code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_gpta import GPTaTokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
a = logging.get_logger(__name__)
a = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""}
a = {
"""vocab_file""": {
"""gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""",
"""gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""",
"""gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""",
"""gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""",
"""distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""",
},
"""merges_file""": {
"""gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""",
"""gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""",
"""gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""",
"""gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""",
"""distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""",
},
"""tokenizer_file""": {
"""gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""",
"""gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""",
"""gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""",
"""gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""",
"""distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""",
},
}
a = {
"""gpt2""": 1_0_2_4,
"""gpt2-medium""": 1_0_2_4,
"""gpt2-large""": 1_0_2_4,
"""gpt2-xl""": 1_0_2_4,
"""distilgpt2""": 1_0_2_4,
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = ['input_ids', 'attention_mask']
lowercase = GPTaTokenizer
def __init__( self , A=None , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , **A , ) -> Union[str, Any]:
super().__init__(
A , A , tokenizer_file=A , unk_token=A , bos_token=A , eos_token=A , add_prefix_space=A , **A , )
UpperCAmelCase : List[str] = kwargs.pop("""add_bos_token""" , A )
UpperCAmelCase : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("""add_prefix_space""" , A ) != add_prefix_space:
UpperCAmelCase : List[str] = getattr(A , pre_tok_state.pop("""type""" ) )
UpperCAmelCase : str = add_prefix_space
UpperCAmelCase : Tuple = pre_tok_class(**A )
UpperCAmelCase : int = add_prefix_space
def _lowercase( self , *A , **A ) -> BatchEncoding:
UpperCAmelCase : Optional[int] = kwargs.get("""is_split_into_words""" , A )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*A , **A )
def _lowercase( self , *A , **A ) -> BatchEncoding:
UpperCAmelCase : Any = kwargs.get("""is_split_into_words""" , A )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._encode_plus(*A , **A )
def _lowercase( self , A , A = None ) -> Tuple[str]:
UpperCAmelCase : List[Any] = self._tokenizer.model.save(A , name=A )
return tuple(A )
def _lowercase( self , A ) -> List[int]:
UpperCAmelCase : Dict = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(A , add_special_tokens=A ) + [self.eos_token_id] )
if len(A ) > self.model_max_length:
UpperCAmelCase : Optional[int] = input_ids[-self.model_max_length :]
return input_ids
| 365 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
a : List[str] = {
"""configuration_altclip""": [
"""ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""AltCLIPConfig""",
"""AltCLIPTextConfig""",
"""AltCLIPVisionConfig""",
],
"""processing_altclip""": ["""AltCLIPProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : List[Any] = [
"""ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""AltCLIPPreTrainedModel""",
"""AltCLIPModel""",
"""AltCLIPTextModel""",
"""AltCLIPVisionModel""",
]
if TYPE_CHECKING:
from .configuration_altclip import (
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
AltCLIPConfig,
AltCLIPTextConfig,
AltCLIPVisionConfig,
)
from .processing_altclip import AltCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_altclip import (
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
AltCLIPModel,
AltCLIPPreTrainedModel,
AltCLIPTextModel,
AltCLIPVisionModel,
)
else:
import sys
a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 338 | 0 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase ) -> bool:
if not isinstance(_lowercase , _lowercase ):
UpperCAmelCase : List[str] = F'''Input value of [number={number}] must be an integer'''
raise TypeError(_lowercase )
if number < 0:
return False
UpperCAmelCase : List[Any] = number * number
while number > 0:
if number % 1_0 != number_square % 1_0:
return False
number //= 1_0
number_square //= 1_0
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 366 |
'''simple docstring'''
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
a : List[Any] = logging.get_logger(__name__)
def __lowerCamelCase ( _lowercase ) -> List[Any]:
UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" )
if "model" in sd.keys():
UpperCAmelCase : Any = torch.load(_lowercase , map_location="""cpu""" )["""model"""]
# pop unnecessary weights
UpperCAmelCase : Union[str, Any] = [
"""decoder.version""",
"""decoder.output_projection.weight""",
]
for key in keys_to_delete:
if key in sd:
sd.pop(_lowercase )
UpperCAmelCase : Tuple = {
"""decoder.project_in_dim.weight""": """decoder.project_in.weight""",
"""decoder.project_out_dim.weight""": """decoder.project_out.weight""",
"""decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""",
"""decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""",
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
UpperCAmelCase : List[Any] = sd.pop(_lowercase )
UpperCAmelCase : Tuple = list(sd.keys() )
for key in keys:
if ".qkv_proj." in key:
UpperCAmelCase : List[str] = sd[key]
# We split QKV in separate Q,K,V
UpperCAmelCase : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" )
UpperCAmelCase : Tuple = key.replace(""".qkv_proj.""" , """.k_proj.""" )
UpperCAmelCase : int = key.replace(""".qkv_proj.""" , """.v_proj.""" )
UpperCAmelCase : Dict = value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = torch.split(_lowercase , depth // 3 , dim=0 )
UpperCAmelCase : Tuple = q
UpperCAmelCase : Tuple = k
UpperCAmelCase : Any = v
del sd[key]
return sd
@torch.no_grad()
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Optional[Any]:
UpperCAmelCase : Tuple = load_checkpoint(_lowercase )
if config is not None:
UpperCAmelCase : Dict = OPTConfig.from_pretrained(_lowercase )
else:
UpperCAmelCase : int = OPTConfig()
UpperCAmelCase : List[Any] = OPTModel(_lowercase ).half().eval()
model.load_state_dict(_lowercase )
# Check results
Path(_lowercase ).mkdir(exist_ok=_lowercase )
model.save_pretrained(_lowercase )
if __name__ == "__main__":
a : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--fairseq_path""",
type=str,
help=(
"""path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:"""
""" https://huggingface.co/models?other=opt_metasq"""
),
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""")
a : Union[str, Any] = parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
| 338 | 0 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase ) -> list:
if any(not isinstance(_lowercase , _lowercase ) or x < 0 for x in sequence ):
raise TypeError("""Sequence must be list of non-negative integers""" )
for _ in range(len(_lowercase ) ):
for i, (rod_upper, rod_lower) in enumerate(zip(_lowercase , sequence[1:] ) ):
if rod_upper > rod_lower:
sequence[i] -= rod_upper - rod_lower
sequence[i + 1] += rod_upper - rod_lower
return sequence
if __name__ == "__main__":
assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
| 367 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a : Union[str, Any] = logging.get_logger(__name__)
a : str = {
"""facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""",
# See all LeViT models at https://huggingface.co/models?filter=levit
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'levit'
def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int:
super().__init__(**A )
UpperCAmelCase : Any = image_size
UpperCAmelCase : Optional[int] = num_channels
UpperCAmelCase : Tuple = kernel_size
UpperCAmelCase : Optional[int] = stride
UpperCAmelCase : Dict = padding
UpperCAmelCase : List[Any] = hidden_sizes
UpperCAmelCase : List[Any] = num_attention_heads
UpperCAmelCase : Optional[int] = depths
UpperCAmelCase : Any = key_dim
UpperCAmelCase : str = drop_path_rate
UpperCAmelCase : List[Any] = patch_size
UpperCAmelCase : str = attention_ratio
UpperCAmelCase : Optional[Any] = mlp_ratio
UpperCAmelCase : Dict = initializer_range
UpperCAmelCase : int = [
["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
class UpperCamelCase_ ( __magic_name__ ):
lowercase = version.parse('1.11' )
@property
def _lowercase( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def _lowercase( self ) -> float:
return 1e-4
| 338 | 0 |
'''simple docstring'''
from collections import defaultdict
from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst
def __lowerCamelCase ( ) -> int:
UpperCAmelCase : List[Any] = 9, 1_4 # noqa: F841
UpperCAmelCase : List[Any] = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 1_4],
[3, 4, 9],
[5, 4, 1_0],
[1, 7, 1_1],
]
UpperCAmelCase : List[Any] = defaultdict(_lowercase )
for nodea, nodea, cost in edges:
adjancency[nodea].append([nodea, cost] )
adjancency[nodea].append([nodea, cost] )
UpperCAmelCase : str = mst(_lowercase )
UpperCAmelCase : int = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
for answer in expected:
UpperCAmelCase : List[str] = tuple(answer[:2] )
UpperCAmelCase : str = tuple(edge[::-1] )
assert edge in result or reverse in result
| 368 |
'''simple docstring'''
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("""0.12.2"""):
raise Exception("""requires fairseq >= 0.12.2""")
if version.parse(fairseq.__version__) > version.parse("""2"""):
raise Exception("""requires fairseq < v2""")
logging.set_verbosity_info()
a : Dict = logging.get_logger(__name__)
a : List[str] = """Hello, World!"""
a : List[Any] = """en_XX"""
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict:
UpperCAmelCase : Dict = Path("""data_bin""" )
UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , )
xmod.eval() # disable dropout
print(_lowercase )
UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder
UpperCAmelCase : Tuple = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0]
print("""Our X-MOD config:""" , _lowercase )
UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase )
model.eval()
# Now let's copy all the weights.
# Embeddings
UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight
UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight
UpperCAmelCase : int = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight
UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
UpperCAmelCase : List[str] = model.roberta.encoder.layer[i]
UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i]
# self attention
UpperCAmelCase : Optional[Any] = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError("""Dimensions of self-attention weights do not match.""" )
UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight
UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias
UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight
UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias
UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight
UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias
# self-attention output
UpperCAmelCase : Optional[Any] = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError("""Dimensions of self-attention output weights do not match.""" )
UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight
UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias
UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight
UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias
# intermediate
UpperCAmelCase : Tuple = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError("""Dimensions of intermediate weights do not match.""" )
UpperCAmelCase : List[str] = xmod_layer.fca.weight
UpperCAmelCase : str = xmod_layer.fca.bias
# output
UpperCAmelCase : Any = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError("""Dimensions of feed-forward weights do not match.""" )
UpperCAmelCase : Dict = xmod_layer.fca.weight
UpperCAmelCase : Dict = xmod_layer.fca.bias
UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight
UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight
UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError("""Lists of language adapters do not match.""" )
for lang_code, adapter in xmod_layer.adapter_modules.items():
UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code]
UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code]
UpperCAmelCase : Any = from_adapter.fca.weight
UpperCAmelCase : int = from_adapter.fca.bias
UpperCAmelCase : Dict = from_adapter.fca.weight
UpperCAmelCase : Dict = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight
UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias
if classification_head:
UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight
UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias
UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight
UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias
else:
# LM Head
UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight
UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias
UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight
UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias
UpperCAmelCase : str = xmod.model.encoder.lm_head.weight
UpperCAmelCase : str = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(_lowercase )
UpperCAmelCase : Optional[int] = model(_lowercase )[0]
if classification_head:
UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) )
else:
UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item()
print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7
UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 )
print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" )
if not success:
raise Exception("""Something went wRoNg""" )
Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(_lowercase )
if __name__ == "__main__":
a : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--classification_head""", action="""store_true""", help="""Whether to convert a final classification head."""
)
a : List[str] = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 338 | 0 |
from math import loga
def __lowerCamelCase ( _lowercase ) -> int:
if a < 0:
raise ValueError("""Input value must be a positive integer""" )
elif isinstance(_lowercase , _lowercase ):
raise TypeError("""Input value must be a 'int' type""" )
return 0 if (a == 0) else int(loga(a & -a ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 369 |
'''simple docstring'''
# Function to print upper half of diamond (pyramid)
def __lowerCamelCase ( _lowercase ) -> List[Any]:
for i in range(0 , _lowercase ):
for _ in range(0 , n - i - 1 ): # printing spaces
print(""" """ , end="""""" )
for _ in range(0 , i + 1 ): # printing stars
print("""* """ , end="""""" )
print()
def __lowerCamelCase ( _lowercase ) -> Dict:
for i in range(_lowercase , 0 , -1 ):
for _ in range(_lowercase , 0 , -1 ): # printing stars
print("""* """ , end="""""" )
print()
for _ in range(n - i + 1 , 0 , -1 ): # printing spaces
print(""" """ , end="""""" )
def __lowerCamelCase ( _lowercase ) -> List[Any]:
if n <= 0:
print(""" ... .... nothing printing :(""" )
return
floyd(_lowercase ) # upper half
reverse_floyd(_lowercase ) # lower half
if __name__ == "__main__":
print(R"""| /\ | |- | |- |--| |\ /| |-""")
print(R"""|/ \| |- |_ |_ |__| | \/ | |_""")
a : List[Any] = 1
while K:
a : int = int(input("""enter the number and , and see the magic : """))
print()
pretty_print(user_number)
a : Tuple = int(input("""press 0 to exit... and 1 to continue..."""))
print("""Good Bye...""")
| 338 | 0 |
import torch
from transformers import CamembertForMaskedLM, CamembertTokenizer
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=5 ) -> List[Any]:
# Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py
assert masked_input.count("""<mask>""" ) == 1
UpperCAmelCase : str = torch.tensor(tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) ).unsqueeze(0 ) # Batch size 1
UpperCAmelCase : Dict = model(_lowercase )[0] # The last hidden-state is the first element of the output tuple
UpperCAmelCase : Tuple = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item()
UpperCAmelCase : Any = logits[0, masked_index, :]
UpperCAmelCase : Optional[Any] = logits.softmax(dim=0 )
UpperCAmelCase : Optional[int] = prob.topk(k=_lowercase , dim=0 )
UpperCAmelCase : Optional[Any] = """ """.join(
[tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(_lowercase ) )] )
UpperCAmelCase : List[str] = tokenizer.mask_token
UpperCAmelCase : Tuple = []
for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(""" """ ) ):
UpperCAmelCase : str = predicted_token_bpe.replace("""\u2581""" , """ """ )
if " {0}".format(_lowercase ) in masked_input:
topk_filled_outputs.append(
(
masked_input.replace(""" {0}""".format(_lowercase ) , _lowercase ),
values[index].item(),
predicted_token,
) )
else:
topk_filled_outputs.append(
(
masked_input.replace(_lowercase , _lowercase ),
values[index].item(),
predicted_token,
) )
return topk_filled_outputs
a : Union[str, Any] = CamembertTokenizer.from_pretrained("""camembert-base""")
a : Dict = CamembertForMaskedLM.from_pretrained("""camembert-base""")
model.eval()
a : Union[str, Any] = """Le camembert est <mask> :)"""
print(fill_mask(masked_input, model, tokenizer, topk=3))
| 370 |
'''simple docstring'''
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
a : List[str] = logging.getLogger(__name__)
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , A , A , A , A=None ) -> Union[str, Any]:
super().__init__(
A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , )
UpperCAmelCase : Optional[Any] = None
def _lowercase( self , A ) -> List[Any]:
logger.info("""initializing retrieval""" )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info("""dist initialized""" )
# needs to be set manually
UpperCAmelCase : Tuple = self._infer_socket_ifname()
# avoid clash with the NCCL port
UpperCAmelCase : str = str(distributed_port + 1 )
UpperCAmelCase : Any = dist.new_group(ranks=A , backend="""gloo""" )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info("""dist not initialized / main""" )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def _lowercase( self ) -> Dict:
return dist.get_rank(group=self.process_group ) == 0
def _lowercase( self , A , A , A=torch.floataa ) -> str:
UpperCAmelCase : List[Any] = torch.empty(A , dtype=A )
dist.scatter(A , src=0 , scatter_list=A , group=self.process_group )
return target_tensor
def _lowercase( self ) -> Any:
UpperCAmelCase : List[Any] = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
UpperCAmelCase : Optional[int] = next((addr for addr in addrs if addr.startswith("""e""" )) , A )
return ifname
def _lowercase( self , A , A ) -> Tuple[np.ndarray, List[dict]]:
# single GPU training
if not dist.is_initialized():
UpperCAmelCase , UpperCAmelCase : str = self._main_retrieve(A , A )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A )
# distributed training
UpperCAmelCase : int = dist.get_world_size(group=self.process_group )
# gather logic
UpperCAmelCase : int = None
if self._is_main():
UpperCAmelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )]
dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group )
# scatter logic
UpperCAmelCase : List[Any] = question_hidden_states.shape[0]
UpperCAmelCase : Tuple = []
UpperCAmelCase : Any = []
if self._is_main():
assert len(A ) == world_size
UpperCAmelCase , UpperCAmelCase : Optional[int] = self._main_retrieve(torch.cat(A ).numpy() , A )
UpperCAmelCase , UpperCAmelCase : Optional[Any] = torch.tensor(A ), torch.tensor(A )
UpperCAmelCase : List[str] = self._chunk_tensor(A , A )
UpperCAmelCase : Union[str, Any] = self._chunk_tensor(A , A )
UpperCAmelCase : Tuple = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa )
UpperCAmelCase : Optional[Any] = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
| 338 | 0 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
class UpperCamelCase_ :
def __init__( self , A ) -> None:
UpperCAmelCase : List[Any] = num_of_nodes
UpperCAmelCase : list[list[int]] = []
UpperCAmelCase : dict[int, int] = {}
def _lowercase( self , A , A , A ) -> None:
self.m_edges.append([u_node, v_node, weight] )
def _lowercase( self , A ) -> int:
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def _lowercase( self , A ) -> None:
if self.m_component[u_node] != u_node:
for k in self.m_component:
UpperCAmelCase : Union[str, Any] = self.find_component(A )
def _lowercase( self , A , A , A ) -> None:
if component_size[u_node] <= component_size[v_node]:
UpperCAmelCase : Optional[int] = v_node
component_size[v_node] += component_size[u_node]
self.set_component(A )
elif component_size[u_node] >= component_size[v_node]:
UpperCAmelCase : List[str] = self.find_component(A )
component_size[u_node] += component_size[v_node]
self.set_component(A )
def _lowercase( self ) -> None:
UpperCAmelCase : List[Any] = []
UpperCAmelCase : List[Any] = 0
UpperCAmelCase : list[Any] = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
UpperCAmelCase : Any = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
UpperCAmelCase : Tuple = edge
UpperCAmelCase : Optional[Any] = self.m_component[u]
UpperCAmelCase : Tuple = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
UpperCAmelCase : int = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(A , A ):
UpperCAmelCase : Optional[Any] = edge
UpperCAmelCase : str = self.m_component[u]
UpperCAmelCase : Optional[int] = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(A , A , A )
print(f'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' )
num_of_components -= 1
UpperCAmelCase : Optional[Any] = [-1] * self.m_num_of_nodes
print(f'''The total weight of the minimal spanning tree is: {mst_weight}''' )
def __lowerCamelCase ( ) -> None:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 371 |
'''simple docstring'''
from typing import List, Optional
from tokenizers import ByteLevelBPETokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
a : List[Any] = logging.get_logger(__name__)
a : List[str] = {
"""vocab_file""": """vocab.json""",
"""merges_file""": """merges.txt""",
"""tokenizer_config_file""": """tokenizer_config.json""",
}
a : List[Any] = {
"""vocab_file""": {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"""
},
"""merges_file""": {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"""
},
"""tokenizer_config_file""": {
"""facebook/blenderbot_small-90M""": (
"""https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"""
)
},
}
a : List[Any] = {
"""facebook/blenderbot_small-90M""": 5_1_2,
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = BlenderbotSmallTokenizer
def __init__( self , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , A=True , **A , ) -> Union[str, Any]:
super().__init__(
ByteLevelBPETokenizer(
vocab=A , merges=A , add_prefix_space=A , trim_offsets=A , ) , bos_token=A , eos_token=A , unk_token=A , **A , )
UpperCAmelCase : Optional[Any] = add_prefix_space
def _lowercase( self , A , A=None ) -> Optional[Any]:
UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _lowercase( self , A , A = None ) -> List[int]:
UpperCAmelCase : Any = [self.sep_token_id]
UpperCAmelCase : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 338 | 0 |
'''simple docstring'''
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.esm.modeling_esmfold import EsmForProteinFolding
class UpperCamelCase_ :
def __init__( self , A , A=13 , A=7 , A=False , A=True , A=False , A=False , A=19 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> int:
UpperCAmelCase : List[str] = parent
UpperCAmelCase : Any = batch_size
UpperCAmelCase : Tuple = seq_length
UpperCAmelCase : int = is_training
UpperCAmelCase : Union[str, Any] = use_input_mask
UpperCAmelCase : List[str] = use_token_type_ids
UpperCAmelCase : str = use_labels
UpperCAmelCase : Optional[Any] = vocab_size
UpperCAmelCase : Optional[Any] = hidden_size
UpperCAmelCase : Tuple = num_hidden_layers
UpperCAmelCase : List[Any] = num_attention_heads
UpperCAmelCase : Optional[Any] = intermediate_size
UpperCAmelCase : int = hidden_act
UpperCAmelCase : Optional[Any] = hidden_dropout_prob
UpperCAmelCase : str = attention_probs_dropout_prob
UpperCAmelCase : List[str] = max_position_embeddings
UpperCAmelCase : int = type_vocab_size
UpperCAmelCase : Optional[Any] = type_sequence_label_size
UpperCAmelCase : Union[str, Any] = initializer_range
UpperCAmelCase : List[str] = num_labels
UpperCAmelCase : Tuple = num_choices
UpperCAmelCase : int = scope
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : Optional[int] = None
if self.use_input_mask:
UpperCAmelCase : int = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : Optional[Any] = None
UpperCAmelCase : Dict = None
UpperCAmelCase : str = None
if self.use_labels:
UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase : Dict = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowercase( self ) -> List[str]:
UpperCAmelCase : Tuple = EsmConfig(
vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=A , esmfold_config={"""trunk""": {"""num_blocks""": 2}, """fp16_esm""": False} , )
return config
def _lowercase( self , A , A , A , A , A , A ) -> str:
UpperCAmelCase : Optional[Any] = EsmForProteinFolding(config=A ).float()
model.to(A )
model.eval()
UpperCAmelCase : Any = model(A , attention_mask=A )
UpperCAmelCase : List[Any] = model(A )
UpperCAmelCase : Tuple = model(A )
self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) )
self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) )
def _lowercase( self ) -> Dict:
UpperCAmelCase : List[str] = self.prepare_config_and_inputs()
(
UpperCAmelCase
) : Tuple = config_and_inputs
UpperCAmelCase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowercase = False
lowercase = (EsmForProteinFolding,) if is_torch_available() else ()
lowercase = ()
lowercase = {} if is_torch_available() else {}
lowercase = False
def _lowercase( self ) -> List[str]:
UpperCAmelCase : int = EsmFoldModelTester(self )
UpperCAmelCase : Tuple = ConfigTester(self , config_class=A , hidden_size=37 )
def _lowercase( self ) -> str:
self.config_tester.run_common_tests()
def _lowercase( self ) -> Tuple:
UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
@unittest.skip("""Does not support attention outputs""" )
def _lowercase( self ) -> Dict:
pass
@unittest.skip
def _lowercase( self ) -> Optional[Any]:
pass
@unittest.skip("""Esm does not support embedding resizing""" )
def _lowercase( self ) -> Union[str, Any]:
pass
@unittest.skip("""Esm does not support embedding resizing""" )
def _lowercase( self ) -> Dict:
pass
@unittest.skip("""ESMFold does not support passing input embeds!""" )
def _lowercase( self ) -> str:
pass
@unittest.skip("""ESMFold does not support head pruning.""" )
def _lowercase( self ) -> str:
pass
@unittest.skip("""ESMFold does not support head pruning.""" )
def _lowercase( self ) -> Dict:
pass
@unittest.skip("""ESMFold does not support head pruning.""" )
def _lowercase( self ) -> Tuple:
pass
@unittest.skip("""ESMFold does not support head pruning.""" )
def _lowercase( self ) -> Optional[int]:
pass
@unittest.skip("""ESMFold does not support head pruning.""" )
def _lowercase( self ) -> Tuple:
pass
@unittest.skip("""ESMFold does not output hidden states in the normal way.""" )
def _lowercase( self ) -> Dict:
pass
@unittest.skip("""ESMfold does not output hidden states in the normal way.""" )
def _lowercase( self ) -> List[str]:
pass
@unittest.skip("""ESMFold only has one output format.""" )
def _lowercase( self ) -> str:
pass
@unittest.skip("""This test doesn't work for ESMFold and doesn't test core functionality""" )
def _lowercase( self ) -> List[str]:
pass
@unittest.skip("""ESMFold does not support input chunking.""" )
def _lowercase( self ) -> Optional[Any]:
pass
@unittest.skip("""ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments.""" )
def _lowercase( self ) -> Tuple:
pass
@unittest.skip("""ESMFold doesn't support torchscript compilation.""" )
def _lowercase( self ) -> Optional[Any]:
pass
@unittest.skip("""ESMFold doesn't support torchscript compilation.""" )
def _lowercase( self ) -> Dict:
pass
@unittest.skip("""ESMFold doesn't support torchscript compilation.""" )
def _lowercase( self ) -> Union[str, Any]:
pass
@unittest.skip("""ESMFold doesn't support data parallel.""" )
def _lowercase( self ) -> Union[str, Any]:
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def _lowercase( self ) -> Any:
pass
@require_torch
class UpperCamelCase_ ( __magic_name__ ):
@slow
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Dict = EsmForProteinFolding.from_pretrained("""facebook/esmfold_v1""" ).float()
model.eval()
UpperCAmelCase : Any = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
UpperCAmelCase : Union[str, Any] = model(A )["""positions"""]
UpperCAmelCase : Any = torch.tensor([2.5_8_2_8, 0.7_9_9_3, -10.9334] , dtype=torch.floataa )
self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , A , atol=1e-4 ) )
| 350 |
'''simple docstring'''
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , A , A , A = None , A = None , A = False , **A , ) -> Tuple:
super().__init__(features=A , cache_dir=A , keep_in_memory=A , **A )
UpperCAmelCase : Any = Sql(
cache_dir=A , features=A , sql=A , con=A , **A , )
def _lowercase( self ) -> Dict:
UpperCAmelCase : Any = None
UpperCAmelCase : Any = None
UpperCAmelCase : int = None
UpperCAmelCase : int = None
self.builder.download_and_prepare(
download_config=A , download_mode=A , verification_mode=A , base_path=A , )
# Build dataset for splits
UpperCAmelCase : str = self.builder.as_dataset(
split="""train""" , verification_mode=A , in_memory=self.keep_in_memory )
return dataset
class UpperCamelCase_ :
def __init__( self , A , A , A , A = None , A = None , **A , ) -> str:
if num_proc is not None and num_proc <= 0:
raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' )
UpperCAmelCase : Dict = dataset
UpperCAmelCase : List[Any] = name
UpperCAmelCase : Any = con
UpperCAmelCase : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
UpperCAmelCase : Optional[Any] = num_proc
UpperCAmelCase : str = to_sql_kwargs
def _lowercase( self ) -> int:
UpperCAmelCase : Any = self.to_sql_kwargs.pop("""sql""" , A )
UpperCAmelCase : str = self.to_sql_kwargs.pop("""con""" , A )
UpperCAmelCase : Union[str, Any] = self.to_sql_kwargs.pop("""index""" , A )
UpperCAmelCase : str = self._write(index=A , **self.to_sql_kwargs )
return written
def _lowercase( self , A ) -> Any:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = args
UpperCAmelCase : Union[str, Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs
UpperCAmelCase : int = query_table(
table=self.dataset.data , key=slice(A , offset + self.batch_size ) , indices=self.dataset._indices , )
UpperCAmelCase : Any = batch.to_pandas()
UpperCAmelCase : List[Any] = df.to_sql(self.name , self.con , index=A , **A )
return num_rows or len(A )
def _lowercase( self , A , **A ) -> int:
UpperCAmelCase : Optional[int] = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
UpperCAmelCase , UpperCAmelCase : List[str] = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , A , A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += num_rows
return written
| 338 | 0 |
'''simple docstring'''
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class UpperCamelCase_ :
def __init__( self , A , A=2 , A=3 , A=4 , A=2 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=36 , A=3 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=6 , A=6 , A=3 , A=4 , A=None , A=1000 , ) -> Union[str, Any]:
UpperCAmelCase : List[str] = parent
UpperCAmelCase : Tuple = batch_size
UpperCAmelCase : Optional[int] = num_channels
UpperCAmelCase : Tuple = image_size
UpperCAmelCase : Dict = patch_size
UpperCAmelCase : Any = text_seq_length
UpperCAmelCase : List[Any] = is_training
UpperCAmelCase : Optional[int] = use_input_mask
UpperCAmelCase : Tuple = use_token_type_ids
UpperCAmelCase : Tuple = use_labels
UpperCAmelCase : Dict = vocab_size
UpperCAmelCase : List[Any] = hidden_size
UpperCAmelCase : List[str] = num_hidden_layers
UpperCAmelCase : Any = num_attention_heads
UpperCAmelCase : Any = intermediate_size
UpperCAmelCase : str = hidden_act
UpperCAmelCase : Optional[Any] = hidden_dropout_prob
UpperCAmelCase : List[Any] = attention_probs_dropout_prob
UpperCAmelCase : List[Any] = max_position_embeddings
UpperCAmelCase : List[Any] = type_vocab_size
UpperCAmelCase : Optional[int] = type_sequence_label_size
UpperCAmelCase : Union[str, Any] = initializer_range
UpperCAmelCase : Dict = coordinate_size
UpperCAmelCase : Optional[int] = shape_size
UpperCAmelCase : Tuple = num_labels
UpperCAmelCase : Tuple = num_choices
UpperCAmelCase : Optional[Any] = scope
UpperCAmelCase : Union[str, Any] = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
UpperCAmelCase : Any = text_seq_length
UpperCAmelCase : Optional[int] = (image_size // patch_size) ** 2 + 1
UpperCAmelCase : str = self.text_seq_length + self.image_seq_length
def _lowercase( self ) -> Any:
UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
UpperCAmelCase : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
UpperCAmelCase : Optional[Any] = bbox[i, j, 3]
UpperCAmelCase : int = bbox[i, j, 1]
UpperCAmelCase : Any = t
if bbox[i, j, 2] < bbox[i, j, 0]:
UpperCAmelCase : List[str] = bbox[i, j, 2]
UpperCAmelCase : List[str] = bbox[i, j, 0]
UpperCAmelCase : int = t
UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : List[Any] = None
if self.use_input_mask:
UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.text_seq_length] )
UpperCAmelCase : Any = None
if self.use_token_type_ids:
UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
UpperCAmelCase : Tuple = None
UpperCAmelCase : Optional[Any] = None
if self.use_labels:
UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
UpperCAmelCase : Any = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def _lowercase( self , A , A , A , A , A , A , A , A ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = LayoutLMvaModel(config=A )
model.to(A )
model.eval()
# text + image
UpperCAmelCase : Dict = model(A , pixel_values=A )
UpperCAmelCase : List[Any] = model(
A , bbox=A , pixel_values=A , attention_mask=A , token_type_ids=A )
UpperCAmelCase : int = model(A , bbox=A , pixel_values=A , token_type_ids=A )
UpperCAmelCase : List[Any] = model(A , bbox=A , pixel_values=A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
UpperCAmelCase : Optional[Any] = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
UpperCAmelCase : Optional[int] = model(pixel_values=A )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def _lowercase( self , A , A , A , A , A , A , A , A ) -> Dict:
UpperCAmelCase : Any = self.num_labels
UpperCAmelCase : List[str] = LayoutLMvaForSequenceClassification(A )
model.to(A )
model.eval()
UpperCAmelCase : Dict = model(
A , bbox=A , pixel_values=A , attention_mask=A , token_type_ids=A , labels=A , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowercase( self , A , A , A , A , A , A , A , A ) -> Optional[Any]:
UpperCAmelCase : Any = self.num_labels
UpperCAmelCase : Optional[Any] = LayoutLMvaForTokenClassification(config=A )
model.to(A )
model.eval()
UpperCAmelCase : int = model(
A , bbox=A , pixel_values=A , attention_mask=A , token_type_ids=A , labels=A , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def _lowercase( self , A , A , A , A , A , A , A , A ) -> Any:
UpperCAmelCase : Optional[Any] = LayoutLMvaForQuestionAnswering(config=A )
model.to(A )
model.eval()
UpperCAmelCase : List[str] = model(
A , bbox=A , pixel_values=A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _lowercase( self ) -> int:
UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs()
(
UpperCAmelCase
) : Optional[int] = config_and_inputs
UpperCAmelCase : Dict = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""pixel_values""": pixel_values,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowercase = False
lowercase = False
lowercase = False
lowercase = (
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
lowercase = (
{'document-question-answering': LayoutLMvaForQuestionAnswering, 'feature-extraction': LayoutLMvaModel}
if is_torch_available()
else {}
)
def _lowercase( self , A , A , A , A , A ) -> str:
# `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual
# embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has
# the sequence dimension of the text embedding only.
# (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`)
return True
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Any = LayoutLMvaModelTester(self )
UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 )
def _lowercase( self , A , A , A=False ) -> Optional[int]:
UpperCAmelCase : Optional[Any] = copy.deepcopy(A )
if model_class in get_values(A ):
UpperCAmelCase : str = {
k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous()
if isinstance(A , torch.Tensor ) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(A ):
UpperCAmelCase : Any = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=A )
elif model_class in get_values(A ):
UpperCAmelCase : Union[str, Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=A )
UpperCAmelCase : Any = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=A )
elif model_class in [
*get_values(A ),
]:
UpperCAmelCase : Dict = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=A )
elif model_class in [
*get_values(A ),
]:
UpperCAmelCase : Union[str, Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=A , )
return inputs_dict
def _lowercase( self ) -> Optional[Any]:
self.config_tester.run_common_tests()
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def _lowercase( self ) -> Any:
UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase : List[Any] = type
self.model_tester.create_and_check_model(*A )
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*A )
def _lowercase( self ) -> int:
UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*A )
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*A )
@slow
def _lowercase( self ) -> int:
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : List[str] = LayoutLMvaModel.from_pretrained(A )
self.assertIsNotNone(A )
def __lowerCamelCase ( ) -> int:
UpperCAmelCase : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
class UpperCamelCase_ ( unittest.TestCase ):
@cached_property
def _lowercase( self ) -> List[Any]:
return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None
@slow
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Union[str, Any] = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(A )
UpperCAmelCase : Dict = self.default_image_processor
UpperCAmelCase : str = prepare_img()
UpperCAmelCase : List[str] = image_processor(images=A , return_tensors="""pt""" ).pixel_values.to(A )
UpperCAmelCase : Tuple = torch.tensor([[1, 2]] )
UpperCAmelCase : Union[str, Any] = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 )
# forward pass
UpperCAmelCase : Dict = model(
input_ids=input_ids.to(A ) , bbox=bbox.to(A ) , pixel_values=pixel_values.to(A ) , )
# verify the logits
UpperCAmelCase : List[Any] = torch.Size((1, 199, 768) )
self.assertEqual(outputs.last_hidden_state.shape , A )
UpperCAmelCase : Tuple = torch.tensor(
[[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(A )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , A , atol=1e-4 ) )
| 351 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel
@require_tf
class UpperCamelCase_ :
lowercase = MBartConfig
lowercase = {}
lowercase = 'gelu'
def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]:
UpperCAmelCase : Optional[int] = parent
UpperCAmelCase : Dict = batch_size
UpperCAmelCase : Tuple = seq_length
UpperCAmelCase : str = is_training
UpperCAmelCase : Optional[int] = use_labels
UpperCAmelCase : Optional[Any] = vocab_size
UpperCAmelCase : Union[str, Any] = hidden_size
UpperCAmelCase : Union[str, Any] = num_hidden_layers
UpperCAmelCase : List[Any] = num_attention_heads
UpperCAmelCase : Optional[int] = intermediate_size
UpperCAmelCase : Dict = hidden_dropout_prob
UpperCAmelCase : int = attention_probs_dropout_prob
UpperCAmelCase : Optional[int] = max_position_embeddings
UpperCAmelCase : Optional[Any] = eos_token_id
UpperCAmelCase : List[str] = pad_token_id
UpperCAmelCase : List[Any] = bos_token_id
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : str = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A )
return config, inputs_dict
def _lowercase( self , A , A ) -> List[str]:
UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder()
UpperCAmelCase : int = inputs_dict["""input_ids"""]
UpperCAmelCase : str = input_ids[:1, :]
UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :]
UpperCAmelCase : List[str] = inputs_dict["""head_mask"""]
UpperCAmelCase : List[Any] = 1
# first forward pass
UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A )
UpperCAmelCase , UpperCAmelCase : Optional[Any] = outputs.to_tuple()
UpperCAmelCase : int = past_key_values[1]
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]:
if attention_mask is None:
UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCAmelCase : int = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
lowercase = (
{
'conversational': TFMBartForConditionalGeneration,
'feature-extraction': TFMBartModel,
'summarization': TFMBartForConditionalGeneration,
'text2text-generation': TFMBartForConditionalGeneration,
'translation': TFMBartForConditionalGeneration,
}
if is_tf_available()
else {}
)
lowercase = True
lowercase = False
lowercase = False
def _lowercase( self , A , A , A , A , A ) -> int:
if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
# Exception encountered when calling layer '...'
return True
return False
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : int = TFMBartModelTester(self )
UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A )
def _lowercase( self ) -> Optional[int]:
self.config_tester.run_common_tests()
def _lowercase( self ) -> Dict:
UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*A )
@require_sentencepiece
@require_tokenizers
@require_tf
class UpperCamelCase_ ( unittest.TestCase ):
lowercase = [
' UN Chief Says There Is No Military Solution in Syria',
]
lowercase = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
]
lowercase = 'facebook/mbart-large-en-ro'
@cached_property
def _lowercase( self ) -> Any:
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def _lowercase( self , **A ) -> Any:
UpperCAmelCase : Optional[int] = self.translate_src_text(**A )
self.assertListEqual(self.expected_text , A )
def _lowercase( self , **A ) -> Optional[Any]:
UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" )
UpperCAmelCase : int = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 )
UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A )
return generated_words
@slow
def _lowercase( self ) -> List[Any]:
self._assert_generated_batch_equal_expected()
| 338 | 0 |
'''simple docstring'''
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class UpperCamelCase_ ( __magic_name__ ):
lowercase = (DEISMultistepScheduler,)
lowercase = (('num_inference_steps', 25),)
def _lowercase( self , **A ) -> str:
UpperCAmelCase : Any = {
"""num_train_timesteps""": 1000,
"""beta_start""": 0.0_0_0_1,
"""beta_end""": 0.0_2,
"""beta_schedule""": """linear""",
"""solver_order""": 2,
}
config.update(**A )
return config
def _lowercase( self , A=0 , **A ) -> Any:
UpperCAmelCase : str = dict(self.forward_default_kwargs )
UpperCAmelCase : Any = kwargs.pop("""num_inference_steps""" , A )
UpperCAmelCase : List[Any] = self.dummy_sample
UpperCAmelCase : Optional[int] = 0.1 * sample
UpperCAmelCase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase : Optional[int] = self.get_scheduler_config(**A )
UpperCAmelCase : str = scheduler_class(**A )
scheduler.set_timesteps(A )
# copy over dummy past residuals
UpperCAmelCase : Union[str, Any] = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(A )
UpperCAmelCase : Dict = scheduler_class.from_pretrained(A )
new_scheduler.set_timesteps(A )
# copy over dummy past residuals
UpperCAmelCase : Any = dummy_past_residuals[: new_scheduler.config.solver_order]
UpperCAmelCase : Optional[Any] = sample, sample
for t in range(A , time_step + scheduler.config.solver_order + 1 ):
UpperCAmelCase : int = scheduler.step(A , A , A , **A ).prev_sample
UpperCAmelCase : Any = new_scheduler.step(A , A , A , **A ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def _lowercase( self ) -> Optional[Any]:
pass
def _lowercase( self , A=0 , **A ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = dict(self.forward_default_kwargs )
UpperCAmelCase : Union[str, Any] = kwargs.pop("""num_inference_steps""" , A )
UpperCAmelCase : Optional[int] = self.dummy_sample
UpperCAmelCase : Tuple = 0.1 * sample
UpperCAmelCase : Any = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase : Any = self.get_scheduler_config()
UpperCAmelCase : str = scheduler_class(**A )
scheduler.set_timesteps(A )
# copy over dummy past residuals (must be after setting timesteps)
UpperCAmelCase : Any = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(A )
UpperCAmelCase : Optional[int] = scheduler_class.from_pretrained(A )
# copy over dummy past residuals
new_scheduler.set_timesteps(A )
# copy over dummy past residual (must be after setting timesteps)
UpperCAmelCase : List[str] = dummy_past_residuals[: new_scheduler.config.solver_order]
UpperCAmelCase : int = scheduler.step(A , A , A , **A ).prev_sample
UpperCAmelCase : Tuple = new_scheduler.step(A , A , A , **A ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def _lowercase( self , A=None , **A ) -> int:
if scheduler is None:
UpperCAmelCase : List[str] = self.scheduler_classes[0]
UpperCAmelCase : Optional[Any] = self.get_scheduler_config(**A )
UpperCAmelCase : int = scheduler_class(**A )
UpperCAmelCase : List[Any] = self.scheduler_classes[0]
UpperCAmelCase : Dict = self.get_scheduler_config(**A )
UpperCAmelCase : Any = scheduler_class(**A )
UpperCAmelCase : Any = 10
UpperCAmelCase : int = self.dummy_model()
UpperCAmelCase : str = self.dummy_sample_deter
scheduler.set_timesteps(A )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase : List[str] = model(A , A )
UpperCAmelCase : str = scheduler.step(A , A , A ).prev_sample
return sample
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : List[Any] = dict(self.forward_default_kwargs )
UpperCAmelCase : List[str] = kwargs.pop("""num_inference_steps""" , A )
for scheduler_class in self.scheduler_classes:
UpperCAmelCase : Union[str, Any] = self.get_scheduler_config()
UpperCAmelCase : Any = scheduler_class(**A )
UpperCAmelCase : str = self.dummy_sample
UpperCAmelCase : List[str] = 0.1 * sample
if num_inference_steps is not None and hasattr(A , """set_timesteps""" ):
scheduler.set_timesteps(A )
elif num_inference_steps is not None and not hasattr(A , """set_timesteps""" ):
UpperCAmelCase : Optional[int] = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
UpperCAmelCase : List[str] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
UpperCAmelCase : int = dummy_past_residuals[: scheduler.config.solver_order]
UpperCAmelCase : Optional[int] = scheduler.timesteps[5]
UpperCAmelCase : List[Any] = scheduler.timesteps[6]
UpperCAmelCase : Dict = scheduler.step(A , A , A , **A ).prev_sample
UpperCAmelCase : Tuple = scheduler.step(A , A , A , **A ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def _lowercase( self ) -> List[str]:
# make sure that iterating over schedulers with same config names gives same results
# for defaults
UpperCAmelCase : int = DEISMultistepScheduler(**self.get_scheduler_config() )
UpperCAmelCase : int = self.full_loop(scheduler=A )
UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(A ) )
assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3
UpperCAmelCase : Optional[int] = DPMSolverSinglestepScheduler.from_config(scheduler.config )
UpperCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(scheduler.config )
UpperCAmelCase : List[Any] = UniPCMultistepScheduler.from_config(scheduler.config )
UpperCAmelCase : int = DEISMultistepScheduler.from_config(scheduler.config )
UpperCAmelCase : Optional[Any] = self.full_loop(scheduler=A )
UpperCAmelCase : str = torch.mean(torch.abs(A ) )
assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3
def _lowercase( self ) -> List[str]:
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=A )
def _lowercase( self ) -> Tuple:
self.check_over_configs(thresholding=A )
for order in [1, 2, 3]:
for solver_type in ["logrho"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=A , prediction_type=A , sample_max_value=A , algorithm_type="""deis""" , solver_order=A , solver_type=A , )
def _lowercase( self ) -> List[str]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=A )
def _lowercase( self ) -> Union[str, Any]:
for algorithm_type in ["deis"]:
for solver_type in ["logrho"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=A , solver_type=A , prediction_type=A , algorithm_type=A , )
UpperCAmelCase : Dict = self.full_loop(
solver_order=A , solver_type=A , prediction_type=A , algorithm_type=A , )
assert not torch.isnan(A ).any(), "Samples have nan numbers"
def _lowercase( self ) -> List[Any]:
self.check_over_configs(lower_order_final=A )
self.check_over_configs(lower_order_final=A )
def _lowercase( self ) -> Any:
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=A , time_step=0 )
def _lowercase( self ) -> Any:
UpperCAmelCase : List[Any] = self.full_loop()
UpperCAmelCase : Any = torch.mean(torch.abs(A ) )
assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Tuple = self.full_loop(prediction_type="""v_prediction""" )
UpperCAmelCase : Tuple = torch.mean(torch.abs(A ) )
assert abs(result_mean.item() - 0.0_9_1 ) < 1e-3
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : List[Any] = self.scheduler_classes[0]
UpperCAmelCase : List[Any] = self.get_scheduler_config(thresholding=A , dynamic_thresholding_ratio=0 )
UpperCAmelCase : Any = scheduler_class(**A )
UpperCAmelCase : List[Any] = 10
UpperCAmelCase : List[Any] = self.dummy_model()
UpperCAmelCase : List[Any] = self.dummy_sample_deter.half()
scheduler.set_timesteps(A )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase : Any = model(A , A )
UpperCAmelCase : Tuple = scheduler.step(A , A , A ).prev_sample
assert sample.dtype == torch.floataa
| 352 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase , _lowercase ) -> bool:
UpperCAmelCase : Tuple = len(_lowercase ) + 1
UpperCAmelCase : List[Any] = len(_lowercase ) + 1
# dp is a 2d matrix where dp[i][j] denotes whether prefix string of
# length i of input_string matches with prefix string of length j of
# given pattern.
# "dp" stands for dynamic programming.
UpperCAmelCase : str = [[0 for i in range(_lowercase )] for j in range(_lowercase )]
# since string of zero length match pattern of zero length
UpperCAmelCase : int = 1
# since pattern of zero length will never match with string of non-zero length
for i in range(1 , _lowercase ):
UpperCAmelCase : str = 0
# since string of zero length will match with pattern where there
# is at least one * alternatively
for j in range(1 , _lowercase ):
UpperCAmelCase : Optional[Any] = dp[0][j - 2] if pattern[j - 1] == """*""" else 0
# now using bottom-up approach to find for all remaining lengths
for i in range(1 , _lowercase ):
for j in range(1 , _lowercase ):
if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".":
UpperCAmelCase : Union[str, Any] = dp[i - 1][j - 1]
elif pattern[j - 1] == "*":
if dp[i][j - 2] == 1:
UpperCAmelCase : List[Any] = 1
elif pattern[j - 2] in (input_string[i - 1], "."):
UpperCAmelCase : Optional[int] = dp[i - 1][j]
else:
UpperCAmelCase : Any = 0
else:
UpperCAmelCase : str = 0
return bool(dp[-1][-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
# inputing the strings
# input_string = input("input a string :")
# pattern = input("input a pattern :")
a : List[str] = """aab"""
a : Optional[int] = """c*a*b"""
# using function to check whether given string matches the given pattern
if match_pattern(input_string, pattern):
print(F'''{input_string} matches the given pattern {pattern}''')
else:
print(F'''{input_string} does not match with the given pattern {pattern}''')
| 338 | 0 |
'''simple docstring'''
import random
import unittest
from torch.utils.data import BatchSampler, DataLoader, IterableDataset
from accelerate import Accelerator
from accelerate.data_loader import (
BatchSamplerShard,
DataLoaderDispatcher,
DataLoaderShard,
IterableDatasetShard,
SkipBatchSampler,
SkipDataLoader,
skip_first_batches,
)
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , A=0.0_1 , A=1000 ) -> List[str]:
UpperCAmelCase : List[Any] = p_stop
UpperCAmelCase : Optional[int] = max_length
def __iter__( self ) -> Union[str, Any]:
UpperCAmelCase : Dict = 0
UpperCAmelCase : Union[str, Any] = False
while not stop and count < self.max_length:
yield count
count += 1
UpperCAmelCase : Any = random.random() < self.p_stop
class UpperCamelCase_ ( unittest.TestCase ):
def _lowercase( self , A , A , A=False , A=True ) -> Union[str, Any]:
UpperCAmelCase : List[str] = [
BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A )
for i in range(2 )
]
UpperCAmelCase : List[str] = [list(A ) for batch_sampler_shard in batch_sampler_shards]
if not split_batches:
self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] )
self.assertListEqual(A , A )
def _lowercase( self ) -> Union[str, Any]:
# Check the shards when the dataset is a round multiple of total batch size.
UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Any = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A )
# Expected shouldn't change
self.check_batch_sampler_shards(A , A )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]],
]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Tuple = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]],
]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : List[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]],
]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : int = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A )
# Check the shards when the dataset is very small.
UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : List[Any] = [[], []]
self.check_batch_sampler_shards(A , A )
def _lowercase( self ) -> Tuple:
# Check the shards when the dataset is a round multiple of batch size.
UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : List[str] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A )
# Expected shouldn't change
self.check_batch_sampler_shards(A , A , split_batches=A )
# Check the shards when the dataset is not a round multiple of batch size.
UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : List[str] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Union[str, Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Any = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
# Check the shards when the dataset is very small.
UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Optional[Any] = [[[0, 1]], [[0, 1]]]
self.check_batch_sampler_shards(A , A , split_batches=A )
UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Any = [[], []]
self.check_batch_sampler_shards(A , A , split_batches=A )
def _lowercase( self ) -> Any:
# Check the shards when the dataset is a round multiple of total batch size.
UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A )
# Expected shouldn't change
self.check_batch_sampler_shards(A , A , even_batches=A )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : List[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Dict = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
UpperCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Union[str, Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
# Check the shards when the dataset is very small.
UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : str = [[[0, 1]], []]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Tuple = [[], []]
self.check_batch_sampler_shards(A , A , even_batches=A )
def _lowercase( self ) -> List[Any]:
# Check the shards when the dataset is a round multiple of batch size.
UpperCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : List[Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A )
# Expected shouldn't change
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
# Check the shards when the dataset is not a round multiple of batch size.
UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Optional[Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Dict = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Union[str, Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Dict = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
# Check the shards when the dataset is very small.
UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Dict = [[[0, 1]], []]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Dict = [[], []]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]]
UpperCAmelCase : List[str] = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )]
self.assertEqual(len(batch_sampler_shards[0] ) , 3 )
self.assertEqual(len(batch_sampler_shards[1] ) , 2 )
self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] )
self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] )
def _lowercase( self , A , A , A , A=False , A=2 , A=False ) -> Tuple:
random.seed(A )
UpperCAmelCase : Dict = list(A )
UpperCAmelCase : Any = [
IterableDatasetShard(
A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , )
for i in range(A )
]
UpperCAmelCase : Dict = []
for iterable_dataset_shard in iterable_dataset_shards:
# Since our random iterable dataset will be... random... we need to use a seed to get reproducible results.
random.seed(A )
iterable_dataset_lists.append(list(A ) )
UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size
# All iterable dataset shard should have the same length, a round multiple of shard_batch_size
UpperCAmelCase : List[Any] = iterable_dataset_lists[0]
for l in iterable_dataset_lists[1:]:
self.assertEqual(len(A ) , len(A ) )
self.assertTrue(len(A ) % shard_batch_size == 0 )
UpperCAmelCase : List[Any] = []
for idx in range(0 , len(A ) , A ):
for l in iterable_dataset_lists:
observed += l[idx : idx + shard_batch_size]
if not drop_last:
while len(A ) < len(A ):
reference += reference
self.assertListEqual(A , reference[: len(A )] )
def _lowercase( self ) -> str:
UpperCAmelCase : Tuple = 42
UpperCAmelCase : List[Any] = RandomIterableDataset()
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
# Edge case with a very small dataset
UpperCAmelCase : List[Any] = RandomIterableDataset(max_length=2 )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Any = SkipBatchSampler(A , 2 )
self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowercase( self ) -> int:
UpperCAmelCase : Any = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 )
self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : List[Any] = DataLoader(list(range(16 ) ) , batch_size=4 )
UpperCAmelCase : Optional[Any] = skip_first_batches(A , num_batches=2 )
self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 )
for idx, _ in enumerate(A ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(A ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
def _lowercase( self ) -> Dict:
Accelerator()
UpperCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 )
for idx, _ in enumerate(A ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(A ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
| 353 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase ) -> int:
UpperCAmelCase : List[str] = 0
while num > 0:
digit_sum += num % 1_0
num //= 1_0
return digit_sum
def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int:
UpperCAmelCase : int = 1
UpperCAmelCase : str = 2
for i in range(2 , max_n + 1 ):
UpperCAmelCase : Tuple = pre_numerator
UpperCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1
UpperCAmelCase : Union[str, Any] = cur_numerator
UpperCAmelCase : Optional[int] = e_cont * pre_numerator + temp
return sum_digits(_lowercase )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 338 | 0 |
'''simple docstring'''
from __future__ import annotations
def __lowerCamelCase ( _lowercase ) -> bool:
return len(set(_lowercase ) ) == len(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 354 |
'''simple docstring'''
import random
import unittest
from torch.utils.data import BatchSampler, DataLoader, IterableDataset
from accelerate import Accelerator
from accelerate.data_loader import (
BatchSamplerShard,
DataLoaderDispatcher,
DataLoaderShard,
IterableDatasetShard,
SkipBatchSampler,
SkipDataLoader,
skip_first_batches,
)
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , A=0.0_1 , A=1000 ) -> List[str]:
UpperCAmelCase : List[Any] = p_stop
UpperCAmelCase : Optional[int] = max_length
def __iter__( self ) -> Union[str, Any]:
UpperCAmelCase : Dict = 0
UpperCAmelCase : Union[str, Any] = False
while not stop and count < self.max_length:
yield count
count += 1
UpperCAmelCase : Any = random.random() < self.p_stop
class UpperCamelCase_ ( unittest.TestCase ):
def _lowercase( self , A , A , A=False , A=True ) -> Union[str, Any]:
UpperCAmelCase : List[str] = [
BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A )
for i in range(2 )
]
UpperCAmelCase : List[str] = [list(A ) for batch_sampler_shard in batch_sampler_shards]
if not split_batches:
self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] )
self.assertListEqual(A , A )
def _lowercase( self ) -> Union[str, Any]:
# Check the shards when the dataset is a round multiple of total batch size.
UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Any = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A )
# Expected shouldn't change
self.check_batch_sampler_shards(A , A )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]],
]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Tuple = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]],
]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : List[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]],
]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : int = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A )
# Check the shards when the dataset is very small.
UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : List[Any] = [[], []]
self.check_batch_sampler_shards(A , A )
def _lowercase( self ) -> Tuple:
# Check the shards when the dataset is a round multiple of batch size.
UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : List[str] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A )
# Expected shouldn't change
self.check_batch_sampler_shards(A , A , split_batches=A )
# Check the shards when the dataset is not a round multiple of batch size.
UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : List[str] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Union[str, Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Any = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
# Check the shards when the dataset is very small.
UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Optional[Any] = [[[0, 1]], [[0, 1]]]
self.check_batch_sampler_shards(A , A , split_batches=A )
UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Any = [[], []]
self.check_batch_sampler_shards(A , A , split_batches=A )
def _lowercase( self ) -> Any:
# Check the shards when the dataset is a round multiple of total batch size.
UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A )
# Expected shouldn't change
self.check_batch_sampler_shards(A , A , even_batches=A )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : List[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Dict = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
UpperCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Union[str, Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
# Check the shards when the dataset is very small.
UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : str = [[[0, 1]], []]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Tuple = [[], []]
self.check_batch_sampler_shards(A , A , even_batches=A )
def _lowercase( self ) -> List[Any]:
# Check the shards when the dataset is a round multiple of batch size.
UpperCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : List[Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A )
# Expected shouldn't change
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
# Check the shards when the dataset is not a round multiple of batch size.
UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Optional[Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Dict = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Union[str, Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Dict = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
# Check the shards when the dataset is very small.
UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Dict = [[[0, 1]], []]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Dict = [[], []]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]]
UpperCAmelCase : List[str] = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )]
self.assertEqual(len(batch_sampler_shards[0] ) , 3 )
self.assertEqual(len(batch_sampler_shards[1] ) , 2 )
self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] )
self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] )
def _lowercase( self , A , A , A , A=False , A=2 , A=False ) -> Tuple:
random.seed(A )
UpperCAmelCase : Dict = list(A )
UpperCAmelCase : Any = [
IterableDatasetShard(
A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , )
for i in range(A )
]
UpperCAmelCase : Dict = []
for iterable_dataset_shard in iterable_dataset_shards:
# Since our random iterable dataset will be... random... we need to use a seed to get reproducible results.
random.seed(A )
iterable_dataset_lists.append(list(A ) )
UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size
# All iterable dataset shard should have the same length, a round multiple of shard_batch_size
UpperCAmelCase : List[Any] = iterable_dataset_lists[0]
for l in iterable_dataset_lists[1:]:
self.assertEqual(len(A ) , len(A ) )
self.assertTrue(len(A ) % shard_batch_size == 0 )
UpperCAmelCase : List[Any] = []
for idx in range(0 , len(A ) , A ):
for l in iterable_dataset_lists:
observed += l[idx : idx + shard_batch_size]
if not drop_last:
while len(A ) < len(A ):
reference += reference
self.assertListEqual(A , reference[: len(A )] )
def _lowercase( self ) -> str:
UpperCAmelCase : Tuple = 42
UpperCAmelCase : List[Any] = RandomIterableDataset()
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
# Edge case with a very small dataset
UpperCAmelCase : List[Any] = RandomIterableDataset(max_length=2 )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Any = SkipBatchSampler(A , 2 )
self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowercase( self ) -> int:
UpperCAmelCase : Any = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 )
self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : List[Any] = DataLoader(list(range(16 ) ) , batch_size=4 )
UpperCAmelCase : Optional[Any] = skip_first_batches(A , num_batches=2 )
self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 )
for idx, _ in enumerate(A ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(A ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
def _lowercase( self ) -> Dict:
Accelerator()
UpperCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 )
for idx, _ in enumerate(A ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(A ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
| 338 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_torch_available,
)
a : List[str] = {
"""configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""],
"""processing_trocr""": ["""TrOCRProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Any = [
"""TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TrOCRForCausalLM""",
"""TrOCRPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig
from .processing_trocr import TrOCRProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
else:
import sys
a : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 355 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
a : List[Any] = {
"""configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""],
"""tokenization_m2m_100""": ["""M2M100Tokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Any = [
"""M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""M2M100ForConditionalGeneration""",
"""M2M100Model""",
"""M2M100PreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 338 | 0 |
'''simple docstring'''
import os
import time
import warnings
from dataclasses import dataclass, field
from enum import Enum
from typing import List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import logging
from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors
from ..processors.utils import InputFeatures
a : Tuple = logging.get_logger(__name__)
@dataclass
class UpperCamelCase_ :
lowercase = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} )
lowercase = field(
metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} )
lowercase = field(
default=128 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
lowercase = field(
default=__magic_name__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} )
def _lowercase( self ) -> Dict:
UpperCAmelCase : List[str] = self.task_name.lower()
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'train'
lowercase = 'dev'
lowercase = 'test'
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 42
lowercase = 42
lowercase = 42
def __init__( self , A , A , A = None , A = Split.train , A = None , ) -> Any:
warnings.warn(
"""This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """
"""library. You can have a look at this example script for pointers: """
"""https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , A , )
UpperCAmelCase : Dict = args
UpperCAmelCase : Tuple = glue_processors[args.task_name]()
UpperCAmelCase : Dict = glue_output_modes[args.task_name]
if isinstance(A , A ):
try:
UpperCAmelCase : Any = Split[mode]
except KeyError:
raise KeyError("""mode is not a valid split name""" )
# Load data features from cache or dataset file
UpperCAmelCase : Tuple = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , )
UpperCAmelCase : str = self.processor.get_labels()
if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in (
"RobertaTokenizer",
"RobertaTokenizerFast",
"XLMRobertaTokenizer",
"BartTokenizer",
"BartTokenizerFast",
):
# HACK(label indices are swapped in RoBERTa pretrained model)
UpperCAmelCase : Union[str, Any] = label_list[2], label_list[1]
UpperCAmelCase : Tuple = label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
UpperCAmelCase : Optional[Any] = cached_features_file + """.lock"""
with FileLock(A ):
if os.path.exists(A ) and not args.overwrite_cache:
UpperCAmelCase : int = time.time()
UpperCAmelCase : str = torch.load(A )
logger.info(
f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start )
else:
logger.info(f'''Creating features from dataset file at {args.data_dir}''' )
if mode == Split.dev:
UpperCAmelCase : str = self.processor.get_dev_examples(args.data_dir )
elif mode == Split.test:
UpperCAmelCase : Dict = self.processor.get_test_examples(args.data_dir )
else:
UpperCAmelCase : Tuple = self.processor.get_train_examples(args.data_dir )
if limit_length is not None:
UpperCAmelCase : int = examples[:limit_length]
UpperCAmelCase : str = glue_convert_examples_to_features(
A , A , max_length=args.max_seq_length , label_list=A , output_mode=self.output_mode , )
UpperCAmelCase : Union[str, Any] = time.time()
torch.save(self.features , A )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' )
def __len__( self ) -> List[Any]:
return len(self.features )
def __getitem__( self , A ) -> InputFeatures:
return self.features[i]
def _lowercase( self ) -> Optional[Any]:
return self.label_list
| 356 |
'''simple docstring'''
from math import loga
def __lowerCamelCase ( _lowercase ) -> int:
if a < 0:
raise ValueError("""Input value must be a positive integer""" )
elif isinstance(_lowercase , _lowercase ):
raise TypeError("""Input value must be a 'int' type""" )
return 0 if (a == 0) else int(loga(a & -a ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 338 | 0 |
'''simple docstring'''
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class UpperCamelCase_ :
def __init__( self , A , A=3 , A=32 , A=3 , A=10 , A=[8, 16, 32, 64] , A=[1, 1, 2, 1] , A=True , A=True , A="relu" , A=3 , A=None , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=1 , ) -> Dict:
UpperCAmelCase : Optional[int] = parent
UpperCAmelCase : List[str] = batch_size
UpperCAmelCase : int = image_size
UpperCAmelCase : Dict = num_channels
UpperCAmelCase : int = embeddings_size
UpperCAmelCase : Optional[Any] = hidden_sizes
UpperCAmelCase : Optional[Any] = depths
UpperCAmelCase : Optional[Any] = is_training
UpperCAmelCase : List[str] = use_labels
UpperCAmelCase : Dict = hidden_act
UpperCAmelCase : Union[str, Any] = num_labels
UpperCAmelCase : Union[str, Any] = scope
UpperCAmelCase : Optional[Any] = len(A )
UpperCAmelCase : Any = out_features
UpperCAmelCase : Optional[Any] = out_indices
UpperCAmelCase : str = num_groups
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : Any = None
if self.use_labels:
UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_labels )
UpperCAmelCase : int = self.get_config()
return config, pixel_values, labels
def _lowercase( self ) -> str:
return BitConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , )
def _lowercase( self , A , A , A ) -> Union[str, Any]:
UpperCAmelCase : Optional[Any] = BitModel(config=A )
model.to(A )
model.eval()
UpperCAmelCase : List[str] = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _lowercase( self , A , A , A ) -> Any:
UpperCAmelCase : Any = self.num_labels
UpperCAmelCase : int = BitForImageClassification(A )
model.to(A )
model.eval()
UpperCAmelCase : List[str] = model(A , labels=A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowercase( self , A , A , A ) -> Union[str, Any]:
UpperCAmelCase : Optional[Any] = BitBackbone(config=A )
model.to(A )
model.eval()
UpperCAmelCase : Dict = model(A )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
UpperCAmelCase : Tuple = None
UpperCAmelCase : Tuple = BitBackbone(config=A )
model.to(A )
model.eval()
UpperCAmelCase : List[Any] = model(A )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def _lowercase( self ) -> int:
UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
UpperCAmelCase : List[str] = config_and_inputs
UpperCAmelCase : Tuple = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowercase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
lowercase = (
{'feature-extraction': BitModel, 'image-classification': BitForImageClassification}
if is_torch_available()
else {}
)
lowercase = False
lowercase = False
lowercase = False
lowercase = False
lowercase = False
def _lowercase( self ) -> Dict:
UpperCAmelCase : Union[str, Any] = BitModelTester(self )
UpperCAmelCase : Union[str, Any] = ConfigTester(self , config_class=A , has_text_modality=A )
def _lowercase( self ) -> List[Any]:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _lowercase( self ) -> List[str]:
return
@unittest.skip(reason="""Bit does not output attentions""" )
def _lowercase( self ) -> Optional[Any]:
pass
@unittest.skip(reason="""Bit does not use inputs_embeds""" )
def _lowercase( self ) -> List[Any]:
pass
@unittest.skip(reason="""Bit does not support input and output embeddings""" )
def _lowercase( self ) -> str:
pass
def _lowercase( self ) -> List[str]:
UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : Optional[int] = model_class(A )
UpperCAmelCase : List[str] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase : Tuple = [*signature.parameters.keys()]
UpperCAmelCase : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , A )
def _lowercase( self ) -> Any:
UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*A )
def _lowercase( self ) -> Any:
UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : Optional[Any] = model_class(config=A )
for name, module in model.named_modules():
if isinstance(A , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , )
def _lowercase( self ) -> Tuple:
def check_hidden_states_output(A , A , A ):
UpperCAmelCase : int = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
UpperCAmelCase : int = model(**self._prepare_for_class(A , A ) )
UpperCAmelCase : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCAmelCase : Tuple = self.model_tester.num_stages
self.assertEqual(len(A ) , expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : List[str] = ["""preactivation""", """bottleneck"""]
for model_class in self.all_model_classes:
for layer_type in layers_type:
UpperCAmelCase : Optional[Any] = layer_type
UpperCAmelCase : int = True
check_hidden_states_output(A , A , A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase : List[str] = True
check_hidden_states_output(A , A , A )
@unittest.skip(reason="""Bit does not use feedforward chunking""" )
def _lowercase( self ) -> Optional[Any]:
pass
def _lowercase( self ) -> int:
UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
@slow
def _lowercase( self ) -> Tuple:
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : Union[str, Any] = BitModel.from_pretrained(A )
self.assertIsNotNone(A )
def __lowerCamelCase ( ) -> Optional[Any]:
UpperCAmelCase : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class UpperCamelCase_ ( unittest.TestCase ):
@cached_property
def _lowercase( self ) -> Optional[Any]:
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def _lowercase( self ) -> List[str]:
UpperCAmelCase : Tuple = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(A )
UpperCAmelCase : int = self.default_image_processor
UpperCAmelCase : Tuple = prepare_img()
UpperCAmelCase : Any = image_processor(images=A , return_tensors="""pt""" ).to(A )
# forward pass
with torch.no_grad():
UpperCAmelCase : Union[str, Any] = model(**A )
# verify the logits
UpperCAmelCase : Tuple = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , A )
UpperCAmelCase : Dict = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) )
@require_torch
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = (BitBackbone,) if is_torch_available() else ()
lowercase = BitConfig
lowercase = False
def _lowercase( self ) -> int:
UpperCAmelCase : Dict = BitModelTester(self )
| 357 |
'''simple docstring'''
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
a : Optional[int] = 1_0
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int:
for i in range(_lowercase , _lowercase ):
if array[i] == target:
return i
return -1
def __lowerCamelCase ( _lowercase , _lowercase ) -> int:
UpperCAmelCase : Tuple = 0
UpperCAmelCase : List[str] = len(_lowercase )
while left <= right:
if right - left < precision:
return lin_search(_lowercase , _lowercase , _lowercase , _lowercase )
UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1
UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
UpperCAmelCase : Any = one_third - 1
elif array[two_third] < target:
UpperCAmelCase : Tuple = two_third + 1
else:
UpperCAmelCase : int = one_third + 1
UpperCAmelCase : List[Any] = two_third - 1
else:
return -1
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int:
if left < right:
if right - left < precision:
return lin_search(_lowercase , _lowercase , _lowercase , _lowercase )
UpperCAmelCase : str = (left + right) // 3 + 1
UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
a : Any = input("""Enter numbers separated by comma:\n""").strip()
a : Any = [int(item.strip()) for item in user_input.split(""",""")]
assert collection == sorted(collection), F"List must be ordered.\n{collection}."
