code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a = logging.get_logger(__name__) a = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} a = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } a = { """gpt2""": 1_0_2_4, """gpt2-medium""": 1_0_2_4, """gpt2-large""": 1_0_2_4, """gpt2-xl""": 1_0_2_4, """distilgpt2""": 1_0_2_4, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = GPTaTokenizer def __init__( self , A=None , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , **A , ) -> Union[str, Any]: super().__init__( A , A , tokenizer_file=A , unk_token=A , bos_token=A , eos_token=A , add_prefix_space=A , **A , ) UpperCAmelCase : List[str] = kwargs.pop("""add_bos_token""" , A ) UpperCAmelCase : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , A ) != add_prefix_space: UpperCAmelCase : List[str] = getattr(A , pre_tok_state.pop("""type""" ) ) UpperCAmelCase : str = add_prefix_space UpperCAmelCase : Tuple = pre_tok_class(**A ) UpperCAmelCase : int = add_prefix_space def _lowercase( self , *A , **A ) -> BatchEncoding: UpperCAmelCase : Optional[int] = kwargs.get("""is_split_into_words""" , A ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A , **A ) def _lowercase( self , *A , **A ) -> BatchEncoding: UpperCAmelCase : Any = kwargs.get("""is_split_into_words""" , A ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*A , **A ) def _lowercase( self , A , A = None ) -> Tuple[str]: UpperCAmelCase : List[Any] = self._tokenizer.model.save(A , name=A ) return tuple(A ) def _lowercase( self , A ) -> List[int]: UpperCAmelCase : Dict = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(A , add_special_tokens=A ) + [self.eos_token_id] ) if len(A ) > self.model_max_length: UpperCAmelCase : Optional[int] = input_ids[-self.model_max_length :] return input_ids
365
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[str] = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
0
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> bool: if not isinstance(_lowercase , _lowercase ): UpperCAmelCase : List[str] = F'''Input value of [number={number}] must be an integer''' raise TypeError(_lowercase ) if number < 0: return False UpperCAmelCase : List[Any] = number * number while number > 0: if number % 1_0 != number_square % 1_0: return False number //= 1_0 number_square //= 1_0 return True if __name__ == "__main__": import doctest doctest.testmod()
366
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" ) if "model" in sd.keys(): UpperCAmelCase : Any = torch.load(_lowercase , map_location="""cpu""" )["""model"""] # pop unnecessary weights UpperCAmelCase : Union[str, Any] = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(_lowercase ) UpperCAmelCase : Tuple = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase : List[Any] = sd.pop(_lowercase ) UpperCAmelCase : Tuple = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase : List[str] = sd[key] # We split QKV in separate Q,K,V UpperCAmelCase : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" ) UpperCAmelCase : Tuple = key.replace(""".qkv_proj.""" , """.k_proj.""" ) UpperCAmelCase : int = key.replace(""".qkv_proj.""" , """.v_proj.""" ) UpperCAmelCase : Dict = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = torch.split(_lowercase , depth // 3 , dim=0 ) UpperCAmelCase : Tuple = q UpperCAmelCase : Tuple = k UpperCAmelCase : Any = v del sd[key] return sd @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Optional[Any]: UpperCAmelCase : Tuple = load_checkpoint(_lowercase ) if config is not None: UpperCAmelCase : Dict = OPTConfig.from_pretrained(_lowercase ) else: UpperCAmelCase : int = OPTConfig() UpperCAmelCase : List[Any] = OPTModel(_lowercase ).half().eval() model.load_state_dict(_lowercase ) # Check results Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") a : Union[str, Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
338
0
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> list: if any(not isinstance(_lowercase , _lowercase ) or x < 0 for x in sequence ): raise TypeError("""Sequence must be list of non-negative integers""" ) for _ in range(len(_lowercase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(_lowercase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
367
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : str = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'levit' def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int: super().__init__(**A ) UpperCAmelCase : Any = image_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : Tuple = kernel_size UpperCAmelCase : Optional[int] = stride UpperCAmelCase : Dict = padding UpperCAmelCase : List[Any] = hidden_sizes UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = depths UpperCAmelCase : Any = key_dim UpperCAmelCase : str = drop_path_rate UpperCAmelCase : List[Any] = patch_size UpperCAmelCase : str = attention_ratio UpperCAmelCase : Optional[Any] = mlp_ratio UpperCAmelCase : Dict = initializer_range UpperCAmelCase : int = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase( self ) -> float: return 1e-4
338
0
'''simple docstring''' from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def __lowerCamelCase ( ) -> int: UpperCAmelCase : List[Any] = 9, 1_4 # noqa: F841 UpperCAmelCase : List[Any] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 1_4], [3, 4, 9], [5, 4, 1_0], [1, 7, 1_1], ] UpperCAmelCase : List[Any] = defaultdict(_lowercase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) UpperCAmelCase : str = mst(_lowercase ) UpperCAmelCase : int = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: UpperCAmelCase : List[str] = tuple(answer[:2] ) UpperCAmelCase : str = tuple(edge[::-1] ) assert edge in result or reverse in result
368
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) a : List[str] = """Hello, World!""" a : List[Any] = """en_XX""" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Dict = Path("""data_bin""" ) UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(_lowercase ) UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder UpperCAmelCase : Tuple = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , _lowercase ) UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight UpperCAmelCase : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase : List[str] = model.roberta.encoder.layer[i] UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i] # self attention UpperCAmelCase : Optional[Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias # intermediate UpperCAmelCase : Tuple = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) UpperCAmelCase : List[str] = xmod_layer.fca.weight UpperCAmelCase : str = xmod_layer.fca.bias # output UpperCAmelCase : Any = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) UpperCAmelCase : Dict = xmod_layer.fca.weight UpperCAmelCase : Dict = xmod_layer.fca.bias UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code] UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code] UpperCAmelCase : Any = from_adapter.fca.weight UpperCAmelCase : int = from_adapter.fca.bias UpperCAmelCase : Dict = from_adapter.fca.weight UpperCAmelCase : Dict = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias UpperCAmelCase : str = xmod.model.encoder.lm_head.weight UpperCAmelCase : str = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) UpperCAmelCase : Optional[int] = model(_lowercase )[0] if classification_head: UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) ) else: UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) a : List[str] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
338
0
from math import loga def __lowerCamelCase ( _lowercase ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_lowercase , _lowercase ): raise TypeError("""Input value must be a 'int' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
369
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __lowerCamelCase ( _lowercase ) -> List[Any]: for i in range(0 , _lowercase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __lowerCamelCase ( _lowercase ) -> Dict: for i in range(_lowercase , 0 , -1 ): for _ in range(_lowercase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __lowerCamelCase ( _lowercase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowercase ) # upper half reverse_floyd(_lowercase ) # lower half if __name__ == "__main__": print(R"""| /\ | |- | |- |--| |\ /| |-""") print(R"""|/ \| |- |_ |_ |__| | \/ | |_""") a : List[Any] = 1 while K: a : int = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) a : Tuple = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
338
0
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=5 ) -> List[Any]: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count("""<mask>""" ) == 1 UpperCAmelCase : str = torch.tensor(tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) ).unsqueeze(0 ) # Batch size 1 UpperCAmelCase : Dict = model(_lowercase )[0] # The last hidden-state is the first element of the output tuple UpperCAmelCase : Tuple = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() UpperCAmelCase : Any = logits[0, masked_index, :] UpperCAmelCase : Optional[Any] = logits.softmax(dim=0 ) UpperCAmelCase : Optional[int] = prob.topk(k=_lowercase , dim=0 ) UpperCAmelCase : Optional[Any] = """ """.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(_lowercase ) )] ) UpperCAmelCase : List[str] = tokenizer.mask_token UpperCAmelCase : Tuple = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(""" """ ) ): UpperCAmelCase : str = predicted_token_bpe.replace("""\u2581""" , """ """ ) if " {0}".format(_lowercase ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(""" {0}""".format(_lowercase ) , _lowercase ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(_lowercase , _lowercase ), values[index].item(), predicted_token, ) ) return topk_filled_outputs a : Union[str, Any] = CamembertTokenizer.from_pretrained("""camembert-base""") a : Dict = CamembertForMaskedLM.from_pretrained("""camembert-base""") model.eval() a : Union[str, Any] = """Le camembert est <mask> :)""" print(fill_mask(masked_input, model, tokenizer, topk=3))
370
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever a : List[str] = logging.getLogger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A=None ) -> Union[str, Any]: super().__init__( A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , ) UpperCAmelCase : Optional[Any] = None def _lowercase( self , A ) -> List[Any]: logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually UpperCAmelCase : Tuple = self._infer_socket_ifname() # avoid clash with the NCCL port UpperCAmelCase : str = str(distributed_port + 1 ) UpperCAmelCase : Any = dist.new_group(ranks=A , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _lowercase( self ) -> Dict: return dist.get_rank(group=self.process_group ) == 0 def _lowercase( self , A , A , A=torch.floataa ) -> str: UpperCAmelCase : List[Any] = torch.empty(A , dtype=A ) dist.scatter(A , src=0 , scatter_list=A , group=self.process_group ) return target_tensor def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names UpperCAmelCase : Optional[int] = next((addr for addr in addrs if addr.startswith("""e""" )) , A ) return ifname def _lowercase( self , A , A ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): UpperCAmelCase , UpperCAmelCase : str = self._main_retrieve(A , A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A ) # distributed training UpperCAmelCase : int = dist.get_world_size(group=self.process_group ) # gather logic UpperCAmelCase : int = None if self._is_main(): UpperCAmelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )] dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group ) # scatter logic UpperCAmelCase : List[Any] = question_hidden_states.shape[0] UpperCAmelCase : Tuple = [] UpperCAmelCase : Any = [] if self._is_main(): assert len(A ) == world_size UpperCAmelCase , UpperCAmelCase : Optional[int] = self._main_retrieve(torch.cat(A ).numpy() , A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = torch.tensor(A ), torch.tensor(A ) UpperCAmelCase : List[str] = self._chunk_tensor(A , A ) UpperCAmelCase : Union[str, Any] = self._chunk_tensor(A , A ) UpperCAmelCase : Tuple = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa ) UpperCAmelCase : Optional[Any] = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
338
0
'''simple docstring''' from __future__ import annotations from typing import Any class UpperCamelCase_ : def __init__( self , A ) -> None: UpperCAmelCase : List[Any] = num_of_nodes UpperCAmelCase : list[list[int]] = [] UpperCAmelCase : dict[int, int] = {} def _lowercase( self , A , A , A ) -> None: self.m_edges.append([u_node, v_node, weight] ) def _lowercase( self , A ) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _lowercase( self , A ) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: UpperCAmelCase : Union[str, Any] = self.find_component(A ) def _lowercase( self , A , A , A ) -> None: if component_size[u_node] <= component_size[v_node]: UpperCAmelCase : Optional[int] = v_node component_size[v_node] += component_size[u_node] self.set_component(A ) elif component_size[u_node] >= component_size[v_node]: UpperCAmelCase : List[str] = self.find_component(A ) component_size[u_node] += component_size[v_node] self.set_component(A ) def _lowercase( self ) -> None: UpperCAmelCase : List[Any] = [] UpperCAmelCase : List[Any] = 0 UpperCAmelCase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) UpperCAmelCase : Any = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: UpperCAmelCase : Tuple = edge UpperCAmelCase : Optional[Any] = self.m_component[u] UpperCAmelCase : Tuple = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): UpperCAmelCase : int = [u, v, w] for edge in minimum_weight_edge: if isinstance(A , A ): UpperCAmelCase : Optional[Any] = edge UpperCAmelCase : str = self.m_component[u] UpperCAmelCase : Optional[int] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(A , A , A ) print(f'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 UpperCAmelCase : Optional[Any] = [-1] * self.m_num_of_nodes print(f'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def __lowerCamelCase ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
371
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : List[str] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } a : List[Any] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } a : List[Any] = { """facebook/blenderbot_small-90M""": 5_1_2, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = BlenderbotSmallTokenizer def __init__( self , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , A=True , **A , ) -> Union[str, Any]: super().__init__( ByteLevelBPETokenizer( vocab=A , merges=A , add_prefix_space=A , trim_offsets=A , ) , bos_token=A , eos_token=A , unk_token=A , **A , ) UpperCAmelCase : Optional[Any] = add_prefix_space def _lowercase( self , A , A=None ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
338
0
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=False , A=True , A=False , A=False , A=19 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> int: UpperCAmelCase : List[str] = parent UpperCAmelCase : Any = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : int = is_training UpperCAmelCase : Union[str, Any] = use_input_mask UpperCAmelCase : List[str] = use_token_type_ids UpperCAmelCase : str = use_labels UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Optional[Any] = hidden_size UpperCAmelCase : Tuple = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[Any] = intermediate_size UpperCAmelCase : int = hidden_act UpperCAmelCase : Optional[Any] = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : List[str] = max_position_embeddings UpperCAmelCase : int = type_vocab_size UpperCAmelCase : Optional[Any] = type_sequence_label_size UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : List[str] = num_labels UpperCAmelCase : Tuple = num_choices UpperCAmelCase : int = scope def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[int] = None if self.use_input_mask: UpperCAmelCase : int = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[Any] = None UpperCAmelCase : Dict = None UpperCAmelCase : str = None if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : Dict = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> List[str]: UpperCAmelCase : Tuple = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=A , esmfold_config={"""trunk""": {"""num_blocks""": 2}, """fp16_esm""": False} , ) return config def _lowercase( self , A , A , A , A , A , A ) -> str: UpperCAmelCase : Optional[Any] = EsmForProteinFolding(config=A ).float() model.to(A ) model.eval() UpperCAmelCase : Any = model(A , attention_mask=A ) UpperCAmelCase : List[Any] = model(A ) UpperCAmelCase : Tuple = model(A ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def _lowercase( self ) -> Dict: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() ( UpperCAmelCase ) : Tuple = config_and_inputs UpperCAmelCase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = False lowercase = (EsmForProteinFolding,) if is_torch_available() else () lowercase = () lowercase = {} if is_torch_available() else {} lowercase = False def _lowercase( self ) -> List[str]: UpperCAmelCase : int = EsmFoldModelTester(self ) UpperCAmelCase : Tuple = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self ) -> str: self.config_tester.run_common_tests() def _lowercase( self ) -> Tuple: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) @unittest.skip("""Does not support attention outputs""" ) def _lowercase( self ) -> Dict: pass @unittest.skip def _lowercase( self ) -> Optional[Any]: pass @unittest.skip("""Esm does not support embedding resizing""" ) def _lowercase( self ) -> Union[str, Any]: pass @unittest.skip("""Esm does not support embedding resizing""" ) def _lowercase( self ) -> Dict: pass @unittest.skip("""ESMFold does not support passing input embeds!""" ) def _lowercase( self ) -> str: pass @unittest.skip("""ESMFold does not support head pruning.""" ) def _lowercase( self ) -> str: pass @unittest.skip("""ESMFold does not support head pruning.""" ) def _lowercase( self ) -> Dict: pass @unittest.skip("""ESMFold does not support head pruning.""" ) def _lowercase( self ) -> Tuple: pass @unittest.skip("""ESMFold does not support head pruning.""" ) def _lowercase( self ) -> Optional[int]: pass @unittest.skip("""ESMFold does not support head pruning.""" ) def _lowercase( self ) -> Tuple: pass @unittest.skip("""ESMFold does not output hidden states in the normal way.""" ) def _lowercase( self ) -> Dict: pass @unittest.skip("""ESMfold does not output hidden states in the normal way.""" ) def _lowercase( self ) -> List[str]: pass @unittest.skip("""ESMFold only has one output format.""" ) def _lowercase( self ) -> str: pass @unittest.skip("""This test doesn't work for ESMFold and doesn't test core functionality""" ) def _lowercase( self ) -> List[str]: pass @unittest.skip("""ESMFold does not support input chunking.""" ) def _lowercase( self ) -> Optional[Any]: pass @unittest.skip("""ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments.""" ) def _lowercase( self ) -> Tuple: pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def _lowercase( self ) -> Optional[Any]: pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def _lowercase( self ) -> Dict: pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def _lowercase( self ) -> Union[str, Any]: pass @unittest.skip("""ESMFold doesn't support data parallel.""" ) def _lowercase( self ) -> Union[str, Any]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _lowercase( self ) -> Any: pass @require_torch class UpperCamelCase_ ( __magic_name__ ): @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : Dict = EsmForProteinFolding.from_pretrained("""facebook/esmfold_v1""" ).float() model.eval() UpperCAmelCase : Any = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) UpperCAmelCase : Union[str, Any] = model(A )["""positions"""] UpperCAmelCase : Any = torch.tensor([2.5_8_2_8, 0.7_9_9_3, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , A , atol=1e-4 ) )
350
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A = None , A = None , A = False , **A , ) -> Tuple: super().__init__(features=A , cache_dir=A , keep_in_memory=A , **A ) UpperCAmelCase : Any = Sql( cache_dir=A , features=A , sql=A , con=A , **A , ) def _lowercase( self ) -> Dict: UpperCAmelCase : Any = None UpperCAmelCase : Any = None UpperCAmelCase : int = None UpperCAmelCase : int = None self.builder.download_and_prepare( download_config=A , download_mode=A , verification_mode=A , base_path=A , ) # Build dataset for splits UpperCAmelCase : str = self.builder.as_dataset( split="""train""" , verification_mode=A , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase_ : def __init__( self , A , A , A , A = None , A = None , **A , ) -> str: if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) UpperCAmelCase : Dict = dataset UpperCAmelCase : List[Any] = name UpperCAmelCase : Any = con UpperCAmelCase : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase : Optional[Any] = num_proc UpperCAmelCase : str = to_sql_kwargs def _lowercase( self ) -> int: UpperCAmelCase : Any = self.to_sql_kwargs.pop("""sql""" , A ) UpperCAmelCase : str = self.to_sql_kwargs.pop("""con""" , A ) UpperCAmelCase : Union[str, Any] = self.to_sql_kwargs.pop("""index""" , A ) UpperCAmelCase : str = self._write(index=A , **self.to_sql_kwargs ) return written def _lowercase( self , A ) -> Any: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = args UpperCAmelCase : Union[str, Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs UpperCAmelCase : int = query_table( table=self.dataset.data , key=slice(A , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCAmelCase : Any = batch.to_pandas() UpperCAmelCase : List[Any] = df.to_sql(self.name , self.con , index=A , **A ) return num_rows or len(A ) def _lowercase( self , A , **A ) -> int: UpperCAmelCase : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: UpperCAmelCase , UpperCAmelCase : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , A , A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
338
0
'''simple docstring''' import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCamelCase_ : def __init__( self , A , A=2 , A=3 , A=4 , A=2 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=36 , A=3 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=6 , A=6 , A=3 , A=4 , A=None , A=1000 , ) -> Union[str, Any]: UpperCAmelCase : List[str] = parent UpperCAmelCase : Tuple = batch_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : Tuple = image_size UpperCAmelCase : Dict = patch_size UpperCAmelCase : Any = text_seq_length UpperCAmelCase : List[Any] = is_training UpperCAmelCase : Optional[int] = use_input_mask UpperCAmelCase : Tuple = use_token_type_ids UpperCAmelCase : Tuple = use_labels UpperCAmelCase : Dict = vocab_size UpperCAmelCase : List[Any] = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Any = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : Optional[Any] = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : List[Any] = max_position_embeddings UpperCAmelCase : List[Any] = type_vocab_size UpperCAmelCase : Optional[int] = type_sequence_label_size UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : Dict = coordinate_size UpperCAmelCase : Optional[int] = shape_size UpperCAmelCase : Tuple = num_labels UpperCAmelCase : Tuple = num_choices UpperCAmelCase : Optional[Any] = scope UpperCAmelCase : Union[str, Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCAmelCase : Any = text_seq_length UpperCAmelCase : Optional[int] = (image_size // patch_size) ** 2 + 1 UpperCAmelCase : str = self.text_seq_length + self.image_seq_length def _lowercase( self ) -> Any: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) UpperCAmelCase : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCAmelCase : Optional[Any] = bbox[i, j, 3] UpperCAmelCase : int = bbox[i, j, 1] UpperCAmelCase : Any = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCAmelCase : List[str] = bbox[i, j, 2] UpperCAmelCase : List[str] = bbox[i, j, 0] UpperCAmelCase : int = t UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = None if self.use_input_mask: UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCAmelCase : Any = None if self.use_token_type_ids: UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) UpperCAmelCase : Tuple = None UpperCAmelCase : Optional[Any] = None if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) UpperCAmelCase : Any = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _lowercase( self , A , A , A , A , A , A , A , A ) -> Optional[Any]: UpperCAmelCase : Optional[int] = LayoutLMvaModel(config=A ) model.to(A ) model.eval() # text + image UpperCAmelCase : Dict = model(A , pixel_values=A ) UpperCAmelCase : List[Any] = model( A , bbox=A , pixel_values=A , attention_mask=A , token_type_ids=A ) UpperCAmelCase : int = model(A , bbox=A , pixel_values=A , token_type_ids=A ) UpperCAmelCase : List[Any] = model(A , bbox=A , pixel_values=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCAmelCase : Optional[Any] = model(A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCAmelCase : Optional[int] = model(pixel_values=A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A ) -> Dict: UpperCAmelCase : Any = self.num_labels UpperCAmelCase : List[str] = LayoutLMvaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model( A , bbox=A , pixel_values=A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A , A , A , A , A , A ) -> Optional[Any]: UpperCAmelCase : Any = self.num_labels UpperCAmelCase : Optional[Any] = LayoutLMvaForTokenClassification(config=A ) model.to(A ) model.eval() UpperCAmelCase : int = model( A , bbox=A , pixel_values=A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _lowercase( self , A , A , A , A , A , A , A , A ) -> Any: UpperCAmelCase : Optional[Any] = LayoutLMvaForQuestionAnswering(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[str] = model( A , bbox=A , pixel_values=A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase( self ) -> int: UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() ( UpperCAmelCase ) : Optional[int] = config_and_inputs UpperCAmelCase : Dict = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = False lowercase = False lowercase = False lowercase = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowercase = ( {'document-question-answering': LayoutLMvaForQuestionAnswering, 'feature-extraction': LayoutLMvaModel} if is_torch_available() else {} ) def _lowercase( self , A , A , A , A , A ) -> str: # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = LayoutLMvaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self , A , A , A=False ) -> Optional[int]: UpperCAmelCase : Optional[Any] = copy.deepcopy(A ) if model_class in get_values(A ): UpperCAmelCase : str = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(A , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A ): UpperCAmelCase : Any = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=A ) elif model_class in get_values(A ): UpperCAmelCase : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) UpperCAmelCase : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) elif model_class in [ *get_values(A ), ]: UpperCAmelCase : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) elif model_class in [ *get_values(A ), ]: UpperCAmelCase : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=A , ) return inputs_dict def _lowercase( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowercase( self ) -> Tuple: UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> Any: UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : List[Any] = type self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) @slow def _lowercase( self ) -> int: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : List[str] = LayoutLMvaModel.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ) -> int: UpperCAmelCase : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _lowercase( self ) -> List[Any]: return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None @slow def _lowercase( self ) -> Tuple: UpperCAmelCase : Union[str, Any] = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(A ) UpperCAmelCase : Dict = self.default_image_processor UpperCAmelCase : str = prepare_img() UpperCAmelCase : List[str] = image_processor(images=A , return_tensors="""pt""" ).pixel_values.to(A ) UpperCAmelCase : Tuple = torch.tensor([[1, 2]] ) UpperCAmelCase : Union[str, Any] = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass UpperCAmelCase : Dict = model( input_ids=input_ids.to(A ) , bbox=bbox.to(A ) , pixel_values=pixel_values.to(A ) , ) # verify the logits UpperCAmelCase : List[Any] = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , A ) UpperCAmelCase : Tuple = torch.tensor( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , A , atol=1e-4 ) )
351
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCamelCase_ : lowercase = MBartConfig lowercase = {} lowercase = 'gelu' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : str = is_training UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Optional[Any] = eos_token_id UpperCAmelCase : List[str] = pad_token_id UpperCAmelCase : List[Any] = bos_token_id def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A ) return config, inputs_dict def _lowercase( self , A , A ) -> List[str]: UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder() UpperCAmelCase : int = inputs_dict["""input_ids"""] UpperCAmelCase : str = input_ids[:1, :] UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase : List[str] = inputs_dict["""head_mask"""] UpperCAmelCase : List[Any] = 1 # first forward pass UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = outputs.to_tuple() UpperCAmelCase : int = past_key_values[1] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]: if attention_mask is None: UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False def _lowercase( self , A , A , A , A , A ) -> int: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : int = TFMBartModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A ) def _lowercase( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase( self ) -> Dict: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_sentencepiece @require_tokenizers @require_tf class UpperCamelCase_ ( unittest.TestCase ): lowercase = [ ' UN Chief Says There Is No Military Solution in Syria', ] lowercase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] lowercase = 'facebook/mbart-large-en-ro' @cached_property def _lowercase( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowercase( self , **A ) -> Any: UpperCAmelCase : Optional[int] = self.translate_src_text(**A ) self.assertListEqual(self.expected_text , A ) def _lowercase( self , **A ) -> Optional[Any]: UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" ) UpperCAmelCase : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A ) return generated_words @slow def _lowercase( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
338
0
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class UpperCamelCase_ ( __magic_name__ ): lowercase = (DEISMultistepScheduler,) lowercase = (('num_inference_steps', 25),) def _lowercase( self , **A ) -> str: UpperCAmelCase : Any = { """num_train_timesteps""": 1000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """solver_order""": 2, } config.update(**A ) return config def _lowercase( self , A=0 , **A ) -> Any: UpperCAmelCase : str = dict(self.forward_default_kwargs ) UpperCAmelCase : Any = kwargs.pop("""num_inference_steps""" , A ) UpperCAmelCase : List[Any] = self.dummy_sample UpperCAmelCase : Optional[int] = 0.1 * sample UpperCAmelCase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase : Optional[int] = self.get_scheduler_config(**A ) UpperCAmelCase : str = scheduler_class(**A ) scheduler.set_timesteps(A ) # copy over dummy past residuals UpperCAmelCase : Union[str, Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A ) UpperCAmelCase : Dict = scheduler_class.from_pretrained(A ) new_scheduler.set_timesteps(A ) # copy over dummy past residuals UpperCAmelCase : Any = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase : Optional[Any] = sample, sample for t in range(A , time_step + scheduler.config.solver_order + 1 ): UpperCAmelCase : int = scheduler.step(A , A , A , **A ).prev_sample UpperCAmelCase : Any = new_scheduler.step(A , A , A , **A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowercase( self ) -> Optional[Any]: pass def _lowercase( self , A=0 , **A ) -> Optional[Any]: UpperCAmelCase : Optional[int] = dict(self.forward_default_kwargs ) UpperCAmelCase : Union[str, Any] = kwargs.pop("""num_inference_steps""" , A ) UpperCAmelCase : Optional[int] = self.dummy_sample UpperCAmelCase : Tuple = 0.1 * sample UpperCAmelCase : Any = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase : Any = self.get_scheduler_config() UpperCAmelCase : str = scheduler_class(**A ) scheduler.set_timesteps(A ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase : Any = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A ) UpperCAmelCase : Optional[int] = scheduler_class.from_pretrained(A ) # copy over dummy past residuals new_scheduler.set_timesteps(A ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase : List[str] = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase : int = scheduler.step(A , A , A , **A ).prev_sample UpperCAmelCase : Tuple = new_scheduler.step(A , A , A , **A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowercase( self , A=None , **A ) -> int: if scheduler is None: UpperCAmelCase : List[str] = self.scheduler_classes[0] UpperCAmelCase : Optional[Any] = self.get_scheduler_config(**A ) UpperCAmelCase : int = scheduler_class(**A ) UpperCAmelCase : List[Any] = self.scheduler_classes[0] UpperCAmelCase : Dict = self.get_scheduler_config(**A ) UpperCAmelCase : Any = scheduler_class(**A ) UpperCAmelCase : Any = 10 UpperCAmelCase : int = self.dummy_model() UpperCAmelCase : str = self.dummy_sample_deter scheduler.set_timesteps(A ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : List[str] = model(A , A ) UpperCAmelCase : str = scheduler.step(A , A , A ).prev_sample return sample def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[Any] = dict(self.forward_default_kwargs ) UpperCAmelCase : List[str] = kwargs.pop("""num_inference_steps""" , A ) for scheduler_class in self.scheduler_classes: UpperCAmelCase : Union[str, Any] = self.get_scheduler_config() UpperCAmelCase : Any = scheduler_class(**A ) UpperCAmelCase : str = self.dummy_sample UpperCAmelCase : List[str] = 0.1 * sample if num_inference_steps is not None and hasattr(A , """set_timesteps""" ): scheduler.set_timesteps(A ) elif num_inference_steps is not None and not hasattr(A , """set_timesteps""" ): UpperCAmelCase : Optional[int] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase : List[str] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] UpperCAmelCase : int = dummy_past_residuals[: scheduler.config.solver_order] UpperCAmelCase : Optional[int] = scheduler.timesteps[5] UpperCAmelCase : List[Any] = scheduler.timesteps[6] UpperCAmelCase : Dict = scheduler.step(A , A , A , **A ).prev_sample UpperCAmelCase : Tuple = scheduler.step(A , A , A , **A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _lowercase( self ) -> List[str]: # make sure that iterating over schedulers with same config names gives same results # for defaults UpperCAmelCase : int = DEISMultistepScheduler(**self.get_scheduler_config() ) UpperCAmelCase : int = self.full_loop(scheduler=A ) UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 UpperCAmelCase : Optional[int] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) UpperCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase : List[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase : int = DEISMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase : Optional[Any] = self.full_loop(scheduler=A ) UpperCAmelCase : str = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 def _lowercase( self ) -> List[str]: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=A ) def _lowercase( self ) -> Tuple: self.check_over_configs(thresholding=A ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=A , prediction_type=A , sample_max_value=A , algorithm_type="""deis""" , solver_order=A , solver_type=A , ) def _lowercase( self ) -> List[str]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A ) def _lowercase( self ) -> Union[str, Any]: for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=A , solver_type=A , prediction_type=A , algorithm_type=A , ) UpperCAmelCase : Dict = self.full_loop( solver_order=A , solver_type=A , prediction_type=A , algorithm_type=A , ) assert not torch.isnan(A ).any(), "Samples have nan numbers" def _lowercase( self ) -> List[Any]: self.check_over_configs(lower_order_final=A ) self.check_over_configs(lower_order_final=A ) def _lowercase( self ) -> Any: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=A , time_step=0 ) def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = self.full_loop() UpperCAmelCase : Any = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 def _lowercase( self ) -> List[Any]: UpperCAmelCase : Tuple = self.full_loop(prediction_type="""v_prediction""" ) UpperCAmelCase : Tuple = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.0_9_1 ) < 1e-3 def _lowercase( self ) -> Optional[int]: UpperCAmelCase : List[Any] = self.scheduler_classes[0] UpperCAmelCase : List[Any] = self.get_scheduler_config(thresholding=A , dynamic_thresholding_ratio=0 ) UpperCAmelCase : Any = scheduler_class(**A ) UpperCAmelCase : List[Any] = 10 UpperCAmelCase : List[Any] = self.dummy_model() UpperCAmelCase : List[Any] = self.dummy_sample_deter.half() scheduler.set_timesteps(A ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : Any = model(A , A ) UpperCAmelCase : Tuple = scheduler.step(A , A , A ).prev_sample assert sample.dtype == torch.floataa
352
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: UpperCAmelCase : Tuple = len(_lowercase ) + 1 UpperCAmelCase : List[Any] = len(_lowercase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase : str = [[0 for i in range(_lowercase )] for j in range(_lowercase )] # since string of zero length match pattern of zero length UpperCAmelCase : int = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowercase ): UpperCAmelCase : str = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowercase ): UpperCAmelCase : Optional[Any] = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowercase ): for j in range(1 , _lowercase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase : Union[str, Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase : List[Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase : Optional[int] = dp[i - 1][j] else: UpperCAmelCase : Any = 0 else: UpperCAmelCase : str = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") a : List[str] = """aab""" a : Optional[int] = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
338
0
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=0.0_1 , A=1000 ) -> List[str]: UpperCAmelCase : List[Any] = p_stop UpperCAmelCase : Optional[int] = max_length def __iter__( self ) -> Union[str, Any]: UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = False while not stop and count < self.max_length: yield count count += 1 UpperCAmelCase : Any = random.random() < self.p_stop class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A , A=False , A=True ) -> Union[str, Any]: UpperCAmelCase : List[str] = [ BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A ) for i in range(2 ) ] UpperCAmelCase : List[str] = [list(A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] ) self.assertListEqual(A , A ) def _lowercase( self ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is very small. UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [[], []] self.check_batch_sampler_shards(A , A ) def _lowercase( self ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A ) def _lowercase( self ) -> Any: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : str = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [[], []] self.check_batch_sampler_shards(A , A , even_batches=A ) def _lowercase( self ) -> List[Any]: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCAmelCase : List[str] = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _lowercase( self , A , A , A , A=False , A=2 , A=False ) -> Tuple: random.seed(A ) UpperCAmelCase : Dict = list(A ) UpperCAmelCase : Any = [ IterableDatasetShard( A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , ) for i in range(A ) ] UpperCAmelCase : Dict = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(A ) iterable_dataset_lists.append(list(A ) ) UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCAmelCase : List[Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(A ) , len(A ) ) self.assertTrue(len(A ) % shard_batch_size == 0 ) UpperCAmelCase : List[Any] = [] for idx in range(0 , len(A ) , A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(A ) < len(A ): reference += reference self.assertListEqual(A , reference[: len(A )] ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = 42 UpperCAmelCase : List[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) # Edge case with a very small dataset UpperCAmelCase : List[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = SkipBatchSampler(A , 2 ) self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> int: UpperCAmelCase : Any = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) UpperCAmelCase : Optional[Any] = skip_first_batches(A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowercase( self ) -> Dict: Accelerator() UpperCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
353
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : List[str] = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int: UpperCAmelCase : int = 1 UpperCAmelCase : str = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase : Tuple = pre_numerator UpperCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase : Union[str, Any] = cur_numerator UpperCAmelCase : Optional[int] = e_cont * pre_numerator + temp return sum_digits(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
338
0
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( _lowercase ) -> bool: return len(set(_lowercase ) ) == len(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
354
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=0.0_1 , A=1000 ) -> List[str]: UpperCAmelCase : List[Any] = p_stop UpperCAmelCase : Optional[int] = max_length def __iter__( self ) -> Union[str, Any]: UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = False while not stop and count < self.max_length: yield count count += 1 UpperCAmelCase : Any = random.random() < self.p_stop class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A , A=False , A=True ) -> Union[str, Any]: UpperCAmelCase : List[str] = [ BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A ) for i in range(2 ) ] UpperCAmelCase : List[str] = [list(A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] ) self.assertListEqual(A , A ) def _lowercase( self ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is very small. UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [[], []] self.check_batch_sampler_shards(A , A ) def _lowercase( self ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A ) def _lowercase( self ) -> Any: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : str = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [[], []] self.check_batch_sampler_shards(A , A , even_batches=A ) def _lowercase( self ) -> List[Any]: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCAmelCase : List[str] = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _lowercase( self , A , A , A , A=False , A=2 , A=False ) -> Tuple: random.seed(A ) UpperCAmelCase : Dict = list(A ) UpperCAmelCase : Any = [ IterableDatasetShard( A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , ) for i in range(A ) ] UpperCAmelCase : Dict = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(A ) iterable_dataset_lists.append(list(A ) ) UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCAmelCase : List[Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(A ) , len(A ) ) self.assertTrue(len(A ) % shard_batch_size == 0 ) UpperCAmelCase : List[Any] = [] for idx in range(0 , len(A ) , A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(A ) < len(A ): reference += reference self.assertListEqual(A , reference[: len(A )] ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = 42 UpperCAmelCase : List[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) # Edge case with a very small dataset UpperCAmelCase : List[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = SkipBatchSampler(A , 2 ) self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> int: UpperCAmelCase : Any = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) UpperCAmelCase : Optional[Any] = skip_first_batches(A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowercase( self ) -> Dict: Accelerator() UpperCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
338
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a : List[str] = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
355
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[Any] = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
0
'''simple docstring''' import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures a : Tuple = logging.get_logger(__name__) @dataclass class UpperCamelCase_ : lowercase = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) lowercase = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) lowercase = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase = field( default=__magic_name__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def _lowercase( self ) -> Dict: UpperCAmelCase : List[str] = self.task_name.lower() class UpperCamelCase_ ( __magic_name__ ): lowercase = 'train' lowercase = 'dev' lowercase = 'test' class UpperCamelCase_ ( __magic_name__ ): lowercase = 42 lowercase = 42 lowercase = 42 def __init__( self , A , A , A = None , A = Split.train , A = None , ) -> Any: warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , A , ) UpperCAmelCase : Dict = args UpperCAmelCase : Tuple = glue_processors[args.task_name]() UpperCAmelCase : Dict = glue_output_modes[args.task_name] if isinstance(A , A ): try: UpperCAmelCase : Any = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file UpperCAmelCase : Tuple = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , ) UpperCAmelCase : str = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase : Union[str, Any] = label_list[2], label_list[1] UpperCAmelCase : Tuple = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase : Optional[Any] = cached_features_file + """.lock""" with FileLock(A ): if os.path.exists(A ) and not args.overwrite_cache: UpperCAmelCase : int = time.time() UpperCAmelCase : str = torch.load(A ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) else: logger.info(f'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: UpperCAmelCase : str = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: UpperCAmelCase : Dict = self.processor.get_test_examples(args.data_dir ) else: UpperCAmelCase : Tuple = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: UpperCAmelCase : int = examples[:limit_length] UpperCAmelCase : str = glue_convert_examples_to_features( A , A , max_length=args.max_seq_length , label_list=A , output_mode=self.output_mode , ) UpperCAmelCase : Union[str, Any] = time.time() torch.save(self.features , A ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> List[Any]: return len(self.features ) def __getitem__( self , A ) -> InputFeatures: return self.features[i] def _lowercase( self ) -> Optional[Any]: return self.label_list
356
'''simple docstring''' from math import loga def __lowerCamelCase ( _lowercase ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_lowercase , _lowercase ): raise TypeError("""Input value must be a 'int' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
338
0
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCamelCase_ : def __init__( self , A , A=3 , A=32 , A=3 , A=10 , A=[8, 16, 32, 64] , A=[1, 1, 2, 1] , A=True , A=True , A="relu" , A=3 , A=None , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=1 , ) -> Dict: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[str] = batch_size UpperCAmelCase : int = image_size UpperCAmelCase : Dict = num_channels UpperCAmelCase : int = embeddings_size UpperCAmelCase : Optional[Any] = hidden_sizes UpperCAmelCase : Optional[Any] = depths UpperCAmelCase : Optional[Any] = is_training UpperCAmelCase : List[str] = use_labels UpperCAmelCase : Dict = hidden_act UpperCAmelCase : Union[str, Any] = num_labels UpperCAmelCase : Union[str, Any] = scope UpperCAmelCase : Optional[Any] = len(A ) UpperCAmelCase : Any = out_features UpperCAmelCase : Optional[Any] = out_indices UpperCAmelCase : str = num_groups def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : int = self.get_config() return config, pixel_values, labels def _lowercase( self ) -> str: return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def _lowercase( self , A , A , A ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = BitModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[str] = model(A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : Any = self.num_labels UpperCAmelCase : int = BitForImageClassification(A ) model.to(A ) model.eval() UpperCAmelCase : List[str] = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = BitBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase : Tuple = None UpperCAmelCase : Tuple = BitBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowercase( self ) -> int: UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase : List[str] = config_and_inputs UpperCAmelCase : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () lowercase = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Dict: UpperCAmelCase : Union[str, Any] = BitModelTester(self ) UpperCAmelCase : Union[str, Any] = ConfigTester(self , config_class=A , has_text_modality=A ) def _lowercase( self ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase( self ) -> List[str]: return @unittest.skip(reason="""Bit does not output attentions""" ) def _lowercase( self ) -> Optional[Any]: pass @unittest.skip(reason="""Bit does not use inputs_embeds""" ) def _lowercase( self ) -> List[Any]: pass @unittest.skip(reason="""Bit does not support input and output embeddings""" ) def _lowercase( self ) -> str: pass def _lowercase( self ) -> List[str]: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Optional[int] = model_class(A ) UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Tuple = [*signature.parameters.keys()] UpperCAmelCase : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def _lowercase( self ) -> Any: UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A ) def _lowercase( self ) -> Any: UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = model_class(config=A ) for name, module in model.named_modules(): if isinstance(A , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def _lowercase( self ) -> Tuple: def check_hidden_states_output(A , A , A ): UpperCAmelCase : int = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase : int = model(**self._prepare_for_class(A , A ) ) UpperCAmelCase : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : Tuple = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[str] = ["""preactivation""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCAmelCase : Optional[Any] = layer_type UpperCAmelCase : int = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : List[str] = True check_hidden_states_output(A , A , A ) @unittest.skip(reason="""Bit does not use feedforward chunking""" ) def _lowercase( self ) -> Optional[Any]: pass def _lowercase( self ) -> int: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def _lowercase( self ) -> Tuple: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Union[str, Any] = BitModel.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _lowercase( self ) -> Optional[Any]: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _lowercase( self ) -> List[str]: UpperCAmelCase : Tuple = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(A ) UpperCAmelCase : int = self.default_image_processor UpperCAmelCase : Tuple = prepare_img() UpperCAmelCase : Any = image_processor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): UpperCAmelCase : Union[str, Any] = model(**A ) # verify the logits UpperCAmelCase : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A ) UpperCAmelCase : Dict = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) ) @require_torch class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = (BitBackbone,) if is_torch_available() else () lowercase = BitConfig lowercase = False def _lowercase( self ) -> int: UpperCAmelCase : Dict = BitModelTester(self )
357
