) , A ) UpperCAmelCase : Optional[Any] = max(num_inference_steps - init_timestep , 0 ) UpperCAmelCase : Dict = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase( self , A , A , A , A , A , A=None ) -> Dict: if not isinstance(A , torch.Tensor ): raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(A )}''' ) UpperCAmelCase : Tuple = image.to(device=A , dtype=A ) if isinstance(A , A ): UpperCAmelCase : Optional[Any] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(A ) ] UpperCAmelCase : List[str] = torch.cat(A , dim=0 ) else: UpperCAmelCase : List[Any] = self.vae.encode(A ).latent_dist.sample(A ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase : Tuple = 0.1_8_2_1_5 * init_latents UpperCAmelCase : Optional[int] = init_latents.repeat_interleave(A , dim=0 ) UpperCAmelCase : Tuple = randn_tensor(init_latents.shape , generator=A , device=A , dtype=A ) # get latents UpperCAmelCase : str = self.scheduler.add_noise(A , A , A ) UpperCAmelCase : str = init_latents return latents def _lowercase( self , A ) -> Tuple: UpperCAmelCase : str = self.coca_transform(A ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): UpperCAmelCase : List[str] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) UpperCAmelCase : Dict = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("""<end_of_text>""" )[0].replace("""<start_of_text>""" , """""" ).rstrip(""" .,""" ) def _lowercase( self , A , A ) -> int: UpperCAmelCase : Optional[Any] = self.feature_extractor.preprocess(A ) UpperCAmelCase : Any = torch.from_numpy(clip_image_input["""pixel_values"""][0] ).unsqueeze(0 ).to(self.device ).half() UpperCAmelCase : str = self.clip_model.get_image_features(A ) UpperCAmelCase : str = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) UpperCAmelCase : Tuple = image_embeddings_clip.repeat_interleave(A , dim=0 ) return image_embeddings_clip @torch.enable_grad() def _lowercase( self , A , A , A , A , A , A , A , ) -> str: UpperCAmelCase : Optional[Any] = latents.detach().requires_grad_() UpperCAmelCase : str = self.scheduler.scale_model_input(A , A ) # predict the noise residual UpperCAmelCase : str = self.unet(A , A , encoder_hidden_states=A ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): UpperCAmelCase : Dict = self.scheduler.alphas_cumprod[timestep] UpperCAmelCase : str = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase : Dict = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 UpperCAmelCase : Optional[Any] = torch.sqrt(A ) UpperCAmelCase : Optional[Any] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , A ): UpperCAmelCase : List[Any] = self.scheduler.sigmas[index] UpperCAmelCase : Dict = latents - sigma * noise_pred else: raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase : Optional[Any] = 1 / 0.1_8_2_1_5 * sample UpperCAmelCase : str = self.vae.decode(A ).sample UpperCAmelCase : int = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase : Union[str, Any] = transforms.Resize(self.feature_extractor_size )(A ) UpperCAmelCase : Union[str, Any] = self.normalize(A ).to(latents.dtype ) UpperCAmelCase : str = self.clip_model.get_image_features(A ) UpperCAmelCase : Tuple = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) UpperCAmelCase : List[Any] = spherical_dist_loss(A , A ).mean() * clip_guidance_scale UpperCAmelCase : Any = -torch.autograd.grad(A , A )[0] if isinstance(self.scheduler , A ): UpperCAmelCase : List[str] = latents.detach() + grads * (sigma**2) UpperCAmelCase : List[str] = noise_pred_original else: UpperCAmelCase : Any = noise_pred_original - torch.sqrt(A ) * grads return noise_pred, latents @torch.no_grad() def __call__( self , A , A , A = None , A = None , A = 512 , A = 512 , A = 0.6 , A = 50 , A = 7.5 , A = 1 , A = 0.0 , A = 100 , A = None , A = "pil" , A = True , A = 0.8 , A = 0.1 , A = 0.1 , ) -> List[Any]: if isinstance(A , A ) and len(A ) != batch_size: raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(A )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(A , torch.Generator ) and batch_size > 1: UpperCAmelCase : Any = [generator] + [None] * (batch_size - 1) UpperCAmelCase : Any = [ ("""model""", self.coca_model is None), ("""tokenizer""", self.coca_tokenizer is None), ("""transform""", self.coca_transform is None), ] UpperCAmelCase : int = [x[0] for x in coca_is_none if x[1]] UpperCAmelCase : str = """, """.join(A ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(A ): raise ValueError( f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) UpperCAmelCase : Optional[int] = self.get_image_description(A ) if style_prompt is None: if len(A ): raise ValueError( f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) UpperCAmelCase : Union[str, Any] = self.get_image_description(A ) # get prompt text embeddings for content and style UpperCAmelCase : List[Any] = self.tokenizer( A , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors="""pt""" , ) UpperCAmelCase : Dict = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] UpperCAmelCase : str = self.tokenizer( A , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors="""pt""" , ) UpperCAmelCase : Optional[int] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] UpperCAmelCase : Any = slerp(A , A , A ) # duplicate text embeddings for each generation per prompt UpperCAmelCase : Any = text_embeddings.repeat_interleave(A , dim=0 ) # set timesteps UpperCAmelCase : Union[str, Any] = """offset""" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) UpperCAmelCase : str = {} if accepts_offset: UpperCAmelCase : List[str] = 1 self.scheduler.set_timesteps(A , **A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) UpperCAmelCase : Tuple = self.get_timesteps(A , A , self.device ) UpperCAmelCase : Dict = timesteps[:1].repeat(A ) # Preprocess image UpperCAmelCase : int = preprocess(A , A , A ) UpperCAmelCase : Dict = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) UpperCAmelCase : str = preprocess(A , A , A ) UpperCAmelCase : Any = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) UpperCAmelCase : List[str] = slerp(A , A , A ) if clip_guidance_scale > 0: UpperCAmelCase : Optional[Any] = self.get_clip_image_embeddings(A , A ) UpperCAmelCase : Optional[Any] = self.get_clip_image_embeddings(A , A ) UpperCAmelCase : Tuple = slerp( A , A , A ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCAmelCase : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCAmelCase : Union[str, Any] = content_text_input.input_ids.shape[-1] UpperCAmelCase : List[str] = self.tokenizer([""""""] , padding="""max_length""" , max_length=A , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt UpperCAmelCase : str = uncond_embeddings.repeat_interleave(A , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase : List[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCAmelCase : Optional[int] = (batch_size, self.unet.config.in_channels, height // 8, width // 8) UpperCAmelCase : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps UpperCAmelCase : Dict = torch.randn(A , generator=A , device="""cpu""" , dtype=A ).to( self.device ) else: UpperCAmelCase : Optional[int] = torch.randn(A , generator=A , device=self.device , dtype=A ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) UpperCAmelCase : Tuple = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase : int = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase : int = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase : Dict = {} if accepts_eta: UpperCAmelCase : Any = eta # check if the scheduler accepts generator UpperCAmelCase : Tuple = """generator""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: UpperCAmelCase : Optional[Any] = generator with self.progress_bar(total=A ): for i, t in enumerate(A ): # expand the latents if we are doing classifier free guidance UpperCAmelCase : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase : List[str] = self.scheduler.scale_model_input(A , A ) # predict the noise residual UpperCAmelCase : Union[str, Any] = self.unet(A , A , encoder_hidden_states=A ).sample # perform classifier free guidance if do_classifier_free_guidance: UpperCAmelCase : Tuple = noise_pred.chunk(2 ) UpperCAmelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: UpperCAmelCase : List[Any] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) UpperCAmelCase : int = self.cond_fn( A , A , A , A , A , A , A , ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase : Tuple = self.scheduler.step(A , A , A , **A ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase : int = 1 / 0.1_8_2_1_5 * latents UpperCAmelCase : Tuple = self.vae.decode(A ).sample UpperCAmelCase : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : Optional[Any] = self.numpy_to_pil(A ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
357
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. a : Optional[int] = 1_0 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: for i in range(_lowercase , _lowercase ): if array[i] == target: return i return -1 def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = len(_lowercase ) while left <= right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1 UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase : Any = one_third - 1 elif array[two_third] < target: UpperCAmelCase : Tuple = two_third + 1 else: UpperCAmelCase : int = one_third + 1 UpperCAmelCase : List[Any] = two_third - 1 else: return -1 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: if left < right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : str = (left + right) // 3 + 1 UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() a : Any = input("""Enter numbers separated by comma:\n""").strip() a : Any = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip()) a : Union[str, Any] = ite_ternary_search(collection, target) a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
338
0
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> List[str]: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def __lowerCamelCase ( _lowercase , _lowercase=0 ) -> Union[str, Any]: return sorted(_lowercase , key=lambda _lowercase : x[column] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=float("""inf""" ) ) -> Tuple: for i in range(points_counts - 1 ): for j in range(i + 1 , _lowercase ): UpperCAmelCase : Optional[int] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: UpperCAmelCase : List[Any] = current_dis return min_dis def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=float("""inf""" ) ) -> Optional[int]: for i in range(min(6 , points_counts - 1 ) , _lowercase ): for j in range(max(0 , i - 6 ) , _lowercase ): UpperCAmelCase : Tuple = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: UpperCAmelCase : Dict = current_dis return min_dis def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: # base case if points_counts <= 3: return dis_between_closest_pair(_lowercase , _lowercase ) # recursion UpperCAmelCase : List[Any] = points_counts // 2 UpperCAmelCase : Dict = closest_pair_of_points_sqr( _lowercase , points_sorted_on_y[:mid] , _lowercase ) UpperCAmelCase : str = closest_pair_of_points_sqr( _lowercase , points_sorted_on_y[mid:] , points_counts - mid ) UpperCAmelCase : List[str] = min(_lowercase , _lowercase ) UpperCAmelCase : Any = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_lowercase ) UpperCAmelCase : Dict = dis_between_closest_in_strip( _lowercase , len(_lowercase ) , _lowercase ) return min(_lowercase , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Tuple: UpperCAmelCase : Union[str, Any] = column_based_sort(_lowercase , column=0 ) UpperCAmelCase : Tuple = column_based_sort(_lowercase , column=1 ) return ( closest_pair_of_points_sqr( _lowercase , _lowercase , _lowercase ) ) ** 0.5 if __name__ == "__main__": a : Union[str, Any] = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)] print("""Distance:""", closest_pair_of_points(points, len(points)))
358
'''simple docstring''' import numpy as np class UpperCamelCase_ : def __init__( self ) -> int: UpperCAmelCase : str = (0, 0) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Any = 0 UpperCAmelCase : int = 0 UpperCAmelCase : Optional[int] = 0 def __eq__( self , A ) -> Optional[Any]: return self.position == cell.position def _lowercase( self ) -> Tuple: print(self.position ) class UpperCamelCase_ : def __init__( self , A=(5, 5) ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = np.zeros(A ) UpperCAmelCase : int = world_size[0] UpperCAmelCase : List[str] = world_size[1] def _lowercase( self ) -> List[Any]: print(self.w ) def _lowercase( self , A ) -> Dict: UpperCAmelCase : Optional[Any] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase : List[Any] = cell.position[0] UpperCAmelCase : Union[str, Any] = cell.position[1] UpperCAmelCase : Optional[int] = [] for n in neughbour_cord: UpperCAmelCase : Any = current_x + n[0] UpperCAmelCase : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase : str = Cell() UpperCAmelCase : List[str] = (x, y) UpperCAmelCase : Dict = cell neighbours.append(A ) return neighbours def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase : List[Any] = [] UpperCAmelCase : Optional[int] = [] _open.append(_lowercase ) while _open: UpperCAmelCase : Any = np.argmin([n.f for n in _open] ) UpperCAmelCase : Optional[int] = _open[min_f] _closed.append(_open.pop(_lowercase ) ) if current == goal: break for n in world.get_neigbours(_lowercase ): for c in _closed: if c == n: continue UpperCAmelCase : List[str] = current.g + 1 UpperCAmelCase , UpperCAmelCase : List[str] = n.position UpperCAmelCase , UpperCAmelCase : Dict = goal.position UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase : Dict = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_lowercase ) UpperCAmelCase : Dict = [] while current.parent is not None: path.append(current.position ) UpperCAmelCase : Optional[int] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": a : List[str] = Gridworld() # Start position and goal a : Optional[int] = Cell() a : Optional[Any] = (0, 0) a : Optional[Any] = Cell() a : str = (4, 4) print(F'''path from {start.position} to {goal.position}''') a : List[Any] = astar(world, start, goal) # Just for visual reasons. for i in s: a : Any = 1 print(world.w)
338
0
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil a : Union[str, Any] = 1_0_0 a : Dict = set(range(3, NUM_PRIMES, 2)) primes.add(2) a : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def __lowerCamelCase ( _lowercase ) -> set[int]: if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} UpperCAmelCase : set[int] = set() UpperCAmelCase : int UpperCAmelCase : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def __lowerCamelCase ( _lowercase = 5_0_0_0 ) -> int | None: for number_to_partition in range(1 , _lowercase ): if len(partition(_lowercase ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'''{solution() = }''')
359
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
0
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf a : Union[str, Any] = logging.get_logger(__name__) @dataclass class UpperCamelCase_ ( __magic_name__ ): lowercase = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self , **A ) -> Union[str, Any]: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: UpperCAmelCase : Tuple = deprecated_arg[3:] UpperCAmelCase : Union[str, Any] = not kwargs.pop(A ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) UpperCAmelCase : List[Any] = kwargs.pop("""tpu_name""" , self.tpu_name ) UpperCAmelCase : List[str] = kwargs.pop("""device_idx""" , self.device_idx ) UpperCAmelCase : Any = kwargs.pop("""eager_mode""" , self.eager_mode ) UpperCAmelCase : Union[str, Any] = kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**A ) lowercase = field( default=__magic_name__ , metadata={'help': 'Name of TPU'} , ) lowercase = field( default=0 , metadata={'help': 'CPU / GPU device index. Defaults to 0.'} , ) lowercase = field(default=__magic_name__ , metadata={'help': 'Benchmark models in eager model.'} ) lowercase = field( default=__magic_name__ , metadata={ 'help': 'Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.' } , ) @cached_property def _lowercase( self ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ["""tf"""] ) UpperCAmelCase : Tuple = None if self.tpu: try: if self.tpu_name: UpperCAmelCase : Optional[int] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: UpperCAmelCase : Optional[Any] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: UpperCAmelCase : Tuple = None return tpu @cached_property def _lowercase( self ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) UpperCAmelCase : List[Any] = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) UpperCAmelCase : Tuple = tf.distribute.OneDeviceStrategy(device=f'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU UpperCAmelCase : Union[str, Any] = tf.distribute.OneDeviceStrategy(device=f'''/cpu:{self.device_idx}''' ) return strategy @property def _lowercase( self ) -> bool: requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def _lowercase( self ) -> "tf.distribute.Strategy": requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def _lowercase( self ) -> Dict: requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def _lowercase( self ) -> int: requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _lowercase( self ) -> bool: return self.n_gpu > 0
360
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a : int = logging.get_logger(__name__) a : int = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off a : Tuple = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] a : Optional[int] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class UpperCamelCase_ ( __magic_name__ ): lowercase = 'whisper' lowercase = ['past_key_values'] lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]: UpperCAmelCase : str = vocab_size UpperCAmelCase : Union[str, Any] = num_mel_bins UpperCAmelCase : Tuple = d_model UpperCAmelCase : Optional[int] = encoder_layers UpperCAmelCase : List[str] = encoder_attention_heads UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : int = decoder_attention_heads UpperCAmelCase : Optional[int] = decoder_ffn_dim UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : List[str] = dropout UpperCAmelCase : Optional[Any] = attention_dropout UpperCAmelCase : Optional[Any] = activation_dropout UpperCAmelCase : Optional[Any] = activation_function UpperCAmelCase : Optional[Any] = init_std UpperCAmelCase : int = encoder_layerdrop UpperCAmelCase : Dict = decoder_layerdrop UpperCAmelCase : Optional[int] = use_cache UpperCAmelCase : List[str] = encoder_layers UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Union[str, Any] = max_source_positions UpperCAmelCase : Tuple = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : List[str] = classifier_proj_size UpperCAmelCase : Optional[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : int = mask_time_prob UpperCAmelCase : int = mask_time_length UpperCAmelCase : Dict = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Optional[int] = mask_feature_length UpperCAmelCase : int = mask_feature_min_masks UpperCAmelCase : List[Any] = median_filter_width super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , ) class UpperCamelCase_ ( __magic_name__ ): @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : str = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase : List[Any] = {0: """batch"""} else: UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) return common_inputs def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Optional[int] = OrderedDict() UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , ) UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2] UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Any = super().generate_dummy_inputs( preprocessor.tokenizer , A , A , A , A ) UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" ) UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def _lowercase( self ) -> float: return 1e-3
338
0
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) a : List[Any] = logging.getLogger(__name__) class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A , A , A=None , A=None ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = self.layer[current_layer](A , A , head_mask[current_layer] ) UpperCAmelCase : Tuple = layer_outputs[0] return hidden_states @add_start_docstrings( 'The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.' , __magic_name__ , ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A ) -> int: super().__init__(A ) UpperCAmelCase : Union[str, Any] = BertEncoderWithPabee(A ) self.init_weights() UpperCAmelCase : int = 0 UpperCAmelCase : Any = 0 UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = 0 def _lowercase( self , A ) -> str: UpperCAmelCase : Optional[Any] = threshold def _lowercase( self , A ) -> int: UpperCAmelCase : str = patience def _lowercase( self ) -> Any: UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : List[Any] = 0 def _lowercase( self ) -> Dict: UpperCAmelCase : int = self.inference_layers_num / self.inference_instances_num UpperCAmelCase : Tuple = ( f'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' f''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(A ) @add_start_docstrings_to_model_forward(A ) def _lowercase( self , A=None , A=None , A=None , A=None , A=None , A=None , A=None , A=None , A=None , A=None , A=False , ) -> Any: if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: UpperCAmelCase : List[str] = input_ids.size() elif inputs_embeds is not None: UpperCAmelCase : str = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) UpperCAmelCase : List[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: UpperCAmelCase : str = torch.ones(A , device=A ) if token_type_ids is None: UpperCAmelCase : Optional[Any] = torch.zeros(A , dtype=torch.long , device=A ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. UpperCAmelCase : torch.Tensor = self.get_extended_attention_mask(A , A , A ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: UpperCAmelCase : Optional[int] = encoder_hidden_states.size() UpperCAmelCase : Optional[Any] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: UpperCAmelCase : Union[str, Any] = torch.ones(A , device=A ) UpperCAmelCase : List[str] = self.invert_attention_mask(A ) else: UpperCAmelCase : Any = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] UpperCAmelCase : str = self.get_head_mask(A , self.config.num_hidden_layers ) UpperCAmelCase : int = self.embeddings( input_ids=A , position_ids=A , token_type_ids=A , inputs_embeds=A ) UpperCAmelCase : List[str] = embedding_output if self.training: UpperCAmelCase : Union[str, Any] = [] for i in range(self.config.num_hidden_layers ): UpperCAmelCase : Any = self.encoder.adaptive_forward( A , current_layer=A , attention_mask=A , head_mask=A ) UpperCAmelCase : Optional[int] = self.pooler(A ) UpperCAmelCase : Union[str, Any] = output_layers[i](output_dropout(A ) ) res.append(A ) elif self.patience == 0: # Use all layers for inference UpperCAmelCase : Tuple = self.encoder( A , attention_mask=A , head_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) UpperCAmelCase : Optional[int] = self.pooler(encoder_outputs[0] ) UpperCAmelCase : Tuple = [output_layers[self.config.num_hidden_layers - 1](A )] else: UpperCAmelCase : Tuple = 0 UpperCAmelCase : Tuple = None UpperCAmelCase : str = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 UpperCAmelCase : List[Any] = self.encoder.adaptive_forward( A , current_layer=A , attention_mask=A , head_mask=A ) UpperCAmelCase : int = self.pooler(A ) UpperCAmelCase : Dict = output_layers[i](A ) if regression: UpperCAmelCase : Optional[int] = logits.detach() if patient_result is not None: UpperCAmelCase : Dict = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: UpperCAmelCase : Dict = 0 else: UpperCAmelCase : str = logits.detach().argmax(dim=1 ) if patient_result is not None: UpperCAmelCase : int = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(A ) ): patient_counter += 1 else: UpperCAmelCase : Tuple = 0 UpperCAmelCase : Optional[int] = logits if patient_counter == self.patience: break UpperCAmelCase : List[Any] = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( 'Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. ' , __magic_name__ , ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A ) -> int: super().__init__(A ) UpperCAmelCase : Optional[int] = config.num_labels UpperCAmelCase : Dict = BertModelWithPabee(A ) UpperCAmelCase : Union[str, Any] = nn.Dropout(config.hidden_dropout_prob ) UpperCAmelCase : Optional[Any] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(A ) def _lowercase( self , A=None , A=None , A=None , A=None , A=None , A=None , A=None , ) -> str: UpperCAmelCase : Any = self.bert( input_ids=A , attention_mask=A , token_type_ids=A , position_ids=A , head_mask=A , inputs_embeds=A , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) UpperCAmelCase : Dict = (logits[-1],) if labels is not None: UpperCAmelCase : Optional[Any] = None UpperCAmelCase : Optional[int] = 0 for ix, logits_item in enumerate(A ): if self.num_labels == 1: # We are doing regression UpperCAmelCase : Tuple = MSELoss() UpperCAmelCase : Optional[int] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: UpperCAmelCase : Tuple = CrossEntropyLoss() UpperCAmelCase : Tuple = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: UpperCAmelCase : Dict = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 UpperCAmelCase : int = (total_loss / total_weights,) + outputs return outputs
361