a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip())
a : Union[str, Any] = ite_ternary_search(collection, target)
a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(F'''Iterative search: {target} found at positions: {resulta}''')
print(F'''Recursive search: {target} found at positions: {resulta}''')
else:
print("""Not found""")
| 338 | 0 |
'''simple docstring'''
import torch
from diffusers import DPMSolverSDEScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import require_torchsde
from .test_schedulers import SchedulerCommonTest
@require_torchsde
class UpperCamelCase_ ( __magic_name__ ):
lowercase = (DPMSolverSDEScheduler,)
lowercase = 10
def _lowercase( self , **A ) -> Optional[int]:
UpperCAmelCase : Any = {
"""num_train_timesteps""": 1100,
"""beta_start""": 0.0_0_0_1,
"""beta_end""": 0.0_2,
"""beta_schedule""": """linear""",
"""noise_sampler_seed""": 0,
}
config.update(**A )
return config
def _lowercase( self ) -> Optional[int]:
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=A )
def _lowercase( self ) -> Optional[Any]:
for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ):
self.check_over_configs(beta_start=A , beta_end=A )
def _lowercase( self ) -> int:
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=A )
def _lowercase( self ) -> str:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=A )
def _lowercase( self ) -> str:
UpperCAmelCase : str = self.scheduler_classes[0]
UpperCAmelCase : Dict = self.get_scheduler_config()
UpperCAmelCase : str = scheduler_class(**A )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase : Optional[Any] = self.dummy_model()
UpperCAmelCase : int = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase : Tuple = sample.to(A )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase : Union[str, Any] = scheduler.scale_model_input(A , A )
UpperCAmelCase : Optional[Any] = model(A , A )
UpperCAmelCase : Dict = scheduler.step(A , A , A )
UpperCAmelCase : Tuple = output.prev_sample
UpperCAmelCase : Tuple = torch.sum(torch.abs(A ) )
UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(A ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 167.47821044921875 ) < 1e-2
assert abs(result_mean.item() - 0.2_1_7_8_7_0_5_9_6_4_5_6_5_2_7_7 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 171.59352111816406 ) < 1e-2
assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_6_8_9_2_2_9_9_6_5_2 ) < 1e-3
else:
assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2
assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1e-3
def _lowercase( self ) -> Any:
UpperCAmelCase : List[str] = self.scheduler_classes[0]
UpperCAmelCase : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""" )
UpperCAmelCase : Optional[int] = scheduler_class(**A )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase : int = self.dummy_model()
UpperCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase : Dict = sample.to(A )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase : int = scheduler.scale_model_input(A , A )
UpperCAmelCase : str = model(A , A )
UpperCAmelCase : Tuple = scheduler.step(A , A , A )
UpperCAmelCase : Optional[int] = output.prev_sample
UpperCAmelCase : Any = torch.sum(torch.abs(A ) )
UpperCAmelCase : List[Any] = torch.mean(torch.abs(A ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 124.77149200439453 ) < 1e-2
assert abs(result_mean.item() - 0.1_6_2_2_6_2_8_9_0_1_4_8_1_6_2_8_4 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 128.1663360595703 ) < 1e-2
assert abs(result_mean.item() - 0.1_6_6_8_8_3_2_6_0_0_1_1_6_7_2_9_7 ) < 1e-3
else:
assert abs(result_sum.item() - 119.8487548828125 ) < 1e-2
assert abs(result_mean.item() - 0.1_5_6_0_5_3_0_6_6_2_5_3_6_6_2_1 ) < 1e-3
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Tuple = self.scheduler_classes[0]
UpperCAmelCase : List[str] = self.get_scheduler_config()
UpperCAmelCase : Tuple = scheduler_class(**A )
scheduler.set_timesteps(self.num_inference_steps , device=A )
UpperCAmelCase : Tuple = self.dummy_model()
UpperCAmelCase : Tuple = self.dummy_sample_deter.to(A ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
UpperCAmelCase : Any = scheduler.scale_model_input(A , A )
UpperCAmelCase : Dict = model(A , A )
UpperCAmelCase : Union[str, Any] = scheduler.step(A , A , A )
UpperCAmelCase : Dict = output.prev_sample
UpperCAmelCase : List[Any] = torch.sum(torch.abs(A ) )
UpperCAmelCase : Dict = torch.mean(torch.abs(A ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 167.46957397460938 ) < 1e-2
assert abs(result_mean.item() - 0.2_1_8_0_5_9_3_4_6_0_7_9_8_2_6_3_5 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 171.59353637695312 ) < 1e-2
assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_8_3_8_2_4_1_5_7_7_1 ) < 1e-3
else:
assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2
assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1e-3
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Optional[Any] = self.scheduler_classes[0]
UpperCAmelCase : Optional[int] = self.get_scheduler_config()
UpperCAmelCase : str = scheduler_class(**A , use_karras_sigmas=A )
scheduler.set_timesteps(self.num_inference_steps , device=A )
UpperCAmelCase : Dict = self.dummy_model()
UpperCAmelCase : List[str] = self.dummy_sample_deter.to(A ) * scheduler.init_noise_sigma
UpperCAmelCase : Any = sample.to(A )
for t in scheduler.timesteps:
UpperCAmelCase : Optional[Any] = scheduler.scale_model_input(A , A )
UpperCAmelCase : Tuple = model(A , A )
UpperCAmelCase : Optional[Any] = scheduler.step(A , A , A )
UpperCAmelCase : Dict = output.prev_sample
UpperCAmelCase : Dict = torch.sum(torch.abs(A ) )
UpperCAmelCase : Any = torch.mean(torch.abs(A ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 176.66974135742188 ) < 1e-2
assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1e-2
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 177.63653564453125 ) < 1e-2
assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1e-2
else:
assert abs(result_sum.item() - 170.3135223388672 ) < 1e-2
assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1e-2
| 358 |
'''simple docstring'''
import numpy as np
class UpperCamelCase_ :
def __init__( self ) -> int:
UpperCAmelCase : str = (0, 0)
UpperCAmelCase : Union[str, Any] = None
UpperCAmelCase : Any = 0
UpperCAmelCase : int = 0
UpperCAmelCase : Optional[int] = 0
def __eq__( self , A ) -> Optional[Any]:
return self.position == cell.position
def _lowercase( self ) -> Tuple:
print(self.position )
class UpperCamelCase_ :
def __init__( self , A=(5, 5) ) -> Optional[Any]:
UpperCAmelCase : Union[str, Any] = np.zeros(A )
UpperCAmelCase : int = world_size[0]
UpperCAmelCase : List[str] = world_size[1]
def _lowercase( self ) -> List[Any]:
print(self.w )
def _lowercase( self , A ) -> Dict:
UpperCAmelCase : Optional[Any] = [
(-1, -1),
(-1, 0),
(-1, 1),
(0, -1),
(0, 1),
(1, -1),
(1, 0),
(1, 1),
]
UpperCAmelCase : List[Any] = cell.position[0]
UpperCAmelCase : Union[str, Any] = cell.position[1]
UpperCAmelCase : Optional[int] = []
for n in neughbour_cord:
UpperCAmelCase : Any = current_x + n[0]
UpperCAmelCase : Tuple = current_y + n[1]
if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit:
UpperCAmelCase : str = Cell()
UpperCAmelCase : List[str] = (x, y)
UpperCAmelCase : Dict = cell
neighbours.append(A )
return neighbours
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int:
UpperCAmelCase : List[Any] = []
UpperCAmelCase : Optional[int] = []
_open.append(_lowercase )
while _open:
UpperCAmelCase : Any = np.argmin([n.f for n in _open] )
UpperCAmelCase : Optional[int] = _open[min_f]
_closed.append(_open.pop(_lowercase ) )
if current == goal:
break
for n in world.get_neigbours(_lowercase ):
for c in _closed:
if c == n:
continue
UpperCAmelCase : List[str] = current.g + 1
UpperCAmelCase , UpperCAmelCase : List[str] = n.position
UpperCAmelCase , UpperCAmelCase : Dict = goal.position
UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2
UpperCAmelCase : Dict = n.h + n.g
for c in _open:
if c == n and c.f < n.f:
continue
_open.append(_lowercase )
UpperCAmelCase : Dict = []
while current.parent is not None:
path.append(current.position )
UpperCAmelCase : Optional[int] = current.parent
path.append(current.position )
return path[::-1]
if __name__ == "__main__":
a : List[str] = Gridworld()
# Start position and goal
a : Optional[int] = Cell()
a : Optional[Any] = (0, 0)
a : Optional[Any] = Cell()
a : str = (4, 4)
print(F'''path from {start.position} to {goal.position}''')
a : List[Any] = astar(world, start, goal)
# Just for visual reasons.
for i in s:
a : Any = 1
print(world.w)
| 338 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a : List[Any] = logging.get_logger(__name__)
a : Tuple = {
"""RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""",
"""RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""",
"""RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""",
"""RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""",
"""RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""",
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'rwkv'
lowercase = {'max_position_embeddings': 'context_length'}
def __init__( self , A=50277 , A=1024 , A=4096 , A=32 , A=None , A=None , A=1e-5 , A=0 , A=0 , A=6 , A=False , A=True , **A , ) -> str:
UpperCAmelCase : List[str] = vocab_size
UpperCAmelCase : List[str] = context_length
UpperCAmelCase : Dict = hidden_size
UpperCAmelCase : Dict = num_hidden_layers
UpperCAmelCase : Union[str, Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size
UpperCAmelCase : Any = intermediate_size if intermediate_size is not None else 4 * hidden_size
UpperCAmelCase : Optional[int] = layer_norm_epsilon
UpperCAmelCase : List[str] = rescale_every
UpperCAmelCase : List[str] = use_cache
UpperCAmelCase : Any = bos_token_id
UpperCAmelCase : List[str] = eos_token_id
super().__init__(
tie_word_embeddings=A , bos_token_id=A , eos_token_id=A , **A )
| 359 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import _LazyModule
a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]}
if TYPE_CHECKING:
from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer
else:
import sys
a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 338 | 0 |
'''simple docstring'''
import os
import unittest
from transformers import FunnelTokenizer, FunnelTokenizerFast
from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = FunnelTokenizer
lowercase = FunnelTokenizerFast
lowercase = True
lowercase = True
def _lowercase( self ) -> Optional[int]:
super().setUp()
UpperCAmelCase : str = [
"""<unk>""",
"""<cls>""",
"""<sep>""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
UpperCAmelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def _lowercase( self , **A ) -> Union[str, Any]:
return FunnelTokenizer.from_pretrained(self.tmpdirname , **A )
def _lowercase( self , **A ) -> List[Any]:
return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **A )
def _lowercase( self , A ) -> List[str]:
UpperCAmelCase : Optional[Any] = """UNwant\u00E9d,running"""
UpperCAmelCase : List[str] = """unwanted, running"""
return input_text, output_text
def _lowercase( self ) -> List[str]:
UpperCAmelCase : List[str] = self.tokenizer_class(self.vocab_file )
UpperCAmelCase : int = tokenizer.tokenize("""UNwant\u00E9d,running""" )
self.assertListEqual(A , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [7, 4, 5, 10, 8, 9] )
def _lowercase( self ) -> Dict:
UpperCAmelCase : List[str] = self.get_tokenizers(do_lower_case=A )
for tokenizer in tokenizers:
UpperCAmelCase : int = tokenizer("""UNwant\u00E9d,running""" )
UpperCAmelCase : str = len(inputs["""input_ids"""] ) - 1
self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len )
UpperCAmelCase : int = tokenizer("""UNwant\u00E9d,running""" , """UNwant\u00E9d,running""" )
self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len + [1] * sentence_len )
| 360 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
a : int = logging.get_logger(__name__)
a : int = {
"""openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""",
}
# fmt: off
a : Tuple = [
1, 2, 7, 8, 9, 1_0, 1_4, 2_5,
2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2,
6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5,
7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7,
1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1,
4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6,
1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1,
1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9,
3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1
]
a : Optional[int] = [
1, 2, 7, 8, 9, 1_0, 1_4, 2_5,
2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2,
6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3,
8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7,
3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7,
7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3,
1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5,
2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5,
4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2
]
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'whisper'
lowercase = ['past_key_values']
lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]:
UpperCAmelCase : str = vocab_size
UpperCAmelCase : Union[str, Any] = num_mel_bins
UpperCAmelCase : Tuple = d_model
UpperCAmelCase : Optional[int] = encoder_layers
UpperCAmelCase : List[str] = encoder_attention_heads
UpperCAmelCase : Optional[int] = decoder_layers
UpperCAmelCase : int = decoder_attention_heads
UpperCAmelCase : Optional[int] = decoder_ffn_dim
UpperCAmelCase : Union[str, Any] = encoder_ffn_dim
UpperCAmelCase : List[str] = dropout
UpperCAmelCase : Optional[Any] = attention_dropout
UpperCAmelCase : Optional[Any] = activation_dropout
UpperCAmelCase : Optional[Any] = activation_function
UpperCAmelCase : Optional[Any] = init_std
UpperCAmelCase : int = encoder_layerdrop
UpperCAmelCase : Dict = decoder_layerdrop
UpperCAmelCase : Optional[int] = use_cache
UpperCAmelCase : List[str] = encoder_layers
UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCAmelCase : Union[str, Any] = max_source_positions
UpperCAmelCase : Tuple = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
UpperCAmelCase : List[str] = classifier_proj_size
UpperCAmelCase : Optional[Any] = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase : Optional[Any] = apply_spec_augment
UpperCAmelCase : int = mask_time_prob
UpperCAmelCase : int = mask_time_length
UpperCAmelCase : Dict = mask_time_min_masks
UpperCAmelCase : List[str] = mask_feature_prob
UpperCAmelCase : Optional[int] = mask_feature_length
UpperCAmelCase : int = mask_feature_min_masks
UpperCAmelCase : List[Any] = median_filter_width
super().__init__(
pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , )
class UpperCamelCase_ ( __magic_name__ ):
@property
def _lowercase( self ) -> Mapping[str, Mapping[int, str]]:
UpperCAmelCase : str = OrderedDict(
[
("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}),
] )
if self.use_past:
UpperCAmelCase : List[Any] = {0: """batch"""}
else:
UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""}
if self.use_past:
self.fill_with_past_key_values_(A , direction="""inputs""" )
return common_inputs
def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]:
UpperCAmelCase : Optional[int] = OrderedDict()
UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , )
UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2]
UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length
UpperCAmelCase : Any = super().generate_dummy_inputs(
preprocessor.tokenizer , A , A , A , A )
UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" )
UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" )
if "past_key_values" in decoder_inputs:
UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" )
return dummy_inputs
@property
def _lowercase( self ) -> float:
return 1e-3
| 338 | 0 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase , _lowercase ) -> bool:
UpperCAmelCase : Tuple = len(_lowercase ) + 1
UpperCAmelCase : List[Any] = len(_lowercase ) + 1
# dp is a 2d matrix where dp[i][j] denotes whether prefix string of
# length i of input_string matches with prefix string of length j of
# given pattern.
# "dp" stands for dynamic programming.
UpperCAmelCase : str = [[0 for i in range(_lowercase )] for j in range(_lowercase )]
# since string of zero length match pattern of zero length
UpperCAmelCase : int = 1
# since pattern of zero length will never match with string of non-zero length
for i in range(1 , _lowercase ):
UpperCAmelCase : str = 0
# since string of zero length will match with pattern where there
# is at least one * alternatively
for j in range(1 , _lowercase ):
UpperCAmelCase : Optional[Any] = dp[0][j - 2] if pattern[j - 1] == """*""" else 0
# now using bottom-up approach to find for all remaining lengths
for i in range(1 , _lowercase ):
for j in range(1 , _lowercase ):
if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".":
UpperCAmelCase : Union[str, Any] = dp[i - 1][j - 1]
elif pattern[j - 1] == "*":
if dp[i][j - 2] == 1:
UpperCAmelCase : List[Any] = 1
elif pattern[j - 2] in (input_string[i - 1], "."):
UpperCAmelCase : Optional[int] = dp[i - 1][j]
else:
UpperCAmelCase : Any = 0
else:
UpperCAmelCase : str = 0
return bool(dp[-1][-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
# inputing the strings
# input_string = input("input a string :")
# pattern = input("input a pattern :")
a : List[str] = """aab"""
a : Optional[int] = """c*a*b"""
# using function to check whether given string matches the given pattern
if match_pattern(input_string, pattern):
print(F'''{input_string} matches the given pattern {pattern}''')
else:
print(F'''{input_string} does not match with the given pattern {pattern}''')
| 361 |
'''simple docstring'''
a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ"""
def __lowerCamelCase ( ) -> None:
UpperCAmelCase : Optional[int] = input("""Enter message: """ )
UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ )
UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ )
if mode.lower().startswith("""e""" ):
UpperCAmelCase : List[str] = """encrypt"""
UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase )
elif mode.lower().startswith("""d""" ):
UpperCAmelCase : Tuple = """decrypt"""
UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase )
print(F'''\n{mode.title()}ed message:''' )
print(_lowercase )
def __lowerCamelCase ( _lowercase , _lowercase ) -> str:
return translate_message(_lowercase , _lowercase , """encrypt""" )
def __lowerCamelCase ( _lowercase , _lowercase ) -> str:
return translate_message(_lowercase , _lowercase , """decrypt""" )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str:
UpperCAmelCase : Optional[int] = []
UpperCAmelCase : Optional[Any] = 0
UpperCAmelCase : Tuple = key.upper()
for symbol in message:
UpperCAmelCase : Dict = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(_lowercase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(_lowercase ):
UpperCAmelCase : Optional[int] = 0
else:
translated.append(_lowercase )
return "".join(_lowercase )
if __name__ == "__main__":
main()
| 338 | 0 |
'''simple docstring'''
import random
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase = False ) -> dict:
UpperCAmelCase : dict = {i: [] for i in range(_lowercase )}
# if probability is greater or equal than 1, then generate a complete graph
if probability >= 1:
return complete_graph(_lowercase )
# if probability is lower or equal than 0, then return a graph without edges
if probability <= 0:
return graph
# for each couple of nodes, add an edge from u to v
# if the number randomly generated is greater than probability probability
for i in range(_lowercase ):
for j in range(i + 1 , _lowercase ):
if random.random() < probability:
graph[i].append(_lowercase )
if not directed:
# if the graph is undirected, add an edge in from j to i, either
graph[j].append(_lowercase )
return graph
def __lowerCamelCase ( _lowercase ) -> dict:
return {
i: [j for j in range(_lowercase ) if i != j] for i in range(_lowercase )
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| 362 |
'''simple docstring'''
import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
"""split_dict""" , [
SplitDict(),
SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ),
SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ),
SplitDict({"""train""": SplitInfo()} ),
] , )
def __lowerCamelCase ( _lowercase ) -> List[str]:
UpperCAmelCase : Optional[int] = split_dict._to_yaml_list()
assert len(_lowercase ) == len(_lowercase )
UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(_lowercase )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
UpperCAmelCase : List[str] = None
# the split name of split_dict takes over the name of the split info object
UpperCAmelCase : int = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
"""split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name="""my_dataset""" )] )
def __lowerCamelCase ( _lowercase ) -> List[str]:
# For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name"
# field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files
UpperCAmelCase : Optional[Any] = asdict(SplitDict({"""train""": split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 338 | 0 |
import os
import string
import sys
a : List[Any] = 1 << 8
a : List[str] = {
"""tab""": ord("""\t"""),
"""newline""": ord("""\r"""),
"""esc""": 2_7,
"""up""": 6_5 + ARROW_KEY_FLAG,
"""down""": 6_6 + ARROW_KEY_FLAG,
"""right""": 6_7 + ARROW_KEY_FLAG,
"""left""": 6_8 + ARROW_KEY_FLAG,
"""mod_int""": 9_1,
"""undefined""": sys.maxsize,
"""interrupt""": 3,
"""insert""": 5_0,
"""delete""": 5_1,
"""pg_up""": 5_3,
"""pg_down""": 5_4,
}
a : List[str] = KEYMAP["""up"""]
a : Union[str, Any] = KEYMAP["""left"""]
if sys.platform == "win32":
a : str = []
a : List[Any] = {
b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG,
b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG,
b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG,
b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG,
b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG,
b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG,
b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG,
b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG,
}
for i in range(1_0):
a : Dict = ord(str(i))
def __lowerCamelCase ( ) -> List[str]:
if os.name == "nt":
import msvcrt
UpperCAmelCase : Any = """mbcs"""
# Flush the keyboard buffer
while msvcrt.kbhit():
msvcrt.getch()
if len(_lowercase ) == 0:
# Read the keystroke
UpperCAmelCase : Tuple = msvcrt.getch()
# If it is a prefix char, get second part
if ch in (b"\x00", b"\xe0"):
UpperCAmelCase : List[str] = ch + msvcrt.getch()
# Translate actual Win chars to bullet char types
try:
UpperCAmelCase : Optional[Any] = chr(WIN_KEYMAP[cha] )
WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) )
WIN_CH_BUFFER.append(_lowercase )
if ord(_lowercase ) in (
KEYMAP["insert"] - 1 << 9,
KEYMAP["delete"] - 1 << 9,
KEYMAP["pg_up"] - 1 << 9,
KEYMAP["pg_down"] - 1 << 9,
):
WIN_CH_BUFFER.append(chr(1_2_6 ) )
UpperCAmelCase : int = chr(KEYMAP["""esc"""] )
except KeyError:
UpperCAmelCase : Dict = cha[1]
else:
UpperCAmelCase : int = ch.decode(_lowercase )
else:
UpperCAmelCase : Optional[int] = WIN_CH_BUFFER.pop(0 )
elif os.name == "posix":
import termios
import tty
UpperCAmelCase : Any = sys.stdin.fileno()
UpperCAmelCase : Tuple = termios.tcgetattr(_lowercase )
try:
tty.setraw(_lowercase )
UpperCAmelCase : int = sys.stdin.read(1 )
finally:
termios.tcsetattr(_lowercase , termios.TCSADRAIN , _lowercase )
return ch
def __lowerCamelCase ( ) -> List[Any]:
UpperCAmelCase : List[str] = get_raw_chars()
if ord(_lowercase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
return char
elif ord(_lowercase ) == KEYMAP["esc"]:
UpperCAmelCase : Optional[Any] = get_raw_chars()
if ord(_lowercase ) == KEYMAP["mod_int"]:
UpperCAmelCase : Dict = get_raw_chars()
if ord(_lowercase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_lowercase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
return chr(ord(_lowercase ) + ARROW_KEY_FLAG )
else:
return KEYMAP["undefined"]
else:
return get_raw_chars()
else:
if char in string.printable:
return char
else:
return KEYMAP["undefined"]
| 363 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
a : Dict = logging.get_logger(__name__)
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , *A , **A ) -> None:
warnings.warn(
"""The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use LayoutLMv2ImageProcessor instead.""" , A , )
super().__init__(*A , **A )
| 338 | 0 |
'''simple docstring'''
import argparse
import json
import os
import sys
import tempfile
import unittest
from argparse import Namespace
from dataclasses import dataclass, field
from enum import Enum
from pathlib import Path
from typing import List, Literal, Optional
import yaml
from transformers import HfArgumentParser, TrainingArguments
from transformers.hf_argparser import make_choice_type_function, string_to_bool
# Since Python 3.10, we can use the builtin `|` operator for Union types
# See PEP 604: https://peps.python.org/pep-0604
a : Optional[Any] = sys.version_info >= (3, 1_0)
def __lowerCamelCase ( _lowercase=None , _lowercase=None ) -> Union[str, Any]:
"""simple docstring"""
return field(default_factory=lambda: default , metadata=_lowercase )
@dataclass
class UpperCamelCase_ :
lowercase = 42
lowercase = 42
lowercase = 42
lowercase = 42
@dataclass
class UpperCamelCase_ :
lowercase = 42
lowercase = field(default='toto' , metadata={'help': 'help message'} )
@dataclass
class UpperCamelCase_ :
lowercase = False
lowercase = True
lowercase = None
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'titi'
lowercase = 'toto'
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'titi'
lowercase = 'toto'
lowercase = 42
@dataclass
class UpperCamelCase_ :
lowercase = 'toto'
def _lowercase( self ) -> Dict:
UpperCAmelCase : int = BasicEnum(self.foo )
@dataclass
class UpperCamelCase_ :
lowercase = 'toto'
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Any = MixedTypeEnum(self.foo )
@dataclass
class UpperCamelCase_ :
lowercase = None
lowercase = field(default=__magic_name__ , metadata={'help': 'help message'} )
lowercase = None
lowercase = list_field(default=[] )
lowercase = list_field(default=[] )
@dataclass
class UpperCamelCase_ :
lowercase = list_field(default=[] )
lowercase = list_field(default=[1, 2, 3] )
lowercase = list_field(default=['Hallo', 'Bonjour', 'Hello'] )
lowercase = list_field(default=[0.1, 0.2, 0.3] )
@dataclass
class UpperCamelCase_ :
lowercase = field()
lowercase = field()
lowercase = field()
def _lowercase( self ) -> Any:
UpperCAmelCase : Dict = BasicEnum(self.required_enum )
@dataclass
class UpperCamelCase_ :
lowercase = 42
lowercase = field()
lowercase = None
lowercase = field(default='toto' , metadata={'help': 'help message'} )
lowercase = list_field(default=['Hallo', 'Bonjour', 'Hello'] )
if is_python_no_less_than_3_10:
@dataclass
class UpperCamelCase_ :
lowercase = False
lowercase = True
lowercase = None
@dataclass
class UpperCamelCase_ :
lowercase = None
lowercase = field(default=__magic_name__ , metadata={'help': 'help message'} )
lowercase = None
lowercase = list_field(default=[] )
lowercase = list_field(default=[] )
class UpperCamelCase_ ( unittest.TestCase ):
def _lowercase( self , A , A ) -> List[str]:
self.assertEqual(len(a._actions ) , len(b._actions ) )
for x, y in zip(a._actions , b._actions ):
UpperCAmelCase : Optional[Any] = {k: v for k, v in vars(A ).items() if k != """container"""}
UpperCAmelCase : Any = {k: v for k, v in vars(A ).items() if k != """container"""}
# Choices with mixed type have custom function as "type"
# So we need to compare results directly for equality
if xx.get("""choices""" , A ) and yy.get("""choices""" , A ):
for expected_choice in yy["choices"] + xx["choices"]:
self.assertEqual(xx["""type"""](A ) , yy["""type"""](A ) )
del xx["type"], yy["type"]
self.assertEqual(A , A )
def _lowercase( self ) -> Dict:
UpperCAmelCase : Any = HfArgumentParser(A )
UpperCAmelCase : str = argparse.ArgumentParser()
expected.add_argument("""--foo""" , type=A , required=A )
expected.add_argument("""--bar""" , type=A , required=A )
expected.add_argument("""--baz""" , type=A , required=A )
expected.add_argument("""--flag""" , type=A , default=A , const=A , nargs="""?""" )
self.argparsersEqual(A , A )
UpperCAmelCase : Optional[Any] = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""]
(UpperCAmelCase ) : Dict = parser.parse_args_into_dataclasses(A , look_for_args_file=A )
self.assertFalse(example.flag )
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Tuple = HfArgumentParser(A )
UpperCAmelCase : str = argparse.ArgumentParser()
expected.add_argument("""--foo""" , default=42 , type=A )
expected.add_argument("""--baz""" , default="""toto""" , type=A , help="""help message""" )
self.argparsersEqual(A , A )
def _lowercase( self ) -> Any:
UpperCAmelCase : Tuple = argparse.ArgumentParser()
expected.add_argument("""--foo""" , type=A , default=A , const=A , nargs="""?""" )
expected.add_argument("""--baz""" , type=A , default=A , const=A , nargs="""?""" )
# A boolean no_* argument always has to come after its "default: True" regular counter-part
# and its default must be set to False
expected.add_argument("""--no_baz""" , action="""store_false""" , default=A , dest="""baz""" )
expected.add_argument("""--opt""" , type=A , default=A )
UpperCAmelCase : Union[str, Any] = [WithDefaultBoolExample]
if is_python_no_less_than_3_10:
dataclass_types.append(A )
for dataclass_type in dataclass_types:
UpperCAmelCase : List[Any] = HfArgumentParser(A )
self.argparsersEqual(A , A )
UpperCAmelCase : Optional[Any] = parser.parse_args([] )
self.assertEqual(A , Namespace(foo=A , baz=A , opt=A ) )
UpperCAmelCase : Tuple = parser.parse_args(["""--foo""", """--no_baz"""] )
self.assertEqual(A , Namespace(foo=A , baz=A , opt=A ) )
UpperCAmelCase : List[Any] = parser.parse_args(["""--foo""", """--baz"""] )
self.assertEqual(A , Namespace(foo=A , baz=A , opt=A ) )
UpperCAmelCase : Dict = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] )
self.assertEqual(A , Namespace(foo=A , baz=A , opt=A ) )
UpperCAmelCase : Optional[Any] = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] )
self.assertEqual(A , Namespace(foo=A , baz=A , opt=A ) )
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Any = HfArgumentParser(A )
UpperCAmelCase : Any = argparse.ArgumentParser()
expected.add_argument(
"""--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42] ) , )
self.argparsersEqual(A , A )
UpperCAmelCase : List[Any] = parser.parse_args([] )
self.assertEqual(args.foo , """toto""" )
UpperCAmelCase : int = parser.parse_args_into_dataclasses([] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.toto )
UpperCAmelCase : Optional[int] = parser.parse_args(["""--foo""", """titi"""] )
self.assertEqual(args.foo , """titi""" )
UpperCAmelCase : Tuple = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.titi )
UpperCAmelCase : Any = parser.parse_args(["""--foo""", """42"""] )
self.assertEqual(args.foo , 42 )
UpperCAmelCase : str = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo )
def _lowercase( self ) -> Optional[int]:
@dataclass
class UpperCamelCase_ :
lowercase = 'toto'
UpperCAmelCase : int = HfArgumentParser(A )
UpperCAmelCase : Dict = argparse.ArgumentParser()
expected.add_argument(
"""--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42] ) , )
self.argparsersEqual(A , A )
UpperCAmelCase : Tuple = parser.parse_args([] )
self.assertEqual(args.foo , """toto""" )
UpperCAmelCase : Optional[int] = parser.parse_args(["""--foo""", """titi"""] )
self.assertEqual(args.foo , """titi""" )
UpperCAmelCase : int = parser.parse_args(["""--foo""", """42"""] )
self.assertEqual(args.foo , 42 )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : int = HfArgumentParser(A )
UpperCAmelCase : Any = argparse.ArgumentParser()
expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=A )
expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=A )
expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=A )
expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=A )
self.argparsersEqual(A , A )
UpperCAmelCase : int = parser.parse_args([] )
self.assertEqual(
A , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , )
UpperCAmelCase : Optional[int] = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() )
self.assertEqual(A , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Any = argparse.ArgumentParser()
expected.add_argument("""--foo""" , default=A , type=A )
expected.add_argument("""--bar""" , default=A , type=A , help="""help message""" )
expected.add_argument("""--baz""" , default=A , type=A )
expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=A )
expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=A )
UpperCAmelCase : Optional[Any] = [OptionalExample]
if is_python_no_less_than_3_10:
dataclass_types.append(A )
for dataclass_type in dataclass_types:
UpperCAmelCase : Optional[Any] = HfArgumentParser(A )
self.argparsersEqual(A , A )
UpperCAmelCase : List[Any] = parser.parse_args([] )
self.assertEqual(A , Namespace(foo=A , bar=A , baz=A , ces=[] , des=[] ) )
UpperCAmelCase : Tuple = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() )
self.assertEqual(A , Namespace(foo=12 , bar=3.1_4 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) )
def _lowercase( self ) -> str:
UpperCAmelCase : Tuple = HfArgumentParser(A )
UpperCAmelCase : List[str] = argparse.ArgumentParser()
expected.add_argument("""--required_list""" , nargs="""+""" , type=A , required=A )
expected.add_argument("""--required_str""" , type=A , required=A )
expected.add_argument(
"""--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=A , )
self.argparsersEqual(A , A )
def _lowercase( self ) -> List[str]:
UpperCAmelCase : Optional[int] = HfArgumentParser(A )
UpperCAmelCase : List[Any] = argparse.ArgumentParser()
expected.add_argument("""--foo""" , type=A , required=A )
expected.add_argument(
"""--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=A , )
expected.add_argument("""--opt""" , type=A , default=A )
expected.add_argument("""--baz""" , default="""toto""" , type=A , help="""help message""" )
expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=A )
self.argparsersEqual(A , A )
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Optional[int] = HfArgumentParser(A )
UpperCAmelCase : Dict = {
"""foo""": 12,
"""bar""": 3.1_4,
"""baz""": """42""",
"""flag""": True,
}
UpperCAmelCase : List[Any] = parser.parse_dict(A )[0]
UpperCAmelCase : Optional[int] = BasicExample(**A )
self.assertEqual(A , A )
def _lowercase( self ) -> int:
UpperCAmelCase : str = HfArgumentParser(A )
UpperCAmelCase : int = {
"""foo""": 12,
"""bar""": 3.1_4,
"""baz""": """42""",
"""flag""": True,
"""extra""": 42,
}
self.assertRaises(A , parser.parse_dict , A , allow_extra_keys=A )
def _lowercase( self ) -> Any:
UpperCAmelCase : Union[str, Any] = HfArgumentParser(A )
UpperCAmelCase : Any = {
"""foo""": 12,
"""bar""": 3.1_4,
"""baz""": """42""",
"""flag""": True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase : List[Any] = os.path.join(A , """temp_json""" )
os.mkdir(A )
with open(temp_local_path + """.json""" , """w+""" ) as f:
json.dump(A , A )
UpperCAmelCase : Union[str, Any] = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0]
UpperCAmelCase : List[str] = BasicExample(**A )
self.assertEqual(A , A )
def _lowercase( self ) -> int:
UpperCAmelCase : Tuple = HfArgumentParser(A )
UpperCAmelCase : int = {
"""foo""": 12,
"""bar""": 3.1_4,
"""baz""": """42""",
"""flag""": True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase : Optional[Any] = os.path.join(A , """temp_yaml""" )
os.mkdir(A )
with open(temp_local_path + """.yaml""" , """w+""" ) as f:
yaml.dump(A , A )
UpperCAmelCase : List[Any] = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0]
UpperCAmelCase : Optional[Any] = BasicExample(**A )
self.assertEqual(A , A )
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Union[str, Any] = HfArgumentParser(A )
self.assertIsNotNone(A )
| 364 |
'''simple docstring'''
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
a : Union[str, Any] = logging.get_logger(__name__)
a : Union[str, Any] = {
"""facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""",
# See all DETR models at https://huggingface.co/models?filter=detr
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'detr'
lowercase = ['past_key_values']
lowercase = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]:
if backbone_config is not None and use_timm_backbone:
raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" )
if not use_timm_backbone:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] )
elif isinstance(A , A ):
UpperCAmelCase : Any = backbone_config.get("""model_type""" )
UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type]
UpperCAmelCase : List[Any] = config_class.from_dict(A )
# set timm attributes to None
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = None, None, None
UpperCAmelCase : Dict = use_timm_backbone
UpperCAmelCase : Any = backbone_config
UpperCAmelCase : List[Any] = num_channels
UpperCAmelCase : int = num_queries
UpperCAmelCase : List[str] = d_model
UpperCAmelCase : Tuple = encoder_ffn_dim
UpperCAmelCase : Optional[Any] = encoder_layers
UpperCAmelCase : Any = encoder_attention_heads
UpperCAmelCase : Optional[Any] = decoder_ffn_dim
UpperCAmelCase : Optional[int] = decoder_layers
UpperCAmelCase : Any = decoder_attention_heads
UpperCAmelCase : str = dropout
UpperCAmelCase : Tuple = attention_dropout
UpperCAmelCase : Dict = activation_dropout
UpperCAmelCase : Tuple = activation_function
UpperCAmelCase : List[Any] = init_std
UpperCAmelCase : str = init_xavier_std
UpperCAmelCase : List[Any] = encoder_layerdrop
UpperCAmelCase : int = decoder_layerdrop
UpperCAmelCase : List[Any] = encoder_layers
UpperCAmelCase : Union[str, Any] = auxiliary_loss
UpperCAmelCase : str = position_embedding_type
UpperCAmelCase : Union[str, Any] = backbone
UpperCAmelCase : List[str] = use_pretrained_backbone
UpperCAmelCase : Optional[int] = dilation
# Hungarian matcher
UpperCAmelCase : Union[str, Any] = class_cost
UpperCAmelCase : Optional[Any] = bbox_cost
UpperCAmelCase : List[Any] = giou_cost
# Loss coefficients
UpperCAmelCase : int = mask_loss_coefficient
UpperCAmelCase : Optional[int] = dice_loss_coefficient
UpperCAmelCase : Dict = bbox_loss_coefficient
UpperCAmelCase : Any = giou_loss_coefficient
UpperCAmelCase : Any = eos_coefficient
super().__init__(is_encoder_decoder=A , **A )
@property
def _lowercase( self ) -> int:
return self.encoder_attention_heads
@property
def _lowercase( self ) -> int:
return self.d_model
@classmethod
def _lowercase( cls , A , **A ) -> Dict:
return cls(backbone_config=A , **A )
def _lowercase( self ) -> Dict[str, any]:
UpperCAmelCase : Any = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
UpperCAmelCase : Any = self.backbone_config.to_dict()
UpperCAmelCase : Optional[Any] = self.__class__.model_type
return output
class UpperCamelCase_ ( __magic_name__ ):
lowercase = version.parse('1.11' )
@property
def _lowercase( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""pixel_mask""", {0: """batch"""}),
] )
@property
def _lowercase( self ) -> float:
return 1e-5
@property
def _lowercase( self ) -> int:
return 12
| 338 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
"""FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FocalNetForImageClassification""",
"""FocalNetForMaskedImageModeling""",
"""FocalNetBackbone""",
"""FocalNetModel""",
"""FocalNetPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_focalnet import (
FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
FocalNetPreTrainedModel,
)
else:
import sys
a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 365 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
a : List[str] = {
"""configuration_altclip""": [
"""ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""AltCLIPConfig""",
"""AltCLIPTextConfig""",
"""AltCLIPVisionConfig""",
],
"""processing_altclip""": ["""AltCLIPProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : List[Any] = [
"""ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""AltCLIPPreTrainedModel""",
"""AltCLIPModel""",
"""AltCLIPTextModel""",
"""AltCLIPVisionModel""",
]
if TYPE_CHECKING:
from .configuration_altclip import (
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
AltCLIPConfig,
AltCLIPTextConfig,
AltCLIPVisionConfig,
)
from .processing_altclip import AltCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_altclip import (
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
AltCLIPModel,
AltCLIPPreTrainedModel,
AltCLIPTextModel,
AltCLIPVisionModel,
)
else:
import sys
a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 338 | 0 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase = 1 , _lowercase = 1_0_0_0 ) -> int:
UpperCAmelCase : List[str] = 1
UpperCAmelCase : Tuple = 0
for divide_by_number in range(_lowercase , digit + 1 ):
UpperCAmelCase : list[int] = []
UpperCAmelCase : str = numerator
for _ in range(1 , digit + 1 ):
if now_divide in has_been_divided:
if longest_list_length < len(_lowercase ):
UpperCAmelCase : int = len(_lowercase )
UpperCAmelCase : Optional[Any] = divide_by_number
else:
has_been_divided.append(_lowercase )
UpperCAmelCase : List[Any] = now_divide * 1_0 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 366 |
'''simple docstring'''
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
a : List[Any] = logging.get_logger(__name__)
def __lowerCamelCase ( _lowercase ) -> List[Any]:
UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" )
if "model" in sd.keys():
UpperCAmelCase : Any = torch.load(_lowercase , map_location="""cpu""" )["""model"""]
# pop unnecessary weights
UpperCAmelCase : Union[str, Any] = [
"""decoder.version""",
"""decoder.output_projection.weight""",
]
for key in keys_to_delete:
if key in sd:
sd.pop(_lowercase )
UpperCAmelCase : Tuple = {
"""decoder.project_in_dim.weight""": """decoder.project_in.weight""",
"""decoder.project_out_dim.weight""": """decoder.project_out.weight""",
"""decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""",
"""decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""",
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
UpperCAmelCase : List[Any] = sd.pop(_lowercase )
UpperCAmelCase : Tuple = list(sd.keys() )
for key in keys:
if ".qkv_proj." in key:
UpperCAmelCase : List[str] = sd[key]
# We split QKV in separate Q,K,V
UpperCAmelCase : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" )
UpperCAmelCase : Tuple = key.replace(""".qkv_proj.""" , """.k_proj.""" )
UpperCAmelCase : int = key.replace(""".qkv_proj.""" , """.v_proj.""" )
UpperCAmelCase : Dict = value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = torch.split(_lowercase , depth // 3 , dim=0 )
UpperCAmelCase : Tuple = q
UpperCAmelCase : Tuple = k
UpperCAmelCase : Any = v
del sd[key]
return sd
@torch.no_grad()
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Optional[Any]:
UpperCAmelCase : Tuple = load_checkpoint(_lowercase )
if config is not None:
UpperCAmelCase : Dict = OPTConfig.from_pretrained(_lowercase )
else:
UpperCAmelCase : int = OPTConfig()
UpperCAmelCase : List[Any] = OPTModel(_lowercase ).half().eval()
model.load_state_dict(_lowercase )
# Check results
Path(_lowercase ).mkdir(exist_ok=_lowercase )
model.save_pretrained(_lowercase )
if __name__ == "__main__":
a : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--fairseq_path""",
type=str,
help=(
"""path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:"""
""" https://huggingface.co/models?other=opt_metasq"""
),
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""")
a : Union[str, Any] = parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
| 338 | 0 |
'''simple docstring'''
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class UpperCamelCase_ ( unittest.TestCase ):
def __init__( self , A , A = True , A = None , A = 32 , A = True , A = 1 / 255 , A = True , A = True , A = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , A = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , A = True , A=7 , A=30 , A=400 , A=3 , ) -> str:
UpperCAmelCase : Dict = parent
UpperCAmelCase : Union[str, Any] = do_resize
UpperCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 288}
UpperCAmelCase : List[str] = size_divisor
UpperCAmelCase : List[str] = do_rescale
UpperCAmelCase : Dict = rescale_factor
UpperCAmelCase : Any = do_normalize
UpperCAmelCase : List[Any] = do_center_crop
UpperCAmelCase : Optional[int] = image_mean
UpperCAmelCase : List[str] = image_std
UpperCAmelCase : List[str] = do_pad
UpperCAmelCase : Union[str, Any] = batch_size
UpperCAmelCase : List[Any] = num_channels
UpperCAmelCase : str = min_resolution
UpperCAmelCase : List[Any] = max_resolution
def _lowercase( self ) -> int:
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def _lowercase( self , A , A=False ) -> Tuple:
if not batched:
UpperCAmelCase : Dict = self.size["""shortest_edge"""]
UpperCAmelCase : Any = image_inputs[0]
if isinstance(A , Image.Image ):
UpperCAmelCase : Union[str, Any] = image.size
else:
UpperCAmelCase : Optional[Any] = image.shape[1], image.shape[2]
UpperCAmelCase : List[Any] = size / min(A , A )
if h < w:
UpperCAmelCase : List[str] = size, scale * w
else:
UpperCAmelCase : List[Any] = scale * h, size
UpperCAmelCase : str = int((1333 / 800) * size )
if max(A , A ) > max_size:
UpperCAmelCase : int = max_size / max(A , A )
UpperCAmelCase : Union[str, Any] = newh * scale
UpperCAmelCase : Dict = neww * scale
UpperCAmelCase : Optional[int] = int(newh + 0.5 ), int(neww + 0.5 )
UpperCAmelCase : List[str] = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
UpperCAmelCase : Tuple = []
for image in image_inputs:
UpperCAmelCase : Tuple = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
UpperCAmelCase : Optional[int] = max(A , key=lambda A : item[0] )[0]
UpperCAmelCase : Optional[Any] = max(A , key=lambda A : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = BridgeTowerImageProcessor if is_vision_available() else None
def _lowercase( self ) -> Dict:
UpperCAmelCase : Dict = BridgeTowerImageProcessingTester(self )
@property
def _lowercase( self ) -> Dict:
return self.image_processor_tester.prepare_image_processor_dict()
def _lowercase( self ) -> List[str]:
UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A , """image_mean""" ) )
self.assertTrue(hasattr(A , """image_std""" ) )
self.assertTrue(hasattr(A , """do_normalize""" ) )
self.assertTrue(hasattr(A , """do_resize""" ) )
self.assertTrue(hasattr(A , """size""" ) )
self.assertTrue(hasattr(A , """size_divisor""" ) )
def _lowercase( self ) -> List[str]:
pass
def _lowercase( self ) -> str:
# Initialize image processor
UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A , Image.Image )
# Test not batched input
UpperCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
UpperCAmelCase : int = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase : int = image_processing(A , return_tensors="""pt""" ).pixel_values
UpperCAmelCase : Dict = self.image_processor_tester.get_expected_values(A , batched=A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _lowercase( self ) -> Union[str, Any]:
# Initialize image processor
UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A )
for image in image_inputs:
self.assertIsInstance(A , np.ndarray )
# Test not batched input
UpperCAmelCase : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
UpperCAmelCase : Optional[int] = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase : Union[str, Any] = image_processing(A , return_tensors="""pt""" ).pixel_values
UpperCAmelCase : Optional[int] = self.image_processor_tester.get_expected_values(A , batched=A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _lowercase( self ) -> List[str]:
# Initialize image processor
UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A )
for image in image_inputs:
self.assertIsInstance(A , torch.Tensor )
# Test not batched input
UpperCAmelCase : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
UpperCAmelCase : Tuple = self.image_processor_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase : Union[str, Any] = image_processing(A , return_tensors="""pt""" ).pixel_values
UpperCAmelCase : Dict = self.image_processor_tester.get_expected_values(A , batched=A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
| 367 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a : Union[str, Any] = logging.get_logger(__name__)
a : str = {
"""facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""",
# See all LeViT models at https://huggingface.co/models?filter=levit
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'levit'
def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int:
super().__init__(**A )
UpperCAmelCase : Any = image_size
UpperCAmelCase : Optional[int] = num_channels
UpperCAmelCase : Tuple = kernel_size
UpperCAmelCase : Optional[int] = stride
UpperCAmelCase : Dict = padding
UpperCAmelCase : List[Any] = hidden_sizes
UpperCAmelCase : List[Any] = num_attention_heads
UpperCAmelCase : Optional[int] = depths
UpperCAmelCase : Any = key_dim
UpperCAmelCase : str = drop_path_rate
UpperCAmelCase : List[Any] = patch_size
UpperCAmelCase : str = attention_ratio
UpperCAmelCase : Optional[Any] = mlp_ratio
UpperCAmelCase : Dict = initializer_range
UpperCAmelCase : int = [
["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
class UpperCamelCase_ ( __magic_name__ ):
lowercase = version.parse('1.11' )
@property
def _lowercase( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def _lowercase( self ) -> float:
return 1e-4
| 338 | 0 |
'''simple docstring'''
from __future__ import annotations
a : Optional[int] = tuple[int, int, int]
a : Optional[int] = tuple[str, str, str]
# used alphabet --------------------------
# from string.ascii_uppercase
a : Optional[Any] = """ABCDEFGHIJKLMNOPQRSTUVWXYZ"""
# -------------------------- default selection --------------------------
# rotors --------------------------
a : List[Any] = """EGZWVONAHDCLFQMSIPJBYUKXTR"""
a : str = """FOBHMDKEXQNRAULPGSJVTYICZW"""
a : List[Any] = """ZJXESIUQLHAVRMDOYGTNFWPBKC"""
# reflector --------------------------
a : List[Any] = {
"""A""": """N""",
"""N""": """A""",
"""B""": """O""",
"""O""": """B""",
"""C""": """P""",
"""P""": """C""",
"""D""": """Q""",
"""Q""": """D""",
"""E""": """R""",
"""R""": """E""",
"""F""": """S""",
"""S""": """F""",
"""G""": """T""",
"""T""": """G""",
"""H""": """U""",
"""U""": """H""",
"""I""": """V""",
"""V""": """I""",
"""J""": """W""",
"""W""": """J""",
"""K""": """X""",
"""X""": """K""",
"""L""": """Y""",
"""Y""": """L""",
"""M""": """Z""",
"""Z""": """M""",
}
# -------------------------- extra rotors --------------------------
a : Any = """RMDJXFUWGISLHVTCQNKYPBEZOA"""
a : Dict = """SGLCPQWZHKXAREONTFBVIYJUDM"""
a : Optional[int] = """HVSICLTYKQUBXDWAJZOMFGPREN"""
a : Optional[int] = """RZWQHFMVDBKICJLNTUXAGYPSOE"""
a : str = """LFKIJODBEGAMQPXVUHYSTCZRWN"""
a : Union[str, Any] = """KOAEGVDHXPQZMLFTYWJNBRCIUS"""
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> tuple[RotorPositionT, RotorSelectionT, dict[str, str]]:
# Checks if there are 3 unique rotors
if (unique_rotsel := len(set(_lowercase ) )) < 3:
UpperCAmelCase : Tuple = F'''Please use 3 unique rotors (not {unique_rotsel})'''
raise Exception(_lowercase )
# Checks if rotor positions are valid
UpperCAmelCase : Union[str, Any] = rotpos
if not 0 < rotorposa <= len(_lowercase ):
UpperCAmelCase : Union[str, Any] = F'''First rotor position is not within range of 1..26 ({rotorposa}'''
raise ValueError(_lowercase )
if not 0 < rotorposa <= len(_lowercase ):
UpperCAmelCase : Any = F'''Second rotor position is not within range of 1..26 ({rotorposa})'''
raise ValueError(_lowercase )
if not 0 < rotorposa <= len(_lowercase ):
UpperCAmelCase : Dict = F'''Third rotor position is not within range of 1..26 ({rotorposa})'''
raise ValueError(_lowercase )
# Validates string and returns dict
UpperCAmelCase : Tuple = _plugboard(_lowercase )
return rotpos, rotsel, pbdict
def __lowerCamelCase ( _lowercase ) -> dict[str, str]:
# tests the input string if it
# a) is type string
# b) has even length (so pairs can be made)
if not isinstance(_lowercase , _lowercase ):
UpperCAmelCase : Any = F'''Plugboard setting isn\'t type string ({type(_lowercase )})'''
raise TypeError(_lowercase )
elif len(_lowercase ) % 2 != 0:
UpperCAmelCase : str = F'''Odd number of symbols ({len(_lowercase )})'''
raise Exception(_lowercase )
elif pbstring == "":
return {}
pbstring.replace(""" """ , """""" )
# Checks if all characters are unique
UpperCAmelCase : Any = set()
for i in pbstring:
if i not in abc:
UpperCAmelCase : str = F'''\'{i}\' not in list of symbols'''
raise Exception(_lowercase )
elif i in tmppbl:
UpperCAmelCase : Dict = F'''Duplicate symbol ({i})'''
raise Exception(_lowercase )
else:
tmppbl.add(_lowercase )
del tmppbl
# Created the dictionary
UpperCAmelCase : List[str] = {}
for j in range(0 , len(_lowercase ) - 1 , 2 ):
UpperCAmelCase : Any = pbstring[j + 1]
UpperCAmelCase : List[Any] = pbstring[j]
return pb
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase = (rotora, rotora, rotora) , _lowercase = "" , ) -> str:
UpperCAmelCase : Optional[int] = text.upper()
UpperCAmelCase : Tuple = _validator(
_lowercase , _lowercase , plugb.upper() )
UpperCAmelCase : Union[str, Any] = rotor_position
UpperCAmelCase : Optional[Any] = rotor_selection
rotorposa -= 1
rotorposa -= 1
rotorposa -= 1
UpperCAmelCase : str = []
# encryption/decryption process --------------------------
for symbol in text:
if symbol in abc:
# 1st plugboard --------------------------
if symbol in plugboard:
UpperCAmelCase : Tuple = plugboard[symbol]
# rotor ra --------------------------
UpperCAmelCase : Tuple = abc.index(_lowercase ) + rotorposa
UpperCAmelCase : Union[str, Any] = rotora[index % len(_lowercase )]
# rotor rb --------------------------
UpperCAmelCase : Optional[int] = abc.index(_lowercase ) + rotorposa
UpperCAmelCase : Dict = rotora[index % len(_lowercase )]
# rotor rc --------------------------
UpperCAmelCase : str = abc.index(_lowercase ) + rotorposa
UpperCAmelCase : Optional[int] = rotora[index % len(_lowercase )]
# reflector --------------------------
# this is the reason you don't need another machine to decipher
UpperCAmelCase : List[Any] = reflector[symbol]
# 2nd rotors
UpperCAmelCase : Optional[int] = abc[rotora.index(_lowercase ) - rotorposa]
UpperCAmelCase : str = abc[rotora.index(_lowercase ) - rotorposa]
UpperCAmelCase : Optional[int] = abc[rotora.index(_lowercase ) - rotorposa]
# 2nd plugboard
if symbol in plugboard:
UpperCAmelCase : List[Any] = plugboard[symbol]
# moves/resets rotor positions
rotorposa += 1
if rotorposa >= len(_lowercase ):
UpperCAmelCase : str = 0
rotorposa += 1
if rotorposa >= len(_lowercase ):
UpperCAmelCase : int = 0
rotorposa += 1
if rotorposa >= len(_lowercase ):
UpperCAmelCase : Dict = 0
# else:
# pass
# Error could be also raised
# raise ValueError(
# 'Invalid symbol('+repr(symbol)+')')
result.append(_lowercase )
return "".join(_lowercase )
if __name__ == "__main__":
a : Union[str, Any] = """This is my Python script that emulates the Enigma machine from WWII."""
a : List[str] = (1, 1, 1)
a : int = """pictures"""
a : Union[str, Any] = (rotora, rotora, rotora)
a : List[Any] = enigma(message, rotor_pos, rotor_sel, pb)
print("""Encrypted message:""", en)
print("""Decrypted message:""", enigma(en, rotor_pos, rotor_sel, pb))
| 368 |
'''simple docstring'''
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("""0.12.2"""):
raise Exception("""requires fairseq >= 0.12.2""")
if version.parse(fairseq.__version__) > version.parse("""2"""):
raise Exception("""requires fairseq < v2""")
logging.set_verbosity_info()
a : Dict = logging.get_logger(__name__)
a : List[str] = """Hello, World!"""
a : List[Any] = """en_XX"""
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict:
UpperCAmelCase : Dict = Path("""data_bin""" )
UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , )
xmod.eval() # disable dropout
print(_lowercase )
UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder
UpperCAmelCase : Tuple = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0]
print("""Our X-MOD config:""" , _lowercase )
UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase )
model.eval()
# Now let's copy all the weights.
# Embeddings
UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight
UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight
UpperCAmelCase : int = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight
UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
UpperCAmelCase : List[str] = model.roberta.encoder.layer[i]
UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i]
# self attention
UpperCAmelCase : Optional[Any] = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError("""Dimensions of self-attention weights do not match.""" )
UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight
UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias
UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight
UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias
UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight
UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias
# self-attention output
UpperCAmelCase : Optional[Any] = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError("""Dimensions of self-attention output weights do not match.""" )
UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight
UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias
UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight
UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias
# intermediate
UpperCAmelCase : Tuple = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError("""Dimensions of intermediate weights do not match.""" )
UpperCAmelCase : List[str] = xmod_layer.fca.weight
UpperCAmelCase : str = xmod_layer.fca.bias
# output
UpperCAmelCase : Any = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError("""Dimensions of feed-forward weights do not match.""" )
UpperCAmelCase : Dict = xmod_layer.fca.weight
UpperCAmelCase : Dict = xmod_layer.fca.bias
UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight
UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight
UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError("""Lists of language adapters do not match.""" )
for lang_code, adapter in xmod_layer.adapter_modules.items():
UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code]
UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code]
UpperCAmelCase : Any = from_adapter.fca.weight
UpperCAmelCase : int = from_adapter.fca.bias
UpperCAmelCase : Dict = from_adapter.fca.weight
UpperCAmelCase : Dict = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight
UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias
if classification_head:
UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight
UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias
UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight
UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias
else:
# LM Head
UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight
UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias
UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight
UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias
UpperCAmelCase : str = xmod.model.encoder.lm_head.weight
UpperCAmelCase : str = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(_lowercase )
UpperCAmelCase : Optional[int] = model(_lowercase )[0]
if classification_head:
UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) )
else:
UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item()
print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7
UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 )
print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" )
if not success:
raise Exception("""Something went wRoNg""" )
Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(_lowercase )
if __name__ == "__main__":
a : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--classification_head""", action="""store_true""", help="""Whether to convert a final classification head."""
)
a : List[str] = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 338 | 0 |
import json
import os
import unittest
from transformers.models.blenderbot_small.tokenization_blenderbot_small import (
VOCAB_FILES_NAMES,
BlenderbotSmallTokenizer,
)
from ...test_tokenization_common import TokenizerTesterMixin
class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ):
lowercase = BlenderbotSmallTokenizer
lowercase = False
def _lowercase( self ) -> List[Any]:
super().setUp()
UpperCAmelCase : int = ["""__start__""", """adapt""", """act""", """ap@@""", """te""", """__end__""", """__unk__"""]
UpperCAmelCase : Optional[Any] = dict(zip(A , range(len(A ) ) ) )
UpperCAmelCase : Optional[int] = ["""#version: 0.2""", """a p""", """t e</w>""", """ap t</w>""", """a d""", """ad apt</w>""", """a c""", """ac t</w>""", """"""]
UpperCAmelCase : Tuple = {"""unk_token""": """__unk__""", """bos_token""": """__start__""", """eos_token""": """__end__"""}
UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(A ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(A ) )
def _lowercase( self , **A ) -> Tuple:
kwargs.update(self.special_tokens_map )
return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **A )
def _lowercase( self , A ) -> Any:
UpperCAmelCase : Tuple = """adapt act apte"""
UpperCAmelCase : Dict = """adapt act apte"""
return input_text, output_text
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : List[Any] = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
UpperCAmelCase : Optional[int] = """adapt act apte"""
UpperCAmelCase : Dict = ["""adapt""", """act""", """ap@@""", """te"""]
UpperCAmelCase : Tuple = tokenizer.tokenize(A )
self.assertListEqual(A , A )
UpperCAmelCase : Any = [tokenizer.bos_token] + tokens + [tokenizer.eos_token]
UpperCAmelCase : List[Any] = [0, 1, 2, 3, 4, 5]
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A )
def _lowercase( self ) -> Any:
UpperCAmelCase : List[Any] = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" )
assert tok("""sam""" ).input_ids == [1384]
UpperCAmelCase : Any = """I am a small frog."""