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. a : Optional[int] = 1_0 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: for i in range(_lowercase , _lowercase ): if array[i] == target: return i return -1 def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = len(_lowercase ) while left <= right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1 UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase : Any = one_third - 1 elif array[two_third] < target: UpperCAmelCase : Tuple = two_third + 1 else: UpperCAmelCase : int = one_third + 1 UpperCAmelCase : List[Any] = two_third - 1 else: return -1 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: if left < right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : str = (left + right) // 3 + 1 UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() a : Any = input("""Enter numbers separated by comma:\n""").strip() a : Any = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip()) a : Union[str, Any] = ite_ternary_search(collection, target) a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
338
0
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class UpperCamelCase_ ( __magic_name__ ): lowercase = (DPMSolverSDEScheduler,) lowercase = 10 def _lowercase( self , **A ) -> Optional[int]: UpperCAmelCase : Any = { """num_train_timesteps""": 1100, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**A ) return config def _lowercase( self ) -> Optional[int]: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=A ) def _lowercase( self ) -> Optional[Any]: for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=A , beta_end=A ) def _lowercase( self ) -> int: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=A ) def _lowercase( self ) -> str: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A ) def _lowercase( self ) -> str: UpperCAmelCase : str = self.scheduler_classes[0] UpperCAmelCase : Dict = self.get_scheduler_config() UpperCAmelCase : str = scheduler_class(**A ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase : Optional[Any] = self.dummy_model() UpperCAmelCase : int = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase : Tuple = sample.to(A ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : Union[str, Any] = scheduler.scale_model_input(A , A ) UpperCAmelCase : Optional[Any] = model(A , A ) UpperCAmelCase : Dict = scheduler.step(A , A , A ) UpperCAmelCase : Tuple = output.prev_sample UpperCAmelCase : Tuple = torch.sum(torch.abs(A ) ) UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1e-2 assert abs(result_mean.item() - 0.2_1_7_8_7_0_5_9_6_4_5_6_5_2_7_7 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1e-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_6_8_9_2_2_9_9_6_5_2 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1e-3 def _lowercase( self ) -> Any: UpperCAmelCase : List[str] = self.scheduler_classes[0] UpperCAmelCase : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""" ) UpperCAmelCase : Optional[int] = scheduler_class(**A ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase : int = self.dummy_model() UpperCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase : Dict = sample.to(A ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : int = scheduler.scale_model_input(A , A ) UpperCAmelCase : str = model(A , A ) UpperCAmelCase : Tuple = scheduler.step(A , A , A ) UpperCAmelCase : Optional[int] = output.prev_sample UpperCAmelCase : Any = torch.sum(torch.abs(A ) ) UpperCAmelCase : List[Any] = torch.mean(torch.abs(A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1e-2 assert abs(result_mean.item() - 0.1_6_2_2_6_2_8_9_0_1_4_8_1_6_2_8_4 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1e-2 assert abs(result_mean.item() - 0.1_6_6_8_8_3_2_6_0_0_1_1_6_7_2_9_7 ) < 1e-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1e-2 assert abs(result_mean.item() - 0.1_5_6_0_5_3_0_6_6_2_5_3_6_6_2_1 ) < 1e-3 def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Tuple = self.scheduler_classes[0] UpperCAmelCase : List[str] = self.get_scheduler_config() UpperCAmelCase : Tuple = scheduler_class(**A ) scheduler.set_timesteps(self.num_inference_steps , device=A ) UpperCAmelCase : Tuple = self.dummy_model() UpperCAmelCase : Tuple = self.dummy_sample_deter.to(A ) * scheduler.init_noise_sigma for t in scheduler.timesteps: UpperCAmelCase : Any = scheduler.scale_model_input(A , A ) UpperCAmelCase : Dict = model(A , A ) UpperCAmelCase : Union[str, Any] = scheduler.step(A , A , A ) UpperCAmelCase : Dict = output.prev_sample UpperCAmelCase : List[Any] = torch.sum(torch.abs(A ) ) UpperCAmelCase : Dict = torch.mean(torch.abs(A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1e-2 assert abs(result_mean.item() - 0.2_1_8_0_5_9_3_4_6_0_7_9_8_2_6_3_5 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1e-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_8_3_8_2_4_1_5_7_7_1 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1e-3 def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[Any] = self.scheduler_classes[0] UpperCAmelCase : Optional[int] = self.get_scheduler_config() UpperCAmelCase : str = scheduler_class(**A , use_karras_sigmas=A ) scheduler.set_timesteps(self.num_inference_steps , device=A ) UpperCAmelCase : Dict = self.dummy_model() UpperCAmelCase : List[str] = self.dummy_sample_deter.to(A ) * scheduler.init_noise_sigma UpperCAmelCase : Any = sample.to(A ) for t in scheduler.timesteps: UpperCAmelCase : Optional[Any] = scheduler.scale_model_input(A , A ) UpperCAmelCase : Tuple = model(A , A ) UpperCAmelCase : Optional[Any] = scheduler.step(A , A , A ) UpperCAmelCase : Dict = output.prev_sample UpperCAmelCase : Dict = torch.sum(torch.abs(A ) ) UpperCAmelCase : Any = torch.mean(torch.abs(A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1e-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1e-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1e-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1e-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1e-2
358
'''simple docstring''' import numpy as np class UpperCamelCase_ : def __init__( self ) -> int: UpperCAmelCase : str = (0, 0) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Any = 0 UpperCAmelCase : int = 0 UpperCAmelCase : Optional[int] = 0 def __eq__( self , A ) -> Optional[Any]: return self.position == cell.position def _lowercase( self ) -> Tuple: print(self.position ) class UpperCamelCase_ : def __init__( self , A=(5, 5) ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = np.zeros(A ) UpperCAmelCase : int = world_size[0] UpperCAmelCase : List[str] = world_size[1] def _lowercase( self ) -> List[Any]: print(self.w ) def _lowercase( self , A ) -> Dict: UpperCAmelCase : Optional[Any] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase : List[Any] = cell.position[0] UpperCAmelCase : Union[str, Any] = cell.position[1] UpperCAmelCase : Optional[int] = [] for n in neughbour_cord: UpperCAmelCase : Any = current_x + n[0] UpperCAmelCase : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase : str = Cell() UpperCAmelCase : List[str] = (x, y) UpperCAmelCase : Dict = cell neighbours.append(A ) return neighbours def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase : List[Any] = [] UpperCAmelCase : Optional[int] = [] _open.append(_lowercase ) while _open: UpperCAmelCase : Any = np.argmin([n.f for n in _open] ) UpperCAmelCase : Optional[int] = _open[min_f] _closed.append(_open.pop(_lowercase ) ) if current == goal: break for n in world.get_neigbours(_lowercase ): for c in _closed: if c == n: continue UpperCAmelCase : List[str] = current.g + 1 UpperCAmelCase , UpperCAmelCase : List[str] = n.position UpperCAmelCase , UpperCAmelCase : Dict = goal.position UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase : Dict = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_lowercase ) UpperCAmelCase : Dict = [] while current.parent is not None: path.append(current.position ) UpperCAmelCase : Optional[int] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": a : List[str] = Gridworld() # Start position and goal a : Optional[int] = Cell() a : Optional[Any] = (0, 0) a : Optional[Any] = Cell() a : str = (4, 4) print(F'''path from {start.position} to {goal.position}''') a : List[Any] = astar(world, start, goal) # Just for visual reasons. for i in s: a : Any = 1 print(world.w)
338
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : List[Any] = logging.get_logger(__name__) a : Tuple = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'rwkv' lowercase = {'max_position_embeddings': 'context_length'} def __init__( self , A=50277 , A=1024 , A=4096 , A=32 , A=None , A=None , A=1e-5 , A=0 , A=0 , A=6 , A=False , A=True , **A , ) -> str: UpperCAmelCase : List[str] = vocab_size UpperCAmelCase : List[str] = context_length UpperCAmelCase : Dict = hidden_size UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : Union[str, Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size UpperCAmelCase : Any = intermediate_size if intermediate_size is not None else 4 * hidden_size UpperCAmelCase : Optional[int] = layer_norm_epsilon UpperCAmelCase : List[str] = rescale_every UpperCAmelCase : List[str] = use_cache UpperCAmelCase : Any = bos_token_id UpperCAmelCase : List[str] = eos_token_id super().__init__( tie_word_embeddings=A , bos_token_id=A , eos_token_id=A , **A )
359
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
0
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = FunnelTokenizer lowercase = FunnelTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> Optional[int]: super().setUp() UpperCAmelCase : str = [ """<unk>""", """<cls>""", """<sep>""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] UpperCAmelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _lowercase( self , **A ) -> Union[str, Any]: return FunnelTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , **A ) -> List[Any]: return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> List[str]: UpperCAmelCase : Optional[Any] = """UNwant\u00E9d,running""" UpperCAmelCase : List[str] = """unwanted, running""" return input_text, output_text def _lowercase( self ) -> List[str]: UpperCAmelCase : List[str] = self.tokenizer_class(self.vocab_file ) UpperCAmelCase : int = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(A , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [7, 4, 5, 10, 8, 9] ) def _lowercase( self ) -> Dict: UpperCAmelCase : List[str] = self.get_tokenizers(do_lower_case=A ) for tokenizer in tokenizers: UpperCAmelCase : int = tokenizer("""UNwant\u00E9d,running""" ) UpperCAmelCase : str = len(inputs["""input_ids"""] ) - 1 self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len ) UpperCAmelCase : int = tokenizer("""UNwant\u00E9d,running""" , """UNwant\u00E9d,running""" ) self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len + [1] * sentence_len )
360
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a : int = logging.get_logger(__name__) a : int = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off a : Tuple = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] a : Optional[int] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class UpperCamelCase_ ( __magic_name__ ): lowercase = 'whisper' lowercase = ['past_key_values'] lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]: UpperCAmelCase : str = vocab_size UpperCAmelCase : Union[str, Any] = num_mel_bins UpperCAmelCase : Tuple = d_model UpperCAmelCase : Optional[int] = encoder_layers UpperCAmelCase : List[str] = encoder_attention_heads UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : int = decoder_attention_heads UpperCAmelCase : Optional[int] = decoder_ffn_dim UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : List[str] = dropout UpperCAmelCase : Optional[Any] = attention_dropout UpperCAmelCase : Optional[Any] = activation_dropout UpperCAmelCase : Optional[Any] = activation_function UpperCAmelCase : Optional[Any] = init_std UpperCAmelCase : int = encoder_layerdrop UpperCAmelCase : Dict = decoder_layerdrop UpperCAmelCase : Optional[int] = use_cache UpperCAmelCase : List[str] = encoder_layers UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Union[str, Any] = max_source_positions UpperCAmelCase : Tuple = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : List[str] = classifier_proj_size UpperCAmelCase : Optional[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : int = mask_time_prob UpperCAmelCase : int = mask_time_length UpperCAmelCase : Dict = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Optional[int] = mask_feature_length UpperCAmelCase : int = mask_feature_min_masks UpperCAmelCase : List[Any] = median_filter_width super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , ) class UpperCamelCase_ ( __magic_name__ ): @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : str = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase : List[Any] = {0: """batch"""} else: UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) return common_inputs def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Optional[int] = OrderedDict() UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , ) UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2] UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Any = super().generate_dummy_inputs( preprocessor.tokenizer , A , A , A , A ) UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" ) UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def _lowercase( self ) -> float: return 1e-3
338
0
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: UpperCAmelCase : Tuple = len(_lowercase ) + 1 UpperCAmelCase : List[Any] = len(_lowercase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase : str = [[0 for i in range(_lowercase )] for j in range(_lowercase )] # since string of zero length match pattern of zero length UpperCAmelCase : int = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowercase ): UpperCAmelCase : str = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowercase ): UpperCAmelCase : Optional[Any] = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowercase ): for j in range(1 , _lowercase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase : Union[str, Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase : List[Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase : Optional[int] = dp[i - 1][j] else: UpperCAmelCase : Any = 0 else: UpperCAmelCase : str = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") a : List[str] = """aab""" a : Optional[int] = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
361
'''simple docstring''' a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowerCamelCase ( ) -> None: UpperCAmelCase : Optional[int] = input("""Enter message: """ ) UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ ) UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): UpperCAmelCase : List[str] = """encrypt""" UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase ) elif mode.lower().startswith("""d""" ): UpperCAmelCase : Tuple = """decrypt""" UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """encrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """decrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Tuple = key.upper() for symbol in message: UpperCAmelCase : Dict = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowercase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowercase ): UpperCAmelCase : Optional[int] = 0 else: translated.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": main()
338
0
'''simple docstring''' import random def __lowerCamelCase ( _lowercase , _lowercase , _lowercase = False ) -> dict: UpperCAmelCase : dict = {i: [] for i in range(_lowercase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_lowercase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_lowercase ): for j in range(i + 1 , _lowercase ): if random.random() < probability: graph[i].append(_lowercase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_lowercase ) return graph def __lowerCamelCase ( _lowercase ) -> dict: return { i: [j for j in range(_lowercase ) if i != j] for i in range(_lowercase ) } if __name__ == "__main__": import doctest doctest.testmod()
362
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Optional[int] = split_dict._to_yaml_list() assert len(_lowercase ) == len(_lowercase ) UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(_lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCAmelCase : List[str] = None # the split name of split_dict takes over the name of the split info object UpperCAmelCase : int = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name="""my_dataset""" )] ) def __lowerCamelCase ( _lowercase ) -> List[str]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files UpperCAmelCase : Optional[Any] = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
338
0
import os import string import sys a : List[Any] = 1 << 8 a : List[str] = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 2_7, """up""": 6_5 + ARROW_KEY_FLAG, """down""": 6_6 + ARROW_KEY_FLAG, """right""": 6_7 + ARROW_KEY_FLAG, """left""": 6_8 + ARROW_KEY_FLAG, """mod_int""": 9_1, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 5_0, """delete""": 5_1, """pg_up""": 5_3, """pg_down""": 5_4, } a : List[str] = KEYMAP["""up"""] a : Union[str, Any] = KEYMAP["""left"""] if sys.platform == "win32": a : str = [] a : List[Any] = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(1_0): a : Dict = ord(str(i)) def __lowerCamelCase ( ) -> List[str]: if os.name == "nt": import msvcrt UpperCAmelCase : Any = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_lowercase ) == 0: # Read the keystroke UpperCAmelCase : Tuple = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): UpperCAmelCase : List[str] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: UpperCAmelCase : Optional[Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(_lowercase ) if ord(_lowercase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) UpperCAmelCase : int = chr(KEYMAP["""esc"""] ) except KeyError: UpperCAmelCase : Dict = cha[1] else: UpperCAmelCase : int = ch.decode(_lowercase ) else: UpperCAmelCase : Optional[int] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty UpperCAmelCase : Any = sys.stdin.fileno() UpperCAmelCase : Tuple = termios.tcgetattr(_lowercase ) try: tty.setraw(_lowercase ) UpperCAmelCase : int = sys.stdin.read(1 ) finally: termios.tcsetattr(_lowercase , termios.TCSADRAIN , _lowercase ) return ch def __lowerCamelCase ( ) -> List[Any]: UpperCAmelCase : List[str] = get_raw_chars() if ord(_lowercase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_lowercase ) == KEYMAP["esc"]: UpperCAmelCase : Optional[Any] = get_raw_chars() if ord(_lowercase ) == KEYMAP["mod_int"]: UpperCAmelCase : Dict = get_raw_chars() if ord(_lowercase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_lowercase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_lowercase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
363
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor a : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , **A ) -> None: warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , A , ) super().__init__(*A , **A )
338
0
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 a : Optional[Any] = sys.version_info >= (3, 1_0) def __lowerCamelCase ( _lowercase=None , _lowercase=None ) -> Union[str, Any]: """simple docstring""" return field(default_factory=lambda: default , metadata=_lowercase ) @dataclass class UpperCamelCase_ : lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 @dataclass class UpperCamelCase_ : lowercase = 42 lowercase = field(default='toto' , metadata={'help': 'help message'} ) @dataclass class UpperCamelCase_ : lowercase = False lowercase = True lowercase = None class UpperCamelCase_ ( __magic_name__ ): lowercase = 'titi' lowercase = 'toto' class UpperCamelCase_ ( __magic_name__ ): lowercase = 'titi' lowercase = 'toto' lowercase = 42 @dataclass class UpperCamelCase_ : lowercase = 'toto' def _lowercase( self ) -> Dict: UpperCAmelCase : int = BasicEnum(self.foo ) @dataclass class UpperCamelCase_ : lowercase = 'toto' def _lowercase( self ) -> Tuple: UpperCAmelCase : Any = MixedTypeEnum(self.foo ) @dataclass class UpperCamelCase_ : lowercase = None lowercase = field(default=__magic_name__ , metadata={'help': 'help message'} ) lowercase = None lowercase = list_field(default=[] ) lowercase = list_field(default=[] ) @dataclass class UpperCamelCase_ : lowercase = list_field(default=[] ) lowercase = list_field(default=[1, 2, 3] ) lowercase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) lowercase = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class UpperCamelCase_ : lowercase = field() lowercase = field() lowercase = field() def _lowercase( self ) -> Any: UpperCAmelCase : Dict = BasicEnum(self.required_enum ) @dataclass class UpperCamelCase_ : lowercase = 42 lowercase = field() lowercase = None lowercase = field(default='toto' , metadata={'help': 'help message'} ) lowercase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class UpperCamelCase_ : lowercase = False lowercase = True lowercase = None @dataclass class UpperCamelCase_ : lowercase = None lowercase = field(default=__magic_name__ , metadata={'help': 'help message'} ) lowercase = None lowercase = list_field(default=[] ) lowercase = list_field(default=[] ) class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A ) -> List[str]: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): UpperCAmelCase : Optional[Any] = {k: v for k, v in vars(A ).items() if k != """container"""} UpperCAmelCase : Any = {k: v for k, v in vars(A ).items() if k != """container"""} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" , A ) and yy.get("""choices""" , A ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](A ) , yy["""type"""](A ) ) del xx["type"], yy["type"] self.assertEqual(A , A ) def _lowercase( self ) -> Dict: UpperCAmelCase : Any = HfArgumentParser(A ) UpperCAmelCase : str = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=A , required=A ) expected.add_argument("""--bar""" , type=A , required=A ) expected.add_argument("""--baz""" , type=A , required=A ) expected.add_argument("""--flag""" , type=A , default=A , const=A , nargs="""?""" ) self.argparsersEqual(A , A ) UpperCAmelCase : Optional[Any] = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""] (UpperCAmelCase ) : Dict = parser.parse_args_into_dataclasses(A , look_for_args_file=A ) self.assertFalse(example.flag ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = HfArgumentParser(A ) UpperCAmelCase : str = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=42 , type=A ) expected.add_argument("""--baz""" , default="""toto""" , type=A , help="""help message""" ) self.argparsersEqual(A , A ) def _lowercase( self ) -> Any: UpperCAmelCase : Tuple = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=A , default=A , const=A , nargs="""?""" ) expected.add_argument("""--baz""" , type=A , default=A , const=A , nargs="""?""" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" , action="""store_false""" , default=A , dest="""baz""" ) expected.add_argument("""--opt""" , type=A , default=A ) UpperCAmelCase : Union[str, Any] = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(A ) for dataclass_type in dataclass_types: UpperCAmelCase : List[Any] = HfArgumentParser(A ) self.argparsersEqual(A , A ) UpperCAmelCase : Optional[Any] = parser.parse_args([] ) self.assertEqual(A , Namespace(foo=A , baz=A , opt=A ) ) UpperCAmelCase : Tuple = parser.parse_args(["""--foo""", """--no_baz"""] ) self.assertEqual(A , Namespace(foo=A , baz=A , opt=A ) ) UpperCAmelCase : List[Any] = parser.parse_args(["""--foo""", """--baz"""] ) self.assertEqual(A , Namespace(foo=A , baz=A , opt=A ) ) UpperCAmelCase : Dict = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] ) self.assertEqual(A , Namespace(foo=A , baz=A , opt=A ) ) UpperCAmelCase : Optional[Any] = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] ) self.assertEqual(A , Namespace(foo=A , baz=A , opt=A ) ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = HfArgumentParser(A ) UpperCAmelCase : Any = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(A , A ) UpperCAmelCase : List[Any] = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) UpperCAmelCase : int = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) UpperCAmelCase : Optional[int] = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) UpperCAmelCase : Tuple = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) UpperCAmelCase : Any = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) UpperCAmelCase : str = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def _lowercase( self ) -> Optional[int]: @dataclass class UpperCamelCase_ : lowercase = 'toto' UpperCAmelCase : int = HfArgumentParser(A ) UpperCAmelCase : Dict = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(A , A ) UpperCAmelCase : Tuple = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) UpperCAmelCase : Optional[int] = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) UpperCAmelCase : int = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : int = HfArgumentParser(A ) UpperCAmelCase : Any = argparse.ArgumentParser() expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=A ) expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=A ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=A ) expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=A ) self.argparsersEqual(A , A ) UpperCAmelCase : int = parser.parse_args([] ) self.assertEqual( A , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , ) UpperCAmelCase : Optional[int] = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() ) self.assertEqual(A , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Any = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=A , type=A ) expected.add_argument("""--bar""" , default=A , type=A , help="""help message""" ) expected.add_argument("""--baz""" , default=A , type=A ) expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=A ) expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=A ) UpperCAmelCase : Optional[Any] = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(A ) for dataclass_type in dataclass_types: UpperCAmelCase : Optional[Any] = HfArgumentParser(A ) self.argparsersEqual(A , A ) UpperCAmelCase : List[Any] = parser.parse_args([] ) self.assertEqual(A , Namespace(foo=A , bar=A , baz=A , ces=[] , des=[] ) ) UpperCAmelCase : Tuple = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() ) self.assertEqual(A , Namespace(foo=12 , bar=3.1_4 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = HfArgumentParser(A ) UpperCAmelCase : List[str] = argparse.ArgumentParser() expected.add_argument("""--required_list""" , nargs="""+""" , type=A , required=A ) expected.add_argument("""--required_str""" , type=A , required=A ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=A , ) self.argparsersEqual(A , A ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Optional[int] = HfArgumentParser(A ) UpperCAmelCase : List[Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=A , required=A ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=A , ) expected.add_argument("""--opt""" , type=A , default=A ) expected.add_argument("""--baz""" , default="""toto""" , type=A , help="""help message""" ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=A ) self.argparsersEqual(A , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Optional[int] = HfArgumentParser(A ) UpperCAmelCase : Dict = { """foo""": 12, """bar""": 3.1_4, """baz""": """42""", """flag""": True, } UpperCAmelCase : List[Any] = parser.parse_dict(A )[0] UpperCAmelCase : Optional[int] = BasicExample(**A ) self.assertEqual(A , A ) def _lowercase( self ) -> int: UpperCAmelCase : str = HfArgumentParser(A ) UpperCAmelCase : int = { """foo""": 12, """bar""": 3.1_4, """baz""": """42""", """flag""": True, """extra""": 42, } self.assertRaises(A , parser.parse_dict , A , allow_extra_keys=A ) def _lowercase( self ) -> Any: UpperCAmelCase : Union[str, Any] = HfArgumentParser(A ) UpperCAmelCase : Any = { """foo""": 12, """bar""": 3.1_4, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase : List[Any] = os.path.join(A , """temp_json""" ) os.mkdir(A ) with open(temp_local_path + """.json""" , """w+""" ) as f: json.dump(A , A ) UpperCAmelCase : Union[str, Any] = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0] UpperCAmelCase : List[str] = BasicExample(**A ) self.assertEqual(A , A ) def _lowercase( self ) -> int: UpperCAmelCase : Tuple = HfArgumentParser(A ) UpperCAmelCase : int = { """foo""": 12, """bar""": 3.1_4, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase : Optional[Any] = os.path.join(A , """temp_yaml""" ) os.mkdir(A ) with open(temp_local_path + """.yaml""" , """w+""" ) as f: yaml.dump(A , A ) UpperCAmelCase : List[Any] = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0] UpperCAmelCase : Optional[Any] = BasicExample(**A ) self.assertEqual(A , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = HfArgumentParser(A ) self.assertIsNotNone(A )
364
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a : Union[str, Any] = logging.get_logger(__name__) a : Union[str, Any] = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'detr' lowercase = ['past_key_values'] lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(A , A ): UpperCAmelCase : Any = backbone_config.get("""model_type""" ) UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : List[Any] = config_class.from_dict(A ) # set timm attributes to None UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = None, None, None UpperCAmelCase : Dict = use_timm_backbone UpperCAmelCase : Any = backbone_config UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : int = num_queries UpperCAmelCase : List[str] = d_model UpperCAmelCase : Tuple = encoder_ffn_dim UpperCAmelCase : Optional[Any] = encoder_layers UpperCAmelCase : Any = encoder_attention_heads UpperCAmelCase : Optional[Any] = decoder_ffn_dim UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : str = dropout UpperCAmelCase : Tuple = attention_dropout UpperCAmelCase : Dict = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : List[Any] = init_std UpperCAmelCase : str = init_xavier_std UpperCAmelCase : List[Any] = encoder_layerdrop UpperCAmelCase : int = decoder_layerdrop UpperCAmelCase : List[Any] = encoder_layers UpperCAmelCase : Union[str, Any] = auxiliary_loss UpperCAmelCase : str = position_embedding_type UpperCAmelCase : Union[str, Any] = backbone UpperCAmelCase : List[str] = use_pretrained_backbone UpperCAmelCase : Optional[int] = dilation # Hungarian matcher UpperCAmelCase : Union[str, Any] = class_cost UpperCAmelCase : Optional[Any] = bbox_cost UpperCAmelCase : List[Any] = giou_cost # Loss coefficients UpperCAmelCase : int = mask_loss_coefficient UpperCAmelCase : Optional[int] = dice_loss_coefficient UpperCAmelCase : Dict = bbox_loss_coefficient UpperCAmelCase : Any = giou_loss_coefficient UpperCAmelCase : Any = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def _lowercase( self ) -> int: return self.encoder_attention_heads @property def _lowercase( self ) -> int: return self.d_model @classmethod def _lowercase( cls , A , **A ) -> Dict: return cls(backbone_config=A , **A ) def _lowercase( self ) -> Dict[str, any]: UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase : Any = self.backbone_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowercase( self ) -> float: return 1e-5 @property def _lowercase( self ) -> int: return 12
338
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
365
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[str] = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
0
'''simple docstring''' def __lowerCamelCase ( _lowercase = 1 , _lowercase = 1_0_0_0 ) -> int: UpperCAmelCase : List[str] = 1 UpperCAmelCase : Tuple = 0 for divide_by_number in range(_lowercase , digit + 1 ): UpperCAmelCase : list[int] = [] UpperCAmelCase : str = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(_lowercase ): UpperCAmelCase : int = len(_lowercase ) UpperCAmelCase : Optional[Any] = divide_by_number else: has_been_divided.append(_lowercase ) UpperCAmelCase : List[Any] = now_divide * 1_0 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
366
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" ) if "model" in sd.keys(): UpperCAmelCase : Any = torch.load(_lowercase , map_location="""cpu""" )["""model"""] # pop unnecessary weights UpperCAmelCase : Union[str, Any] = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(_lowercase ) UpperCAmelCase : Tuple = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase : List[Any] = sd.pop(_lowercase ) UpperCAmelCase : Tuple = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase : List[str] = sd[key] # We split QKV in separate Q,K,V UpperCAmelCase : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" ) UpperCAmelCase : Tuple = key.replace(""".qkv_proj.""" , """.k_proj.""" ) UpperCAmelCase : int = key.replace(""".qkv_proj.""" , """.v_proj.""" ) UpperCAmelCase : Dict = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = torch.split(_lowercase , depth // 3 , dim=0 ) UpperCAmelCase : Tuple = q UpperCAmelCase : Tuple = k UpperCAmelCase : Any = v del sd[key] return sd @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Optional[Any]: UpperCAmelCase : Tuple = load_checkpoint(_lowercase ) if config is not None: UpperCAmelCase : Dict = OPTConfig.from_pretrained(_lowercase ) else: UpperCAmelCase : int = OPTConfig() UpperCAmelCase : List[Any] = OPTModel(_lowercase ).half().eval() model.load_state_dict(_lowercase ) # Check results Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") a : Union[str, Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
338
0
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class UpperCamelCase_ ( unittest.TestCase ): def __init__( self , A , A = True , A = None , A = 32 , A = True , A = 1 / 255 , A = True , A = True , A = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , A = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , A = True , A=7 , A=30 , A=400 , A=3 , ) -> str: UpperCAmelCase : Dict = parent UpperCAmelCase : Union[str, Any] = do_resize UpperCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 288} UpperCAmelCase : List[str] = size_divisor UpperCAmelCase : List[str] = do_rescale UpperCAmelCase : Dict = rescale_factor UpperCAmelCase : Any = do_normalize UpperCAmelCase : List[Any] = do_center_crop UpperCAmelCase : Optional[int] = image_mean UpperCAmelCase : List[str] = image_std UpperCAmelCase : List[str] = do_pad UpperCAmelCase : Union[str, Any] = batch_size UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : str = min_resolution UpperCAmelCase : List[Any] = max_resolution def _lowercase( self ) -> int: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def _lowercase( self , A , A=False ) -> Tuple: if not batched: UpperCAmelCase : Dict = self.size["""shortest_edge"""] UpperCAmelCase : Any = image_inputs[0] if isinstance(A , Image.Image ): UpperCAmelCase : Union[str, Any] = image.size else: UpperCAmelCase : Optional[Any] = image.shape[1], image.shape[2] UpperCAmelCase : List[Any] = size / min(A , A ) if h < w: UpperCAmelCase : List[str] = size, scale * w else: UpperCAmelCase : List[Any] = scale * h, size UpperCAmelCase : str = int((1333 / 800) * size ) if max(A , A ) > max_size: UpperCAmelCase : int = max_size / max(A , A ) UpperCAmelCase : Union[str, Any] = newh * scale UpperCAmelCase : Dict = neww * scale UpperCAmelCase : Optional[int] = int(newh + 0.5 ), int(neww + 0.5 ) UpperCAmelCase : List[str] = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: UpperCAmelCase : Tuple = [] for image in image_inputs: UpperCAmelCase : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase : Optional[int] = max(A , key=lambda A : item[0] )[0] UpperCAmelCase : Optional[Any] = max(A , key=lambda A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = BridgeTowerImageProcessor if is_vision_available() else None def _lowercase( self ) -> Dict: UpperCAmelCase : Dict = BridgeTowerImageProcessingTester(self ) @property def _lowercase( self ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def _lowercase( self ) -> List[str]: UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , """image_mean""" ) ) self.assertTrue(hasattr(A , """image_std""" ) ) self.assertTrue(hasattr(A , """do_normalize""" ) ) self.assertTrue(hasattr(A , """do_resize""" ) ) self.assertTrue(hasattr(A , """size""" ) ) self.assertTrue(hasattr(A , """size_divisor""" ) ) def _lowercase( self ) -> List[str]: pass def _lowercase( self ) -> str: # Initialize image processor UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input UpperCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCAmelCase : int = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase : int = image_processing(A , return_tensors="""pt""" ).pixel_values UpperCAmelCase : Dict = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase( self ) -> Union[str, Any]: # Initialize image processor UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input UpperCAmelCase : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCAmelCase : Optional[int] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase : Union[str, Any] = image_processing(A , return_tensors="""pt""" ).pixel_values UpperCAmelCase : Optional[int] = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase( self ) -> List[str]: # Initialize image processor UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input UpperCAmelCase : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCAmelCase : Tuple = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase : Union[str, Any] = image_processing(A , return_tensors="""pt""" ).pixel_values UpperCAmelCase : Dict = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
367
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : str = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'levit' def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int: super().__init__(**A ) UpperCAmelCase : Any = image_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : Tuple = kernel_size UpperCAmelCase : Optional[int] = stride UpperCAmelCase : Dict = padding UpperCAmelCase : List[Any] = hidden_sizes UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = depths UpperCAmelCase : Any = key_dim UpperCAmelCase : str = drop_path_rate UpperCAmelCase : List[Any] = patch_size UpperCAmelCase : str = attention_ratio UpperCAmelCase : Optional[Any] = mlp_ratio UpperCAmelCase : Dict = initializer_range UpperCAmelCase : int = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase( self ) -> float: return 1e-4
338
0
'''simple docstring''' from __future__ import annotations a : Optional[int] = tuple[int, int, int] a : Optional[int] = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase a : Optional[Any] = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" # -------------------------- default selection -------------------------- # rotors -------------------------- a : List[Any] = """EGZWVONAHDCLFQMSIPJBYUKXTR""" a : str = """FOBHMDKEXQNRAULPGSJVTYICZW""" a : List[Any] = """ZJXESIUQLHAVRMDOYGTNFWPBKC""" # reflector -------------------------- a : List[Any] = { """A""": """N""", """N""": """A""", """B""": """O""", """O""": """B""", """C""": """P""", """P""": """C""", """D""": """Q""", """Q""": """D""", """E""": """R""", """R""": """E""", """F""": """S""", """S""": """F""", """G""": """T""", """T""": """G""", """H""": """U""", """U""": """H""", """I""": """V""", """V""": """I""", """J""": """W""", """W""": """J""", """K""": """X""", """X""": """K""", """L""": """Y""", """Y""": """L""", """M""": """Z""", """Z""": """M""", } # -------------------------- extra rotors -------------------------- a : Any = """RMDJXFUWGISLHVTCQNKYPBEZOA""" a : Dict = """SGLCPQWZHKXAREONTFBVIYJUDM""" a : Optional[int] = """HVSICLTYKQUBXDWAJZOMFGPREN""" a : Optional[int] = """RZWQHFMVDBKICJLNTUXAGYPSOE""" a : str = """LFKIJODBEGAMQPXVUHYSTCZRWN""" a : Union[str, Any] = """KOAEGVDHXPQZMLFTYWJNBRCIUS""" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> tuple[RotorPositionT, RotorSelectionT, dict[str, str]]: # Checks if there are 3 unique rotors if (unique_rotsel := len(set(_lowercase ) )) < 3: UpperCAmelCase : Tuple = F'''Please use 3 unique rotors (not {unique_rotsel})''' raise Exception(_lowercase ) # Checks if rotor positions are valid UpperCAmelCase : Union[str, Any] = rotpos if not 0 < rotorposa <= len(_lowercase ): UpperCAmelCase : Union[str, Any] = F'''First rotor position is not within range of 1..26 ({rotorposa}''' raise ValueError(_lowercase ) if not 0 < rotorposa <= len(_lowercase ): UpperCAmelCase : Any = F'''Second rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(_lowercase ) if not 0 < rotorposa <= len(_lowercase ): UpperCAmelCase : Dict = F'''Third rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(_lowercase ) # Validates string and returns dict UpperCAmelCase : Tuple = _plugboard(_lowercase ) return rotpos, rotsel, pbdict def __lowerCamelCase ( _lowercase ) -> dict[str, str]: # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(_lowercase , _lowercase ): UpperCAmelCase : Any = F'''Plugboard setting isn\'t type string ({type(_lowercase )})''' raise TypeError(_lowercase ) elif len(_lowercase ) % 2 != 0: UpperCAmelCase : str = F'''Odd number of symbols ({len(_lowercase )})''' raise Exception(_lowercase ) elif pbstring == "": return {} pbstring.replace(""" """ , """""" ) # Checks if all characters are unique UpperCAmelCase : Any = set() for i in pbstring: if i not in abc: UpperCAmelCase : str = F'''\'{i}\' not in list of symbols''' raise Exception(_lowercase ) elif i in tmppbl: UpperCAmelCase : Dict = F'''Duplicate symbol ({i})''' raise Exception(_lowercase ) else: tmppbl.add(_lowercase ) del tmppbl # Created the dictionary UpperCAmelCase : List[str] = {} for j in range(0 , len(_lowercase ) - 1 , 2 ): UpperCAmelCase : Any = pbstring[j + 1] UpperCAmelCase : List[Any] = pbstring[j] return pb def __lowerCamelCase ( _lowercase , _lowercase , _lowercase = (rotora, rotora, rotora) , _lowercase = "" , ) -> str: UpperCAmelCase : Optional[int] = text.upper() UpperCAmelCase : Tuple = _validator( _lowercase , _lowercase , plugb.upper() ) UpperCAmelCase : Union[str, Any] = rotor_position UpperCAmelCase : Optional[Any] = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 UpperCAmelCase : str = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: UpperCAmelCase : Tuple = plugboard[symbol] # rotor ra -------------------------- UpperCAmelCase : Tuple = abc.index(_lowercase ) + rotorposa UpperCAmelCase : Union[str, Any] = rotora[index % len(_lowercase )] # rotor rb -------------------------- UpperCAmelCase : Optional[int] = abc.index(_lowercase ) + rotorposa UpperCAmelCase : Dict = rotora[index % len(_lowercase )] # rotor rc -------------------------- UpperCAmelCase : str = abc.index(_lowercase ) + rotorposa UpperCAmelCase : Optional[int] = rotora[index % len(_lowercase )] # reflector -------------------------- # this is the reason you don't need another machine to decipher UpperCAmelCase : List[Any] = reflector[symbol] # 2nd rotors UpperCAmelCase : Optional[int] = abc[rotora.index(_lowercase ) - rotorposa] UpperCAmelCase : str = abc[rotora.index(_lowercase ) - rotorposa] UpperCAmelCase : Optional[int] = abc[rotora.index(_lowercase ) - rotorposa] # 2nd plugboard if symbol in plugboard: UpperCAmelCase : List[Any] = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(_lowercase ): UpperCAmelCase : str = 0 rotorposa += 1 if rotorposa >= len(_lowercase ): UpperCAmelCase : int = 0 rotorposa += 1 if rotorposa >= len(_lowercase ): UpperCAmelCase : Dict = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": a : Union[str, Any] = """This is my Python script that emulates the Enigma machine from WWII.""" a : List[str] = (1, 1, 1) a : int = """pictures""" a : Union[str, Any] = (rotora, rotora, rotora) a : List[Any] = enigma(message, rotor_pos, rotor_sel, pb) print("""Encrypted message:""", en) print("""Decrypted message:""", enigma(en, rotor_pos, rotor_sel, pb))
368
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) a : List[str] = """Hello, World!""" a : List[Any] = """en_XX""" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Dict = Path("""data_bin""" ) UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(_lowercase ) UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder UpperCAmelCase : Tuple = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , _lowercase ) UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight UpperCAmelCase : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase : List[str] = model.roberta.encoder.layer[i] UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i] # self attention UpperCAmelCase : Optional[Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias # intermediate UpperCAmelCase : Tuple = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) UpperCAmelCase : List[str] = xmod_layer.fca.weight UpperCAmelCase : str = xmod_layer.fca.bias # output UpperCAmelCase : Any = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) UpperCAmelCase : Dict = xmod_layer.fca.weight UpperCAmelCase : Dict = xmod_layer.fca.bias UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code] UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code] UpperCAmelCase : Any = from_adapter.fca.weight UpperCAmelCase : int = from_adapter.fca.bias UpperCAmelCase : Dict = from_adapter.fca.weight UpperCAmelCase : Dict = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias UpperCAmelCase : str = xmod.model.encoder.lm_head.weight UpperCAmelCase : str = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) UpperCAmelCase : Optional[int] = model(_lowercase )[0] if classification_head: UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) ) else: UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) a : List[str] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
338
0
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = BlenderbotSmallTokenizer lowercase = False def _lowercase( self ) -> List[Any]: super().setUp() UpperCAmelCase : int = ["""__start__""", """adapt""", """act""", """ap@@""", """te""", """__end__""", """__unk__"""] UpperCAmelCase : Optional[Any] = dict(zip(A , range(len(A ) ) ) ) UpperCAmelCase : Optional[int] = ["""#version: 0.2""", """a p""", """t e</w>""", """ap t</w>""", """a d""", """ad apt</w>""", """a c""", """ac t</w>""", """"""] UpperCAmelCase : Tuple = {"""unk_token""": """__unk__""", """bos_token""": """__start__""", """eos_token""": """__end__"""} UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(A ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(A ) ) def _lowercase( self , **A ) -> Tuple: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> Any: UpperCAmelCase : Tuple = """adapt act apte""" UpperCAmelCase : Dict = """adapt act apte""" return input_text, output_text def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[Any] = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase : Optional[int] = """adapt act apte""" UpperCAmelCase : Dict = ["""adapt""", """act""", """ap@@""", """te"""] UpperCAmelCase : Tuple = tokenizer.tokenize(A ) self.assertListEqual(A , A ) UpperCAmelCase : Any = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] UpperCAmelCase : List[Any] = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) assert tok("""sam""" ).input_ids == [1384] UpperCAmelCase : Any = """I am a small frog.""" UpperCAmelCase : Tuple = tok([src_text] , padding=A , truncation=A )["""input_ids"""] UpperCAmelCase : List[Any] = tok.batch_decode(A , skip_special_tokens=A , clean_up_tokenization_spaces=A )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def _lowercase( self ) -> str: UpperCAmelCase : Union[str, Any] = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) UpperCAmelCase : Any = """I am a small frog .""" UpperCAmelCase : str = """.""" UpperCAmelCase : Optional[Any] = tok(A )["""input_ids"""] UpperCAmelCase : int = tok(A )["""input_ids"""] assert encoded[-1] == encoded_dot[0]
369
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __lowerCamelCase ( _lowercase ) -> List[Any]: for i in range(0 , _lowercase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __lowerCamelCase ( _lowercase ) -> Dict: for i in range(_lowercase , 0 , -1 ): for _ in range(_lowercase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __lowerCamelCase ( _lowercase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowercase ) # upper half reverse_floyd(_lowercase ) # lower half if __name__ == "__main__": print(R"""| /\ | |- | |- |--| |\ /| |-""") print(R"""|/ \| |- |_ |_ |__| | \/ | |_""") a : List[Any] = 1 while K: a : int = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) a : Tuple = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
338
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[str] = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
370
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever a : List[str] = logging.getLogger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A=None ) -> Union[str, Any]: super().__init__( A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , ) UpperCAmelCase : Optional[Any] = None def _lowercase( self , A ) -> List[Any]: logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually UpperCAmelCase : Tuple = self._infer_socket_ifname() # avoid clash with the NCCL port UpperCAmelCase : str = str(distributed_port + 1 ) UpperCAmelCase : Any = dist.new_group(ranks=A , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _lowercase( self ) -> Dict: return dist.get_rank(group=self.process_group ) == 0 def _lowercase( self , A , A , A=torch.floataa ) -> str: UpperCAmelCase : List[Any] = torch.empty(A , dtype=A ) dist.scatter(A , src=0 , scatter_list=A , group=self.process_group ) return target_tensor def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names UpperCAmelCase : Optional[int] = next((addr for addr in addrs if addr.startswith("""e""" )) , A ) return ifname def _lowercase( self , A , A ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): UpperCAmelCase , UpperCAmelCase : str = self._main_retrieve(A , A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A ) # distributed training UpperCAmelCase : int = dist.get_world_size(group=self.process_group ) # gather logic UpperCAmelCase : int = None if self._is_main(): UpperCAmelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )] dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group ) # scatter logic UpperCAmelCase : List[Any] = question_hidden_states.shape[0] UpperCAmelCase : Tuple = [] UpperCAmelCase : Any = [] if self._is_main(): assert len(A ) == world_size UpperCAmelCase , UpperCAmelCase : Optional[int] = self._main_retrieve(torch.cat(A ).numpy() , A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = torch.tensor(A ), torch.tensor(A ) UpperCAmelCase : List[str] = self._chunk_tensor(A , A ) UpperCAmelCase : Union[str, Any] = self._chunk_tensor(A , A ) UpperCAmelCase : Tuple = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa ) UpperCAmelCase : Optional[Any] = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
338
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig a : Tuple = { """google/tapas-base-finetuned-sqa""": ( """https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json""" ), """google/tapas-base-finetuned-wtq""": ( """https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json""" ), """google/tapas-base-finetuned-wikisql-supervised""": ( """https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json""" ), """google/tapas-base-finetuned-tabfact""": ( """https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json""" ), } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'tapas' def __init__( self , A=30522 , A=768 , A=12 , A=12 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=1024 , A=[3, 256, 256, 2, 256, 256, 10] , A=0.0_2 , A=1e-12 , A=0 , A=10.0 , A=0 , A=1.0 , A=None , A=1.0 , A=False , A=None , A=1.0 , A=1.0 , A=False , A=False , A="ratio" , A=None , A=None , A=64 , A=32 , A=False , A=True , A=False , A=False , A=True , A=False , A=None , A=None , **A , ) -> List[Any]: super().__init__(pad_token_id=A , **A ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Optional[Any] = hidden_size UpperCAmelCase : Any = num_hidden_layers UpperCAmelCase : Tuple = num_attention_heads UpperCAmelCase : str = hidden_act UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : Optional[int] = hidden_dropout_prob UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase : str = max_position_embeddings UpperCAmelCase : Union[str, Any] = type_vocab_sizes UpperCAmelCase : int = initializer_range UpperCAmelCase : int = layer_norm_eps # Fine-tuning task hyperparameters UpperCAmelCase : Optional[Any] = positive_label_weight UpperCAmelCase : Union[str, Any] = num_aggregation_labels UpperCAmelCase : List[str] = aggregation_loss_weight UpperCAmelCase : str = use_answer_as_supervision UpperCAmelCase : int = answer_loss_importance UpperCAmelCase : Dict = use_normalized_answer_loss UpperCAmelCase : str = huber_loss_delta UpperCAmelCase : Union[str, Any] = temperature UpperCAmelCase : Optional[Any] = aggregation_temperature UpperCAmelCase : Optional[Any] = use_gumbel_for_cells UpperCAmelCase : Optional[Any] = use_gumbel_for_aggregation UpperCAmelCase : int = average_approximation_function UpperCAmelCase : Tuple = cell_selection_preference UpperCAmelCase : Dict = answer_loss_cutoff UpperCAmelCase : Optional[int] = max_num_rows UpperCAmelCase : Optional[int] = max_num_columns UpperCAmelCase : int = average_logits_per_cell UpperCAmelCase : Dict = select_one_column UpperCAmelCase : Optional[int] = allow_empty_column_selection UpperCAmelCase : Union[str, Any] = init_cell_selection_weights_to_zero UpperCAmelCase : str = reset_position_index_per_cell UpperCAmelCase : str = disable_per_token_loss # Aggregation hyperparameters UpperCAmelCase : Dict = aggregation_labels UpperCAmelCase : List[Any] = no_aggregation_label_index if isinstance(self.aggregation_labels , A ): UpperCAmelCase : Optional[int] = {int(A ): v for k, v in aggregation_labels.items()}