'''simple docstring''' a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowerCamelCase ( ) -> None: UpperCAmelCase : Optional[int] = input("""Enter message: """ ) UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ ) UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): UpperCAmelCase : List[str] = """encrypt""" UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase ) elif mode.lower().startswith("""d""" ): UpperCAmelCase : Tuple = """decrypt""" UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """encrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """decrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Tuple = key.upper() for symbol in message: UpperCAmelCase : Dict = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowercase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowercase ): UpperCAmelCase : Optional[int] = 0 else: translated.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": main()
338
0
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> Any: UpperCAmelCase : Optional[Any] = """""" for i in table: res += inp[i - 1] return res def __lowerCamelCase ( _lowercase ) -> Tuple: return data[1:] + data[0] def __lowerCamelCase ( _lowercase , _lowercase ) -> Any: UpperCAmelCase : List[str] = """""" for i in range(len(_lowercase ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def __lowerCamelCase ( _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Union[str, Any] = int("""0b""" + data[0] + data[-1] , 2 ) UpperCAmelCase : List[str] = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[str]: UpperCAmelCase : Dict = message[:4] UpperCAmelCase : List[str] = message[4:] UpperCAmelCase : Union[str, Any] = apply_table(_lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = xor(_lowercase , _lowercase ) UpperCAmelCase : List[str] = apply_sbox(_lowercase , temp[:4] ) # noqa: E741 UpperCAmelCase : Union[str, Any] = apply_sbox(_lowercase , temp[4:] ) UpperCAmelCase : Tuple = """0""" * (2 - len(_lowercase )) + l # noqa: E741 UpperCAmelCase : Optional[Any] = """0""" * (2 - len(_lowercase )) + r UpperCAmelCase : Union[str, Any] = apply_table(l + r , _lowercase ) UpperCAmelCase : Any = xor(_lowercase , _lowercase ) return temp + right if __name__ == "__main__": a = input("""Enter 10 bit key: """) a = input("""Enter 8 bit message: """) a = [6, 3, 7, 4, 8, 5, 1_0, 9] a = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] a = [2, 4, 3, 1] a = [2, 6, 3, 1, 4, 8, 5, 7] a = [4, 1, 3, 5, 7, 2, 8, 6] a = [4, 1, 2, 3, 2, 3, 4, 1] a = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] a = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation a = apply_table(key, paa_table) a = temp[:5] a = temp[5:] a = left_shift(left) a = left_shift(right) a = apply_table(left + right, pa_table) a = left_shift(left) a = left_shift(right) a = left_shift(left) a = left_shift(right) a = apply_table(left + right, pa_table) # encryption a = apply_table(message, IP) a = function(expansion, sa, sa, keya, temp) a = temp[4:] + temp[:4] a = function(expansion, sa, sa, keya, temp) a = apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption a = apply_table(CT, IP) a = function(expansion, sa, sa, keya, temp) a = temp[4:] + temp[:4] a = function(expansion, sa, sa, keya, temp) a = apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
362
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Optional[int] = split_dict._to_yaml_list() assert len(_lowercase ) == len(_lowercase ) UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(_lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCAmelCase : List[str] = None # the split name of split_dict takes over the name of the split info object UpperCAmelCase : int = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name="""my_dataset""" )] ) def __lowerCamelCase ( _lowercase ) -> List[str]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files UpperCAmelCase : Optional[Any] = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
338
0
from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : List[str] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } a : List[Any] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } a : List[Any] = { """facebook/blenderbot_small-90M""": 5_1_2, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = BlenderbotSmallTokenizer def __init__( self , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , A=True , **A , ) -> Union[str, Any]: super().__init__( ByteLevelBPETokenizer( vocab=A , merges=A , add_prefix_space=A , trim_offsets=A , ) , bos_token=A , eos_token=A , unk_token=A , **A , ) UpperCAmelCase : Optional[Any] = add_prefix_space def _lowercase( self , A , A=None ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
363
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor a : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , **A ) -> None: warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , A , ) super().__init__(*A , **A )
338
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a : List[str] = logging.get_logger(__name__) a : Dict = { """facebook/wav2vec2-base-960h""": """https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json""", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'wav2vec2' def __init__( self , A=32 , A=768 , A=12 , A=12 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=0.1 , A=0.0 , A=0.0 , A=0.1 , A=0.1 , A=0.0_2 , A=1e-5 , A="group" , A="gelu" , A=(512, 512, 512, 512, 512, 512, 512) , A=(5, 2, 2, 2, 2, 2, 2) , A=(10, 3, 3, 3, 3, 2, 2) , A=False , A=128 , A=16 , A=False , A=True , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=320 , A=2 , A=0.1 , A=100 , A=256 , A=256 , A=0.1 , A="sum" , A=False , A=False , A=256 , A=(512, 512, 512, 512, 1500) , A=(5, 3, 3, 1, 1) , A=(1, 2, 3, 1, 1) , A=512 , A=0 , A=1 , A=2 , A=False , A=3 , A=2 , A=3 , A=None , A=None , **A , ) -> str: super().__init__(**A , pad_token_id=A , bos_token_id=A , eos_token_id=A ) UpperCAmelCase : Dict = hidden_size UpperCAmelCase : str = feat_extract_norm UpperCAmelCase : Any = feat_extract_activation UpperCAmelCase : List[Any] = list(A ) UpperCAmelCase : str = list(A ) UpperCAmelCase : Optional[Any] = list(A ) UpperCAmelCase : Union[str, Any] = conv_bias UpperCAmelCase : List[Any] = num_conv_pos_embeddings UpperCAmelCase : str = num_conv_pos_embedding_groups UpperCAmelCase : Optional[Any] = len(self.conv_dim ) UpperCAmelCase : Any = num_hidden_layers UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : Optional[Any] = hidden_act UpperCAmelCase : Tuple = num_attention_heads UpperCAmelCase : Union[str, Any] = hidden_dropout UpperCAmelCase : Tuple = attention_dropout UpperCAmelCase : Union[str, Any] = activation_dropout UpperCAmelCase : Any = feat_proj_dropout UpperCAmelCase : Tuple = final_dropout UpperCAmelCase : Tuple = layerdrop UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Any = vocab_size UpperCAmelCase : Tuple = do_stable_layer_norm UpperCAmelCase : str = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : List[Any] = apply_spec_augment UpperCAmelCase : List[str] = mask_time_prob UpperCAmelCase : Any = mask_time_length UpperCAmelCase : List[Any] = mask_time_min_masks UpperCAmelCase : Optional[int] = mask_feature_prob UpperCAmelCase : Union[str, Any] = mask_feature_length UpperCAmelCase : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase : List[str] = num_codevectors_per_group UpperCAmelCase : List[str] = num_codevector_groups UpperCAmelCase : List[str] = contrastive_logits_temperature UpperCAmelCase : Optional[int] = feat_quantizer_dropout UpperCAmelCase : List[Any] = num_negatives UpperCAmelCase : Optional[int] = codevector_dim UpperCAmelCase : int = proj_codevector_dim UpperCAmelCase : Optional[Any] = diversity_loss_weight # ctc loss UpperCAmelCase : Tuple = ctc_loss_reduction UpperCAmelCase : str = ctc_zero_infinity # adapter UpperCAmelCase : int = add_adapter UpperCAmelCase : str = adapter_kernel_size UpperCAmelCase : Tuple = adapter_stride UpperCAmelCase : Dict = num_adapter_layers UpperCAmelCase : Tuple = output_hidden_size or hidden_size UpperCAmelCase : Optional[Any] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase : Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : List[str] = list(A ) UpperCAmelCase : Union[str, Any] = list(A ) UpperCAmelCase : int = list(A ) UpperCAmelCase : Any = xvector_output_dim @property def _lowercase( self ) -> Tuple: return functools.reduce(operator.mul , self.conv_stride , 1 )
364
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a : Union[str, Any] = logging.get_logger(__name__) a : Union[str, Any] = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'detr' lowercase = ['past_key_values'] lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(A , A ): UpperCAmelCase : Any = backbone_config.get("""model_type""" ) UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : List[Any] = config_class.from_dict(A ) # set timm attributes to None UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = None, None, None UpperCAmelCase : Dict = use_timm_backbone UpperCAmelCase : Any = backbone_config UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : int = num_queries UpperCAmelCase : List[str] = d_model UpperCAmelCase : Tuple = encoder_ffn_dim UpperCAmelCase : Optional[Any] = encoder_layers UpperCAmelCase : Any = encoder_attention_heads UpperCAmelCase : Optional[Any] = decoder_ffn_dim UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : str = dropout UpperCAmelCase : Tuple = attention_dropout UpperCAmelCase : Dict = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : List[Any] = init_std UpperCAmelCase : str = init_xavier_std UpperCAmelCase : List[Any] = encoder_layerdrop UpperCAmelCase : int = decoder_layerdrop UpperCAmelCase : List[Any] = encoder_layers UpperCAmelCase : Union[str, Any] = auxiliary_loss UpperCAmelCase : str = position_embedding_type UpperCAmelCase : Union[str, Any] = backbone UpperCAmelCase : List[str] = use_pretrained_backbone UpperCAmelCase : Optional[int] = dilation # Hungarian matcher UpperCAmelCase : Union[str, Any] = class_cost UpperCAmelCase : Optional[Any] = bbox_cost UpperCAmelCase : List[Any] = giou_cost # Loss coefficients UpperCAmelCase : int = mask_loss_coefficient UpperCAmelCase : Optional[int] = dice_loss_coefficient UpperCAmelCase : Dict = bbox_loss_coefficient UpperCAmelCase : Any = giou_loss_coefficient UpperCAmelCase : Any = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def _lowercase( self ) -> int: return self.encoder_attention_heads @property def _lowercase( self ) -> int: return self.d_model @classmethod def _lowercase( cls , A , **A ) -> Dict: return cls(backbone_config=A , **A ) def _lowercase( self ) -> Dict[str, any]: UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase : Any = self.backbone_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowercase( self ) -> float: return 1e-5 @property def _lowercase( self ) -> int: return 12
338
0
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration a = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] a = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] a = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) a = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) a = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def __lowerCamelCase ( _lowercase , _lowercase ) -> int: for tf_name, hf_name in patterns: UpperCAmelCase : Union[str, Any] = k.replace(_lowercase , _lowercase ) return k def __lowerCamelCase ( _lowercase , _lowercase ) -> BigBirdPegasusForConditionalGeneration: UpperCAmelCase : Any = BigBirdPegasusConfig(**_lowercase ) UpperCAmelCase : Any = BigBirdPegasusForConditionalGeneration(_lowercase ) UpperCAmelCase : Optional[Any] = torch_model.state_dict() UpperCAmelCase : Optional[int] = {} # separating decoder weights UpperCAmelCase : Union[str, Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("""pegasus/decoder""" )} UpperCAmelCase : List[Any] = {k: tf_weights[k] for k in tf_weights if not k.startswith("""pegasus/decoder""" )} for k, v in tqdm(decoder_weights.items() , """tf -> hf conversion""" ): UpperCAmelCase : str = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCAmelCase : int = DECODER_PATTERNS UpperCAmelCase : Union[str, Any] = rename_state_dict_key(_lowercase , _lowercase ) if new_k not in state_dict: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): UpperCAmelCase : int = v.T UpperCAmelCase : List[str] = torch.from_numpy(_lowercase ) assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items() , """tf -> hf conversion""" ): UpperCAmelCase : str = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCAmelCase : int = REMAINING_PATTERNS UpperCAmelCase : Dict = rename_state_dict_key(_lowercase , _lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): UpperCAmelCase : List[Any] = v.T UpperCAmelCase : Dict = torch.from_numpy(_lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' UpperCAmelCase : Any = mapping["""model.embed_positions.weight"""] UpperCAmelCase : List[str] = mapping.pop("""model.embed_positions.weight""" ) UpperCAmelCase : Optional[int] = torch_model.load_state_dict(_lowercase , strict=_lowercase ) UpperCAmelCase : Tuple = [ k for k in missing if k not in [ """final_logits_bias""", """model.encoder.embed_tokens.weight""", """model.decoder.embed_tokens.weight""", """lm_head.weight""", ] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def __lowerCamelCase ( _lowercase ) -> Dict: UpperCAmelCase : Dict = tf.train.list_variables(_lowercase ) UpperCAmelCase : List[str] = {} UpperCAmelCase : List[Any] = ["""global_step"""] for name, shape in tqdm(_lowercase , desc="""converting tf checkpoint to dict""" ): UpperCAmelCase : Dict = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCAmelCase : Dict = tf.train.load_variable(_lowercase , _lowercase ) UpperCAmelCase : str = array return tf_weights def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Dict = get_tf_weights_as_numpy(_lowercase ) UpperCAmelCase : int = convert_bigbird_pegasus(_lowercase , _lowercase ) torch_model.save_pretrained(_lowercase ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") a = parser.parse_args() a = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
365
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[str] = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class UpperCamelCase_ ( unittest.TestCase ): def __init__( self , A , A=7 , A=3 , A=30 , A=400 , A=True , A=None , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , A=True , A=1 / 255 , A=True , ) -> Optional[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p UpperCAmelCase : str = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} UpperCAmelCase : str = parent UpperCAmelCase : List[str] = batch_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : Union[str, Any] = min_resolution UpperCAmelCase : str = max_resolution UpperCAmelCase : Dict = do_resize UpperCAmelCase : List[Any] = size UpperCAmelCase : List[str] = do_normalize UpperCAmelCase : str = image_mean UpperCAmelCase : Optional[Any] = image_std UpperCAmelCase : Dict = do_rescale UpperCAmelCase : Optional[Any] = rescale_factor UpperCAmelCase : Union[str, Any] = do_pad def _lowercase( self ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase( self , A , A=False ) -> Any: if not batched: UpperCAmelCase : List[str] = image_inputs[0] if isinstance(A , Image.Image ): UpperCAmelCase : Union[str, Any] = image.size else: UpperCAmelCase : Tuple = image.shape[1], image.shape[2] if w < h: UpperCAmelCase : Optional[Any] = int(self.size["""shortest_edge"""] * h / w ) UpperCAmelCase : Any = self.size["""shortest_edge"""] elif w > h: UpperCAmelCase : Dict = self.size["""shortest_edge"""] UpperCAmelCase : Union[str, Any] = int(self.size["""shortest_edge"""] * w / h ) else: UpperCAmelCase : Optional[int] = self.size["""shortest_edge"""] UpperCAmelCase : Tuple = self.size["""shortest_edge"""] else: UpperCAmelCase : Union[str, Any] = [] for image in image_inputs: UpperCAmelCase : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase : List[Any] = max(A , key=lambda A : item[0] )[0] UpperCAmelCase : Tuple = max(A , key=lambda A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = ConditionalDetrImageProcessor if is_vision_available() else None def _lowercase( self ) -> Dict: UpperCAmelCase : Optional[int] = ConditionalDetrImageProcessingTester(self ) @property def _lowercase( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def _lowercase( self ) -> List[Any]: UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , """image_mean""" ) ) self.assertTrue(hasattr(A , """image_std""" ) ) self.assertTrue(hasattr(A , """do_normalize""" ) ) self.assertTrue(hasattr(A , """do_resize""" ) ) self.assertTrue(hasattr(A , """size""" ) ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , A ) UpperCAmelCase : int = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , A ) def _lowercase( self ) -> str: pass def _lowercase( self ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input UpperCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCAmelCase : str = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase : Any = self.image_processor_tester.get_expected_values(A , batched=A ) UpperCAmelCase : List[Any] = image_processing(A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase( self ) -> Optional[Any]: # Initialize image_processing UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input UpperCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCAmelCase : List[Any] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase : Dict = image_processing(A , return_tensors="""pt""" ).pixel_values UpperCAmelCase : Tuple = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase( self ) -> Optional[int]: # Initialize image_processing UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input UpperCAmelCase : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCAmelCase : Tuple = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase : Tuple = image_processing(A , return_tensors="""pt""" ).pixel_values UpperCAmelCase : Dict = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase( self ) -> List[Any]: # prepare image and target UpperCAmelCase : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: UpperCAmelCase : str = json.loads(f.read() ) UpperCAmelCase : Optional[int] = {"""image_id""": 39769, """annotations""": target} # encode them UpperCAmelCase : Optional[int] = ConditionalDetrImageProcessor.from_pretrained("""microsoft/conditional-detr-resnet-50""" ) UpperCAmelCase : Tuple = image_processing(images=A , annotations=A , return_tensors="""pt""" ) # verify pixel values UpperCAmelCase : Dict = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , A ) UpperCAmelCase : Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , A , atol=1e-4 ) ) # verify area UpperCAmelCase : List[str] = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , A ) ) # verify boxes UpperCAmelCase : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , A ) UpperCAmelCase : Any = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , A , atol=1e-3 ) ) # verify image_id UpperCAmelCase : Union[str, Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , A ) ) # verify is_crowd UpperCAmelCase : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , A ) ) # verify class_labels UpperCAmelCase : Tuple = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , A ) ) # verify orig_size UpperCAmelCase : Any = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , A ) ) # verify size UpperCAmelCase : Dict = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , A ) ) @slow def _lowercase( self ) -> Optional[Any]: # prepare image, target and masks_path UpperCAmelCase : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: UpperCAmelCase : str = json.loads(f.read() ) UpperCAmelCase : Tuple = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} UpperCAmelCase : Any = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them UpperCAmelCase : str = ConditionalDetrImageProcessor(format="""coco_panoptic""" ) UpperCAmelCase : Any = image_processing(images=A , annotations=A , masks_path=A , return_tensors="""pt""" ) # verify pixel values UpperCAmelCase : List[str] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , A ) UpperCAmelCase : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , A , atol=1e-4 ) ) # verify area UpperCAmelCase : Dict = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , A ) ) # verify boxes UpperCAmelCase : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , A ) UpperCAmelCase : List[str] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , A , atol=1e-3 ) ) # verify image_id UpperCAmelCase : Dict = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , A ) ) # verify is_crowd UpperCAmelCase : int = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , A ) ) # verify class_labels UpperCAmelCase : int = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , A ) ) # verify masks UpperCAmelCase : Optional[Any] = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , A ) # verify orig_size UpperCAmelCase : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , A ) ) # verify size UpperCAmelCase : Union[str, Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , A ) )
366
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" ) if "model" in sd.keys(): UpperCAmelCase : Any = torch.load(_lowercase , map_location="""cpu""" )["""model"""] # pop unnecessary weights UpperCAmelCase : Union[str, Any] = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(_lowercase ) UpperCAmelCase : Tuple = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase : List[Any] = sd.pop(_lowercase ) UpperCAmelCase : Tuple = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase : List[str] = sd[key] # We split QKV in separate Q,K,V UpperCAmelCase : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" ) UpperCAmelCase : Tuple = key.replace(""".qkv_proj.""" , """.k_proj.""" ) UpperCAmelCase : int = key.replace(""".qkv_proj.""" , """.v_proj.""" ) UpperCAmelCase : Dict = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = torch.split(_lowercase , depth // 3 , dim=0 ) UpperCAmelCase : Tuple = q UpperCAmelCase : Tuple = k UpperCAmelCase : Any = v del sd[key] return sd @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Optional[Any]: UpperCAmelCase : Tuple = load_checkpoint(_lowercase ) if config is not None: UpperCAmelCase : Dict = OPTConfig.from_pretrained(_lowercase ) else: UpperCAmelCase : int = OPTConfig() UpperCAmelCase : List[Any] = OPTModel(_lowercase ).half().eval() model.load_state_dict(_lowercase ) # Check results Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") a : Union[str, Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
338
0
'''simple docstring''' def __lowerCamelCase ( _lowercase = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int: try: UpperCAmelCase : List[str] = int(_lowercase ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) UpperCAmelCase : Dict = 2 UpperCAmelCase : Dict = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 UpperCAmelCase : int = i while n % i == 0: UpperCAmelCase : Optional[int] = n // i i += 1 return int(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
367
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : str = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'levit' def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int: super().__init__(**A ) UpperCAmelCase : Any = image_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : Tuple = kernel_size UpperCAmelCase : Optional[int] = stride UpperCAmelCase : Dict = padding UpperCAmelCase : List[Any] = hidden_sizes UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = depths UpperCAmelCase : Any = key_dim UpperCAmelCase : str = drop_path_rate UpperCAmelCase : List[Any] = patch_size UpperCAmelCase : str = attention_ratio UpperCAmelCase : Optional[Any] = mlp_ratio UpperCAmelCase : Dict = initializer_range UpperCAmelCase : int = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase( self ) -> float: return 1e-4
338
0
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase = False ) -> bool: if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 1_0 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis UpperCAmelCase : Tuple = [ 2_0_4_7, 1_3_7_3_6_5_3, 2_5_3_2_6_0_0_1, 3_2_1_5_0_3_1_7_5_1, 2_1_5_2_3_0_2_8_9_8_7_4_7, 3_4_7_4_7_4_9_6_6_0_3_8_3, 3_4_1_5_5_0_0_7_1_7_2_8_3_2_1, 1, 3_8_2_5_1_2_3_0_5_6_5_4_6_4_1_3_0_5_1, 1, 1, 3_1_8_6_6_5_8_5_7_8_3_4_0_3_1_1_5_1_1_6_7_4_6_1, 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1, ] UpperCAmelCase : str = [2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1] for idx, _p in enumerate(_lowercase , 1 ): if n < _p: # then we have our last prime to check UpperCAmelCase : int = primes[:idx] break UpperCAmelCase : Any = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: UpperCAmelCase : str = False for r in range(_lowercase ): UpperCAmelCase : Any = pow(_lowercase , d * 2**r , _lowercase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): UpperCAmelCase : Any = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __lowerCamelCase ( ) -> None: assert not miller_rabin(5_6_1 ) assert miller_rabin(5_6_3 ) # 2047 assert not miller_rabin(8_3_8_2_0_1 ) assert miller_rabin(8_3_8_2_0_7 ) # 1_373_653 assert not miller_rabin(1_7_3_1_6_0_0_1 ) assert miller_rabin(1_7_3_1_6_0_1_7 ) # 25_326_001 assert not miller_rabin(3_0_7_8_3_8_6_6_4_1 ) assert miller_rabin(3_0_7_8_3_8_6_6_5_3 ) # 3_215_031_751 assert not miller_rabin(1_7_1_3_0_4_5_5_7_4_8_0_1 ) assert miller_rabin(1_7_1_3_0_4_5_5_7_4_8_1_9 ) # 2_152_302_898_747 assert not miller_rabin(2_7_7_9_7_9_9_7_2_8_3_0_7 ) assert miller_rabin(2_7_7_9_7_9_9_7_2_8_3_2_7 ) # 3_474_749_660_383 assert not miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_4_4_1 ) assert miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_5_2_7 ) # 341_550_071_728_321 assert not miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_5_1 ) assert miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_9_1 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_8_6_7 ) assert miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_9_5_1 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_3_3 ) assert miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_5_9 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