UpperCAmelCase : Tuple = tok([src_text] , padding=A , truncation=A )["""input_ids"""]
UpperCAmelCase : List[Any] = tok.batch_decode(A , skip_special_tokens=A , clean_up_tokenization_spaces=A )[0]
assert src_text != decoded # I wish it did!
assert decoded == "i am a small frog ."
def _lowercase( self ) -> str:
UpperCAmelCase : Union[str, Any] = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" )
UpperCAmelCase : Any = """I am a small frog ."""
UpperCAmelCase : str = """."""
UpperCAmelCase : Optional[Any] = tok(A )["""input_ids"""]
UpperCAmelCase : int = tok(A )["""input_ids"""]
assert encoded[-1] == encoded_dot[0]
| 369 |
'''simple docstring'''
# Function to print upper half of diamond (pyramid)
def __lowerCamelCase ( _lowercase ) -> List[Any]:
for i in range(0 , _lowercase ):
for _ in range(0 , n - i - 1 ): # printing spaces
print(""" """ , end="""""" )
for _ in range(0 , i + 1 ): # printing stars
print("""* """ , end="""""" )
print()
def __lowerCamelCase ( _lowercase ) -> Dict:
for i in range(_lowercase , 0 , -1 ):
for _ in range(_lowercase , 0 , -1 ): # printing stars
print("""* """ , end="""""" )
print()
for _ in range(n - i + 1 , 0 , -1 ): # printing spaces
print(""" """ , end="""""" )
def __lowerCamelCase ( _lowercase ) -> List[Any]:
if n <= 0:
print(""" ... .... nothing printing :(""" )
return
floyd(_lowercase ) # upper half
reverse_floyd(_lowercase ) # lower half
if __name__ == "__main__":
print(R"""| /\ | |- | |- |--| |\ /| |-""")
print(R"""|/ \| |- |_ |_ |__| | \/ | |_""")
a : List[Any] = 1
while K:
a : int = int(input("""enter the number and , and see the magic : """))
print()
pretty_print(user_number)
a : Tuple = int(input("""press 0 to exit... and 1 to continue..."""))
print("""Good Bye...""")
| 338 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
a : List[str] = {
"""configuration_altclip""": [
"""ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""AltCLIPConfig""",
"""AltCLIPTextConfig""",
"""AltCLIPVisionConfig""",
],
"""processing_altclip""": ["""AltCLIPProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : List[Any] = [
"""ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""AltCLIPPreTrainedModel""",
"""AltCLIPModel""",
"""AltCLIPTextModel""",
"""AltCLIPVisionModel""",
]
if TYPE_CHECKING:
from .configuration_altclip import (
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
AltCLIPConfig,
AltCLIPTextConfig,
AltCLIPVisionConfig,
)
from .processing_altclip import AltCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_altclip import (
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
AltCLIPModel,
AltCLIPPreTrainedModel,
AltCLIPTextModel,
AltCLIPVisionModel,
)
else:
import sys
a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 370 |
'''simple docstring'''
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
a : List[str] = logging.getLogger(__name__)
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , A , A , A , A=None ) -> Union[str, Any]:
super().__init__(
A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , )
UpperCAmelCase : Optional[Any] = None
def _lowercase( self , A ) -> List[Any]:
logger.info("""initializing retrieval""" )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info("""dist initialized""" )
# needs to be set manually
UpperCAmelCase : Tuple = self._infer_socket_ifname()
# avoid clash with the NCCL port
UpperCAmelCase : str = str(distributed_port + 1 )
UpperCAmelCase : Any = dist.new_group(ranks=A , backend="""gloo""" )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info("""dist not initialized / main""" )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def _lowercase( self ) -> Dict:
return dist.get_rank(group=self.process_group ) == 0
def _lowercase( self , A , A , A=torch.floataa ) -> str:
UpperCAmelCase : List[Any] = torch.empty(A , dtype=A )
dist.scatter(A , src=0 , scatter_list=A , group=self.process_group )
return target_tensor
def _lowercase( self ) -> Any:
UpperCAmelCase : List[Any] = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
UpperCAmelCase : Optional[int] = next((addr for addr in addrs if addr.startswith("""e""" )) , A )
return ifname
def _lowercase( self , A , A ) -> Tuple[np.ndarray, List[dict]]:
# single GPU training
if not dist.is_initialized():
UpperCAmelCase , UpperCAmelCase : str = self._main_retrieve(A , A )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A )
# distributed training
UpperCAmelCase : int = dist.get_world_size(group=self.process_group )
# gather logic
UpperCAmelCase : int = None
if self._is_main():
UpperCAmelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )]
dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group )
# scatter logic
UpperCAmelCase : List[Any] = question_hidden_states.shape[0]
UpperCAmelCase : Tuple = []
UpperCAmelCase : Any = []
if self._is_main():
assert len(A ) == world_size
UpperCAmelCase , UpperCAmelCase : Optional[int] = self._main_retrieve(torch.cat(A ).numpy() , A )
UpperCAmelCase , UpperCAmelCase : Optional[Any] = torch.tensor(A ), torch.tensor(A )
UpperCAmelCase : List[str] = self._chunk_tensor(A , A )
UpperCAmelCase : Union[str, Any] = self._chunk_tensor(A , A )
UpperCAmelCase : Tuple = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa )
UpperCAmelCase : Optional[Any] = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
| 338 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
a : Tuple = {
"""google/tapas-base-finetuned-sqa""": (
"""https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json"""
),
"""google/tapas-base-finetuned-wtq""": (
"""https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json"""
),
"""google/tapas-base-finetuned-wikisql-supervised""": (
"""https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json"""
),
"""google/tapas-base-finetuned-tabfact""": (
"""https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json"""
),
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'tapas'
def __init__( self , A=30522 , A=768 , A=12 , A=12 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=1024 , A=[3, 256, 256, 2, 256, 256, 10] , A=0.0_2 , A=1e-12 , A=0 , A=10.0 , A=0 , A=1.0 , A=None , A=1.0 , A=False , A=None , A=1.0 , A=1.0 , A=False , A=False , A="ratio" , A=None , A=None , A=64 , A=32 , A=False , A=True , A=False , A=False , A=True , A=False , A=None , A=None , **A , ) -> List[Any]:
super().__init__(pad_token_id=A , **A )
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
UpperCAmelCase : Optional[Any] = vocab_size
UpperCAmelCase : Optional[Any] = hidden_size
UpperCAmelCase : Any = num_hidden_layers
UpperCAmelCase : Tuple = num_attention_heads
UpperCAmelCase : str = hidden_act
UpperCAmelCase : Optional[int] = intermediate_size
UpperCAmelCase : Optional[int] = hidden_dropout_prob
UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob
UpperCAmelCase : str = max_position_embeddings
UpperCAmelCase : Union[str, Any] = type_vocab_sizes
UpperCAmelCase : int = initializer_range
UpperCAmelCase : int = layer_norm_eps
# Fine-tuning task hyperparameters
UpperCAmelCase : Optional[Any] = positive_label_weight
UpperCAmelCase : Union[str, Any] = num_aggregation_labels
UpperCAmelCase : List[str] = aggregation_loss_weight
UpperCAmelCase : str = use_answer_as_supervision
UpperCAmelCase : int = answer_loss_importance
UpperCAmelCase : Dict = use_normalized_answer_loss
UpperCAmelCase : str = huber_loss_delta
UpperCAmelCase : Union[str, Any] = temperature
UpperCAmelCase : Optional[Any] = aggregation_temperature
UpperCAmelCase : Optional[Any] = use_gumbel_for_cells
UpperCAmelCase : Optional[Any] = use_gumbel_for_aggregation
UpperCAmelCase : int = average_approximation_function
UpperCAmelCase : Tuple = cell_selection_preference
UpperCAmelCase : Dict = answer_loss_cutoff
UpperCAmelCase : Optional[int] = max_num_rows
UpperCAmelCase : Optional[int] = max_num_columns
UpperCAmelCase : int = average_logits_per_cell
UpperCAmelCase : Dict = select_one_column
UpperCAmelCase : Optional[int] = allow_empty_column_selection
UpperCAmelCase : Union[str, Any] = init_cell_selection_weights_to_zero
UpperCAmelCase : str = reset_position_index_per_cell
UpperCAmelCase : str = disable_per_token_loss
# Aggregation hyperparameters
UpperCAmelCase : Dict = aggregation_labels
UpperCAmelCase : List[Any] = no_aggregation_label_index
if isinstance(self.aggregation_labels , A ):
UpperCAmelCase : Optional[int] = {int(A ): v for k, v in aggregation_labels.items()}
| 371 |
'''simple docstring'''
from typing import List, Optional
from tokenizers import ByteLevelBPETokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
a : List[Any] = logging.get_logger(__name__)
a : List[str] = {
"""vocab_file""": """vocab.json""",
"""merges_file""": """merges.txt""",
"""tokenizer_config_file""": """tokenizer_config.json""",
}
a : List[Any] = {
"""vocab_file""": {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"""
},
"""merges_file""": {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"""
},
"""tokenizer_config_file""": {
"""facebook/blenderbot_small-90M""": (
"""https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"""
)
},
}
a : List[Any] = {
"""facebook/blenderbot_small-90M""": 5_1_2,
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = BlenderbotSmallTokenizer
def __init__( self , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , A=True , **A , ) -> Union[str, Any]:
super().__init__(
ByteLevelBPETokenizer(
vocab=A , merges=A , add_prefix_space=A , trim_offsets=A , ) , bos_token=A , eos_token=A , unk_token=A , **A , )
UpperCAmelCase : Optional[Any] = add_prefix_space
def _lowercase( self , A , A=None ) -> Optional[Any]:
UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _lowercase( self , A , A = None ) -> List[int]:
UpperCAmelCase : Any = [self.sep_token_id]
UpperCAmelCase : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 338 | 0 |
'''simple docstring'''
from __future__ import annotations
def __lowerCamelCase ( _lowercase ) -> list:
if len(_lowercase ) == 0:
return []
UpperCAmelCase : Union[str, Any] = min(_lowercase ), max(_lowercase )
UpperCAmelCase : str = int(max_value - min_value ) + 1
UpperCAmelCase : list[list] = [[] for _ in range(_lowercase )]
for i in my_list:
buckets[int(i - min_value )].append(_lowercase )
return [v for bucket in buckets for v in sorted(_lowercase )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
| 350 |
'''simple docstring'''
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , A , A , A = None , A = None , A = False , **A , ) -> Tuple:
super().__init__(features=A , cache_dir=A , keep_in_memory=A , **A )
UpperCAmelCase : Any = Sql(
cache_dir=A , features=A , sql=A , con=A , **A , )
def _lowercase( self ) -> Dict:
UpperCAmelCase : Any = None
UpperCAmelCase : Any = None
UpperCAmelCase : int = None
UpperCAmelCase : int = None
self.builder.download_and_prepare(
download_config=A , download_mode=A , verification_mode=A , base_path=A , )
# Build dataset for splits
UpperCAmelCase : str = self.builder.as_dataset(
split="""train""" , verification_mode=A , in_memory=self.keep_in_memory )
return dataset
class UpperCamelCase_ :
def __init__( self , A , A , A , A = None , A = None , **A , ) -> str:
if num_proc is not None and num_proc <= 0:
raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' )
UpperCAmelCase : Dict = dataset
UpperCAmelCase : List[Any] = name
UpperCAmelCase : Any = con
UpperCAmelCase : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
UpperCAmelCase : Optional[Any] = num_proc
UpperCAmelCase : str = to_sql_kwargs
def _lowercase( self ) -> int:
UpperCAmelCase : Any = self.to_sql_kwargs.pop("""sql""" , A )
UpperCAmelCase : str = self.to_sql_kwargs.pop("""con""" , A )
UpperCAmelCase : Union[str, Any] = self.to_sql_kwargs.pop("""index""" , A )
UpperCAmelCase : str = self._write(index=A , **self.to_sql_kwargs )
return written
def _lowercase( self , A ) -> Any:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = args
UpperCAmelCase : Union[str, Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs
UpperCAmelCase : int = query_table(
table=self.dataset.data , key=slice(A , offset + self.batch_size ) , indices=self.dataset._indices , )
UpperCAmelCase : Any = batch.to_pandas()
UpperCAmelCase : List[Any] = df.to_sql(self.name , self.con , index=A , **A )
return num_rows or len(A )
def _lowercase( self , A , **A ) -> int:
UpperCAmelCase : Optional[int] = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
UpperCAmelCase , UpperCAmelCase : List[str] = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , A , A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += num_rows
return written
| 338 | 0 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase ) -> List[Any]:
for i in range(0 , _lowercase ):
for _ in range(0 , n - i - 1 ): # printing spaces
print(""" """ , end="""""" )
for _ in range(0 , i + 1 ): # printing stars
print("""* """ , end="""""" )
print()
def __lowerCamelCase ( _lowercase ) -> Dict:
for i in range(_lowercase , 0 , -1 ):
for _ in range(_lowercase , 0 , -1 ): # printing stars
print("""* """ , end="""""" )
print()
for _ in range(n - i + 1 , 0 , -1 ): # printing spaces
print(""" """ , end="""""" )
def __lowerCamelCase ( _lowercase ) -> List[Any]:
if n <= 0:
print(""" ... .... nothing printing :(""" )
return
floyd(_lowercase ) # upper half
reverse_floyd(_lowercase ) # lower half
if __name__ == "__main__":
print(R"""| /\ | |- | |- |--| |\ /| |-""")
print(R"""|/ \| |- |_ |_ |__| | \/ | |_""")
a : List[Any] = 1
while K:
a : int = int(input("""enter the number and , and see the magic : """))
print()
pretty_print(user_number)
a : Tuple = int(input("""press 0 to exit... and 1 to continue..."""))
print("""Good Bye...""")
| 351 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel
@require_tf
class UpperCamelCase_ :
lowercase = MBartConfig
lowercase = {}
lowercase = 'gelu'
def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]:
UpperCAmelCase : Optional[int] = parent
UpperCAmelCase : Dict = batch_size
UpperCAmelCase : Tuple = seq_length
UpperCAmelCase : str = is_training
UpperCAmelCase : Optional[int] = use_labels
UpperCAmelCase : Optional[Any] = vocab_size
UpperCAmelCase : Union[str, Any] = hidden_size
UpperCAmelCase : Union[str, Any] = num_hidden_layers
UpperCAmelCase : List[Any] = num_attention_heads
UpperCAmelCase : Optional[int] = intermediate_size
UpperCAmelCase : Dict = hidden_dropout_prob
UpperCAmelCase : int = attention_probs_dropout_prob
UpperCAmelCase : Optional[int] = max_position_embeddings
UpperCAmelCase : Optional[Any] = eos_token_id
UpperCAmelCase : List[str] = pad_token_id
UpperCAmelCase : List[Any] = bos_token_id
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : str = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A )
return config, inputs_dict
def _lowercase( self , A , A ) -> List[str]:
UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder()
UpperCAmelCase : int = inputs_dict["""input_ids"""]
UpperCAmelCase : str = input_ids[:1, :]
UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :]
UpperCAmelCase : List[str] = inputs_dict["""head_mask"""]
UpperCAmelCase : List[Any] = 1
# first forward pass
UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A )
UpperCAmelCase , UpperCAmelCase : Optional[Any] = outputs.to_tuple()
UpperCAmelCase : int = past_key_values[1]
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]:
if attention_mask is None:
UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCAmelCase : int = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
lowercase = (
{
'conversational': TFMBartForConditionalGeneration,
'feature-extraction': TFMBartModel,
'summarization': TFMBartForConditionalGeneration,
'text2text-generation': TFMBartForConditionalGeneration,
'translation': TFMBartForConditionalGeneration,
}
if is_tf_available()
else {}
)
lowercase = True
lowercase = False
lowercase = False
def _lowercase( self , A , A , A , A , A ) -> int:
if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
# Exception encountered when calling layer '...'
return True
return False
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : int = TFMBartModelTester(self )
UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A )
def _lowercase( self ) -> Optional[int]:
self.config_tester.run_common_tests()
def _lowercase( self ) -> Dict:
UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*A )
@require_sentencepiece
@require_tokenizers
@require_tf
class UpperCamelCase_ ( unittest.TestCase ):
lowercase = [
' UN Chief Says There Is No Military Solution in Syria',
]
lowercase = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
]
lowercase = 'facebook/mbart-large-en-ro'
@cached_property
def _lowercase( self ) -> Any:
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def _lowercase( self , **A ) -> Any:
UpperCAmelCase : Optional[int] = self.translate_src_text(**A )
self.assertListEqual(self.expected_text , A )
def _lowercase( self , **A ) -> Optional[Any]:
UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" )
UpperCAmelCase : int = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 )
UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A )
return generated_words
@slow
def _lowercase( self ) -> List[Any]:
self._assert_generated_batch_equal_expected()
| 338 | 0 |
'''simple docstring'''
from ...processing_utils import ProcessorMixin
class UpperCamelCase_ ( __magic_name__ ):
lowercase = ['image_processor', 'feature_extractor']
lowercase = 'TvltImageProcessor'
lowercase = 'TvltFeatureExtractor'
def __init__( self , A , A ) -> List[str]:
super().__init__(image_processor=A , feature_extractor=A )
UpperCAmelCase : int = image_processor
UpperCAmelCase : List[str] = feature_extractor
def __call__( self , A=None , A=None , A=None , A=None , A=False , A=False , *A , **A , ) -> int:
if images is None and audio is None:
raise ValueError("""You need to specify either an `images` or `audio` input to process.""" )
UpperCAmelCase : List[str] = None
if images is not None:
UpperCAmelCase : List[Any] = self.image_processor(A , mask_pixel=A , *A , **A )
if images_mixed is not None:
UpperCAmelCase : Tuple = self.image_processor(A , is_mixed=A , *A , **A )
if audio is not None:
UpperCAmelCase : Any = self.feature_extractor(
A , *A , sampling_rate=A , mask_audio=A , **A )
UpperCAmelCase : Dict = {}
if audio is not None:
output_dict.update(A )
if images is not None:
output_dict.update(A )
if images_mixed_dict is not None:
output_dict.update(A )
return output_dict
@property
def _lowercase( self ) -> int:
UpperCAmelCase : List[Any] = self.image_processor.model_input_names
UpperCAmelCase : Optional[int] = self.feature_extractor.model_input_names
return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
| 352 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase , _lowercase ) -> bool:
UpperCAmelCase : Tuple = len(_lowercase ) + 1
UpperCAmelCase : List[Any] = len(_lowercase ) + 1
# dp is a 2d matrix where dp[i][j] denotes whether prefix string of
# length i of input_string matches with prefix string of length j of
# given pattern.
# "dp" stands for dynamic programming.
UpperCAmelCase : str = [[0 for i in range(_lowercase )] for j in range(_lowercase )]
# since string of zero length match pattern of zero length
UpperCAmelCase : int = 1
# since pattern of zero length will never match with string of non-zero length
for i in range(1 , _lowercase ):
UpperCAmelCase : str = 0
# since string of zero length will match with pattern where there
# is at least one * alternatively
for j in range(1 , _lowercase ):
UpperCAmelCase : Optional[Any] = dp[0][j - 2] if pattern[j - 1] == """*""" else 0
# now using bottom-up approach to find for all remaining lengths
for i in range(1 , _lowercase ):
for j in range(1 , _lowercase ):
if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".":
UpperCAmelCase : Union[str, Any] = dp[i - 1][j - 1]
elif pattern[j - 1] == "*":
if dp[i][j - 2] == 1:
UpperCAmelCase : List[Any] = 1
elif pattern[j - 2] in (input_string[i - 1], "."):
UpperCAmelCase : Optional[int] = dp[i - 1][j]
else:
UpperCAmelCase : Any = 0
else:
UpperCAmelCase : str = 0
return bool(dp[-1][-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
# inputing the strings
# input_string = input("input a string :")
# pattern = input("input a pattern :")
a : List[str] = """aab"""
a : Optional[int] = """c*a*b"""
# using function to check whether given string matches the given pattern
if match_pattern(input_string, pattern):
print(F'''{input_string} matches the given pattern {pattern}''')
else:
print(F'''{input_string} does not match with the given pattern {pattern}''')
| 338 | 0 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
a : Any = logging.get_logger(__name__)
def __lowerCamelCase ( _lowercase ) -> List[Any]:
UpperCAmelCase : str = DPTConfig(embedding_type="""hybrid""" )
if "large" in checkpoint_url:
UpperCAmelCase : Optional[Any] = 1_0_2_4
UpperCAmelCase : str = 4_0_9_6
UpperCAmelCase : Union[str, Any] = 2_4
UpperCAmelCase : List[str] = 1_6
UpperCAmelCase : List[Any] = [5, 1_1, 1_7, 2_3]
UpperCAmelCase : str = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4]
UpperCAmelCase : int = (1, 3_8_4, 3_8_4)
if "nyu" or "midas" in checkpoint_url:
UpperCAmelCase : Optional[int] = 7_6_8
UpperCAmelCase : Optional[int] = [1, 1, 1, 0.5]
UpperCAmelCase : Any = [2_5_6, 5_1_2, 7_6_8, 7_6_8]
UpperCAmelCase : List[Any] = 1_5_0
UpperCAmelCase : Any = 1_6
UpperCAmelCase : Optional[Any] = (1, 3_8_4, 3_8_4)
UpperCAmelCase : Union[str, Any] = False
UpperCAmelCase : Optional[Any] = """project"""
if "ade" in checkpoint_url:
UpperCAmelCase : List[str] = True
UpperCAmelCase : List[Any] = 7_6_8
UpperCAmelCase : List[str] = [1, 1, 1, 0.5]
UpperCAmelCase : Dict = 1_5_0
UpperCAmelCase : int = 1_6
UpperCAmelCase : str = """huggingface/label-files"""
UpperCAmelCase : int = """ade20k-id2label.json"""
UpperCAmelCase : str = json.load(open(cached_download(hf_hub_url(_lowercase , _lowercase , repo_type="""dataset""" ) ) , """r""" ) )
UpperCAmelCase : Dict = {int(_lowercase ): v for k, v in idalabel.items()}
UpperCAmelCase : int = idalabel
UpperCAmelCase : str = {v: k for k, v in idalabel.items()}
UpperCAmelCase : Optional[Any] = [1, 1_5_0, 4_8_0, 4_8_0]
return config, expected_shape
def __lowerCamelCase ( _lowercase ) -> int:
UpperCAmelCase : Union[str, Any] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""]
for k in ignore_keys:
state_dict.pop(_lowercase , _lowercase )
def __lowerCamelCase ( _lowercase ) -> Tuple:
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
UpperCAmelCase : Tuple = name.replace("""pretrained.model""" , """dpt.encoder""" )
if "pretrained.model" in name:
UpperCAmelCase : Any = name.replace("""pretrained.model""" , """dpt.embeddings""" )
if "patch_embed" in name:
UpperCAmelCase : str = name.replace("""patch_embed""" , """""" )
if "pos_embed" in name:
UpperCAmelCase : Optional[int] = name.replace("""pos_embed""" , """position_embeddings""" )
if "attn.proj" in name:
UpperCAmelCase : List[Any] = name.replace("""attn.proj""" , """attention.output.dense""" )
if "proj" in name and "project" not in name:
UpperCAmelCase : int = name.replace("""proj""" , """projection""" )
if "blocks" in name:
UpperCAmelCase : Optional[Any] = name.replace("""blocks""" , """layer""" )
if "mlp.fc1" in name:
UpperCAmelCase : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
UpperCAmelCase : Optional[Any] = name.replace("""mlp.fc2""" , """output.dense""" )
if "norm1" in name and "backbone" not in name:
UpperCAmelCase : Dict = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name and "backbone" not in name:
UpperCAmelCase : Optional[Any] = name.replace("""norm2""" , """layernorm_after""" )
if "scratch.output_conv" in name:
UpperCAmelCase : Dict = name.replace("""scratch.output_conv""" , """head""" )
if "scratch" in name:
UpperCAmelCase : Union[str, Any] = name.replace("""scratch""" , """neck""" )
if "layer1_rn" in name:
UpperCAmelCase : Optional[Any] = name.replace("""layer1_rn""" , """convs.0""" )
if "layer2_rn" in name:
UpperCAmelCase : Optional[int] = name.replace("""layer2_rn""" , """convs.1""" )
if "layer3_rn" in name:
UpperCAmelCase : Dict = name.replace("""layer3_rn""" , """convs.2""" )
if "layer4_rn" in name:
UpperCAmelCase : int = name.replace("""layer4_rn""" , """convs.3""" )
if "refinenet" in name:
UpperCAmelCase : int = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
UpperCAmelCase : Optional[int] = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' )
if "out_conv" in name:
UpperCAmelCase : List[Any] = name.replace("""out_conv""" , """projection""" )
if "resConfUnit1" in name:
UpperCAmelCase : Any = name.replace("""resConfUnit1""" , """residual_layer1""" )
if "resConfUnit2" in name:
UpperCAmelCase : str = name.replace("""resConfUnit2""" , """residual_layer2""" )
if "conv1" in name:
UpperCAmelCase : Optional[Any] = name.replace("""conv1""" , """convolution1""" )
if "conv2" in name:
UpperCAmelCase : Dict = name.replace("""conv2""" , """convolution2""" )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
UpperCAmelCase : List[str] = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" )
if "pretrained.act_postprocess2.0.project.0" in name:
UpperCAmelCase : str = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" )
if "pretrained.act_postprocess3.0.project.0" in name:
UpperCAmelCase : Tuple = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" )
if "pretrained.act_postprocess4.0.project.0" in name:
UpperCAmelCase : Any = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
UpperCAmelCase : Any = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" )
if "pretrained.act_postprocess1.4" in name:
UpperCAmelCase : Optional[Any] = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" )
if "pretrained.act_postprocess2.3" in name:
UpperCAmelCase : int = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" )
if "pretrained.act_postprocess2.4" in name:
UpperCAmelCase : Optional[Any] = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" )
if "pretrained.act_postprocess3.3" in name:
UpperCAmelCase : int = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" )
if "pretrained.act_postprocess4.3" in name:
UpperCAmelCase : Dict = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" )
if "pretrained.act_postprocess4.4" in name:
UpperCAmelCase : List[Any] = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" )
if "pretrained" in name:
UpperCAmelCase : List[str] = name.replace("""pretrained""" , """dpt""" )
if "bn" in name:
UpperCAmelCase : Optional[Any] = name.replace("""bn""" , """batch_norm""" )
if "head" in name:
UpperCAmelCase : Any = name.replace("""head""" , """head.head""" )
if "encoder.norm" in name:
UpperCAmelCase : Tuple = name.replace("""encoder.norm""" , """layernorm""" )
if "auxlayer" in name:
UpperCAmelCase : Union[str, Any] = name.replace("""auxlayer""" , """auxiliary_head.head""" )
if "backbone" in name:
UpperCAmelCase : List[Any] = name.replace("""backbone""" , """backbone.bit.encoder""" )
if ".." in name:
UpperCAmelCase : List[Any] = name.replace("""..""" , """.""" )
if "stem.conv" in name:
UpperCAmelCase : Optional[Any] = name.replace("""stem.conv""" , """bit.embedder.convolution""" )
if "blocks" in name:
UpperCAmelCase : Dict = name.replace("""blocks""" , """layers""" )
if "convolution" in name and "backbone" in name:
UpperCAmelCase : Union[str, Any] = name.replace("""convolution""" , """conv""" )
if "layer" in name and "backbone" in name:
UpperCAmelCase : Tuple = name.replace("""layer""" , """layers""" )
if "backbone.bit.encoder.bit" in name:
UpperCAmelCase : Any = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" )
if "embedder.conv" in name:
UpperCAmelCase : List[Any] = name.replace("""embedder.conv""" , """embedder.convolution""" )
if "backbone.bit.encoder.stem.norm" in name:
UpperCAmelCase : Dict = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" )
return name
def __lowerCamelCase ( _lowercase , _lowercase ) -> Union[str, Any]:
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase : List[Any] = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' )
UpperCAmelCase : List[Any] = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase : Union[str, Any] = in_proj_weight[: config.hidden_size, :]
UpperCAmelCase : Tuple = in_proj_bias[: config.hidden_size]
UpperCAmelCase : Union[str, Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase : Tuple = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase : Union[str, Any] = in_proj_weight[
-config.hidden_size :, :
]
UpperCAmelCase : Tuple = in_proj_bias[-config.hidden_size :]
def __lowerCamelCase ( ) -> str:
UpperCAmelCase : int = """http://images.cocodataset.org/val2017/000000039769.jpg"""
UpperCAmelCase : List[str] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw )
return im
@torch.no_grad()
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Any:
UpperCAmelCase : str = get_dpt_config(_lowercase )
# load original state_dict from URL
# state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" )
# remove certain keys
remove_ignore_keys_(_lowercase )
# rename keys
for key in state_dict.copy().keys():
UpperCAmelCase : Tuple = state_dict.pop(_lowercase )
UpperCAmelCase : Optional[Any] = val
# read in qkv matrices
read_in_q_k_v(_lowercase , _lowercase )
# load HuggingFace model
UpperCAmelCase : Optional[int] = DPTForSemanticSegmentation(_lowercase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(_lowercase )
model.load_state_dict(_lowercase )
model.eval()
# Check outputs on an image
UpperCAmelCase : Optional[Any] = 4_8_0 if """ade""" in checkpoint_url else 3_8_4
UpperCAmelCase : List[str] = DPTImageProcessor(size=_lowercase )
UpperCAmelCase : int = prepare_img()
UpperCAmelCase : Any = image_processor(_lowercase , return_tensors="""pt""" )
# forward pass
UpperCAmelCase : Optional[Any] = model(**_lowercase ).logits if """ade""" in checkpoint_url else model(**_lowercase ).predicted_depth
if show_prediction:
UpperCAmelCase : List[Any] = (
torch.nn.functional.interpolate(
outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=_lowercase , )
.squeeze()
.cpu()
.numpy()
)
Image.fromarray((prediction / prediction.max()) * 2_5_5 ).show()
if pytorch_dump_folder_path is not None:
Path(_lowercase ).mkdir(exist_ok=_lowercase )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(_lowercase )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(_lowercase )
if push_to_hub:
model.push_to_hub("""ybelkada/dpt-hybrid-midas""" )
image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" )
if __name__ == "__main__":
a : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""",
type=str,
help="""URL of the original DPT checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default=None,
type=str,
required=False,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
)
parser.add_argument(
"""--model_name""",
default="""dpt-large""",
type=str,
help="""Name of the model, in case you're pushing to the hub.""",
)
parser.add_argument(
"""--show_prediction""",
action="""store_true""",
)
a : int = parser.parse_args()
convert_dpt_checkpoint(
args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction
)
| 353 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase ) -> int:
UpperCAmelCase : List[str] = 0
while num > 0:
digit_sum += num % 1_0
num //= 1_0
return digit_sum
def __lowerCamelCase ( _lowercase = 1_0_0 ) -> int:
UpperCAmelCase : int = 1
UpperCAmelCase : str = 2
for i in range(2 , max_n + 1 ):
UpperCAmelCase : Tuple = pre_numerator
UpperCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1
UpperCAmelCase : Union[str, Any] = cur_numerator
UpperCAmelCase : Optional[int] = e_cont * pre_numerator + temp
return sum_digits(_lowercase )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 338 | 0 |
'''simple docstring'''
import unittest
import numpy as np
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase = None , ) -> np.ndarray:
UpperCAmelCase : Dict = np.shape(_lowercase )
UpperCAmelCase : Optional[int] = np.shape(_lowercase )
UpperCAmelCase : Dict = np.shape(_lowercase )
if shape_a[0] != shape_b[0]:
UpperCAmelCase : Tuple = (
"""Expected the same number of rows for A and B. """
F'''Instead found A of size {shape_a} and B of size {shape_b}'''
)
raise ValueError(_lowercase )
if shape_b[1] != shape_c[1]:
UpperCAmelCase : Optional[int] = (
"""Expected the same number of columns for B and C. """
F'''Instead found B of size {shape_b} and C of size {shape_c}'''
)
raise ValueError(_lowercase )
UpperCAmelCase : Any = pseudo_inv
if a_inv is None:
try:
UpperCAmelCase : List[Any] = np.linalg.inv(_lowercase )
except np.linalg.LinAlgError:
raise ValueError(
"""Input matrix A is not invertible. Cannot compute Schur complement.""" )
return mat_c - mat_b.T @ a_inv @ mat_b
class UpperCamelCase_ ( unittest.TestCase ):
def _lowercase( self ) -> None:
UpperCAmelCase : Optional[int] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCAmelCase : int = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCAmelCase : int = np.array([[2, 1], [6, 3]] )
UpperCAmelCase : int = schur_complement(A , A , A )
UpperCAmelCase : int = np.block([[a, b], [b.T, c]] )
UpperCAmelCase : str = np.linalg.det(A )
UpperCAmelCase : Optional[int] = np.linalg.det(A )
UpperCAmelCase : Any = np.linalg.det(A )
self.assertAlmostEqual(A , det_a * det_s )
def _lowercase( self ) -> None:
UpperCAmelCase : Optional[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCAmelCase : List[Any] = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCAmelCase : Any = np.array([[2, 1], [6, 3]] )
with self.assertRaises(A ):
schur_complement(A , A , A )
def _lowercase( self ) -> None:
UpperCAmelCase : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCAmelCase : Optional[int] = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCAmelCase : Optional[int] = np.array([[2, 1, 3], [6, 3, 5]] )
with self.assertRaises(A ):
schur_complement(A , A , A )
if __name__ == "__main__":
import doctest
doctest.testmod()
unittest.main()
| 354 |
'''simple docstring'''
import random
import unittest
from torch.utils.data import BatchSampler, DataLoader, IterableDataset
from accelerate import Accelerator
from accelerate.data_loader import (
BatchSamplerShard,
DataLoaderDispatcher,
DataLoaderShard,
IterableDatasetShard,
SkipBatchSampler,
SkipDataLoader,
skip_first_batches,
)
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , A=0.0_1 , A=1000 ) -> List[str]:
UpperCAmelCase : List[Any] = p_stop
UpperCAmelCase : Optional[int] = max_length
def __iter__( self ) -> Union[str, Any]:
UpperCAmelCase : Dict = 0
UpperCAmelCase : Union[str, Any] = False
while not stop and count < self.max_length:
yield count
count += 1
UpperCAmelCase : Any = random.random() < self.p_stop
class UpperCamelCase_ ( unittest.TestCase ):
def _lowercase( self , A , A , A=False , A=True ) -> Union[str, Any]:
UpperCAmelCase : List[str] = [
BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A )
for i in range(2 )
]
UpperCAmelCase : List[str] = [list(A ) for batch_sampler_shard in batch_sampler_shards]
if not split_batches:
self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] )
self.assertListEqual(A , A )
def _lowercase( self ) -> Union[str, Any]:
# Check the shards when the dataset is a round multiple of total batch size.
UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Any = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A )
# Expected shouldn't change
self.check_batch_sampler_shards(A , A )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]],
]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Tuple = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]],
]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : List[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
UpperCAmelCase : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]],
]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : int = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A )
# Check the shards when the dataset is very small.
UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]]
self.check_batch_sampler_shards(A , A )
UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : List[Any] = [[], []]
self.check_batch_sampler_shards(A , A )
def _lowercase( self ) -> Tuple:
# Check the shards when the dataset is a round multiple of batch size.
UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : List[str] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
UpperCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A )
# Expected shouldn't change
self.check_batch_sampler_shards(A , A , split_batches=A )
# Check the shards when the dataset is not a round multiple of batch size.
UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : List[str] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
UpperCAmelCase : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Union[str, Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Any = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A )
# Check the shards when the dataset is very small.
UpperCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Optional[Any] = [[[0, 1]], [[0, 1]]]
self.check_batch_sampler_shards(A , A , split_batches=A )
UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Any = [[], []]
self.check_batch_sampler_shards(A , A , split_batches=A )
def _lowercase( self ) -> Any:
# Check the shards when the dataset is a round multiple of total batch size.
UpperCAmelCase : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A )
# Expected shouldn't change
self.check_batch_sampler_shards(A , A , even_batches=A )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
UpperCAmelCase : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : List[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Dict = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
UpperCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Union[str, Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Optional[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(A , A , even_batches=A )
# Check the shards when the dataset is very small.
UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : str = [[[0, 1]], []]
self.check_batch_sampler_shards(A , A , even_batches=A )
UpperCAmelCase : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A )
UpperCAmelCase : Tuple = [[], []]
self.check_batch_sampler_shards(A , A , even_batches=A )
def _lowercase( self ) -> List[Any]:
# Check the shards when the dataset is a round multiple of batch size.
UpperCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : List[Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A )
# Expected shouldn't change
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
# Check the shards when the dataset is not a round multiple of batch size.
UpperCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Optional[Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
UpperCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Dict = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Union[str, Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Dict = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
# Check the shards when the dataset is very small.
UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Dict = [[[0, 1]], []]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Dict = [[], []]
self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A )
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]]
UpperCAmelCase : List[str] = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )]
self.assertEqual(len(batch_sampler_shards[0] ) , 3 )
self.assertEqual(len(batch_sampler_shards[1] ) , 2 )
self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] )
self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] )
def _lowercase( self , A , A , A , A=False , A=2 , A=False ) -> Tuple:
random.seed(A )
UpperCAmelCase : Dict = list(A )
UpperCAmelCase : Any = [
IterableDatasetShard(
A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , )
for i in range(A )
]
UpperCAmelCase : Dict = []
for iterable_dataset_shard in iterable_dataset_shards:
# Since our random iterable dataset will be... random... we need to use a seed to get reproducible results.
random.seed(A )
iterable_dataset_lists.append(list(A ) )
UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size
# All iterable dataset shard should have the same length, a round multiple of shard_batch_size
UpperCAmelCase : List[Any] = iterable_dataset_lists[0]
for l in iterable_dataset_lists[1:]:
self.assertEqual(len(A ) , len(A ) )
self.assertTrue(len(A ) % shard_batch_size == 0 )
UpperCAmelCase : List[Any] = []
for idx in range(0 , len(A ) , A ):
for l in iterable_dataset_lists:
observed += l[idx : idx + shard_batch_size]
if not drop_last:
while len(A ) < len(A ):
reference += reference
self.assertListEqual(A , reference[: len(A )] )
def _lowercase( self ) -> str:
UpperCAmelCase : Tuple = 42
UpperCAmelCase : List[Any] = RandomIterableDataset()
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
# Edge case with a very small dataset
UpperCAmelCase : List[Any] = RandomIterableDataset(max_length=2 )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A )
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Dict = BatchSampler(range(16 ) , batch_size=4 , drop_last=A )
UpperCAmelCase : Any = SkipBatchSampler(A , 2 )
self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowercase( self ) -> int:
UpperCAmelCase : Any = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 )
self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : List[Any] = DataLoader(list(range(16 ) ) , batch_size=4 )
UpperCAmelCase : Optional[Any] = skip_first_batches(A , num_batches=2 )
self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowercase( self ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 )
for idx, _ in enumerate(A ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(A ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
def _lowercase( self ) -> Dict:
Accelerator()
UpperCAmelCase : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 )
for idx, _ in enumerate(A ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(A ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
| 338 | 0 |
a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ"""
def __lowerCamelCase ( ) -> None:
UpperCAmelCase : Optional[int] = input("""Enter message: """ )
UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ )
UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ )
if mode.lower().startswith("""e""" ):
UpperCAmelCase : List[str] = """encrypt"""
UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase )
elif mode.lower().startswith("""d""" ):
UpperCAmelCase : Tuple = """decrypt"""
UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase )
print(F'''\n{mode.title()}ed message:''' )
print(_lowercase )
def __lowerCamelCase ( _lowercase , _lowercase ) -> str:
return translate_message(_lowercase , _lowercase , """encrypt""" )
def __lowerCamelCase ( _lowercase , _lowercase ) -> str:
return translate_message(_lowercase , _lowercase , """decrypt""" )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str:
UpperCAmelCase : Optional[int] = []
UpperCAmelCase : Optional[Any] = 0
UpperCAmelCase : Tuple = key.upper()
for symbol in message:
UpperCAmelCase : Dict = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(_lowercase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(_lowercase ):
UpperCAmelCase : Optional[int] = 0
else:
translated.append(_lowercase )
return "".join(_lowercase )
if __name__ == "__main__":
main()
| 355 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
a : List[Any] = {
"""configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""],
"""tokenization_m2m_100""": ["""M2M100Tokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Any = [
"""M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""M2M100ForConditionalGeneration""",
"""M2M100Model""",
"""M2M100PreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 338 | 0 |
'''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("""4.31.0""")
a : Optional[int] = logging.getLogger(__name__)
@dataclass
class UpperCamelCase_ :
lowercase = field(
metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
lowercase = field(
default=__magic_name__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
lowercase = field(
default=__magic_name__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
lowercase = field(
default=__magic_name__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , )
lowercase = field(
default=__magic_name__ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , )
lowercase = field(
default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , )
lowercase = field(
default=__magic_name__ , metadata={
'help': (
'Will use the token generated when running `huggingface-cli login` (necessary to use this script '
'with private models).'
)
} , )
@dataclass
class UpperCamelCase_ :
lowercase = field(default=__magic_name__ , metadata={'help': 'The input training data file (a text file).'} )
lowercase = field(
default=__magic_name__ , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , )
lowercase = field(
default=__magic_name__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} )
lowercase = field(
default=__magic_name__ , metadata={'help': 'The number of processes to use for the preprocessing.'} , )
lowercase = field(
default=__magic_name__ , metadata={
'help': (
'The maximum total input sequence length after tokenization. If passed, sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
lowercase = field(
default=__magic_name__ , metadata={
'help': (
'Whether to pad all samples to the maximum sentence length. '
'If False, will pad the samples dynamically when batching to the maximum length in the batch. More '
'efficient on GPU but very bad for TPU.'
)
} , )
lowercase = field(
default=__magic_name__ , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of training examples to this '
'value if set.'
)
} , )
lowercase = field(
default=__magic_name__ , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of evaluation examples to this '
'value if set.'
)
} , )
def _lowercase( self ) -> Optional[Any]:
if self.train_file is not None:
UpperCAmelCase : Optional[Any] = self.train_file.split(""".""" )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
UpperCAmelCase : Tuple = self.validation_file.split(""".""" )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class UpperCamelCase_ :
lowercase = 42
lowercase = True
lowercase = None
lowercase = None
def __call__( self , A ) -> List[str]:
UpperCAmelCase : str = """label""" if """label""" in features[0].keys() else """labels"""
UpperCAmelCase : str = [feature.pop(A ) for feature in features]
UpperCAmelCase : Tuple = len(A )
UpperCAmelCase : List[Any] = len(features[0]["""input_ids"""] )
UpperCAmelCase : Optional[Any] = [
[{k: v[i] for k, v in feature.items()} for i in range(A )] for feature in features
]
UpperCAmelCase : int = list(chain(*A ) )
UpperCAmelCase : Dict = self.tokenizer.pad(
A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , )
# Un-flatten
UpperCAmelCase : List[Any] = {k: v.view(A , A , -1 ) for k, v in batch.items()}
# Add back labels
UpperCAmelCase : Tuple = torch.tensor(A , dtype=torch.intaa )
return batch
def __lowerCamelCase ( ) -> Optional[int]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
UpperCAmelCase : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
UpperCAmelCase : Any = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
UpperCAmelCase : int = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("""run_swag""" , _lowercase , _lowercase )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
UpperCAmelCase : Optional[Any] = training_args.get_process_log_level()
logger.setLevel(_lowercase )
datasets.utils.logging.set_verbosity(_lowercase )
transformers.utils.logging.set_verbosity(_lowercase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(F'''Training/evaluation parameters {training_args}''' )
# Detecting last checkpoint.
UpperCAmelCase : str = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
UpperCAmelCase : str = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
UpperCAmelCase : List[Any] = {}
if data_args.train_file is not None:
UpperCAmelCase : Union[str, Any] = data_args.train_file
if data_args.validation_file is not None:
UpperCAmelCase : Dict = data_args.validation_file
UpperCAmelCase : int = data_args.train_file.split(""".""" )[-1]
UpperCAmelCase : Any = load_dataset(
_lowercase , data_files=_lowercase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
# Downloading and loading the swag dataset from the hub.
UpperCAmelCase : Union[str, Any] = load_dataset(
"""swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
UpperCAmelCase : Any = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
UpperCAmelCase : Optional[Any] = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
UpperCAmelCase : List[str] = [F'''ending{i}''' for i in range(4 )]
UpperCAmelCase : Optional[int] = """sent1"""
UpperCAmelCase : Optional[int] = """sent2"""
if data_args.max_seq_length is None:
UpperCAmelCase : str = tokenizer.model_max_length
if max_seq_length > 1_0_2_4:
logger.warning(
"""The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"""
""" of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"""
""" override this default with `--block_size xxx`.""" )
UpperCAmelCase : Any = 1_0_2_4
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the'''
F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' )
UpperCAmelCase : int = min(data_args.max_seq_length , tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(_lowercase ):
UpperCAmelCase : Optional[int] = [[context] * 4 for context in examples[context_name]]
UpperCAmelCase : Any = examples[question_header_name]
UpperCAmelCase : List[Any] = [
[F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(_lowercase )
]
# Flatten out
UpperCAmelCase : List[str] = list(chain(*_lowercase ) )
UpperCAmelCase : Tuple = list(chain(*_lowercase ) )
# Tokenize
UpperCAmelCase : Dict = tokenizer(
_lowercase , _lowercase , truncation=_lowercase , max_length=_lowercase , padding="""max_length""" if data_args.pad_to_max_length else False , )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0 , len(_lowercase ) , 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("""--do_train requires a train dataset""" )
UpperCAmelCase : List[str] = raw_datasets["""train"""]
if data_args.max_train_samples is not None:
UpperCAmelCase : int = min(len(_lowercase ) , data_args.max_train_samples )
UpperCAmelCase : str = train_dataset.select(range(_lowercase ) )
with training_args.main_process_first(desc="""train dataset map pre-processing""" ):
UpperCAmelCase : int = train_dataset.map(
_lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("""--do_eval requires a validation dataset""" )
UpperCAmelCase : Dict = raw_datasets["""validation"""]
if data_args.max_eval_samples is not None:
UpperCAmelCase : Optional[int] = min(len(_lowercase ) , data_args.max_eval_samples )
UpperCAmelCase : Optional[int] = eval_dataset.select(range(_lowercase ) )
with training_args.main_process_first(desc="""validation dataset map pre-processing""" ):
UpperCAmelCase : Dict = eval_dataset.map(
_lowercase , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
# Data collator
UpperCAmelCase : List[Any] = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=_lowercase , pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(_lowercase ):
UpperCAmelCase : Tuple = eval_predictions
UpperCAmelCase : str = np.argmax(_lowercase , axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
UpperCAmelCase : Any = Trainer(
model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_lowercase , data_collator=_lowercase , compute_metrics=_lowercase , )
# Training
if training_args.do_train:
UpperCAmelCase : int = None
if training_args.resume_from_checkpoint is not None:
UpperCAmelCase : Any = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
UpperCAmelCase : Tuple = last_checkpoint
UpperCAmelCase : List[str] = trainer.train(resume_from_checkpoint=_lowercase )
trainer.save_model() # Saves the tokenizer too for easy upload
UpperCAmelCase : Tuple = train_result.metrics
UpperCAmelCase : Union[str, Any] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase )
)
UpperCAmelCase : Optional[int] = min(_lowercase , len(_lowercase ) )
trainer.log_metrics("""train""" , _lowercase )
trainer.save_metrics("""train""" , _lowercase )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
UpperCAmelCase : Dict = trainer.evaluate()
UpperCAmelCase : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase )
UpperCAmelCase : Dict = min(_lowercase , len(_lowercase ) )
trainer.log_metrics("""eval""" , _lowercase )
trainer.save_metrics("""eval""" , _lowercase )
UpperCAmelCase : Any = {
"""finetuned_from""": model_args.model_name_or_path,
"""tasks""": """multiple-choice""",
"""dataset_tags""": """swag""",
"""dataset_args""": """regular""",
"""dataset""": """SWAG""",
"""language""": """en""",
}
if training_args.push_to_hub:
trainer.push_to_hub(**_lowercase )
else:
trainer.create_model_card(**_lowercase )
def __lowerCamelCase ( _lowercase ) -> Optional[int]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 356 |
'''simple docstring'''
from math import loga
def __lowerCamelCase ( _lowercase ) -> int:
if a < 0:
raise ValueError("""Input value must be a positive integer""" )
elif isinstance(_lowercase , _lowercase ):
raise TypeError("""Input value must be a 'int' type""" )
return 0 if (a == 0) else int(loga(a & -a ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 338 | 0 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
a : Dict = logging.get_logger(__name__)
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , *A , **A ) -> None:
warnings.warn(
"""The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use LayoutLMv2ImageProcessor instead.""" , A , )
super().__init__(*A , **A )
| 357 |
'''simple docstring'''
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
a : Optional[int] = 1_0
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int:
for i in range(_lowercase , _lowercase ):
if array[i] == target:
return i
return -1
def __lowerCamelCase ( _lowercase , _lowercase ) -> int:
UpperCAmelCase : Tuple = 0
UpperCAmelCase : List[str] = len(_lowercase )
while left <= right:
if right - left < precision:
return lin_search(_lowercase , _lowercase , _lowercase , _lowercase )
UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1
UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
UpperCAmelCase : Any = one_third - 1
elif array[two_third] < target:
UpperCAmelCase : Tuple = two_third + 1
else:
UpperCAmelCase : int = one_third + 1
UpperCAmelCase : List[Any] = two_third - 1
else:
return -1
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int:
if left < right:
if right - left < precision:
return lin_search(_lowercase , _lowercase , _lowercase , _lowercase )
UpperCAmelCase : str = (left + right) // 3 + 1
UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
a : Any = input("""Enter numbers separated by comma:\n""").strip()
a : Any = [int(item.strip()) for item in user_input.split(""",""")]
assert collection == sorted(collection), F"List must be ordered.\n{collection}."
a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip())
a : Union[str, Any] = ite_ternary_search(collection, target)
a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(F'''Iterative search: {target} found at positions: {resulta}''')
print(F'''Recursive search: {target} found at positions: {resulta}''')
else:
print("""Not found""")
| 338 | 0 |
'''simple docstring'''
import argparse
import ast
import logging
import os
import sys
import pandas as pd
import torch
from tqdm import tqdm
from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration
from transformers import logging as transformers_logging
sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip
from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip
a : List[Any] = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
transformers_logging.set_verbosity_info()
def __lowerCamelCase ( _lowercase ) -> Optional[int]:
if "token" in model_name_or_path:
return "rag_token"
if "sequence" in model_name_or_path:
return "rag_sequence"
if "bart" in model_name_or_path:
return "bart"
return None
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]:
return max(metric_fn(_lowercase , _lowercase ) for gt in ground_truths )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]:
UpperCAmelCase : List[Any] = [line.strip() for line in open(_lowercase , """r""" ).readlines()]
UpperCAmelCase : Optional[Any] = []
if args.gold_data_mode == "qa":
UpperCAmelCase : Dict = pd.read_csv(_lowercase , sep="""\t""" , header=_lowercase )
for answer_list in data[1]:
UpperCAmelCase : Tuple = ast.literal_eval(_lowercase )
answers.append(_lowercase )
else:
UpperCAmelCase : List[str] = [line.strip() for line in open(_lowercase , """r""" ).readlines()]
UpperCAmelCase : List[Any] = [[reference] for reference in references]
UpperCAmelCase : List[Any] = 0
for prediction, ground_truths in zip(_lowercase , _lowercase ):
total += 1
em += metric_max_over_ground_truths(_lowercase , _lowercase , _lowercase )
fa += metric_max_over_ground_truths(_lowercase , _lowercase , _lowercase )
UpperCAmelCase : Tuple = 100.0 * em / total
UpperCAmelCase : Optional[Any] = 100.0 * fa / total
logger.info(F'''F1: {fa:.2f}''' )
logger.info(F'''EM: {em:.2f}''' )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict:
UpperCAmelCase : Union[str, Any] = args.k
UpperCAmelCase : Union[str, Any] = [line.strip() for line in open(_lowercase , """r""" ).readlines()]
UpperCAmelCase : Union[str, Any] = [line.strip() for line in open(_lowercase , """r""" ).readlines()]
UpperCAmelCase : List[Any] = 0
for hypo, reference in zip(_lowercase , _lowercase ):
UpperCAmelCase : int = set(hypo.split("""\t""" )[:k] )
UpperCAmelCase : Optional[Any] = set(reference.split("""\t""" ) )
total += 1
em += len(hypo_provenance & ref_provenance ) / k
UpperCAmelCase : Tuple = 100.0 * em / total
logger.info(F'''Precision@{k}: {em: .2f}''' )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]:
def strip_title(_lowercase ):
if title.startswith("""\"""" ):
UpperCAmelCase : Any = title[1:]
if title.endswith("""\"""" ):
UpperCAmelCase : Optional[Any] = title[:-1]
return title
UpperCAmelCase : Optional[int] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
_lowercase , return_tensors="""pt""" , padding=_lowercase , truncation=_lowercase , )["""input_ids"""].to(args.device )
UpperCAmelCase : List[str] = rag_model.rag.question_encoder(_lowercase )
UpperCAmelCase : int = question_enc_outputs[0]
UpperCAmelCase : Union[str, Any] = rag_model.retriever(
_lowercase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , )
UpperCAmelCase : Tuple = rag_model.retriever.index.get_doc_dicts(result.doc_ids )
UpperCAmelCase : Any = []
for docs in all_docs:
UpperCAmelCase : Optional[Any] = [strip_title(_lowercase ) for title in docs["""title"""]]
provenance_strings.append("""\t""".join(_lowercase ) )
return provenance_strings
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[int]:
with torch.no_grad():
UpperCAmelCase : Dict = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
_lowercase , return_tensors="""pt""" , padding=_lowercase , truncation=_lowercase )
UpperCAmelCase : Optional[Any] = inputs_dict.input_ids.to(args.device )
UpperCAmelCase : Optional[int] = inputs_dict.attention_mask.to(args.device )
UpperCAmelCase : str = rag_model.generate( # rag_model overwrites generate
_lowercase , attention_mask=_lowercase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_lowercase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , )
UpperCAmelCase : Any = rag_model.retriever.generator_tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase )
if args.print_predictions:
for q, a in zip(_lowercase , _lowercase ):
logger.info("""Q: {} - A: {}""".format(_lowercase , _lowercase ) )
return answers
def __lowerCamelCase ( ) -> int:
UpperCAmelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
"""--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=_lowercase , help=(
"""RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the"""
""" model_name_or_path"""
) , )
parser.add_argument(
"""--index_name""" , default=_lowercase , choices=["""exact""", """compressed""", """legacy"""] , type=_lowercase , help="""RAG model retriever type""" , )
parser.add_argument(
"""--index_path""" , default=_lowercase , type=_lowercase , help="""Path to the retrieval index""" , )
parser.add_argument("""--n_docs""" , default=5 , type=_lowercase , help="""Number of retrieved docs""" )
parser.add_argument(
"""--model_name_or_path""" , default=_lowercase , type=_lowercase , required=_lowercase , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , )
parser.add_argument(
"""--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=_lowercase , help=(
"""Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates"""
""" precision@k."""
) , )
parser.add_argument("""--k""" , default=1 , type=_lowercase , help="""k for the precision@k calculation""" )
parser.add_argument(
"""--evaluation_set""" , default=_lowercase , type=_lowercase , required=_lowercase , help="""Path to a file containing evaluation samples""" , )
parser.add_argument(
"""--gold_data_path""" , default=_lowercase , type=_lowercase , required=_lowercase , help="""Path to a tab-separated file with gold samples""" , )
parser.add_argument(
"""--gold_data_mode""" , default="""qa""" , type=_lowercase , choices=["""qa""", """ans"""] , help=(
"""Format of the gold data file"""
"""qa - a single line in the following format: question [tab] answer_list"""
"""ans - a single line of the gold file contains the expected answer string"""
) , )
parser.add_argument(
"""--predictions_path""" , type=_lowercase , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , )
parser.add_argument(
"""--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , )
parser.add_argument(
"""--eval_batch_size""" , default=8 , type=_lowercase , help="""Batch size per GPU/CPU for evaluation.""" , )
parser.add_argument(
"""--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , )
parser.add_argument(
"""--num_beams""" , default=4 , type=_lowercase , help="""Number of beams to be used when generating answers""" , )
parser.add_argument("""--min_length""" , default=1 , type=_lowercase , help="""Min length of the generated answers""" )
parser.add_argument("""--max_length""" , default=5_0 , type=_lowercase , help="""Max length of the generated answers""" )
parser.add_argument(
"""--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , )
parser.add_argument(
"""--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , )
UpperCAmelCase : List[Any] = parser.parse_args()
UpperCAmelCase : List[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" )
return args
def __lowerCamelCase ( _lowercase ) -> Any:
UpperCAmelCase : List[str] = {}
if args.model_type is None:
UpperCAmelCase : Dict = infer_model_type(args.model_name_or_path )
assert args.model_type is not None
if args.model_type.startswith("""rag""" ):
UpperCAmelCase : Any = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration
UpperCAmelCase : Union[str, Any] = args.n_docs
if args.index_name is not None:
UpperCAmelCase : Tuple = args.index_name
if args.index_path is not None:
UpperCAmelCase : List[Any] = args.index_path
else:
UpperCAmelCase : List[Any] = BartForConditionalGeneration
UpperCAmelCase : Union[str, Any] = (
[f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()]
if args.eval_all_checkpoints
else [args.model_name_or_path]
)
logger.info("""Evaluate the following checkpoints: %s""" , _lowercase )
UpperCAmelCase : Optional[int] = get_scores if args.eval_mode == """e2e""" else get_precision_at_k
UpperCAmelCase : Optional[int] = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval
for checkpoint in checkpoints:
if os.path.exists(args.predictions_path ) and (not args.recalculate):
logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) )
score_fn(_lowercase , args.predictions_path , args.gold_data_path )
continue
logger.info("""***** Running evaluation for {} *****""".format(_lowercase ) )
logger.info(""" Batch size = %d""" , args.eval_batch_size )
logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) )
if args.model_type.startswith("""rag""" ):
UpperCAmelCase : Optional[int] = RagRetriever.from_pretrained(_lowercase , **_lowercase )
UpperCAmelCase : Tuple = model_class.from_pretrained(_lowercase , retriever=_lowercase , **_lowercase )
model.retriever.init_retrieval()
else:
UpperCAmelCase : Optional[int] = model_class.from_pretrained(_lowercase , **_lowercase )
model.to(args.device )
with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file:
UpperCAmelCase : List[Any] = []
for line in tqdm(_lowercase ):
questions.append(line.strip() )
if len(_lowercase ) == args.eval_batch_size:
UpperCAmelCase : str = evaluate_batch_fn(_lowercase , _lowercase , _lowercase )
preds_file.write("""\n""".join(_lowercase ) + """\n""" )
preds_file.flush()
UpperCAmelCase : Dict = []
if len(_lowercase ) > 0:
UpperCAmelCase : List[str] = evaluate_batch_fn(_lowercase , _lowercase , _lowercase )
preds_file.write("""\n""".join(_lowercase ) )
preds_file.flush()
score_fn(_lowercase , args.predictions_path , args.gold_data_path )
if __name__ == "__main__":
a : List[Any] = get_args()
main(args)
| 358 |
'''simple docstring'''
import numpy as np
class UpperCamelCase_ :
def __init__( self ) -> int:
UpperCAmelCase : str = (0, 0)
UpperCAmelCase : Union[str, Any] = None
UpperCAmelCase : Any = 0
UpperCAmelCase : int = 0
UpperCAmelCase : Optional[int] = 0
def __eq__( self , A ) -> Optional[Any]:
return self.position == cell.position
def _lowercase( self ) -> Tuple:
print(self.position )
class UpperCamelCase_ :
def __init__( self , A=(5, 5) ) -> Optional[Any]:
UpperCAmelCase : Union[str, Any] = np.zeros(A )
UpperCAmelCase : int = world_size[0]
UpperCAmelCase : List[str] = world_size[1]
def _lowercase( self ) -> List[Any]:
print(self.w )
def _lowercase( self , A ) -> Dict:
UpperCAmelCase : Optional[Any] = [
(-1, -1),
(-1, 0),
(-1, 1),
(0, -1),
(0, 1),
(1, -1),
(1, 0),
(1, 1),
]
UpperCAmelCase : List[Any] = cell.position[0]
UpperCAmelCase : Union[str, Any] = cell.position[1]
UpperCAmelCase : Optional[int] = []
for n in neughbour_cord:
UpperCAmelCase : Any = current_x + n[0]
UpperCAmelCase : Tuple = current_y + n[1]
if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit:
UpperCAmelCase : str = Cell()
UpperCAmelCase : List[str] = (x, y)
UpperCAmelCase : Dict = cell
neighbours.append(A )
return neighbours
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int:
UpperCAmelCase : List[Any] = []
UpperCAmelCase : Optional[int] = []
_open.append(_lowercase )
while _open:
UpperCAmelCase : Any = np.argmin([n.f for n in _open] )
UpperCAmelCase : Optional[int] = _open[min_f]
_closed.append(_open.pop(_lowercase ) )
if current == goal:
break
for n in world.get_neigbours(_lowercase ):
for c in _closed:
if c == n:
continue
UpperCAmelCase : List[str] = current.g + 1
UpperCAmelCase , UpperCAmelCase : List[str] = n.position
UpperCAmelCase , UpperCAmelCase : Dict = goal.position
UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2
UpperCAmelCase : Dict = n.h + n.g
for c in _open:
if c == n and c.f < n.f:
continue
_open.append(_lowercase )
UpperCAmelCase : Dict = []
while current.parent is not None:
path.append(current.position )
UpperCAmelCase : Optional[int] = current.parent
path.append(current.position )
return path[::-1]
if __name__ == "__main__":
a : List[str] = Gridworld()
# Start position and goal
a : Optional[int] = Cell()
a : Optional[Any] = (0, 0)
a : Optional[Any] = Cell()
a : str = (4, 4)
print(F'''path from {start.position} to {goal.position}''')
a : List[Any] = astar(world, start, goal)