371
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : List[str] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } a : List[Any] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } a : List[Any] = { """facebook/blenderbot_small-90M""": 5_1_2, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = BlenderbotSmallTokenizer def __init__( self , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , A=True , **A , ) -> Union[str, Any]: super().__init__( ByteLevelBPETokenizer( vocab=A , merges=A , add_prefix_space=A , trim_offsets=A , ) , bos_token=A , eos_token=A , unk_token=A , **A , ) UpperCAmelCase : Optional[Any] = add_prefix_space def _lowercase( self , A , A=None ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
338
0
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( _lowercase ) -> list: if len(_lowercase ) == 0: return [] UpperCAmelCase : Union[str, Any] = min(_lowercase ), max(_lowercase ) UpperCAmelCase : str = int(max_value - min_value ) + 1 UpperCAmelCase : list[list] = [[] for _ in range(_lowercase )] for i in my_list: buckets[int(i - min_value )].append(_lowercase ) return [v for bucket in buckets for v in sorted(_lowercase )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
350
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A = None , A = None , A = False , **A , ) -> Tuple: super().__init__(features=A , cache_dir=A , keep_in_memory=A , **A ) UpperCAmelCase : Any = Sql( cache_dir=A , features=A , sql=A , con=A , **A , ) def _lowercase( self ) -> Dict: UpperCAmelCase : Any = None UpperCAmelCase : Any = None UpperCAmelCase : int = None UpperCAmelCase : int = None self.builder.download_and_prepare( download_config=A , download_mode=A , verification_mode=A , base_path=A , ) # Build dataset for splits UpperCAmelCase : str = self.builder.as_dataset( split="""train""" , verification_mode=A , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase_ : def __init__( self , A , A , A , A = None , A = None , **A , ) -> str: if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) UpperCAmelCase : Dict = dataset UpperCAmelCase : List[Any] = name UpperCAmelCase : Any = con UpperCAmelCase : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase : Optional[Any] = num_proc UpperCAmelCase : str = to_sql_kwargs def _lowercase( self ) -> int: UpperCAmelCase : Any = self.to_sql_kwargs.pop("""sql""" , A ) UpperCAmelCase : str = self.to_sql_kwargs.pop("""con""" , A ) UpperCAmelCase : Union[str, Any] = self.to_sql_kwargs.pop("""index""" , A ) UpperCAmelCase : str = self._write(index=A , **self.to_sql_kwargs ) return written def _lowercase( self , A ) -> Any: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = args UpperCAmelCase : Union[str, Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs UpperCAmelCase : int = query_table( table=self.dataset.data , key=slice(A , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCAmelCase : Any = batch.to_pandas() UpperCAmelCase : List[Any] = df.to_sql(self.name , self.con , index=A , **A ) return num_rows or len(A ) def _lowercase( self , A , **A ) -> int: UpperCAmelCase : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: UpperCAmelCase , UpperCAmelCase : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , A , A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
338
0
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> List[Any]: for i in range(0 , _lowercase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __lowerCamelCase ( _lowercase ) -> Dict: for i in range(_lowercase , 0 , -1 ): for _ in range(_lowercase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __lowerCamelCase ( _lowercase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowercase ) # upper half reverse_floyd(_lowercase ) # lower half if __name__ == "__main__": print(R"""| /\ | |- | |- |--| |\ /| |-""") print(R"""|/ \| |- |_ |_ |__| | \/ | |_""") a : List[Any] = 1 while K: a : int = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) a : Tuple = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
351
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCamelCase_ : lowercase = MBartConfig lowercase = {} lowercase = 'gelu' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : str = is_training UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Optional[Any] = eos_token_id UpperCAmelCase : List[str] = pad_token_id UpperCAmelCase : List[Any] = bos_token_id def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A ) return config, inputs_dict def _lowercase( self , A , A ) -> List[str]: UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder() UpperCAmelCase : int = inputs_dict["""input_ids"""] UpperCAmelCase : str = input_ids[:1, :] UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase : List[str] = inputs_dict["""head_mask"""] UpperCAmelCase : List[Any] = 1 # first forward pass UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = outputs.to_tuple() UpperCAmelCase : int = past_key_values[1] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]: if attention_mask is None: UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False def _lowercase( self , A , A , A , A , A ) -> int: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : int = TFMBartModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A ) def _lowercase( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase( self ) -> Dict: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_sentencepiece @require_tokenizers @require_tf class UpperCamelCase_ ( unittest.TestCase ): lowercase = [ ' UN Chief Says There Is No Military Solution in Syria', ] lowercase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] lowercase = 'facebook/mbart-large-en-ro' @cached_property def _lowercase( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowercase( self , **A ) -> Any: UpperCAmelCase : Optional[int] = self.translate_src_text(**A ) self.assertListEqual(self.expected_text , A ) def _lowercase( self , **A ) -> Optional[Any]: UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" ) UpperCAmelCase : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A ) return generated_words @slow def _lowercase( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
338
0
'''simple docstring''' from ...processing_utils import ProcessorMixin class UpperCamelCase_ ( __magic_name__ ): lowercase = ['image_processor', 'feature_extractor'] lowercase = 'TvltImageProcessor' lowercase = 'TvltFeatureExtractor' def __init__( self , A , A ) -> List[str]: super().__init__(image_processor=A , feature_extractor=A ) UpperCAmelCase : int = image_processor UpperCAmelCase : List[str] = feature_extractor def __call__( self , A=None , A=None , A=None , A=None , A=False , A=False , *A , **A , ) -> int: if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) UpperCAmelCase : List[str] = None if images is not None: UpperCAmelCase : List[Any] = self.image_processor(A , mask_pixel=A , *A , **A ) if images_mixed is not None: UpperCAmelCase : Tuple = self.image_processor(A , is_mixed=A , *A , **A ) if audio is not None: UpperCAmelCase : Any = self.feature_extractor( A , *A , sampling_rate=A , mask_audio=A , **A ) UpperCAmelCase : Dict = {} if audio is not None: output_dict.update(A ) if images is not None: output_dict.update(A ) if images_mixed_dict is not None: output_dict.update(A ) return output_dict @property def _lowercase( self ) -> int: UpperCAmelCase : List[Any] = self.image_processor.model_input_names UpperCAmelCase : Optional[int] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
352
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: UpperCAmelCase : Tuple = len(_lowercase ) + 1 UpperCAmelCase : List[Any] = len(_lowercase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase : str = [[0 for i in range(_lowercase )] for j in range(_lowercase )] # since string of zero length match pattern of zero length UpperCAmelCase : int = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowercase ): UpperCAmelCase : str = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowercase ): UpperCAmelCase : Optional[Any] = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowercase ): for j in range(1 , _lowercase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase : Union[str, Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase : List[Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase : Optional[int] = dp[i - 1][j] else: UpperCAmelCase : Any = 0 else: UpperCAmelCase : str = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") a : List[str] = """aab""" a : Optional[int] = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
338
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() a : Any = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : str = DPTConfig(embedding_type="""hybrid""" ) if "large" in checkpoint_url: UpperCAmelCase : Optional[Any] = 1_0_2_4 UpperCAmelCase : str = 4_0_9_6 UpperCAmelCase : Union[str, Any] = 2_4 UpperCAmelCase : List[str] = 1_6 UpperCAmelCase : List[Any] = [5, 1_1, 1_7, 2_3] UpperCAmelCase : str = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4] UpperCAmelCase : int = (1, 3_8_4, 3_8_4) if "nyu" or "midas" in checkpoint_url: UpperCAmelCase : Optional[int] = 7_6_8 UpperCAmelCase : Optional[int] = [1, 1, 1, 0.5] UpperCAmelCase : Any = [2_5_6, 5_1_2, 7_6_8, 7_6_8] UpperCAmelCase : List[Any] = 1_5_0 UpperCAmelCase : Any = 1_6 UpperCAmelCase : Optional[Any] = (1, 3_8_4, 3_8_4) UpperCAmelCase : Union[str, Any] = False UpperCAmelCase : Optional[Any] = """project""" if "ade" in checkpoint_url: UpperCAmelCase : List[str] = True UpperCAmelCase : List[Any] = 7_6_8 UpperCAmelCase : List[str] = [1, 1, 1, 0.5] UpperCAmelCase : Dict = 1_5_0 UpperCAmelCase : int = 1_6 UpperCAmelCase : str = """huggingface/label-files""" UpperCAmelCase : int = """ade20k-id2label.json""" UpperCAmelCase : str = json.load(open(cached_download(hf_hub_url(_lowercase , _lowercase , repo_type="""dataset""" ) ) , """r""" ) ) UpperCAmelCase : Dict = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : int = idalabel UpperCAmelCase : str = {v: k for k, v in idalabel.items()} UpperCAmelCase : Optional[Any] = [1, 1_5_0, 4_8_0, 4_8_0] return config, expected_shape def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Union[str, Any] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(_lowercase , _lowercase ) def __lowerCamelCase ( _lowercase ) -> Tuple: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCAmelCase : Tuple = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: UpperCAmelCase : Any = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: UpperCAmelCase : str = name.replace("""patch_embed""" , """""" ) if "pos_embed" in name: UpperCAmelCase : Optional[int] = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: UpperCAmelCase : List[Any] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: UpperCAmelCase : int = name.replace("""proj""" , """projection""" ) if "blocks" in name: UpperCAmelCase : Optional[Any] = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: UpperCAmelCase : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: UpperCAmelCase : Optional[Any] = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name and "backbone" not in name: UpperCAmelCase : Dict = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name and "backbone" not in name: UpperCAmelCase : Optional[Any] = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: UpperCAmelCase : Dict = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: UpperCAmelCase : Union[str, Any] = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: UpperCAmelCase : Optional[Any] = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: UpperCAmelCase : Optional[int] = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: UpperCAmelCase : Dict = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: UpperCAmelCase : int = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: UpperCAmelCase : int = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCAmelCase : Optional[int] = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: UpperCAmelCase : List[Any] = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: UpperCAmelCase : Any = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: UpperCAmelCase : str = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: UpperCAmelCase : Optional[Any] = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: UpperCAmelCase : Dict = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCAmelCase : List[str] = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: UpperCAmelCase : str = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: UpperCAmelCase : Tuple = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: UpperCAmelCase : Any = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCAmelCase : Any = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: UpperCAmelCase : Optional[Any] = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: UpperCAmelCase : int = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: UpperCAmelCase : Optional[Any] = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: UpperCAmelCase : int = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: UpperCAmelCase : Dict = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: UpperCAmelCase : List[Any] = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: UpperCAmelCase : List[str] = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: UpperCAmelCase : Optional[Any] = name.replace("""bn""" , """batch_norm""" ) if "head" in name: UpperCAmelCase : Any = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: UpperCAmelCase : Tuple = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: UpperCAmelCase : Union[str, Any] = name.replace("""auxlayer""" , """auxiliary_head.head""" ) if "backbone" in name: UpperCAmelCase : List[Any] = name.replace("""backbone""" , """backbone.bit.encoder""" ) if ".." in name: UpperCAmelCase : List[Any] = name.replace("""..""" , """.""" ) if "stem.conv" in name: UpperCAmelCase : Optional[Any] = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: UpperCAmelCase : Dict = name.replace("""blocks""" , """layers""" ) if "convolution" in name and "backbone" in name: UpperCAmelCase : Union[str, Any] = name.replace("""convolution""" , """conv""" ) if "layer" in name and "backbone" in name: UpperCAmelCase : Tuple = name.replace("""layer""" , """layers""" ) if "backbone.bit.encoder.bit" in name: UpperCAmelCase : Any = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" ) if "embedder.conv" in name: UpperCAmelCase : List[Any] = name.replace("""embedder.conv""" , """embedder.convolution""" ) if "backbone.bit.encoder.stem.norm" in name: UpperCAmelCase : Dict = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" ) return name def __lowerCamelCase ( _lowercase , _lowercase ) -> Union[str, Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase : List[Any] = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) UpperCAmelCase : List[Any] = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Union[str, Any] = in_proj_weight[: config.hidden_size, :] UpperCAmelCase : Tuple = in_proj_bias[: config.hidden_size] UpperCAmelCase : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase : Tuple = in_proj_bias[-config.hidden_size :] def __lowerCamelCase ( ) -> str: UpperCAmelCase : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : List[str] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Any: UpperCAmelCase : str = get_dpt_config(_lowercase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(_lowercase ) # rename keys for key in state_dict.copy().keys(): UpperCAmelCase : Tuple = state_dict.pop(_lowercase ) UpperCAmelCase : Optional[Any] = val # read in qkv matrices read_in_q_k_v(_lowercase , _lowercase ) # load HuggingFace model UpperCAmelCase : Optional[int] = DPTForSemanticSegmentation(_lowercase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(_lowercase ) model.load_state_dict(_lowercase ) model.eval() # Check outputs on an image UpperCAmelCase : Optional[Any] = 4_8_0 if """ade""" in checkpoint_url else 3_8_4 UpperCAmelCase : List[str] = DPTImageProcessor(size=_lowercase ) UpperCAmelCase : int = prepare_img() UpperCAmelCase : Any = image_processor(_lowercase , return_tensors="""pt""" ) # forward pass UpperCAmelCase : Optional[Any] = model(**_lowercase ).logits if """ade""" in checkpoint_url else model(**_lowercase ).predicted_depth if show_prediction: UpperCAmelCase : List[Any] = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=_lowercase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 2_5_5 ).show() if pytorch_dump_folder_path is not None: Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowercase ) if push_to_hub: model.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) if __name__ == "__main__": a : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=False, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) parser.add_argument( """--show_prediction""", action="""store_true""", ) a : int = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
353
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : List[str] = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int: UpperCAmelCase : int = 1 UpperCAmelCase : str = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase : Tuple = pre_numerator UpperCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase : Union[str, Any] = cur_numerator UpperCAmelCase : Optional[int] = e_cont * pre_numerator + temp return sum_digits(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
338
0
'''simple docstring''' import unittest import numpy as np def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase = None , ) -> np.ndarray: UpperCAmelCase : Dict = np.shape(_lowercase ) UpperCAmelCase : Optional[int] = np.shape(_lowercase ) UpperCAmelCase : Dict = np.shape(_lowercase ) if shape_a[0] != shape_b[0]: UpperCAmelCase : Tuple = ( """Expected the same number of rows for A and B. """ F'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(_lowercase ) if shape_b[1] != shape_c[1]: UpperCAmelCase : Optional[int] = ( """Expected the same number of columns for B and C. """ F'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(_lowercase ) UpperCAmelCase : Any = pseudo_inv if a_inv is None: try: UpperCAmelCase : List[Any] = np.linalg.inv(_lowercase ) except np.linalg.LinAlgError: raise ValueError( """Input matrix A is not invertible. Cannot compute Schur complement.""" ) return mat_c - mat_b.T @ a_inv @ mat_b class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> None: UpperCAmelCase : Optional[int] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase : int = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase : int = np.array([[2, 1], [6, 3]] ) UpperCAmelCase : int = schur_complement(A , A , A ) UpperCAmelCase : int = np.block([[a, b], [b.T, c]] ) UpperCAmelCase : str = np.linalg.det(A ) UpperCAmelCase : Optional[int] = np.linalg.det(A ) UpperCAmelCase : Any = np.linalg.det(A ) self.assertAlmostEqual(A , det_a * det_s ) def _lowercase( self ) -> None: UpperCAmelCase : Optional[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase : List[Any] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase : Any = np.array([[2, 1], [6, 3]] ) with self.assertRaises(A ): schur_complement(A , A , A ) def _lowercase( self ) -> None: UpperCAmelCase : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase : Optional[int] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase : Optional[int] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(A ): schur_complement(A , A , A ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
354
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=0.0_1 , A=1000 ) -> List[str]: UpperCAmelCase : List[Any] = p_stop UpperCAmelCase : Optional[int] = max_length def __iter__( self ) -> Union[str, Any]: UpperCAmelCase : Dict = 0 UpperCAmelCase : Union[str, Any] = False while not stop and count < self.max_length: yield count count += 1 UpperCAmelCase : Any = random.random() < self.p_stop class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A , A=False , A=True ) -> Union[str, Any]: UpperCAmelCase : List[str] = [ BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A ) for i in range(2 ) ] UpperCAmelCase : List[str] = [list(A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] ) self.assertListEqual(A , A ) def _lowercase( self ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is very small. UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(A , A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [[], []] self.check_batch_sampler_shards(A , A ) def _lowercase( self ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(A , A , split_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A ) def _lowercase( self ) -> Any: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : str = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , even_batches=A ) UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) UpperCAmelCase : Tuple = [[], []] self.check_batch_sampler_shards(A , A , even_batches=A ) def _lowercase( self ) -> List[Any]: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is very small. UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Dict = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCAmelCase : List[str] = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _lowercase( self , A , A , A , A=False , A=2 , A=False ) -> Tuple: random.seed(A ) UpperCAmelCase : Dict = list(A ) UpperCAmelCase : Any = [ IterableDatasetShard( A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , ) for i in range(A ) ] UpperCAmelCase : Dict = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(A ) iterable_dataset_lists.append(list(A ) ) UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCAmelCase : List[Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(A ) , len(A ) ) self.assertTrue(len(A ) % shard_batch_size == 0 ) UpperCAmelCase : List[Any] = [] for idx in range(0 , len(A ) , A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(A ) < len(A ): reference += reference self.assertListEqual(A , reference[: len(A )] ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = 42 UpperCAmelCase : List[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) # Edge case with a very small dataset UpperCAmelCase : List[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=A ) UpperCAmelCase : Any = SkipBatchSampler(A , 2 ) self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> int: UpperCAmelCase : Any = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) UpperCAmelCase : Optional[Any] = skip_first_batches(A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowercase( self ) -> Dict: Accelerator() UpperCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
338
0
a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowerCamelCase ( ) -> None: UpperCAmelCase : Optional[int] = input("""Enter message: """ ) UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ ) UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): UpperCAmelCase : List[str] = """encrypt""" UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase ) elif mode.lower().startswith("""d""" ): UpperCAmelCase : Tuple = """decrypt""" UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """encrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """decrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Tuple = key.upper() for symbol in message: UpperCAmelCase : Dict = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowercase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowercase ): UpperCAmelCase : Optional[int] = 0 else: translated.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": main()
355
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[Any] = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") a : Optional[int] = logging.getLogger(__name__) @dataclass class UpperCamelCase_ : lowercase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowercase = field( default=__magic_name__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowercase = field( default=__magic_name__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowercase = field( default=__magic_name__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowercase = field( default=__magic_name__ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) lowercase = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowercase = field( default=__magic_name__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) @dataclass class UpperCamelCase_ : lowercase = field(default=__magic_name__ , metadata={'help': 'The input training data file (a text file).'} ) lowercase = field( default=__magic_name__ , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) lowercase = field( default=__magic_name__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowercase = field( default=__magic_name__ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowercase = field( default=__magic_name__ , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. If passed, sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase = field( default=__magic_name__ , metadata={ 'help': ( 'Whether to pad all samples to the maximum sentence length. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch. More ' 'efficient on GPU but very bad for TPU.' ) } , ) lowercase = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowercase = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def _lowercase( self ) -> Optional[Any]: if self.train_file is not None: UpperCAmelCase : Optional[Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: UpperCAmelCase : Tuple = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class UpperCamelCase_ : lowercase = 42 lowercase = True lowercase = None lowercase = None def __call__( self , A ) -> List[str]: UpperCAmelCase : str = """label""" if """label""" in features[0].keys() else """labels""" UpperCAmelCase : str = [feature.pop(A ) for feature in features] UpperCAmelCase : Tuple = len(A ) UpperCAmelCase : List[Any] = len(features[0]["""input_ids"""] ) UpperCAmelCase : Optional[Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(A )] for feature in features ] UpperCAmelCase : int = list(chain(*A ) ) UpperCAmelCase : Dict = self.tokenizer.pad( A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten UpperCAmelCase : List[Any] = {k: v.view(A , A , -1 ) for k, v in batch.items()} # Add back labels UpperCAmelCase : Tuple = torch.tensor(A , dtype=torch.intaa ) return batch def __lowerCamelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase : Any = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase : int = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , _lowercase , _lowercase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase : Optional[Any] = training_args.get_process_log_level() logger.setLevel(_lowercase ) datasets.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCAmelCase : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: UpperCAmelCase : List[Any] = {} if data_args.train_file is not None: UpperCAmelCase : Union[str, Any] = data_args.train_file if data_args.validation_file is not None: UpperCAmelCase : Dict = data_args.validation_file UpperCAmelCase : int = data_args.train_file.split(""".""" )[-1] UpperCAmelCase : Any = load_dataset( _lowercase , data_files=_lowercase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. UpperCAmelCase : Union[str, Any] = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase : Optional[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. UpperCAmelCase : List[str] = [F'''ending{i}''' for i in range(4 )] UpperCAmelCase : Optional[int] = """sent1""" UpperCAmelCase : Optional[int] = """sent2""" if data_args.max_seq_length is None: UpperCAmelCase : str = tokenizer.model_max_length if max_seq_length > 1_0_2_4: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) UpperCAmelCase : Any = 1_0_2_4 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) UpperCAmelCase : int = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(_lowercase ): UpperCAmelCase : Optional[int] = [[context] * 4 for context in examples[context_name]] UpperCAmelCase : Any = examples[question_header_name] UpperCAmelCase : List[Any] = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(_lowercase ) ] # Flatten out UpperCAmelCase : List[str] = list(chain(*_lowercase ) ) UpperCAmelCase : Tuple = list(chain(*_lowercase ) ) # Tokenize UpperCAmelCase : Dict = tokenizer( _lowercase , _lowercase , truncation=_lowercase , max_length=_lowercase , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(_lowercase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) UpperCAmelCase : List[str] = raw_datasets["""train"""] if data_args.max_train_samples is not None: UpperCAmelCase : int = min(len(_lowercase ) , data_args.max_train_samples ) UpperCAmelCase : str = train_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): UpperCAmelCase : int = train_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) UpperCAmelCase : Dict = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: UpperCAmelCase : Optional[int] = min(len(_lowercase ) , data_args.max_eval_samples ) UpperCAmelCase : Optional[int] = eval_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): UpperCAmelCase : Dict = eval_dataset.map( _lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator UpperCAmelCase : List[Any] = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=_lowercase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(_lowercase ): UpperCAmelCase : Tuple = eval_predictions UpperCAmelCase : str = np.argmax(_lowercase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer UpperCAmelCase : Any = Trainer( model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_lowercase , data_collator=_lowercase , compute_metrics=_lowercase , ) # Training if training_args.do_train: UpperCAmelCase : int = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase : Tuple = last_checkpoint UpperCAmelCase : List[str] = trainer.train(resume_from_checkpoint=_lowercase ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCAmelCase : Tuple = train_result.metrics UpperCAmelCase : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase ) ) UpperCAmelCase : Optional[int] = min(_lowercase , len(_lowercase ) ) trainer.log_metrics("""train""" , _lowercase ) trainer.save_metrics("""train""" , _lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCAmelCase : Dict = trainer.evaluate() UpperCAmelCase : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase ) UpperCAmelCase : Dict = min(_lowercase , len(_lowercase ) ) trainer.log_metrics("""eval""" , _lowercase ) trainer.save_metrics("""eval""" , _lowercase ) UpperCAmelCase : Any = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**_lowercase ) else: trainer.create_model_card(**_lowercase ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
356
'''simple docstring''' from math import loga def __lowerCamelCase ( _lowercase ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_lowercase , _lowercase ): raise TypeError("""Input value must be a 'int' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
338
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor a : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , **A ) -> None: warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , A , ) super().__init__(*A , **A )
357
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. a : Optional[int] = 1_0 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: for i in range(_lowercase , _lowercase ): if array[i] == target: return i return -1 def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = len(_lowercase ) while left <= right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1 UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase : Any = one_third - 1 elif array[two_third] < target: UpperCAmelCase : Tuple = two_third + 1 else: UpperCAmelCase : int = one_third + 1 UpperCAmelCase : List[Any] = two_third - 1 else: return -1 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: if left < right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : str = (left + right) // 3 + 1 UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() a : Any = input("""Enter numbers separated by comma:\n""").strip() a : Any = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip()) a : Union[str, Any] = ite_ternary_search(collection, target) a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
338
0
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip a : List[Any] = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def __lowerCamelCase ( _lowercase ) -> Optional[int]: if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: return max(metric_fn(_lowercase , _lowercase ) for gt in ground_truths ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: UpperCAmelCase : List[Any] = [line.strip() for line in open(_lowercase , """r""" ).readlines()] UpperCAmelCase : Optional[Any] = [] if args.gold_data_mode == "qa": UpperCAmelCase : Dict = pd.read_csv(_lowercase , sep="""\t""" , header=_lowercase ) for answer_list in data[1]: UpperCAmelCase : Tuple = ast.literal_eval(_lowercase ) answers.append(_lowercase ) else: UpperCAmelCase : List[str] = [line.strip() for line in open(_lowercase , """r""" ).readlines()] UpperCAmelCase : List[Any] = [[reference] for reference in references] UpperCAmelCase : List[Any] = 0 for prediction, ground_truths in zip(_lowercase , _lowercase ): total += 1 em += metric_max_over_ground_truths(_lowercase , _lowercase , _lowercase ) fa += metric_max_over_ground_truths(_lowercase , _lowercase , _lowercase ) UpperCAmelCase : Tuple = 100.0 * em / total UpperCAmelCase : Optional[Any] = 100.0 * fa / total logger.info(F'''F1: {fa:.2f}''' ) logger.info(F'''EM: {em:.2f}''' ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Union[str, Any] = args.k UpperCAmelCase : Union[str, Any] = [line.strip() for line in open(_lowercase , """r""" ).readlines()] UpperCAmelCase : Union[str, Any] = [line.strip() for line in open(_lowercase , """r""" ).readlines()] UpperCAmelCase : List[Any] = 0 for hypo, reference in zip(_lowercase , _lowercase ): UpperCAmelCase : int = set(hypo.split("""\t""" )[:k] ) UpperCAmelCase : Optional[Any] = set(reference.split("""\t""" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k UpperCAmelCase : Tuple = 100.0 * em / total logger.info(F'''Precision@{k}: {em: .2f}''' ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: def strip_title(_lowercase ): if title.startswith("""\"""" ): UpperCAmelCase : Any = title[1:] if title.endswith("""\"""" ): UpperCAmelCase : Optional[Any] = title[:-1] return title UpperCAmelCase : Optional[int] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _lowercase , return_tensors="""pt""" , padding=_lowercase , truncation=_lowercase , )["""input_ids"""].to(args.device ) UpperCAmelCase : List[str] = rag_model.rag.question_encoder(_lowercase ) UpperCAmelCase : int = question_enc_outputs[0] UpperCAmelCase : Union[str, Any] = rag_model.retriever( _lowercase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , ) UpperCAmelCase : Tuple = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) UpperCAmelCase : Any = [] for docs in all_docs: UpperCAmelCase : Optional[Any] = [strip_title(_lowercase ) for title in docs["""title"""]] provenance_strings.append("""\t""".join(_lowercase ) ) return provenance_strings def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[int]: with torch.no_grad(): UpperCAmelCase : Dict = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _lowercase , return_tensors="""pt""" , padding=_lowercase , truncation=_lowercase ) UpperCAmelCase : Optional[Any] = inputs_dict.input_ids.to(args.device ) UpperCAmelCase : Optional[int] = inputs_dict.attention_mask.to(args.device ) UpperCAmelCase : str = rag_model.generate( # rag_model overwrites generate _lowercase , attention_mask=_lowercase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_lowercase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) UpperCAmelCase : Any = rag_model.retriever.generator_tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase ) if args.print_predictions: for q, a in zip(_lowercase , _lowercase ): logger.info("""Q: {} - A: {}""".format(_lowercase , _lowercase ) ) return answers def __lowerCamelCase ( ) -> int: UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=_lowercase , help=( """RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the""" """ model_name_or_path""" ) , ) parser.add_argument( """--index_name""" , default=_lowercase , choices=["""exact""", """compressed""", """legacy"""] , type=_lowercase , help="""RAG model retriever type""" , ) parser.add_argument( """--index_path""" , default=_lowercase , type=_lowercase , help="""Path to the retrieval index""" , ) parser.add_argument("""--n_docs""" , default=5 , type=_lowercase , help="""Number of retrieved docs""" ) parser.add_argument( """--model_name_or_path""" , default=_lowercase , type=_lowercase , required=_lowercase , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , ) parser.add_argument( """--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=_lowercase , help=( """Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates""" """ precision@k.""" ) , ) parser.add_argument("""--k""" , default=1 , type=_lowercase , help="""k for the precision@k calculation""" ) parser.add_argument( """--evaluation_set""" , default=_lowercase , type=_lowercase , required=_lowercase , help="""Path to a file containing evaluation samples""" , ) parser.add_argument( """--gold_data_path""" , default=_lowercase , type=_lowercase , required=_lowercase , help="""Path to a tab-separated file with gold samples""" , ) parser.add_argument( """--gold_data_mode""" , default="""qa""" , type=_lowercase , choices=["""qa""", """ans"""] , help=( """Format of the gold data file""" """qa - a single line in the following format: question [tab] answer_list""" """ans - a single line of the gold file contains the expected answer string""" ) , ) parser.add_argument( """--predictions_path""" , type=_lowercase , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , ) parser.add_argument( """--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , ) parser.add_argument( """--eval_batch_size""" , default=8 , type=_lowercase , help="""Batch size per GPU/CPU for evaluation.""" , ) parser.add_argument( """--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , ) parser.add_argument( """--num_beams""" , default=4 , type=_lowercase , help="""Number of beams to be used when generating answers""" , ) parser.add_argument("""--min_length""" , default=1 , type=_lowercase , help="""Min length of the generated answers""" ) parser.add_argument("""--max_length""" , default=5_0 , type=_lowercase , help="""Max length of the generated answers""" ) parser.add_argument( """--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , ) parser.add_argument( """--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , ) UpperCAmelCase : List[Any] = parser.parse_args() UpperCAmelCase : List[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) return args def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : List[str] = {} if args.model_type is None: UpperCAmelCase : Dict = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("""rag""" ): UpperCAmelCase : Any = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration UpperCAmelCase : Union[str, Any] = args.n_docs if args.index_name is not None: UpperCAmelCase : Tuple = args.index_name if args.index_path is not None: UpperCAmelCase : List[Any] = args.index_path else: UpperCAmelCase : List[Any] = BartForConditionalGeneration UpperCAmelCase : Union[str, Any] = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("""Evaluate the following checkpoints: %s""" , _lowercase ) UpperCAmelCase : Optional[int] = get_scores if args.eval_mode == """e2e""" else get_precision_at_k UpperCAmelCase : Optional[int] = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) ) score_fn(_lowercase , args.predictions_path , args.gold_data_path ) continue logger.info("""***** Running evaluation for {} *****""".format(_lowercase ) ) logger.info(""" Batch size = %d""" , args.eval_batch_size ) logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) ) if args.model_type.startswith("""rag""" ): UpperCAmelCase : Optional[int] = RagRetriever.from_pretrained(_lowercase , **_lowercase ) UpperCAmelCase : Tuple = model_class.from_pretrained(_lowercase , retriever=_lowercase , **_lowercase ) model.retriever.init_retrieval() else: UpperCAmelCase : Optional[int] = model_class.from_pretrained(_lowercase , **_lowercase ) model.to(args.device ) with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file: UpperCAmelCase : List[Any] = [] for line in tqdm(_lowercase ): questions.append(line.strip() ) if len(_lowercase ) == args.eval_batch_size: UpperCAmelCase : str = evaluate_batch_fn(_lowercase , _lowercase , _lowercase ) preds_file.write("""\n""".join(_lowercase ) + """\n""" ) preds_file.flush() UpperCAmelCase : Dict = [] if len(_lowercase ) > 0: UpperCAmelCase : List[str] = evaluate_batch_fn(_lowercase , _lowercase , _lowercase ) preds_file.write("""\n""".join(_lowercase ) ) preds_file.flush() score_fn(_lowercase , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": a : List[Any] = get_args() main(args)
358
'''simple docstring''' import numpy as np class UpperCamelCase_ : def __init__( self ) -> int: UpperCAmelCase : str = (0, 0) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Any = 0 UpperCAmelCase : int = 0 UpperCAmelCase : Optional[int] = 0 def __eq__( self , A ) -> Optional[Any]: return self.position == cell.position def _lowercase( self ) -> Tuple: print(self.position ) class UpperCamelCase_ : def __init__( self , A=(5, 5) ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = np.zeros(A ) UpperCAmelCase : int = world_size[0] UpperCAmelCase : List[str] = world_size[1] def _lowercase( self ) -> List[Any]: print(self.w ) def _lowercase( self , A ) -> Dict: UpperCAmelCase : Optional[Any] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase : List[Any] = cell.position[0] UpperCAmelCase : Union[str, Any] = cell.position[1] UpperCAmelCase : Optional[int] = [] for n in neughbour_cord: UpperCAmelCase : Any = current_x + n[0] UpperCAmelCase : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase : str = Cell() UpperCAmelCase : List[str] = (x, y) UpperCAmelCase : Dict = cell neighbours.append(A ) return neighbours def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase : List[Any] = [] UpperCAmelCase : Optional[int] = [] _open.append(_lowercase ) while _open: UpperCAmelCase : Any = np.argmin([n.f for n in _open] ) UpperCAmelCase : Optional[int] = _open[min_f] _closed.append(_open.pop(_lowercase ) ) if current == goal: break for n in world.get_neigbours(_lowercase ): for c in _closed: if c == n: continue UpperCAmelCase : List[str] = current.g + 1 UpperCAmelCase , UpperCAmelCase : List[str] = n.position UpperCAmelCase , UpperCAmelCase : Dict = goal.position UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase : Dict = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_lowercase ) UpperCAmelCase : Dict = [] while current.parent is not None: path.append(current.position ) UpperCAmelCase : Optional[int] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": a : List[str] = Gridworld() # Start position and goal a : Optional[int] = Cell() a : Optional[Any] = (0, 0) a : Optional[Any] = Cell() a : str = (4, 4) print(F'''path from {start.position} to {goal.position}''') a : List[Any] = astar(world, start, goal) # Just for visual reasons. for i in s: a : Any = 1 print(world.w)
338
0
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer a : Tuple = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): lowercase = 'AutoTokenizer' lowercase = ['tokenizer'] lowercase = { 'semantic_prompt': 1, 'coarse_prompt': 2, 'fine_prompt': 2, } def __init__( self , A , A=None ) -> Union[str, Any]: super().__init__(A ) UpperCAmelCase : List[str] = speaker_embeddings @classmethod def _lowercase( cls , A , A="speaker_embeddings_path.json" , **A ) -> Union[str, Any]: if speaker_embeddings_dict_path is not None: UpperCAmelCase : Union[str, Any] = get_file_from_repo( A , A , subfolder=kwargs.pop("""subfolder""" , A ) , cache_dir=kwargs.pop("""cache_dir""" , A ) , force_download=kwargs.pop("""force_download""" , A ) , proxies=kwargs.pop("""proxies""" , A ) , resume_download=kwargs.pop("""resume_download""" , A ) , local_files_only=kwargs.pop("""local_files_only""" , A ) , use_auth_token=kwargs.pop("""use_auth_token""" , A ) , revision=kwargs.pop("""revision""" , A ) , ) if speaker_embeddings_path is None: logger.warning( f'''`{os.path.join(A , A )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) UpperCAmelCase : Optional[Any] = None else: with open(A ) as speaker_embeddings_json: UpperCAmelCase : Tuple = json.load(A ) else: UpperCAmelCase : int = None UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained(A , **A ) return cls(tokenizer=A , speaker_embeddings=A ) def _lowercase( self , A , A="speaker_embeddings_path.json" , A="speaker_embeddings" , A = False , **A , ) -> List[Any]: if self.speaker_embeddings is not None: os.makedirs(os.path.join(A , A , """v2""" ) , exist_ok=A ) UpperCAmelCase : Union[str, Any] = {} UpperCAmelCase : Union[str, Any] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": UpperCAmelCase : str = self._load_voice_preset(A ) UpperCAmelCase : int = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["""repo_or_path"""] , A , f'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=A , ) UpperCAmelCase : List[Any] = os.path.join(A , f'''{prompt_key}_{key}.npy''' ) UpperCAmelCase : List[Any] = tmp_dict with open(os.path.join(A , A ) , """w""" ) as fp: json.dump(A , A ) super().save_pretrained(A , A , **A ) def _lowercase( self , A = None , **A ) -> List[Any]: UpperCAmelCase : Tuple = self.speaker_embeddings[voice_preset] UpperCAmelCase : Optional[int] = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) UpperCAmelCase : Union[str, Any] = get_file_from_repo( self.speaker_embeddings.get("""repo_or_path""" , """/""" ) , voice_preset_paths[key] , subfolder=kwargs.pop("""subfolder""" , A ) , cache_dir=kwargs.pop("""cache_dir""" , A ) , force_download=kwargs.pop("""force_download""" , A ) , proxies=kwargs.pop("""proxies""" , A ) , resume_download=kwargs.pop("""resume_download""" , A ) , local_files_only=kwargs.pop("""local_files_only""" , A ) , use_auth_token=kwargs.pop("""use_auth_token""" , A ) , revision=kwargs.pop("""revision""" , A ) , ) if path is None: raise ValueError( f'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) UpperCAmelCase : Any = np.load(A ) return voice_preset_dict def _lowercase( self , A = None ) -> Optional[int]: for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self , A=None , A=None , A="pt" , A=256 , A=False , A=True , A=False , **A , ) -> List[Any]: if voice_preset is not None and not isinstance(A , A ): if ( isinstance(A , A ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): UpperCAmelCase : List[Any] = self._load_voice_preset(A ) else: if isinstance(A , A ) and not voice_preset.endswith(""".npz""" ): UpperCAmelCase : List[str] = voice_preset + """.npz""" UpperCAmelCase : int = np.load(A ) if voice_preset is not None: self._validate_voice_preset_dict(A , **A ) UpperCAmelCase : List[str] = BatchFeature(data=A , tensor_type=A ) UpperCAmelCase : List[str] = self.tokenizer( A , return_tensors=A , padding="""max_length""" , max_length=A , return_attention_mask=A , return_token_type_ids=A , add_special_tokens=A , **A , ) if voice_preset is not None: UpperCAmelCase : Optional[int] = voice_preset return encoded_text
359
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
0
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> int: if not isinstance(_lowercase , _lowercase ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) UpperCAmelCase : Optional[Any] = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
360
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a : int = logging.get_logger(__name__) a : int = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off a : Tuple = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] a : Optional[int] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class UpperCamelCase_ ( __magic_name__ ): lowercase = 'whisper' lowercase = ['past_key_values'] lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]: UpperCAmelCase : str = vocab_size UpperCAmelCase : Union[str, Any] = num_mel_bins UpperCAmelCase : Tuple = d_model UpperCAmelCase : Optional[int] = encoder_layers UpperCAmelCase : List[str] = encoder_attention_heads UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : int = decoder_attention_heads UpperCAmelCase : Optional[int] = decoder_ffn_dim UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : List[str] = dropout UpperCAmelCase : Optional[Any] = attention_dropout UpperCAmelCase : Optional[Any] = activation_dropout UpperCAmelCase : Optional[Any] = activation_function UpperCAmelCase : Optional[Any] = init_std UpperCAmelCase : int = encoder_layerdrop UpperCAmelCase : Dict = decoder_layerdrop UpperCAmelCase : Optional[int] = use_cache UpperCAmelCase : List[str] = encoder_layers UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Union[str, Any] = max_source_positions UpperCAmelCase : Tuple = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : List[str] = classifier_proj_size UpperCAmelCase : Optional[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : int = mask_time_prob UpperCAmelCase : int = mask_time_length UpperCAmelCase : Dict = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Optional[int] = mask_feature_length UpperCAmelCase : int = mask_feature_min_masks UpperCAmelCase : List[Any] = median_filter_width super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , ) class UpperCamelCase_ ( __magic_name__ ): @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : str = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase : List[Any] = {0: """batch"""} else: UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) return common_inputs def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Optional[int] = OrderedDict() UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , ) UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2] UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Any = super().generate_dummy_inputs( preprocessor.tokenizer , A , A , A , A ) UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" ) UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def _lowercase( self ) -> float: return 1e-3
338
0