368
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) a : List[str] = """Hello, World!""" a : List[Any] = """en_XX""" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Dict = Path("""data_bin""" ) UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(_lowercase ) UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder UpperCAmelCase : Tuple = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , _lowercase ) UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight UpperCAmelCase : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase : List[str] = model.roberta.encoder.layer[i] UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i] # self attention UpperCAmelCase : Optional[Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias # intermediate UpperCAmelCase : Tuple = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) UpperCAmelCase : List[str] = xmod_layer.fca.weight UpperCAmelCase : str = xmod_layer.fca.bias # output UpperCAmelCase : Any = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) UpperCAmelCase : Dict = xmod_layer.fca.weight UpperCAmelCase : Dict = xmod_layer.fca.bias UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code] UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code] UpperCAmelCase : Any = from_adapter.fca.weight UpperCAmelCase : int = from_adapter.fca.bias UpperCAmelCase : Dict = from_adapter.fca.weight UpperCAmelCase : Dict = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias UpperCAmelCase : str = xmod.model.encoder.lm_head.weight UpperCAmelCase : str = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) UpperCAmelCase : Optional[int] = model(_lowercase )[0] if classification_head: UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) ) else: UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) a : List[str] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
338
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer a : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name a : int = """ Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") >>> repo = \"openai/shap-e-img2img\" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\" >>> image = load_image(image_url).convert(\"RGB\") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\") ``` """ @dataclass class UpperCamelCase_ ( __magic_name__ ): lowercase = 42 class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A , A , ) -> Union[str, Any]: super().__init__() self.register_modules( prior=A , image_encoder=A , image_processor=A , scheduler=A , renderer=A , ) def _lowercase( self , A , A , A , A , A , A ) -> Any: if latents is None: UpperCAmelCase : Optional[Any] = randn_tensor(A , generator=A , device=A , dtype=A ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) UpperCAmelCase : Union[str, Any] = latents.to(A ) UpperCAmelCase : Any = latents * scheduler.init_noise_sigma return latents def _lowercase( self , A=0 ) -> Optional[int]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) UpperCAmelCase : Union[str, Any] = torch.device(f'''cuda:{gpu_id}''' ) UpperCAmelCase : Dict = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A , A ) @property def _lowercase( self ) -> str: if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(A , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def _lowercase( self , A , A , A , A , ) -> Optional[Any]: if isinstance(A , A ) and isinstance(image[0] , torch.Tensor ): UpperCAmelCase : Union[str, Any] = torch.cat(A , axis=0 ) if image[0].ndim == 4 else torch.stack(A , axis=0 ) if not isinstance(A , torch.Tensor ): UpperCAmelCase : Optional[Any] = self.image_processor(A , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) UpperCAmelCase : List[Any] = image.to(dtype=self.image_encoder.dtype , device=A ) UpperCAmelCase : Optional[int] = self.image_encoder(A )["""last_hidden_state"""] UpperCAmelCase : Tuple = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 UpperCAmelCase : Tuple = image_embeds.repeat_interleave(A , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase : Optional[int] = torch.zeros_like(A ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase : Any = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(A ) def __call__( self , A , A = 1 , A = 25 , A = None , A = None , A = 4.0 , A = 64 , A = "pil" , A = True , ) -> str: if isinstance(A , PIL.Image.Image ): UpperCAmelCase : Union[str, Any] = 1 elif isinstance(A , torch.Tensor ): UpperCAmelCase : Any = image.shape[0] elif isinstance(A , A ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): UpperCAmelCase : Any = len(A ) else: raise ValueError( f'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(A )}''' ) UpperCAmelCase : Tuple = self._execution_device UpperCAmelCase : str = batch_size * num_images_per_prompt UpperCAmelCase : Optional[int] = guidance_scale > 1.0 UpperCAmelCase : int = self._encode_image(A , A , A , A ) # prior self.scheduler.set_timesteps(A , device=A ) UpperCAmelCase : Union[str, Any] = self.scheduler.timesteps UpperCAmelCase : Optional[Any] = self.prior.config.num_embeddings UpperCAmelCase : int = self.prior.config.embedding_dim UpperCAmelCase : Optional[Any] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , A , A , A , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim UpperCAmelCase : Dict = latents.reshape(latents.shape[0] , A , A ) for i, t in enumerate(self.progress_bar(A ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase : str = self.scheduler.scale_model_input(A , A ) UpperCAmelCase : int = self.prior( A , timestep=A , proj_embedding=A , ).predicted_image_embedding # remove the variance UpperCAmelCase : Optional[Any] = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: UpperCAmelCase : Dict = noise_pred.chunk(2 ) UpperCAmelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) UpperCAmelCase : Tuple = self.scheduler.step( A , timestep=A , sample=A , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=A ) UpperCAmelCase : Union[str, Any] = [] for i, latent in enumerate(A ): print() UpperCAmelCase : List[str] = self.renderer.decode( latent[None, :] , A , size=A , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(A ) UpperCAmelCase : Any = torch.stack(A ) if output_type not in ["np", "pil"]: raise ValueError(f'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) UpperCAmelCase : Dict = images.cpu().numpy() if output_type == "pil": UpperCAmelCase : Optional[int] = [self.numpy_to_pil(A ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=A )
369
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __lowerCamelCase ( _lowercase ) -> List[Any]: for i in range(0 , _lowercase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __lowerCamelCase ( _lowercase ) -> Dict: for i in range(_lowercase , 0 , -1 ): for _ in range(_lowercase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __lowerCamelCase ( _lowercase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowercase ) # upper half reverse_floyd(_lowercase ) # lower half if __name__ == "__main__": print(R"""| /\ | |- | |- |--| |\ /| |-""") print(R"""|/ \| |- |_ |_ |__| | \/ | |_""") a : List[Any] = 1 while K: a : int = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) a : Tuple = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
338
0
import pprint import requests a : int = """https://zenquotes.io/api""" def __lowerCamelCase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def __lowerCamelCase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": a : int = random_quotes() pprint.pprint(response)
370
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever a : List[str] = logging.getLogger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A=None ) -> Union[str, Any]: super().__init__( A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , ) UpperCAmelCase : Optional[Any] = None def _lowercase( self , A ) -> List[Any]: logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually UpperCAmelCase : Tuple = self._infer_socket_ifname() # avoid clash with the NCCL port UpperCAmelCase : str = str(distributed_port + 1 ) UpperCAmelCase : Any = dist.new_group(ranks=A , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _lowercase( self ) -> Dict: return dist.get_rank(group=self.process_group ) == 0 def _lowercase( self , A , A , A=torch.floataa ) -> str: UpperCAmelCase : List[Any] = torch.empty(A , dtype=A ) dist.scatter(A , src=0 , scatter_list=A , group=self.process_group ) return target_tensor def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names UpperCAmelCase : Optional[int] = next((addr for addr in addrs if addr.startswith("""e""" )) , A ) return ifname def _lowercase( self , A , A ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): UpperCAmelCase , UpperCAmelCase : str = self._main_retrieve(A , A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A ) # distributed training UpperCAmelCase : int = dist.get_world_size(group=self.process_group ) # gather logic UpperCAmelCase : int = None if self._is_main(): UpperCAmelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )] dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group ) # scatter logic UpperCAmelCase : List[Any] = question_hidden_states.shape[0] UpperCAmelCase : Tuple = [] UpperCAmelCase : Any = [] if self._is_main(): assert len(A ) == world_size UpperCAmelCase , UpperCAmelCase : Optional[int] = self._main_retrieve(torch.cat(A ).numpy() , A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = torch.tensor(A ), torch.tensor(A ) UpperCAmelCase : List[str] = self._chunk_tensor(A , A ) UpperCAmelCase : Union[str, Any] = self._chunk_tensor(A , A ) UpperCAmelCase : Tuple = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa ) UpperCAmelCase : Optional[Any] = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
338
0
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[str]: # Load configuration defined in the metadata file with open(_lowercase ) as metadata_file: UpperCAmelCase : Any = json.load(_lowercase ) UpperCAmelCase : Any = LukeConfig(use_entity_aware_attention=_lowercase , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" )["""module"""] # Load the entity vocab file UpperCAmelCase : Any = load_original_entity_vocab(_lowercase ) # add an entry for [MASK2] UpperCAmelCase : Any = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 UpperCAmelCase : Optional[int] = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks UpperCAmelCase : Dict = AddedToken("""<ent>""" , lstrip=_lowercase , rstrip=_lowercase ) UpperCAmelCase : int = AddedToken("""<ent2>""" , lstrip=_lowercase , rstrip=_lowercase ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(_lowercase ) with open(os.path.join(_lowercase , """tokenizer_config.json""" ) , """r""" ) as f: UpperCAmelCase : Optional[Any] = json.load(_lowercase ) UpperCAmelCase : int = """MLukeTokenizer""" with open(os.path.join(_lowercase , """tokenizer_config.json""" ) , """w""" ) as f: json.dump(_lowercase , _lowercase ) with open(os.path.join(_lowercase , MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(_lowercase , _lowercase ) UpperCAmelCase : Optional[Any] = MLukeTokenizer.from_pretrained(_lowercase ) # Initialize the embeddings of the special tokens UpperCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(["""@"""] )[0] UpperCAmelCase : str = tokenizer.convert_tokens_to_ids(["""#"""] )[0] UpperCAmelCase : List[Any] = state_dict["""embeddings.word_embeddings.weight"""] UpperCAmelCase : Optional[Any] = word_emb[ent_init_index].unsqueeze(0 ) UpperCAmelCase : List[str] = word_emb[enta_init_index].unsqueeze(0 ) UpperCAmelCase : List[str] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: UpperCAmelCase : Any = state_dict[bias_name] UpperCAmelCase : Dict = decoder_bias[ent_init_index].unsqueeze(0 ) UpperCAmelCase : Optional[int] = decoder_bias[enta_init_index].unsqueeze(0 ) UpperCAmelCase : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: UpperCAmelCase : int = F'''encoder.layer.{layer_index}.attention.self.''' UpperCAmelCase : Union[str, Any] = state_dict[prefix + matrix_name] UpperCAmelCase : Dict = state_dict[prefix + matrix_name] UpperCAmelCase : List[str] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks UpperCAmelCase : int = state_dict["""entity_embeddings.entity_embeddings.weight"""] UpperCAmelCase : str = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) UpperCAmelCase : List[str] = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' UpperCAmelCase : Tuple = state_dict["""entity_predictions.bias"""] UpperCAmelCase : List[str] = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) UpperCAmelCase : Dict = torch.cat([entity_prediction_bias, entity_mask_bias] ) UpperCAmelCase : Any = LukeForMaskedLM(config=_lowercase ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) UpperCAmelCase : Any = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): UpperCAmelCase : int = state_dict[key] else: UpperCAmelCase : List[str] = state_dict[key] UpperCAmelCase : int = model.load_state_dict(_lowercase , strict=_lowercase ) if set(_lowercase ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(_lowercase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs UpperCAmelCase : List[Any] = MLukeTokenizer.from_pretrained(_lowercase , task="""entity_classification""" ) UpperCAmelCase : Dict = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" UpperCAmelCase : Dict = (0, 9) UpperCAmelCase : Union[str, Any] = tokenizer(_lowercase , entity_spans=[span] , return_tensors="""pt""" ) UpperCAmelCase : Dict = model(**_lowercase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base UpperCAmelCase : str = torch.Size((1, 3_3, 7_6_8) ) UpperCAmelCase : str = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _lowercase , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base UpperCAmelCase : Tuple = torch.Size((1, 1, 7_6_8) ) UpperCAmelCase : int = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _lowercase , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction UpperCAmelCase : Dict = MLukeTokenizer.from_pretrained(_lowercase ) UpperCAmelCase : Union[str, Any] = """Tokyo is the capital of <mask>.""" UpperCAmelCase : List[str] = (2_4, 3_0) UpperCAmelCase : Tuple = tokenizer(_lowercase , entity_spans=[span] , return_tensors="""pt""" ) UpperCAmelCase : str = model(**_lowercase ) UpperCAmelCase : Union[str, Any] = encoding["""input_ids"""][0].tolist() UpperCAmelCase : Union[str, Any] = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) UpperCAmelCase : Optional[Any] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_lowercase ) UpperCAmelCase : int = outputs.entity_logits[0][0].argmax().item() UpperCAmelCase : Dict = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(_lowercase ) ) model.save_pretrained(_lowercase ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: UpperCAmelCase : Optional[Any] = ["""[MASK]""", """[PAD]""", """[UNK]"""] UpperCAmelCase : str = [json.loads(_lowercase ) for line in open(_lowercase )] UpperCAmelCase : str = {} for entry in data: UpperCAmelCase : Dict = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: UpperCAmelCase : Optional[int] = entity_id break UpperCAmelCase : Optional[int] = F'''{language}:{entity_name}''' UpperCAmelCase : Optional[int] = entity_id return new_mapping if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) a : Optional[Any] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
371
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : List[str] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } a : List[Any] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } a : List[Any] = { """facebook/blenderbot_small-90M""": 5_1_2, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = BlenderbotSmallTokenizer def __init__( self , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , A=True , **A , ) -> Union[str, Any]: super().__init__( ByteLevelBPETokenizer( vocab=A , merges=A , add_prefix_space=A , trim_offsets=A , ) , bos_token=A , eos_token=A , unk_token=A , **A , ) UpperCAmelCase : Optional[Any] = add_prefix_space def _lowercase( self , A , A=None ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
338
0
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Optional[int] = split_dict._to_yaml_list() assert len(_lowercase ) == len(_lowercase ) UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(_lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCAmelCase : List[str] = None # the split name of split_dict takes over the name of the split info object UpperCAmelCase : int = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name="""my_dataset""" )] ) def __lowerCamelCase ( _lowercase ) -> List[str]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files UpperCAmelCase : Optional[Any] = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
350
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A = None , A = None , A = False , **A , ) -> Tuple: super().__init__(features=A , cache_dir=A , keep_in_memory=A , **A ) UpperCAmelCase : Any = Sql( cache_dir=A , features=A , sql=A , con=A , **A , ) def _lowercase( self ) -> Dict: UpperCAmelCase : Any = None UpperCAmelCase : Any = None UpperCAmelCase : int = None UpperCAmelCase : int = None self.builder.download_and_prepare( download_config=A , download_mode=A , verification_mode=A , base_path=A , ) # Build dataset for splits UpperCAmelCase : str = self.builder.as_dataset( split="""train""" , verification_mode=A , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase_ : def __init__( self , A , A , A , A = None , A = None , **A , ) -> str: if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) UpperCAmelCase : Dict = dataset UpperCAmelCase : List[Any] = name UpperCAmelCase : Any = con UpperCAmelCase : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase : Optional[Any] = num_proc UpperCAmelCase : str = to_sql_kwargs def _lowercase( self ) -> int: UpperCAmelCase : Any = self.to_sql_kwargs.pop("""sql""" , A ) UpperCAmelCase : str = self.to_sql_kwargs.pop("""con""" , A ) UpperCAmelCase : Union[str, Any] = self.to_sql_kwargs.pop("""index""" , A ) UpperCAmelCase : str = self._write(index=A , **self.to_sql_kwargs ) return written def _lowercase( self , A ) -> Any: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = args UpperCAmelCase : Union[str, Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs UpperCAmelCase : int = query_table( table=self.dataset.data , key=slice(A , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCAmelCase : Any = batch.to_pandas() UpperCAmelCase : List[Any] = df.to_sql(self.name , self.con , index=A , **A ) return num_rows or len(A ) def _lowercase( self , A , **A ) -> int: UpperCAmelCase : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: UpperCAmelCase , UpperCAmelCase : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , A , A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
338
0
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_lowercase , _lowercase ): raise TypeError("""Input value must be a 'int' type""" ) return bin(_lowercase ).count("""1""" ) if __name__ == "__main__": import doctest doctest.testmod()
351
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCamelCase_ : lowercase = MBartConfig lowercase = {} lowercase = 'gelu' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : str = is_training UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Optional[Any] = eos_token_id UpperCAmelCase : List[str] = pad_token_id UpperCAmelCase : List[Any] = bos_token_id def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A ) return config, inputs_dict def _lowercase( self , A , A ) -> List[str]: UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder() UpperCAmelCase : int = inputs_dict["""input_ids"""] UpperCAmelCase : str = input_ids[:1, :] UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase : List[str] = inputs_dict["""head_mask"""] UpperCAmelCase : List[Any] = 1 # first forward pass UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = outputs.to_tuple() UpperCAmelCase : int = past_key_values[1] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]: if attention_mask is None: UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False def _lowercase( self , A , A , A , A , A ) -> int: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : int = TFMBartModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A ) def _lowercase( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase( self ) -> Dict: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_sentencepiece @require_tokenizers @require_tf class UpperCamelCase_ ( unittest.TestCase ): lowercase = [ ' UN Chief Says There Is No Military Solution in Syria', ] lowercase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] lowercase = 'facebook/mbart-large-en-ro' @cached_property def _lowercase( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowercase( self , **A ) -> Any: UpperCAmelCase : Optional[int] = self.translate_src_text(**A ) self.assertListEqual(self.expected_text , A ) def _lowercase( self , **A ) -> Optional[Any]: UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" ) UpperCAmelCase : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A ) return generated_words @slow def _lowercase( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
338
0
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , A=None , A=None , **A ) -> Optional[Any]: super().__init__(*A , **A ) UpperCAmelCase : List[Any] = eval_examples UpperCAmelCase : Optional[Any] = post_process_function def _lowercase( self , A=None , A=None , A=None , A = "eval" ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = self.eval_dataset if eval_dataset is None else eval_dataset UpperCAmelCase : Dict = self.get_eval_dataloader(A ) UpperCAmelCase : List[str] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase : List[Any] = self.compute_metrics UpperCAmelCase : List[Any] = None UpperCAmelCase : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase : List[str] = time.time() try: UpperCAmelCase : Any = eval_loop( A , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A , metric_key_prefix=A , ) finally: UpperCAmelCase : List[str] = compute_metrics UpperCAmelCase : Optional[Any] = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( A , A , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCAmelCase : Dict = self.post_process_function(A , A , output.predictions ) UpperCAmelCase : Any = self.compute_metrics(A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): UpperCAmelCase : Tuple = metrics.pop(A ) metrics.update(output.metrics ) else: UpperCAmelCase : List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(A ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCAmelCase : Dict = self.callback_handler.on_evaluate(self.args , self.state , self.control , A ) return metrics def _lowercase( self , A , A , A=None , A = "test" ) -> Union[str, Any]: UpperCAmelCase : List[Any] = self.get_test_dataloader(A ) # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase : Union[str, Any] = self.compute_metrics UpperCAmelCase : int = None UpperCAmelCase : int = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase : List[str] = time.time() try: UpperCAmelCase : Tuple = eval_loop( A , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A , metric_key_prefix=A , ) finally: UpperCAmelCase : List[str] = compute_metrics UpperCAmelCase : Union[str, Any] = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( A , A , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCAmelCase : List[Any] = self.post_process_function(A , A , output.predictions , """predict""" ) UpperCAmelCase : str = self.compute_metrics(A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): UpperCAmelCase : Tuple = metrics.pop(A ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=A )
352
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: UpperCAmelCase : Tuple = len(_lowercase ) + 1 UpperCAmelCase : List[Any] = len(_lowercase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase : str = [[0 for i in range(_lowercase )] for j in range(_lowercase )] # since string of zero length match pattern of zero length UpperCAmelCase : int = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowercase ): UpperCAmelCase : str = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowercase ): UpperCAmelCase : Optional[Any] = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowercase ): for j in range(1 , _lowercase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase : Union[str, Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase : List[Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase : Optional[int] = dp[i - 1][j] else: UpperCAmelCase : Any = 0 else: UpperCAmelCase : str = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") a : List[str] = """aab""" a : Optional[int] = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