# Just for visual reasons.
for i in s:
a : Any = 1
print(world.w)
| 338 | 0 |
'''simple docstring'''
import json
import os
from typing import Optional
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...processing_utils import ProcessorMixin
from ...utils import logging
from ...utils.hub import get_file_from_repo
from ..auto import AutoTokenizer
a : Tuple = logging.get_logger(__name__)
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'AutoTokenizer'
lowercase = ['tokenizer']
lowercase = {
'semantic_prompt': 1,
'coarse_prompt': 2,
'fine_prompt': 2,
}
def __init__( self , A , A=None ) -> Union[str, Any]:
super().__init__(A )
UpperCAmelCase : List[str] = speaker_embeddings
@classmethod
def _lowercase( cls , A , A="speaker_embeddings_path.json" , **A ) -> Union[str, Any]:
if speaker_embeddings_dict_path is not None:
UpperCAmelCase : Union[str, Any] = get_file_from_repo(
A , A , subfolder=kwargs.pop("""subfolder""" , A ) , cache_dir=kwargs.pop("""cache_dir""" , A ) , force_download=kwargs.pop("""force_download""" , A ) , proxies=kwargs.pop("""proxies""" , A ) , resume_download=kwargs.pop("""resume_download""" , A ) , local_files_only=kwargs.pop("""local_files_only""" , A ) , use_auth_token=kwargs.pop("""use_auth_token""" , A ) , revision=kwargs.pop("""revision""" , A ) , )
if speaker_embeddings_path is None:
logger.warning(
f'''`{os.path.join(A , A )}` does not exists
, no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json
dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' )
UpperCAmelCase : Optional[Any] = None
else:
with open(A ) as speaker_embeddings_json:
UpperCAmelCase : Tuple = json.load(A )
else:
UpperCAmelCase : int = None
UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained(A , **A )
return cls(tokenizer=A , speaker_embeddings=A )
def _lowercase( self , A , A="speaker_embeddings_path.json" , A="speaker_embeddings" , A = False , **A , ) -> List[Any]:
if self.speaker_embeddings is not None:
os.makedirs(os.path.join(A , A , """v2""" ) , exist_ok=A )
UpperCAmelCase : Union[str, Any] = {}
UpperCAmelCase : Union[str, Any] = save_directory
for prompt_key in self.speaker_embeddings:
if prompt_key != "repo_or_path":
UpperCAmelCase : str = self._load_voice_preset(A )
UpperCAmelCase : int = {}
for key in self.speaker_embeddings[prompt_key]:
np.save(
os.path.join(
embeddings_dict["""repo_or_path"""] , A , f'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=A , )
UpperCAmelCase : List[Any] = os.path.join(A , f'''{prompt_key}_{key}.npy''' )
UpperCAmelCase : List[Any] = tmp_dict
with open(os.path.join(A , A ) , """w""" ) as fp:
json.dump(A , A )
super().save_pretrained(A , A , **A )
def _lowercase( self , A = None , **A ) -> List[Any]:
UpperCAmelCase : Tuple = self.speaker_embeddings[voice_preset]
UpperCAmelCase : Optional[int] = {}
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset_paths:
raise ValueError(
f'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' )
UpperCAmelCase : Union[str, Any] = get_file_from_repo(
self.speaker_embeddings.get("""repo_or_path""" , """/""" ) , voice_preset_paths[key] , subfolder=kwargs.pop("""subfolder""" , A ) , cache_dir=kwargs.pop("""cache_dir""" , A ) , force_download=kwargs.pop("""force_download""" , A ) , proxies=kwargs.pop("""proxies""" , A ) , resume_download=kwargs.pop("""resume_download""" , A ) , local_files_only=kwargs.pop("""local_files_only""" , A ) , use_auth_token=kwargs.pop("""use_auth_token""" , A ) , revision=kwargs.pop("""revision""" , A ) , )
if path is None:
raise ValueError(
f'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists
, no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}
embeddings.''' )
UpperCAmelCase : Any = np.load(A )
return voice_preset_dict
def _lowercase( self , A = None ) -> Optional[int]:
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset:
raise ValueError(f'''Voice preset unrecognized, missing {key} as a key.''' )
if not isinstance(voice_preset[key] , np.ndarray ):
raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' )
if len(voice_preset[key].shape ) != self.preset_shape[key]:
raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' )
def __call__( self , A=None , A=None , A="pt" , A=256 , A=False , A=True , A=False , **A , ) -> List[Any]:
if voice_preset is not None and not isinstance(A , A ):
if (
isinstance(A , A )
and self.speaker_embeddings is not None
and voice_preset in self.speaker_embeddings
):
UpperCAmelCase : List[Any] = self._load_voice_preset(A )
else:
if isinstance(A , A ) and not voice_preset.endswith(""".npz""" ):
UpperCAmelCase : List[str] = voice_preset + """.npz"""
UpperCAmelCase : int = np.load(A )
if voice_preset is not None:
self._validate_voice_preset_dict(A , **A )
UpperCAmelCase : List[str] = BatchFeature(data=A , tensor_type=A )
UpperCAmelCase : List[str] = self.tokenizer(
A , return_tensors=A , padding="""max_length""" , max_length=A , return_attention_mask=A , return_token_type_ids=A , add_special_tokens=A , **A , )
if voice_preset is not None:
UpperCAmelCase : Optional[int] = voice_preset
return encoded_text
| 359 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import _LazyModule
a : Optional[int] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]}
if TYPE_CHECKING:
from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer
else:
import sys
a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 338 | 0 |
'''simple docstring'''
def __lowerCamelCase ( _lowercase ) -> int:
if not isinstance(_lowercase , _lowercase ) or number < 0:
raise ValueError("""Input must be a non-negative integer""" )
UpperCAmelCase : Optional[Any] = 0
while number:
# This way we arrive at next set bit (next 1) instead of looping
# through each bit and checking for 1s hence the
# loop won't run 32 times it will only run the number of `1` times
number &= number - 1
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 360 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
a : int = logging.get_logger(__name__)
a : int = {
"""openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""",
}
# fmt: off
a : Tuple = [
1, 2, 7, 8, 9, 1_0, 1_4, 2_5,
2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2,
6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5,
7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7,
1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1,
4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6,
1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1,
1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9,
3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1
]
a : Optional[int] = [
1, 2, 7, 8, 9, 1_0, 1_4, 2_5,
2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2,
6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3,
8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7,
3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7,
7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3,
1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5,
2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5,
4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2
]
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'whisper'
lowercase = ['past_key_values']
lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]:
UpperCAmelCase : str = vocab_size
UpperCAmelCase : Union[str, Any] = num_mel_bins
UpperCAmelCase : Tuple = d_model
UpperCAmelCase : Optional[int] = encoder_layers
UpperCAmelCase : List[str] = encoder_attention_heads
UpperCAmelCase : Optional[int] = decoder_layers
UpperCAmelCase : int = decoder_attention_heads
UpperCAmelCase : Optional[int] = decoder_ffn_dim
UpperCAmelCase : Union[str, Any] = encoder_ffn_dim
UpperCAmelCase : List[str] = dropout
UpperCAmelCase : Optional[Any] = attention_dropout
UpperCAmelCase : Optional[Any] = activation_dropout
UpperCAmelCase : Optional[Any] = activation_function
UpperCAmelCase : Optional[Any] = init_std
UpperCAmelCase : int = encoder_layerdrop
UpperCAmelCase : Dict = decoder_layerdrop
UpperCAmelCase : Optional[int] = use_cache
UpperCAmelCase : List[str] = encoder_layers
UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCAmelCase : Union[str, Any] = max_source_positions
UpperCAmelCase : Tuple = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
UpperCAmelCase : List[str] = classifier_proj_size
UpperCAmelCase : Optional[Any] = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase : Optional[Any] = apply_spec_augment
UpperCAmelCase : int = mask_time_prob
UpperCAmelCase : int = mask_time_length
UpperCAmelCase : Dict = mask_time_min_masks
UpperCAmelCase : List[str] = mask_feature_prob
UpperCAmelCase : Optional[int] = mask_feature_length
UpperCAmelCase : int = mask_feature_min_masks
UpperCAmelCase : List[Any] = median_filter_width
super().__init__(
pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , )
class UpperCamelCase_ ( __magic_name__ ):
@property
def _lowercase( self ) -> Mapping[str, Mapping[int, str]]:
UpperCAmelCase : str = OrderedDict(
[
("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}),
] )
if self.use_past:
UpperCAmelCase : List[Any] = {0: """batch"""}
else:
UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""}
if self.use_past:
self.fill_with_past_key_values_(A , direction="""inputs""" )
return common_inputs
def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]:
UpperCAmelCase : Optional[int] = OrderedDict()
UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , )
UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2]
UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length
UpperCAmelCase : Any = super().generate_dummy_inputs(
preprocessor.tokenizer , A , A , A , A )
UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" )
UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" )
if "past_key_values" in decoder_inputs:
UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" )
return dummy_inputs
@property
def _lowercase( self ) -> float:
return 1e-3
| 338 | 0 |
'''simple docstring'''
import numpy as np
class UpperCamelCase_ :
def __init__( self , A=None , A=None , A=None , A=None , A=None ) -> Union[str, Any]:
self.set_matricies(red=A , green=A , blue=A , red_edge=A , nir=A )
def _lowercase( self , A=None , A=None , A=None , A=None , A=None ) -> Dict:
if red is not None:
UpperCAmelCase : Optional[Any] = red
if green is not None:
UpperCAmelCase : Optional[Any] = green
if blue is not None:
UpperCAmelCase : List[Any] = blue
if red_edge is not None:
UpperCAmelCase : Dict = red_edge
if nir is not None:
UpperCAmelCase : str = nir
return True
def _lowercase( self , A="" , A=None , A=None , A=None , A=None , A=None ) -> List[Any]:
self.set_matricies(red=A , green=A , blue=A , red_edge=A , nir=A )
UpperCAmelCase : Tuple = {
"""ARVI2""": self.arvaa,
"""CCCI""": self.ccci,
"""CVI""": self.cvi,
"""GLI""": self.gli,
"""NDVI""": self.ndvi,
"""BNDVI""": self.bndvi,
"""redEdgeNDVI""": self.red_edge_ndvi,
"""GNDVI""": self.gndvi,
"""GBNDVI""": self.gbndvi,
"""GRNDVI""": self.grndvi,
"""RBNDVI""": self.rbndvi,
"""PNDVI""": self.pndvi,
"""ATSAVI""": self.atsavi,
"""BWDRVI""": self.bwdrvi,
"""CIgreen""": self.ci_green,
"""CIrededge""": self.ci_rededge,
"""CI""": self.ci,
"""CTVI""": self.ctvi,
"""GDVI""": self.gdvi,
"""EVI""": self.evi,
"""GEMI""": self.gemi,
"""GOSAVI""": self.gosavi,
"""GSAVI""": self.gsavi,
"""Hue""": self.hue,
"""IVI""": self.ivi,
"""IPVI""": self.ipvi,
"""I""": self.i,
"""RVI""": self.rvi,
"""MRVI""": self.mrvi,
"""MSAVI""": self.m_savi,
"""NormG""": self.norm_g,
"""NormNIR""": self.norm_nir,
"""NormR""": self.norm_r,
"""NGRDI""": self.ngrdi,
"""RI""": self.ri,
"""S""": self.s,
"""IF""": self._if,
"""DVI""": self.dvi,
"""TVI""": self.tvi,
"""NDRE""": self.ndre,
}
try:
return funcs[index]()
except KeyError:
print("""Index not in the list!""" )
return False
def _lowercase( self ) -> int:
return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red)))
def _lowercase( self ) -> Optional[int]:
return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / (
(self.nir - self.red) / (self.nir + self.red)
)
def _lowercase( self ) -> Any:
return self.nir * (self.red / (self.green**2))
def _lowercase( self ) -> int:
return (2 * self.green - self.red - self.blue) / (
2 * self.green + self.red + self.blue
)
def _lowercase( self ) -> Any:
return (self.nir - self.red) / (self.nir + self.red)
def _lowercase( self ) -> Optional[Any]:
return (self.nir - self.blue) / (self.nir + self.blue)
def _lowercase( self ) -> Dict:
return (self.redEdge - self.red) / (self.redEdge + self.red)
def _lowercase( self ) -> Dict:
return (self.nir - self.green) / (self.nir + self.green)
def _lowercase( self ) -> str:
return (self.nir - (self.green + self.blue)) / (
self.nir + (self.green + self.blue)
)
def _lowercase( self ) -> List[Any]:
return (self.nir - (self.green + self.red)) / (
self.nir + (self.green + self.red)
)
def _lowercase( self ) -> List[str]:
return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red))
def _lowercase( self ) -> int:
return (self.nir - (self.green + self.red + self.blue)) / (
self.nir + (self.green + self.red + self.blue)
)
def _lowercase( self , A=0.0_8 , A=1.2_2 , A=0.0_3 ) -> List[str]:
return a * (
(self.nir - a * self.red - b)
/ (a * self.nir + self.red - a * b + x * (1 + a**2))
)
def _lowercase( self ) -> List[str]:
return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue)
def _lowercase( self ) -> Union[str, Any]:
return (self.nir / self.green) - 1
def _lowercase( self ) -> Dict:
return (self.nir / self.redEdge) - 1
def _lowercase( self ) -> str:
return (self.red - self.blue) / self.red
def _lowercase( self ) -> Any:
UpperCAmelCase : Optional[Any] = self.ndvi()
return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2))
def _lowercase( self ) -> int:
return self.nir - self.green
def _lowercase( self ) -> str:
return 2.5 * (
(self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1)
)
def _lowercase( self ) -> Dict:
UpperCAmelCase : Optional[int] = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / (
self.nir + self.red + 0.5
)
return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red)
def _lowercase( self , A=0.1_6 ) -> Any:
return (self.nir - self.green) / (self.nir + self.green + y)
def _lowercase( self , A=0.5 ) -> Optional[int]:
return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n)
def _lowercase( self ) -> Optional[int]:
return np.arctan(
((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) )
def _lowercase( self , A=None , A=None ) -> Union[str, Any]:
return (self.nir - b) / (a * self.red)
def _lowercase( self ) -> Any:
return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1)
def _lowercase( self ) -> Optional[Any]:
return (self.red + self.green + self.blue) / 30.5
def _lowercase( self ) -> Dict:
return self.nir / self.red
def _lowercase( self ) -> List[str]:
return (self.rvi() - 1) / (self.rvi() + 1)
def _lowercase( self ) -> List[Any]:
return (
(2 * self.nir + 1)
- ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2)
) / 2
def _lowercase( self ) -> Dict:
return self.green / (self.nir + self.red + self.green)
def _lowercase( self ) -> Any:
return self.nir / (self.nir + self.red + self.green)
def _lowercase( self ) -> int:
return self.red / (self.nir + self.red + self.green)
def _lowercase( self ) -> Tuple:
return (self.green - self.red) / (self.green + self.red)
def _lowercase( self ) -> Union[str, Any]:
return (self.red - self.green) / (self.red + self.green)
def _lowercase( self ) -> List[str]:
UpperCAmelCase : Union[str, Any] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] )
UpperCAmelCase : Optional[Any] = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] )
return (max_value - min_value) / max_value
def _lowercase( self ) -> Tuple:
return (2 * self.red - self.green - self.blue) / (self.green - self.blue)
def _lowercase( self ) -> str:
return self.nir / self.red
def _lowercase( self ) -> Optional[int]:
return (self.ndvi() + 0.5) ** (1 / 2)
def _lowercase( self ) -> List[str]:
return (self.nir - self.redEdge) / (self.nir + self.redEdge)
| 361 |
'''simple docstring'''
a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ"""
def __lowerCamelCase ( ) -> None:
UpperCAmelCase : Optional[int] = input("""Enter message: """ )
UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ )
UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ )
if mode.lower().startswith("""e""" ):
UpperCAmelCase : List[str] = """encrypt"""
UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase )
elif mode.lower().startswith("""d""" ):
UpperCAmelCase : Tuple = """decrypt"""
UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase )
print(F'''\n{mode.title()}ed message:''' )
print(_lowercase )
def __lowerCamelCase ( _lowercase , _lowercase ) -> str:
return translate_message(_lowercase , _lowercase , """encrypt""" )
def __lowerCamelCase ( _lowercase , _lowercase ) -> str:
return translate_message(_lowercase , _lowercase , """decrypt""" )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str:
UpperCAmelCase : Optional[int] = []
UpperCAmelCase : Optional[Any] = 0
UpperCAmelCase : Tuple = key.upper()
for symbol in message:
UpperCAmelCase : Dict = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(_lowercase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(_lowercase ):
UpperCAmelCase : Optional[int] = 0
else:
translated.append(_lowercase )
return "".join(_lowercase )
if __name__ == "__main__":
main()
| 338 | 0 |
'''simple docstring'''
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class UpperCamelCase_ ( __magic_name__ ):
def _lowercase( self , A ) -> int:
with open(A , encoding="""utf-8""" ) as input_file:
UpperCAmelCase : Optional[Any] = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" )
UpperCAmelCase : str = input_file.read()
UpperCAmelCase : Dict = regexp.search(A )
return match
def _lowercase( self , A ) -> str:
with open(A , encoding="""utf-8""" ) as input_file:
UpperCAmelCase : Optional[int] = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL )
UpperCAmelCase : List[Any] = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
UpperCAmelCase : Optional[Any] = regexp.finditer(A )
UpperCAmelCase : Dict = [match for match in matches if match is not None and match.group(1 ) is not None]
return matches[0] if matches else None
def _lowercase( self ) -> List[str]:
UpperCAmelCase : Optional[int] = Path("""./datasets""" )
UpperCAmelCase : str = list(dataset_paths.absolute().glob("""**/*.py""" ) )
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(A ) ):
raise AssertionError(f'''open(...) must use utf-8 encoding in {dataset}''' )
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : int = Path("""./datasets""" )
UpperCAmelCase : Tuple = list(dataset_paths.absolute().glob("""**/*.py""" ) )
for dataset in dataset_files:
if self._no_print_statements(str(A ) ):
raise AssertionError(f'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
| 362 |
'''simple docstring'''
import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
"""split_dict""" , [
SplitDict(),
SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ),
SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ),
SplitDict({"""train""": SplitInfo()} ),
] , )
def __lowerCamelCase ( _lowercase ) -> List[str]:
UpperCAmelCase : Optional[int] = split_dict._to_yaml_list()
assert len(_lowercase ) == len(_lowercase )
UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(_lowercase )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
UpperCAmelCase : List[str] = None
# the split name of split_dict takes over the name of the split info object
UpperCAmelCase : int = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
"""split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name="""my_dataset""" )] )
def __lowerCamelCase ( _lowercase ) -> List[str]:
# For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name"
# field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files
UpperCAmelCase : Optional[Any] = asdict(SplitDict({"""train""": split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 338 | 0 |
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
a : str = logging.get_logger(__name__)
a : Any = {
"""Salesforce/codegen-350M-nl""": """https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json""",
"""Salesforce/codegen-350M-multi""": """https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json""",
"""Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json""",
"""Salesforce/codegen-2B-nl""": """https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json""",
"""Salesforce/codegen-2B-multi""": """https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json""",
"""Salesforce/codegen-2B-mono""": """https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json""",
"""Salesforce/codegen-6B-nl""": """https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json""",
"""Salesforce/codegen-6B-multi""": """https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json""",
"""Salesforce/codegen-6B-mono""": """https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json""",
"""Salesforce/codegen-16B-nl""": """https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json""",
"""Salesforce/codegen-16B-multi""": """https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json""",
"""Salesforce/codegen-16B-mono""": """https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json""",
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'codegen'
lowercase = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , A=50400 , A=2048 , A=2048 , A=4096 , A=28 , A=16 , A=64 , A=None , A="gelu_new" , A=0.0 , A=0.0 , A=0.0 , A=1e-5 , A=0.0_2 , A=True , A=50256 , A=50256 , A=False , **A , ) -> str:
UpperCAmelCase : int = vocab_size
UpperCAmelCase : Union[str, Any] = n_ctx
UpperCAmelCase : Optional[Any] = n_positions
UpperCAmelCase : Tuple = n_embd
UpperCAmelCase : Any = n_layer
UpperCAmelCase : Tuple = n_head
UpperCAmelCase : Optional[Any] = n_inner
UpperCAmelCase : List[Any] = rotary_dim
UpperCAmelCase : Union[str, Any] = activation_function
UpperCAmelCase : Any = resid_pdrop
UpperCAmelCase : Optional[int] = embd_pdrop
UpperCAmelCase : Dict = attn_pdrop
UpperCAmelCase : Dict = layer_norm_epsilon
UpperCAmelCase : Any = initializer_range
UpperCAmelCase : Any = use_cache
UpperCAmelCase : Optional[int] = bos_token_id
UpperCAmelCase : Tuple = eos_token_id
super().__init__(
bos_token_id=A , eos_token_id=A , tie_word_embeddings=A , **A )
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , A , A = "default" , A = None , A = False , ) -> Union[str, Any]:
super().__init__(A , task=A , patching_specs=A , use_past=A )
if not getattr(self._config , """pad_token_id""" , A ):
# TODO: how to do that better?
UpperCAmelCase : Optional[int] = 0
@property
def _lowercase( self ) -> Mapping[str, Mapping[int, str]]:
UpperCAmelCase : int = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(A , direction="""inputs""" )
UpperCAmelCase : Optional[int] = {0: """batch""", 1: """past_sequence + sequence"""}
else:
UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def _lowercase( self ) -> int:
return self._config.n_layer
@property
def _lowercase( self ) -> int:
return self._config.n_head
def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]:
UpperCAmelCase : Any = super(A , self ).generate_dummy_inputs(
A , batch_size=A , seq_length=A , is_pair=A , framework=A )
# We need to order the input in the way they appears in the forward()
UpperCAmelCase : Any = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
UpperCAmelCase : List[str] = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
UpperCAmelCase : Dict = seqlen + 2
UpperCAmelCase : List[Any] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
UpperCAmelCase : Optional[int] = [
(torch.zeros(A ), torch.zeros(A )) for _ in range(self.num_layers )
]
UpperCAmelCase : Union[str, Any] = common_inputs["""attention_mask"""]
if self.use_past:
UpperCAmelCase : Optional[int] = ordered_inputs["""attention_mask"""].dtype
UpperCAmelCase : List[Any] = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(A , A , dtype=A )] , dim=1 )
return ordered_inputs
@property
def _lowercase( self ) -> int:
return 13
| 363 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
a : Dict = logging.get_logger(__name__)
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , *A , **A ) -> None:
warnings.warn(
"""The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use LayoutLMv2ImageProcessor instead.""" , A , )
super().__init__(*A , **A )
| 338 | 0 |
'''simple docstring'''
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 42
lowercase = None
def __lowerCamelCase ( _lowercase , _lowercase=0.999 , _lowercase="cosine" , ) -> str:
"""simple docstring"""
if alpha_transform_type == "cosine":
def alpha_bar_fn(_lowercase ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(_lowercase ):
return math.exp(t * -12.0 )
else:
raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
UpperCAmelCase : Dict = []
for i in range(_lowercase ):
UpperCAmelCase : Union[str, Any] = i / num_diffusion_timesteps
UpperCAmelCase : Optional[int] = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(_lowercase ) / alpha_bar_fn(_lowercase ) , _lowercase ) )
return torch.tensor(_lowercase , dtype=torch.floataa )
class UpperCamelCase_ ( __magic_name__ , __magic_name__ ):
@register_to_config
def __init__( self , A = 1000 , A = "fixed_small_log" , A = True , A = 1.0 , A = "epsilon" , A = "squaredcos_cap_v2" , ) -> Any:
if beta_schedule != "squaredcos_cap_v2":
raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" )
UpperCAmelCase : Tuple = betas_for_alpha_bar(A )
UpperCAmelCase : Tuple = 1.0 - self.betas
UpperCAmelCase : Optional[int] = torch.cumprod(self.alphas , dim=0 )
UpperCAmelCase : Dict = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
UpperCAmelCase : str = 1.0
# setable values
UpperCAmelCase : Any = None
UpperCAmelCase : Any = torch.from_numpy(np.arange(0 , A )[::-1].copy() )
UpperCAmelCase : Union[str, Any] = variance_type
def _lowercase( self , A , A = None ) -> torch.FloatTensor:
return sample
def _lowercase( self , A , A = None ) -> Optional[Any]:
UpperCAmelCase : List[Any] = num_inference_steps
UpperCAmelCase : Dict = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
UpperCAmelCase : int = (np.arange(0 , A ) * step_ratio).round()[::-1].copy().astype(np.intaa )
UpperCAmelCase : Union[str, Any] = torch.from_numpy(A ).to(A )
def _lowercase( self , A , A=None , A=None , A=None ) -> int:
if prev_timestep is None:
UpperCAmelCase : int = t - 1
UpperCAmelCase : int = self.alphas_cumprod[t]
UpperCAmelCase : List[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
UpperCAmelCase : Dict = 1 - alpha_prod_t
UpperCAmelCase : Union[str, Any] = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
UpperCAmelCase : Optional[Any] = self.betas[t]
else:
UpperCAmelCase : Optional[Any] = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
UpperCAmelCase : str = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
UpperCAmelCase : List[str] = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
UpperCAmelCase : Dict = torch.log(torch.clamp(A , min=1e-20 ) )
UpperCAmelCase : List[str] = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
UpperCAmelCase : Union[str, Any] = variance.log()
UpperCAmelCase : Optional[int] = beta.log()
UpperCAmelCase : Optional[Any] = (predicted_variance + 1) / 2
UpperCAmelCase : Dict = frac * max_log + (1 - frac) * min_log
return variance
def _lowercase( self , A , A , A , A = None , A=None , A = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]:
UpperCAmelCase : Optional[Any] = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
UpperCAmelCase : Any = torch.split(A , sample.shape[1] , dim=1 )
else:
UpperCAmelCase : Optional[int] = None
# 1. compute alphas, betas
if prev_timestep is None:
UpperCAmelCase : Dict = t - 1
UpperCAmelCase : List[Any] = self.alphas_cumprod[t]
UpperCAmelCase : Union[str, Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
UpperCAmelCase : int = 1 - alpha_prod_t
UpperCAmelCase : Optional[int] = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
UpperCAmelCase : Tuple = self.betas[t]
UpperCAmelCase : Union[str, Any] = self.alphas[t]
else:
UpperCAmelCase : Tuple = 1 - alpha_prod_t / alpha_prod_t_prev
UpperCAmelCase : int = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
UpperCAmelCase : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
UpperCAmelCase : Dict = model_output
else:
raise ValueError(
f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`'''
""" for the UnCLIPScheduler.""" )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
UpperCAmelCase : Union[str, Any] = torch.clamp(
A , -self.config.clip_sample_range , self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
UpperCAmelCase : str = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
UpperCAmelCase : Optional[Any] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
UpperCAmelCase : Optional[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
UpperCAmelCase : List[str] = 0
if t > 0:
UpperCAmelCase : Optional[Any] = randn_tensor(
model_output.shape , dtype=model_output.dtype , generator=A , device=model_output.device )
UpperCAmelCase : Optional[Any] = self._get_variance(
A , predicted_variance=A , prev_timestep=A , )
if self.variance_type == "fixed_small_log":
UpperCAmelCase : Union[str, Any] = variance
elif self.variance_type == "learned_range":
UpperCAmelCase : Union[str, Any] = (0.5 * variance).exp()
else:
raise ValueError(
f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`'''
""" for the UnCLIPScheduler.""" )
UpperCAmelCase : Dict = variance * variance_noise
UpperCAmelCase : List[Any] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=A , pred_original_sample=A )
def _lowercase( self , A , A , A , ) -> torch.FloatTensor:
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
UpperCAmelCase : Tuple = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype )
UpperCAmelCase : Optional[Any] = timesteps.to(original_samples.device )
UpperCAmelCase : Union[str, Any] = alphas_cumprod[timesteps] ** 0.5
UpperCAmelCase : int = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
UpperCAmelCase : Tuple = sqrt_alpha_prod.unsqueeze(-1 )
UpperCAmelCase : str = (1 - alphas_cumprod[timesteps]) ** 0.5
UpperCAmelCase : List[Any] = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
UpperCAmelCase : Dict = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
UpperCAmelCase : Union[str, Any] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
| 364 |
'''simple docstring'''
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
a : Union[str, Any] = logging.get_logger(__name__)
a : Union[str, Any] = {
"""facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""",
# See all DETR models at https://huggingface.co/models?filter=detr
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'detr'
lowercase = ['past_key_values']
lowercase = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]:
if backbone_config is not None and use_timm_backbone:
raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" )
if not use_timm_backbone:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
UpperCAmelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] )
elif isinstance(A , A ):
UpperCAmelCase : Any = backbone_config.get("""model_type""" )
UpperCAmelCase : int = CONFIG_MAPPING[backbone_model_type]
UpperCAmelCase : List[Any] = config_class.from_dict(A )
# set timm attributes to None
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = None, None, None
UpperCAmelCase : Dict = use_timm_backbone
UpperCAmelCase : Any = backbone_config
UpperCAmelCase : List[Any] = num_channels
UpperCAmelCase : int = num_queries
UpperCAmelCase : List[str] = d_model
UpperCAmelCase : Tuple = encoder_ffn_dim
UpperCAmelCase : Optional[Any] = encoder_layers
UpperCAmelCase : Any = encoder_attention_heads
UpperCAmelCase : Optional[Any] = decoder_ffn_dim
UpperCAmelCase : Optional[int] = decoder_layers
UpperCAmelCase : Any = decoder_attention_heads
UpperCAmelCase : str = dropout
UpperCAmelCase : Tuple = attention_dropout
UpperCAmelCase : Dict = activation_dropout
UpperCAmelCase : Tuple = activation_function
UpperCAmelCase : List[Any] = init_std
UpperCAmelCase : str = init_xavier_std
UpperCAmelCase : List[Any] = encoder_layerdrop
UpperCAmelCase : int = decoder_layerdrop
UpperCAmelCase : List[Any] = encoder_layers
UpperCAmelCase : Union[str, Any] = auxiliary_loss
UpperCAmelCase : str = position_embedding_type
UpperCAmelCase : Union[str, Any] = backbone
UpperCAmelCase : List[str] = use_pretrained_backbone
UpperCAmelCase : Optional[int] = dilation
# Hungarian matcher
UpperCAmelCase : Union[str, Any] = class_cost
UpperCAmelCase : Optional[Any] = bbox_cost
UpperCAmelCase : List[Any] = giou_cost
# Loss coefficients
UpperCAmelCase : int = mask_loss_coefficient
UpperCAmelCase : Optional[int] = dice_loss_coefficient
UpperCAmelCase : Dict = bbox_loss_coefficient
UpperCAmelCase : Any = giou_loss_coefficient
UpperCAmelCase : Any = eos_coefficient
super().__init__(is_encoder_decoder=A , **A )
@property
def _lowercase( self ) -> int:
return self.encoder_attention_heads
@property
def _lowercase( self ) -> int:
return self.d_model
@classmethod
def _lowercase( cls , A , **A ) -> Dict:
return cls(backbone_config=A , **A )
def _lowercase( self ) -> Dict[str, any]:
UpperCAmelCase : Any = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
UpperCAmelCase : Any = self.backbone_config.to_dict()
UpperCAmelCase : Optional[Any] = self.__class__.model_type
return output
class UpperCamelCase_ ( __magic_name__ ):
lowercase = version.parse('1.11' )
@property
def _lowercase( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""pixel_mask""", {0: """batch"""}),
] )
@property
def _lowercase( self ) -> float:
return 1e-5
@property
def _lowercase( self ) -> int:
return 12
| 338 | 0 |
'''simple docstring'''
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class UpperCamelCase_ ( __magic_name__ ):
@require_torch
def _lowercase( self ) -> List[str]:
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
UpperCAmelCase : List[Any] = """
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
"""
UpperCAmelCase : Tuple = """
mname = \"hf-internal-testing/tiny-random-bert\"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task=\"fill-mask\", model=mname)
print(\"success\")
"""
UpperCAmelCase : List[Any] = """
import socket
def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\")
socket.socket = offline_socket
"""
# Force fetching the files so that we can use the cache
UpperCAmelCase : Optional[int] = """hf-internal-testing/tiny-random-bert"""
BertConfig.from_pretrained(A )
BertModel.from_pretrained(A )
BertTokenizer.from_pretrained(A )
pipeline(task="""fill-mask""" , model=A )
# baseline - just load from_pretrained with normal network
UpperCAmelCase : Optional[Any] = [sys.executable, """-c""", """\n""".join([load, run, mock] )]
# should succeed
UpperCAmelCase : int = self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
UpperCAmelCase : List[Any] = """1"""
UpperCAmelCase : int = subprocess.run(A , env=A , check=A , capture_output=A )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn("""success""" , result.stdout.decode() )
@require_torch
def _lowercase( self ) -> Optional[Any]:
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
UpperCAmelCase : Optional[Any] = """
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