'''simple docstring''' import numpy as np class UpperCamelCase_ : def __init__( self , A=None , A=None , A=None , A=None , A=None ) -> Union[str, Any]: self.set_matricies(red=A , green=A , blue=A , red_edge=A , nir=A ) def _lowercase( self , A=None , A=None , A=None , A=None , A=None ) -> Dict: if red is not None: UpperCAmelCase : Optional[Any] = red if green is not None: UpperCAmelCase : Optional[Any] = green if blue is not None: UpperCAmelCase : List[Any] = blue if red_edge is not None: UpperCAmelCase : Dict = red_edge if nir is not None: UpperCAmelCase : str = nir return True def _lowercase( self , A="" , A=None , A=None , A=None , A=None , A=None ) -> List[Any]: self.set_matricies(red=A , green=A , blue=A , red_edge=A , nir=A ) UpperCAmelCase : Tuple = { """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def _lowercase( self ) -> int: return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _lowercase( self ) -> Optional[int]: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _lowercase( self ) -> Any: return self.nir * (self.red / (self.green**2)) def _lowercase( self ) -> int: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _lowercase( self ) -> Any: return (self.nir - self.red) / (self.nir + self.red) def _lowercase( self ) -> Optional[Any]: return (self.nir - self.blue) / (self.nir + self.blue) def _lowercase( self ) -> Dict: return (self.redEdge - self.red) / (self.redEdge + self.red) def _lowercase( self ) -> Dict: return (self.nir - self.green) / (self.nir + self.green) def _lowercase( self ) -> str: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _lowercase( self ) -> List[Any]: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _lowercase( self ) -> List[str]: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _lowercase( self ) -> int: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _lowercase( self , A=0.0_8 , A=1.2_2 , A=0.0_3 ) -> List[str]: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _lowercase( self ) -> List[str]: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _lowercase( self ) -> Union[str, Any]: return (self.nir / self.green) - 1 def _lowercase( self ) -> Dict: return (self.nir / self.redEdge) - 1 def _lowercase( self ) -> str: return (self.red - self.blue) / self.red def _lowercase( self ) -> Any: UpperCAmelCase : Optional[Any] = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _lowercase( self ) -> int: return self.nir - self.green def _lowercase( self ) -> str: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _lowercase( self ) -> Dict: UpperCAmelCase : Optional[int] = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _lowercase( self , A=0.1_6 ) -> Any: return (self.nir - self.green) / (self.nir + self.green + y) def _lowercase( self , A=0.5 ) -> Optional[int]: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _lowercase( self ) -> Optional[int]: return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def _lowercase( self , A=None , A=None ) -> Union[str, Any]: return (self.nir - b) / (a * self.red) def _lowercase( self ) -> Any: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _lowercase( self ) -> Optional[Any]: return (self.red + self.green + self.blue) / 30.5 def _lowercase( self ) -> Dict: return self.nir / self.red def _lowercase( self ) -> List[str]: return (self.rvi() - 1) / (self.rvi() + 1) def _lowercase( self ) -> List[Any]: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _lowercase( self ) -> Dict: return self.green / (self.nir + self.red + self.green) def _lowercase( self ) -> Any: return self.nir / (self.nir + self.red + self.green) def _lowercase( self ) -> int: return self.red / (self.nir + self.red + self.green) def _lowercase( self ) -> Tuple: return (self.green - self.red) / (self.green + self.red) def _lowercase( self ) -> Union[str, Any]: return (self.red - self.green) / (self.red + self.green) def _lowercase( self ) -> List[str]: UpperCAmelCase : Union[str, Any] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) UpperCAmelCase : Optional[Any] = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _lowercase( self ) -> Tuple: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _lowercase( self ) -> str: return self.nir / self.red def _lowercase( self ) -> Optional[int]: return (self.ndvi() + 0.5) ** (1 / 2) def _lowercase( self ) -> List[str]: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
361
'''simple docstring''' a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowerCamelCase ( ) -> None: UpperCAmelCase : Optional[int] = input("""Enter message: """ ) UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ ) UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): UpperCAmelCase : List[str] = """encrypt""" UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase ) elif mode.lower().startswith("""d""" ): UpperCAmelCase : Tuple = """decrypt""" UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """encrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """decrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Tuple = key.upper() for symbol in message: UpperCAmelCase : Dict = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowercase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowercase ): UpperCAmelCase : Optional[int] = 0 else: translated.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": main()
338
0
'''simple docstring''' import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A ) -> int: with open(A , encoding="""utf-8""" ) as input_file: UpperCAmelCase : Optional[Any] = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" ) UpperCAmelCase : str = input_file.read() UpperCAmelCase : Dict = regexp.search(A ) return match def _lowercase( self , A ) -> str: with open(A , encoding="""utf-8""" ) as input_file: UpperCAmelCase : Optional[int] = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL ) UpperCAmelCase : List[Any] = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCAmelCase : Optional[Any] = regexp.finditer(A ) UpperCAmelCase : Dict = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _lowercase( self ) -> List[str]: UpperCAmelCase : Optional[int] = Path("""./datasets""" ) UpperCAmelCase : str = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(A ) ): raise AssertionError(f'''open(...) must use utf-8 encoding in {dataset}''' ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : int = Path("""./datasets""" ) UpperCAmelCase : Tuple = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_print_statements(str(A ) ): raise AssertionError(f'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
362
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Optional[int] = split_dict._to_yaml_list() assert len(_lowercase ) == len(_lowercase ) UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(_lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCAmelCase : List[str] = None # the split name of split_dict takes over the name of the split info object UpperCAmelCase : int = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name="""my_dataset""" )] ) def __lowerCamelCase ( _lowercase ) -> List[str]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files UpperCAmelCase : Optional[Any] = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
338
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging a : str = logging.get_logger(__name__) a : Any = { """Salesforce/codegen-350M-nl""": """https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json""", """Salesforce/codegen-350M-multi""": """https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json""", """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json""", """Salesforce/codegen-2B-nl""": """https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json""", """Salesforce/codegen-2B-multi""": """https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json""", """Salesforce/codegen-2B-mono""": """https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json""", """Salesforce/codegen-6B-nl""": """https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json""", """Salesforce/codegen-6B-multi""": """https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json""", """Salesforce/codegen-6B-mono""": """https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json""", """Salesforce/codegen-16B-nl""": """https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json""", """Salesforce/codegen-16B-multi""": """https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json""", """Salesforce/codegen-16B-mono""": """https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json""", } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'codegen' lowercase = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , A=50400 , A=2048 , A=2048 , A=4096 , A=28 , A=16 , A=64 , A=None , A="gelu_new" , A=0.0 , A=0.0 , A=0.0 , A=1e-5 , A=0.0_2 , A=True , A=50256 , A=50256 , A=False , **A , ) -> str: UpperCAmelCase : int = vocab_size UpperCAmelCase : Union[str, Any] = n_ctx UpperCAmelCase : Optional[Any] = n_positions UpperCAmelCase : Tuple = n_embd UpperCAmelCase : Any = n_layer UpperCAmelCase : Tuple = n_head UpperCAmelCase : Optional[Any] = n_inner UpperCAmelCase : List[Any] = rotary_dim UpperCAmelCase : Union[str, Any] = activation_function UpperCAmelCase : Any = resid_pdrop UpperCAmelCase : Optional[int] = embd_pdrop UpperCAmelCase : Dict = attn_pdrop UpperCAmelCase : Dict = layer_norm_epsilon UpperCAmelCase : Any = initializer_range UpperCAmelCase : Any = use_cache UpperCAmelCase : Optional[int] = bos_token_id UpperCAmelCase : Tuple = eos_token_id super().__init__( bos_token_id=A , eos_token_id=A , tie_word_embeddings=A , **A ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A = "default" , A = None , A = False , ) -> Union[str, Any]: super().__init__(A , task=A , patching_specs=A , use_past=A ) if not getattr(self._config , """pad_token_id""" , A ): # TODO: how to do that better? UpperCAmelCase : Optional[int] = 0 @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : int = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) UpperCAmelCase : Optional[int] = {0: """batch""", 1: """past_sequence + sequence"""} else: UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""} return common_inputs @property def _lowercase( self ) -> int: return self._config.n_layer @property def _lowercase( self ) -> int: return self._config.n_head def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]: UpperCAmelCase : Any = super(A , self ).generate_dummy_inputs( A , batch_size=A , seq_length=A , is_pair=A , framework=A ) # We need to order the input in the way they appears in the forward() UpperCAmelCase : Any = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch UpperCAmelCase : List[str] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values UpperCAmelCase : Dict = seqlen + 2 UpperCAmelCase : List[Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCAmelCase : Optional[int] = [ (torch.zeros(A ), torch.zeros(A )) for _ in range(self.num_layers ) ] UpperCAmelCase : Union[str, Any] = common_inputs["""attention_mask"""] if self.use_past: UpperCAmelCase : Optional[int] = ordered_inputs["""attention_mask"""].dtype UpperCAmelCase : List[Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(A , A , dtype=A )] , dim=1 ) return ordered_inputs @property def _lowercase( self ) -> int: return 13
363
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor a : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , **A ) -> None: warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , A , ) super().__init__(*A , **A )
338
0
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class UpperCamelCase_ ( __magic_name__ ): lowercase = 42 lowercase = None def __lowerCamelCase ( _lowercase , _lowercase=0.999 , _lowercase="cosine" , ) -> str: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_lowercase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowercase ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) UpperCAmelCase : Dict = [] for i in range(_lowercase ): UpperCAmelCase : Union[str, Any] = i / num_diffusion_timesteps UpperCAmelCase : Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowercase ) / alpha_bar_fn(_lowercase ) , _lowercase ) ) return torch.tensor(_lowercase , dtype=torch.floataa ) class UpperCamelCase_ ( __magic_name__ , __magic_name__ ): @register_to_config def __init__( self , A = 1000 , A = "fixed_small_log" , A = True , A = 1.0 , A = "epsilon" , A = "squaredcos_cap_v2" , ) -> Any: if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" ) UpperCAmelCase : Tuple = betas_for_alpha_bar(A ) UpperCAmelCase : Tuple = 1.0 - self.betas UpperCAmelCase : Optional[int] = torch.cumprod(self.alphas , dim=0 ) UpperCAmelCase : Dict = torch.tensor(1.0 ) # standard deviation of the initial noise distribution UpperCAmelCase : str = 1.0 # setable values UpperCAmelCase : Any = None UpperCAmelCase : Any = torch.from_numpy(np.arange(0 , A )[::-1].copy() ) UpperCAmelCase : Union[str, Any] = variance_type def _lowercase( self , A , A = None ) -> torch.FloatTensor: return sample def _lowercase( self , A , A = None ) -> Optional[Any]: UpperCAmelCase : List[Any] = num_inference_steps UpperCAmelCase : Dict = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) UpperCAmelCase : int = (np.arange(0 , A ) * step_ratio).round()[::-1].copy().astype(np.intaa ) UpperCAmelCase : Union[str, Any] = torch.from_numpy(A ).to(A ) def _lowercase( self , A , A=None , A=None , A=None ) -> int: if prev_timestep is None: UpperCAmelCase : int = t - 1 UpperCAmelCase : int = self.alphas_cumprod[t] UpperCAmelCase : List[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase : Dict = 1 - alpha_prod_t UpperCAmelCase : Union[str, Any] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase : Optional[Any] = self.betas[t] else: UpperCAmelCase : Optional[Any] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase : str = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: UpperCAmelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": UpperCAmelCase : Dict = torch.log(torch.clamp(A , min=1e-20 ) ) UpperCAmelCase : List[str] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler UpperCAmelCase : Union[str, Any] = variance.log() UpperCAmelCase : Optional[int] = beta.log() UpperCAmelCase : Optional[Any] = (predicted_variance + 1) / 2 UpperCAmelCase : Dict = frac * max_log + (1 - frac) * min_log return variance def _lowercase( self , A , A , A , A = None , A=None , A = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: UpperCAmelCase : Optional[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": UpperCAmelCase : Any = torch.split(A , sample.shape[1] , dim=1 ) else: UpperCAmelCase : Optional[int] = None # 1. compute alphas, betas if prev_timestep is None: UpperCAmelCase : Dict = t - 1 UpperCAmelCase : List[Any] = self.alphas_cumprod[t] UpperCAmelCase : Union[str, Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase : int = 1 - alpha_prod_t UpperCAmelCase : Optional[int] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase : Tuple = self.betas[t] UpperCAmelCase : Union[str, Any] = self.alphas[t] else: UpperCAmelCase : Tuple = 1 - alpha_prod_t / alpha_prod_t_prev UpperCAmelCase : int = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase : Dict = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' """ for the UnCLIPScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase : Union[str, Any] = torch.clamp( A , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase : str = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t UpperCAmelCase : Optional[Any] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase : Optional[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCAmelCase : List[str] = 0 if t > 0: UpperCAmelCase : Optional[Any] = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=A , device=model_output.device ) UpperCAmelCase : Optional[Any] = self._get_variance( A , predicted_variance=A , prev_timestep=A , ) if self.variance_type == "fixed_small_log": UpperCAmelCase : Union[str, Any] = variance elif self.variance_type == "learned_range": UpperCAmelCase : Union[str, Any] = (0.5 * variance).exp() else: raise ValueError( f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' """ for the UnCLIPScheduler.""" ) UpperCAmelCase : Dict = variance * variance_noise UpperCAmelCase : List[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=A , pred_original_sample=A ) def _lowercase( self , A , A , A , ) -> torch.FloatTensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples UpperCAmelCase : Tuple = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) UpperCAmelCase : Optional[Any] = timesteps.to(original_samples.device ) UpperCAmelCase : Union[str, Any] = alphas_cumprod[timesteps] ** 0.5 UpperCAmelCase : int = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase : Tuple = sqrt_alpha_prod.unsqueeze(-1 ) UpperCAmelCase : str = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCAmelCase : List[Any] = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase : Dict = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) UpperCAmelCase : Union[str, Any] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
364
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a : Union[str, Any] = logging.get_logger(__name__) a : Union[str, Any] = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'detr' lowercase = ['past_key_values'] lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(A , A ): UpperCAmelCase : Any = backbone_config.get("""model_type""" ) UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : List[Any] = config_class.from_dict(A ) # set timm attributes to None UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = None, None, None UpperCAmelCase : Dict = use_timm_backbone UpperCAmelCase : Any = backbone_config UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : int = num_queries UpperCAmelCase : List[str] = d_model UpperCAmelCase : Tuple = encoder_ffn_dim UpperCAmelCase : Optional[Any] = encoder_layers UpperCAmelCase : Any = encoder_attention_heads UpperCAmelCase : Optional[Any] = decoder_ffn_dim UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : Any = decoder_attention_heads UpperCAmelCase : str = dropout UpperCAmelCase : Tuple = attention_dropout UpperCAmelCase : Dict = activation_dropout UpperCAmelCase : Tuple = activation_function UpperCAmelCase : List[Any] = init_std UpperCAmelCase : str = init_xavier_std UpperCAmelCase : List[Any] = encoder_layerdrop UpperCAmelCase : int = decoder_layerdrop UpperCAmelCase : List[Any] = encoder_layers UpperCAmelCase : Union[str, Any] = auxiliary_loss UpperCAmelCase : str = position_embedding_type UpperCAmelCase : Union[str, Any] = backbone UpperCAmelCase : List[str] = use_pretrained_backbone UpperCAmelCase : Optional[int] = dilation # Hungarian matcher UpperCAmelCase : Union[str, Any] = class_cost UpperCAmelCase : Optional[Any] = bbox_cost UpperCAmelCase : List[Any] = giou_cost # Loss coefficients UpperCAmelCase : int = mask_loss_coefficient UpperCAmelCase : Optional[int] = dice_loss_coefficient UpperCAmelCase : Dict = bbox_loss_coefficient UpperCAmelCase : Any = giou_loss_coefficient UpperCAmelCase : Any = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def _lowercase( self ) -> int: return self.encoder_attention_heads @property def _lowercase( self ) -> int: return self.d_model @classmethod def _lowercase( cls , A , **A ) -> Dict: return cls(backbone_config=A , **A ) def _lowercase( self ) -> Dict[str, any]: UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase : Any = self.backbone_config.to_dict() UpperCAmelCase : Optional[Any] = self.__class__.model_type return output class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowercase( self ) -> float: return 1e-5 @property def _lowercase( self ) -> int: return 12
338
0
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCamelCase_ ( __magic_name__ ): @require_torch def _lowercase( self ) -> List[str]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched UpperCAmelCase : List[Any] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ UpperCAmelCase : Tuple = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ UpperCAmelCase : List[Any] = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache UpperCAmelCase : Optional[int] = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(A ) BertModel.from_pretrained(A ) BertTokenizer.from_pretrained(A ) pipeline(task="""fill-mask""" , model=A ) # baseline - just load from_pretrained with normal network UpperCAmelCase : Optional[Any] = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed UpperCAmelCase : int = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase : List[Any] = """1""" UpperCAmelCase : int = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def _lowercase( self ) -> Optional[Any]: # python one-liner segments # this must be loaded before socket.socket is monkey-patched UpperCAmelCase : Optional[Any] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ UpperCAmelCase : List[Any] = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ UpperCAmelCase : Tuple = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache UpperCAmelCase : Optional[Any] = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(A ) BertModel.from_pretrained(A ) BertTokenizer.from_pretrained(A ) pipeline(task="""fill-mask""" , model=A ) # baseline - just load from_pretrained with normal network UpperCAmelCase : Any = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed UpperCAmelCase : List[str] = self.get_env() UpperCAmelCase : Optional[Any] = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def _lowercase( self ) -> str: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched UpperCAmelCase : int = """ from transformers import BertConfig, BertModel, BertTokenizer """ UpperCAmelCase : Tuple = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ UpperCAmelCase : Dict = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network UpperCAmelCase : Tuple = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed UpperCAmelCase : Union[str, Any] = self.get_env() UpperCAmelCase : Tuple = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # next emulate no network UpperCAmelCase : Optional[Any] = [sys.executable, """-c""", """\n""".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase : Tuple = """1""" UpperCAmelCase : Tuple = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def _lowercase( self ) -> Tuple: UpperCAmelCase : List[Any] = """ from transformers import pipeline """ UpperCAmelCase : Optional[Any] = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ UpperCAmelCase : Optional[Any] = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ UpperCAmelCase : List[str] = self.get_env() UpperCAmelCase : List[Any] = """1""" UpperCAmelCase : int = [sys.executable, """-c""", """\n""".join([load, mock, run] )] UpperCAmelCase : str = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""" ) , ) @require_torch def _lowercase( self ) -> Tuple: UpperCAmelCase : Optional[Any] = """ from transformers import AutoModel """ UpperCAmelCase : List[str] = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network UpperCAmelCase : Union[str, Any] = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed UpperCAmelCase : Union[str, Any] = self.get_env() UpperCAmelCase : Optional[Any] = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase : Dict = """1""" UpperCAmelCase : List[Any] = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() )
365
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[str] = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
0
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer a : Optional[int] = ["""gpt2"""] a : Optional[int] = """gpt2""" if is_tf_available(): class UpperCamelCase_ ( tf.Module ): def __init__( self , A ) -> Dict: super().__init__() UpperCAmelCase : Any = tokenizer UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(A ) UpperCAmelCase : Any = TFGPTaLMHeadModel.from_config(A ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="""text""" ),) ) def _lowercase( self , A ) -> Dict: UpperCAmelCase : List[str] = self.tokenizer(A ) UpperCAmelCase : List[Any] = tokenized["""input_ids"""].to_tensor() UpperCAmelCase : Optional[Any] = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) UpperCAmelCase : List[str] = self.model(input_ids=A , attention_mask=A )["""logits"""] return outputs @require_tf @require_keras_nlp class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Dict: super().setUp() UpperCAmelCase : Dict = [GPTaTokenizer.from_pretrained(A ) for checkpoint in (TOKENIZER_CHECKPOINTS)] UpperCAmelCase : Optional[int] = [TFGPTaTokenizer.from_pretrained(A ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCAmelCase : Optional[int] = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] UpperCAmelCase : str = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _lowercase( self ) -> Optional[int]: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: UpperCAmelCase : Dict = tokenizer([test_inputs] , return_tensors="""tf""" ) UpperCAmelCase : str = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors UpperCAmelCase : Optional[Any] = python_outputs[key].numpy() UpperCAmelCase : List[str] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(A , tf.intaa ) == tf_outputs_values ) ) @slow def _lowercase( self ) -> int: for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase : Dict = tf.function(A ) for test_inputs in self.test_sentences: UpperCAmelCase : Any = tf.constant(A ) UpperCAmelCase : int = compiled_tokenizer(A ) UpperCAmelCase : Optional[int] = tf_tokenizer(A ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _lowercase( self ) -> Tuple: for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase : List[Any] = ModelToSave(tokenizer=A ) UpperCAmelCase : Optional[int] = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase : Dict = model.serving(A ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCAmelCase : str = Path(A ) / """saved.model""" tf.saved_model.save(A , A , signatures={"""serving_default""": model.serving} ) UpperCAmelCase : Union[str, Any] = tf.saved_model.load(A ) UpperCAmelCase : Optional[Any] = loaded_model.signatures["""serving_default"""](A )["""output_0"""] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def _lowercase( self ) -> Dict: for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase : List[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase : Optional[int] = tf_tokenizer(A ) # Build model with some sample inputs UpperCAmelCase : int = tf_tokenizer.get_config() UpperCAmelCase : int = TFGPTaTokenizer.from_config(A ) UpperCAmelCase : Optional[Any] = model_from_config(A ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def _lowercase( self ) -> str: for tf_tokenizer in self.tf_tokenizers: # for the test to run UpperCAmelCase : List[Any] = 123123 for max_length in [3, 5, 1024]: UpperCAmelCase : Tuple = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase : Union[str, Any] = tf_tokenizer(A , max_length=A ) UpperCAmelCase : List[str] = out["""input_ids"""].numpy().shape[1] assert out_length == max_length
366
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" ) if "model" in sd.keys(): UpperCAmelCase : Any = torch.load(_lowercase , map_location="""cpu""" )["""model"""] # pop unnecessary weights UpperCAmelCase : Union[str, Any] = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(_lowercase ) UpperCAmelCase : Tuple = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase : List[Any] = sd.pop(_lowercase ) UpperCAmelCase : Tuple = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase : List[str] = sd[key] # We split QKV in separate Q,K,V UpperCAmelCase : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" ) UpperCAmelCase : Tuple = key.replace(""".qkv_proj.""" , """.k_proj.""" ) UpperCAmelCase : int = key.replace(""".qkv_proj.""" , """.v_proj.""" ) UpperCAmelCase : Dict = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = torch.split(_lowercase , depth // 3 , dim=0 ) UpperCAmelCase : Tuple = q UpperCAmelCase : Tuple = k UpperCAmelCase : Any = v del sd[key] return sd @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Optional[Any]: UpperCAmelCase : Tuple = load_checkpoint(_lowercase ) if config is not None: UpperCAmelCase : Dict = OPTConfig.from_pretrained(_lowercase ) else: UpperCAmelCase : int = OPTConfig() UpperCAmelCase : List[Any] = OPTModel(_lowercase ).half().eval() model.load_state_dict(_lowercase ) # Check results Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") a : Union[str, Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
338
0
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Dict = [] for part_id in partition_order: UpperCAmelCase : List[str] = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(_lowercase ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Any: UpperCAmelCase : Dict = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() UpperCAmelCase : Optional[int] = spark.range(1_0_0 ).repartition(1 ) UpperCAmelCase : Dict = Spark(_lowercase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=1_6 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 5_0 @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> List[Any]: UpperCAmelCase : Optional[int] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() UpperCAmelCase : Dict = spark.range(1_0 ).repartition(2 ) UpperCAmelCase : Optional[int] = [1, 0] UpperCAmelCase : Any = _generate_iterable_examples(_lowercase , _lowercase ) # Reverse the partitions. UpperCAmelCase : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowercase , _lowercase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): UpperCAmelCase : int = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Tuple: UpperCAmelCase : Tuple = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() UpperCAmelCase : Optional[int] = spark.range(1_0 ).repartition(1 ) UpperCAmelCase : Optional[Any] = SparkExamplesIterable(_lowercase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(_lowercase ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> List[str]: UpperCAmelCase : Optional[int] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() UpperCAmelCase : List[str] = spark.range(3_0 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: UpperCAmelCase : List[str] = lambda _lowercase : x.reverse() UpperCAmelCase : Dict = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowercase , [2, 1, 0] ) UpperCAmelCase : List[str] = SparkExamplesIterable(_lowercase ).shuffle_data_sources(_lowercase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(_lowercase ): UpperCAmelCase : int = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Union[str, Any]: UpperCAmelCase : int = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() UpperCAmelCase : str = spark.range(2_0 ).repartition(4 ) # Partitions 0 and 2 UpperCAmelCase : Any = SparkExamplesIterable(_lowercase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCAmelCase : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowercase , [0, 2] ) for i, (row_id, row_dict) in enumerate(_lowercase ): UpperCAmelCase : List[str] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 UpperCAmelCase : Dict = SparkExamplesIterable(_lowercase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCAmelCase : Dict = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowercase , [1, 3] ) for i, (row_id, row_dict) in enumerate(_lowercase ): UpperCAmelCase : Optional[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Optional[int]: UpperCAmelCase : Dict = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() UpperCAmelCase : Tuple = spark.range(1_0_0 ).repartition(1 ) UpperCAmelCase : Dict = Spark(_lowercase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_0_0
367
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : str = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'levit' def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int: super().__init__(**A ) UpperCAmelCase : Any = image_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : Tuple = kernel_size UpperCAmelCase : Optional[int] = stride UpperCAmelCase : Dict = padding UpperCAmelCase : List[Any] = hidden_sizes UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = depths UpperCAmelCase : Any = key_dim UpperCAmelCase : str = drop_path_rate UpperCAmelCase : List[Any] = patch_size UpperCAmelCase : str = attention_ratio UpperCAmelCase : Optional[Any] = mlp_ratio UpperCAmelCase : Dict = initializer_range UpperCAmelCase : int = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase( self ) -> float: return 1e-4
338
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Tuple: UpperCAmelCase : Any = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : int = seq_length UpperCAmelCase : List[Any] = is_training UpperCAmelCase : List[str] = use_input_mask UpperCAmelCase : str = use_token_type_ids UpperCAmelCase : int = use_labels UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : int = hidden_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Dict = intermediate_size UpperCAmelCase : int = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : Optional[int] = attention_probs_dropout_prob UpperCAmelCase : List[str] = max_position_embeddings UpperCAmelCase : Union[str, Any] = type_vocab_size UpperCAmelCase : Any = type_sequence_label_size UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Dict = num_labels UpperCAmelCase : int = num_choices UpperCAmelCase : Optional[int] = scope def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Tuple = None if self.use_input_mask: UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Tuple = None if self.use_token_type_ids: UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = None if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> Dict: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def _lowercase( self , A , A , A , A , A , A , A ) -> Tuple: UpperCAmelCase : Optional[int] = OpenLlamaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : str = model(A , attention_mask=A ) UpperCAmelCase : Optional[Any] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]: UpperCAmelCase : Dict = True UpperCAmelCase : Dict = OpenLlamaModel(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) UpperCAmelCase : Any = model( A , attention_mask=A , encoder_hidden_states=A , ) UpperCAmelCase : Dict = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[str]: UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() UpperCAmelCase : str = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> Optional[Any]: UpperCAmelCase : str = True UpperCAmelCase : Dict = True UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass UpperCAmelCase : List[str] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) UpperCAmelCase : Tuple = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : int = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : List[str] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0] UpperCAmelCase : int = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0] # select random slice UpperCAmelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( UpperCAmelCase ) : Tuple = config_and_inputs UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowercase = (OpenLlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[int] = OpenLlamaModelTester(self ) UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self ) -> List[Any]: self.config_tester.run_common_tests() def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : List[str] = type self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = 3 UpperCAmelCase : Optional[int] = input_dict["""input_ids"""] UpperCAmelCase : str = input_ids.ne(1 ).to(A ) UpperCAmelCase : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : str = 3 UpperCAmelCase : List[str] = """single_label_classification""" UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] UpperCAmelCase : Union[str, Any] = input_ids.ne(1 ).to(A ) UpperCAmelCase : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : List[str] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> str: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Optional[int] = 3 UpperCAmelCase : Dict = """multi_label_classification""" UpperCAmelCase : Optional[int] = input_dict["""input_ids"""] UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(A ) UpperCAmelCase : List[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase : Optional[int] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Optional[int] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def _lowercase( self ) -> str: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[str] = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase : List[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Tuple = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() UpperCAmelCase : Any = original_model(A ).last_hidden_state UpperCAmelCase : Tuple = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Union[str, Any] = {"""type""": scaling_type, """factor""": 10.0} UpperCAmelCase : List[str] = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() UpperCAmelCase : Optional[Any] = scaled_model(A ).last_hidden_state UpperCAmelCase : Tuple = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
368
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) a : List[str] = """Hello, World!""" a : List[Any] = """en_XX""" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Dict = Path("""data_bin""" ) UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(_lowercase ) UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder UpperCAmelCase : Tuple = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , _lowercase ) UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight UpperCAmelCase : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase : List[str] = model.roberta.encoder.layer[i] UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i] # self attention UpperCAmelCase : Optional[Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias # intermediate UpperCAmelCase : Tuple = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) UpperCAmelCase : List[str] = xmod_layer.fca.weight UpperCAmelCase : str = xmod_layer.fca.bias # output UpperCAmelCase : Any = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) UpperCAmelCase : Dict = xmod_layer.fca.weight UpperCAmelCase : Dict = xmod_layer.fca.bias UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code] UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code] UpperCAmelCase : Any = from_adapter.fca.weight UpperCAmelCase : int = from_adapter.fca.bias UpperCAmelCase : Dict = from_adapter.fca.weight UpperCAmelCase : Dict = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias UpperCAmelCase : str = xmod.model.encoder.lm_head.weight UpperCAmelCase : str = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) UpperCAmelCase : Optional[int] = model(_lowercase )[0] if classification_head: UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) ) else: UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) a : List[str] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
338
0
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __lowerCamelCase ( _lowercase , _lowercase ) -> Tuple: assert isinstance(_lowercase , _lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase : Optional[Any] = tmp_path / """cache""" UpperCAmelCase : Optional[int] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : Optional[int] = TextDatasetReader(_lowercase , cache_dir=_lowercase , keep_in_memory=_lowercase ).read() _check_text_dataset(_lowercase , _lowercase ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]: UpperCAmelCase : Dict = tmp_path / """cache""" UpperCAmelCase : Tuple = {"""text""": """string"""} UpperCAmelCase : List[Any] = features.copy() if features else default_expected_features UpperCAmelCase : str = ( Features({feature: Value(_lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : List[Any] = TextDatasetReader(_lowercase , features=_lowercase , cache_dir=_lowercase ).read() _check_text_dataset(_lowercase , _lowercase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Any = tmp_path / """cache""" UpperCAmelCase : Optional[Any] = {"""text""": """string"""} UpperCAmelCase : Tuple = TextDatasetReader(_lowercase , cache_dir=_lowercase , split=_lowercase ).read() _check_text_dataset(_lowercase , _lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: if issubclass(_lowercase , _lowercase ): UpperCAmelCase : Union[str, Any] = text_path elif issubclass(_lowercase , _lowercase ): UpperCAmelCase : int = [text_path] UpperCAmelCase : Dict = tmp_path / """cache""" UpperCAmelCase : Optional[Any] = {"""text""": """string"""} UpperCAmelCase : Optional[int] = TextDatasetReader(_lowercase , cache_dir=_lowercase ).read() _check_text_dataset(_lowercase , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=("train",) ) -> Dict: assert isinstance(_lowercase , _lowercase ) for split in splits: UpperCAmelCase : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = tmp_path / """cache""" UpperCAmelCase : Tuple = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : Tuple = TextDatasetReader({"""train""": text_path} , cache_dir=_lowercase , keep_in_memory=_lowercase ).read() _check_text_datasetdict(_lowercase , _lowercase ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" UpperCAmelCase : Optional[Any] = {"""text""": """string"""} UpperCAmelCase : List[str] = features.copy() if features else default_expected_features UpperCAmelCase : int = ( Features({feature: Value(_lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : str = TextDatasetReader({"""train""": text_path} , features=_lowercase , cache_dir=_lowercase ).read() _check_text_datasetdict(_lowercase , _lowercase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: if split: UpperCAmelCase : Tuple = {split: text_path} else: UpperCAmelCase : List[str] = """train""" UpperCAmelCase : int = {"""train""": text_path, """test""": text_path} UpperCAmelCase : Union[str, Any] = tmp_path / """cache""" UpperCAmelCase : int = {"""text""": """string"""} UpperCAmelCase : Optional[Any] = TextDatasetReader(_lowercase , cache_dir=_lowercase ).read() _check_text_datasetdict(_lowercase , _lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
369
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __lowerCamelCase ( _lowercase ) -> List[Any]: for i in range(0 , _lowercase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __lowerCamelCase ( _lowercase ) -> Dict: for i in range(_lowercase , 0 , -1 ): for _ in range(_lowercase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __lowerCamelCase ( _lowercase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowercase ) # upper half reverse_floyd(_lowercase ) # lower half if __name__ == "__main__": print(R"""| /\ | |- | |- |--| |\ /| |-""") print(R"""|/ \| |- |_ |_ |__| | \/ | |_""") a : List[Any] = 1 while K: a : int = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) a : Tuple = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
338
0
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Tuple = logging.get_logger(__name__) a : List[str] = { """google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""", """google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""", """google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""", } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'owlvit_text_model' def __init__( self , A=49408 , A=512 , A=2048 , A=12 , A=8 , A=16 , A="quick_gelu" , A=1e-5 , A=0.0 , A=0.0_2 , A=1.0 , A=0 , A=49406 , A=49407 , **A , ) -> Dict: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) UpperCAmelCase : str = vocab_size UpperCAmelCase : List[Any] = hidden_size UpperCAmelCase : Any = intermediate_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Dict = hidden_act UpperCAmelCase : List[str] = layer_norm_eps UpperCAmelCase : str = attention_dropout UpperCAmelCase : str = initializer_range UpperCAmelCase : Optional[int] = initializer_factor @classmethod def _lowercase( cls , A , **A ) -> "PretrainedConfig": cls._set_token_in_kwargs(A ) UpperCAmelCase : int = cls.get_config_dict(A , **A ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": UpperCAmelCase : Dict = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(A , **A ) class UpperCamelCase_ ( __magic_name__ ): lowercase = 'owlvit_vision_model' def __init__( self , A=768 , A=3072 , A=12 , A=12 , A=3 , A=768 , A=32 , A="quick_gelu" , A=1e-5 , A=0.0 , A=0.0_2 , A=1.0 , **A , ) -> Optional[int]: super().__init__(**A ) UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : int = intermediate_size UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : str = num_channels UpperCAmelCase : Any = image_size UpperCAmelCase : Tuple = patch_size UpperCAmelCase : Dict = hidden_act UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : int = attention_dropout UpperCAmelCase : Any = initializer_range UpperCAmelCase : List[Any] = initializer_factor @classmethod def _lowercase( cls , A , **A ) -> "PretrainedConfig": cls._set_token_in_kwargs(A ) UpperCAmelCase : Union[str, Any] = cls.get_config_dict(A , **A ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": UpperCAmelCase : List[Any] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(A , **A ) class UpperCamelCase_ ( __magic_name__ ): lowercase = 'owlvit' lowercase = True def __init__( self , A=None , A=None , A=512 , A=2.6_5_9_2 , A=True , **A , ) -> int: super().__init__(**A ) if text_config is None: UpperCAmelCase : str = {} logger.info("""text_config is None. Initializing the OwlViTTextConfig with default values.""" ) if vision_config is None: UpperCAmelCase : List[Any] = {} logger.info("""vision_config is None. initializing the OwlViTVisionConfig with default values.""" ) UpperCAmelCase : int = OwlViTTextConfig(**A ) UpperCAmelCase : Optional[Any] = OwlViTVisionConfig(**A ) UpperCAmelCase : Union[str, Any] = projection_dim UpperCAmelCase : int = logit_scale_init_value UpperCAmelCase : Optional[Any] = return_dict UpperCAmelCase : Any = 1.0 @classmethod def _lowercase( cls , A , **A ) -> "PretrainedConfig": cls._set_token_in_kwargs(A ) UpperCAmelCase : List[str] = cls.get_config_dict(A , **A ) if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(A , **A ) @classmethod def _lowercase( cls , A , A , **A ) -> Optional[Any]: UpperCAmelCase : int = {} UpperCAmelCase : int = text_config UpperCAmelCase : Optional[Any] = vision_config return cls.from_dict(A , **A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : List[str] = self.text_config.to_dict() UpperCAmelCase : List[str] = self.vision_config.to_dict() UpperCAmelCase : List[str] = self.__class__.model_type return output class UpperCamelCase_ ( __magic_name__ ): @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ] ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""logits_per_image""", {0: """batch"""}), ("""logits_per_text""", {0: """batch"""}), ("""text_embeds""", {0: """batch"""}), ("""image_embeds""", {0: """batch"""}), ] ) @property def _lowercase( self ) -> float: return 1e-4 def _lowercase( self , A , A = -1 , A = -1 , A = None , ) -> Mapping[str, Any]: UpperCAmelCase : Any = super().generate_dummy_inputs( processor.tokenizer , batch_size=A , seq_length=A , framework=A ) UpperCAmelCase : Optional[int] = super().generate_dummy_inputs( processor.image_processor , batch_size=A , framework=A ) return {**text_input_dict, **image_input_dict} @property def _lowercase( self ) -> int: return 14
370
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever a : List[str] = logging.getLogger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A=None ) -> Union[str, Any]: super().__init__( A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , ) UpperCAmelCase : Optional[Any] = None def _lowercase( self , A ) -> List[Any]: logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually UpperCAmelCase : Tuple = self._infer_socket_ifname() # avoid clash with the NCCL port UpperCAmelCase : str = str(distributed_port + 1 ) UpperCAmelCase : Any = dist.new_group(ranks=A , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _lowercase( self ) -> Dict: return dist.get_rank(group=self.process_group ) == 0 def _lowercase( self , A , A , A=torch.floataa ) -> str: UpperCAmelCase : List[Any] = torch.empty(A , dtype=A ) dist.scatter(A , src=0 , scatter_list=A , group=self.process_group ) return target_tensor def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names UpperCAmelCase : Optional[int] = next((addr for addr in addrs if addr.startswith("""e""" )) , A ) return ifname def _lowercase( self , A , A ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): UpperCAmelCase , UpperCAmelCase : str = self._main_retrieve(A , A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A ) # distributed training UpperCAmelCase : int = dist.get_world_size(group=self.process_group ) # gather logic UpperCAmelCase : int = None if self._is_main(): UpperCAmelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )] dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group ) # scatter logic UpperCAmelCase : List[Any] = question_hidden_states.shape[0] UpperCAmelCase : Tuple = [] UpperCAmelCase : Any = [] if self._is_main(): assert len(A ) == world_size UpperCAmelCase , UpperCAmelCase : Optional[int] = self._main_retrieve(torch.cat(A ).numpy() , A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = torch.tensor(A ), torch.tensor(A ) UpperCAmelCase : List[str] = self._chunk_tensor(A , A ) UpperCAmelCase : Union[str, Any] = self._chunk_tensor(A , A ) UpperCAmelCase : Tuple = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa ) UpperCAmelCase : Optional[Any] = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
338
0
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class UpperCamelCase_ ( datasets.BeamBasedBuilder ): def _lowercase( self ) -> Any: return datasets.DatasetInfo( features=datasets.Features({"""content""": datasets.Value("""string""" )} ) , supervised_keys=A , ) def _lowercase( self , A , A ) -> Tuple: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_dummy_examples()} )] def _lowercase( self , A , A ) -> Optional[Any]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(A ) class UpperCamelCase_ ( datasets.BeamBasedBuilder ): def _lowercase( self ) -> Union[str, Any]: return datasets.DatasetInfo( features=datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) , supervised_keys=A , ) def _lowercase( self , A , A ) -> Any: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_nested_examples()} ) ] def _lowercase( self , A , A ) -> Union[str, Any]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(A ) def __lowerCamelCase ( ) -> Optional[Any]: return [(i, {"content": content}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] def __lowerCamelCase ( ) -> int: return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] class UpperCamelCase_ ( __magic_name__ ): @require_beam def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase : int = DummyBeamDataset(cache_dir=A , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(A , builder.name , """default""" , """0.0.0""" , f'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) UpperCAmelCase : List[Any] = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , A ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , A ) self.assertDictEqual(dset["""train"""][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(A , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def _lowercase( self ) -> Dict: import apache_beam as beam UpperCAmelCase : Optional[int] = beam.io.parquetio.WriteToParquet UpperCAmelCase : Any = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase : Dict = DummyBeamDataset(cache_dir=A , beam_runner="""DirectRunner""" ) with patch("""apache_beam.io.parquetio.WriteToParquet""" ) as write_parquet_mock: UpperCAmelCase : Optional[int] = partial(A , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( A , builder.name , """default""" , """0.0.0""" , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertTrue( os.path.exists( os.path.join( A , builder.name , """default""" , """0.0.0""" , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) UpperCAmelCase : Optional[Any] = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , A ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , A ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["""train"""]["""content"""] ) , sorted(["""foo""", """bar""", """foobar"""] ) ) self.assertTrue( os.path.exists(os.path.join(A , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def _lowercase( self ) -> Any: with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase : Optional[Any] = DummyBeamDataset(cache_dir=A ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def _lowercase( self ) -> str: UpperCAmelCase : Optional[Any] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase : Any = NestedBeamDataset(cache_dir=A , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(A , builder.name , """default""" , """0.0.0""" , f'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) ) UpperCAmelCase : List[str] = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , A ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , A ) self.assertDictEqual(dset["""train"""][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(A , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset
371
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : List[str] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } a : List[Any] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } a : List[Any] = { """facebook/blenderbot_small-90M""": 5_1_2, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = BlenderbotSmallTokenizer def __init__( self , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , A=True , **A , ) -> Union[str, Any]: super().__init__( ByteLevelBPETokenizer( vocab=A , merges=A , add_prefix_space=A , trim_offsets=A , ) , bos_token=A , eos_token=A , unk_token=A , **A , ) UpperCAmelCase : Optional[Any] = add_prefix_space def _lowercase( self , A , A=None ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
338
0
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def __magic_name__ ( __lowerCAmelCase : str = "isbn/0140328726" ) -> dict: __lowerCamelCase = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: __lowerCamelCase = f'''{olid} is not a valid Open Library olid''' raise ValueError(__lowerCAmelCase ) return requests.get(f'''https://openlibrary.org/{new_olid}.json''' ).json() def __magic_name__ ( __lowerCAmelCase : dict ) -> dict: __lowerCamelCase = { '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } __lowerCamelCase = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __lowerCamelCase = [ get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors'''] ] __lowerCamelCase = data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): __lowerCamelCase = ''', '''.join(__lowerCAmelCase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: SCREAMING_SNAKE_CASE__ : Tuple = input("\nEnter the ISBN code to search (or 'quit' to stop): ").strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F'Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.') continue print(F'\nSearching Open Library for ISBN: {isbn}...\n') try: SCREAMING_SNAKE_CASE__ : Any = summarize_book(get_openlibrary_data(F'isbn/{isbn}')) print("\n".join(F'{key}: {value}' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F'Sorry, there are no results for ISBN: {isbn}.')