338
0
'''simple docstring''' import math def __lowerCamelCase ( _lowercase ) -> list: UpperCAmelCase : List[str] = [True] * n UpperCAmelCase : Tuple = False UpperCAmelCase : List[str] = False UpperCAmelCase : List[str] = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): UpperCAmelCase : Dict = i * 2 while index < n: UpperCAmelCase : Tuple = False UpperCAmelCase : Dict = index + i UpperCAmelCase : Union[str, Any] = [2] for i in range(3 , _lowercase , 2 ): if is_prime[i]: primes.append(_lowercase ) return primes def __lowerCamelCase ( _lowercase = 9_9_9_9_6_6_6_6_3_3_3_3 ) -> int: UpperCAmelCase : Dict = math.floor(math.sqrt(_lowercase ) ) + 1_0_0 UpperCAmelCase : List[str] = prime_sieve(_lowercase ) UpperCAmelCase : Dict = 0 UpperCAmelCase : List[str] = 0 UpperCAmelCase : str = primes[prime_index] while (last_prime**2) <= limit: UpperCAmelCase : Any = primes[prime_index + 1] UpperCAmelCase : Any = last_prime**2 UpperCAmelCase : List[Any] = next_prime**2 # Get numbers divisible by lps(current) UpperCAmelCase : Optional[Any] = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) UpperCAmelCase : Optional[Any] = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps UpperCAmelCase : Optional[int] = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair UpperCAmelCase : List[str] = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
353
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : List[str] = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int: UpperCAmelCase : int = 1 UpperCAmelCase : str = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase : Tuple = pre_numerator UpperCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase : Union[str, Any] = cur_numerator UpperCAmelCase : Optional[int] = e_cont * pre_numerator + temp return sum_digits(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
338
0
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = IFInpaintingSuperResolutionPipeline lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) lowercase = PipelineTesterMixin.required_optional_params - {'latents'} def _lowercase( self ) -> List[str]: return self._get_superresolution_dummy_components() def _lowercase( self , A , A=0 ) -> Tuple: if str(A ).startswith("""mps""" ): UpperCAmelCase : int = torch.manual_seed(A ) else: UpperCAmelCase : Optional[Any] = torch.Generator(device=A ).manual_seed(A ) UpperCAmelCase : int = floats_tensor((1, 3, 16, 16) , rng=random.Random(A ) ).to(A ) UpperCAmelCase : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) UpperCAmelCase : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) UpperCAmelCase : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _lowercase( self ) -> Optional[Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _lowercase( self ) -> Tuple: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _lowercase( self ) -> Dict: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _lowercase( self ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _lowercase( self ) -> Tuple: self._test_save_load_local() def _lowercase( self ) -> int: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
354
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=0.0_1 , A=1000 ) -> List[str]: UpperCAmelCase : List[Any] = p_stop UpperCAmelCase : Optional[int] = max_length def __iter__( self ) -> Union[str, Any]: UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = False while not stop and count < self.max_length: yield count count += 1 UpperCAmelCase : Any = random.random() < self.p_stop class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A , A=False , A=True ) -> Union[str, Any]: UpperCAmelCase : List[str] = [ BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A ) for i in range(2 ) ] UpperCAmelCase : List[str] = [list(A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] ) self.assertListEqual(A , A ) def _lowercase( self ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is very small. UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [[], []] self.check_batch_sampler_shards(A , A ) def _lowercase( self ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A ) def _lowercase( self ) -> Any: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : str = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [[], []] self.check_batch_sampler_shards(A , A , even_batches=A ) def _lowercase( self ) -> List[Any]: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCAmelCase : List[str] = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _lowercase( self , A , A , A , A=False , A=2 , A=False ) -> Tuple: random.seed(A ) UpperCAmelCase : Dict = list(A ) UpperCAmelCase : Any = [ IterableDatasetShard( A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , ) for i in range(A ) ] UpperCAmelCase : Dict = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(A ) iterable_dataset_lists.append(list(A ) ) UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCAmelCase : List[Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(A ) , len(A ) ) self.assertTrue(len(A ) % shard_batch_size == 0 ) UpperCAmelCase : List[Any] = [] for idx in range(0 , len(A ) , A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(A ) < len(A ): reference += reference self.assertListEqual(A , reference[: len(A )] ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = 42 UpperCAmelCase : List[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) # Edge case with a very small dataset UpperCAmelCase : List[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = SkipBatchSampler(A , 2 ) self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> int: UpperCAmelCase : Any = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) UpperCAmelCase : Optional[Any] = skip_first_batches(A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowercase( self ) -> Dict: Accelerator() UpperCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
338
0
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel a : List[Any] = logging.getLogger(__name__) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: # save results if os.path.exists(_lowercase ): if os.path.exists(os.path.join(_lowercase , """config.json""" ) ) and os.path.isfile( os.path.join(_lowercase , """config.json""" ) ): os.remove(os.path.join(_lowercase , """config.json""" ) ) if os.path.exists(os.path.join(_lowercase , """pytorch_model.bin""" ) ) and os.path.isfile( os.path.join(_lowercase , """pytorch_model.bin""" ) ): os.remove(os.path.join(_lowercase , """pytorch_model.bin""" ) ) else: os.makedirs(_lowercase ) model.save_pretrained(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase=False ) -> List[Any]: UpperCAmelCase : Tuple = 2 if unlogit: UpperCAmelCase : Any = torch.pow(_lowercase , _lowercase ) UpperCAmelCase : Any = p * torch.log(_lowercase ) UpperCAmelCase : List[Any] = 0 return -plogp.sum(dim=-1 ) def __lowerCamelCase ( _lowercase ) -> Any: logger.info("""lv, h >\t""" + """\t""".join(F'''{x + 1}''' for x in range(len(_lowercase ) ) ) ) for row in range(len(_lowercase ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + """\t""".join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + """\t""".join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=True , _lowercase=True , _lowercase=None , _lowercase=False ) -> int: UpperCAmelCase : Any = model.config.num_hidden_layers, model.config.num_attention_heads UpperCAmelCase : int = torch.zeros(_lowercase , _lowercase ).to(args.device ) UpperCAmelCase : Union[str, Any] = torch.zeros(_lowercase , _lowercase ).to(args.device ) if head_mask is None: UpperCAmelCase : Optional[Any] = torch.ones(_lowercase , _lowercase ).to(args.device ) head_mask.requires_grad_(requires_grad=_lowercase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: UpperCAmelCase : List[str] = None UpperCAmelCase : List[str] = 0.0 UpperCAmelCase : List[Any] = 0.0 for step, inputs in enumerate(tqdm(_lowercase , desc="""Iteration""" , disable=args.local_rank not in [-1, 0] ) ): UpperCAmelCase : List[Any] = tuple(t.to(args.device ) for t in inputs ) (UpperCAmelCase ) : Dict = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) UpperCAmelCase : Optional[int] = model(_lowercase , labels=_lowercase , head_mask=_lowercase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) UpperCAmelCase : Optional[int] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(_lowercase ): UpperCAmelCase : Union[str, Any] = entropy(attn.detach() , _lowercase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(_lowercase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: UpperCAmelCase : List[Any] = 2 UpperCAmelCase : Any = torch.pow(torch.pow(_lowercase , _lowercase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: UpperCAmelCase : Union[str, Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("""Attention entropies""" ) print_ad_tensor(_lowercase ) if compute_importance: logger.info("""Head importance scores""" ) print_ad_tensor(_lowercase ) logger.info("""Head ranked by importance scores""" ) UpperCAmelCase : str = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) UpperCAmelCase : Tuple = torch.arange( head_importance.numel() , device=args.device ) UpperCAmelCase : Any = head_ranks.view_as(_lowercase ) print_ad_tensor(_lowercase ) return attn_entropy, head_importance, total_loss def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase : Optional[int] = compute_heads_importance(_lowercase , _lowercase , _lowercase , compute_entropy=_lowercase ) UpperCAmelCase : List[Any] = 1 / loss # instead of downsteam score use the LM loss logger.info("""Pruning: original score: %f, threshold: %f""" , _lowercase , original_score * args.masking_threshold ) UpperCAmelCase : Optional[Any] = torch.ones_like(_lowercase ) UpperCAmelCase : Optional[Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) UpperCAmelCase : Dict = original_score while current_score >= original_score * args.masking_threshold: UpperCAmelCase : Any = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads UpperCAmelCase : Tuple = float("""Inf""" ) UpperCAmelCase : List[str] = head_importance.view(-1 ).sort()[1] if len(_lowercase ) <= num_to_mask: print("""BREAK BY num_to_mask""" ) break # mask heads UpperCAmelCase : Tuple = current_heads_to_mask[:num_to_mask] logger.info("""Heads to mask: %s""" , str(current_heads_to_mask.tolist() ) ) UpperCAmelCase : Tuple = new_head_mask.view(-1 ) UpperCAmelCase : Dict = 0.0 UpperCAmelCase : Optional[int] = new_head_mask.view_as(_lowercase ) UpperCAmelCase : Any = new_head_mask.clone().detach() print_ad_tensor(_lowercase ) # Compute metric and head importance again UpperCAmelCase : Union[str, Any] = compute_heads_importance( _lowercase , _lowercase , _lowercase , compute_entropy=_lowercase , head_mask=_lowercase ) UpperCAmelCase : Optional[int] = 1 / loss logger.info( """Masking: current score: %f, remaining heads %d (%.1f percents)""" , _lowercase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_0_0 , ) logger.info("""Final head mask""" ) print_ad_tensor(_lowercase ) np.save(os.path.join(args.output_dir , """head_mask.npy""" ) , head_mask.detach().cpu().numpy() ) return head_mask def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : str = datetime.now() UpperCAmelCase : List[str] = compute_heads_importance( _lowercase , _lowercase , _lowercase , compute_entropy=_lowercase , compute_importance=_lowercase , head_mask=_lowercase ) UpperCAmelCase : List[Any] = 1 / loss UpperCAmelCase : List[str] = datetime.now() - before_time UpperCAmelCase : str = sum(p.numel() for p in model.parameters() ) UpperCAmelCase : Dict = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(_lowercase ) ) } for k, v in heads_to_prune.items(): if isinstance(_lowercase , _lowercase ): UpperCAmelCase : Optional[int] = [ v, ] assert sum(len(_lowercase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(_lowercase ) UpperCAmelCase : Optional[int] = sum(p.numel() for p in model.parameters() ) UpperCAmelCase : Any = datetime.now() UpperCAmelCase : Tuple = compute_heads_importance( _lowercase , _lowercase , _lowercase , compute_entropy=_lowercase , compute_importance=_lowercase , head_mask=_lowercase , actually_pruned=_lowercase , ) UpperCAmelCase : List[Any] = 1 / loss UpperCAmelCase : Optional[int] = datetime.now() - before_time logger.info( """Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)""" , _lowercase , _lowercase , pruned_num_params / original_num_params * 1_0_0 , ) logger.info("""Pruning: score with masking: %f score with pruning: %f""" , _lowercase , _lowercase ) logger.info("""Pruning: speed ratio (original timing / new timing): %f percents""" , original_time / new_time * 1_0_0 ) save_model(_lowercase , args.output_dir ) def __lowerCamelCase ( ) -> int: UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--data_dir""" , default=_lowercase , type=_lowercase , required=_lowercase , help="""The input data dir. Should contain the .tsv files (or other data files) for the task.""" , ) parser.add_argument( """--model_name_or_path""" , default=_lowercase , type=_lowercase , required=_lowercase , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--output_dir""" , default=_lowercase , type=_lowercase , required=_lowercase , help="""The output directory where the model predictions and checkpoints will be written.""" , ) # Other parameters parser.add_argument( """--config_name""" , default="""""" , type=_lowercase , help="""Pretrained config name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--tokenizer_name""" , default="""""" , type=_lowercase , help="""Pretrained tokenizer name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--cache_dir""" , default=_lowercase , type=_lowercase , help="""Where do you want to store the pre-trained models downloaded from s3""" , ) parser.add_argument( """--data_subset""" , type=_lowercase , default=-1 , help="""If > 0: limit the data to a subset of data_subset instances.""" ) parser.add_argument( """--overwrite_output_dir""" , action="""store_true""" , help="""Whether to overwrite data in output directory""" ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) parser.add_argument( """--dont_normalize_importance_by_layer""" , action="""store_true""" , help="""Don't normalize importance score by layers""" ) parser.add_argument( """--dont_normalize_global_importance""" , action="""store_true""" , help="""Don't normalize all importance scores between 0 and 1""" , ) parser.add_argument( """--try_masking""" , action="""store_true""" , help="""Whether to try to mask head until a threshold of accuracy.""" ) parser.add_argument( """--masking_threshold""" , default=0.9 , type=_lowercase , help="""masking threshold in term of metrics (stop masking when metric < threshold * original metric value).""" , ) parser.add_argument( """--masking_amount""" , default=0.1 , type=_lowercase , help="""Amount to heads to masking at each masking step.""" ) parser.add_argument("""--metric_name""" , default="""acc""" , type=_lowercase , help="""Metric to use for head masking.""" ) parser.add_argument( """--max_seq_length""" , default=1_2_8 , type=_lowercase , help=( """The maximum total input sequence length after WordPiece tokenization. \n""" """Sequences longer than this will be truncated, sequences shorter padded.""" ) , ) parser.add_argument("""--batch_size""" , default=1 , type=_lowercase , help="""Batch size.""" ) parser.add_argument("""--seed""" , type=_lowercase , default=4_2 ) parser.add_argument("""--local_rank""" , type=_lowercase , default=-1 , help="""local_rank for distributed training on gpus""" ) parser.add_argument("""--no_cuda""" , action="""store_true""" , help="""Whether not to use CUDA when available""" ) parser.add_argument("""--server_ip""" , type=_lowercase , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=_lowercase , default="""""" , help="""Can be used for distant debugging.""" ) UpperCAmelCase : List[str] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_lowercase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: UpperCAmelCase : List[Any] = torch.device("""cuda""" if torch.cuda.is_available() and not args.no_cuda else """cpu""" ) UpperCAmelCase : Dict = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) UpperCAmelCase : Tuple = torch.device("""cuda""" , args.local_rank ) UpperCAmelCase : str = 1 torch.distributed.init_process_group(backend="""nccl""" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("""device: {} n_gpu: {}, distributed: {}""".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) UpperCAmelCase : Dict = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: UpperCAmelCase : Tuple = nn.parallel.DistributedDataParallel( _lowercase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=_lowercase ) elif args.n_gpu > 1: UpperCAmelCase : Dict = nn.DataParallel(_lowercase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=_lowercase ) torch.save(_lowercase , os.path.join(args.output_dir , """run_args.bin""" ) ) logger.info("""Training/evaluation parameters %s""" , _lowercase ) # Prepare dataset UpperCAmelCase : List[str] = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) UpperCAmelCase : str = (torch.from_numpy(_lowercase ),) UpperCAmelCase : Union[str, Any] = TensorDataset(*_lowercase ) UpperCAmelCase : List[str] = RandomSampler(_lowercase ) UpperCAmelCase : Any = DataLoader(_lowercase , sampler=_lowercase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(_lowercase , _lowercase , _lowercase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: UpperCAmelCase : Optional[Any] = mask_heads(_lowercase , _lowercase , _lowercase ) prune_heads(_lowercase , _lowercase , _lowercase , _lowercase ) if __name__ == "__main__": main()
355
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[Any] = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
0
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase_ ( __magic_name__ ): lowercase = (DDPMScheduler,) def _lowercase( self , **A ) -> int: UpperCAmelCase : Optional[int] = { """num_train_timesteps""": 1000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**A ) return config def _lowercase( self ) -> Optional[int]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=A ) def _lowercase( self ) -> List[str]: for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=A , beta_end=A ) def _lowercase( self ) -> Union[str, Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=A ) def _lowercase( self ) -> Optional[Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=A ) def _lowercase( self ) -> List[str]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=A ) def _lowercase( self ) -> str: self.check_over_configs(thresholding=A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=A , prediction_type=A , sample_max_value=A , ) def _lowercase( self ) -> Tuple: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=A ) def _lowercase( self ) -> Dict: for t in [0, 500, 999]: self.check_over_forward(time_step=A ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Optional[int] = self.scheduler_classes[0] UpperCAmelCase : List[Any] = self.get_scheduler_config() UpperCAmelCase : Optional[int] = scheduler_class(**A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def _lowercase( self ) -> Optional[int]: UpperCAmelCase : List[Any] = self.scheduler_classes[0] UpperCAmelCase : int = self.get_scheduler_config() UpperCAmelCase : Tuple = scheduler_class(**A ) UpperCAmelCase : Optional[int] = len(A ) UpperCAmelCase : Optional[Any] = self.dummy_model() UpperCAmelCase : int = self.dummy_sample_deter UpperCAmelCase : Dict = torch.manual_seed(0 ) for t in reversed(range(A ) ): # 1. predict noise residual UpperCAmelCase : List[Any] = model(A , A ) # 2. predict previous mean of sample x_t-1 UpperCAmelCase : str = scheduler.step(A , A , A , generator=A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCAmelCase : List[str] = pred_prev_sample UpperCAmelCase : Any = torch.sum(torch.abs(A ) ) UpperCAmelCase : Dict = torch.mean(torch.abs(A ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def _lowercase( self ) -> Optional[int]: UpperCAmelCase : int = self.scheduler_classes[0] UpperCAmelCase : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""" ) UpperCAmelCase : Union[str, Any] = scheduler_class(**A ) UpperCAmelCase : Any = len(A ) UpperCAmelCase : Optional[Any] = self.dummy_model() UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter UpperCAmelCase : str = torch.manual_seed(0 ) for t in reversed(range(A ) ): # 1. predict noise residual UpperCAmelCase : List[Any] = model(A , A ) # 2. predict previous mean of sample x_t-1 UpperCAmelCase : List[str] = scheduler.step(A , A , A , generator=A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCAmelCase : Tuple = pred_prev_sample UpperCAmelCase : Any = torch.sum(torch.abs(A ) ) UpperCAmelCase : Any = torch.mean(torch.abs(A ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def _lowercase( self ) -> List[str]: UpperCAmelCase : Dict = self.scheduler_classes[0] UpperCAmelCase : Optional[int] = self.get_scheduler_config() UpperCAmelCase : Dict = scheduler_class(**A ) UpperCAmelCase : Union[str, Any] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=A ) UpperCAmelCase : List[Any] = scheduler.timesteps for i, timestep in enumerate(A ): if i == len(A ) - 1: UpperCAmelCase : Optional[int] = -1 else: UpperCAmelCase : Optional[int] = timesteps[i + 1] UpperCAmelCase : str = scheduler.previous_timestep(A ) UpperCAmelCase : Optional[int] = prev_t.item() self.assertEqual(A , A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[Any] = self.scheduler_classes[0] UpperCAmelCase : int = self.get_scheduler_config() UpperCAmelCase : Tuple = scheduler_class(**A ) UpperCAmelCase : Tuple = [100, 87, 50, 51, 0] with self.assertRaises(A , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=A ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = self.scheduler_classes[0] UpperCAmelCase : Optional[Any] = self.get_scheduler_config() UpperCAmelCase : int = scheduler_class(**A ) UpperCAmelCase : List[str] = [100, 87, 50, 1, 0] UpperCAmelCase : int = len(A ) with self.assertRaises(A , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=A , timesteps=A ) def _lowercase( self ) -> Any: UpperCAmelCase : int = self.scheduler_classes[0] UpperCAmelCase : str = self.get_scheduler_config() UpperCAmelCase : Optional[int] = scheduler_class(**A ) UpperCAmelCase : Union[str, Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( A , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=A )
356
'''simple docstring''' from math import loga def __lowerCamelCase ( _lowercase ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_lowercase , _lowercase ): raise TypeError("""Input value must be a 'int' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
338
0
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> float: return 1_0 - x * x def __lowerCamelCase ( _lowercase , _lowercase ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(_lowercase ) * equation(_lowercase ) >= 0: raise ValueError("""Wrong space!""" ) UpperCAmelCase : Any = a while (b - a) >= 0.01: # Find middle point UpperCAmelCase : str = (a + b) / 2 # Check if middle point is root if equation(_lowercase ) == 0.0: break # Decide the side to repeat the steps if equation(_lowercase ) * equation(_lowercase ) < 0: UpperCAmelCase : Union[str, Any] = c else: UpperCAmelCase : Any = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
357
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. a : Optional[int] = 1_0 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: for i in range(_lowercase , _lowercase ): if array[i] == target: return i return -1 def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = len(_lowercase ) while left <= right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1 UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase : Any = one_third - 1 elif array[two_third] < target: UpperCAmelCase : Tuple = two_third + 1 else: UpperCAmelCase : int = one_third + 1 UpperCAmelCase : List[Any] = two_third - 1 else: return -1 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: if left < right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : str = (left + right) // 3 + 1 UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() a : Any = input("""Enter numbers separated by comma:\n""").strip() a : Any = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip()) a : Union[str, Any] = ite_ternary_search(collection, target) a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
338
0
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __lowerCamelCase ( _lowercase ) -> str: UpperCAmelCase : Tuple = [] for line in lines: UpperCAmelCase : List[str] = re.sub(R"""#.*""" , """""" , _lowercase ) # remove comments if line: filtered_lines.append(_lowercase ) UpperCAmelCase : Optional[int] = """\n""".join(_lowercase ) # Make a hash from all this code UpperCAmelCase : Optional[Any] = full_str.encode("""utf-8""" ) return shaaaa(_lowercase ).hexdigest() # get importable module names and hash for caching a : str = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions a : int = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) a : str = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name a : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
358
'''simple docstring''' import numpy as np class UpperCamelCase_ : def __init__( self ) -> int: UpperCAmelCase : str = (0, 0) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Any = 0 UpperCAmelCase : int = 0 UpperCAmelCase : Optional[int] = 0 def __eq__( self , A ) -> Optional[Any]: return self.position == cell.position def _lowercase( self ) -> Tuple: print(self.position ) class UpperCamelCase_ : def __init__( self , A=(5, 5) ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = np.zeros(A ) UpperCAmelCase : int = world_size[0] UpperCAmelCase : List[str] = world_size[1] def _lowercase( self ) -> List[Any]: print(self.w ) def _lowercase( self , A ) -> Dict: UpperCAmelCase : Optional[Any] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase : List[Any] = cell.position[0] UpperCAmelCase : Union[str, Any] = cell.position[1] UpperCAmelCase : Optional[int] = [] for n in neughbour_cord: UpperCAmelCase : Any = current_x + n[0] UpperCAmelCase : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase : str = Cell() UpperCAmelCase : List[str] = (x, y) UpperCAmelCase : Dict = cell neighbours.append(A ) return neighbours def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase : List[Any] = [] UpperCAmelCase : Optional[int] = [] _open.append(_lowercase ) while _open: UpperCAmelCase : Any = np.argmin([n.f for n in _open] ) UpperCAmelCase : Optional[int] = _open[min_f] _closed.append(_open.pop(_lowercase ) ) if current == goal: break for n in world.get_neigbours(_lowercase ): for c in _closed: if c == n: continue UpperCAmelCase : List[str] = current.g + 1 UpperCAmelCase , UpperCAmelCase : List[str] = n.position UpperCAmelCase , UpperCAmelCase : Dict = goal.position UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase : Dict = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_lowercase ) UpperCAmelCase : Dict = [] while current.parent is not None: path.append(current.position ) UpperCAmelCase : Optional[int] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": a : List[str] = Gridworld() # Start position and goal a : Optional[int] = Cell() a : Optional[Any] = (0, 0) a : Optional[Any] = Cell() a : str = (4, 4) print(F'''path from {start.position} to {goal.position}''') a : List[Any] = astar(world, start, goal) # Just for visual reasons. for i in s: a : Any = 1 print(world.w)
338
0
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> int: assert column_title.isupper() UpperCAmelCase : Dict = 0 UpperCAmelCase : Tuple = len(_lowercase ) - 1 UpperCAmelCase : Tuple = 0 while index >= 0: UpperCAmelCase : Optional[int] = (ord(column_title[index] ) - 6_4) * pow(2_6 , _lowercase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
359
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
0
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCamelCase_ ( __magic_name__ ): lowercase = ['image_processor', 'tokenizer'] lowercase = 'OwlViTImageProcessor' lowercase = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , A=None , A=None , **A ) -> List[Any]: UpperCAmelCase : str = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , A , ) UpperCAmelCase : List[Any] = kwargs.pop("""feature_extractor""" ) UpperCAmelCase : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(A , A ) def __call__( self , A=None , A=None , A=None , A="max_length" , A="np" , **A ) -> Tuple: if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(A , A ) or (isinstance(A , A ) and not isinstance(text[0] , A )): UpperCAmelCase : Dict = [self.tokenizer(A , padding=A , return_tensors=A , **A )] elif isinstance(A , A ) and isinstance(text[0] , A ): UpperCAmelCase : Union[str, Any] = [] # Maximum number of queries across batch UpperCAmelCase : int = max([len(A ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(A ) != max_num_queries: UpperCAmelCase : Union[str, Any] = t + [""" """] * (max_num_queries - len(A )) UpperCAmelCase : Optional[int] = self.tokenizer(A , padding=A , return_tensors=A , **A ) encodings.append(A ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": UpperCAmelCase : Tuple = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCAmelCase : Optional[Any] = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp UpperCAmelCase : Tuple = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCAmelCase : Optional[Any] = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch UpperCAmelCase : str = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) UpperCAmelCase : Tuple = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf UpperCAmelCase : Dict = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCAmelCase : Any = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) UpperCAmelCase : List[str] = BatchEncoding() UpperCAmelCase : Tuple = input_ids UpperCAmelCase : List[Any] = attention_mask if query_images is not None: UpperCAmelCase : str = BatchEncoding() UpperCAmelCase : List[str] = self.image_processor( A , return_tensors=A , **A ).pixel_values UpperCAmelCase : List[Any] = query_pixel_values if images is not None: UpperCAmelCase : Union[str, Any] = self.image_processor(A , return_tensors=A , **A ) if text is not None and images is not None: UpperCAmelCase : int = image_features.pixel_values return encoding elif query_images is not None and images is not None: UpperCAmelCase : Optional[Any] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**A ) , tensor_type=A ) def _lowercase( self , *A , **A ) -> str: return self.image_processor.post_process(*A , **A ) def _lowercase( self , *A , **A ) -> Union[str, Any]: return self.image_processor.post_process_object_detection(*A , **A ) def _lowercase( self , *A , **A ) -> List[Any]: return self.image_processor.post_process_image_guided_detection(*A , **A ) def _lowercase( self , *A , **A ) -> Optional[Any]: return self.tokenizer.batch_decode(*A , **A ) def _lowercase( self , *A , **A ) -> str: return self.tokenizer.decode(*A , **A ) @property def _lowercase( self ) -> Optional[int]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , A , ) return self.image_processor_class @property def _lowercase( self ) -> str: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , A , ) return self.image_processor
360
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a : int = logging.get_logger(__name__) a : int = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off a : Tuple = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] a : Optional[int] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class UpperCamelCase_ ( __magic_name__ ): lowercase = 'whisper' lowercase = ['past_key_values'] lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]: UpperCAmelCase : str = vocab_size UpperCAmelCase : Union[str, Any] = num_mel_bins UpperCAmelCase : Tuple = d_model UpperCAmelCase : Optional[int] = encoder_layers UpperCAmelCase : List[str] = encoder_attention_heads UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : int = decoder_attention_heads UpperCAmelCase : Optional[int] = decoder_ffn_dim UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : List[str] = dropout UpperCAmelCase : Optional[Any] = attention_dropout UpperCAmelCase : Optional[Any] = activation_dropout UpperCAmelCase : Optional[Any] = activation_function UpperCAmelCase : Optional[Any] = init_std UpperCAmelCase : int = encoder_layerdrop UpperCAmelCase : Dict = decoder_layerdrop UpperCAmelCase : Optional[int] = use_cache UpperCAmelCase : List[str] = encoder_layers UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Union[str, Any] = max_source_positions UpperCAmelCase : Tuple = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : List[str] = classifier_proj_size UpperCAmelCase : Optional[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : int = mask_time_prob UpperCAmelCase : int = mask_time_length UpperCAmelCase : Dict = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Optional[int] = mask_feature_length UpperCAmelCase : int = mask_feature_min_masks UpperCAmelCase : List[Any] = median_filter_width super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , ) class UpperCamelCase_ ( __magic_name__ ): @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : str = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase : List[Any] = {0: """batch"""} else: UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) return common_inputs def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Optional[int] = OrderedDict() UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , ) UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2] UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Any = super().generate_dummy_inputs( preprocessor.tokenizer , A , A , A , A ) UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" ) UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def _lowercase( self ) -> float: return 1e-3
338
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor a : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , **A ) -> None: warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , A , ) super().__init__(*A , **A )
361
'''simple docstring''' a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowerCamelCase ( ) -> None: UpperCAmelCase : Optional[int] = input("""Enter message: """ ) UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ ) UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): UpperCAmelCase : List[str] = """encrypt""" UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase ) elif mode.lower().startswith("""d""" ): UpperCAmelCase : Tuple = """decrypt""" UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """encrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """decrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Tuple = key.upper() for symbol in message: UpperCAmelCase : Dict = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowercase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowercase ): UpperCAmelCase : Optional[int] = 0 else: translated.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": main()
338
0
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node a = 4 a = 3 class UpperCamelCase_ ( __magic_name__ ): pass def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: for shard in shards: for i in range(_lowercase ): yield {"i": i, "shard": shard} def __lowerCamelCase ( ) -> int: UpperCAmelCase : Tuple = int(os.environ["""RANK"""] ) UpperCAmelCase : List[str] = int(os.environ["""WORLD_SIZE"""] ) UpperCAmelCase : List[str] = ArgumentParser() parser.add_argument("""--streaming""" , type=_lowercase ) parser.add_argument("""--local_rank""" , type=_lowercase ) parser.add_argument("""--num_workers""" , type=_lowercase , default=0 ) UpperCAmelCase : Optional[int] = parser.parse_args() UpperCAmelCase : Optional[Any] = args.streaming UpperCAmelCase : Union[str, Any] = args.num_workers UpperCAmelCase : Dict = {"""shards""": [F'''shard_{shard_idx}''' for shard_idx in range(_lowercase )]} UpperCAmelCase : Union[str, Any] = IterableDataset.from_generator(_lowercase , gen_kwargs=_lowercase ) if not streaming: UpperCAmelCase : Optional[Any] = Dataset.from_list(list(_lowercase ) ) UpperCAmelCase : int = split_dataset_by_node(_lowercase , rank=_lowercase , world_size=_lowercase ) UpperCAmelCase : Optional[Any] = torch.utils.data.DataLoader(_lowercase , num_workers=_lowercase ) UpperCAmelCase : str = NUM_SHARDS * NUM_ITEMS_PER_SHARD UpperCAmelCase : Union[str, Any] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) UpperCAmelCase : Any = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
362
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Optional[int] = split_dict._to_yaml_list() assert len(_lowercase ) == len(_lowercase ) UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(_lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCAmelCase : List[str] = None # the split name of split_dict takes over the name of the split info object UpperCAmelCase : int = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name="""my_dataset""" )] ) def __lowerCamelCase ( _lowercase ) -> List[str]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files UpperCAmelCase : Optional[Any] = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
338
0
def __lowerCamelCase ( _lowercase ) -> int: if n == 1 or not isinstance(_lowercase , _lowercase ): return 0 elif n == 2: return 1 else: UpperCAmelCase : Any = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : List[Any] = 0 UpperCAmelCase : Dict = 2 while digits < n: index += 1 UpperCAmelCase : Tuple = len(str(fibonacci(_lowercase ) ) ) return index def __lowerCamelCase ( _lowercase = 1_0_0_0 ) -> int: return fibonacci_digits_index(_lowercase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
363
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor a : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , **A ) -> None: warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , A , ) super().__init__(*A , **A )
338
0
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> str: """simple docstring""" return "\n".join( F'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=1_0))
364
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a : Union[str, Any] = logging.get_logger(__name__) a : Union[str, Any] = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'detr' lowercase = ['past_key_values'] lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(A , A ): UpperCAmelCase : Any = backbone_config.get("""model_type""" ) UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : List[Any] = config_class.from_dict(A ) # set timm attributes to None UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = None, None, None UpperCAmelCase : Dict = use_timm_backbone UpperCAmelCase : Any = backbone_config UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : int = num_queries UpperCAmelCase : List[str] = d_model UpperCAmelCase : Tuple = encoder_ffn_dim UpperCAmelCase : Optional[Any] = encoder_layers UpperCAmelCase : Any = encoder_attention_heads UpperCAmelCase : Optional[Any] = decoder_ffn_dim UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : str = dropout UpperCAmelCase : Tuple = attention_dropout UpperCAmelCase : Dict = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : List[Any] = init_std UpperCAmelCase : str = init_xavier_std UpperCAmelCase : List[Any] = encoder_layerdrop UpperCAmelCase : int = decoder_layerdrop UpperCAmelCase : List[Any] = encoder_layers UpperCAmelCase : Union[str, Any] = auxiliary_loss UpperCAmelCase : str = position_embedding_type UpperCAmelCase : Union[str, Any] = backbone UpperCAmelCase : List[str] = use_pretrained_backbone UpperCAmelCase : Optional[int] = dilation # Hungarian matcher UpperCAmelCase : Union[str, Any] = class_cost UpperCAmelCase : Optional[Any] = bbox_cost UpperCAmelCase : List[Any] = giou_cost # Loss coefficients UpperCAmelCase : int = mask_loss_coefficient UpperCAmelCase : Optional[int] = dice_loss_coefficient UpperCAmelCase : Dict = bbox_loss_coefficient UpperCAmelCase : Any = giou_loss_coefficient UpperCAmelCase : Any = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def _lowercase( self ) -> int: return self.encoder_attention_heads @property def _lowercase( self ) -> int: return self.d_model @classmethod def _lowercase( cls , A , **A ) -> Dict: return cls(backbone_config=A , **A ) def _lowercase( self ) -> Dict[str, any]: UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase : Any = self.backbone_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowercase( self ) -> float: return 1e-5 @property def _lowercase( self ) -> int: return 12
338
0
'''simple docstring''' from __future__ import annotations from fractions import Fraction def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: return ( num != den and num % 1_0 == den // 1_0 and (num // 1_0) / (den % 1_0) == num / den ) def __lowerCamelCase ( _lowercase ) -> list[str]: UpperCAmelCase : List[str] = [] UpperCAmelCase : str = 1_1 UpperCAmelCase : str = int("""1""" + """0""" * digit_len ) for num in range(_lowercase , _lowercase ): while den <= 9_9: if (num != den) and (num % 1_0 == den // 1_0) and (den % 1_0 != 0): if is_digit_cancelling(_lowercase , _lowercase ): solutions.append(F'''{num}/{den}''' ) den += 1 num += 1 UpperCAmelCase : Any = 1_0 return solutions def __lowerCamelCase ( _lowercase = 2 ) -> int: UpperCAmelCase : List[Any] = 1.0 for fraction in fraction_list(_lowercase ): UpperCAmelCase : int = Fraction(_lowercase ) result *= frac.denominator / frac.numerator return int(_lowercase ) if __name__ == "__main__": print(solution())
365
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[str] = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
0
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") a : Tuple = logging.getLogger(__name__) @dataclass class UpperCamelCase_ : lowercase = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) lowercase = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) lowercase = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase = field( default=__magic_name__ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) lowercase = field( default=__magic_name__ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) lowercase = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowercase = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) lowercase = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) lowercase = field( default=__magic_name__ , metadata={'help': 'A csv or a json file containing the training data.'} ) lowercase = field( default=__magic_name__ , metadata={'help': 'A csv or a json file containing the validation data.'} ) lowercase = field(default=__magic_name__ , metadata={'help': 'A csv or a json file containing the test data.'} ) def _lowercase( self ) -> str: if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: UpperCAmelCase : Optional[int] = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." UpperCAmelCase : List[str] = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class UpperCamelCase_ : lowercase = field( default=__magic_name__ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowercase = field( default=__magic_name__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowercase = field( default=__magic_name__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowercase = field( default=__magic_name__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowercase = field( default=__magic_name__ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) lowercase = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowercase = field( default=__magic_name__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def __lowerCamelCase ( ) -> str: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase : int = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) UpperCAmelCase : int = training_args.get_process_log_level() logger.setLevel(_lowercase ) datasets.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCAmelCase : Tuple = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. UpperCAmelCase : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. UpperCAmelCase : Tuple = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: UpperCAmelCase : Any = data_args.train_file.split(""".""" )[-1] UpperCAmelCase : Tuple = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." UpperCAmelCase : int = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(F'''load a local file for {key}: {data_files[key]}''' ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files UpperCAmelCase : str = load_dataset("""csv""" , data_files=_lowercase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files UpperCAmelCase : Optional[int] = load_dataset("""json""" , data_files=_lowercase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels UpperCAmelCase : Optional[int] = raw_datasets["""train"""].features["""label"""].names UpperCAmelCase : Union[str, Any] = len(_lowercase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase : int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer UpperCAmelCase : int = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_lowercase , ) UpperCAmelCase : str = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: UpperCAmelCase : List[Any] = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch UpperCAmelCase : Union[str, Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. UpperCAmelCase : Any = {"""Refused""": 0, """Entailed""": 1} UpperCAmelCase : str = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) UpperCAmelCase : Any = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_lowercase ): # Tokenize the texts def _convert_table_text_to_pandas(_lowercase ): UpperCAmelCase : Optional[int] = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] UpperCAmelCase : Optional[int] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd UpperCAmelCase : Optional[Any] = examples["""statement"""] UpperCAmelCase : Any = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) UpperCAmelCase : int = tokenizer(_lowercase , _lowercase , padding=_lowercase , max_length=_lowercase , truncation=_lowercase ) UpperCAmelCase : Optional[Any] = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): UpperCAmelCase : Optional[Any] = raw_datasets.map( _lowercase , batched=_lowercase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) UpperCAmelCase : Any = raw_datasets["""train"""] if data_args.max_train_samples is not None: UpperCAmelCase : Any = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) UpperCAmelCase : Union[str, Any] = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: UpperCAmelCase : List[str] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) UpperCAmelCase : List[str] = raw_datasets["""test"""] if data_args.max_predict_samples is not None: UpperCAmelCase : Union[str, Any] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_lowercase ) ) , 3 ): logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_lowercase ): UpperCAmelCase : Optional[Any] = p.predictions[0] if isinstance(p.predictions , _lowercase ) else p.predictions UpperCAmelCase : Any = np.argmax(_lowercase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: UpperCAmelCase : Tuple = default_data_collator elif training_args.fpaa: UpperCAmelCase : Tuple = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) else: UpperCAmelCase : Dict = None # Initialize our Trainer UpperCAmelCase : int = Trainer( model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_lowercase , tokenizer=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: UpperCAmelCase : Optional[int] = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase : Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase : Dict = last_checkpoint UpperCAmelCase : str = trainer.train(resume_from_checkpoint=_lowercase ) UpperCAmelCase : List[Any] = train_result.metrics UpperCAmelCase : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase ) ) UpperCAmelCase : Dict = min(_lowercase , len(_lowercase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , _lowercase ) trainer.save_metrics("""train""" , _lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCAmelCase : Union[str, Any] = trainer.evaluate(eval_dataset=_lowercase ) UpperCAmelCase : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase ) UpperCAmelCase : Any = min(_lowercase , len(_lowercase ) ) trainer.log_metrics("""eval""" , _lowercase ) trainer.save_metrics("""eval""" , _lowercase ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. UpperCAmelCase : Tuple = predict_dataset.remove_columns("""label""" ) UpperCAmelCase : List[str] = trainer.predict(_lowercase , metric_key_prefix="""predict""" ).predictions UpperCAmelCase : Dict = np.argmax(_lowercase , axis=1 ) UpperCAmelCase : Any = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(_lowercase , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(_lowercase ): UpperCAmelCase : Tuple = label_list[item] writer.write(F'''{index}\t{item}\n''' ) UpperCAmelCase : Any = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**_lowercase ) else: trainer.create_model_card(**_lowercase ) def __lowerCamelCase ( _lowercase ) -> str: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
366
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" ) if "model" in sd.keys(): UpperCAmelCase : Any = torch.load(_lowercase , map_location="""cpu""" )["""model"""] # pop unnecessary weights UpperCAmelCase : Union[str, Any] = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(_lowercase ) UpperCAmelCase : Tuple = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase : List[Any] = sd.pop(_lowercase ) UpperCAmelCase : Tuple = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase : List[str] = sd[key] # We split QKV in separate Q,K,V UpperCAmelCase : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" ) UpperCAmelCase : Tuple = key.replace(""".qkv_proj.""" , """.k_proj.""" ) UpperCAmelCase : int = key.replace(""".qkv_proj.""" , """.v_proj.""" ) UpperCAmelCase : Dict = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = torch.split(_lowercase , depth // 3 , dim=0 ) UpperCAmelCase : Tuple = q UpperCAmelCase : Tuple = k UpperCAmelCase : Any = v del sd[key] return sd @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Optional[Any]: UpperCAmelCase : Tuple = load_checkpoint(_lowercase ) if config is not None: UpperCAmelCase : Dict = OPTConfig.from_pretrained(_lowercase ) else: UpperCAmelCase : int = OPTConfig() UpperCAmelCase : List[Any] = OPTModel(_lowercase ).half().eval() model.load_state_dict(_lowercase ) # Check results Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") a : Union[str, Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
338