339
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: return abs(__lowerCAmelCase ) if a == 0 else greatest_common_divisor(b % a , __lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. __lowerCamelCase , __lowerCamelCase = y, x % y return abs(__lowerCAmelCase ) def __magic_name__ ( ) -> Tuple: try: __lowerCamelCase = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) __lowerCamelCase = int(nums[0] ) __lowerCamelCase = int(nums[1] ) print( f'''greatest_common_divisor({num_a}, {num_a}) = ''' f'''{greatest_common_divisor(__lowerCAmelCase , __lowerCAmelCase )}''' ) print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__lowerCAmelCase , __lowerCAmelCase )}''' ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
339
1
from __future__ import annotations SCREAMING_SNAKE_CASE__ : Any = list[list[int]] # assigning initial values to the grid SCREAMING_SNAKE_CASE__ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution SCREAMING_SNAKE_CASE__ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def __magic_name__ ( __lowerCAmelCase : Matrix , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def __magic_name__ ( __lowerCAmelCase : Matrix ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def __magic_name__ ( __lowerCAmelCase : Matrix ) -> Matrix | None: if location := find_empty_location(__lowerCAmelCase ): __lowerCamelCase , __lowerCamelCase = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): __lowerCamelCase = digit if sudoku(__lowerCAmelCase ) is not None: return grid __lowerCamelCase = 0 return None def __magic_name__ ( __lowerCAmelCase : Matrix ) -> None: for row in grid: for cell in row: print(__lowerCAmelCase , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") SCREAMING_SNAKE_CASE__ : Dict = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
339
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def __A ( self : Optional[int] ) -> Union[str, Any]: __lowerCamelCase = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) __lowerCamelCase = AutoTokenizer.from_pretrained('''google/mt5-small''' ) __lowerCamelCase = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids __lowerCamelCase = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids __lowerCamelCase = shift_tokens_right(SCREAMING_SNAKE_CASE__ , model.config.pad_token_id , model.config.decoder_start_token_id ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ).logits __lowerCamelCase = optax.softmax_cross_entropy(SCREAMING_SNAKE_CASE__ , onehot(SCREAMING_SNAKE_CASE__ , logits.shape[-1] ) ).mean() __lowerCamelCase = -(labels.shape[-1] * loss.item()) __lowerCamelCase = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
339
1
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class lowerCAmelCase__ : def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , ) -> Optional[Any]: __lowerCamelCase = parent __lowerCamelCase = 13 __lowerCamelCase = 7 __lowerCamelCase = 30 __lowerCamelCase = self.seq_length + self.mem_len __lowerCamelCase = 15 __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = 99 __lowerCamelCase = [10, 50, 80] __lowerCamelCase = 32 __lowerCamelCase = 32 __lowerCamelCase = 4 __lowerCamelCase = 8 __lowerCamelCase = 1_28 __lowerCamelCase = 2 __lowerCamelCase = 2 __lowerCamelCase = None __lowerCamelCase = 1 __lowerCamelCase = 0 __lowerCamelCase = 3 __lowerCamelCase = self.vocab_size - 1 __lowerCamelCase = 0.01 def __A ( self : str ) -> Tuple: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __A ( self : Optional[int] ) -> Tuple: random.seed(self.seed ) tf.random.set_seed(self.seed ) def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> str: __lowerCamelCase = TFTransfoXLModel(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ ).to_tuple() __lowerCamelCase = {'''input_ids''': input_ids_a, '''mems''': mems_a} __lowerCamelCase , __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: __lowerCamelCase = TFTransfoXLLMHeadModel(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ ).to_tuple() __lowerCamelCase = {'''input_ids''': input_ids_a, '''labels''': lm_labels} __lowerCamelCase , __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ ).to_tuple() __lowerCamelCase , __lowerCamelCase = model([input_ids_a, mems_a] ).to_tuple() __lowerCamelCase = {'''input_ids''': input_ids_a, '''mems''': mems_a, '''labels''': lm_labels} __lowerCamelCase , __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]: __lowerCamelCase = TFTransfoXLForSequenceClassification(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self : Optional[int] ) -> Tuple: __lowerCamelCase = self.prepare_config_and_inputs() ((__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase)) = config_and_inputs __lowerCamelCase = {'''input_ids''': input_ids_a} return config, inputs_dict @require_tf class lowerCAmelCase__ ( __lowercase , __lowercase , unittest.TestCase ): a__ : List[Any] = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) a__ : List[Any] = () if is_tf_available() else () a__ : Union[str, Any] = ( { """feature-extraction""": TFTransfoXLModel, """text-classification""": TFTransfoXLForSequenceClassification, """text-generation""": TFTransfoXLLMHeadModel, """zero-shot""": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented a__ : Tuple = False a__ : int = False a__ : List[str] = False a__ : List[str] = False def __A ( self : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __A ( self : Optional[Any] ) -> Dict: __lowerCamelCase = TFTransfoXLModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , d_embed=37 ) def __A ( self : str ) -> Dict: self.config_tester.run_common_tests() def __A ( self : Union[str, Any] ) -> str: self.model_tester.set_seed() __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*SCREAMING_SNAKE_CASE__ ) def __A ( self : Dict ) -> Tuple: self.model_tester.set_seed() __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*SCREAMING_SNAKE_CASE__ ) def __A ( self : int ) -> Dict: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*SCREAMING_SNAKE_CASE__ ) def __A ( self : List[str] ) -> Tuple: __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: __lowerCamelCase = model_class(SCREAMING_SNAKE_CASE__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: __lowerCamelCase = model.get_output_embeddings() assert isinstance(SCREAMING_SNAKE_CASE__ , tf.keras.layers.Layer ) __lowerCamelCase = model.get_bias() assert name is None else: __lowerCamelCase = model.get_output_embeddings() assert x is None __lowerCamelCase = model.get_bias() assert name is None def __A ( self : Optional[int] ) -> List[Any]: # TODO JP: Make TransfoXL XLA compliant pass @slow def __A ( self : List[str] ) -> int: for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = TFTransfoXLModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @unittest.skip(reason='''This model doesn\'t play well with fit() due to not returning a single loss.''' ) def __A ( self : Optional[int] ) -> Optional[Any]: pass @require_tf class lowerCAmelCase__ ( unittest.TestCase ): @unittest.skip('''Skip test until #12651 is resolved.''' ) @slow def __A ( self : Optional[Any] ) -> Tuple: __lowerCamelCase = TFTransfoXLLMHeadModel.from_pretrained('''transfo-xl-wt103''' ) # fmt: off __lowerCamelCase = tf.convert_to_tensor([[33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off __lowerCamelCase = [33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0,33,1,18_57,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,28,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> __lowerCamelCase = model.generate(SCREAMING_SNAKE_CASE__ , max_length=2_00 , do_sample=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(output_ids[0].numpy().tolist() , SCREAMING_SNAKE_CASE__ )
339
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE__ : Optional[int] = "bart" SCREAMING_SNAKE_CASE__ : Dict = True @st.cache(allow_output_mutation=__lowerCAmelCase ) def __magic_name__ ( ) -> str: if LOAD_DENSE_INDEX: __lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) __lowerCamelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) __lowerCamelCase = qar_model.eval() else: __lowerCamelCase , __lowerCamelCase = (None, None) if MODEL_TYPE == "bart": __lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) __lowerCamelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) __lowerCamelCase = sas_model.eval() else: __lowerCamelCase , __lowerCamelCase = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__lowerCAmelCase ) def __magic_name__ ( ) -> Optional[int]: if LOAD_DENSE_INDEX: __lowerCamelCase = faiss.StandardGpuResources() __lowerCamelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] __lowerCamelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) __lowerCamelCase = faiss.IndexFlatIP(128 ) __lowerCamelCase = faiss.index_cpu_to_gpu(__lowerCAmelCase , 1 , __lowerCAmelCase ) wikiaab_gpu_index_flat.add(__lowerCAmelCase ) # TODO fix for larger GPU else: __lowerCamelCase , __lowerCamelCase = (None, None) __lowerCamelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__lowerCAmelCase ) def __magic_name__ ( ) -> List[str]: __lowerCamelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) __lowerCamelCase = elia['''train_eli5'''] __lowerCamelCase = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) __lowerCamelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(__lowerCAmelCase ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = load_indexes() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = load_models() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = load_train_data() def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[str]=10 ) -> List[str]: __lowerCamelCase = embed_questions_for_retrieval([question] , __lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase , __lowerCamelCase = eli5_train_q_index.search(__lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase = [elia_train[int(__lowerCAmelCase )] for i in I[0]] return nn_examples def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict="wiki40b" , __lowerCAmelCase : Any="dense" , __lowerCAmelCase : Dict=10 ) -> Union[str, Any]: if source == "none": __lowerCamelCase , __lowerCamelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": __lowerCamelCase , __lowerCamelCase = query_qa_dense_index( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: __lowerCamelCase , __lowerCamelCase = query_es_index( __lowerCAmelCase , __lowerCAmelCase , index_name='''english_wiki40b_snippets_100w''' , n_results=__lowerCAmelCase , ) __lowerCamelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] __lowerCamelCase = '''question: {} context: {}'''.format(__lowerCAmelCase , __lowerCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __lowerCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __lowerCAmelCase : None), } ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str=64 , __lowerCAmelCase : Dict=256 , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : Optional[Any]=0.95 , __lowerCAmelCase : List[Any]=0.8 ) -> Any: with torch.no_grad(): __lowerCamelCase = qa_sas_generate( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , num_answers=1 , num_beams=__lowerCAmelCase , min_len=__lowerCAmelCase , max_len=__lowerCAmelCase , do_sample=__lowerCAmelCase , temp=__lowerCAmelCase , top_p=__lowerCAmelCase , top_k=__lowerCAmelCase , max_input_length=1024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar SCREAMING_SNAKE_CASE__ : List[str] = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" SCREAMING_SNAKE_CASE__ : Dict = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE__ : int = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE__ : str = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] SCREAMING_SNAKE_CASE__ : Optional[int] = st.sidebar.checkbox("Demo options") if demo_options: SCREAMING_SNAKE_CASE__ : Optional[int] = st.sidebar.selectbox( "", action_list, index=3, ) SCREAMING_SNAKE_CASE__ : Optional[Any] = action_list.index(action_st) SCREAMING_SNAKE_CASE__ : int = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = show_type == "Show full text of passages" else: SCREAMING_SNAKE_CASE__ : Any = 3 SCREAMING_SNAKE_CASE__ : Any = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.checkbox("Retrieval options") if retrieval_options: SCREAMING_SNAKE_CASE__ : Tuple = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) SCREAMING_SNAKE_CASE__ : int = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: SCREAMING_SNAKE_CASE__ : List[str] = "wiki40b" SCREAMING_SNAKE_CASE__ : Optional[Any] = "dense" SCREAMING_SNAKE_CASE__ : str = "beam" SCREAMING_SNAKE_CASE__ : List[Any] = 2 SCREAMING_SNAKE_CASE__ : Optional[Any] = 64 SCREAMING_SNAKE_CASE__ : List[Any] = 256 SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : List[str] = st.sidebar.checkbox("Generation options") if generate_options: SCREAMING_SNAKE_CASE__ : Dict = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE__ : List[str] = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) SCREAMING_SNAKE_CASE__ : Any = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE__ : str = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE__ : Any = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE__ : Dict = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None # start main text SCREAMING_SNAKE_CASE__ : Any = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] SCREAMING_SNAKE_CASE__ : List[str] = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.text_input("Enter your question here:", "") else: SCREAMING_SNAKE_CASE__ : str = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = make_support(question, source=wiki_source, method="dense", n_results=10) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = make_support(question, source=wiki_source, method="sparse", n_results=10) SCREAMING_SNAKE_CASE__ : int = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE__ : Optional[Any] = support_list[:10] SCREAMING_SNAKE_CASE__ : Tuple = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE__ : Optional[int] = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) SCREAMING_SNAKE_CASE__ : Tuple = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE__ : Union[str, Any] = "[{}]({})".format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE__ : Dict = sec_titles.split(" & ") SCREAMING_SNAKE_CASE__ : int = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE__ : Any = find_nearest_training(question) SCREAMING_SNAKE_CASE__ : List[Any] = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) SCREAMING_SNAKE_CASE__ : List[Any] = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
339
1
from __future__ import annotations def __magic_name__ ( __lowerCAmelCase : dict , __lowerCAmelCase : str ) -> set[str]: __lowerCamelCase , __lowerCamelCase = set(__lowerCAmelCase ), [start] while stack: __lowerCamelCase = stack.pop() explored.add(__lowerCAmelCase ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__lowerCAmelCase ) return explored SCREAMING_SNAKE_CASE__ : Tuple = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
339
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : str = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class lowerCAmelCase__ ( __lowercase ): a__ : Dict = """xmod""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_05_22 , SCREAMING_SNAKE_CASE__ : str=7_68 , SCREAMING_SNAKE_CASE__ : int=12 , SCREAMING_SNAKE_CASE__ : Dict=12 , SCREAMING_SNAKE_CASE__ : List[str]=30_72 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : List[Any]=0.02 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1e-12 , SCREAMING_SNAKE_CASE__ : List[str]=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : Any="absolute" , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=("en_XX",) , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , **SCREAMING_SNAKE_CASE__ : int , ) -> str: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = position_embedding_type __lowerCamelCase = use_cache __lowerCamelCase = classifier_dropout __lowerCamelCase = pre_norm __lowerCamelCase = adapter_reduction_factor __lowerCamelCase = adapter_layer_norm __lowerCamelCase = adapter_reuse_layer_norm __lowerCamelCase = ln_before_adapter __lowerCamelCase = list(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = default_language class lowerCAmelCase__ ( __lowercase ): @property def __A ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
339
1
def __magic_name__ ( __lowerCAmelCase : dict ) -> set: __lowerCamelCase = set() # edges = list of graph's edges __lowerCamelCase = get_edges(__lowerCAmelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: __lowerCamelCase , __lowerCamelCase = edges.pop() chosen_vertices.add(__lowerCAmelCase ) chosen_vertices.add(__lowerCAmelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(__lowerCAmelCase ) return chosen_vertices def __magic_name__ ( __lowerCAmelCase : dict ) -> set: __lowerCamelCase = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
339
from collections import namedtuple import requests from lxml import html # type: ignore SCREAMING_SNAKE_CASE__ : List[Any] = namedtuple("covid_data", "cases deaths recovered") def __magic_name__ ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data: __lowerCamelCase = '''//div[@class = "maincounter-number"]/span/text()''' return covid_data(*html.fromstring(requests.get(__lowerCAmelCase ).content ).xpath(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ : List[str] = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
339
1
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class lowerCAmelCase__ ( __lowercase ): a__ : Optional[int] = """""" a__ : List[str] = """hf-legacy""" # "hf://"" is reserved for hffs def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[DatasetInfo] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = None , **SCREAMING_SNAKE_CASE__ : Tuple , ) -> List[Any]: super().__init__(self , **SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = repo_info __lowerCamelCase = token __lowerCamelCase = None def __A ( self : int ) -> List[Any]: if self.dir_cache is None: __lowerCamelCase = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes __lowerCamelCase = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(SCREAMING_SNAKE_CASE__ ): {'''name''': str(SCREAMING_SNAKE_CASE__ ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str = "rb" , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Tuple: if not isinstance(self.repo_info , SCREAMING_SNAKE_CASE__ ): raise NotImplementedError(f'''Open is only implemented for dataset repositories, but got {self.repo_info}''' ) __lowerCamelCase = hf_hub_url(self.repo_info.id , SCREAMING_SNAKE_CASE__ , revision=self.repo_info.sha ) return fsspec.open( SCREAMING_SNAKE_CASE__ , mode=SCREAMING_SNAKE_CASE__ , headers=get_authentication_headers_for_url(SCREAMING_SNAKE_CASE__ , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open() def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]: self._get_dirs() __lowerCamelCase = self._strip_protocol(SCREAMING_SNAKE_CASE__ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(SCREAMING_SNAKE_CASE__ ) def __A ( self : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict=False , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> Any: self._get_dirs() __lowerCamelCase = PurePosixPath(path.strip('''/''' ) ) __lowerCamelCase = {} for p, f in self.dir_cache.items(): __lowerCamelCase = PurePosixPath(p.strip('''/''' ) ) __lowerCamelCase = p.parent if root == path: __lowerCamelCase = f __lowerCamelCase = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
339
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) SCREAMING_SNAKE_CASE__ : int = logging.getLogger(__name__) @dataclass class lowerCAmelCase__ : a__ : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a__ : Optional[str] = field( default=__lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a__ : Optional[str] = field( default=__lowercase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a__ : Optional[str] = field( default=__lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether tp freeze the encoder."""} ) a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether to freeze the embeddings."""} ) @dataclass class lowerCAmelCase__ : a__ : str = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) a__ : Optional[str] = field( default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , ) a__ : Optional[int] = field( default=1_024 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field( default=128 , metadata={ """help""": ( """The maximum total sequence length for target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for validation target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded. """ """This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """ """during ``evaluate`` and ``predict``.""" ) } , ) a__ : Optional[int] = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for test target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} ) a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Source language id for translation."""} ) a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Target language id for translation."""} ) a__ : Optional[int] = field(default=__lowercase , metadata={"""help""": """# num_beams to use for evaluation."""} ) a__ : bool = field( default=__lowercase , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , ) def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : int ) -> Dict: logger.info(f'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(f''' {key} = {metrics[key]}''' ) save_json(__lowerCAmelCase , os.path.join(__lowerCAmelCase , f'''{split}_results.json''' ) ) def __magic_name__ ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_args_into_dataclasses() check_output_dir(__lowerCAmelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , __lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowerCamelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): assert hasattr(__lowerCAmelCase , __lowerCAmelCase ), f'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(__lowerCAmelCase , __lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) ) __lowerCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(__lowerCAmelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: __lowerCamelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(__lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(__lowerCAmelCase , __lowerCAmelCase ): __lowerCamelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: __lowerCamelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(__lowerCAmelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) __lowerCamelCase = SeqaSeqDataset # Get datasets __lowerCamelCase = ( dataset_class( __lowerCAmelCase , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) __lowerCamelCase = ( dataset_class( __lowerCAmelCase , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) __lowerCamelCase = ( dataset_class( __lowerCAmelCase , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer __lowerCamelCase = ( build_compute_metrics_fn(data_args.task , __lowerCAmelCase ) if training_args.predict_with_generate else None ) __lowerCamelCase = SeqaSeqTrainer( model=__lowerCAmelCase , args=__lowerCAmelCase , data_args=__lowerCAmelCase , train_dataset=__lowerCAmelCase , eval_dataset=__lowerCAmelCase , data_collator=SeqaSeqDataCollator( __lowerCAmelCase , __lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , ) __lowerCamelCase = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) __lowerCamelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) __lowerCamelCase = train_result.metrics __lowerCamelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , __lowerCAmelCase , training_args.output_dir ) all_metrics.update(__lowerCAmelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowerCamelCase = trainer.evaluate(metric_key_prefix='''val''' ) __lowerCamelCase = data_args.n_val __lowerCamelCase = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , __lowerCAmelCase , training_args.output_dir ) all_metrics.update(__lowerCAmelCase ) if training_args.do_predict: logger.info('''*** Predict ***''' ) __lowerCamelCase = trainer.predict(test_dataset=__lowerCAmelCase , metric_key_prefix='''test''' ) __lowerCamelCase = test_output.metrics __lowerCamelCase = data_args.n_test if trainer.is_world_process_zero(): __lowerCamelCase = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , __lowerCAmelCase , training_args.output_dir ) all_metrics.update(__lowerCAmelCase ) if training_args.predict_with_generate: __lowerCamelCase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) __lowerCamelCase = lmap(str.strip , __lowerCAmelCase ) write_txt_file(__lowerCAmelCase , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(__lowerCAmelCase , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Union[str, Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
339
1
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def __A ( self : Optional[int] ) -> Union[str, Any]: __lowerCamelCase = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) __lowerCamelCase = AutoTokenizer.from_pretrained('''google/mt5-small''' ) __lowerCamelCase = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids __lowerCamelCase = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids __lowerCamelCase = shift_tokens_right(SCREAMING_SNAKE_CASE__ , model.config.pad_token_id , model.config.decoder_start_token_id ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ).logits __lowerCamelCase = optax.softmax_cross_entropy(SCREAMING_SNAKE_CASE__ , onehot(SCREAMING_SNAKE_CASE__ , logits.shape[-1] ) ).mean() __lowerCamelCase = -(labels.shape[-1] * loss.item()) __lowerCamelCase = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
339
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase__ ( unittest.TestCase ): @property def __A ( self : List[Any] ) -> Optional[Any]: torch.manual_seed(0 ) __lowerCamelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def __A ( self : Optional[int] ) -> Optional[Any]: __lowerCamelCase = self.dummy_uncond_unet __lowerCamelCase = ScoreSdeVeScheduler() __lowerCamelCase = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) sde_ve.to(SCREAMING_SNAKE_CASE__ ) sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ ).images __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ )[ 0 ] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCamelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : Tuple ) -> str: __lowerCamelCase = '''google/ncsnpp-church-256''' __lowerCamelCase = UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = ScoreSdeVeScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) sde_ve.to(SCREAMING_SNAKE_CASE__ ) sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) __lowerCamelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
339
1
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): a__ : str = RoCBertTokenizer a__ : Union[str, Any] = None a__ : List[Any] = False a__ : Optional[int] = True a__ : List[Any] = filter_non_english def __A ( self : Any ) -> int: super().setUp() __lowerCamelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] __lowerCamelCase = {} __lowerCamelCase = {} for i, value in enumerate(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = i __lowerCamelCase = i __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) def __A ( self : List[Any] ) -> List[str]: __lowerCamelCase = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __lowerCamelCase = tokenizer.tokenize('''你好[SEP]你是谁''' ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) def __A ( self : Tuple ) -> str: __lowerCamelCase = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __A ( self : Union[str, Any] ) -> int: __lowerCamelCase = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __A ( self : Any ) -> Dict: __lowerCamelCase = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def __A ( self : Optional[Any] ) -> Union[str, Any]: __lowerCamelCase = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __A ( self : Optional[int] ) -> str: __lowerCamelCase = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __A ( self : List[str] ) -> int: __lowerCamelCase = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __A ( self : List[Any] ) -> List[str]: __lowerCamelCase = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __A ( self : Dict ) -> List[str]: __lowerCamelCase = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __A ( self : List[str] ) -> Optional[Any]: __lowerCamelCase = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __A ( self : Union[str, Any] ) -> List[str]: __lowerCamelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __lowerCamelCase = {} for i, token in enumerate(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = i __lowerCamelCase = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE__ , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def __A ( self : Union[str, Any] ) -> Union[str, Any]: self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __A ( self : int ) -> int: self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __A ( self : Optional[Any] ) -> Dict: self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def __A ( self : Dict ) -> Dict: __lowerCamelCase = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) if self.test_rust_tokenizer: __lowerCamelCase = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) def __A ( self : Optional[int] ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __lowerCamelCase = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' __lowerCamelCase = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE__ , '''do_lower_case''' ) else False __lowerCamelCase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def __A ( self : List[str] ) -> int: __lowerCamelCase = ['''的''', '''人''', '''有'''] __lowerCamelCase = ''''''.join(SCREAMING_SNAKE_CASE__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __lowerCamelCase = True __lowerCamelCase = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer_p.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer_r.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = False __lowerCamelCase = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer_r.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer_p.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) # it is expected that only the first Chinese character is not preceded by "##". __lowerCamelCase = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE__ ) ] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @slow def __A ( self : Optional[int] ) -> Dict: __lowerCamelCase = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __lowerCamelCase = tokenizer.encode('''你好''' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer.encode('''你是谁''' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def __A ( self : Dict ) -> int: __lowerCamelCase = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __lowerCamelCase = '''你好,你是谁''' __lowerCamelCase = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer.prepare_for_model( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
339
from functools import lru_cache def __magic_name__ ( __lowerCAmelCase : int ) -> set: __lowerCamelCase = 2 __lowerCamelCase = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__lowerCAmelCase ) if n > 1: factors.add(__lowerCAmelCase ) return factors @lru_cache def __magic_name__ ( __lowerCAmelCase : int ) -> int: return len(unique_prime_factors(__lowerCAmelCase ) ) def __magic_name__ ( __lowerCAmelCase : list ) -> bool: return len(set(__lowerCAmelCase ) ) in (0, 1) def __magic_name__ ( __lowerCAmelCase : int ) -> list: __lowerCamelCase = 2 while True: # Increment each value of a generated range __lowerCamelCase = [base + i for i in range(__lowerCAmelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. __lowerCamelCase = [upf_len(__lowerCAmelCase ) for x in group] checker.append(__lowerCAmelCase ) # If all numbers in the list are equal, return the group variable. if equality(__lowerCAmelCase ): return group # Increment our base variable by 1 base += 1 def __magic_name__ ( __lowerCAmelCase : int = 4 ) -> int: __lowerCamelCase = run(__lowerCAmelCase ) return results[0] if len(__lowerCAmelCase ) else None if __name__ == "__main__": print(solution())
339
1
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging SCREAMING_SNAKE_CASE__ : Optional[int] = logging.get_logger(__name__) class lowerCAmelCase__ ( __lowercase ): a__ : Optional[Any] = ["""pixel_values"""] def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Union[int, float] = 1 / 2_55 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : int = 8 , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> None: super().__init__(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_pad __lowerCamelCase = pad_size def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> np.ndarray: return rescale(SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ) -> str: __lowerCamelCase , __lowerCamelCase = get_image_size(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = (old_height // size + 1) * size - old_height __lowerCamelCase = (old_width // size + 1) * size - old_width return pad(SCREAMING_SNAKE_CASE__ , ((0, pad_height), (0, pad_width)) , mode='''symmetric''' , data_format=SCREAMING_SNAKE_CASE__ ) def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : ImageInput , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[float] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE__ : str , ) -> str: __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_pad if do_pad is not None else self.do_pad __lowerCamelCase = pad_size if pad_size is not None else self.pad_size __lowerCamelCase = make_list_of_images(SCREAMING_SNAKE_CASE__ ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ ) for image in images] if do_pad: __lowerCamelCase = [self.pad(SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ ) for image in images] __lowerCamelCase = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for image in images] __lowerCamelCase = {'''pixel_values''': images} return BatchFeature(data=SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ )
339
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCAmelCase__ : def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=99 , SCREAMING_SNAKE_CASE__ : List[Any]=13 , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : int=9 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : int=32 , SCREAMING_SNAKE_CASE__ : Tuple=5 , SCREAMING_SNAKE_CASE__ : List[str]=4 , SCREAMING_SNAKE_CASE__ : str=37 , SCREAMING_SNAKE_CASE__ : int=8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.002 , SCREAMING_SNAKE_CASE__ : str=1 , SCREAMING_SNAKE_CASE__ : Tuple=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Dict=None , ) -> Optional[Any]: __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = encoder_seq_length __lowerCamelCase = decoder_seq_length # For common tests __lowerCamelCase = self.decoder_seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = d_ff __lowerCamelCase = relative_attention_num_buckets __lowerCamelCase = dropout_rate __lowerCamelCase = initializer_factor __lowerCamelCase = eos_token_id __lowerCamelCase = pad_token_id __lowerCamelCase = decoder_start_token_id __lowerCamelCase = None __lowerCamelCase = decoder_layers def __A ( self : Any ) -> Tuple: return TaConfig.from_pretrained('''google/umt5-base''' ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , ) -> Optional[int]: if attention_mask is None: __lowerCamelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __lowerCamelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __lowerCamelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ ) if decoder_head_mask is None: __lowerCamelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ ) if cross_attn_head_mask is None: __lowerCamelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def __A ( self : List[Any] ) -> Tuple: __lowerCamelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __lowerCamelCase = input_ids.clamp(self.pad_token_id + 1 ) __lowerCamelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) __lowerCamelCase = self.get_config() __lowerCamelCase = config.num_attention_heads __lowerCamelCase = self.prepare_inputs_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, input_dict def __A ( self : Tuple ) -> List[str]: __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs() return config, inputs_dict def __A ( self : Optional[Any] ) -> Any: return TaConfig( vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __A ( self : List[Any] ) -> Any: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> int: __lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCamelCase = model( input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = model(input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = result.last_hidden_state __lowerCamelCase = result.past_key_values __lowerCamelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Dict: __lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ).get_decoder().to(SCREAMING_SNAKE_CASE__ ).eval() # first forward pass __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) + 1 ) __lowerCamelCase , __lowerCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCamelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and __lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] # select random slice __lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCamelCase = output_from_no_past[:, -1, random_slice_idx].detach() __lowerCamelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Optional[int]: __lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ).half().eval() __lowerCamelCase = model(**SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(SCREAMING_SNAKE_CASE__ ).any().item() ) @require_torch class lowerCAmelCase__ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): a__ : List[Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) a__ : Union[str, Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () a__ : Tuple = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) a__ : int = True a__ : int = False a__ : Tuple = False a__ : Optional[int] = True a__ : Optional[int] = True # The small UMT5 model needs higher percentages for CPU/MP tests a__ : Tuple = [0.8, 0.9] def __A ( self : Tuple ) -> Tuple: __lowerCamelCase = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def __A ( self : List[str] ) -> Union[str, Any]: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = UMTaModel(config_and_inputs[0] ).to(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( SCREAMING_SNAKE_CASE__ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=SCREAMING_SNAKE_CASE__ , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __A ( self : Union[str, Any] ) -> Any: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*SCREAMING_SNAKE_CASE__ ) def __A ( self : Any ) -> Any: __lowerCamelCase = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = config_and_inputs[0] __lowerCamelCase = UMTaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() model.to(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ), } for attn_name, (name, mask) in zip(SCREAMING_SNAKE_CASE__ , head_masking.items() ): __lowerCamelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": __lowerCamelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=SCREAMING_SNAKE_CASE__ , return_dict_in_generate=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) # We check the state of decoder_attentions and cross_attentions just from the last step __lowerCamelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def __A ( self : Tuple ) -> Optional[Any]: pass @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def __A ( self : int ) -> Optional[Any]: __lowerCamelCase = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=SCREAMING_SNAKE_CASE__ , legacy=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] __lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , padding=SCREAMING_SNAKE_CASE__ ).input_ids # fmt: off __lowerCamelCase = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ] ) # fmt: on torch.testing.assert_allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model.generate(input_ids.to(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] __lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
339
1
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> int: __lowerCamelCase = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __lowerCamelCase = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: __lowerCamelCase = 4 __lowerCamelCase = 48 __lowerCamelCase = '''pixelshuffle_aux''' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __lowerCamelCase = [6, 6, 6, 6] __lowerCamelCase = 60 __lowerCamelCase = [6, 6, 6, 6] __lowerCamelCase = '''pixelshuffledirect''' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __lowerCamelCase = 4 __lowerCamelCase = '''nearest+conv''' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: __lowerCamelCase = 1 __lowerCamelCase = 1 __lowerCamelCase = 126 __lowerCamelCase = 7 __lowerCamelCase = 255.0 __lowerCamelCase = '''''' return config def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple ) -> str: if "patch_embed.proj" in name and "layers" not in name: __lowerCamelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: __lowerCamelCase = name.replace('''patch_embed.norm''' , '''embeddings.patch_embeddings.layernorm''' ) if "layers" in name: __lowerCamelCase = name.replace('''layers''' , '''encoder.stages''' ) if "residual_group.blocks" in name: __lowerCamelCase = name.replace('''residual_group.blocks''' , '''layers''' ) if "attn.proj" in name: __lowerCamelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: __lowerCamelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __lowerCamelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __lowerCamelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __lowerCamelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __lowerCamelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if "q_bias" in name: __lowerCamelCase = name.replace('''q_bias''' , '''query.bias''' ) if "k_bias" in name: __lowerCamelCase = name.replace('''k_bias''' , '''key.bias''' ) if "v_bias" in name: __lowerCamelCase = name.replace('''v_bias''' , '''value.bias''' ) if "cpb_mlp" in name: __lowerCamelCase = name.replace('''cpb_mlp''' , '''continuous_position_bias_mlp''' ) if "patch_embed.proj" in name: __lowerCamelCase = name.replace('''patch_embed.proj''' , '''patch_embed.projection''' ) if name == "norm.weight": __lowerCamelCase = '''layernorm.weight''' if name == "norm.bias": __lowerCamelCase = '''layernorm.bias''' if "conv_first" in name: __lowerCamelCase = name.replace('''conv_first''' , '''first_convolution''' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: __lowerCamelCase = name.replace('''conv_last''' , '''final_convolution''' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: __lowerCamelCase = name.replace('''conv_before_upsample.0''' , '''conv_before_upsample''' ) if "upsample.0" in name: __lowerCamelCase = name.replace('''upsample.0''' , '''upsample.convolution_0''' ) if "upsample.2" in name: __lowerCamelCase = name.replace('''upsample.2''' , '''upsample.convolution_1''' ) __lowerCamelCase = '''upsample.''' + name elif config.upsampler == "pixelshuffledirect": __lowerCamelCase = name.replace('''upsample.0.weight''' , '''upsample.conv.weight''' ) __lowerCamelCase = name.replace('''upsample.0.bias''' , '''upsample.conv.bias''' ) else: pass else: __lowerCamelCase = '''swin2sr.''' + name return name def __magic_name__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict ) -> Any: for key in orig_state_dict.copy().keys(): __lowerCamelCase = orig_state_dict.pop(__lowerCAmelCase ) if "qkv" in key: __lowerCamelCase = key.split('''.''' ) __lowerCamelCase = int(key_split[1] ) __lowerCamelCase = int(key_split[4] ) __lowerCamelCase = config.embed_dim if "weight" in key: __lowerCamelCase = val[:dim, :] __lowerCamelCase = val[dim : dim * 2, :] __lowerCamelCase = val[-dim:, :] else: __lowerCamelCase = val[:dim] __lowerCamelCase = val[dim : dim * 2] __lowerCamelCase = val[-dim:] pass else: __lowerCamelCase = val return orig_state_dict def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : int ) -> Tuple: __lowerCamelCase = get_config(__lowerCAmelCase ) __lowerCamelCase = SwinaSRForImageSuperResolution(__lowerCAmelCase ) model.eval() __lowerCamelCase = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location='''cpu''' ) __lowerCamelCase = convert_state_dict(__lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase , __lowerCamelCase = model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: raise ValueError('''Missing keys when converting: {}'''.format(__lowerCAmelCase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f'''Unexpected key {key} in state_dict''' ) # verify values __lowerCamelCase = '''https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true''' __lowerCamelCase = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ).convert('''RGB''' ) __lowerCamelCase = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values __lowerCamelCase = 126 if '''Jpeg''' in checkpoint_url else 256 __lowerCamelCase = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __lowerCamelCase = transforms(__lowerCAmelCase ).unsqueeze(0 ) if config.num_channels == 1: __lowerCamelCase = pixel_values[:, 0, :, :].unsqueeze(1 ) __lowerCamelCase = model(__lowerCAmelCase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: __lowerCamelCase = torch.Size([1, 3, 512, 512] ) __lowerCamelCase = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __lowerCamelCase = torch.Size([1, 3, 1024, 1024] ) __lowerCamelCase = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here __lowerCamelCase = torch.Size([1, 3, 1024, 1024] ) __lowerCamelCase = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __lowerCamelCase = torch.Size([1, 3, 512, 512] ) __lowerCamelCase = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __lowerCamelCase = torch.Size([1, 3, 1024, 1024] ) __lowerCamelCase = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), f'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}''' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , __lowerCAmelCase , atol=1E-3 ) print('''Looks ok!''' ) __lowerCamelCase = { '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''': ( '''swin2SR-classical-sr-x2-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth''': ( '''swin2SR-classical-sr-x4-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth''': ( '''swin2SR-compressed-sr-x4-48''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth''': ( '''swin2SR-lightweight-x2-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth''': ( '''swin2SR-realworld-sr-x4-64-bsrgan-psnr''' ), } __lowerCamelCase = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: model.push_to_hub(f'''caidas/{model_name}''' ) processor.push_to_hub(f'''caidas/{model_name}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth", type=str, help="URL of the original Swin2SR checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the converted model to the hub.") SCREAMING_SNAKE_CASE__ : Any = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
339
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Tuple = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class lowerCAmelCase__ ( __lowercase ): a__ : Union[str, Any] = """open-llama""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Any=10_00_00 , SCREAMING_SNAKE_CASE__ : Any=40_96 , SCREAMING_SNAKE_CASE__ : Any=1_10_08 , SCREAMING_SNAKE_CASE__ : Tuple=32 , SCREAMING_SNAKE_CASE__ : str=32 , SCREAMING_SNAKE_CASE__ : Any="silu" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=20_48 , SCREAMING_SNAKE_CASE__ : List[str]=0.02 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-6 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Dict=0 , SCREAMING_SNAKE_CASE__ : Tuple=1 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : List[str]=None , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> Dict: __lowerCamelCase = vocab_size __lowerCamelCase = max_position_embeddings __lowerCamelCase = hidden_size __lowerCamelCase = intermediate_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = initializer_range __lowerCamelCase = rms_norm_eps __lowerCamelCase = use_cache __lowerCamelCase = kwargs.pop( '''use_memorry_efficient_attention''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_dropout_prob __lowerCamelCase = use_stable_embedding __lowerCamelCase = shared_input_output_embedding __lowerCamelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , tie_word_embeddings=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) def __A ( self : Dict ) -> Optional[int]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , SCREAMING_SNAKE_CASE__ ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f'''got {self.rope_scaling}''' ) __lowerCamelCase = self.rope_scaling.get('''type''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.rope_scaling.get('''factor''' , SCREAMING_SNAKE_CASE__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
339
1
from __future__ import annotations def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : int | None = None , __lowerCAmelCase : int | None = None ) -> None: if start is None: __lowerCamelCase = 0 if end is None: __lowerCamelCase = len(__lowerCAmelCase ) - 1 if start >= end: return __lowerCamelCase = (start + end) // 2 slowsort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) slowsort(__lowerCAmelCase , mid + 1 , __lowerCAmelCase ) if sequence[end] < sequence[mid]: __lowerCamelCase , __lowerCamelCase = sequence[mid], sequence[end] slowsort(__lowerCAmelCase , __lowerCAmelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
339
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar SCREAMING_SNAKE_CASE__ : Any = TypeVar("KEY") SCREAMING_SNAKE_CASE__ : Dict = TypeVar("VAL") @dataclass(frozen=__lowercase , slots=__lowercase ) class lowerCAmelCase__ ( Generic[KEY, VAL] ): a__ : KEY a__ : VAL class lowerCAmelCase__ ( _Item ): def __init__( self : str ) -> None: super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __bool__( self : Tuple ) -> bool: return False SCREAMING_SNAKE_CASE__ : List[Any] = _DeletedItem() class lowerCAmelCase__ ( MutableMapping[KEY, VAL] ): def __init__( self : int , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.75 ) -> None: __lowerCamelCase = initial_block_size __lowerCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowerCamelCase = capacity_factor __lowerCamelCase = 0 def __A ( self : Any , SCREAMING_SNAKE_CASE__ : KEY ) -> int: return hash(SCREAMING_SNAKE_CASE__ ) % len(self._buckets ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> int: return (ind + 1) % len(self._buckets ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> bool: __lowerCamelCase = self._buckets[ind] if not stored: __lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self._len += 1 return True elif stored.key == key: __lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return True else: return False def __A ( self : Any ) -> bool: __lowerCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(SCREAMING_SNAKE_CASE__ ) def __A ( self : List[Any] ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False __lowerCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def __A ( self : int , SCREAMING_SNAKE_CASE__ : int ) -> None: __lowerCamelCase = self._buckets __lowerCamelCase = [None] * new_size __lowerCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def __A ( self : str ) -> None: self._resize(len(self._buckets ) * 2 ) def __A ( self : Dict ) -> None: self._resize(len(self._buckets ) // 2 ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY ) -> Iterator[int]: __lowerCamelCase = self._get_bucket_index(SCREAMING_SNAKE_CASE__ ) for _ in range(len(self._buckets ) ): yield ind __lowerCamelCase = self._get_next_ind(SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): if self._try_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): break def __setitem__( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None: if self._is_full(): self._size_up() self._add_item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __delitem__( self : List[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> None: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = self._buckets[ind] if item is None: raise KeyError(SCREAMING_SNAKE_CASE__ ) if item is _deleted: continue if item.key == key: __lowerCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> VAL: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(SCREAMING_SNAKE_CASE__ ) def __len__( self : int ) -> int: return self._len def __iter__( self : Tuple ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ) -> str: __lowerCamelCase = ''' ,'''.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
339
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __magic_name__ ( __lowerCAmelCase : Tuple ) -> Tuple: __lowerCamelCase = filter(lambda __lowerCAmelCase : p.requires_grad , model.parameters() ) __lowerCamelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params SCREAMING_SNAKE_CASE__ : Optional[Any] = logging.getLogger(__name__) def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] ) -> int: if metric == "rouge2": __lowerCamelCase = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": __lowerCamelCase = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": __lowerCamelCase = '''{val_avg_em:.4f}-{step_count}''' elif metric == "loss": __lowerCamelCase = '''{val_avg_loss:.4f}-{step_count}''' else: raise NotImplementedError( f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ''' function.''' ) __lowerCamelCase = ModelCheckpoint( dirpath=__lowerCAmelCase , filename=__lowerCAmelCase , monitor=f'''val_{metric}''' , mode='''max''' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __magic_name__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] ) -> List[Any]: return EarlyStopping( monitor=f'''val_{metric}''' , mode='''min''' if '''loss''' in metric else '''max''' , patience=__lowerCAmelCase , verbose=__lowerCAmelCase , ) class lowerCAmelCase__ ( pl.Callback ): def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[str]: __lowerCamelCase = {f'''lr_group_{i}''': param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(SCREAMING_SNAKE_CASE__ ) @rank_zero_only def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : pl.Trainer , SCREAMING_SNAKE_CASE__ : pl.LightningModule , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict=True ) -> None: logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) __lowerCamelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results __lowerCamelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": __lowerCamelCase = od / '''test_results.txt''' __lowerCamelCase = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __lowerCamelCase = od / f'''{type_path}_results/{trainer.global_step:05d}.txt''' __lowerCamelCase = od / f'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) generations_file.parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , '''a+''' ) as writer: for key in sorted(SCREAMING_SNAKE_CASE__ ): if key in ["log", "progress_bar", "preds"]: continue __lowerCamelCase = metrics[key] if isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): __lowerCamelCase = val.item() __lowerCamelCase = f'''{key}: {val:.6f}\n''' writer.write(SCREAMING_SNAKE_CASE__ ) if not save_generations: return if "preds" in metrics: __lowerCamelCase = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(SCREAMING_SNAKE_CASE__ ) @rank_zero_only def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str ) -> Dict: try: __lowerCamelCase = pl_module.model.model.num_parameters() except AttributeError: __lowerCamelCase = pl_module.model.num_parameters() __lowerCamelCase = count_trainable_parameters(SCREAMING_SNAKE_CASE__ ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : pl.Trainer , SCREAMING_SNAKE_CASE__ : pl.LightningModule ) -> Tuple: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''test''' ) @rank_zero_only def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : pl.Trainer , SCREAMING_SNAKE_CASE__ : str ) -> Tuple: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
339
from datetime import datetime as dt import os from github import Github SCREAMING_SNAKE_CASE__ : Any = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def __magic_name__ ( ) -> Any: __lowerCamelCase = Github(os.environ['''GITHUB_TOKEN'''] ) __lowerCamelCase = g.get_repo('''huggingface/transformers''' ) __lowerCamelCase = repo.get_issues(state='''open''' ) for issue in open_issues: __lowerCamelCase = sorted([comment for comment in issue.get_comments()] , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase ) __lowerCamelCase = comments[0] if len(__lowerCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
339
1
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) SCREAMING_SNAKE_CASE__ : Tuple = logging.getLogger() def __magic_name__ ( ) -> List[Any]: __lowerCamelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) __lowerCamelCase = parser.parse_args() return args.f class lowerCAmelCase__ ( __lowercase ): def __A ( self : Dict ) -> None: __lowerCamelCase = logging.StreamHandler(sys.stdout ) logger.addHandler(SCREAMING_SNAKE_CASE__ ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any: __lowerCamelCase = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , '''run_glue_deebert.py''' ) with patch.object(SCREAMING_SNAKE_CASE__ , '''argv''' , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(SCREAMING_SNAKE_CASE__ , 0.666 ) @slow @require_torch_non_multi_gpu def __A ( self : List[Any] ) -> Tuple: __lowerCamelCase = ''' --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage '''.split() self.run_and_check(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(SCREAMING_SNAKE_CASE__ )
339
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> str: if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __lowerCamelCase = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b" __lowerCamelCase = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b" __lowerCamelCase = max(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(__lowerCAmelCase ) , b_binary.zfill(__lowerCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
339
1
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowerCAmelCase__ ( __lowercase ): def __A ( self : List[Any] ) -> Optional[int]: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def __A ( self : Tuple ) -> Optional[int]: __lowerCamelCase = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(SCREAMING_SNAKE_CASE__ ) def __A ( self : List[str] ) -> Dict: __lowerCamelCase = self._create_example_records() __lowerCamelCase = Dataset.from_list(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(SCREAMING_SNAKE_CASE__ ): self.assertDictEqual(SCREAMING_SNAKE_CASE__ , example_records[i] ) def __A ( self : Tuple ) -> List[Any]: __lowerCamelCase = self._create_example_records() __lowerCamelCase = Dataset.from_list(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def __A ( self : List[str] ) -> List[str]: # checks what happens with missing columns __lowerCamelCase = [{'''col_1''': 1}, {'''col_2''': '''x'''}] __lowerCamelCase = Dataset.from_list(SCREAMING_SNAKE_CASE__ ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def __A ( self : Optional[Any] ) -> Optional[Any]: # checks if the type can be inferred from the second record __lowerCamelCase = [{'''col_1''': []}, {'''col_1''': [1, 2]}] __lowerCamelCase = Dataset.from_list(SCREAMING_SNAKE_CASE__ ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def __A ( self : Optional[int] ) -> Optional[Any]: __lowerCamelCase = Dataset.from_list([] ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 0 ) self.assertListEqual(dset.column_names , [] )