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING a : Tuple = logging.get_logger(__name__) a : Optional[int] = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'instructblip_vision_model' def __init__( self , A=1408 , A=6144 , A=39 , A=16 , A=224 , A=14 , A="gelu" , A=1e-6 , A=0.0 , A=1e-10 , A=True , **A , ) -> List[Any]: super().__init__(**A ) UpperCAmelCase : Optional[Any] = hidden_size UpperCAmelCase : Dict = intermediate_size UpperCAmelCase : Tuple = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Optional[Any] = patch_size UpperCAmelCase : List[Any] = image_size UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : Optional[int] = attention_dropout UpperCAmelCase : List[str] = layer_norm_eps UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : List[Any] = qkv_bias @classmethod def _lowercase( cls , A , **A ) -> "PretrainedConfig": cls._set_token_in_kwargs(A ) UpperCAmelCase : Union[str, Any] = cls.get_config_dict(A , **A ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": UpperCAmelCase : int = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(A , **A ) class UpperCamelCase_ ( __magic_name__ ): lowercase = 'instructblip_qformer' def __init__( self , A=30522 , A=768 , A=12 , A=12 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=0.0_2 , A=1e-12 , A=0 , A="absolute" , A=2 , A=1408 , **A , ) -> Any: super().__init__(pad_token_id=A , **A ) UpperCAmelCase : Union[str, Any] = vocab_size UpperCAmelCase : Tuple = hidden_size UpperCAmelCase : Tuple = num_hidden_layers UpperCAmelCase : Dict = num_attention_heads UpperCAmelCase : str = hidden_act UpperCAmelCase : Optional[Any] = intermediate_size UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase : Any = max_position_embeddings UpperCAmelCase : Any = initializer_range UpperCAmelCase : int = layer_norm_eps UpperCAmelCase : List[str] = position_embedding_type UpperCAmelCase : Any = cross_attention_frequency UpperCAmelCase : int = encoder_hidden_size @classmethod def _lowercase( cls , A , **A ) -> "PretrainedConfig": cls._set_token_in_kwargs(A ) UpperCAmelCase : Optional[int] = cls.get_config_dict(A , **A ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": UpperCAmelCase : Dict = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(A , **A ) class UpperCamelCase_ ( __magic_name__ ): lowercase = 'instructblip' lowercase = True def __init__( self , A=None , A=None , A=None , A=32 , **A ) -> Optional[Any]: super().__init__(**A ) if vision_config is None: UpperCAmelCase : Tuple = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: UpperCAmelCase : int = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: UpperCAmelCase : Any = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) UpperCAmelCase : int = InstructBlipVisionConfig(**A ) UpperCAmelCase : int = InstructBlipQFormerConfig(**A ) UpperCAmelCase : Optional[int] = text_config["""model_type"""] if """model_type""" in text_config else """opt""" UpperCAmelCase : Optional[Any] = CONFIG_MAPPING[text_model_type](**A ) UpperCAmelCase : int = self.text_config.tie_word_embeddings UpperCAmelCase : str = self.text_config.is_encoder_decoder UpperCAmelCase : str = num_query_tokens UpperCAmelCase : Optional[int] = self.vision_config.hidden_size UpperCAmelCase : Tuple = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCAmelCase : Optional[int] = 1.0 UpperCAmelCase : Optional[Any] = 0.0_2 @classmethod def _lowercase( cls , A , A , A , **A , ) -> Any: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **A , ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : int = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Union[str, Any] = self.vision_config.to_dict() UpperCAmelCase : Optional[int] = self.qformer_config.to_dict() UpperCAmelCase : Optional[int] = self.text_config.to_dict() UpperCAmelCase : int = self.__class__.model_type return output
367
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : str = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'levit' def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int: super().__init__(**A ) UpperCAmelCase : Any = image_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : Tuple = kernel_size UpperCAmelCase : Optional[int] = stride UpperCAmelCase : Dict = padding UpperCAmelCase : List[Any] = hidden_sizes UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = depths UpperCAmelCase : Any = key_dim UpperCAmelCase : str = drop_path_rate UpperCAmelCase : List[Any] = patch_size UpperCAmelCase : str = attention_ratio UpperCAmelCase : Optional[Any] = mlp_ratio UpperCAmelCase : Dict = initializer_range UpperCAmelCase : int = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase( self ) -> float: return 1e-4
338
0
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 650, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> int: if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="""utf-8""" , check=A , ) assert hasattr(self , """env""" ) def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : List[str] = f'''{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}''' # distributed data settings UpperCAmelCase : Optional[int] = {"""smdistributed""": {"""dataparallel""": {"""enabled""": True}}} if self.script != """run_ddp.py""" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=A , instance_count=A , instance_type=self.instance_type , debugger_hook_config=A , hyperparameters={**self.env.distributed_hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=A , py_version="""py36""" , ) def _lowercase( self , A ) -> Tuple: TrainingJobAnalytics(A ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def _lowercase( self , A ) -> str: # create estimator UpperCAmelCase : int = self.create_estimator(A ) # run training estimator.fit() # result dataframe UpperCAmelCase : Optional[Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCAmelCase : Union[str, Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) UpperCAmelCase : str = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase : Dict = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , A )
368
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) a : List[str] = """Hello, World!""" a : List[Any] = """en_XX""" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Dict = Path("""data_bin""" ) UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(_lowercase ) UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder UpperCAmelCase : Tuple = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , _lowercase ) UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight UpperCAmelCase : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase : List[str] = model.roberta.encoder.layer[i] UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i] # self attention UpperCAmelCase : Optional[Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias # intermediate UpperCAmelCase : Tuple = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) UpperCAmelCase : List[str] = xmod_layer.fca.weight UpperCAmelCase : str = xmod_layer.fca.bias # output UpperCAmelCase : Any = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) UpperCAmelCase : Dict = xmod_layer.fca.weight UpperCAmelCase : Dict = xmod_layer.fca.bias UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code] UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code] UpperCAmelCase : Any = from_adapter.fca.weight UpperCAmelCase : int = from_adapter.fca.bias UpperCAmelCase : Dict = from_adapter.fca.weight UpperCAmelCase : Dict = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias UpperCAmelCase : str = xmod.model.encoder.lm_head.weight UpperCAmelCase : str = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) UpperCAmelCase : Optional[int] = model(_lowercase )[0] if classification_head: UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) ) else: UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) a : List[str] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
338
0
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a : Union[str, Any] = logging.get_logger(__name__) a : Union[str, Any] = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'detr' lowercase = ['past_key_values'] lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(A , A ): UpperCAmelCase : Any = backbone_config.get("""model_type""" ) UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : List[Any] = config_class.from_dict(A ) # set timm attributes to None UpperCAmelCase : Any = None, None, None UpperCAmelCase : Dict = use_timm_backbone UpperCAmelCase : Any = backbone_config UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : int = num_queries UpperCAmelCase : List[str] = d_model UpperCAmelCase : Tuple = encoder_ffn_dim UpperCAmelCase : Optional[Any] = encoder_layers UpperCAmelCase : Any = encoder_attention_heads UpperCAmelCase : Optional[Any] = decoder_ffn_dim UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : str = dropout UpperCAmelCase : Tuple = attention_dropout UpperCAmelCase : Dict = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : List[Any] = init_std UpperCAmelCase : str = init_xavier_std UpperCAmelCase : List[Any] = encoder_layerdrop UpperCAmelCase : int = decoder_layerdrop UpperCAmelCase : List[Any] = encoder_layers UpperCAmelCase : Union[str, Any] = auxiliary_loss UpperCAmelCase : str = position_embedding_type UpperCAmelCase : Union[str, Any] = backbone UpperCAmelCase : List[str] = use_pretrained_backbone UpperCAmelCase : Optional[int] = dilation # Hungarian matcher UpperCAmelCase : Union[str, Any] = class_cost UpperCAmelCase : Optional[Any] = bbox_cost UpperCAmelCase : List[Any] = giou_cost # Loss coefficients UpperCAmelCase : int = mask_loss_coefficient UpperCAmelCase : Optional[int] = dice_loss_coefficient UpperCAmelCase : Dict = bbox_loss_coefficient UpperCAmelCase : Any = giou_loss_coefficient UpperCAmelCase : Any = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def _lowercase( self ) -> int: return self.encoder_attention_heads @property def _lowercase( self ) -> int: return self.d_model @classmethod def _lowercase( cls , A , **A ) -> Dict: return cls(backbone_config=A , **A ) def _lowercase( self ) -> Dict[str, any]: UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase : Any = self.backbone_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowercase( self ) -> float: return 1e-5 @property def _lowercase( self ) -> int: return 12
369
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __lowerCamelCase ( _lowercase ) -> List[Any]: for i in range(0 , _lowercase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __lowerCamelCase ( _lowercase ) -> Dict: for i in range(_lowercase , 0 , -1 ): for _ in range(_lowercase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __lowerCamelCase ( _lowercase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowercase ) # upper half reverse_floyd(_lowercase ) # lower half if __name__ == "__main__": print(R"""| /\ | |- | |- |--| |\ /| |-""") print(R"""|/ \| |- |_ |_ |__| | \/ | |_""") a : List[Any] = 1 while K: a : int = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) a : Tuple = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
338
0
def __lowerCamelCase ( _lowercase , _lowercase ) -> str: if b == 0: return 1 if (b % 2) == 0: return actual_power(_lowercase , int(b / 2 ) ) * actual_power(_lowercase , int(b / 2 ) ) else: return a * actual_power(_lowercase , int(b / 2 ) ) * actual_power(_lowercase , int(b / 2 ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> float: if b < 0: return 1 / actual_power(_lowercase , _lowercase ) return actual_power(_lowercase , _lowercase ) if __name__ == "__main__": print(power(-2, -3))
370
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever a : List[str] = logging.getLogger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A=None ) -> Union[str, Any]: super().__init__( A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , ) UpperCAmelCase : Optional[Any] = None def _lowercase( self , A ) -> List[Any]: logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually UpperCAmelCase : Tuple = self._infer_socket_ifname() # avoid clash with the NCCL port UpperCAmelCase : str = str(distributed_port + 1 ) UpperCAmelCase : Any = dist.new_group(ranks=A , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _lowercase( self ) -> Dict: return dist.get_rank(group=self.process_group ) == 0 def _lowercase( self , A , A , A=torch.floataa ) -> str: UpperCAmelCase : List[Any] = torch.empty(A , dtype=A ) dist.scatter(A , src=0 , scatter_list=A , group=self.process_group ) return target_tensor def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names UpperCAmelCase : Optional[int] = next((addr for addr in addrs if addr.startswith("""e""" )) , A ) return ifname def _lowercase( self , A , A ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): UpperCAmelCase , UpperCAmelCase : str = self._main_retrieve(A , A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A ) # distributed training UpperCAmelCase : int = dist.get_world_size(group=self.process_group ) # gather logic UpperCAmelCase : int = None if self._is_main(): UpperCAmelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )] dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group ) # scatter logic UpperCAmelCase : List[Any] = question_hidden_states.shape[0] UpperCAmelCase : Tuple = [] UpperCAmelCase : Any = [] if self._is_main(): assert len(A ) == world_size UpperCAmelCase , UpperCAmelCase : Optional[int] = self._main_retrieve(torch.cat(A ).numpy() , A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = torch.tensor(A ), torch.tensor(A ) UpperCAmelCase : List[str] = self._chunk_tensor(A , A ) UpperCAmelCase : Union[str, Any] = self._chunk_tensor(A , A ) UpperCAmelCase : Tuple = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa ) UpperCAmelCase : Optional[Any] = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
338
0
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , ) -> str: if config_name_or_path is None: UpperCAmelCase : List[str] = """facebook/rag-token-base""" if model_type == """rag_token""" else """facebook/rag-sequence-base""" if generator_tokenizer_name_or_path is None: UpperCAmelCase : List[Any] = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: UpperCAmelCase : Union[str, Any] = question_encoder_name_or_path UpperCAmelCase : Tuple = RagTokenForGeneration if model_type == """rag_token""" else RagSequenceForGeneration # Save model. UpperCAmelCase : Optional[int] = RagConfig.from_pretrained(_lowercase ) UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained(_lowercase ) UpperCAmelCase : int = AutoConfig.from_pretrained(_lowercase ) UpperCAmelCase : Tuple = gen_config UpperCAmelCase : Optional[int] = question_encoder_config UpperCAmelCase : Optional[Any] = model_class.from_pretrained_question_encoder_generator( _lowercase , _lowercase , config=_lowercase ) rag_model.save_pretrained(_lowercase ) # Sanity check. model_class.from_pretrained(_lowercase ) # Save tokenizers. UpperCAmelCase : Any = AutoTokenizer.from_pretrained(_lowercase ) gen_tokenizer.save_pretrained(dest_dir / """generator_tokenizer/""" ) UpperCAmelCase : int = AutoTokenizer.from_pretrained(_lowercase ) question_encoder_tokenizer.save_pretrained(dest_dir / """question_encoder_tokenizer/""" ) if __name__ == "__main__": a : List[Any] = argparse.ArgumentParser() parser.add_argument( """--model_type""", choices=["""rag_sequence""", """rag_token"""], required=True, type=str, help="""RAG model type: rag_sequence, rag_token""", ) parser.add_argument("""--dest""", type=str, required=True, help="""Path to the output checkpoint directory.""") parser.add_argument("""--generator_name_or_path""", type=str, required=True, help="""Generator model identifier""") parser.add_argument( """--question_encoder_name_or_path""", type=str, required=True, help="""Question encoder model identifier""" ) parser.add_argument( """--generator_tokenizer_name_or_path""", type=str, help="""Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``""", ) parser.add_argument( """--question_encoder_tokenizer_name_or_path""", type=str, help="""Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``""", ) parser.add_argument( """--config_name_or_path""", type=str, help=( """Identifier of the model config to use, if not provided, resolves to a base config for a given""" """ ``model_type``""" ), ) a : str = parser.parse_args() a : int = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
371
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : List[str] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } a : List[Any] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } a : List[Any] = { """facebook/blenderbot_small-90M""": 5_1_2, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = BlenderbotSmallTokenizer def __init__( self , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , A=True , **A , ) -> Union[str, Any]: super().__init__( ByteLevelBPETokenizer( vocab=A , merges=A , add_prefix_space=A , trim_offsets=A , ) , bos_token=A , eos_token=A , unk_token=A , **A , ) UpperCAmelCase : Optional[Any] = add_prefix_space def _lowercase( self , A , A=None ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
338
0
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCamelCase_ ( unittest.TestCase ): def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=4 , ) -> Tuple: UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : Optional[Any] = batch_size UpperCAmelCase : str = seq_length UpperCAmelCase : Union[str, Any] = is_training UpperCAmelCase : List[str] = use_attention_mask UpperCAmelCase : List[Any] = use_token_type_ids UpperCAmelCase : Tuple = use_labels UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Optional[int] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[Any] = intermediate_size UpperCAmelCase : Union[str, Any] = hidden_act UpperCAmelCase : List[str] = hidden_dropout_prob UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : Optional[int] = type_vocab_size UpperCAmelCase : str = type_sequence_label_size UpperCAmelCase : int = initializer_range UpperCAmelCase : Dict = num_choices def _lowercase( self ) -> str: UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[int] = None if self.use_attention_mask: UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Tuple = None if self.use_token_type_ids: UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase : str = config_and_inputs UpperCAmelCase : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = FlaxAlbertModelTester(self ) @slow def _lowercase( self ) -> Union[str, Any]: for model_class_name in self.all_model_classes: UpperCAmelCase : int = model_class_name.from_pretrained("""albert-base-v2""" ) UpperCAmelCase : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(A ) @require_flax class UpperCamelCase_ ( unittest.TestCase ): @slow def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Dict = FlaxAlbertModel.from_pretrained("""albert-base-v2""" ) UpperCAmelCase : str = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) UpperCAmelCase : List[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCAmelCase : List[str] = model(A , attention_mask=A )[0] UpperCAmelCase : Dict = (1, 11, 768) self.assertEqual(output.shape , A ) UpperCAmelCase : List[str] = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , A , atol=1e-4 ) )
350
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A = None , A = None , A = False , **A , ) -> Tuple: super().__init__(features=A , cache_dir=A , keep_in_memory=A , **A ) UpperCAmelCase : Any = Sql( cache_dir=A , features=A , sql=A , con=A , **A , ) def _lowercase( self ) -> Dict: UpperCAmelCase : Any = None UpperCAmelCase : Any = None UpperCAmelCase : int = None UpperCAmelCase : int = None self.builder.download_and_prepare( download_config=A , download_mode=A , verification_mode=A , base_path=A , ) # Build dataset for splits UpperCAmelCase : str = self.builder.as_dataset( split="""train""" , verification_mode=A , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase_ : def __init__( self , A , A , A , A = None , A = None , **A , ) -> str: if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) UpperCAmelCase : Dict = dataset UpperCAmelCase : List[Any] = name UpperCAmelCase : Any = con UpperCAmelCase : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase : Optional[Any] = num_proc UpperCAmelCase : str = to_sql_kwargs def _lowercase( self ) -> int: UpperCAmelCase : Any = self.to_sql_kwargs.pop("""sql""" , A ) UpperCAmelCase : str = self.to_sql_kwargs.pop("""con""" , A ) UpperCAmelCase : Union[str, Any] = self.to_sql_kwargs.pop("""index""" , A ) UpperCAmelCase : str = self._write(index=A , **self.to_sql_kwargs ) return written def _lowercase( self , A ) -> Any: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = args UpperCAmelCase : Union[str, Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs UpperCAmelCase : int = query_table( table=self.dataset.data , key=slice(A , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCAmelCase : Any = batch.to_pandas() UpperCAmelCase : List[Any] = df.to_sql(self.name , self.con , index=A , **A ) return num_rows or len(A ) def _lowercase( self , A , **A ) -> int: UpperCAmelCase : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: UpperCAmelCase , UpperCAmelCase : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , A , A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
338
0
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A ) -> Any: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): UpperCAmelCase : int = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(A ) def _lowercase( self ) -> List[str]: UpperCAmelCase : List[str] = """sshleifer/tiny-gpt2""" UpperCAmelCase : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) UpperCAmelCase : Optional[Any] = PyTorchBenchmark(A ) UpperCAmelCase : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : int = """sgugger/tiny-distilbert-classification""" UpperCAmelCase : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , only_pretrain_model=A , ) UpperCAmelCase : List[str] = PyTorchBenchmark(A ) UpperCAmelCase : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase( self ) -> Dict: UpperCAmelCase : Tuple = """sshleifer/tiny-gpt2""" UpperCAmelCase : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , torchscript=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) UpperCAmelCase : int = PyTorchBenchmark(A ) UpperCAmelCase : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : List[str] = """sshleifer/tiny-gpt2""" UpperCAmelCase : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , fpaa=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) UpperCAmelCase : List[str] = PyTorchBenchmark(A ) UpperCAmelCase : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = """sshleifer/tiny-gpt2""" UpperCAmelCase : Dict = AutoConfig.from_pretrained(A ) # set architectures equal to `None` UpperCAmelCase : Tuple = None UpperCAmelCase : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) UpperCAmelCase : Dict = PyTorchBenchmark(A , configs=[config] ) UpperCAmelCase : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase( self ) -> str: UpperCAmelCase : Any = """sshleifer/tiny-gpt2""" UpperCAmelCase : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) UpperCAmelCase : Optional[int] = PyTorchBenchmark(A ) UpperCAmelCase : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" ) def _lowercase( self ) -> Any: UpperCAmelCase : int = """sshleifer/tiny-gpt2""" UpperCAmelCase : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , fpaa=A , multi_process=A , ) UpperCAmelCase : List[str] = PyTorchBenchmark(A ) UpperCAmelCase : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : Union[str, Any] = """sshleifer/tiny-gpt2""" UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(A ) UpperCAmelCase : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) UpperCAmelCase : Optional[Any] = PyTorchBenchmark(A , configs=[config] ) UpperCAmelCase : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Optional[int] = """sshleifer/tinier_bart""" UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained(A ) UpperCAmelCase : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) UpperCAmelCase : Optional[Any] = PyTorchBenchmark(A , configs=[config] ) UpperCAmelCase : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[Any] = """sshleifer/tiny-gpt2""" UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(A ) UpperCAmelCase : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) UpperCAmelCase : Optional[Any] = PyTorchBenchmark(A , configs=[config] ) UpperCAmelCase : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = """sshleifer/tinier_bart""" UpperCAmelCase : int = AutoConfig.from_pretrained(A ) UpperCAmelCase : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) UpperCAmelCase : Any = PyTorchBenchmark(A , configs=[config] ) UpperCAmelCase : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowercase( self ) -> Tuple: UpperCAmelCase : str = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , save_to_csv=A , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(A , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(A , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(A , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(A , """train_time.csv""" ) , env_info_csv_file=os.path.join(A , """env.csv""" ) , multi_process=A , ) UpperCAmelCase : Dict = PyTorchBenchmark(A ) benchmark.run() self.assertTrue(Path(os.path.join(A , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(A , """train_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(A , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(A , """train_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(A , """env.csv""" ) ).exists() ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Any = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(A ): self.assertTrue(hasattr(A , """sequential""" ) ) self.assertTrue(hasattr(A , """cumulative""" ) ) self.assertTrue(hasattr(A , """current""" ) ) self.assertTrue(hasattr(A , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(A , """log.txt""" ) , log_print=A , trace_memory_line_by_line=A , multi_process=A , ) UpperCAmelCase : str = PyTorchBenchmark(A ) UpperCAmelCase : Union[str, Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(A , """log.txt""" ) ).exists() )
351
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCamelCase_ : lowercase = MBartConfig lowercase = {} lowercase = 'gelu' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : str = is_training UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Optional[Any] = eos_token_id UpperCAmelCase : List[str] = pad_token_id UpperCAmelCase : List[Any] = bos_token_id def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A ) return config, inputs_dict def _lowercase( self , A , A ) -> List[str]: UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder() UpperCAmelCase : int = inputs_dict["""input_ids"""] UpperCAmelCase : str = input_ids[:1, :] UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase : List[str] = inputs_dict["""head_mask"""] UpperCAmelCase : List[Any] = 1 # first forward pass UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = outputs.to_tuple() UpperCAmelCase : int = past_key_values[1] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]: if attention_mask is None: UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False def _lowercase( self , A , A , A , A , A ) -> int: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : int = TFMBartModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A ) def _lowercase( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase( self ) -> Dict: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_sentencepiece @require_tokenizers @require_tf class UpperCamelCase_ ( unittest.TestCase ): lowercase = [ ' UN Chief Says There Is No Military Solution in Syria', ] lowercase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] lowercase = 'facebook/mbart-large-en-ro' @cached_property def _lowercase( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowercase( self , **A ) -> Any: UpperCAmelCase : Optional[int] = self.translate_src_text(**A ) self.assertListEqual(self.expected_text , A ) def _lowercase( self , **A ) -> Optional[Any]: UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" ) UpperCAmelCase : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A ) return generated_words @slow def _lowercase( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
338
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCamelCase_ : lowercase = MBartConfig lowercase = {} lowercase = 'gelu' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : str = is_training UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Optional[Any] = eos_token_id UpperCAmelCase : List[str] = pad_token_id UpperCAmelCase : List[Any] = bos_token_id def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A ) return config, inputs_dict def _lowercase( self , A , A ) -> List[str]: UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder() UpperCAmelCase : int = inputs_dict["""input_ids"""] UpperCAmelCase : str = input_ids[:1, :] UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase : List[str] = inputs_dict["""head_mask"""] UpperCAmelCase : List[Any] = 1 # first forward pass UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A ) UpperCAmelCase : Optional[Any] = outputs.to_tuple() UpperCAmelCase : int = past_key_values[1] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]: if attention_mask is None: UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False def _lowercase( self , A , A , A , A , A ) -> int: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : int = TFMBartModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A ) def _lowercase( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase( self ) -> Dict: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_sentencepiece @require_tokenizers @require_tf class UpperCamelCase_ ( unittest.TestCase ): lowercase = [ ' UN Chief Says There Is No Military Solution in Syria', ] lowercase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] lowercase = 'facebook/mbart-large-en-ro' @cached_property def _lowercase( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowercase( self , **A ) -> Any: UpperCAmelCase : Optional[int] = self.translate_src_text(**A ) self.assertListEqual(self.expected_text , A ) def _lowercase( self , **A ) -> Optional[Any]: UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" ) UpperCAmelCase : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A ) return generated_words @slow def _lowercase( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
352
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: UpperCAmelCase : Tuple = len(_lowercase ) + 1 UpperCAmelCase : List[Any] = len(_lowercase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase : str = [[0 for i in range(_lowercase )] for j in range(_lowercase )] # since string of zero length match pattern of zero length UpperCAmelCase : int = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowercase ): UpperCAmelCase : str = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowercase ): UpperCAmelCase : Optional[Any] = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowercase ): for j in range(1 , _lowercase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase : Union[str, Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase : List[Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase : Optional[int] = dp[i - 1][j] else: UpperCAmelCase : Any = 0 else: UpperCAmelCase : str = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") a : List[str] = """aab""" a : Optional[int] = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
338
0
'''simple docstring''' import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a : Dict = 2 class UpperCamelCase_ : def __init__( self , *, # begin keyword-only arguments A="<s>" , A="<pad>" , A="</s>" , A="<unk>" , A=None , ) -> Any: UpperCAmelCase : List[str] = bos, unk, pad, eos UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Dict = {} UpperCAmelCase : List[Any] = self.add_symbol(A ) UpperCAmelCase : List[str] = self.add_symbol(A ) UpperCAmelCase : int = self.add_symbol(A ) UpperCAmelCase : List[Any] = self.add_symbol(A ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(A ) UpperCAmelCase : List[str] = len(self.symbols ) def __eq__( self , A ) -> Tuple: return self.indices == other.indices def __getitem__( self , A ) -> Optional[Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ) -> Optional[int]: return len(self.symbols ) def __contains__( self , A ) -> List[Any]: return sym in self.indices @classmethod def _lowercase( cls , A ) -> Optional[Any]: UpperCAmelCase : List[Any] = cls() d.add_from_file(A ) return d def _lowercase( self , A , A=1 , A=False ) -> List[str]: if word in self.indices and not overwrite: UpperCAmelCase : List[Any] = self.indices[word] UpperCAmelCase : int = self.count[idx] + n return idx else: UpperCAmelCase : Optional[int] = len(self.symbols ) UpperCAmelCase : List[str] = idx self.symbols.append(A ) self.count.append(A ) return idx def _lowercase( self , A ) -> Dict: return 0 def _lowercase( self , A ) -> Optional[Any]: if isinstance(A , A ): try: with open(A , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(A ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(A ) ) return UpperCAmelCase : str = f.readlines() UpperCAmelCase : Optional[Any] = self._load_meta(A ) for line in lines[indices_start_line:]: try: UpperCAmelCase : str = line.rstrip().rsplit(""" """ , 1 ) if field == "#fairseq:overwrite": UpperCAmelCase : Any = True UpperCAmelCase : str = line.rsplit(""" """ , 1 ) else: UpperCAmelCase : Dict = False UpperCAmelCase : List[Any] = int(A ) UpperCAmelCase : Any = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(A ) ) self.add_symbol(A , n=A , overwrite=A ) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" ) def __lowerCamelCase ( _lowercase ) -> Optional[Any]: # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} UpperCAmelCase : Optional[Any] = dict((re.sub(R"""@@$""" , """""" , _lowercase ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" , """</w>""" , _lowercase ), v) for k, v in d.items() ) UpperCAmelCase : int = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] UpperCAmelCase : Optional[Any] = d[k] # restore return da def __lowerCamelCase ( _lowercase , _lowercase ) -> Any: # prep if not os.path.exists(_lowercase ): raise ValueError(F'''path {biogpt_checkpoint_path} does not exist!''' ) os.makedirs(_lowercase , exist_ok=_lowercase ) print(F'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models UpperCAmelCase : Optional[int] = os.path.join(_lowercase , """checkpoint.pt""" ) if not os.path.isfile(_lowercase ): raise ValueError(F'''path to the file {checkpoint_file} does not exist!''' ) UpperCAmelCase : Optional[int] = torch.load(_lowercase , map_location="""cpu""" ) UpperCAmelCase : List[Any] = chkpt["""cfg"""]["""model"""] # dicts UpperCAmelCase : List[Any] = os.path.join(_lowercase , """dict.txt""" ) if not os.path.isfile(_lowercase ): raise ValueError(F'''path to the file {dict_file} does not exist!''' ) UpperCAmelCase : Any = Dictionary.load(_lowercase ) UpperCAmelCase : Dict = rewrite_dict_keys(src_dict.indices ) UpperCAmelCase : Optional[int] = len(_lowercase ) UpperCAmelCase : Dict = os.path.join(_lowercase , VOCAB_FILES_NAMES["""vocab_file"""] ) print(F'''Generating {src_vocab_file} of {src_vocab_size} records''' ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(_lowercase , ensure_ascii=_lowercase , indent=_lowercase ) ) # merges_file (bpecodes) UpperCAmelCase : Tuple = os.path.join(_lowercase , """bpecodes""" ) if not os.path.isfile(_lowercase ): raise ValueError(F'''path to the file {bpecodes_file} does not exist!''' ) UpperCAmelCase : List[Any] = os.path.join(_lowercase , VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(_lowercase , _lowercase ) # model config UpperCAmelCase : List[str] = os.path.join(_lowercase , """config.json""" ) UpperCAmelCase : Optional[Any] = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1e-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(F'''Generating {biogpt_model_config_file}''' ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(_lowercase , ensure_ascii=_lowercase , indent=_lowercase ) ) # tokenizer config UpperCAmelCase : Tuple = os.path.join(_lowercase , _lowercase ) UpperCAmelCase : Optional[Any] = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 1_0_2_4, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(F'''Generating {biogpt_tokenizer_config_file}''' ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(_lowercase , ensure_ascii=_lowercase , indent=_lowercase ) ) # model UpperCAmelCase : Any = chkpt["""model"""] # remove unneeded keys UpperCAmelCase : Optional[int] = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(_lowercase , _lowercase ) UpperCAmelCase : int = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): UpperCAmelCase : Tuple = model_state_dict.pop(_lowercase ) else: UpperCAmelCase : Tuple = model_state_dict.pop(_lowercase ) UpperCAmelCase : List[Any] = BioGptConfig.from_pretrained(_lowercase ) UpperCAmelCase : Any = BioGptForCausalLM(_lowercase ) # check that it loads ok model_new.load_state_dict(_lowercase ) # save UpperCAmelCase : Union[str, Any] = os.path.join(_lowercase , _lowercase ) print(F'''Generating {pytorch_weights_dump_path}''' ) torch.save(_lowercase , _lowercase ) print("""Conversion is done!""" ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a : Optional[int] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
353
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : List[str] = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int: UpperCAmelCase : int = 1 UpperCAmelCase : str = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase : Tuple = pre_numerator UpperCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase : Union[str, Any] = cur_numerator UpperCAmelCase : Optional[int] = e_cont * pre_numerator + temp return sum_digits(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
338
0
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets a : int = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ a : Dict = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ a : Union[str, Any] = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase( self ) -> List[Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase( self , A , A , A=None , A="uniform_average" , A=True ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = mean_squared_error( A , A , sample_weight=A , multioutput=A , squared=A ) return {"mse": mse}
354
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=0.0_1 , A=1000 ) -> List[str]: UpperCAmelCase : List[Any] = p_stop UpperCAmelCase : Optional[int] = max_length def __iter__( self ) -> Union[str, Any]: UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = False while not stop and count < self.max_length: yield count count += 1 UpperCAmelCase : Any = random.random() < self.p_stop class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A , A=False , A=True ) -> Union[str, Any]: UpperCAmelCase : List[str] = [ BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A ) for i in range(2 ) ] UpperCAmelCase : List[str] = [list(A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] ) self.assertListEqual(A , A ) def _lowercase( self ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is very small. UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [[], []] self.check_batch_sampler_shards(A , A ) def _lowercase( self ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A ) def _lowercase( self ) -> Any: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : str = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [[], []] self.check_batch_sampler_shards(A , A , even_batches=A ) def _lowercase( self ) -> List[Any]: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCAmelCase : List[str] = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _lowercase( self , A , A , A , A=False , A=2 , A=False ) -> Tuple: random.seed(A ) UpperCAmelCase : Dict = list(A ) UpperCAmelCase : Any = [ IterableDatasetShard( A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , ) for i in range(A ) ] UpperCAmelCase : Dict = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(A ) iterable_dataset_lists.append(list(A ) ) UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCAmelCase : List[Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(A ) , len(A ) ) self.assertTrue(len(A ) % shard_batch_size == 0 ) UpperCAmelCase : List[Any] = [] for idx in range(0 , len(A ) , A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(A ) < len(A ): reference += reference self.assertListEqual(A , reference[: len(A )] ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = 42 UpperCAmelCase : List[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) # Edge case with a very small dataset UpperCAmelCase : List[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = SkipBatchSampler(A , 2 ) self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> int: UpperCAmelCase : Any = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) UpperCAmelCase : Optional[Any] = skip_first_batches(A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowercase( self ) -> Dict: Accelerator() UpperCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
338
0
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = RobertaTokenizer lowercase = RobertaTokenizerFast lowercase = True lowercase = {'cls_token': '<s>'} def _lowercase( self ) -> int: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase : int = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] UpperCAmelCase : List[Any] = dict(zip(A , range(len(A ) ) ) ) UpperCAmelCase : Union[str, Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] UpperCAmelCase : Optional[int] = {"""unk_token""": """<unk>"""} UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(A ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(A ) ) def _lowercase( self , **A ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , **A ) -> Any: kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> List[str]: UpperCAmelCase : int = """lower newer""" UpperCAmelCase : List[str] = """lower newer""" return input_text, output_text def _lowercase( self ) -> Any: UpperCAmelCase : int = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase : Any = """lower newer""" UpperCAmelCase : Optional[int] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] UpperCAmelCase : Union[str, Any] = tokenizer.tokenize(A ) # , add_prefix_space=True) self.assertListEqual(A , A ) UpperCAmelCase : str = tokens + [tokenizer.unk_token] UpperCAmelCase : List[str] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=A ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=A ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def _lowercase( self ) -> int: UpperCAmelCase : List[str] = self.tokenizer_class.from_pretrained("""roberta-base""" ) UpperCAmelCase : Tuple = tokenizer.encode("""sequence builders""" , add_special_tokens=A ) UpperCAmelCase : Optional[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=A ) UpperCAmelCase : Tuple = tokenizer.encode( """sequence builders""" , add_special_tokens=A , add_prefix_space=A ) UpperCAmelCase : Dict = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=A , add_prefix_space=A ) UpperCAmelCase : Any = tokenizer.build_inputs_with_special_tokens(A ) UpperCAmelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(A , A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _lowercase( self ) -> Optional[int]: UpperCAmelCase : List[str] = self.get_tokenizer() UpperCAmelCase : List[str] = """Encode this sequence.""" UpperCAmelCase : Optional[int] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments UpperCAmelCase : str = tokenizer.encode(A , add_special_tokens=A , add_prefix_space=A ) UpperCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(A , A ) UpperCAmelCase : Union[str, Any] = tokenizer.encode(A , add_special_tokens=A , add_prefix_space=A ) UpperCAmelCase : int = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(A , A ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) UpperCAmelCase : str = tokenizer.encode(A , add_special_tokens=A ) UpperCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(A , A ) # Testing spaces after special tokens UpperCAmelCase : int = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(A , lstrip=A , rstrip=A )} ) # mask token has a left space UpperCAmelCase : List[Any] = tokenizer.convert_tokens_to_ids(A ) UpperCAmelCase : Union[str, Any] = """Encode <mask> sequence""" UpperCAmelCase : Any = """Encode <mask>sequence""" UpperCAmelCase : Tuple = tokenizer.encode(A ) UpperCAmelCase : Dict = encoded.index(A ) UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(A , A ) UpperCAmelCase : List[Any] = tokenizer.encode(A ) UpperCAmelCase : List[Any] = encoded.index(A ) UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(A , A ) def _lowercase( self ) -> List[str]: pass def _lowercase( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(A , **A ) UpperCAmelCase : Dict = self.tokenizer_class.from_pretrained(A , **A ) UpperCAmelCase : str = """A, <mask> AllenNLP sentence.""" UpperCAmelCase : List[Any] = tokenizer_r.encode_plus(A , add_special_tokens=A , return_token_type_ids=A ) UpperCAmelCase : Dict = tokenizer_p.encode_plus(A , add_special_tokens=A , return_token_type_ids=A ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) UpperCAmelCase : str = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) UpperCAmelCase : int = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( A , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( A , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def _lowercase( self ) -> Optional[int]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): UpperCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : List[str] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) UpperCAmelCase : Tuple = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , A ) self.assertEqual(post_processor_state["""add_prefix_space"""] , A ) self.assertEqual(post_processor_state["""trim_offsets"""] , A ) def _lowercase( self ) -> Dict: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase : Dict = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` UpperCAmelCase : str = f'''{text_of_1_token} {text_of_1_token}''' UpperCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : Optional[Any] = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A ) + 1, len(A ) + 1 + len(A )) , ) UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : Optional[Any] = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A ) + 1, len(A ) + 1 + len(A )) , ) UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : Union[str, Any] = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A ), len(A ) + 1 + len(A )) , ) UpperCAmelCase : str = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : List[str] = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A ), len(A ) + 1 + len(A )) , ) UpperCAmelCase : str = f''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : Optional[Any] = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A ) + 1, 1 + len(A ) + 1 + len(A )) , ) UpperCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : int = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A ), 1 + len(A ) + 1 + len(A )) , ) UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : Dict = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A ), 1 + len(A ) + 1 + len(A )) , )
355
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[Any] = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
0
'''simple docstring''' import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__magic_name__ ) , 'Tatoeba directory does not exist.' ) class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _lowercase( self ) -> str: UpperCAmelCase : Tuple = tempfile.mkdtemp() return TatoebaConverter(save_dir=A ) @slow def _lowercase( self ) -> Union[str, Any]: self.resolver.convert_models(["""heb-eng"""] ) @slow def _lowercase( self ) -> str: UpperCAmelCase : str = self.resolver.write_model_card("""opus-mt-he-en""" , dry_run=A ) assert mmeta["long_pair"] == "heb-eng"
356
'''simple docstring''' from math import loga def __lowerCamelCase ( _lowercase ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_lowercase , _lowercase ): raise TypeError("""Input value must be a 'int' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
338
0
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="""%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s""", datefmt="""%Y-%m-%d %H:%M:%S""", level=os.environ.get("""LOGLEVEL""", """INFO""").upper(), stream=sys.stdout, ) a : Optional[int] = logging.getLogger(__name__) a : Dict = {"""facebook/bart-base""": BartForConditionalGeneration} a : Tuple = {"""facebook/bart-base""": BartTokenizer} def __lowerCamelCase ( ) -> Any: UpperCAmelCase : List[Any] = argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""" ) parser.add_argument( """--validation_file""" , type=_lowercase , default=_lowercase , help="""A csv or a json file containing the validation data.""" ) parser.add_argument( """--max_length""" , type=_lowercase , default=5 , help="""The maximum total input sequence length after tokenization.""" , ) parser.add_argument( """--num_beams""" , type=_lowercase , default=_lowercase , help=( """Number of beams to use for evaluation. This argument will be """ """passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.""" ) , ) parser.add_argument( """--model_name_or_path""" , type=_lowercase , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=_lowercase , ) parser.add_argument( """--config_name""" , type=_lowercase , default=_lowercase , help="""Pretrained config name or path if not the same as model_name""" , ) parser.add_argument( """--device""" , type=_lowercase , default="""cpu""" , help="""Device where the model will be run""" , ) parser.add_argument("""--output_file_path""" , type=_lowercase , default=_lowercase , help="""Where to store the final ONNX file.""" ) UpperCAmelCase : Optional[Any] = parser.parse_args() return args def __lowerCamelCase ( _lowercase , _lowercase="cpu" ) -> int: UpperCAmelCase : Union[str, Any] = model_dict[model_name].from_pretrained(_lowercase ).to(_lowercase ) UpperCAmelCase : Tuple = tokenizer_dict[model_name].from_pretrained(_lowercase ) if model_name in ["facebook/bart-base"]: UpperCAmelCase : List[Any] = 0 UpperCAmelCase : str = None UpperCAmelCase : Tuple = 0 return huggingface_model, tokenizer def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Tuple: model.eval() UpperCAmelCase : Tuple = None UpperCAmelCase : Union[str, Any] = torch.jit.script(BARTBeamSearchGenerator(_lowercase ) ) with torch.no_grad(): UpperCAmelCase : int = """My friends are cool but they eat too many carbs.""" UpperCAmelCase : Dict = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_0_2_4 , return_tensors="""pt""" ).to(model.device ) UpperCAmelCase : List[Any] = model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=_lowercase , max_length=_lowercase , early_stopping=_lowercase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _lowercase , ( inputs["""input_ids"""], inputs["""attention_mask"""], num_beams, max_length, model.config.decoder_start_token_id, ) , _lowercase , opset_version=1_4 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """seq"""}, """output_ids""": {0: """batch""", 1: """seq_out"""}, } , example_outputs=_lowercase , ) logger.info("""Model exported to {}""".format(_lowercase ) ) UpperCAmelCase : Optional[int] = remove_dup_initializers(os.path.abspath(_lowercase ) ) logger.info("""Deduplicated and optimized model written to {}""".format(_lowercase ) ) UpperCAmelCase : Union[str, Any] = onnxruntime.InferenceSession(_lowercase ) UpperCAmelCase : List[str] = ort_sess.run( _lowercase , { """input_ids""": inputs["""input_ids"""].cpu().numpy(), """attention_mask""": inputs["""attention_mask"""].cpu().numpy(), """num_beams""": np.array(_lowercase ), """max_length""": np.array(_lowercase ), """decoder_start_token_id""": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info("""Model outputs from torch and ONNX Runtime are similar.""" ) logger.info("""Success.""" ) def __lowerCamelCase ( ) -> Optional[int]: UpperCAmelCase : Any = parse_args() UpperCAmelCase : str = 5 UpperCAmelCase : Optional[Any] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() UpperCAmelCase : Dict = torch.device(args.device ) UpperCAmelCase : Union[str, Any] = load_model_tokenizer(args.model_name_or_path , _lowercase ) if model.config.decoder_start_token_id is None: raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""" ) model.to(_lowercase ) if args.max_length: UpperCAmelCase : Optional[int] = args.max_length if args.num_beams: UpperCAmelCase : int = args.num_beams if args.output_file_path: UpperCAmelCase : Tuple = args.output_file_path else: UpperCAmelCase : int = """BART.onnx""" logger.info("""Exporting model to ONNX""" ) export_and_validate_model(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) if __name__ == "__main__": main()