339
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : List[str] ) -> Dict: __lowerCamelCase = tempfile.mkdtemp() # fmt: off __lowerCamelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCamelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __lowerCamelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCamelCase = {'''unk_token''': '''<unk>'''} __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } __lowerCamelCase = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __A ( self : int , **SCREAMING_SNAKE_CASE__ : int ) -> Any: return CLIPTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Dict , **SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Dict ) -> Dict: shutil.rmtree(self.tmpdirname ) def __A ( self : str ) -> Any: __lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCamelCase = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self : List[Any] ) -> List[str]: __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = self.get_image_processor() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ ) def __A ( self : Union[str, Any] ) -> int: __lowerCamelCase = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCamelCase = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) __lowerCamelCase = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[Any] ) -> Union[str, Any]: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='''np''' ) __lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self : List[Any] ) -> Optional[int]: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = '''lower newer''' __lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self : List[Any] ) -> Any: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = '''lower newer''' __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def __A ( self : Optional[Any] ) -> List[str]: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE__ , visual_prompt=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def __A ( self : List[Any] ) -> Any: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCamelCase = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
339
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): @slow def __A ( self : Any ) -> List[str]: __lowerCamelCase = TFCamembertModel.from_pretrained('''jplu/tf-camembert-base''' ) __lowerCamelCase = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] __lowerCamelCase = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) # compare the actual values for a slice. __lowerCamelCase = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
339
from __future__ import annotations def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : int | None = None , __lowerCAmelCase : int | None = None ) -> None: if start is None: __lowerCamelCase = 0 if end is None: __lowerCamelCase = len(__lowerCAmelCase ) - 1 if start >= end: return __lowerCamelCase = (start + end) // 2 slowsort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) slowsort(__lowerCAmelCase , mid + 1 , __lowerCAmelCase ) if sequence[end] < sequence[mid]: __lowerCamelCase , __lowerCamelCase = sequence[mid], sequence[end] slowsort(__lowerCAmelCase , __lowerCAmelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
339
1
def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] ) -> List[Any]: if index == r: for j in range(__lowerCAmelCase ): print(data[j] , end=''' ''' ) print(''' ''' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __lowerCamelCase = arr[i] combination_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , index + 1 , __lowerCAmelCase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def __magic_name__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] ) -> Optional[Any]: # A temporary array to store all combination one by one __lowerCamelCase = [0] * r # Print all combination using temporary array 'data[]' combination_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 0 , __lowerCAmelCase , 0 ) if __name__ == "__main__": # Driver code to check the function above SCREAMING_SNAKE_CASE__ : int = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
339
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Optional[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } SCREAMING_SNAKE_CASE__ : str = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } SCREAMING_SNAKE_CASE__ : int = {"facebook/blenderbot_small-90M": 512} def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Tuple: __lowerCamelCase = set() __lowerCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCamelCase = char __lowerCamelCase = set(__lowerCAmelCase ) return pairs class lowerCAmelCase__ ( __lowercase ): a__ : List[Any] = VOCAB_FILES_NAMES a__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple="__start__" , SCREAMING_SNAKE_CASE__ : Tuple="__end__" , SCREAMING_SNAKE_CASE__ : List[str]="__unk__" , SCREAMING_SNAKE_CASE__ : str="__null__" , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> Optional[Any]: super().__init__(unk_token=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as vocab_handle: __lowerCamelCase = json.load(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = {v: k for k, v in self.encoder.items()} with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as merges_handle: __lowerCamelCase = merges_handle.read().split('''\n''' )[1:-1] __lowerCamelCase = [tuple(merge.split() ) for merge in merges] __lowerCamelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __lowerCamelCase = {} @property def __A ( self : Dict ) -> int: return len(self.encoder ) def __A ( self : str ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : str ) -> str: if token in self.cache: return self.cache[token] __lowerCamelCase = re.sub('''([.,!?()])''' , R''' \1''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = re.sub('''(\')''' , R''' \1 ''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = re.sub(R'''\s{2,}''' , ''' ''' , SCREAMING_SNAKE_CASE__ ) if "\n" in token: __lowerCamelCase = token.replace('''\n''' , ''' __newln__''' ) __lowerCamelCase = token.split(''' ''' ) __lowerCamelCase = [] for token in tokens: if not len(SCREAMING_SNAKE_CASE__ ): continue __lowerCamelCase = token.lower() __lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) __lowerCamelCase = get_pairs(SCREAMING_SNAKE_CASE__ ) if not pairs: words.append(SCREAMING_SNAKE_CASE__ ) continue while True: __lowerCamelCase = min(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __lowerCamelCase , __lowerCamelCase = bigram __lowerCamelCase = [] __lowerCamelCase = 0 while i < len(SCREAMING_SNAKE_CASE__ ): try: __lowerCamelCase = word.index(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) new_word.extend(word[i:j] ) __lowerCamelCase = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(SCREAMING_SNAKE_CASE__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = new_word if len(SCREAMING_SNAKE_CASE__ ) == 1: break else: __lowerCamelCase = get_pairs(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = '''@@ '''.join(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = word[:-4] __lowerCamelCase = word words.append(SCREAMING_SNAKE_CASE__ ) return " ".join(SCREAMING_SNAKE_CASE__ ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: __lowerCamelCase = [] __lowerCamelCase = re.findall(R'''\S+\n?''' , SCREAMING_SNAKE_CASE__ ) for token in words: split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE__ ).split(''' ''' ) ) ) return split_tokens def __A ( self : str , SCREAMING_SNAKE_CASE__ : str ) -> int: __lowerCamelCase = token.lower() return self.encoder.get(SCREAMING_SNAKE_CASE__ , self.encoder.get(self.unk_token ) ) def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int ) -> str: return self.decoder.get(SCREAMING_SNAKE_CASE__ , self.unk_token ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: __lowerCamelCase = ''' '''.join(SCREAMING_SNAKE_CASE__ ).replace('''@@ ''' , '''''' ).strip() return out_string def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCamelCase = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) + '''\n''' ) __lowerCamelCase = 0 with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) __lowerCamelCase = token_index writer.write(''' '''.join(SCREAMING_SNAKE_CASE__ ) + '''\n''' ) index += 1 return vocab_file, merge_file
339
1
from typing import TYPE_CHECKING from ...utils import _LazyModule SCREAMING_SNAKE_CASE__ : Optional[int] = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys SCREAMING_SNAKE_CASE__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
339
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): a__ : str = ShapEImgaImgPipeline a__ : Union[str, Any] = ["""image"""] a__ : Optional[int] = ["""image"""] a__ : Union[str, Any] = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] a__ : List[str] = False @property def __A ( self : Dict ) -> Optional[Any]: return 32 @property def __A ( self : Optional[int] ) -> Optional[int]: return 32 @property def __A ( self : Optional[int] ) -> List[Any]: return self.time_input_dim * 4 @property def __A ( self : str ) -> List[Any]: return 8 @property def __A ( self : Optional[Any] ) -> Union[str, Any]: torch.manual_seed(0 ) __lowerCamelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __lowerCamelCase = CLIPVisionModel(SCREAMING_SNAKE_CASE__ ) return model @property def __A ( self : Union[str, Any] ) -> Union[str, Any]: __lowerCamelCase = CLIPImageProcessor( crop_size=2_24 , do_center_crop=SCREAMING_SNAKE_CASE__ , do_normalize=SCREAMING_SNAKE_CASE__ , do_resize=SCREAMING_SNAKE_CASE__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=2_24 , ) return image_processor @property def __A ( self : Dict ) -> int: torch.manual_seed(0 ) __lowerCamelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } __lowerCamelCase = PriorTransformer(**SCREAMING_SNAKE_CASE__ ) return model @property def __A ( self : Tuple ) -> Dict: torch.manual_seed(0 ) __lowerCamelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } __lowerCamelCase = ShapERenderer(**SCREAMING_SNAKE_CASE__ ) return model def __A ( self : Optional[int] ) -> List[str]: __lowerCamelCase = self.dummy_prior __lowerCamelCase = self.dummy_image_encoder __lowerCamelCase = self.dummy_image_processor __lowerCamelCase = self.dummy_renderer __lowerCamelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=10_24 , prediction_type='''sample''' , use_karras_sigmas=SCREAMING_SNAKE_CASE__ , clip_sample=SCREAMING_SNAKE_CASE__ , clip_sample_range=1.0 , ) __lowerCamelCase = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def __A ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=0 ) -> int: __lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ): __lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: __lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def __A ( self : Union[str, Any] ) -> Dict: __lowerCamelCase = '''cpu''' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = output.images[0] __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowerCamelCase = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self : str ) -> Tuple: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self : Optional[Any] ) -> str: __lowerCamelCase = torch_device == '''cpu''' __lowerCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=SCREAMING_SNAKE_CASE__ , relax_max_difference=SCREAMING_SNAKE_CASE__ , ) def __A ( self : Dict ) -> Optional[int]: __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = 1 __lowerCamelCase = 2 __lowerCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) for key in inputs.keys(): if key in self.batch_params: __lowerCamelCase = batch_size * [inputs[key]] __lowerCamelCase = pipe(**SCREAMING_SNAKE_CASE__ , num_images_per_prompt=SCREAMING_SNAKE_CASE__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : str ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : str ) -> Union[str, Any]: __lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) __lowerCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) __lowerCamelCase = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) __lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(0 ) __lowerCamelCase = pipe( SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
339
1
from ...configuration_utils import PretrainedConfig class lowerCAmelCase__ ( __lowercase ): a__ : List[Any] = """bert-generation""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict=5_03_58 , SCREAMING_SNAKE_CASE__ : List[Any]=10_24 , SCREAMING_SNAKE_CASE__ : Dict=24 , SCREAMING_SNAKE_CASE__ : List[str]=16 , SCREAMING_SNAKE_CASE__ : Optional[int]=40_96 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5_12 , SCREAMING_SNAKE_CASE__ : Tuple=0.02 , SCREAMING_SNAKE_CASE__ : str=1e-12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1 , SCREAMING_SNAKE_CASE__ : int="absolute" , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> Dict: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = position_embedding_type __lowerCamelCase = use_cache
339
import glob import os import random from string import ascii_lowercase, digits import cva SCREAMING_SNAKE_CASE__ : str = "" SCREAMING_SNAKE_CASE__ : Any = "" SCREAMING_SNAKE_CASE__ : Optional[Any] = "" SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 # (0 is vertical, 1 is horizontal) def __magic_name__ ( ) -> None: __lowerCamelCase , __lowerCamelCase = get_dataset(__lowerCAmelCase , __lowerCAmelCase ) print('''Processing...''' ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = update_image_and_anno(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for index, image in enumerate(__lowerCAmelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __lowerCamelCase = random_chars(32 ) __lowerCamelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __lowerCamelCase = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(f'''/{file_root}.jpg''' , __lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Success {index+1}/{len(__lowerCAmelCase )} with {file_name}''' ) __lowerCamelCase = [] for anno in new_annos[index]: __lowerCamelCase = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(__lowerCAmelCase ) with open(f'''/{file_root}.txt''' , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> tuple[list, list]: __lowerCamelCase = [] __lowerCamelCase = [] for label_file in glob.glob(os.path.join(__lowerCAmelCase , '''*.txt''' ) ): __lowerCamelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(__lowerCAmelCase ) as in_file: __lowerCamelCase = in_file.readlines() __lowerCamelCase = os.path.join(__lowerCAmelCase , f'''{label_name}.jpg''' ) __lowerCamelCase = [] for obj_list in obj_lists: __lowerCamelCase = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__lowerCAmelCase ) labels.append(__lowerCAmelCase ) return img_paths, labels def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int = 1 ) -> tuple[list, list, list]: __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] for idx in range(len(__lowerCAmelCase ) ): __lowerCamelCase = [] __lowerCamelCase = img_list[idx] path_list.append(__lowerCAmelCase ) __lowerCamelCase = anno_list[idx] __lowerCamelCase = cva.imread(__lowerCAmelCase ) if flip_type == 1: __lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: __lowerCamelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: __lowerCamelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__lowerCAmelCase ) new_imgs_list.append(__lowerCAmelCase ) return new_imgs_list, new_annos_lists, path_list def __magic_name__ ( __lowerCAmelCase : int = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" __lowerCamelCase = ascii_lowercase + digits return "".join(random.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
339
1
import math import unittest def __magic_name__ ( __lowerCAmelCase : int ) -> bool: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : Optional[int] ) -> Tuple: self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def __A ( self : List[str] ) -> Dict: with self.assertRaises(SCREAMING_SNAKE_CASE__ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , '''Zero doesn\'t have any positive factors, primes must have exactly two.''' , ) self.assertFalse( is_prime(1 ) , '''One only has 1 positive factor, primes must have exactly two.''' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
339
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated SCREAMING_SNAKE_CASE__ : Tuple = collections.namedtuple("_Datasets", ["train", "validation", "test"]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ SCREAMING_SNAKE_CASE__ : List[str] = "https://storage.googleapis.com/cvdf-datasets/mnist/" def __magic_name__ ( __lowerCAmelCase : Any ) -> int: __lowerCamelCase = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=__lowerCAmelCase )[0] @deprecated(__lowerCAmelCase , '''Please use tf.data to implement this functionality.''' ) def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> str: print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=__lowerCAmelCase ) as bytestream: __lowerCamelCase = _readaa(__lowerCAmelCase ) if magic != 2051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = bytestream.read(rows * cols * num_images ) __lowerCamelCase = numpy.frombuffer(__lowerCAmelCase , dtype=numpy.uinta ) __lowerCamelCase = data.reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 1 ) return data @deprecated(__lowerCAmelCase , '''Please use tf.one_hot on tensors.''' ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : List[Any] ) -> Dict: __lowerCamelCase = labels_dense.shape[0] __lowerCamelCase = numpy.arange(__lowerCAmelCase ) * num_classes __lowerCamelCase = numpy.zeros((num_labels, num_classes) ) __lowerCamelCase = 1 return labels_one_hot @deprecated(__lowerCAmelCase , '''Please use tf.data to implement this functionality.''' ) def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : str=False , __lowerCAmelCase : List[str]=10 ) -> List[str]: print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=__lowerCAmelCase ) as bytestream: __lowerCamelCase = _readaa(__lowerCAmelCase ) if magic != 2049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = bytestream.read(__lowerCAmelCase ) __lowerCamelCase = numpy.frombuffer(__lowerCAmelCase , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(__lowerCAmelCase , __lowerCAmelCase ) return labels class lowerCAmelCase__ : @deprecated( SCREAMING_SNAKE_CASE__ , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : str=dtypes.floataa , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : str=None , ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase = random_seed.get_seed(SCREAMING_SNAKE_CASE__ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) __lowerCamelCase = dtypes.as_dtype(SCREAMING_SNAKE_CASE__ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: __lowerCamelCase = 1_00_00 __lowerCamelCase = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'''images.shape: {images.shape} labels.shape: {labels.shape}''' __lowerCamelCase = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __lowerCamelCase = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __lowerCamelCase = images.astype(numpy.floataa ) __lowerCamelCase = numpy.multiply(SCREAMING_SNAKE_CASE__ , 1.0 / 255.0 ) __lowerCamelCase = images __lowerCamelCase = labels __lowerCamelCase = 0 __lowerCamelCase = 0 @property def __A ( self : str ) -> Optional[int]: return self._images @property def __A ( self : Any ) -> Dict: return self._labels @property def __A ( self : List[Any] ) -> int: return self._num_examples @property def __A ( self : str ) -> Any: return self._epochs_completed def __A ( self : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : str=True ) -> str: if fake_data: __lowerCamelCase = [1] * 7_84 __lowerCamelCase = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(SCREAMING_SNAKE_CASE__ )], [fake_label for _ in range(SCREAMING_SNAKE_CASE__ )], ) __lowerCamelCase = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __lowerCamelCase = numpy.arange(self._num_examples ) numpy.random.shuffle(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.images[perma] __lowerCamelCase = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __lowerCamelCase = self._num_examples - start __lowerCamelCase = self._images[start : self._num_examples] __lowerCamelCase = self._labels[start : self._num_examples] # Shuffle the data if shuffle: __lowerCamelCase = numpy.arange(self._num_examples ) numpy.random.shuffle(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.images[perm] __lowerCamelCase = self.labels[perm] # Start next epoch __lowerCamelCase = 0 __lowerCamelCase = batch_size - rest_num_examples __lowerCamelCase = self._index_in_epoch __lowerCamelCase = self._images[start:end] __lowerCamelCase = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size __lowerCamelCase = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(__lowerCAmelCase , '''Please write your own downloading logic.''' ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] ) -> List[Any]: if not gfile.Exists(__lowerCAmelCase ): gfile.MakeDirs(__lowerCAmelCase ) __lowerCamelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if not gfile.Exists(__lowerCAmelCase ): urllib.request.urlretrieve(__lowerCAmelCase , __lowerCAmelCase ) # noqa: S310 with gfile.GFile(__lowerCAmelCase ) as f: __lowerCamelCase = f.size() print('''Successfully downloaded''' , __lowerCAmelCase , __lowerCAmelCase , '''bytes.''' ) return filepath @deprecated( __lowerCAmelCase , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Dict=False , __lowerCAmelCase : List[str]=dtypes.floataa , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : int=5000 , __lowerCAmelCase : Any=None , __lowerCAmelCase : List[str]=DEFAULT_SOURCE_URL , ) -> Optional[Any]: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=__lowerCAmelCase , one_hot=__lowerCAmelCase , dtype=__lowerCAmelCase , seed=__lowerCAmelCase ) __lowerCamelCase = fake() __lowerCamelCase = fake() __lowerCamelCase = fake() return _Datasets(train=__lowerCAmelCase , validation=__lowerCAmelCase , test=__lowerCAmelCase ) if not source_url: # empty string check __lowerCamelCase = DEFAULT_SOURCE_URL __lowerCamelCase = '''train-images-idx3-ubyte.gz''' __lowerCamelCase = '''train-labels-idx1-ubyte.gz''' __lowerCamelCase = '''t10k-images-idx3-ubyte.gz''' __lowerCamelCase = '''t10k-labels-idx1-ubyte.gz''' __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + train_images_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_images(__lowerCAmelCase ) __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + train_labels_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_labels(__lowerCAmelCase , one_hot=__lowerCAmelCase ) __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + test_images_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_images(__lowerCAmelCase ) __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + test_labels_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_labels(__lowerCAmelCase , one_hot=__lowerCAmelCase ) if not 0 <= validation_size <= len(__lowerCAmelCase ): __lowerCamelCase = ( '''Validation size should be between 0 and ''' f'''{len(__lowerCAmelCase )}. Received: {validation_size}.''' ) raise ValueError(__lowerCAmelCase ) __lowerCamelCase = train_images[:validation_size] __lowerCamelCase = train_labels[:validation_size] __lowerCamelCase = train_images[validation_size:] __lowerCamelCase = train_labels[validation_size:] __lowerCamelCase = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} __lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) __lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) __lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) return _Datasets(train=__lowerCAmelCase , validation=__lowerCAmelCase , test=__lowerCAmelCase )
339
1
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> str: return "\n".join( f'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
339
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "vocab_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt" ), "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt" ), }, "tokenizer_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli": ( "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE__ : List[Any] = { "squeezebert/squeezebert-uncased": 512, "squeezebert/squeezebert-mnli": 512, "squeezebert/squeezebert-mnli-headless": 512, } SCREAMING_SNAKE_CASE__ : Dict = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class lowerCAmelCase__ ( __lowercase ): a__ : Optional[int] = VOCAB_FILES_NAMES a__ : Any = PRETRAINED_VOCAB_FILES_MAP a__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Optional[Any] = SqueezeBertTokenizer def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[UNK]" , SCREAMING_SNAKE_CASE__ : Optional[int]="[SEP]" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[PAD]" , SCREAMING_SNAKE_CASE__ : Tuple="[CLS]" , SCREAMING_SNAKE_CASE__ : str="[MASK]" , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : int=None , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Optional[Any]: super().__init__( SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , SCREAMING_SNAKE_CASE__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , SCREAMING_SNAKE_CASE__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars ): __lowerCamelCase = getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop('''type''' ) ) __lowerCamelCase = do_lower_case __lowerCamelCase = strip_accents __lowerCamelCase = tokenize_chinese_chars __lowerCamelCase = normalizer_class(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = do_lower_case def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=None ) -> str: __lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: __lowerCamelCase = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ ) return tuple(SCREAMING_SNAKE_CASE__ )
339
1
def __magic_name__ ( __lowerCAmelCase : str ) -> bool: if not all(x.isalpha() for x in string ): raise ValueError('''String must only contain alphabetic characters.''' ) __lowerCamelCase = sorted(string.lower() ) return len(__lowerCAmelCase ) == len(set(__lowerCAmelCase ) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Union[str, Any] = input("Enter a string ").strip() SCREAMING_SNAKE_CASE__ : List[Any] = is_isogram(input_str) print(F'{input_str} is {"an" if isogram else "not an"} isogram.')
339
from __future__ import annotations def __magic_name__ ( __lowerCAmelCase : list[int] ) -> bool: return len(set(__lowerCAmelCase ) ) == len(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
339
1
import os SCREAMING_SNAKE_CASE__ : Optional[int] = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1_000} def __magic_name__ ( __lowerCAmelCase : str ) -> int: __lowerCamelCase = 0 __lowerCamelCase = 0 while index < len(__lowerCAmelCase ) - 1: __lowerCamelCase = SYMBOLS[numerals[index]] __lowerCamelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def __magic_name__ ( __lowerCAmelCase : int ) -> str: __lowerCamelCase = '''''' __lowerCamelCase = num // 1000 numerals += m_count * "M" num %= 1000 __lowerCamelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 __lowerCamelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def __magic_name__ ( __lowerCAmelCase : str = "/p089_roman.txt" ) -> int: __lowerCamelCase = 0 with open(os.path.dirname(__lowerCAmelCase ) + roman_numerals_filename ) as filea: __lowerCamelCase = filea.readlines() for line in lines: __lowerCamelCase = line.strip() __lowerCamelCase = parse_roman_numerals(__lowerCAmelCase ) __lowerCamelCase = generate_roman_numerals(__lowerCAmelCase ) savings += len(__lowerCAmelCase ) - len(__lowerCAmelCase ) return savings if __name__ == "__main__": print(F'{solution() = }')
339
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ : Dict = { "configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Tuple = [ "FALCON_PRETRAINED_MODEL_ARCHIVE_LIST", "FalconForCausalLM", "FalconModel", "FalconPreTrainedModel", "FalconForSequenceClassification", "FalconForTokenClassification", "FalconForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
339
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) SCREAMING_SNAKE_CASE__ : int = logging.getLogger(__name__) @dataclass class lowerCAmelCase__ : a__ : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a__ : Optional[str] = field( default=__lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a__ : Optional[str] = field( default=__lowercase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a__ : Optional[str] = field( default=__lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether tp freeze the encoder."""} ) a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether to freeze the embeddings."""} ) @dataclass class lowerCAmelCase__ : a__ : str = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) a__ : Optional[str] = field( default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , ) a__ : Optional[int] = field( default=1_024 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field( default=128 , metadata={ """help""": ( """The maximum total sequence length for target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for validation target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded. """ """This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """ """during ``evaluate`` and ``predict``.""" ) } , ) a__ : Optional[int] = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for test target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} ) a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Source language id for translation."""} ) a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Target language id for translation."""} ) a__ : Optional[int] = field(default=__lowercase , metadata={"""help""": """# num_beams to use for evaluation."""} ) a__ : bool = field( default=__lowercase , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , ) def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : int ) -> Dict: logger.info(f'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(f''' {key} = {metrics[key]}''' ) save_json(__lowerCAmelCase , os.path.join(__lowerCAmelCase , f'''{split}_results.json''' ) ) def __magic_name__ ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_args_into_dataclasses() check_output_dir(__lowerCAmelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , __lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowerCamelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): assert hasattr(__lowerCAmelCase , __lowerCAmelCase ), f'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(__lowerCAmelCase , __lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) ) __lowerCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(__lowerCAmelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: __lowerCamelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(__lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(__lowerCAmelCase , __lowerCAmelCase ): __lowerCamelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: __lowerCamelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(__lowerCAmelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) __lowerCamelCase = SeqaSeqDataset # Get datasets __lowerCamelCase = ( dataset_class( __lowerCAmelCase , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) __lowerCamelCase = ( dataset_class( __lowerCAmelCase , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) __lowerCamelCase = ( dataset_class( __lowerCAmelCase , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer __lowerCamelCase = ( build_compute_metrics_fn(data_args.task , __lowerCAmelCase ) if training_args.predict_with_generate else None ) __lowerCamelCase = SeqaSeqTrainer( model=__lowerCAmelCase , args=__lowerCAmelCase , data_args=__lowerCAmelCase , train_dataset=__lowerCAmelCase , eval_dataset=__lowerCAmelCase , data_collator=SeqaSeqDataCollator( __lowerCAmelCase , __lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , ) __lowerCamelCase = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) __lowerCamelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) __lowerCamelCase = train_result.metrics __lowerCamelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , __lowerCAmelCase , training_args.output_dir ) all_metrics.update(__lowerCAmelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowerCamelCase = trainer.evaluate(metric_key_prefix='''val''' ) __lowerCamelCase = data_args.n_val __lowerCamelCase = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , __lowerCAmelCase , training_args.output_dir ) all_metrics.update(__lowerCAmelCase ) if training_args.do_predict: logger.info('''*** Predict ***''' ) __lowerCamelCase = trainer.predict(test_dataset=__lowerCAmelCase , metric_key_prefix='''test''' ) __lowerCamelCase = test_output.metrics __lowerCamelCase = data_args.n_test if trainer.is_world_process_zero(): __lowerCamelCase = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , __lowerCAmelCase , training_args.output_dir ) all_metrics.update(__lowerCAmelCase ) if training_args.predict_with_generate: __lowerCamelCase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) __lowerCamelCase = lmap(str.strip , __lowerCAmelCase ) write_txt_file(__lowerCAmelCase , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(__lowerCAmelCase , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Union[str, Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
339
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: return abs(__lowerCAmelCase ) if a == 0 else greatest_common_divisor(b % a , __lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. __lowerCamelCase , __lowerCamelCase = y, x % y return abs(__lowerCAmelCase ) def __magic_name__ ( ) -> Tuple: try: __lowerCamelCase = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) __lowerCamelCase = int(nums[0] ) __lowerCamelCase = int(nums[1] ) print( f'''greatest_common_divisor({num_a}, {num_a}) = ''' f'''{greatest_common_divisor(__lowerCAmelCase , __lowerCAmelCase )}''' ) print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__lowerCAmelCase , __lowerCAmelCase )}''' ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
339
1
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch SCREAMING_SNAKE_CASE__ : Any = True except ImportError: SCREAMING_SNAKE_CASE__ : str = False try: from torch.hub import _get_torch_home SCREAMING_SNAKE_CASE__ : Optional[Any] = _get_torch_home() except ImportError: SCREAMING_SNAKE_CASE__ : List[Any] = os.path.expanduser( os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.join(torch_cache_home, "transformers") SCREAMING_SNAKE_CASE__ : List[Any] = "https://cdn.huggingface.co" SCREAMING_SNAKE_CASE__ : Dict = "https://s3.amazonaws.com/models.huggingface.co/bert" SCREAMING_SNAKE_CASE__ : List[str] = "/".join(str(Path(__file__).resolve()).split("/")[:-1]) SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(PATH, "config.yaml") SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(PATH, "attributes.txt") SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(PATH, "objects.txt") SCREAMING_SNAKE_CASE__ : Dict = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path) SCREAMING_SNAKE_CASE__ : Tuple = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE) SCREAMING_SNAKE_CASE__ : Dict = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE) SCREAMING_SNAKE_CASE__ : Tuple = "pytorch_model.bin" SCREAMING_SNAKE_CASE__ : Union[str, Any] = "config.yaml" def __magic_name__ ( __lowerCAmelCase : Optional[int]=OBJECTS , __lowerCAmelCase : Any=ATTRIBUTES ) -> Any: __lowerCamelCase = [] with open(__lowerCAmelCase ) as f: for object in f.readlines(): vg_classes.append(object.split(''',''' )[0].lower().strip() ) __lowerCamelCase = [] with open(__lowerCAmelCase ) as f: for object in f.readlines(): vg_attrs.append(object.split(''',''' )[0].lower().strip() ) return vg_classes, vg_attrs def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> Tuple: __lowerCamelCase = OrderedDict() with open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = pkl.load(__lowerCAmelCase )['''model'''] for k in copy.deepcopy(list(ckp.keys() ) ): __lowerCamelCase = ckp.pop(__lowerCAmelCase ) if isinstance(__lowerCAmelCase , np.ndarray ): __lowerCamelCase = torch.tensor(__lowerCAmelCase ) else: assert isinstance(__lowerCAmelCase , torch.tensor ), type(__lowerCAmelCase ) __lowerCamelCase = v return r class lowerCAmelCase__ : a__ : Optional[Any] = {} def __init__( self : Any , SCREAMING_SNAKE_CASE__ : dict , SCREAMING_SNAKE_CASE__ : str = "root" , SCREAMING_SNAKE_CASE__ : Tuple=0 ) -> Optional[Any]: __lowerCamelCase = name __lowerCamelCase = level __lowerCamelCase = {} for k, v in dictionary.items(): if v is None: raise ValueError() __lowerCamelCase = copy.deepcopy(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = copy.deepcopy(SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = Config(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ , level=level + 1 ) __lowerCamelCase = v setattr(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = d def __repr__( self : int ) -> Union[str, Any]: return str(list((self._pointer.keys()) ) ) def __setattr__( self : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[str]: __lowerCamelCase = val __lowerCamelCase = val __lowerCamelCase = key.split('''.''' ) __lowerCamelCase = len(SCREAMING_SNAKE_CASE__ ) - 1 __lowerCamelCase = self._pointer if len(SCREAMING_SNAKE_CASE__ ) > 1: for i, l in enumerate(SCREAMING_SNAKE_CASE__ ): if hasattr(self , SCREAMING_SNAKE_CASE__ ) and isinstance(getattr(self , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ): setattr(getattr(self , SCREAMING_SNAKE_CASE__ ) , '''.'''.join(levels[i:] ) , SCREAMING_SNAKE_CASE__ ) if l == last_level: __lowerCamelCase = val else: __lowerCamelCase = pointer[l] def __A ( self : List[str] ) -> Dict: return self._pointer def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Any: with open(f'''{file_name}''' , '''w''' ) as stream: dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str ) -> Dict: with open(f'''{file_name}''' , '''w''' ) as stream: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @staticmethod def __A ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]: with open(SCREAMING_SNAKE_CASE__ ) as stream: __lowerCamelCase = load(SCREAMING_SNAKE_CASE__ , Loader=SCREAMING_SNAKE_CASE__ ) return data def __str__( self : int ) -> Any: __lowerCamelCase = ''' ''' if self._name != "root": __lowerCamelCase = f'''{t * (self._level-1)}{self._name}:\n''' else: __lowerCamelCase = '''''' __lowerCamelCase = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): r += f'''{t * (self._level)}{v}\n''' self._level += 1 else: r += f'''{t * (self._level)}{k}: {v} ({type(SCREAMING_SNAKE_CASE__ ).__name__})\n''' __lowerCamelCase = level return r[:-1] @classmethod def __A ( cls : List[str] , SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : str ) -> Any: __lowerCamelCase , __lowerCamelCase = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) return cls(SCREAMING_SNAKE_CASE__ ) @classmethod def __A ( cls : str , SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : Tuple ) -> Dict: __lowerCamelCase = kwargs.pop('''cache_dir''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = kwargs.pop('''force_download''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = kwargs.pop('''resume_download''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = kwargs.pop('''proxies''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = kwargs.pop('''local_files_only''' , SCREAMING_SNAKE_CASE__ ) if os.path.isdir(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif os.path.isfile(SCREAMING_SNAKE_CASE__ ) or is_remote_url(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = pretrained_model_name_or_path else: __lowerCamelCase = hf_bucket_url(SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , use_cdn=SCREAMING_SNAKE_CASE__ ) try: # Load from URL or cache if already cached __lowerCamelCase = cached_path( SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , ) # Load config dict if resolved_config_file is None: raise EnvironmentError __lowerCamelCase = Config.load_yaml(SCREAMING_SNAKE_CASE__ ) except EnvironmentError: __lowerCamelCase = '''Can\'t load config for''' raise EnvironmentError(SCREAMING_SNAKE_CASE__ ) if resolved_config_file == config_file: print('''loading configuration file from path''' ) else: print('''loading configuration file cache''' ) return Config.load_yaml(SCREAMING_SNAKE_CASE__ ), kwargs def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> Tuple: __lowerCamelCase = torch.load('''dump.pt''' , map_location=in_tensor.device ) __lowerCamelCase = in_tensor.numpy() __lowerCamelCase = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(__lowerCAmelCase , __lowerCAmelCase , rtol=0.01 , atol=0.1 ), ( f'''{sum([1 for x in np.isclose(__lowerCAmelCase , __lowerCAmelCase , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception('''tensors are all good''' ) # Hugging face functions below def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Union[str, Any]: __lowerCamelCase = urlparse(__lowerCAmelCase ) return parsed.scheme in ("http", "https") def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any]=True ) -> str: __lowerCamelCase = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX __lowerCamelCase = '''/''' not in model_id if legacy_format: return f'''{endpoint}/{model_id}-{filename}''' else: return f'''{endpoint}/{model_id}/{filename}''' def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : int=None , __lowerCAmelCase : Optional[int]=0 , __lowerCAmelCase : Tuple=None , ) -> Optional[Any]: __lowerCamelCase = '''python/{}'''.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): ua += "; " + "; ".join('''{}/{}'''.format(__lowerCAmelCase , __lowerCAmelCase ) for k, v in user_agent.items() ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): ua += "; " + user_agent __lowerCamelCase = {'''user-agent''': ua} if resume_size > 0: __lowerCamelCase = '''bytes=%d-''' % (resume_size,) __lowerCamelCase = requests.get(__lowerCAmelCase , stream=__lowerCAmelCase , proxies=__lowerCAmelCase , headers=__lowerCAmelCase ) if response.status_code == 416: # Range not satisfiable return __lowerCamelCase = response.headers.get('''Content-Length''' ) __lowerCamelCase = resume_size + int(__lowerCAmelCase ) if content_length is not None else None __lowerCamelCase = tqdm( unit='''B''' , unit_scale=__lowerCAmelCase , total=__lowerCAmelCase , initial=__lowerCAmelCase , desc='''Downloading''' , ) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(__lowerCAmelCase ) ) temp_file.write(__lowerCAmelCase ) progress.close() def __magic_name__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Any=False , __lowerCAmelCase : str=None , __lowerCAmelCase : Optional[Any]=10 , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Union[str, Any]=False , ) -> Dict: if cache_dir is None: __lowerCamelCase = TRANSFORMERS_CACHE if isinstance(__lowerCAmelCase , __lowerCAmelCase ): __lowerCamelCase = str(__lowerCAmelCase ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) __lowerCamelCase = None if not local_files_only: try: __lowerCamelCase = requests.head(__lowerCAmelCase , allow_redirects=__lowerCAmelCase , proxies=__lowerCAmelCase , timeout=__lowerCAmelCase ) if response.status_code == 200: __lowerCamelCase = response.headers.get('''ETag''' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass __lowerCamelCase = url_to_filename(__lowerCAmelCase , __lowerCAmelCase ) # get cache path to put the file __lowerCamelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(__lowerCAmelCase ): return cache_path else: __lowerCamelCase = [ file for file in fnmatch.filter(os.listdir(__lowerCAmelCase ) , filename + '''.*''' ) if not file.endswith('''.json''' ) and not file.endswith('''.lock''' ) ] if len(__lowerCAmelCase ) > 0: return os.path.join(__lowerCAmelCase , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( '''Cannot find the requested files in the cached path and outgoing traffic has been''' ''' disabled. To enable model look-ups and downloads online, set \'local_files_only\'''' ''' to False.''' ) return None # From now on, etag is not None. if os.path.exists(__lowerCAmelCase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. __lowerCamelCase = cache_path + '''.lock''' with FileLock(__lowerCAmelCase ): # If the download just completed while the lock was activated. if os.path.exists(__lowerCAmelCase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: __lowerCamelCase = cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(__lowerCAmelCase , '''a+b''' ) as f: yield f __lowerCamelCase = _resumable_file_manager if os.path.exists(__lowerCAmelCase ): __lowerCamelCase = os.stat(__lowerCAmelCase ).st_size else: __lowerCamelCase = 0 else: __lowerCamelCase = partial(tempfile.NamedTemporaryFile , dir=__lowerCAmelCase , delete=__lowerCAmelCase ) __lowerCamelCase = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '''%s not found in cache or force_download set to True, downloading to %s''' , __lowerCAmelCase , temp_file.name , ) http_get( __lowerCAmelCase , __lowerCAmelCase , proxies=__lowerCAmelCase , resume_size=__lowerCAmelCase , user_agent=__lowerCAmelCase , ) os.replace(temp_file.name , __lowerCAmelCase ) __lowerCamelCase = {'''url''': url, '''etag''': etag} __lowerCamelCase = cache_path + '''.json''' with open(__lowerCAmelCase , '''w''' ) as meta_file: json.dump(__lowerCAmelCase , __lowerCAmelCase ) return cache_path def __magic_name__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any]=None ) -> int: __lowerCamelCase = url.encode('''utf-8''' ) __lowerCamelCase = shaaaa(__lowerCAmelCase ) __lowerCamelCase = url_hash.hexdigest() if etag: __lowerCamelCase = etag.encode('''utf-8''' ) __lowerCamelCase = shaaaa(__lowerCAmelCase ) filename += "." + etag_hash.hexdigest() if url.endswith('''.h5''' ): filename += ".h5" return filename def __magic_name__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : List[Any]=False , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Dict=False , __lowerCAmelCase : Dict=False , ) -> List[str]: if cache_dir is None: __lowerCamelCase = TRANSFORMERS_CACHE if isinstance(__lowerCAmelCase , __lowerCAmelCase ): __lowerCamelCase = str(__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): __lowerCamelCase = str(__lowerCAmelCase ) if is_remote_url(__lowerCAmelCase ): # URL, so get it from the cache (downloading if necessary) __lowerCamelCase = get_from_cache( __lowerCAmelCase , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , proxies=__lowerCAmelCase , resume_download=__lowerCAmelCase , user_agent=__lowerCAmelCase , local_files_only=__lowerCAmelCase , ) elif os.path.exists(__lowerCAmelCase ): # File, and it exists. __lowerCamelCase = url_or_filename elif urlparse(__lowerCAmelCase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('''file {} not found'''.format(__lowerCAmelCase ) ) else: # Something unknown raise ValueError('''unable to parse {} as a URL or as a local path'''.format(__lowerCAmelCase ) ) if extract_compressed_file: if not is_zipfile(__lowerCAmelCase ) and not tarfile.is_tarfile(__lowerCAmelCase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" __lowerCamelCase , __lowerCamelCase = os.path.split(__lowerCAmelCase ) __lowerCamelCase = output_file.replace('''.''' , '''-''' ) + '''-extracted''' __lowerCamelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if os.path.isdir(__lowerCAmelCase ) and os.listdir(__lowerCAmelCase ) and not force_extract: return output_path_extracted # Prevent parallel extractions __lowerCamelCase = output_path + '''.lock''' with FileLock(__lowerCAmelCase ): shutil.rmtree(__lowerCAmelCase , ignore_errors=__lowerCAmelCase ) os.makedirs(__lowerCAmelCase ) if is_zipfile(__lowerCAmelCase ): with ZipFile(__lowerCAmelCase , '''r''' ) as zip_file: zip_file.extractall(__lowerCAmelCase ) zip_file.close() elif tarfile.is_tarfile(__lowerCAmelCase ): __lowerCamelCase = tarfile.open(__lowerCAmelCase ) tar_file.extractall(__lowerCAmelCase ) tar_file.close() else: raise EnvironmentError('''Archive format of {} could not be identified'''.format(__lowerCAmelCase ) ) return output_path_extracted return output_path def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any]="," ) -> Any: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) if os.path.isfile(__lowerCAmelCase ): with open(__lowerCAmelCase ) as f: __lowerCamelCase = eval(f.read() ) else: __lowerCamelCase = requests.get(__lowerCAmelCase ) try: __lowerCamelCase = requests.json() except Exception: __lowerCamelCase = req.content.decode() assert data is not None, "could not connect" try: __lowerCamelCase = eval(__lowerCAmelCase ) except Exception: __lowerCamelCase = data.split('''\n''' ) req.close() return data def __magic_name__ ( __lowerCAmelCase : Optional[Any] ) -> List[str]: __lowerCamelCase = requests.get(__lowerCAmelCase ) __lowerCamelCase = np.array(Image.open(BytesIO(response.content ) ) ) return img def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> str: __lowerCamelCase = url.split('''/''' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(__lowerCAmelCase ) with open(__lowerCAmelCase , '''rb''' ) as stream: __lowerCamelCase = pkl.load(__lowerCAmelCase ) __lowerCamelCase = weights.pop('''model''' ) __lowerCamelCase = {} for k, v in model.items(): __lowerCamelCase = torch.from_numpy(__lowerCAmelCase ) if "running_var" in k: __lowerCamelCase = torch.tensor([0] ) __lowerCamelCase = k.replace('''running_var''' , '''num_batches_tracked''' ) __lowerCamelCase = zero return new def __magic_name__ ( ) -> Any: print(f'''{os.path.abspath(os.path.join(__lowerCAmelCase , os.pardir ) )}/demo.ipynb''' ) def __magic_name__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict="RGB" ) -> str: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) if os.path.isfile(__lowerCAmelCase ): __lowerCamelCase = cva.imread(__lowerCAmelCase ) else: __lowerCamelCase = get_image_from_url(__lowerCAmelCase ) assert img is not None, f'''could not connect to: {im}''' __lowerCamelCase = cva.cvtColor(__lowerCAmelCase , cva.COLOR_BGR2RGB ) if input_format == "RGB": __lowerCamelCase = img[:, :, ::-1] return img def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple=1 ) -> Optional[int]: return (images[i : i + batch] for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase ))
339
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def __A ( self : Optional[int] ) -> Union[str, Any]: __lowerCamelCase = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) __lowerCamelCase = AutoTokenizer.from_pretrained('''google/mt5-small''' ) __lowerCamelCase = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids __lowerCamelCase = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids __lowerCamelCase = shift_tokens_right(SCREAMING_SNAKE_CASE__ , model.config.pad_token_id , model.config.decoder_start_token_id ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ).logits __lowerCamelCase = optax.softmax_cross_entropy(SCREAMING_SNAKE_CASE__ , onehot(SCREAMING_SNAKE_CASE__ , logits.shape[-1] ) ).mean() __lowerCamelCase = -(labels.shape[-1] * loss.item()) __lowerCamelCase = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
339
1
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : Dict ) -> List[Any]: __lowerCamelCase = '''ylacombe/bark-small''' __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = '''en_speaker_1''' __lowerCamelCase = '''This is a test string''' __lowerCamelCase = '''speaker_embeddings_path.json''' __lowerCamelCase = '''speaker_embeddings''' def __A ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Tuple ) -> str: return AutoTokenizer.from_pretrained(self.checkpoint , **SCREAMING_SNAKE_CASE__ ) def __A ( self : str ) -> int: shutil.rmtree(self.tmpdirname ) def __A ( self : Optional[Any] ) -> Optional[int]: __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __A ( self : Union[str, Any] ) -> Tuple: __lowerCamelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __lowerCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCamelCase = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __A ( self : Union[str, Any] ) -> Tuple: __lowerCamelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __lowerCamelCase = 35 __lowerCamelCase = 2 __lowerCamelCase = 8 __lowerCamelCase = { '''semantic_prompt''': np.ones(SCREAMING_SNAKE_CASE__ ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __lowerCamelCase = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file __lowerCamelCase = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub __lowerCamelCase = processor(text=self.input_string , voice_preset=self.voice_preset ) def __A ( self : Union[str, Any] ) -> List[str]: __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = processor(text=self.input_string ) __lowerCamelCase = tokenizer( self.input_string , padding='''max_length''' , max_length=2_56 , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
339
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE__ : Optional[int] = "bart" SCREAMING_SNAKE_CASE__ : Dict = True @st.cache(allow_output_mutation=__lowerCAmelCase ) def __magic_name__ ( ) -> str: if LOAD_DENSE_INDEX: __lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) __lowerCamelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) __lowerCamelCase = qar_model.eval() else: __lowerCamelCase , __lowerCamelCase = (None, None) if MODEL_TYPE == "bart": __lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) __lowerCamelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) __lowerCamelCase = sas_model.eval() else: __lowerCamelCase , __lowerCamelCase = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__lowerCAmelCase ) def __magic_name__ ( ) -> Optional[int]: if LOAD_DENSE_INDEX: __lowerCamelCase = faiss.StandardGpuResources() __lowerCamelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] __lowerCamelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) __lowerCamelCase = faiss.IndexFlatIP(128 ) __lowerCamelCase = faiss.index_cpu_to_gpu(__lowerCAmelCase , 1 , __lowerCAmelCase ) wikiaab_gpu_index_flat.add(__lowerCAmelCase ) # TODO fix for larger GPU else: __lowerCamelCase , __lowerCamelCase = (None, None) __lowerCamelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__lowerCAmelCase ) def __magic_name__ ( ) -> List[str]: __lowerCamelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) __lowerCamelCase = elia['''train_eli5'''] __lowerCamelCase = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) __lowerCamelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(__lowerCAmelCase ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = load_indexes() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = load_models() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = load_train_data() def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[str]=10 ) -> List[str]: __lowerCamelCase = embed_questions_for_retrieval([question] , __lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase , __lowerCamelCase = eli5_train_q_index.search(__lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase = [elia_train[int(__lowerCAmelCase )] for i in I[0]] return nn_examples def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict="wiki40b" , __lowerCAmelCase : Any="dense" , __lowerCAmelCase : Dict=10 ) -> Union[str, Any]: if source == "none": __lowerCamelCase , __lowerCamelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": __lowerCamelCase , __lowerCamelCase = query_qa_dense_index( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: __lowerCamelCase , __lowerCamelCase = query_es_index( __lowerCAmelCase , __lowerCAmelCase , index_name='''english_wiki40b_snippets_100w''' , n_results=__lowerCAmelCase , ) __lowerCamelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] __lowerCamelCase = '''question: {} context: {}'''.format(__lowerCAmelCase , __lowerCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __lowerCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __lowerCAmelCase : None), } ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str=64 , __lowerCAmelCase : Dict=256 , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : Optional[Any]=0.95 , __lowerCAmelCase : List[Any]=0.8 ) -> Any: with torch.no_grad(): __lowerCamelCase = qa_sas_generate( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , num_answers=1 , num_beams=__lowerCAmelCase , min_len=__lowerCAmelCase , max_len=__lowerCAmelCase , do_sample=__lowerCAmelCase , temp=__lowerCAmelCase , top_p=__lowerCAmelCase , top_k=__lowerCAmelCase , max_input_length=1024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar SCREAMING_SNAKE_CASE__ : List[str] = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" SCREAMING_SNAKE_CASE__ : Dict = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE__ : int = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE__ : str = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] SCREAMING_SNAKE_CASE__ : Optional[int] = st.sidebar.checkbox("Demo options") if demo_options: SCREAMING_SNAKE_CASE__ : Optional[int] = st.sidebar.selectbox( "", action_list, index=3, ) SCREAMING_SNAKE_CASE__ : Optional[Any] = action_list.index(action_st) SCREAMING_SNAKE_CASE__ : int = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = show_type == "Show full text of passages" else: SCREAMING_SNAKE_CASE__ : Any = 3 SCREAMING_SNAKE_CASE__ : Any = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.checkbox("Retrieval options") if retrieval_options: SCREAMING_SNAKE_CASE__ : Tuple = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) SCREAMING_SNAKE_CASE__ : int = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: SCREAMING_SNAKE_CASE__ : List[str] = "wiki40b" SCREAMING_SNAKE_CASE__ : Optional[Any] = "dense" SCREAMING_SNAKE_CASE__ : str = "beam" SCREAMING_SNAKE_CASE__ : List[Any] = 2 SCREAMING_SNAKE_CASE__ : Optional[Any] = 64 SCREAMING_SNAKE_CASE__ : List[Any] = 256 SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : List[str] = st.sidebar.checkbox("Generation options") if generate_options: SCREAMING_SNAKE_CASE__ : Dict = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE__ : List[str] = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) SCREAMING_SNAKE_CASE__ : Any = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE__ : str = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE__ : Any = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE__ : Dict = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None # start main text SCREAMING_SNAKE_CASE__ : Any = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] SCREAMING_SNAKE_CASE__ : List[str] = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.text_input("Enter your question here:", "") else: SCREAMING_SNAKE_CASE__ : str = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = make_support(question, source=wiki_source, method="dense", n_results=10) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = make_support(question, source=wiki_source, method="sparse", n_results=10) SCREAMING_SNAKE_CASE__ : int = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE__ : Optional[Any] = support_list[:10] SCREAMING_SNAKE_CASE__ : Tuple = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE__ : Optional[int] = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) SCREAMING_SNAKE_CASE__ : Tuple = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE__ : Union[str, Any] = "[{}]({})".format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE__ : Dict = sec_titles.split(" & ") SCREAMING_SNAKE_CASE__ : int = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE__ : Any = find_nearest_training(question) SCREAMING_SNAKE_CASE__ : List[Any] = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) SCREAMING_SNAKE_CASE__ : List[Any] = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