357
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. a : Optional[int] = 1_0 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: for i in range(_lowercase , _lowercase ): if array[i] == target: return i return -1 def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = len(_lowercase ) while left <= right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1 UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase : Any = one_third - 1 elif array[two_third] < target: UpperCAmelCase : Tuple = two_third + 1 else: UpperCAmelCase : int = one_third + 1 UpperCAmelCase : List[Any] = two_third - 1 else: return -1 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: if left < right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : str = (left + right) // 3 + 1 UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() a : Any = input("""Enter numbers separated by comma:\n""").strip() a : Any = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip()) a : Union[str, Any] = ite_ternary_search(collection, target) a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
338
0
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase_ ( __magic_name__ ): lowercase = (CMStochasticIterativeScheduler,) lowercase = 10 def _lowercase( self , **A ) -> Tuple: UpperCAmelCase : List[str] = { """num_train_timesteps""": 201, """sigma_min""": 0.0_0_2, """sigma_max""": 80.0, } config.update(**A ) return config def _lowercase( self ) -> Dict: UpperCAmelCase : List[str] = 10 UpperCAmelCase : Optional[int] = self.get_scheduler_config() UpperCAmelCase : List[str] = self.scheduler_classes[0](**A ) scheduler.set_timesteps(A ) UpperCAmelCase : str = scheduler.timesteps[0] UpperCAmelCase : Optional[Any] = scheduler.timesteps[1] UpperCAmelCase : Any = self.dummy_sample UpperCAmelCase : Tuple = 0.1 * sample UpperCAmelCase : Optional[Any] = scheduler.step(A , A , A ).prev_sample UpperCAmelCase : int = scheduler.step(A , A , A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _lowercase( self ) -> Optional[Any]: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=A ) def _lowercase( self ) -> Union[str, Any]: for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=A ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = self.scheduler_classes[0] UpperCAmelCase : int = self.get_scheduler_config() UpperCAmelCase : Any = scheduler_class(**A ) UpperCAmelCase : Optional[Any] = 1 scheduler.set_timesteps(A ) UpperCAmelCase : List[Any] = scheduler.timesteps UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : List[Any] = self.dummy_model() UpperCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(A ): # 1. scale model input UpperCAmelCase : str = scheduler.scale_model_input(A , A ) # 2. predict noise residual UpperCAmelCase : List[Any] = model(A , A ) # 3. predict previous sample x_t-1 UpperCAmelCase : List[Any] = scheduler.step(A , A , A , generator=A ).prev_sample UpperCAmelCase : List[Any] = pred_prev_sample UpperCAmelCase : List[str] = torch.sum(torch.abs(A ) ) UpperCAmelCase : Optional[int] = torch.mean(torch.abs(A ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2_5_1_0 ) < 1e-3 def _lowercase( self ) -> Dict: UpperCAmelCase : Optional[int] = self.scheduler_classes[0] UpperCAmelCase : Tuple = self.get_scheduler_config() UpperCAmelCase : Tuple = scheduler_class(**A ) UpperCAmelCase : List[Any] = [106, 0] scheduler.set_timesteps(timesteps=A ) UpperCAmelCase : Optional[int] = scheduler.timesteps UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase : List[Any] = self.dummy_model() UpperCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input UpperCAmelCase : Tuple = scheduler.scale_model_input(A , A ) # 2. predict noise residual UpperCAmelCase : List[str] = model(A , A ) # 3. predict previous sample x_t-1 UpperCAmelCase : Tuple = scheduler.step(A , A , A , generator=A ).prev_sample UpperCAmelCase : int = pred_prev_sample UpperCAmelCase : Any = torch.sum(torch.abs(A ) ) UpperCAmelCase : Any = torch.mean(torch.abs(A ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4_5_2_7 ) < 1e-3 def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : str = self.scheduler_classes[0] UpperCAmelCase : Dict = self.get_scheduler_config() UpperCAmelCase : Dict = scheduler_class(**A ) UpperCAmelCase : List[str] = [39, 30, 12, 15, 0] with self.assertRaises(A , msg="""`timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=A ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = self.scheduler_classes[0] UpperCAmelCase : str = self.get_scheduler_config() UpperCAmelCase : Union[str, Any] = scheduler_class(**A ) UpperCAmelCase : int = [39, 30, 12, 1, 0] UpperCAmelCase : Union[str, Any] = len(A ) with self.assertRaises(A , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=A , timesteps=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Tuple = self.scheduler_classes[0] UpperCAmelCase : int = self.get_scheduler_config() UpperCAmelCase : Dict = scheduler_class(**A ) UpperCAmelCase : Tuple = [scheduler.config.num_train_timesteps] with self.assertRaises( A , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=A )
358
'''simple docstring''' import numpy as np class UpperCamelCase_ : def __init__( self ) -> int: UpperCAmelCase : str = (0, 0) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Any = 0 UpperCAmelCase : int = 0 UpperCAmelCase : Optional[int] = 0 def __eq__( self , A ) -> Optional[Any]: return self.position == cell.position def _lowercase( self ) -> Tuple: print(self.position ) class UpperCamelCase_ : def __init__( self , A=(5, 5) ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = np.zeros(A ) UpperCAmelCase : int = world_size[0] UpperCAmelCase : List[str] = world_size[1] def _lowercase( self ) -> List[Any]: print(self.w ) def _lowercase( self , A ) -> Dict: UpperCAmelCase : Optional[Any] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase : List[Any] = cell.position[0] UpperCAmelCase : Union[str, Any] = cell.position[1] UpperCAmelCase : Optional[int] = [] for n in neughbour_cord: UpperCAmelCase : Any = current_x + n[0] UpperCAmelCase : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase : str = Cell() UpperCAmelCase : List[str] = (x, y) UpperCAmelCase : Dict = cell neighbours.append(A ) return neighbours def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase : List[Any] = [] UpperCAmelCase : Optional[int] = [] _open.append(_lowercase ) while _open: UpperCAmelCase : Any = np.argmin([n.f for n in _open] ) UpperCAmelCase : Optional[int] = _open[min_f] _closed.append(_open.pop(_lowercase ) ) if current == goal: break for n in world.get_neigbours(_lowercase ): for c in _closed: if c == n: continue UpperCAmelCase : List[str] = current.g + 1 UpperCAmelCase , UpperCAmelCase : List[str] = n.position UpperCAmelCase , UpperCAmelCase : Dict = goal.position UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase : Dict = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_lowercase ) UpperCAmelCase : Dict = [] while current.parent is not None: path.append(current.position ) UpperCAmelCase : Optional[int] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": a : List[str] = Gridworld() # Start position and goal a : Optional[int] = Cell() a : Optional[Any] = (0, 0) a : Optional[Any] = Cell() a : str = (4, 4) print(F'''path from {start.position} to {goal.position}''') a : List[Any] = astar(world, start, goal) # Just for visual reasons. for i in s: a : Any = 1 print(world.w)
338
0
'''simple docstring''' import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib a : Union[str, Any] = threading.Lock() a : Optional[logging.Handler] = None a : List[str] = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } a : Any = logging.WARNING a : str = True def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : Optional[Any] = os.getenv("""TRANSFORMERS_VERBOSITY""" , _lowercase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'''Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ''' F'''has to be one of: { ', '.join(log_levels.keys() ) }''' ) return _default_log_level def __lowerCamelCase ( ) -> str: return __name__.split(""".""" )[0] def __lowerCamelCase ( ) -> logging.Logger: return logging.getLogger(_get_library_name() ) def __lowerCamelCase ( ) -> None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return UpperCAmelCase : Tuple = logging.StreamHandler() # Set sys.stderr as stream. UpperCAmelCase : Any = sys.stderr.flush # Apply our default configuration to the library root logger. UpperCAmelCase : int = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) UpperCAmelCase : Union[str, Any] = False def __lowerCamelCase ( ) -> None: global _default_handler with _lock: if not _default_handler: return UpperCAmelCase : List[str] = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) UpperCAmelCase : int = None def __lowerCamelCase ( ) -> Union[str, Any]: return log_levels def __lowerCamelCase ( _lowercase = None ) -> logging.Logger: if name is None: UpperCAmelCase : List[Any] = _get_library_name() _configure_library_root_logger() return logging.getLogger(_lowercase ) def __lowerCamelCase ( ) -> int: _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def __lowerCamelCase ( _lowercase ) -> None: _configure_library_root_logger() _get_library_root_logger().setLevel(_lowercase ) def __lowerCamelCase ( ) -> Any: return set_verbosity(_lowercase ) def __lowerCamelCase ( ) -> Optional[int]: return set_verbosity(_lowercase ) def __lowerCamelCase ( ) -> int: return set_verbosity(_lowercase ) def __lowerCamelCase ( ) -> List[str]: return set_verbosity(_lowercase ) def __lowerCamelCase ( ) -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def __lowerCamelCase ( ) -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def __lowerCamelCase ( _lowercase ) -> None: _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(_lowercase ) def __lowerCamelCase ( _lowercase ) -> None: _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(_lowercase ) def __lowerCamelCase ( ) -> None: _configure_library_root_logger() UpperCAmelCase : int = False def __lowerCamelCase ( ) -> None: _configure_library_root_logger() UpperCAmelCase : Optional[int] = True def __lowerCamelCase ( ) -> None: UpperCAmelCase : str = _get_library_root_logger().handlers for handler in handlers: UpperCAmelCase : List[str] = logging.Formatter("""[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s""" ) handler.setFormatter(_lowercase ) def __lowerCamelCase ( ) -> None: UpperCAmelCase : Dict = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(_lowercase ) def __lowerCamelCase ( self , *_lowercase , **_lowercase ) -> Tuple: UpperCAmelCase : Optional[Any] = os.getenv("""TRANSFORMERS_NO_ADVISORY_WARNINGS""" , _lowercase ) if no_advisory_warnings: return self.warning(*_lowercase , **_lowercase ) a : List[Any] = warning_advice @functools.lru_cache(_lowercase ) def __lowerCamelCase ( self , *_lowercase , **_lowercase ) -> int: self.warning(*_lowercase , **_lowercase ) a : Union[str, Any] = warning_once class UpperCamelCase_ : def __init__( self , *A , **A ) -> Optional[Any]: # pylint: disable=unused-argument UpperCAmelCase : Any = args[0] if args else None def __iter__( self ) -> int: return iter(self._iterator ) def __getattr__( self , A ) -> Optional[Any]: def empty_fn(*A , **A ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ) -> List[Any]: return self def __exit__( self , A , A , A ) -> Any: return class UpperCamelCase_ : def __call__( self , *A , **A ) -> List[Any]: if _tqdm_active: return tqdm_lib.tqdm(*A , **A ) else: return EmptyTqdm(*A , **A ) def _lowercase( self , *A , **A ) -> Any: UpperCAmelCase : Any = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*A , **A ) def _lowercase( self ) -> int: if _tqdm_active: return tqdm_lib.tqdm.get_lock() a : Tuple = _tqdm_cls() def __lowerCamelCase ( ) -> bool: global _tqdm_active return bool(_tqdm_active ) def __lowerCamelCase ( ) -> Any: global _tqdm_active UpperCAmelCase : int = True hf_hub_utils.enable_progress_bars() def __lowerCamelCase ( ) -> Optional[Any]: global _tqdm_active UpperCAmelCase : Optional[int] = False hf_hub_utils.disable_progress_bars()
359
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : Tuple = logging.get_logger(__name__) a : Optional[int] = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'decision_transformer' lowercase = ['past_key_values'] lowercase = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , A=17 , A=4 , A=128 , A=4096 , A=True , A=1 , A=1024 , A=3 , A=1 , A=None , A="relu" , A=0.1 , A=0.1 , A=0.1 , A=1e-5 , A=0.0_2 , A=True , A=True , A=50256 , A=50256 , A=False , A=False , **A , ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = state_dim UpperCAmelCase : Optional[int] = act_dim UpperCAmelCase : Optional[Any] = hidden_size UpperCAmelCase : List[str] = max_ep_len UpperCAmelCase : Optional[Any] = action_tanh UpperCAmelCase : List[str] = vocab_size UpperCAmelCase : Union[str, Any] = n_positions UpperCAmelCase : List[str] = n_layer UpperCAmelCase : str = n_head UpperCAmelCase : Any = n_inner UpperCAmelCase : Optional[int] = activation_function UpperCAmelCase : Tuple = resid_pdrop UpperCAmelCase : List[str] = embd_pdrop UpperCAmelCase : Dict = attn_pdrop UpperCAmelCase : List[Any] = layer_norm_epsilon UpperCAmelCase : Any = initializer_range UpperCAmelCase : int = scale_attn_weights UpperCAmelCase : int = use_cache UpperCAmelCase : Any = scale_attn_by_inverse_layer_idx UpperCAmelCase : List[str] = reorder_and_upcast_attn UpperCAmelCase : List[Any] = bos_token_id UpperCAmelCase : str = eos_token_id super().__init__(bos_token_id=A , eos_token_id=A , **A )
360
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a : int = logging.get_logger(__name__) a : int = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off a : Tuple = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] a : Optional[int] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class UpperCamelCase_ ( __magic_name__ ): lowercase = 'whisper' lowercase = ['past_key_values'] lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]: UpperCAmelCase : str = vocab_size UpperCAmelCase : Union[str, Any] = num_mel_bins UpperCAmelCase : Tuple = d_model UpperCAmelCase : Optional[int] = encoder_layers UpperCAmelCase : List[str] = encoder_attention_heads UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : int = decoder_attention_heads UpperCAmelCase : Optional[int] = decoder_ffn_dim UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : List[str] = dropout UpperCAmelCase : Optional[Any] = attention_dropout UpperCAmelCase : Optional[Any] = activation_dropout UpperCAmelCase : Optional[Any] = activation_function UpperCAmelCase : Optional[Any] = init_std UpperCAmelCase : int = encoder_layerdrop UpperCAmelCase : Dict = decoder_layerdrop UpperCAmelCase : Optional[int] = use_cache UpperCAmelCase : List[str] = encoder_layers UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Union[str, Any] = max_source_positions UpperCAmelCase : Tuple = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : List[str] = classifier_proj_size UpperCAmelCase : Optional[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : int = mask_time_prob UpperCAmelCase : int = mask_time_length UpperCAmelCase : Dict = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Optional[int] = mask_feature_length UpperCAmelCase : int = mask_feature_min_masks UpperCAmelCase : List[Any] = median_filter_width super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , ) class UpperCamelCase_ ( __magic_name__ ): @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : str = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase : List[Any] = {0: """batch"""} else: UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) return common_inputs def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Optional[int] = OrderedDict() UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , ) UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2] UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Any = super().generate_dummy_inputs( preprocessor.tokenizer , A , A , A , A ) UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" ) UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def _lowercase( self ) -> float: return 1e-3
338
0
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") a : Optional[Any] = int(input("""Enter number: """).strip()) print(F'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
361
'''simple docstring''' a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowerCamelCase ( ) -> None: UpperCAmelCase : Optional[int] = input("""Enter message: """ ) UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ ) UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): UpperCAmelCase : List[str] = """encrypt""" UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase ) elif mode.lower().startswith("""d""" ): UpperCAmelCase : Tuple = """decrypt""" UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """encrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """decrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Tuple = key.upper() for symbol in message: UpperCAmelCase : Dict = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowercase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowercase ): UpperCAmelCase : Optional[int] = 0 else: translated.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": main()
338
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor a = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , **A ) -> None: warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , A , ) super().__init__(*A , **A )
362
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Optional[int] = split_dict._to_yaml_list() assert len(_lowercase ) == len(_lowercase ) UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(_lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCAmelCase : List[str] = None # the split name of split_dict takes over the name of the split info object UpperCAmelCase : int = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name="""my_dataset""" )] ) def __lowerCamelCase ( _lowercase ) -> List[str]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files UpperCAmelCase : Optional[Any] = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
338
0
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[Any]: global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: UpperCAmelCase : Tuple = mf_knapsack(i - 1 , _lowercase , _lowercase , _lowercase ) else: UpperCAmelCase : Dict = max( mf_knapsack(i - 1 , _lowercase , _lowercase , _lowercase ) , mf_knapsack(i - 1 , _lowercase , _lowercase , j - wt[i - 1] ) + val[i - 1] , ) UpperCAmelCase : Tuple = val return f[i][j] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : List[str] = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: UpperCAmelCase : str = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: UpperCAmelCase : Optional[Any] = dp[i - 1][w_] return dp[n][w_], dp def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: if not (isinstance(_lowercase , (list, tuple) ) and isinstance(_lowercase , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) UpperCAmelCase : Optional[int] = len(_lowercase ) if num_items != len(_lowercase ): UpperCAmelCase : Optional[Any] = ( """The number of weights must be the same as the number of values.\n""" F'''But got {num_items} weights and {len(_lowercase )} values''' ) raise ValueError(_lowercase ) for i in range(_lowercase ): if not isinstance(wt[i] , _lowercase ): UpperCAmelCase : Union[str, Any] = ( """All weights must be integers but got weight of """ F'''type {type(wt[i] )} at index {i}''' ) raise TypeError(_lowercase ) UpperCAmelCase : List[Any] = knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : set = set() _construct_solution(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) return optimal_val, example_optional_set def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(_lowercase , _lowercase , i - 1 , _lowercase , _lowercase ) else: optimal_set.add(_lowercase ) _construct_solution(_lowercase , _lowercase , i - 1 , j - wt[i - 1] , _lowercase ) if __name__ == "__main__": a : str = [3, 2, 4, 4] a : str = [4, 3, 2, 3] a : List[str] = 4 a : Optional[Any] = 6 a : Optional[int] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] a : List[str] = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 a : Optional[Any] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
363
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor a : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , **A ) -> None: warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , A , ) super().__init__(*A , **A )
338
0
'''simple docstring''' from collections.abc import Sequence def __lowerCamelCase ( _lowercase = None ) -> int: """simple docstring""" if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) UpperCAmelCase : List[str] = nums[0] for i in range(1 , len(_lowercase ) ): UpperCAmelCase : Union[str, Any] = nums[i] UpperCAmelCase : str = max(_lowercase , ans + num , _lowercase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user a : int = int(input("""Enter number of elements : """).strip()) a : List[Any] = list(map(int, input("""\nEnter the numbers : """).strip().split()))[:n] print(max_subsequence_sum(array))
364
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a : Union[str, Any] = logging.get_logger(__name__) a : Union[str, Any] = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'detr' lowercase = ['past_key_values'] lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(A , A ): UpperCAmelCase : Any = backbone_config.get("""model_type""" ) UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : List[Any] = config_class.from_dict(A ) # set timm attributes to None UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = None, None, None UpperCAmelCase : Dict = use_timm_backbone UpperCAmelCase : Any = backbone_config UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : int = num_queries UpperCAmelCase : List[str] = d_model UpperCAmelCase : Tuple = encoder_ffn_dim UpperCAmelCase : Optional[Any] = encoder_layers UpperCAmelCase : Any = encoder_attention_heads UpperCAmelCase : Optional[Any] = decoder_ffn_dim UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : str = dropout UpperCAmelCase : Tuple = attention_dropout UpperCAmelCase : Dict = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : List[Any] = init_std UpperCAmelCase : str = init_xavier_std UpperCAmelCase : List[Any] = encoder_layerdrop UpperCAmelCase : int = decoder_layerdrop UpperCAmelCase : List[Any] = encoder_layers UpperCAmelCase : Union[str, Any] = auxiliary_loss UpperCAmelCase : str = position_embedding_type UpperCAmelCase : Union[str, Any] = backbone UpperCAmelCase : List[str] = use_pretrained_backbone UpperCAmelCase : Optional[int] = dilation # Hungarian matcher UpperCAmelCase : Union[str, Any] = class_cost UpperCAmelCase : Optional[Any] = bbox_cost UpperCAmelCase : List[Any] = giou_cost # Loss coefficients UpperCAmelCase : int = mask_loss_coefficient UpperCAmelCase : Optional[int] = dice_loss_coefficient UpperCAmelCase : Dict = bbox_loss_coefficient UpperCAmelCase : Any = giou_loss_coefficient UpperCAmelCase : Any = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def _lowercase( self ) -> int: return self.encoder_attention_heads @property def _lowercase( self ) -> int: return self.d_model @classmethod def _lowercase( cls , A , **A ) -> Dict: return cls(backbone_config=A , **A ) def _lowercase( self ) -> Dict[str, any]: UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase : Any = self.backbone_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowercase( self ) -> float: return 1e-5 @property def _lowercase( self ) -> int: return 12
338
0