339
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : int = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE__ : Dict = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE__ : Optional[int] = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } SCREAMING_SNAKE_CASE__ : str = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class lowerCAmelCase__ ( __lowercase ): a__ : Tuple = VOCAB_FILES_NAMES a__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP a__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : List[Any] = PRETRAINED_INIT_CONFIGURATION a__ : Dict = ["""input_ids""", """attention_mask"""] a__ : List[Any] = DistilBertTokenizer def __init__( self : str , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Any="[UNK]" , SCREAMING_SNAKE_CASE__ : Optional[Any]="[SEP]" , SCREAMING_SNAKE_CASE__ : Tuple="[PAD]" , SCREAMING_SNAKE_CASE__ : Dict="[CLS]" , SCREAMING_SNAKE_CASE__ : Tuple="[MASK]" , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : List[Any]=None , **SCREAMING_SNAKE_CASE__ : List[Any] , ) -> Any: super().__init__( SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , SCREAMING_SNAKE_CASE__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , SCREAMING_SNAKE_CASE__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars ): __lowerCamelCase = getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop('''type''' ) ) __lowerCamelCase = do_lower_case __lowerCamelCase = strip_accents __lowerCamelCase = tokenize_chinese_chars __lowerCamelCase = normalizer_class(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = do_lower_case def __A ( self : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any=None ) -> Dict: __lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self : int , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: __lowerCamelCase = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ ) return tuple(SCREAMING_SNAKE_CASE__ )
339
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : str = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class lowerCAmelCase__ ( __lowercase ): a__ : Dict = """xmod""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_05_22 , SCREAMING_SNAKE_CASE__ : str=7_68 , SCREAMING_SNAKE_CASE__ : int=12 , SCREAMING_SNAKE_CASE__ : Dict=12 , SCREAMING_SNAKE_CASE__ : List[str]=30_72 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : List[Any]=0.02 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1e-12 , SCREAMING_SNAKE_CASE__ : List[str]=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : Any="absolute" , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=("en_XX",) , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , **SCREAMING_SNAKE_CASE__ : int , ) -> str: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = position_embedding_type __lowerCamelCase = use_cache __lowerCamelCase = classifier_dropout __lowerCamelCase = pre_norm __lowerCamelCase = adapter_reduction_factor __lowerCamelCase = adapter_layer_norm __lowerCamelCase = adapter_reuse_layer_norm __lowerCamelCase = ln_before_adapter __lowerCamelCase = list(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = default_language class lowerCAmelCase__ ( __lowercase ): @property def __A ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
339
1
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str]=13 , SCREAMING_SNAKE_CASE__ : int=7 , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=99 , SCREAMING_SNAKE_CASE__ : Tuple=32 , SCREAMING_SNAKE_CASE__ : Dict=5 , SCREAMING_SNAKE_CASE__ : Any=4 , SCREAMING_SNAKE_CASE__ : str=37 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : str=5_12 , SCREAMING_SNAKE_CASE__ : Tuple=16 , SCREAMING_SNAKE_CASE__ : Optional[int]=2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE__ : int=4 , ) -> List[str]: __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_choices def __A ( self : str ) -> List[Any]: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_attention_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __A ( self : Union[str, Any] ) -> int: __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): a__ : str = True a__ : Dict = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def __A ( self : List[Any] ) -> List[Any]: __lowerCamelCase = FlaxRoFormerModelTester(self ) @slow def __A ( self : Tuple ) -> Optional[Any]: for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained('''junnyu/roformer_chinese_small''' , from_pt=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def __A ( self : Optional[int] ) -> List[Any]: __lowerCamelCase = FlaxRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) __lowerCamelCase = jnp.array([[0, 1, 2, 3, 4, 5]] ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )[0] __lowerCamelCase = 5_00_00 __lowerCamelCase = (1, 6, vocab_size) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
339
from collections import namedtuple import requests from lxml import html # type: ignore SCREAMING_SNAKE_CASE__ : List[Any] = namedtuple("covid_data", "cases deaths recovered") def __magic_name__ ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data: __lowerCamelCase = '''//div[@class = "maincounter-number"]/span/text()''' return covid_data(*html.fromstring(requests.get(__lowerCAmelCase ).content ).xpath(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ : List[str] = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
339
1
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : int ) -> Any: __lowerCamelCase = inspect.getfile(accelerate.test_utils ) __lowerCamelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) __lowerCamelCase = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] ) __lowerCamelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] ) @require_multi_gpu def __A ( self : Tuple ) -> Dict: print(f'''Found {torch.cuda.device_count()} devices.''' ) __lowerCamelCase = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() ) @require_multi_gpu def __A ( self : Union[str, Any] ) -> str: print(f'''Found {torch.cuda.device_count()} devices.''' ) __lowerCamelCase = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(f'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() ) @require_multi_gpu def __A ( self : Optional[int] ) -> Optional[Any]: __lowerCamelCase = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() ) @require_multi_gpu def __A ( self : List[Any] ) -> Any: print(f'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) __lowerCamelCase = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ): execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : int = Accelerator() SCREAMING_SNAKE_CASE__ : Dict = (accelerator.state.process_index + 2, 10) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.randint(0, 10, shape).to(accelerator.device) SCREAMING_SNAKE_CASE__ : int = "" SCREAMING_SNAKE_CASE__ : Dict = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." SCREAMING_SNAKE_CASE__ : int = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." SCREAMING_SNAKE_CASE__ : Optional[int] = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
339
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) SCREAMING_SNAKE_CASE__ : int = logging.getLogger(__name__) @dataclass class lowerCAmelCase__ : a__ : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a__ : Optional[str] = field( default=__lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a__ : Optional[str] = field( default=__lowercase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a__ : Optional[str] = field( default=__lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether tp freeze the encoder."""} ) a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether to freeze the embeddings."""} ) @dataclass class lowerCAmelCase__ : a__ : str = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) a__ : Optional[str] = field( default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , ) a__ : Optional[int] = field( default=1_024 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field( default=128 , metadata={ """help""": ( """The maximum total sequence length for target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for validation target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded. """ """This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """ """during ``evaluate`` and ``predict``.""" ) } , ) a__ : Optional[int] = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for test target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} ) a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Source language id for translation."""} ) a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Target language id for translation."""} ) a__ : Optional[int] = field(default=__lowercase , metadata={"""help""": """# num_beams to use for evaluation."""} ) a__ : bool = field( default=__lowercase , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , ) def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : int ) -> Dict: logger.info(f'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(f''' {key} = {metrics[key]}''' ) save_json(__lowerCAmelCase , os.path.join(__lowerCAmelCase , f'''{split}_results.json''' ) ) def __magic_name__ ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_args_into_dataclasses() check_output_dir(__lowerCAmelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , __lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowerCamelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): assert hasattr(__lowerCAmelCase , __lowerCAmelCase ), f'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(__lowerCAmelCase , __lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) ) __lowerCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(__lowerCAmelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: __lowerCamelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(__lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(__lowerCAmelCase , __lowerCAmelCase ): __lowerCamelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: __lowerCamelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(__lowerCAmelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) __lowerCamelCase = SeqaSeqDataset # Get datasets __lowerCamelCase = ( dataset_class( __lowerCAmelCase , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) __lowerCamelCase = ( dataset_class( __lowerCAmelCase , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) __lowerCamelCase = ( dataset_class( __lowerCAmelCase , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer __lowerCamelCase = ( build_compute_metrics_fn(data_args.task , __lowerCAmelCase ) if training_args.predict_with_generate else None ) __lowerCamelCase = SeqaSeqTrainer( model=__lowerCAmelCase , args=__lowerCAmelCase , data_args=__lowerCAmelCase , train_dataset=__lowerCAmelCase , eval_dataset=__lowerCAmelCase , data_collator=SeqaSeqDataCollator( __lowerCAmelCase , __lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , ) __lowerCamelCase = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) __lowerCamelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) __lowerCamelCase = train_result.metrics __lowerCamelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , __lowerCAmelCase , training_args.output_dir ) all_metrics.update(__lowerCAmelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowerCamelCase = trainer.evaluate(metric_key_prefix='''val''' ) __lowerCamelCase = data_args.n_val __lowerCamelCase = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , __lowerCAmelCase , training_args.output_dir ) all_metrics.update(__lowerCAmelCase ) if training_args.do_predict: logger.info('''*** Predict ***''' ) __lowerCamelCase = trainer.predict(test_dataset=__lowerCAmelCase , metric_key_prefix='''test''' ) __lowerCamelCase = test_output.metrics __lowerCamelCase = data_args.n_test if trainer.is_world_process_zero(): __lowerCamelCase = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , __lowerCAmelCase , training_args.output_dir ) all_metrics.update(__lowerCAmelCase ) if training_args.predict_with_generate: __lowerCamelCase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) __lowerCamelCase = lmap(str.strip , __lowerCAmelCase ) write_txt_file(__lowerCAmelCase , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(__lowerCAmelCase , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Union[str, Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
339
1
from __future__ import annotations def __magic_name__ ( __lowerCAmelCase : int ) -> list[int]: __lowerCamelCase = [True] * limit __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): __lowerCamelCase = i * 2 while index < limit: __lowerCamelCase = False __lowerCamelCase = index + i __lowerCamelCase = [2] for i in range(3 , __lowerCAmelCase , 2 ): if is_prime[i]: primes.append(__lowerCAmelCase ) return primes def __magic_name__ ( __lowerCAmelCase : int = 100_0000 ) -> int: __lowerCamelCase = prime_sieve(__lowerCAmelCase ) __lowerCamelCase = 0 __lowerCamelCase = 0 for i in range(len(__lowerCAmelCase ) ): for j in range(i + length , len(__lowerCAmelCase ) ): __lowerCamelCase = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: __lowerCamelCase = j - i __lowerCamelCase = sol return largest if __name__ == "__main__": print(F'{solution() = }')
339
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase__ ( unittest.TestCase ): @property def __A ( self : List[Any] ) -> Optional[Any]: torch.manual_seed(0 ) __lowerCamelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def __A ( self : Optional[int] ) -> Optional[Any]: __lowerCamelCase = self.dummy_uncond_unet __lowerCamelCase = ScoreSdeVeScheduler() __lowerCamelCase = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) sde_ve.to(SCREAMING_SNAKE_CASE__ ) sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ ).images __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ )[ 0 ] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCamelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : Tuple ) -> str: __lowerCamelCase = '''google/ncsnpp-church-256''' __lowerCamelCase = UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = ScoreSdeVeScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) sde_ve.to(SCREAMING_SNAKE_CASE__ ) sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) __lowerCamelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
339
1
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class lowerCAmelCase__ ( __lowercase ): def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str ) -> Optional[int]: with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as input_file: __lowerCamelCase = re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' ) __lowerCamelCase = input_file.read() __lowerCamelCase = regexp.search(SCREAMING_SNAKE_CASE__ ) return match def __A ( self : Any , SCREAMING_SNAKE_CASE__ : str ) -> int: with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as input_file: __lowerCamelCase = re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL ) __lowerCamelCase = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` __lowerCamelCase = regexp.finditer(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def __A ( self : Union[str, Any] ) -> Any: __lowerCamelCase = Path('''./datasets''' ) __lowerCamelCase = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(SCREAMING_SNAKE_CASE__ ) ): raise AssertionError(f'''open(...) must use utf-8 encoding in {dataset}''' ) def __A ( self : Dict ) -> Any: __lowerCamelCase = Path('''./datasets''' ) __lowerCamelCase = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_print_statements(str(SCREAMING_SNAKE_CASE__ ) ): raise AssertionError(f'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
339
from functools import lru_cache def __magic_name__ ( __lowerCAmelCase : int ) -> set: __lowerCamelCase = 2 __lowerCamelCase = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__lowerCAmelCase ) if n > 1: factors.add(__lowerCAmelCase ) return factors @lru_cache def __magic_name__ ( __lowerCAmelCase : int ) -> int: return len(unique_prime_factors(__lowerCAmelCase ) ) def __magic_name__ ( __lowerCAmelCase : list ) -> bool: return len(set(__lowerCAmelCase ) ) in (0, 1) def __magic_name__ ( __lowerCAmelCase : int ) -> list: __lowerCamelCase = 2 while True: # Increment each value of a generated range __lowerCamelCase = [base + i for i in range(__lowerCAmelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. __lowerCamelCase = [upf_len(__lowerCAmelCase ) for x in group] checker.append(__lowerCAmelCase ) # If all numbers in the list are equal, return the group variable. if equality(__lowerCAmelCase ): return group # Increment our base variable by 1 base += 1 def __magic_name__ ( __lowerCAmelCase : int = 4 ) -> int: __lowerCamelCase = run(__lowerCAmelCase ) return results[0] if len(__lowerCAmelCase ) else None if __name__ == "__main__": print(solution())
339
1
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__ ( __lowercase ): a__ : List[Any] = """ClapFeatureExtractor""" a__ : int = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __call__( self : List[str] , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , **SCREAMING_SNAKE_CASE__ : int ) -> Any: __lowerCamelCase = kwargs.pop('''sampling_rate''' , SCREAMING_SNAKE_CASE__ ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: __lowerCamelCase = self.tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if audios is not None: __lowerCamelCase = self.feature_extractor( SCREAMING_SNAKE_CASE__ , sampling_rate=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if text is not None and audios is not None: __lowerCamelCase = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE__ ) , tensor_type=SCREAMING_SNAKE_CASE__ ) def __A ( self : str , *SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[str]: return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __A ( self : str , *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> List[Any]: return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def __A ( self : List[Any] ) -> Optional[Any]: __lowerCamelCase = self.tokenizer.model_input_names __lowerCamelCase = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
339
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCAmelCase__ : def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=99 , SCREAMING_SNAKE_CASE__ : List[Any]=13 , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : int=9 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : int=32 , SCREAMING_SNAKE_CASE__ : Tuple=5 , SCREAMING_SNAKE_CASE__ : List[str]=4 , SCREAMING_SNAKE_CASE__ : str=37 , SCREAMING_SNAKE_CASE__ : int=8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.002 , SCREAMING_SNAKE_CASE__ : str=1 , SCREAMING_SNAKE_CASE__ : Tuple=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Dict=None , ) -> Optional[Any]: __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = encoder_seq_length __lowerCamelCase = decoder_seq_length # For common tests __lowerCamelCase = self.decoder_seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = d_ff __lowerCamelCase = relative_attention_num_buckets __lowerCamelCase = dropout_rate __lowerCamelCase = initializer_factor __lowerCamelCase = eos_token_id __lowerCamelCase = pad_token_id __lowerCamelCase = decoder_start_token_id __lowerCamelCase = None __lowerCamelCase = decoder_layers def __A ( self : Any ) -> Tuple: return TaConfig.from_pretrained('''google/umt5-base''' ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , ) -> Optional[int]: if attention_mask is None: __lowerCamelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __lowerCamelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __lowerCamelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ ) if decoder_head_mask is None: __lowerCamelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ ) if cross_attn_head_mask is None: __lowerCamelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def __A ( self : List[Any] ) -> Tuple: __lowerCamelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __lowerCamelCase = input_ids.clamp(self.pad_token_id + 1 ) __lowerCamelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) __lowerCamelCase = self.get_config() __lowerCamelCase = config.num_attention_heads __lowerCamelCase = self.prepare_inputs_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, input_dict def __A ( self : Tuple ) -> List[str]: __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs() return config, inputs_dict def __A ( self : Optional[Any] ) -> Any: return TaConfig( vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __A ( self : List[Any] ) -> Any: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> int: __lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCamelCase = model( input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = model(input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = result.last_hidden_state __lowerCamelCase = result.past_key_values __lowerCamelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Dict: __lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ).get_decoder().to(SCREAMING_SNAKE_CASE__ ).eval() # first forward pass __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) + 1 ) __lowerCamelCase , __lowerCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCamelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and __lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] # select random slice __lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCamelCase = output_from_no_past[:, -1, random_slice_idx].detach() __lowerCamelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Optional[int]: __lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ).half().eval() __lowerCamelCase = model(**SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(SCREAMING_SNAKE_CASE__ ).any().item() ) @require_torch class lowerCAmelCase__ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): a__ : List[Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) a__ : Union[str, Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () a__ : Tuple = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) a__ : int = True a__ : int = False a__ : Tuple = False a__ : Optional[int] = True a__ : Optional[int] = True # The small UMT5 model needs higher percentages for CPU/MP tests a__ : Tuple = [0.8, 0.9] def __A ( self : Tuple ) -> Tuple: __lowerCamelCase = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def __A ( self : List[str] ) -> Union[str, Any]: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = UMTaModel(config_and_inputs[0] ).to(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( SCREAMING_SNAKE_CASE__ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=SCREAMING_SNAKE_CASE__ , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __A ( self : Union[str, Any] ) -> Any: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*SCREAMING_SNAKE_CASE__ ) def __A ( self : Any ) -> Any: __lowerCamelCase = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = config_and_inputs[0] __lowerCamelCase = UMTaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() model.to(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ), } for attn_name, (name, mask) in zip(SCREAMING_SNAKE_CASE__ , head_masking.items() ): __lowerCamelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": __lowerCamelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=SCREAMING_SNAKE_CASE__ , return_dict_in_generate=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) # We check the state of decoder_attentions and cross_attentions just from the last step __lowerCamelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def __A ( self : Tuple ) -> Optional[Any]: pass @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def __A ( self : int ) -> Optional[Any]: __lowerCamelCase = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=SCREAMING_SNAKE_CASE__ , legacy=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] __lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , padding=SCREAMING_SNAKE_CASE__ ).input_ids # fmt: off __lowerCamelCase = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ] ) # fmt: on torch.testing.assert_allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model.generate(input_ids.to(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] __lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
339
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : int = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowerCAmelCase__ ( __lowercase ): a__ : str = """convbert""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int=3_05_22 , SCREAMING_SNAKE_CASE__ : Optional[int]=7_68 , SCREAMING_SNAKE_CASE__ : Tuple=12 , SCREAMING_SNAKE_CASE__ : str=12 , SCREAMING_SNAKE_CASE__ : List[str]=30_72 , SCREAMING_SNAKE_CASE__ : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5_12 , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : str=0.02 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1e-12 , SCREAMING_SNAKE_CASE__ : Tuple=1 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : Any=7_68 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : Tuple=9 , SCREAMING_SNAKE_CASE__ : Dict=1 , SCREAMING_SNAKE_CASE__ : List[Any]=None , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> Optional[Any]: super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = embedding_size __lowerCamelCase = head_ratio __lowerCamelCase = conv_kernel_size __lowerCamelCase = num_groups __lowerCamelCase = classifier_dropout class lowerCAmelCase__ ( __lowercase ): @property def __A ( self : Dict ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
339
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Tuple = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class lowerCAmelCase__ ( __lowercase ): a__ : Union[str, Any] = """open-llama""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Any=10_00_00 , SCREAMING_SNAKE_CASE__ : Any=40_96 , SCREAMING_SNAKE_CASE__ : Any=1_10_08 , SCREAMING_SNAKE_CASE__ : Tuple=32 , SCREAMING_SNAKE_CASE__ : str=32 , SCREAMING_SNAKE_CASE__ : Any="silu" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=20_48 , SCREAMING_SNAKE_CASE__ : List[str]=0.02 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-6 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Dict=0 , SCREAMING_SNAKE_CASE__ : Tuple=1 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : List[str]=None , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> Dict: __lowerCamelCase = vocab_size __lowerCamelCase = max_position_embeddings __lowerCamelCase = hidden_size __lowerCamelCase = intermediate_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = initializer_range __lowerCamelCase = rms_norm_eps __lowerCamelCase = use_cache __lowerCamelCase = kwargs.pop( '''use_memorry_efficient_attention''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_dropout_prob __lowerCamelCase = use_stable_embedding __lowerCamelCase = shared_input_output_embedding __lowerCamelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , tie_word_embeddings=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) def __A ( self : Dict ) -> Optional[int]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , SCREAMING_SNAKE_CASE__ ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f'''got {self.rope_scaling}''' ) __lowerCamelCase = self.rope_scaling.get('''type''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.rope_scaling.get('''factor''' , SCREAMING_SNAKE_CASE__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
339
1
def __magic_name__ ( __lowerCAmelCase : str ) -> bool: return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''') ) def __magic_name__ ( __lowerCAmelCase : str ) -> bool: __lowerCamelCase = credit_card_number __lowerCamelCase = 0 __lowerCamelCase = len(__lowerCAmelCase ) - 2 for i in range(__lowerCAmelCase , -1 , -2 ): # double the value of every second digit __lowerCamelCase = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 __lowerCamelCase = cc_number[:i] + str(__lowerCAmelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__lowerCAmelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def __magic_name__ ( __lowerCAmelCase : str ) -> bool: __lowerCamelCase = f'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(f'''{error_message} it has nonnumerical characters.''' ) return False if not 13 <= len(__lowerCAmelCase ) <= 16: print(f'''{error_message} of its length.''' ) return False if not validate_initial_digits(__lowerCAmelCase ): print(f'''{error_message} of its first two digits.''' ) return False if not luhn_validation(__lowerCAmelCase ): print(f'''{error_message} it fails the Luhn check.''' ) return False print(f'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
339
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar SCREAMING_SNAKE_CASE__ : Any = TypeVar("KEY") SCREAMING_SNAKE_CASE__ : Dict = TypeVar("VAL") @dataclass(frozen=__lowercase , slots=__lowercase ) class lowerCAmelCase__ ( Generic[KEY, VAL] ): a__ : KEY a__ : VAL class lowerCAmelCase__ ( _Item ): def __init__( self : str ) -> None: super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __bool__( self : Tuple ) -> bool: return False SCREAMING_SNAKE_CASE__ : List[Any] = _DeletedItem() class lowerCAmelCase__ ( MutableMapping[KEY, VAL] ): def __init__( self : int , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.75 ) -> None: __lowerCamelCase = initial_block_size __lowerCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowerCamelCase = capacity_factor __lowerCamelCase = 0 def __A ( self : Any , SCREAMING_SNAKE_CASE__ : KEY ) -> int: return hash(SCREAMING_SNAKE_CASE__ ) % len(self._buckets ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> int: return (ind + 1) % len(self._buckets ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> bool: __lowerCamelCase = self._buckets[ind] if not stored: __lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self._len += 1 return True elif stored.key == key: __lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return True else: return False def __A ( self : Any ) -> bool: __lowerCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(SCREAMING_SNAKE_CASE__ ) def __A ( self : List[Any] ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False __lowerCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def __A ( self : int , SCREAMING_SNAKE_CASE__ : int ) -> None: __lowerCamelCase = self._buckets __lowerCamelCase = [None] * new_size __lowerCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def __A ( self : str ) -> None: self._resize(len(self._buckets ) * 2 ) def __A ( self : Dict ) -> None: self._resize(len(self._buckets ) // 2 ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY ) -> Iterator[int]: __lowerCamelCase = self._get_bucket_index(SCREAMING_SNAKE_CASE__ ) for _ in range(len(self._buckets ) ): yield ind __lowerCamelCase = self._get_next_ind(SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): if self._try_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): break def __setitem__( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None: if self._is_full(): self._size_up() self._add_item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __delitem__( self : List[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> None: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = self._buckets[ind] if item is None: raise KeyError(SCREAMING_SNAKE_CASE__ ) if item is _deleted: continue if item.key == key: __lowerCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> VAL: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(SCREAMING_SNAKE_CASE__ ) def __len__( self : int ) -> int: return self._len def __iter__( self : Tuple ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ) -> str: __lowerCamelCase = ''' ,'''.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
339
1
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : str = "tiny-wmt19-en-ru" # Build # borrowed from a test SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] SCREAMING_SNAKE_CASE__ : Dict = dict(zip(vocab, range(len(vocab)))) SCREAMING_SNAKE_CASE__ : List[Any] = ["l o 123", "lo w 1456", "e r</w> 1789", ""] with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : str = Path(tmpdirname) SCREAMING_SNAKE_CASE__ : List[Any] = build_dir / VOCAB_FILES_NAMES["src_vocab_file"] SCREAMING_SNAKE_CASE__ : Tuple = build_dir / VOCAB_FILES_NAMES["tgt_vocab_file"] SCREAMING_SNAKE_CASE__ : Union[str, Any] = build_dir / VOCAB_FILES_NAMES["merges_file"] with open(src_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, "w") as fp: fp.write("\n".join(merges)) SCREAMING_SNAKE_CASE__ : Optional[int] = FSMTTokenizer( langs=["en", "ru"], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = FSMTConfig( langs=["ru", "en"], src_vocab_size=1_000, tgt_vocab_size=1_000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) SCREAMING_SNAKE_CASE__ : int = FSMTForConditionalGeneration(config) print(F'num of params {tiny_model.num_parameters()}') # Test SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer(["Making tiny model"], return_tensors="pt") SCREAMING_SNAKE_CASE__ : int = tiny_model(**batch) print("test output:", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'Generated {mname_tiny}') # Upload # transformers-cli upload tiny-wmt19-en-ru
339
from datetime import datetime as dt import os from github import Github SCREAMING_SNAKE_CASE__ : Any = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def __magic_name__ ( ) -> Any: __lowerCamelCase = Github(os.environ['''GITHUB_TOKEN'''] ) __lowerCamelCase = g.get_repo('''huggingface/transformers''' ) __lowerCamelCase = repo.get_issues(state='''open''' ) for issue in open_issues: __lowerCamelCase = sorted([comment for comment in issue.get_comments()] , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase ) __lowerCamelCase = comments[0] if len(__lowerCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
339
1
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( __lowercase ): a__ : List[str] = (EulerDiscreteScheduler,) a__ : Any = 10 def __A ( self : Any , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any: __lowerCamelCase = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**SCREAMING_SNAKE_CASE__ ) return config def __A ( self : int ) -> Dict: for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) def __A ( self : List[str] ) -> int: for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE__ , beta_end=SCREAMING_SNAKE_CASE__ ) def __A ( self : Any ) -> str: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] ) -> int: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ ) def __A ( self : Dict ) -> str: __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(self.num_inference_steps ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = self.dummy_model() __lowerCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma __lowerCamelCase = sample.to(SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(scheduler.timesteps ): __lowerCamelCase = scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = output.prev_sample __lowerCamelCase = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def __A ( self : Union[str, Any] ) -> str: __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''' ) __lowerCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(self.num_inference_steps ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = self.dummy_model() __lowerCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma __lowerCamelCase = sample.to(SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(scheduler.timesteps ): __lowerCamelCase = scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = output.prev_sample __lowerCamelCase = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.2_676e-06 ) < 1e-3 def __A ( self : Optional[Any] ) -> Tuple: __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(self.num_inference_steps , device=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = self.dummy_model() __lowerCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __lowerCamelCase = sample.to(SCREAMING_SNAKE_CASE__ ) for t in scheduler.timesteps: __lowerCamelCase = scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = output.prev_sample __lowerCamelCase = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def __A ( self : int ) -> Optional[int]: __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE__ , use_karras_sigmas=SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(self.num_inference_steps , device=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = self.dummy_model() __lowerCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __lowerCamelCase = sample.to(SCREAMING_SNAKE_CASE__ ) for t in scheduler.timesteps: __lowerCamelCase = scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = output.prev_sample __lowerCamelCase = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 124.52299499511719 ) < 1e-2 assert abs(result_mean.item() - 0.16213932633399963 ) < 1e-3
339
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> str: if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __lowerCamelCase = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b" __lowerCamelCase = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b" __lowerCamelCase = max(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(__lowerCAmelCase ) , b_binary.zfill(__lowerCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
339
1
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCAmelCase__ : def __init__( self : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str]=13 , SCREAMING_SNAKE_CASE__ : List[Any]=30 , SCREAMING_SNAKE_CASE__ : Optional[int]=2 , SCREAMING_SNAKE_CASE__ : Optional[int]=3 , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Tuple=32 , SCREAMING_SNAKE_CASE__ : Dict=2 , SCREAMING_SNAKE_CASE__ : List[Any]=4 , SCREAMING_SNAKE_CASE__ : List[str]=37 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=10 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE__ : List[str]=3 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , ) -> List[Any]: __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCamelCase = (image_size // patch_size) ** 2 __lowerCamelCase = num_patches + 1 def __A ( self : str ) -> Tuple: __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = self.get_config() return config, pixel_values, labels def __A ( self : str ) -> Any: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , ) def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: __lowerCamelCase = TFViTModel(config=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. __lowerCamelCase = self.image_size // 2 __lowerCamelCase = pixel_values[:, :, :image_size, :image_size] __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , interpolate_pos_encoding=SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def __A ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: __lowerCamelCase = self.type_sequence_label_size __lowerCamelCase = TFViTForImageClassification(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. __lowerCamelCase = self.image_size // 2 __lowerCamelCase = pixel_values[:, :, :image_size, :image_size] __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , interpolate_pos_encoding=SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCamelCase = 1 __lowerCamelCase = TFViTForImageClassification(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self : str ) -> Any: __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase__ ( __lowercase , __lowercase , unittest.TestCase ): a__ : int = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () a__ : Union[str, Any] = ( {"""feature-extraction""": TFViTModel, """image-classification""": TFViTForImageClassification} if is_tf_available() else {} ) a__ : Dict = False a__ : str = False a__ : Dict = False def __A ( self : Dict ) -> str: __lowerCamelCase = TFViTModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def __A ( self : Optional[Any] ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def __A ( self : int ) -> Optional[int]: pass @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def __A ( self : Union[str, Any] ) -> Union[str, Any]: pass def __A ( self : List[Any] ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE__ , tf.keras.layers.Layer ) ) def __A ( self : Any ) -> int: __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def __A ( self : int ) -> Union[str, Any]: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def __A ( self : str ) -> Tuple: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ ) @slow def __A ( self : str ) -> Optional[Any]: __lowerCamelCase = TFViTModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def __magic_name__ ( ) -> Tuple: __lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def __A ( self : str ) -> int: return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None @slow def __A ( self : Dict ) -> int: __lowerCamelCase = TFViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''tf''' ) # forward pass __lowerCamelCase = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits __lowerCamelCase = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tf.constant([-0.2744, 0.8215, -0.0836] ) tf.debugging.assert_near(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 )
339
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : List[str] ) -> Dict: __lowerCamelCase = tempfile.mkdtemp() # fmt: off __lowerCamelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCamelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __lowerCamelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCamelCase = {'''unk_token''': '''<unk>'''} __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } __lowerCamelCase = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __A ( self : int , **SCREAMING_SNAKE_CASE__ : int ) -> Any: return CLIPTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Dict , **SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Dict ) -> Dict: shutil.rmtree(self.tmpdirname ) def __A ( self : str ) -> Any: __lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCamelCase = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self : List[Any] ) -> List[str]: __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = self.get_image_processor() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ ) def __A ( self : Union[str, Any] ) -> int: __lowerCamelCase = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCamelCase = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) __lowerCamelCase = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[Any] ) -> Union[str, Any]: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='''np''' ) __lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self : List[Any] ) -> Optional[int]: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = '''lower newer''' __lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self : List[Any] ) -> Any: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = '''lower newer''' __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def __A ( self : Optional[Any] ) -> List[str]: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE__ , visual_prompt=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def __A ( self : List[Any] ) -> Any: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCamelCase = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
339
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__) @add_end_docstrings(__lowercase ) class lowerCAmelCase__ ( __lowercase ): def __init__( self : str , *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]: super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ) -> Optional[int]: __lowerCamelCase = {} __lowerCamelCase = {} if prompt is not None: __lowerCamelCase = prompt if generate_kwargs is not None: __lowerCamelCase = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __lowerCamelCase = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''' ) __lowerCamelCase = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: return super().__call__(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any]=None ) -> Dict: __lowerCamelCase = load_image(SCREAMING_SNAKE_CASE__ ) if prompt is not None: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise ValueError( f'''Received an invalid text input, got - {type(SCREAMING_SNAKE_CASE__ )} - but expected a single string. ''' '''Note also that one single text can be provided for conditional image to text generation.''' ) __lowerCamelCase = self.model.config.model_type if model_type == "git": __lowerCamelCase = self.image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors=self.framework ) __lowerCamelCase = self.tokenizer(text=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ).input_ids __lowerCamelCase = [self.tokenizer.cls_token_id] + input_ids __lowerCamelCase = torch.tensor(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) model_inputs.update({'''input_ids''': input_ids} ) elif model_type == "pix2struct": __lowerCamelCase = self.image_processor(images=SCREAMING_SNAKE_CASE__ , header_text=SCREAMING_SNAKE_CASE__ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __lowerCamelCase = self.image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors=self.framework ) __lowerCamelCase = self.tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors=self.framework ) model_inputs.update(SCREAMING_SNAKE_CASE__ ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: __lowerCamelCase = self.image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __lowerCamelCase = None return model_inputs def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str]=None ) -> Optional[Any]: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''] , SCREAMING_SNAKE_CASE__ ) and all(x is None for x in model_inputs['''input_ids'''] ) ): __lowerCamelCase = None if generate_kwargs is None: __lowerCamelCase = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __lowerCamelCase = model_inputs.pop(self.model.main_input_name ) __lowerCamelCase = self.model.generate(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) return model_outputs def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: __lowerCamelCase = [] for output_ids in model_outputs: __lowerCamelCase = { '''generated_text''': self.tokenizer.decode( SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ , ) } records.append(SCREAMING_SNAKE_CASE__ ) return records
339
from __future__ import annotations def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : int | None = None , __lowerCAmelCase : int | None = None ) -> None: if start is None: __lowerCamelCase = 0 if end is None: __lowerCamelCase = len(__lowerCAmelCase ) - 1 if start >= end: return __lowerCamelCase = (start + end) // 2 slowsort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) slowsort(__lowerCAmelCase , mid + 1 , __lowerCAmelCase ) if sequence[end] < sequence[mid]: __lowerCamelCase , __lowerCamelCase = sequence[mid], sequence[end] slowsort(__lowerCAmelCase , __lowerCAmelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
339
1
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar SCREAMING_SNAKE_CASE__ : Any = TypeVar("KEY") SCREAMING_SNAKE_CASE__ : Dict = TypeVar("VAL") @dataclass(frozen=__lowercase , slots=__lowercase ) class lowerCAmelCase__ ( Generic[KEY, VAL] ): a__ : KEY a__ : VAL class lowerCAmelCase__ ( _Item ): def __init__( self : str ) -> None: super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __bool__( self : Tuple ) -> bool: return False SCREAMING_SNAKE_CASE__ : List[Any] = _DeletedItem() class lowerCAmelCase__ ( MutableMapping[KEY, VAL] ): def __init__( self : int , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.75 ) -> None: __lowerCamelCase = initial_block_size __lowerCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowerCamelCase = capacity_factor __lowerCamelCase = 0 def __A ( self : Any , SCREAMING_SNAKE_CASE__ : KEY ) -> int: return hash(SCREAMING_SNAKE_CASE__ ) % len(self._buckets ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> int: return (ind + 1) % len(self._buckets ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> bool: __lowerCamelCase = self._buckets[ind] if not stored: __lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self._len += 1 return True elif stored.key == key: __lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return True else: return False def __A ( self : Any ) -> bool: __lowerCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(SCREAMING_SNAKE_CASE__ ) def __A ( self : List[Any] ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False __lowerCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def __A ( self : int , SCREAMING_SNAKE_CASE__ : int ) -> None: __lowerCamelCase = self._buckets __lowerCamelCase = [None] * new_size __lowerCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def __A ( self : str ) -> None: self._resize(len(self._buckets ) * 2 ) def __A ( self : Dict ) -> None: self._resize(len(self._buckets ) // 2 ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY ) -> Iterator[int]: __lowerCamelCase = self._get_bucket_index(SCREAMING_SNAKE_CASE__ ) for _ in range(len(self._buckets ) ): yield ind __lowerCamelCase = self._get_next_ind(SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): if self._try_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): break def __setitem__( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None: if self._is_full(): self._size_up() self._add_item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __delitem__( self : List[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> None: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = self._buckets[ind] if item is None: raise KeyError(SCREAMING_SNAKE_CASE__ ) if item is _deleted: continue if item.key == key: __lowerCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> VAL: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(SCREAMING_SNAKE_CASE__ ) def __len__( self : int ) -> int: return self._len def __iter__( self : Tuple ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ) -> str: __lowerCamelCase = ''' ,'''.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
339
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Optional[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } SCREAMING_SNAKE_CASE__ : str = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } SCREAMING_SNAKE_CASE__ : int = {"facebook/blenderbot_small-90M": 512} def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Tuple: __lowerCamelCase = set() __lowerCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCamelCase = char __lowerCamelCase = set(__lowerCAmelCase ) return pairs class lowerCAmelCase__ ( __lowercase ): a__ : List[Any] = VOCAB_FILES_NAMES a__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple="__start__" , SCREAMING_SNAKE_CASE__ : Tuple="__end__" , SCREAMING_SNAKE_CASE__ : List[str]="__unk__" , SCREAMING_SNAKE_CASE__ : str="__null__" , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> Optional[Any]: super().__init__(unk_token=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as vocab_handle: __lowerCamelCase = json.load(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = {v: k for k, v in self.encoder.items()} with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as merges_handle: __lowerCamelCase = merges_handle.read().split('''\n''' )[1:-1] __lowerCamelCase = [tuple(merge.split() ) for merge in merges] __lowerCamelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __lowerCamelCase = {} @property def __A ( self : Dict ) -> int: return len(self.encoder ) def __A ( self : str ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : str ) -> str: if token in self.cache: return self.cache[token] __lowerCamelCase = re.sub('''([.,!?()])''' , R''' \1''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = re.sub('''(\')''' , R''' \1 ''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = re.sub(R'''\s{2,}''' , ''' ''' , SCREAMING_SNAKE_CASE__ ) if "\n" in token: __lowerCamelCase = token.replace('''\n''' , ''' __newln__''' ) __lowerCamelCase = token.split(''' ''' ) __lowerCamelCase = [] for token in tokens: if not len(SCREAMING_SNAKE_CASE__ ): continue __lowerCamelCase = token.lower() __lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) __lowerCamelCase = get_pairs(SCREAMING_SNAKE_CASE__ ) if not pairs: words.append(SCREAMING_SNAKE_CASE__ ) continue while True: __lowerCamelCase = min(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __lowerCamelCase , __lowerCamelCase = bigram __lowerCamelCase = [] __lowerCamelCase = 0 while i < len(SCREAMING_SNAKE_CASE__ ): try: __lowerCamelCase = word.index(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) new_word.extend(word[i:j] ) __lowerCamelCase = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(SCREAMING_SNAKE_CASE__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = new_word if len(SCREAMING_SNAKE_CASE__ ) == 1: break else: __lowerCamelCase = get_pairs(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = '''@@ '''.join(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = word[:-4] __lowerCamelCase = word words.append(SCREAMING_SNAKE_CASE__ ) return " ".join(SCREAMING_SNAKE_CASE__ ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: __lowerCamelCase = [] __lowerCamelCase = re.findall(R'''\S+\n?''' , SCREAMING_SNAKE_CASE__ ) for token in words: split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE__ ).split(''' ''' ) ) ) return split_tokens def __A ( self : str , SCREAMING_SNAKE_CASE__ : str ) -> int: __lowerCamelCase = token.lower() return self.encoder.get(SCREAMING_SNAKE_CASE__ , self.encoder.get(self.unk_token ) ) def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int ) -> str: return self.decoder.get(SCREAMING_SNAKE_CASE__ , self.unk_token ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: __lowerCamelCase = ''' '''.join(SCREAMING_SNAKE_CASE__ ).replace('''@@ ''' , '''''' ).strip() return out_string def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCamelCase = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) + '''\n''' ) __lowerCamelCase = 0 with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) __lowerCamelCase = token_index writer.write(''' '''.join(SCREAMING_SNAKE_CASE__ ) + '''\n''' ) index += 1 return vocab_file, merge_file
339
1
import math from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : int = { "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase__ ( __lowercase ): a__ : Tuple = """data2vec-audio""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=32 , SCREAMING_SNAKE_CASE__ : Optional[int]=7_68 , SCREAMING_SNAKE_CASE__ : List[str]=12 , SCREAMING_SNAKE_CASE__ : Tuple=12 , SCREAMING_SNAKE_CASE__ : List[Any]=30_72 , SCREAMING_SNAKE_CASE__ : Optional[int]="gelu" , SCREAMING_SNAKE_CASE__ : List[str]=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : Dict=0.0 , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.02 , SCREAMING_SNAKE_CASE__ : Any=1e-5 , SCREAMING_SNAKE_CASE__ : Dict="gelu" , SCREAMING_SNAKE_CASE__ : Tuple=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , SCREAMING_SNAKE_CASE__ : List[Any]=(5, 2, 2, 2, 2, 2, 2) , SCREAMING_SNAKE_CASE__ : Dict=(10, 3, 3, 3, 3, 2, 2) , SCREAMING_SNAKE_CASE__ : int=False , SCREAMING_SNAKE_CASE__ : List[str]=16 , SCREAMING_SNAKE_CASE__ : Tuple=19 , SCREAMING_SNAKE_CASE__ : Optional[Any]=5 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.05 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=10 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : int=0.0 , SCREAMING_SNAKE_CASE__ : Dict=10 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]="sum" , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : Optional[Any]=2_56 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=(5_12, 5_12, 5_12, 5_12, 15_00) , SCREAMING_SNAKE_CASE__ : Dict=(5, 3, 3, 1, 1) , SCREAMING_SNAKE_CASE__ : List[str]=(1, 2, 3, 1, 1) , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : Dict=1 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Tuple=3 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : List[str]=3 , SCREAMING_SNAKE_CASE__ : Any=None , **SCREAMING_SNAKE_CASE__ : Any , ) -> Any: super().__init__(**SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = hidden_size __lowerCamelCase = feat_extract_activation __lowerCamelCase = list(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = list(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = list(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = conv_bias __lowerCamelCase = num_conv_pos_embeddings __lowerCamelCase = num_conv_pos_embedding_groups __lowerCamelCase = conv_pos_kernel_size __lowerCamelCase = len(self.conv_dim ) __lowerCamelCase = num_hidden_layers __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = feat_proj_dropout __lowerCamelCase = final_dropout __lowerCamelCase = layerdrop __lowerCamelCase = layer_norm_eps __lowerCamelCase = initializer_range __lowerCamelCase = vocab_size __lowerCamelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks # ctc loss __lowerCamelCase = ctc_loss_reduction __lowerCamelCase = ctc_zero_infinity # adapter __lowerCamelCase = add_adapter __lowerCamelCase = adapter_kernel_size __lowerCamelCase = adapter_stride __lowerCamelCase = num_adapter_layers __lowerCamelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowerCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowerCamelCase = list(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = list(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = list(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = xvector_output_dim @property def __A ( self : Tuple ) -> Optional[Any]: return math.prod(self.conv_stride )
339
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): a__ : str = ShapEImgaImgPipeline a__ : Union[str, Any] = ["""image"""] a__ : Optional[int] = ["""image"""] a__ : Union[str, Any] = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] a__ : List[str] = False @property def __A ( self : Dict ) -> Optional[Any]: return 32 @property def __A ( self : Optional[int] ) -> Optional[int]: return 32 @property def __A ( self : Optional[int] ) -> List[Any]: return self.time_input_dim * 4 @property def __A ( self : str ) -> List[Any]: return 8 @property def __A ( self : Optional[Any] ) -> Union[str, Any]: torch.manual_seed(0 ) __lowerCamelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __lowerCamelCase = CLIPVisionModel(SCREAMING_SNAKE_CASE__ ) return model @property def __A ( self : Union[str, Any] ) -> Union[str, Any]: __lowerCamelCase = CLIPImageProcessor( crop_size=2_24 , do_center_crop=SCREAMING_SNAKE_CASE__ , do_normalize=SCREAMING_SNAKE_CASE__ , do_resize=SCREAMING_SNAKE_CASE__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=2_24 , ) return image_processor @property def __A ( self : Dict ) -> int: torch.manual_seed(0 ) __lowerCamelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } __lowerCamelCase = PriorTransformer(**SCREAMING_SNAKE_CASE__ ) return model @property def __A ( self : Tuple ) -> Dict: torch.manual_seed(0 ) __lowerCamelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } __lowerCamelCase = ShapERenderer(**SCREAMING_SNAKE_CASE__ ) return model def __A ( self : Optional[int] ) -> List[str]: __lowerCamelCase = self.dummy_prior __lowerCamelCase = self.dummy_image_encoder __lowerCamelCase = self.dummy_image_processor __lowerCamelCase = self.dummy_renderer __lowerCamelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=10_24 , prediction_type='''sample''' , use_karras_sigmas=SCREAMING_SNAKE_CASE__ , clip_sample=SCREAMING_SNAKE_CASE__ , clip_sample_range=1.0 , ) __lowerCamelCase = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def __A ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=0 ) -> int: __lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ): __lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: __lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def __A ( self : Union[str, Any] ) -> Dict: __lowerCamelCase = '''cpu''' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = output.images[0] __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowerCamelCase = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self : str ) -> Tuple: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self : Optional[Any] ) -> str: __lowerCamelCase = torch_device == '''cpu''' __lowerCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=SCREAMING_SNAKE_CASE__ , relax_max_difference=SCREAMING_SNAKE_CASE__ , ) def __A ( self : Dict ) -> Optional[int]: __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = 1 __lowerCamelCase = 2 __lowerCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) for key in inputs.keys(): if key in self.batch_params: __lowerCamelCase = batch_size * [inputs[key]] __lowerCamelCase = pipe(**SCREAMING_SNAKE_CASE__ , num_images_per_prompt=SCREAMING_SNAKE_CASE__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : str ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : str ) -> Union[str, Any]: __lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) __lowerCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) __lowerCamelCase = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) __lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(0 ) __lowerCamelCase = pipe( SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
339
1
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def __magic_name__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int=False ) -> Optional[int]: try: __lowerCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __lowerCamelCase = default else: # KEY is set, convert it to True or False. try: __lowerCamelCase = strtobool(__lowerCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''' ) return _value SCREAMING_SNAKE_CASE__ : Tuple = parse_flag_from_env("RUN_SLOW", default=False) def __magic_name__ ( __lowerCAmelCase : Any ) -> str: return unittest.skip('''Test was skipped''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> List[Any]: return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Any ) -> Any: return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> Dict: return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : str ) -> Any: return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Union[str, Any] ) -> Optional[Any]: return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : int ) -> int: return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Dict ) -> Optional[int]: return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Tuple ) -> Any: return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Dict ) -> Optional[Any]: return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Optional[int] ) -> Tuple: return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : str ) -> int: return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> List[str]: return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Tuple ) -> Union[str, Any]: return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Union[str, Any] ) -> Optional[int]: return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Tuple ) -> Tuple: return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Dict=None , __lowerCAmelCase : Dict=None ) -> List[str]: if test_case is None: return partial(__lowerCAmelCase , version=__lowerCAmelCase ) return unittest.skipUnless(is_torch_version('''>=''' , __lowerCAmelCase ) , f'''test requires torch version >= {version}''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Tuple ) -> Optional[Any]: return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Union[str, Any] ) -> Optional[Any]: return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Dict ) -> Any: return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def __magic_name__ ( __lowerCAmelCase : str ) -> int: return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(__lowerCAmelCase ) class lowerCAmelCase__ ( unittest.TestCase ): a__ : Any = True @classmethod def __A ( cls : Any ) -> Optional[Any]: __lowerCamelCase = tempfile.mkdtemp() @classmethod def __A ( cls : Optional[Any] ) -> List[str]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __A ( self : int ) -> Any: if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(SCREAMING_SNAKE_CASE__ ) class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : Optional[Any] ) -> Tuple: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Union[mock.Mock, List[mock.Mock]] ) -> int: __lowerCamelCase = mocks if isinstance(SCREAMING_SNAKE_CASE__ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def __magic_name__ ( __lowerCAmelCase : str ) -> Optional[Any]: __lowerCamelCase = AcceleratorState() __lowerCamelCase = tensor[None].clone().to(state.device ) __lowerCamelCase = gather(__lowerCAmelCase ).cpu() __lowerCamelCase = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __lowerCAmelCase ): return False return True class lowerCAmelCase__ : def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: __lowerCamelCase = returncode __lowerCamelCase = stdout __lowerCamelCase = stderr async def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] ) -> List[Any]: while True: __lowerCamelCase = await stream.readline() if line: callback(__lowerCAmelCase ) else: break async def __magic_name__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : int=None , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Dict=False ) -> _RunOutput: if echo: print('''\nRunning: ''' , ''' '''.join(__lowerCAmelCase ) ) __lowerCamelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__lowerCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__lowerCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __lowerCamelCase = [] __lowerCamelCase = [] def tee(__lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any]="" ): __lowerCamelCase = line.decode('''utf-8''' ).rstrip() sink.append(__lowerCAmelCase ) if not quiet: print(__lowerCAmelCase , __lowerCAmelCase , file=__lowerCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __lowerCAmelCase : tee(__lowerCAmelCase , __lowerCAmelCase , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __lowerCAmelCase : tee(__lowerCAmelCase , __lowerCAmelCase , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=__lowerCAmelCase , ) return _RunOutput(await p.wait() , __lowerCAmelCase , __lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Dict=180 , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[Any]=True ) -> _RunOutput: __lowerCamelCase = asyncio.get_event_loop() __lowerCamelCase = loop.run_until_complete( _stream_subprocess(__lowerCAmelCase , env=__lowerCAmelCase , stdin=__lowerCAmelCase , timeout=__lowerCAmelCase , quiet=__lowerCAmelCase , echo=__lowerCAmelCase ) ) __lowerCamelCase = ''' '''.join(__lowerCAmelCase ) if result.returncode > 0: __lowerCamelCase = '''\n'''.join(result.stderr ) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''' ) return result class lowerCAmelCase__ ( __lowercase ): pass def __magic_name__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str]=False ) -> List[str]: try: __lowerCamelCase = subprocess.check_output(__lowerCAmelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__lowerCAmelCase , '''decode''' ): __lowerCamelCase = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'''Command `{' '.join(__lowerCAmelCase )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
339
import glob import os import random from string import ascii_lowercase, digits import cva SCREAMING_SNAKE_CASE__ : str = "" SCREAMING_SNAKE_CASE__ : Any = "" SCREAMING_SNAKE_CASE__ : Optional[Any] = "" SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 # (0 is vertical, 1 is horizontal) def __magic_name__ ( ) -> None: __lowerCamelCase , __lowerCamelCase = get_dataset(__lowerCAmelCase , __lowerCAmelCase ) print('''Processing...''' ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = update_image_and_anno(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for index, image in enumerate(__lowerCAmelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __lowerCamelCase = random_chars(32 ) __lowerCamelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __lowerCamelCase = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(f'''/{file_root}.jpg''' , __lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Success {index+1}/{len(__lowerCAmelCase )} with {file_name}''' ) __lowerCamelCase = [] for anno in new_annos[index]: __lowerCamelCase = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(__lowerCAmelCase ) with open(f'''/{file_root}.txt''' , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> tuple[list, list]: __lowerCamelCase = [] __lowerCamelCase = [] for label_file in glob.glob(os.path.join(__lowerCAmelCase , '''*.txt''' ) ): __lowerCamelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(__lowerCAmelCase ) as in_file: __lowerCamelCase = in_file.readlines() __lowerCamelCase = os.path.join(__lowerCAmelCase , f'''{label_name}.jpg''' ) __lowerCamelCase = [] for obj_list in obj_lists: __lowerCamelCase = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__lowerCAmelCase ) labels.append(__lowerCAmelCase ) return img_paths, labels def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int = 1 ) -> tuple[list, list, list]: __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] for idx in range(len(__lowerCAmelCase ) ): __lowerCamelCase = [] __lowerCamelCase = img_list[idx] path_list.append(__lowerCAmelCase ) __lowerCamelCase = anno_list[idx] __lowerCamelCase = cva.imread(__lowerCAmelCase ) if flip_type == 1: __lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: __lowerCamelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: __lowerCamelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__lowerCAmelCase ) new_imgs_list.append(__lowerCAmelCase ) return new_imgs_list, new_annos_lists, path_list def __magic_name__ ( __lowerCAmelCase : int = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" __lowerCamelCase = ascii_lowercase + digits return "".join(random.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
339
1
import argparse from collections import defaultdict def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : List[str] ) -> Any: __lowerCamelCase = f'''{file}_{class_name}_{test_name}''' done_test[_id] += 1 with open(__lowerCAmelCase , '''r''' ) as f: __lowerCamelCase = f.readlines() __lowerCamelCase = f'''class {class_name}(''' __lowerCamelCase = f'''{4 * ' '}def {test_name}(''' __lowerCamelCase = f'''{8 * ' '}{correct_line.split()[0]}''' __lowerCamelCase = f'''{16 * ' '}{correct_line.split()[0]}''' __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = [] for line in lines: if line.startswith(__lowerCAmelCase ): __lowerCamelCase = True elif in_class and line.startswith(__lowerCAmelCase ): __lowerCamelCase = True elif in_class and in_func and (line.startswith(__lowerCAmelCase ) or line.startswith(__lowerCAmelCase )): __lowerCamelCase = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: __lowerCamelCase = True if in_class and in_func and in_line: if ")" not in line: continue else: __lowerCamelCase = True if in_class and in_func and in_line and insert_line: new_lines.append(f'''{spaces * ' '}{correct_line}''' ) __lowerCamelCase = __lowerCamelCase = __lowerCamelCase = __lowerCamelCase = False else: new_lines.append(__lowerCAmelCase ) with open(__lowerCAmelCase , '''w''' ) as f: for line in new_lines: f.write(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple=None ) -> Tuple: if fail is not None: with open(__lowerCAmelCase , '''r''' ) as f: __lowerCamelCase = {l.strip() for l in f.readlines()} else: __lowerCamelCase = None with open(__lowerCAmelCase , '''r''' ) as f: __lowerCamelCase = f.readlines() __lowerCamelCase = defaultdict(__lowerCAmelCase ) for line in correct_lines: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = line.split(''';''' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : List[Any] = argparse.ArgumentParser() parser.add_argument("--correct_filename", help="filename of tests with expected result") parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None) SCREAMING_SNAKE_CASE__ : Tuple = parser.parse_args() main(args.correct_filename, args.fail_filename)
339
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated SCREAMING_SNAKE_CASE__ : Tuple = collections.namedtuple("_Datasets", ["train", "validation", "test"]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ SCREAMING_SNAKE_CASE__ : List[str] = "https://storage.googleapis.com/cvdf-datasets/mnist/" def __magic_name__ ( __lowerCAmelCase : Any ) -> int: __lowerCamelCase = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=__lowerCAmelCase )[0] @deprecated(__lowerCAmelCase , '''Please use tf.data to implement this functionality.''' ) def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> str: print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=__lowerCAmelCase ) as bytestream: __lowerCamelCase = _readaa(__lowerCAmelCase ) if magic != 2051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = bytestream.read(rows * cols * num_images ) __lowerCamelCase = numpy.frombuffer(__lowerCAmelCase , dtype=numpy.uinta ) __lowerCamelCase = data.reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 1 ) return data @deprecated(__lowerCAmelCase , '''Please use tf.one_hot on tensors.''' ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : List[Any] ) -> Dict: __lowerCamelCase = labels_dense.shape[0] __lowerCamelCase = numpy.arange(__lowerCAmelCase ) * num_classes __lowerCamelCase = numpy.zeros((num_labels, num_classes) ) __lowerCamelCase = 1 return labels_one_hot @deprecated(__lowerCAmelCase , '''Please use tf.data to implement this functionality.''' ) def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : str=False , __lowerCAmelCase : List[str]=10 ) -> List[str]: print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=__lowerCAmelCase ) as bytestream: __lowerCamelCase = _readaa(__lowerCAmelCase ) if magic != 2049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = bytestream.read(__lowerCAmelCase ) __lowerCamelCase = numpy.frombuffer(__lowerCAmelCase , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(__lowerCAmelCase , __lowerCAmelCase ) return labels class lowerCAmelCase__ : @deprecated( SCREAMING_SNAKE_CASE__ , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : str=dtypes.floataa , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : str=None , ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase = random_seed.get_seed(SCREAMING_SNAKE_CASE__ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) __lowerCamelCase = dtypes.as_dtype(SCREAMING_SNAKE_CASE__ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: __lowerCamelCase = 1_00_00 __lowerCamelCase = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'''images.shape: {images.shape} labels.shape: {labels.shape}''' __lowerCamelCase = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __lowerCamelCase = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __lowerCamelCase = images.astype(numpy.floataa ) __lowerCamelCase = numpy.multiply(SCREAMING_SNAKE_CASE__ , 1.0 / 255.0 ) __lowerCamelCase = images __lowerCamelCase = labels __lowerCamelCase = 0 __lowerCamelCase = 0 @property def __A ( self : str ) -> Optional[int]: return self._images @property def __A ( self : Any ) -> Dict: return self._labels @property def __A ( self : List[Any] ) -> int: return self._num_examples @property def __A ( self : str ) -> Any: return self._epochs_completed def __A ( self : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : str=True ) -> str: if fake_data: __lowerCamelCase = [1] * 7_84 __lowerCamelCase = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(SCREAMING_SNAKE_CASE__ )], [fake_label for _ in range(SCREAMING_SNAKE_CASE__ )], ) __lowerCamelCase = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __lowerCamelCase = numpy.arange(self._num_examples ) numpy.random.shuffle(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.images[perma] __lowerCamelCase = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __lowerCamelCase = self._num_examples - start __lowerCamelCase = self._images[start : self._num_examples] __lowerCamelCase = self._labels[start : self._num_examples] # Shuffle the data if shuffle: __lowerCamelCase = numpy.arange(self._num_examples ) numpy.random.shuffle(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.images[perm] __lowerCamelCase = self.labels[perm] # Start next epoch __lowerCamelCase = 0 __lowerCamelCase = batch_size - rest_num_examples __lowerCamelCase = self._index_in_epoch __lowerCamelCase = self._images[start:end] __lowerCamelCase = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size __lowerCamelCase = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(__lowerCAmelCase , '''Please write your own downloading logic.''' ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] ) -> List[Any]: if not gfile.Exists(__lowerCAmelCase ): gfile.MakeDirs(__lowerCAmelCase ) __lowerCamelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if not gfile.Exists(__lowerCAmelCase ): urllib.request.urlretrieve(__lowerCAmelCase , __lowerCAmelCase ) # noqa: S310 with gfile.GFile(__lowerCAmelCase ) as f: __lowerCamelCase = f.size() print('''Successfully downloaded''' , __lowerCAmelCase , __lowerCAmelCase , '''bytes.''' ) return filepath @deprecated( __lowerCAmelCase , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Dict=False , __lowerCAmelCase : List[str]=dtypes.floataa , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : int=5000 , __lowerCAmelCase : Any=None , __lowerCAmelCase : List[str]=DEFAULT_SOURCE_URL , ) -> Optional[Any]: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=__lowerCAmelCase , one_hot=__lowerCAmelCase , dtype=__lowerCAmelCase , seed=__lowerCAmelCase ) __lowerCamelCase = fake() __lowerCamelCase = fake() __lowerCamelCase = fake() return _Datasets(train=__lowerCAmelCase , validation=__lowerCAmelCase , test=__lowerCAmelCase ) if not source_url: # empty string check __lowerCamelCase = DEFAULT_SOURCE_URL __lowerCamelCase = '''train-images-idx3-ubyte.gz''' __lowerCamelCase = '''train-labels-idx1-ubyte.gz''' __lowerCamelCase = '''t10k-images-idx3-ubyte.gz''' __lowerCamelCase = '''t10k-labels-idx1-ubyte.gz''' __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + train_images_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_images(__lowerCAmelCase ) __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + train_labels_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_labels(__lowerCAmelCase , one_hot=__lowerCAmelCase ) __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + test_images_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_images(__lowerCAmelCase ) __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + test_labels_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_labels(__lowerCAmelCase , one_hot=__lowerCAmelCase ) if not 0 <= validation_size <= len(__lowerCAmelCase ): __lowerCamelCase = ( '''Validation size should be between 0 and ''' f'''{len(__lowerCAmelCase )}. Received: {validation_size}.''' ) raise ValueError(__lowerCAmelCase ) __lowerCamelCase = train_images[:validation_size] __lowerCamelCase = train_labels[:validation_size] __lowerCamelCase = train_images[validation_size:] __lowerCamelCase = train_labels[validation_size:] __lowerCamelCase = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} __lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) __lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) __lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) return _Datasets(train=__lowerCAmelCase , validation=__lowerCAmelCase , test=__lowerCAmelCase )
339
1
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name def __magic_name__ ( __lowerCAmelCase : Union[List, PIL.Image.Image, torch.Tensor] ) -> Optional[Any]: warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , __lowerCAmelCase , ) if isinstance(__lowerCAmelCase , torch.Tensor ): return image elif isinstance(__lowerCAmelCase , PIL.Image.Image ): __lowerCamelCase = [image] if isinstance(image[0] , PIL.Image.Image ): __lowerCamelCase , __lowerCamelCase = image[0].size __lowerCamelCase , __lowerCamelCase = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 __lowerCamelCase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] __lowerCamelCase = np.concatenate(__lowerCAmelCase , axis=0 ) __lowerCamelCase = np.array(__lowerCAmelCase ).astype(np.floataa ) / 255.0 __lowerCamelCase = image.transpose(0 , 3 , 1 , 2 ) __lowerCamelCase = 2.0 * image - 1.0 __lowerCamelCase = torch.from_numpy(__lowerCAmelCase ) elif isinstance(image[0] , torch.Tensor ): __lowerCamelCase = torch.cat(__lowerCAmelCase , dim=0 ) return image def __magic_name__ ( __lowerCAmelCase : Union[List, PIL.Image.Image, torch.Tensor] ) -> int: if isinstance(__lowerCAmelCase , torch.Tensor ): return mask elif isinstance(__lowerCAmelCase , PIL.Image.Image ): __lowerCamelCase = [mask] if isinstance(mask[0] , PIL.Image.Image ): __lowerCamelCase , __lowerCamelCase = mask[0].size __lowerCamelCase , __lowerCamelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __lowerCamelCase = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] __lowerCamelCase = np.concatenate(__lowerCAmelCase , axis=0 ) __lowerCamelCase = mask.astype(np.floataa ) / 255.0 __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = torch.from_numpy(__lowerCAmelCase ) elif isinstance(mask[0] , torch.Tensor ): __lowerCamelCase = torch.cat(__lowerCAmelCase , dim=0 ) return mask class lowerCAmelCase__ ( __lowercase ): a__ : UNetaDModel a__ : RePaintScheduler def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]: super().__init__() self.register_modules(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def __call__( self : int , SCREAMING_SNAKE_CASE__ : Union[torch.Tensor, PIL.Image.Image] , SCREAMING_SNAKE_CASE__ : Union[torch.Tensor, PIL.Image.Image] , SCREAMING_SNAKE_CASE__ : int = 2_50 , SCREAMING_SNAKE_CASE__ : float = 0.0 , SCREAMING_SNAKE_CASE__ : int = 10 , SCREAMING_SNAKE_CASE__ : int = 10 , SCREAMING_SNAKE_CASE__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE__ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: __lowerCamelCase = image __lowerCamelCase = _preprocess_image(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = original_image.to(device=self.device , dtype=self.unet.dtype ) __lowerCamelCase = _preprocess_mask(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = mask_image.to(device=self.device , dtype=self.unet.dtype ) __lowerCamelCase = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE__ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __lowerCamelCase = original_image.shape __lowerCamelCase = randn_tensor(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.device ) __lowerCamelCase = eta __lowerCamelCase = self.scheduler.timesteps[0] + 1 __lowerCamelCase = generator[0] if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual __lowerCamelCase = self.unet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).sample # compute previous image: x_t -> x_t-1 __lowerCamelCase = self.scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample else: # compute the reverse: x_t-1 -> x_t __lowerCamelCase = self.scheduler.undo_step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = t __lowerCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCamelCase = self.numpy_to_pil(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE__ )
339
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "vocab_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt" ), "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt" ), }, "tokenizer_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli": ( "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE__ : List[Any] = { "squeezebert/squeezebert-uncased": 512, "squeezebert/squeezebert-mnli": 512, "squeezebert/squeezebert-mnli-headless": 512, } SCREAMING_SNAKE_CASE__ : Dict = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class lowerCAmelCase__ ( __lowercase ): a__ : Optional[int] = VOCAB_FILES_NAMES a__ : Any = PRETRAINED_VOCAB_FILES_MAP a__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Optional[Any] = SqueezeBertTokenizer def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[UNK]" , SCREAMING_SNAKE_CASE__ : Optional[int]="[SEP]" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[PAD]" , SCREAMING_SNAKE_CASE__ : Tuple="[CLS]" , SCREAMING_SNAKE_CASE__ : str="[MASK]" , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : int=None , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Optional[Any]: super().__init__( SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , SCREAMING_SNAKE_CASE__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , SCREAMING_SNAKE_CASE__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars ): __lowerCamelCase = getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop('''type''' ) ) __lowerCamelCase = do_lower_case __lowerCamelCase = strip_accents __lowerCamelCase = tokenize_chinese_chars __lowerCamelCase = normalizer_class(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = do_lower_case def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=None ) -> str: __lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: __lowerCamelCase = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ ) return tuple(SCREAMING_SNAKE_CASE__ )
339
1
from functools import lru_cache def __magic_name__ ( __lowerCAmelCase : int ) -> set: __lowerCamelCase = 2 __lowerCamelCase = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__lowerCAmelCase ) if n > 1: factors.add(__lowerCAmelCase ) return factors @lru_cache def __magic_name__ ( __lowerCAmelCase : int ) -> int: return len(unique_prime_factors(__lowerCAmelCase ) ) def __magic_name__ ( __lowerCAmelCase : list ) -> bool: return len(set(__lowerCAmelCase ) ) in (0, 1) def __magic_name__ ( __lowerCAmelCase : int ) -> list: __lowerCamelCase = 2 while True: # Increment each value of a generated range __lowerCamelCase = [base + i for i in range(__lowerCAmelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. __lowerCamelCase = [upf_len(__lowerCAmelCase ) for x in group] checker.append(__lowerCAmelCase ) # If all numbers in the list are equal, return the group variable. if equality(__lowerCAmelCase ): return group # Increment our base variable by 1 base += 1 def __magic_name__ ( __lowerCAmelCase : int = 4 ) -> int: __lowerCamelCase = run(__lowerCAmelCase ) return results[0] if len(__lowerCAmelCase ) else None if __name__ == "__main__": print(solution())
339
from __future__ import annotations def __magic_name__ ( __lowerCAmelCase : list[int] ) -> bool: return len(set(__lowerCAmelCase ) ) == len(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
339
1
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( __lowercase , __lowercase , unittest.TestCase ): a__ : Dict = StableDiffusionDiffEditPipeline a__ : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""height""", """width""", """image"""} | {"""image_latents"""} a__ : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"""image"""} | {"""image_latents"""} a__ : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a__ : Tuple = frozenset([] ) def __A ( self : List[str] ) -> Any: torch.manual_seed(0 ) __lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=SCREAMING_SNAKE_CASE__ , set_alpha_to_one=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = DDIMInverseScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=SCREAMING_SNAKE_CASE__ , set_alpha_to_zero=SCREAMING_SNAKE_CASE__ , ) torch.manual_seed(0 ) __lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) __lowerCamelCase = CLIPTextModel(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowerCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''inverse_scheduler''': inverse_scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=0 ) -> Dict: __lowerCamelCase = floats_tensor((1, 16, 16) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ): __lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: __lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = { '''prompt''': '''a dog and a newt''', '''mask_image''': mask, '''image_latents''': latents, '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple=0 ) -> Dict: __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE__ ) ).convert('''RGB''' ) if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ): __lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: __lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = { '''image''': image, '''source_prompt''': '''a cat and a frog''', '''target_prompt''': '''a dog and a newt''', '''generator''': generator, '''num_inference_steps''': 2, '''num_maps_per_mask''': 2, '''mask_encode_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int=0 ) -> Union[str, Any]: __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE__ ) ).convert('''RGB''' ) if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ): __lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: __lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = { '''image''': image, '''prompt''': '''a cat and a frog''', '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''decode_latents''': True, '''output_type''': '''numpy''', } return inputs def __A ( self : str ) -> Union[str, Any]: if not hasattr(self.pipeline_class , '''_optional_components''' ): return __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) __lowerCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe(**SCREAMING_SNAKE_CASE__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.pipeline_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) pipe_loaded.to(SCREAMING_SNAKE_CASE__ ) pipe_loaded.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) __lowerCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe_loaded(**SCREAMING_SNAKE_CASE__ )[0] __lowerCamelCase = np.abs(output - output_loaded ).max() self.assertLess(SCREAMING_SNAKE_CASE__ , 1e-4 ) def __A ( self : List[Any] ) -> List[str]: __lowerCamelCase = '''cpu''' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.get_dummy_mask_inputs(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe.generate_mask(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) __lowerCamelCase = np.array([0] * 9 ) __lowerCamelCase = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def __A ( self : Tuple ) -> List[str]: __lowerCamelCase = '''cpu''' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.get_dummy_inversion_inputs(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe.invert(**SCREAMING_SNAKE_CASE__ ).images __lowerCamelCase = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __lowerCamelCase = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , ) __lowerCamelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-3 ) def __A ( self : List[Any] ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def __A ( self : Tuple ) -> Any: __lowerCamelCase = '''cpu''' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = {'''beta_start''': 0.00085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''} __lowerCamelCase = DPMSolverMultistepScheduler(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = DPMSolverMultistepInverseScheduler(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.get_dummy_inversion_inputs(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe.invert(**SCREAMING_SNAKE_CASE__ ).images __lowerCamelCase = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __lowerCamelCase = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , ) __lowerCamelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-3 ) @require_torch_gpu @slow class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : Optional[Any] ) -> List[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def __A ( cls : Tuple ) -> List[str]: __lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' ) __lowerCamelCase = raw_image.convert('''RGB''' ).resize((7_68, 7_68) ) __lowerCamelCase = raw_image def __A ( self : Optional[Any] ) -> Optional[int]: __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=SCREAMING_SNAKE_CASE__ , torch_dtype=torch.floataa ) __lowerCamelCase = DDIMScheduler.from_config(pipe.scheduler.config ) __lowerCamelCase = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = '''a bowl of fruit''' __lowerCamelCase = '''a bowl of pears''' __lowerCamelCase = pipe.generate_mask( image=self.raw_image , source_prompt=SCREAMING_SNAKE_CASE__ , target_prompt=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = pipe.invert( prompt=SCREAMING_SNAKE_CASE__ , image=self.raw_image , inpaint_strength=0.7 , generator=SCREAMING_SNAKE_CASE__ ).latents __lowerCamelCase = pipe( prompt=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , image_latents=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , negative_prompt=SCREAMING_SNAKE_CASE__ , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0] __lowerCamelCase = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1 def __A ( self : Any ) -> str: __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=SCREAMING_SNAKE_CASE__ , torch_dtype=torch.floataa ) __lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowerCamelCase = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = '''a bowl of fruit''' __lowerCamelCase = '''a bowl of pears''' __lowerCamelCase = pipe.generate_mask( image=self.raw_image , source_prompt=SCREAMING_SNAKE_CASE__ , target_prompt=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = pipe.invert( prompt=SCREAMING_SNAKE_CASE__ , image=self.raw_image , inpaint_strength=0.7 , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=25 , ).latents __lowerCamelCase = pipe( prompt=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , image_latents=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , negative_prompt=SCREAMING_SNAKE_CASE__ , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0] __lowerCamelCase = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1
339
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ : Dict = { "configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Tuple = [ "FALCON_PRETRAINED_MODEL_ARCHIVE_LIST", "FalconForCausalLM", "FalconModel", "FalconPreTrainedModel", "FalconForSequenceClassification", "FalconForTokenClassification", "FalconForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
339
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : int = { "google/mobilenet_v1_1.0_224": "https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json", "google/mobilenet_v1_0.75_192": "https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowerCAmelCase__ ( __lowercase ): a__ : Any = """mobilenet_v1""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : Optional[int]=2_24 , SCREAMING_SNAKE_CASE__ : Any=1.0 , SCREAMING_SNAKE_CASE__ : List[Any]=8 , SCREAMING_SNAKE_CASE__ : Union[str, Any]="relu6" , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Optional[int]=0.999 , SCREAMING_SNAKE_CASE__ : Any=0.02 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.001 , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> Optional[int]: super().__init__(**SCREAMING_SNAKE_CASE__ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) __lowerCamelCase = num_channels __lowerCamelCase = image_size __lowerCamelCase = depth_multiplier __lowerCamelCase = min_depth __lowerCamelCase = hidden_act __lowerCamelCase = tf_padding __lowerCamelCase = classifier_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps class lowerCAmelCase__ ( __lowercase ): a__ : List[str] = version.parse("""1.11""" ) @property def __A ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __A ( self : Dict ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __A ( self : Optional[Any] ) -> float: return 1e-4
339
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: return abs(__lowerCAmelCase ) if a == 0 else greatest_common_divisor(b % a , __lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. __lowerCamelCase , __lowerCamelCase = y, x % y return abs(__lowerCAmelCase ) def __magic_name__ ( ) -> Tuple: try: __lowerCamelCase = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) __lowerCamelCase = int(nums[0] ) __lowerCamelCase = int(nums[1] ) print( f'''greatest_common_divisor({num_a}, {num_a}) = ''' f'''{greatest_common_divisor(__lowerCAmelCase , __lowerCAmelCase )}''' ) print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__lowerCAmelCase , __lowerCAmelCase )}''' ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
339
1
SCREAMING_SNAKE_CASE__ : str = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" SCREAMING_SNAKE_CASE__ : List[Any] = [{"type": "code", "content": INSTALL_CONTENT}] SCREAMING_SNAKE_CASE__ : Any = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
339
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def __A ( self : Optional[int] ) -> Union[str, Any]: __lowerCamelCase = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) __lowerCamelCase = AutoTokenizer.from_pretrained('''google/mt5-small''' ) __lowerCamelCase = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids __lowerCamelCase = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids __lowerCamelCase = shift_tokens_right(SCREAMING_SNAKE_CASE__ , model.config.pad_token_id , model.config.decoder_start_token_id ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ).logits __lowerCamelCase = optax.softmax_cross_entropy(SCREAMING_SNAKE_CASE__ , onehot(SCREAMING_SNAKE_CASE__ , logits.shape[-1] ) ).mean() __lowerCamelCase = -(labels.shape[-1] * loss.item()) __lowerCamelCase = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
339
1
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html SCREAMING_SNAKE_CASE__ : Any = "platform" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Dict=None , __lowerCAmelCase : str=None , __lowerCAmelCase : int=None , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Optional[int]=None , ) -> Optional[Any]: if attention_mask is None: __lowerCamelCase = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __lowerCamelCase = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __lowerCamelCase = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowerCamelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowerCamelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCAmelCase__ : def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str]=13 , SCREAMING_SNAKE_CASE__ : Dict=7 , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : List[str]=99 , SCREAMING_SNAKE_CASE__ : Optional[Any]=16 , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Any=4 , SCREAMING_SNAKE_CASE__ : Any=4 , SCREAMING_SNAKE_CASE__ : Dict="gelu" , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=0.1 , SCREAMING_SNAKE_CASE__ : Dict=32 , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : int=0.02 , ) -> List[str]: __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = eos_token_id __lowerCamelCase = pad_token_id __lowerCamelCase = bos_token_id __lowerCamelCase = initializer_range def __A ( self : Dict ) -> str: __lowerCamelCase = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __lowerCamelCase = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __lowerCamelCase = shift_tokens_right(SCREAMING_SNAKE_CASE__ , 1 , 2 ) __lowerCamelCase = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = prepare_blenderbot_inputs_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, inputs_dict def __A ( self : Any ) -> Dict: __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs() return config, inputs_dict def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: __lowerCamelCase = 20 __lowerCamelCase = model_class_name(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model.encode(inputs_dict['''input_ids'''] ) __lowerCamelCase , __lowerCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) __lowerCamelCase = model.init_cache(decoder_input_ids.shape[0] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowerCamelCase = model.decode( decoder_input_ids[:, :-1] , SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ , decoder_position_ids=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __lowerCamelCase = model.decode( decoder_input_ids[:, -1:] , SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = model.decode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]: __lowerCamelCase = 20 __lowerCamelCase = model_class_name(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model.encode(inputs_dict['''input_ids'''] ) __lowerCamelCase , __lowerCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) __lowerCamelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __lowerCamelCase = model.init_cache(decoder_input_ids.shape[0] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowerCamelCase = model.decode( decoder_input_ids[:, :-1] , SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ , decoder_position_ids=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __lowerCamelCase = model.decode( decoder_input_ids[:, -1:] , SCREAMING_SNAKE_CASE__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , decoder_position_ids=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = model.decode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): a__ : Optional[Any] = 99 def __A ( self : str ) -> List[Any]: __lowerCamelCase = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __lowerCamelCase = input_ids.shape[0] __lowerCamelCase = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def __A ( self : str ) -> int: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self._get_config_and_data() __lowerCamelCase = FlaxBlenderbotSmallForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = lm_model(input_ids=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , SCREAMING_SNAKE_CASE__ ) def __A ( self : int ) -> str: __lowerCamelCase = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __lowerCamelCase = FlaxBlenderbotSmallForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __lowerCamelCase = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __lowerCamelCase = lm_model(input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , SCREAMING_SNAKE_CASE__ ) def __A ( self : List[str] ) -> List[Any]: __lowerCamelCase = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __lowerCamelCase = shift_tokens_right(SCREAMING_SNAKE_CASE__ , 1 , 2 ) __lowerCamelCase = np.equal(SCREAMING_SNAKE_CASE__ , 1 ).astype(np.floataa ).sum() __lowerCamelCase = np.equal(SCREAMING_SNAKE_CASE__ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(SCREAMING_SNAKE_CASE__ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCAmelCase__ ( __lowercase , unittest.TestCase , __lowercase ): a__ : Tuple = True a__ : List[Any] = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) a__ : Tuple = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def __A ( self : List[Any] ) -> Optional[int]: __lowerCamelCase = FlaxBlenderbotSmallModelTester(self ) def __A ( self : Tuple ) -> List[Any]: __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __A ( self : List[Any] ) -> int: __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __A ( self : List[str] ) -> List[str]: __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model_class(SCREAMING_SNAKE_CASE__ ) @jax.jit def encode_jitted(SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , **SCREAMING_SNAKE_CASE__ : int ): return model.encode(input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ) with self.subTest('''JIT Enabled''' ): __lowerCamelCase = encode_jitted(**SCREAMING_SNAKE_CASE__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __lowerCamelCase = encode_jitted(**SCREAMING_SNAKE_CASE__ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertEqual(jitted_output.shape , output.shape ) def __A ( self : Tuple ) -> Tuple: __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase = model_class(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) __lowerCamelCase = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str ): return model.decode( decoder_input_ids=SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , encoder_outputs=SCREAMING_SNAKE_CASE__ , ) with self.subTest('''JIT Enabled''' ): __lowerCamelCase = decode_jitted(**SCREAMING_SNAKE_CASE__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __lowerCamelCase = decode_jitted(**SCREAMING_SNAKE_CASE__ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __A ( self : Dict ) -> int: for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained('''facebook/blenderbot_small-90M''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __lowerCamelCase = np.ones((1, 1) ) * model.config.eos_token_id __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
339
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE__ : Optional[int] = "bart" SCREAMING_SNAKE_CASE__ : Dict = True @st.cache(allow_output_mutation=__lowerCAmelCase ) def __magic_name__ ( ) -> str: if LOAD_DENSE_INDEX: __lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) __lowerCamelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) __lowerCamelCase = qar_model.eval() else: __lowerCamelCase , __lowerCamelCase = (None, None) if MODEL_TYPE == "bart": __lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) __lowerCamelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) __lowerCamelCase = sas_model.eval() else: __lowerCamelCase , __lowerCamelCase = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__lowerCAmelCase ) def __magic_name__ ( ) -> Optional[int]: if LOAD_DENSE_INDEX: __lowerCamelCase = faiss.StandardGpuResources() __lowerCamelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] __lowerCamelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) __lowerCamelCase = faiss.IndexFlatIP(128 ) __lowerCamelCase = faiss.index_cpu_to_gpu(__lowerCAmelCase , 1 , __lowerCAmelCase ) wikiaab_gpu_index_flat.add(__lowerCAmelCase ) # TODO fix for larger GPU else: __lowerCamelCase , __lowerCamelCase = (None, None) __lowerCamelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__lowerCAmelCase ) def __magic_name__ ( ) -> List[str]: __lowerCamelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) __lowerCamelCase = elia['''train_eli5'''] __lowerCamelCase = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) __lowerCamelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(__lowerCAmelCase ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = load_indexes() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = load_models() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = load_train_data() def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[str]=10 ) -> List[str]: __lowerCamelCase = embed_questions_for_retrieval([question] , __lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase , __lowerCamelCase = eli5_train_q_index.search(__lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase = [elia_train[int(__lowerCAmelCase )] for i in I[0]] return nn_examples def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict="wiki40b" , __lowerCAmelCase : Any="dense" , __lowerCAmelCase : Dict=10 ) -> Union[str, Any]: if source == "none": __lowerCamelCase , __lowerCamelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": __lowerCamelCase , __lowerCamelCase = query_qa_dense_index( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: __lowerCamelCase , __lowerCamelCase = query_es_index( __lowerCAmelCase , __lowerCAmelCase , index_name='''english_wiki40b_snippets_100w''' , n_results=__lowerCAmelCase , ) __lowerCamelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] __lowerCamelCase = '''question: {} context: {}'''.format(__lowerCAmelCase , __lowerCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __lowerCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __lowerCAmelCase : None), } ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str=64 , __lowerCAmelCase : Dict=256 , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : Optional[Any]=0.95 , __lowerCAmelCase : List[Any]=0.8 ) -> Any: with torch.no_grad(): __lowerCamelCase = qa_sas_generate( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , num_answers=1 , num_beams=__lowerCAmelCase , min_len=__lowerCAmelCase , max_len=__lowerCAmelCase , do_sample=__lowerCAmelCase , temp=__lowerCAmelCase , top_p=__lowerCAmelCase , top_k=__lowerCAmelCase , max_input_length=1024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar SCREAMING_SNAKE_CASE__ : List[str] = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" SCREAMING_SNAKE_CASE__ : Dict = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE__ : int = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE__ : str = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] SCREAMING_SNAKE_CASE__ : Optional[int] = st.sidebar.checkbox("Demo options") if demo_options: SCREAMING_SNAKE_CASE__ : Optional[int] = st.sidebar.selectbox( "", action_list, index=3, ) SCREAMING_SNAKE_CASE__ : Optional[Any] = action_list.index(action_st) SCREAMING_SNAKE_CASE__ : int = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = show_type == "Show full text of passages" else: SCREAMING_SNAKE_CASE__ : Any = 3 SCREAMING_SNAKE_CASE__ : Any = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.checkbox("Retrieval options") if retrieval_options: SCREAMING_SNAKE_CASE__ : Tuple = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) SCREAMING_SNAKE_CASE__ : int = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: SCREAMING_SNAKE_CASE__ : List[str] = "wiki40b" SCREAMING_SNAKE_CASE__ : Optional[Any] = "dense" SCREAMING_SNAKE_CASE__ : str = "beam" SCREAMING_SNAKE_CASE__ : List[Any] = 2 SCREAMING_SNAKE_CASE__ : Optional[Any] = 64 SCREAMING_SNAKE_CASE__ : List[Any] = 256 SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : List[str] = st.sidebar.checkbox("Generation options") if generate_options: SCREAMING_SNAKE_CASE__ : Dict = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE__ : List[str] = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) SCREAMING_SNAKE_CASE__ : Any = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE__ : str = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE__ : Any = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE__ : Dict = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None # start main text SCREAMING_SNAKE_CASE__ : Any = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] SCREAMING_SNAKE_CASE__ : List[str] = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.text_input("Enter your question here:", "") else: SCREAMING_SNAKE_CASE__ : str = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = make_support(question, source=wiki_source, method="dense", n_results=10) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = make_support(question, source=wiki_source, method="sparse", n_results=10) SCREAMING_SNAKE_CASE__ : int = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE__ : Optional[Any] = support_list[:10] SCREAMING_SNAKE_CASE__ : Tuple = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE__ : Optional[int] = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) SCREAMING_SNAKE_CASE__ : Tuple = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE__ : Union[str, Any] = "[{}]({})".format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE__ : Dict = sec_titles.split(" & ") SCREAMING_SNAKE_CASE__ : int = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE__ : Any = find_nearest_training(question) SCREAMING_SNAKE_CASE__ : List[Any] = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) SCREAMING_SNAKE_CASE__ : List[Any] = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
339
1
def __magic_name__ ( __lowerCAmelCase : list ) -> list: for i in range(len(__lowerCAmelCase ) - 1 , 0 , -1 ): __lowerCamelCase = False for j in range(__lowerCAmelCase , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: __lowerCamelCase , __lowerCamelCase = unsorted[j - 1], unsorted[j] __lowerCamelCase = True for j in range(__lowerCAmelCase ): if unsorted[j] > unsorted[j + 1]: __lowerCamelCase , __lowerCamelCase = unsorted[j + 1], unsorted[j] __lowerCamelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE__ : str = input("Enter numbers separated by a comma:\n").strip() SCREAMING_SNAKE_CASE__ : Union[str, Any] = [int(item) for item in user_input.split(",")] print(F'{cocktail_shaker_sort(unsorted) = }')
339
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : str = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class lowerCAmelCase__ ( __lowercase ): a__ : Dict = """xmod""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_05_22 , SCREAMING_SNAKE_CASE__ : str=7_68 , SCREAMING_SNAKE_CASE__ : int=12 , SCREAMING_SNAKE_CASE__ : Dict=12 , SCREAMING_SNAKE_CASE__ : List[str]=30_72 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : List[Any]=0.02 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1e-12 , SCREAMING_SNAKE_CASE__ : List[str]=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : Any="absolute" , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=("en_XX",) , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , **SCREAMING_SNAKE_CASE__ : int , ) -> str: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = position_embedding_type __lowerCamelCase = use_cache __lowerCamelCase = classifier_dropout __lowerCamelCase = pre_norm __lowerCamelCase = adapter_reduction_factor __lowerCamelCase = adapter_layer_norm __lowerCamelCase = adapter_reuse_layer_norm __lowerCamelCase = ln_before_adapter __lowerCamelCase = list(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = default_language class lowerCAmelCase__ ( __lowercase ): @property def __A ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
339
1
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) SCREAMING_SNAKE_CASE__ : Optional[int] = "\\n Text data.\n Second line of data." SCREAMING_SNAKE_CASE__ : List[str] = "file" @pytest.fixture(scope='''session''' ) def __magic_name__ ( __lowerCAmelCase : Any ) -> int: __lowerCamelCase = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''') __lowerCamelCase = bytes(__lowerCAmelCase , '''utf-8''' ) with zstd.open(__lowerCAmelCase , '''wb''' ) as f: f.write(__lowerCAmelCase ) return path @pytest.fixture def __magic_name__ ( __lowerCAmelCase : Tuple ) -> Tuple: with open(os.path.join(tmpfs.local_root_dir , __lowerCAmelCase ) , '''w''' ) as f: f.write(__lowerCAmelCase ) return FILE_PATH @pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] ) -> List[Any]: __lowerCamelCase = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} __lowerCamelCase = input_paths[compression_format] __lowerCamelCase = tmp_path / '''cache''' __lowerCamelCase = DownloadConfig(cache_dir=__lowerCAmelCase , extract_compressed_file=__lowerCAmelCase ) __lowerCamelCase = cached_path(__lowerCAmelCase , download_config=__lowerCAmelCase ) with open(__lowerCAmelCase ) as f: __lowerCamelCase = f.read() with open(__lowerCAmelCase ) as f: __lowerCamelCase = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''' , [True, False] ) @pytest.mark.parametrize('''default_cache_dir''' , [True, False] ) def __magic_name__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] ) -> Optional[int]: __lowerCamelCase = '''custom_cache''' __lowerCamelCase = '''custom_extracted_dir''' __lowerCamelCase = tmp_path / '''custom_extracted_path''' if default_extracted: __lowerCamelCase = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , __lowerCAmelCase ) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(__lowerCAmelCase ) ) __lowerCamelCase = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) __lowerCamelCase = xz_file __lowerCamelCase = ( DownloadConfig(extract_compressed_file=__lowerCAmelCase ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=__lowerCAmelCase ) ) __lowerCamelCase = cached_path(__lowerCAmelCase , download_config=__lowerCAmelCase ) assert Path(__lowerCAmelCase ).parent.parts[-2:] == expected def __magic_name__ ( __lowerCAmelCase : List[str] ) -> str: # absolute path __lowerCamelCase = str(Path(__lowerCAmelCase ).resolve() ) assert cached_path(__lowerCAmelCase ) == text_file # relative path __lowerCamelCase = str(Path(__lowerCAmelCase ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(__lowerCAmelCase ) == text_file def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> Tuple: # absolute path __lowerCamelCase = str(tmp_path.resolve() / '''__missing_file__.txt''' ) with pytest.raises(__lowerCAmelCase ): cached_path(__lowerCAmelCase ) # relative path __lowerCamelCase = '''./__missing_file__.txt''' with pytest.raises(__lowerCAmelCase ): cached_path(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Union[str, Any] ) -> List[Any]: __lowerCamelCase = get_from_cache(f'''tmp://{tmpfs_file}''' ) with open(__lowerCAmelCase ) as f: __lowerCamelCase = f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __lowerCAmelCase ) def __magic_name__ ( ) -> int: with pytest.raises(__lowerCAmelCase ): cached_path('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Union[str, Any] ) -> int: __lowerCamelCase = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__lowerCAmelCase ): http_get('''https://huggingface.co''' , temp_file=__lowerCAmelCase ) with pytest.raises(__lowerCAmelCase ): http_head('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Any ) -> str: __lowerCamelCase = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__lowerCAmelCase ): ftp_get('''ftp://huggingface.co''' , temp_file=__lowerCAmelCase ) with pytest.raises(__lowerCAmelCase ): ftp_head('''ftp://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Dict ) -> Any: __lowerCamelCase = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__lowerCAmelCase ): fsspec_get('''s3://huggingface.co''' , temp_file=__lowerCAmelCase ) with pytest.raises(__lowerCAmelCase ): fsspec_head('''s3://huggingface.co''' )
339
from collections import namedtuple import requests from lxml import html # type: ignore SCREAMING_SNAKE_CASE__ : List[Any] = namedtuple("covid_data", "cases deaths recovered") def __magic_name__ ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data: __lowerCamelCase = '''//div[@class = "maincounter-number"]/span/text()''' return covid_data(*html.fromstring(requests.get(__lowerCAmelCase ).content ).xpath(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ : List[str] = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
339
1