"""
UpperCAmelCase : List[Any] = """
mname = \"hf-internal-testing/tiny-random-bert\"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task=\"fill-mask\", model=mname)
print(\"success\")
"""
UpperCAmelCase : Tuple = """
import socket
def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\")
socket.socket = offline_socket
"""
# Force fetching the files so that we can use the cache
UpperCAmelCase : Optional[Any] = """hf-internal-testing/tiny-random-bert"""
BertConfig.from_pretrained(A )
BertModel.from_pretrained(A )
BertTokenizer.from_pretrained(A )
pipeline(task="""fill-mask""" , model=A )
# baseline - just load from_pretrained with normal network
UpperCAmelCase : Any = [sys.executable, """-c""", """\n""".join([load, run, mock] )]
# should succeed
UpperCAmelCase : List[str] = self.get_env()
UpperCAmelCase : Optional[Any] = subprocess.run(A , env=A , check=A , capture_output=A )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn("""success""" , result.stdout.decode() )
@require_torch
def _lowercase( self ) -> str:
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
UpperCAmelCase : int = """
from transformers import BertConfig, BertModel, BertTokenizer
"""
UpperCAmelCase : Tuple = """
mname = \"hf-internal-testing/tiny-random-bert-sharded\"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
print(\"success\")
"""
UpperCAmelCase : Dict = """
import socket
def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\")
socket.socket = offline_socket
"""
# baseline - just load from_pretrained with normal network
UpperCAmelCase : Tuple = [sys.executable, """-c""", """\n""".join([load, run] )]
# should succeed
UpperCAmelCase : Union[str, Any] = self.get_env()
UpperCAmelCase : Tuple = subprocess.run(A , env=A , check=A , capture_output=A )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn("""success""" , result.stdout.decode() )
# next emulate no network
UpperCAmelCase : Optional[Any] = [sys.executable, """-c""", """\n""".join([load, mock, run] )]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
UpperCAmelCase : Tuple = """1"""
UpperCAmelCase : Tuple = subprocess.run(A , env=A , check=A , capture_output=A )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn("""success""" , result.stdout.decode() )
@require_torch
def _lowercase( self ) -> Tuple:
UpperCAmelCase : List[Any] = """
from transformers import pipeline
"""
UpperCAmelCase : Optional[Any] = """
mname = \"hf-internal-testing/tiny-random-bert\"
pipe = pipeline(model=mname)
"""
UpperCAmelCase : Optional[Any] = """
import socket
def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\")
socket.socket = offline_socket
"""
UpperCAmelCase : List[str] = self.get_env()
UpperCAmelCase : List[Any] = """1"""
UpperCAmelCase : int = [sys.executable, """-c""", """\n""".join([load, mock, run] )]
UpperCAmelCase : str = subprocess.run(A , env=A , check=A , capture_output=A )
self.assertEqual(result.returncode , 1 , result.stderr )
self.assertIn(
"""You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""" ) , )
@require_torch
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Optional[Any] = """
from transformers import AutoModel
"""
UpperCAmelCase : List[str] = """
mname = \"hf-internal-testing/test_dynamic_model\"
AutoModel.from_pretrained(mname, trust_remote_code=True)
print(\"success\")
"""
# baseline - just load from_pretrained with normal network
UpperCAmelCase : Union[str, Any] = [sys.executable, """-c""", """\n""".join([load, run] )]
# should succeed
UpperCAmelCase : Union[str, Any] = self.get_env()
UpperCAmelCase : Optional[Any] = subprocess.run(A , env=A , check=A , capture_output=A )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn("""success""" , result.stdout.decode() )
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
UpperCAmelCase : Dict = """1"""
UpperCAmelCase : List[Any] = subprocess.run(A , env=A , check=A , capture_output=A )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn("""success""" , result.stdout.decode() )
| 365 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
a : List[str] = {
"""configuration_altclip""": [
"""ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""AltCLIPConfig""",
"""AltCLIPTextConfig""",
"""AltCLIPVisionConfig""",
],
"""processing_altclip""": ["""AltCLIPProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : List[Any] = [
"""ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""AltCLIPPreTrainedModel""",
"""AltCLIPModel""",
"""AltCLIPTextModel""",
"""AltCLIPVisionModel""",
]
if TYPE_CHECKING:
from .configuration_altclip import (
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
AltCLIPConfig,
AltCLIPTextConfig,
AltCLIPVisionConfig,
)
from .processing_altclip import AltCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_altclip import (
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
AltCLIPModel,
AltCLIPPreTrainedModel,
AltCLIPTextModel,
AltCLIPVisionModel,
)
else:
import sys
a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 338 | 0 |
'''simple docstring'''
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available
from transformers.models.gpta.tokenization_gpta import GPTaTokenizer
from transformers.testing_utils import require_keras_nlp, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_keras_nlp_available():
from transformers.models.gpta import TFGPTaTokenizer
a : Optional[int] = ["""gpt2"""]
a : Optional[int] = """gpt2"""
if is_tf_available():
class UpperCamelCase_ ( tf.Module ):
def __init__( self , A ) -> Dict:
super().__init__()
UpperCAmelCase : Any = tokenizer
UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(A )
UpperCAmelCase : Any = TFGPTaLMHeadModel.from_config(A )
@tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="""text""" ),) )
def _lowercase( self , A ) -> Dict:
UpperCAmelCase : List[str] = self.tokenizer(A )
UpperCAmelCase : List[Any] = tokenized["""input_ids"""].to_tensor()
UpperCAmelCase : Optional[Any] = tf.cast(input_ids_dense > 0 , tf.intaa )
# input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN])
UpperCAmelCase : List[str] = self.model(input_ids=A , attention_mask=A )["""logits"""]
return outputs
@require_tf
@require_keras_nlp
class UpperCamelCase_ ( unittest.TestCase ):
def _lowercase( self ) -> Dict:
super().setUp()
UpperCAmelCase : Dict = [GPTaTokenizer.from_pretrained(A ) for checkpoint in (TOKENIZER_CHECKPOINTS)]
UpperCAmelCase : Optional[int] = [TFGPTaTokenizer.from_pretrained(A ) for checkpoint in TOKENIZER_CHECKPOINTS]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
UpperCAmelCase : Optional[int] = [
"""This is a straightforward English test sentence.""",
"""This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""",
"""Now we're going to add some Chinese: 一 二 三 一二三""",
"""And some much more rare Chinese: 齉 堃 齉堃""",
"""Je vais aussi écrire en français pour tester les accents""",
"""Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""",
]
UpperCAmelCase : str = list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def _lowercase( self ) -> Optional[int]:
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in self.test_sentences:
UpperCAmelCase : Dict = tokenizer([test_inputs] , return_tensors="""tf""" )
UpperCAmelCase : str = tf_tokenizer([test_inputs] )
for key in python_outputs.keys():
# convert them to numpy to avoid messing with ragged tensors
UpperCAmelCase : Optional[Any] = python_outputs[key].numpy()
UpperCAmelCase : List[str] = tf_outputs[key].numpy()
self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) )
self.assertTrue(tf.reduce_all(tf.cast(A , tf.intaa ) == tf_outputs_values ) )
@slow
def _lowercase( self ) -> int:
for tf_tokenizer in self.tf_tokenizers:
UpperCAmelCase : Dict = tf.function(A )
for test_inputs in self.test_sentences:
UpperCAmelCase : Any = tf.constant(A )
UpperCAmelCase : int = compiled_tokenizer(A )
UpperCAmelCase : Optional[int] = tf_tokenizer(A )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def _lowercase( self ) -> Tuple:
for tf_tokenizer in self.tf_tokenizers:
UpperCAmelCase : List[Any] = ModelToSave(tokenizer=A )
UpperCAmelCase : Optional[int] = tf.convert_to_tensor([self.test_sentences[0]] )
UpperCAmelCase : Dict = model.serving(A ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
UpperCAmelCase : str = Path(A ) / """saved.model"""
tf.saved_model.save(A , A , signatures={"""serving_default""": model.serving} )
UpperCAmelCase : Union[str, Any] = tf.saved_model.load(A )
UpperCAmelCase : Optional[Any] = loaded_model.signatures["""serving_default"""](A )["""output_0"""]
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertTrue(tf.reduce_all(out == loaded_output ) )
@slow
def _lowercase( self ) -> Dict:
for tf_tokenizer in self.tf_tokenizers:
UpperCAmelCase : List[Any] = tf.convert_to_tensor([self.test_sentences[0]] )
UpperCAmelCase : Optional[int] = tf_tokenizer(A ) # Build model with some sample inputs
UpperCAmelCase : int = tf_tokenizer.get_config()
UpperCAmelCase : int = TFGPTaTokenizer.from_config(A )
UpperCAmelCase : Optional[Any] = model_from_config(A )
for key in from_config_output.keys():
self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) )
@slow
def _lowercase( self ) -> str:
for tf_tokenizer in self.tf_tokenizers:
# for the test to run
UpperCAmelCase : List[Any] = 123123
for max_length in [3, 5, 1024]:
UpperCAmelCase : Tuple = tf.convert_to_tensor([self.test_sentences[0]] )
UpperCAmelCase : Union[str, Any] = tf_tokenizer(A , max_length=A )
UpperCAmelCase : List[str] = out["""input_ids"""].numpy().shape[1]
assert out_length == max_length
| 366 |
'''simple docstring'''
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
a : List[Any] = logging.get_logger(__name__)
def __lowerCamelCase ( _lowercase ) -> List[Any]:
UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" )
if "model" in sd.keys():
UpperCAmelCase : Any = torch.load(_lowercase , map_location="""cpu""" )["""model"""]
# pop unnecessary weights
UpperCAmelCase : Union[str, Any] = [
"""decoder.version""",
"""decoder.output_projection.weight""",
]
for key in keys_to_delete:
if key in sd:
sd.pop(_lowercase )
UpperCAmelCase : Tuple = {
"""decoder.project_in_dim.weight""": """decoder.project_in.weight""",
"""decoder.project_out_dim.weight""": """decoder.project_out.weight""",
"""decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""",
"""decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""",
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
UpperCAmelCase : List[Any] = sd.pop(_lowercase )
UpperCAmelCase : Tuple = list(sd.keys() )
for key in keys:
if ".qkv_proj." in key:
UpperCAmelCase : List[str] = sd[key]
# We split QKV in separate Q,K,V
UpperCAmelCase : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" )
UpperCAmelCase : Tuple = key.replace(""".qkv_proj.""" , """.k_proj.""" )
UpperCAmelCase : int = key.replace(""".qkv_proj.""" , """.v_proj.""" )
UpperCAmelCase : Dict = value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = torch.split(_lowercase , depth // 3 , dim=0 )
UpperCAmelCase : Tuple = q
UpperCAmelCase : Tuple = k
UpperCAmelCase : Any = v
del sd[key]
return sd
@torch.no_grad()
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Optional[Any]:
UpperCAmelCase : Tuple = load_checkpoint(_lowercase )
if config is not None:
UpperCAmelCase : Dict = OPTConfig.from_pretrained(_lowercase )
else:
UpperCAmelCase : int = OPTConfig()
UpperCAmelCase : List[Any] = OPTModel(_lowercase ).half().eval()
model.load_state_dict(_lowercase )
# Check results
Path(_lowercase ).mkdir(exist_ok=_lowercase )
model.save_pretrained(_lowercase )
if __name__ == "__main__":
a : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--fairseq_path""",
type=str,
help=(
"""path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:"""
""" https://huggingface.co/models?other=opt_metasq"""
),
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""")
a : Union[str, Any] = parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
| 338 | 0 |
'''simple docstring'''
from unittest.mock import patch
import pyspark
from datasets.packaged_modules.spark.spark import (
Spark,
SparkExamplesIterable,
_generate_iterable_examples,
)
from ..utils import (
require_dill_gt_0_3_2,
require_not_windows,
)
def __lowerCamelCase ( _lowercase , _lowercase ) -> Dict:
UpperCAmelCase : Dict = []
for part_id in partition_order:
UpperCAmelCase : List[str] = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect()
for row_idx, row in enumerate(_lowercase ):
expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) )
return expected_row_ids_and_row_dicts
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> Any:
UpperCAmelCase : Dict = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
UpperCAmelCase : Optional[int] = spark.range(1_0_0 ).repartition(1 )
UpperCAmelCase : Dict = Spark(_lowercase )
# The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means
# that each partition can hold 2 rows.
spark_builder._repartition_df_if_needed(max_shard_size=1_6 )
# Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions.
assert spark_builder.df.rdd.getNumPartitions() == 5_0
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> List[Any]:
UpperCAmelCase : Optional[int] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
UpperCAmelCase : Dict = spark.range(1_0 ).repartition(2 )
UpperCAmelCase : Optional[int] = [1, 0]
UpperCAmelCase : Any = _generate_iterable_examples(_lowercase , _lowercase ) # Reverse the partitions.
UpperCAmelCase : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowercase , _lowercase )
for i, (row_id, row_dict) in enumerate(generate_fn() ):
UpperCAmelCase : int = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> Tuple:
UpperCAmelCase : Tuple = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
UpperCAmelCase : Optional[int] = spark.range(1_0 ).repartition(1 )
UpperCAmelCase : Optional[Any] = SparkExamplesIterable(_lowercase )
assert it.n_shards == 1
for i, (row_id, row_dict) in enumerate(_lowercase ):
assert row_id == F'''0_{i}'''
assert row_dict == {"id": i}
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> List[str]:
UpperCAmelCase : Optional[int] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
UpperCAmelCase : List[str] = spark.range(3_0 ).repartition(3 )
# Mock the generator so that shuffle reverses the partition indices.
with patch("""numpy.random.Generator""" ) as generator_mock:
UpperCAmelCase : List[str] = lambda _lowercase : x.reverse()
UpperCAmelCase : Dict = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowercase , [2, 1, 0] )
UpperCAmelCase : List[str] = SparkExamplesIterable(_lowercase ).shuffle_data_sources(_lowercase )
assert shuffled_it.n_shards == 3
for i, (row_id, row_dict) in enumerate(_lowercase ):
UpperCAmelCase : int = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> Union[str, Any]:
UpperCAmelCase : int = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
UpperCAmelCase : str = spark.range(2_0 ).repartition(4 )
# Partitions 0 and 2
UpperCAmelCase : Any = SparkExamplesIterable(_lowercase ).shard_data_sources(worker_id=0 , num_workers=2 )
assert shard_it_a.n_shards == 2
UpperCAmelCase : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowercase , [0, 2] )
for i, (row_id, row_dict) in enumerate(_lowercase ):
UpperCAmelCase : List[str] = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
# Partitions 1 and 3
UpperCAmelCase : Dict = SparkExamplesIterable(_lowercase ).shard_data_sources(worker_id=1 , num_workers=2 )
assert shard_it_a.n_shards == 2
UpperCAmelCase : Dict = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowercase , [1, 3] )
for i, (row_id, row_dict) in enumerate(_lowercase ):
UpperCAmelCase : Optional[Any] = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> Optional[int]:
UpperCAmelCase : Dict = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
UpperCAmelCase : Tuple = spark.range(1_0_0 ).repartition(1 )
UpperCAmelCase : Dict = Spark(_lowercase )
# Choose a small max_shard_size for maximum partitioning.
spark_builder._repartition_df_if_needed(max_shard_size=1 )
# The new number of partitions should not be greater than the number of rows.
assert spark_builder.df.rdd.getNumPartitions() == 1_0_0
| 367 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a : Union[str, Any] = logging.get_logger(__name__)
a : str = {
"""facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""",
# See all LeViT models at https://huggingface.co/models?filter=levit
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'levit'
def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int:
super().__init__(**A )
UpperCAmelCase : Any = image_size
UpperCAmelCase : Optional[int] = num_channels
UpperCAmelCase : Tuple = kernel_size
UpperCAmelCase : Optional[int] = stride
UpperCAmelCase : Dict = padding
UpperCAmelCase : List[Any] = hidden_sizes
UpperCAmelCase : List[Any] = num_attention_heads
UpperCAmelCase : Optional[int] = depths
UpperCAmelCase : Any = key_dim
UpperCAmelCase : str = drop_path_rate
UpperCAmelCase : List[Any] = patch_size
UpperCAmelCase : str = attention_ratio
UpperCAmelCase : Optional[Any] = mlp_ratio
UpperCAmelCase : Dict = initializer_range
UpperCAmelCase : int = [
["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
class UpperCamelCase_ ( __magic_name__ ):
lowercase = version.parse('1.11' )
@property
def _lowercase( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def _lowercase( self ) -> float:
return 1e-4
| 338 | 0 |
'''simple docstring'''
import unittest
from parameterized import parameterized
from transformers import OpenLlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel
class UpperCamelCase_ :
def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Tuple:
UpperCAmelCase : Any = parent
UpperCAmelCase : Dict = batch_size
UpperCAmelCase : int = seq_length
UpperCAmelCase : List[Any] = is_training
UpperCAmelCase : List[str] = use_input_mask
UpperCAmelCase : str = use_token_type_ids
UpperCAmelCase : int = use_labels
UpperCAmelCase : List[Any] = vocab_size
UpperCAmelCase : int = hidden_size
UpperCAmelCase : List[Any] = num_hidden_layers
UpperCAmelCase : Any = num_attention_heads
UpperCAmelCase : Dict = intermediate_size
UpperCAmelCase : int = hidden_act
UpperCAmelCase : Tuple = hidden_dropout_prob
UpperCAmelCase : Optional[int] = attention_probs_dropout_prob
UpperCAmelCase : List[str] = max_position_embeddings
UpperCAmelCase : Union[str, Any] = type_vocab_size
UpperCAmelCase : Any = type_sequence_label_size
UpperCAmelCase : Dict = initializer_range
UpperCAmelCase : Dict = num_labels
UpperCAmelCase : int = num_choices
UpperCAmelCase : Optional[int] = scope
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : Tuple = None
if self.use_input_mask:
UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : Tuple = None
if self.use_token_type_ids:
UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase : Union[str, Any] = None
UpperCAmelCase : Dict = None
UpperCAmelCase : Union[str, Any] = None
if self.use_labels:
UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase : Optional[int] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowercase( self ) -> Dict:
return OpenLlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , )
def _lowercase( self , A , A , A , A , A , A , A ) -> Tuple:
UpperCAmelCase : Optional[int] = OpenLlamaModel(config=A )
model.to(A )
model.eval()
UpperCAmelCase : str = model(A , attention_mask=A )
UpperCAmelCase : Optional[Any] = model(A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]:
UpperCAmelCase : Dict = True
UpperCAmelCase : Dict = OpenLlamaModel(A )
model.to(A )
model.eval()
UpperCAmelCase : List[Any] = model(
A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , )
UpperCAmelCase : Any = model(
A , attention_mask=A , encoder_hidden_states=A , )
UpperCAmelCase : Dict = model(A , attention_mask=A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[str]:
UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A )
model.to(A )
model.eval()
UpperCAmelCase : str = model(A , attention_mask=A , labels=A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> Optional[Any]:
UpperCAmelCase : str = True
UpperCAmelCase : Dict = True
UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A )
model.to(A )
model.eval()
# first forward pass
UpperCAmelCase : List[str] = model(
A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , )
UpperCAmelCase : Tuple = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
UpperCAmelCase : int = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase : Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 )
UpperCAmelCase : List[str] = model(
A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0]
UpperCAmelCase : int = model(
A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0]
# select random slice
UpperCAmelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase : Optional[Any] = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) )
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs()
(
UpperCAmelCase
) : Tuple = config_and_inputs
UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
lowercase = (
(OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else ()
)
lowercase = (OpenLlamaForCausalLM,) if is_torch_available() else ()
lowercase = (
{
'feature-extraction': OpenLlamaModel,
'text-classification': OpenLlamaForSequenceClassification,
'text-generation': OpenLlamaForCausalLM,
'zero-shot': OpenLlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase = False
lowercase = False
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Optional[int] = OpenLlamaModelTester(self )
UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=A , hidden_size=37 )
def _lowercase( self ) -> List[Any]:
self.config_tester.run_common_tests()
def _lowercase( self ) -> Union[str, Any]:
UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase : List[str] = type
self.model_tester.create_and_check_model(*A )
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Tuple = 3
UpperCAmelCase : Optional[int] = input_dict["""input_ids"""]
UpperCAmelCase : str = input_ids.ne(1 ).to(A )
UpperCAmelCase : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A )
model.to(A )
model.eval()
UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _lowercase( self ) -> Optional[int]:
UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : str = 3
UpperCAmelCase : List[str] = """single_label_classification"""
UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""]
UpperCAmelCase : Union[str, Any] = input_ids.ne(1 ).to(A )
UpperCAmelCase : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase : List[str] = OpenLlamaForSequenceClassification(A )
model.to(A )
model.eval()
UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _lowercase( self ) -> str:
UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Optional[int] = 3
UpperCAmelCase : Dict = """multi_label_classification"""
UpperCAmelCase : Optional[int] = input_dict["""input_ids"""]
UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(A )
UpperCAmelCase : List[Any] = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
UpperCAmelCase : Optional[int] = OpenLlamaForSequenceClassification(A )
model.to(A )
model.eval()
UpperCAmelCase : Optional[int] = model(A , attention_mask=A , labels=A )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" )
def _lowercase( self ) -> str:
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def _lowercase( self , A ) -> Optional[int]:
UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : List[str] = ids_tensor([1, 10] , config.vocab_size )
UpperCAmelCase : List[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
UpperCAmelCase : Tuple = OpenLlamaModel(A )
original_model.to(A )
original_model.eval()
UpperCAmelCase : Any = original_model(A ).last_hidden_state
UpperCAmelCase : Tuple = original_model(A ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
UpperCAmelCase : Union[str, Any] = {"""type""": scaling_type, """factor""": 10.0}
UpperCAmelCase : List[str] = OpenLlamaModel(A )
scaled_model.to(A )
scaled_model.eval()
UpperCAmelCase : Optional[Any] = scaled_model(A ).last_hidden_state
UpperCAmelCase : Tuple = scaled_model(A ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(A , A , atol=1e-5 ) )
else:
self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
| 368 |
'''simple docstring'''
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("""0.12.2"""):
raise Exception("""requires fairseq >= 0.12.2""")
if version.parse(fairseq.__version__) > version.parse("""2"""):
raise Exception("""requires fairseq < v2""")
logging.set_verbosity_info()
a : Dict = logging.get_logger(__name__)
a : List[str] = """Hello, World!"""
a : List[Any] = """en_XX"""
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict:
UpperCAmelCase : Dict = Path("""data_bin""" )
UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , )
xmod.eval() # disable dropout
print(_lowercase )
UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder
UpperCAmelCase : Tuple = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0]
print("""Our X-MOD config:""" , _lowercase )
UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase )
model.eval()
# Now let's copy all the weights.
# Embeddings
UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight
UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight
UpperCAmelCase : int = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight
UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
UpperCAmelCase : List[str] = model.roberta.encoder.layer[i]
UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i]
# self attention
UpperCAmelCase : Optional[Any] = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError("""Dimensions of self-attention weights do not match.""" )
UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight
UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias
UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight
UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias
UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight
UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias
# self-attention output
UpperCAmelCase : Optional[Any] = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError("""Dimensions of self-attention output weights do not match.""" )
UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight
UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias
UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight
UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias
# intermediate
UpperCAmelCase : Tuple = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError("""Dimensions of intermediate weights do not match.""" )
UpperCAmelCase : List[str] = xmod_layer.fca.weight
UpperCAmelCase : str = xmod_layer.fca.bias
# output
UpperCAmelCase : Any = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError("""Dimensions of feed-forward weights do not match.""" )
UpperCAmelCase : Dict = xmod_layer.fca.weight
UpperCAmelCase : Dict = xmod_layer.fca.bias
UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight
UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight
UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError("""Lists of language adapters do not match.""" )
for lang_code, adapter in xmod_layer.adapter_modules.items():
UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code]
UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code]
UpperCAmelCase : Any = from_adapter.fca.weight
UpperCAmelCase : int = from_adapter.fca.bias
UpperCAmelCase : Dict = from_adapter.fca.weight
UpperCAmelCase : Dict = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight
UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias
if classification_head:
UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight
UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias
UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight
UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias
else:
# LM Head
UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight
UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias
UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight
UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias
UpperCAmelCase : str = xmod.model.encoder.lm_head.weight
UpperCAmelCase : str = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(_lowercase )
UpperCAmelCase : Optional[int] = model(_lowercase )[0]
if classification_head:
UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) )
else:
UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item()
print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7
UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 )
print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" )
if not success:
raise Exception("""Something went wRoNg""" )
Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(_lowercase )
if __name__ == "__main__":
a : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--classification_head""", action="""store_true""", help="""Whether to convert a final classification head."""
)
a : List[str] = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 338 | 0 |
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.text import TextDatasetReader
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def __lowerCamelCase ( _lowercase , _lowercase ) -> Tuple:
assert isinstance(_lowercase , _lowercase )
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("""keep_in_memory""" , [False, True] )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int:
UpperCAmelCase : Optional[Any] = tmp_path / """cache"""
UpperCAmelCase : Optional[int] = {"""text""": """string"""}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCAmelCase : Optional[int] = TextDatasetReader(_lowercase , cache_dir=_lowercase , keep_in_memory=_lowercase ).read()
_check_text_dataset(_lowercase , _lowercase )
@pytest.mark.parametrize(
"""features""" , [
None,
{"""text""": """string"""},
{"""text""": """int32"""},
{"""text""": """float32"""},
] , )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]:
UpperCAmelCase : Dict = tmp_path / """cache"""
UpperCAmelCase : Tuple = {"""text""": """string"""}
UpperCAmelCase : List[Any] = features.copy() if features else default_expected_features
UpperCAmelCase : str = (
Features({feature: Value(_lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCAmelCase : List[Any] = TextDatasetReader(_lowercase , features=_lowercase , cache_dir=_lowercase ).read()
_check_text_dataset(_lowercase , _lowercase )
@pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict:
UpperCAmelCase : Any = tmp_path / """cache"""
UpperCAmelCase : Optional[Any] = {"""text""": """string"""}
UpperCAmelCase : Tuple = TextDatasetReader(_lowercase , cache_dir=_lowercase , split=_lowercase ).read()
_check_text_dataset(_lowercase , _lowercase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize("""path_type""" , [str, list] )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int:
if issubclass(_lowercase , _lowercase ):
UpperCAmelCase : Union[str, Any] = text_path
elif issubclass(_lowercase , _lowercase ):
UpperCAmelCase : int = [text_path]
UpperCAmelCase : Dict = tmp_path / """cache"""
UpperCAmelCase : Optional[Any] = {"""text""": """string"""}
UpperCAmelCase : Optional[int] = TextDatasetReader(_lowercase , cache_dir=_lowercase ).read()
_check_text_dataset(_lowercase , _lowercase )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=("train",) ) -> Dict:
assert isinstance(_lowercase , _lowercase )
for split in splits:
UpperCAmelCase : Dict = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("""keep_in_memory""" , [False, True] )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]:
UpperCAmelCase : Optional[Any] = tmp_path / """cache"""
UpperCAmelCase : Tuple = {"""text""": """string"""}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCAmelCase : Tuple = TextDatasetReader({"""train""": text_path} , cache_dir=_lowercase , keep_in_memory=_lowercase ).read()
_check_text_datasetdict(_lowercase , _lowercase )
@pytest.mark.parametrize(
"""features""" , [
None,
{"""text""": """string"""},
{"""text""": """int32"""},
{"""text""": """float32"""},
] , )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]:
UpperCAmelCase : Union[str, Any] = tmp_path / """cache"""
# CSV file loses col_1 string dtype information: default now is "int64" instead of "string"
UpperCAmelCase : Optional[Any] = {"""text""": """string"""}
UpperCAmelCase : List[str] = features.copy() if features else default_expected_features
UpperCAmelCase : int = (
Features({feature: Value(_lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCAmelCase : str = TextDatasetReader({"""train""": text_path} , features=_lowercase , cache_dir=_lowercase ).read()
_check_text_datasetdict(_lowercase , _lowercase )
@pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] )
def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int:
if split:
UpperCAmelCase : Tuple = {split: text_path}
else:
UpperCAmelCase : List[str] = """train"""
UpperCAmelCase : int = {"""train""": text_path, """test""": text_path}
UpperCAmelCase : Union[str, Any] = tmp_path / """cache"""
UpperCAmelCase : int = {"""text""": """string"""}
UpperCAmelCase : Optional[Any] = TextDatasetReader(_lowercase , cache_dir=_lowercase ).read()
_check_text_datasetdict(_lowercase , _lowercase , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
| 369 |
'''simple docstring'''
# Function to print upper half of diamond (pyramid)
def __lowerCamelCase ( _lowercase ) -> List[Any]:
for i in range(0 , _lowercase ):
for _ in range(0 , n - i - 1 ): # printing spaces
print(""" """ , end="""""" )
for _ in range(0 , i + 1 ): # printing stars
print("""* """ , end="""""" )
print()
def __lowerCamelCase ( _lowercase ) -> Dict:
for i in range(_lowercase , 0 , -1 ):
for _ in range(_lowercase , 0 , -1 ): # printing stars
print("""* """ , end="""""" )
print()
for _ in range(n - i + 1 , 0 , -1 ): # printing spaces
print(""" """ , end="""""" )
def __lowerCamelCase ( _lowercase ) -> List[Any]:
if n <= 0:
print(""" ... .... nothing printing :(""" )
return
floyd(_lowercase ) # upper half
reverse_floyd(_lowercase ) # lower half
if __name__ == "__main__":
print(R"""| /\ | |- | |- |--| |\ /| |-""")
print(R"""|/ \| |- |_ |_ |__| | \/ | |_""")
a : List[Any] = 1
while K:
a : int = int(input("""enter the number and , and see the magic : """))
print()
pretty_print(user_number)
a : Tuple = int(input("""press 0 to exit... and 1 to continue..."""))
print("""Good Bye...""")
| 338 | 0 |
import copy
import os
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a : Tuple = logging.get_logger(__name__)
a : List[str] = {
"""google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""",
"""google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""",
"""google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""",
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'owlvit_text_model'
def __init__( self , A=49408 , A=512 , A=2048 , A=12 , A=8 , A=16 , A="quick_gelu" , A=1e-5 , A=0.0 , A=0.0_2 , A=1.0 , A=0 , A=49406 , A=49407 , **A , ) -> Dict:
super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A )
UpperCAmelCase : str = vocab_size
UpperCAmelCase : List[Any] = hidden_size
UpperCAmelCase : Any = intermediate_size
UpperCAmelCase : List[str] = num_hidden_layers
UpperCAmelCase : List[Any] = num_attention_heads
UpperCAmelCase : Optional[int] = max_position_embeddings
UpperCAmelCase : Dict = hidden_act
UpperCAmelCase : List[str] = layer_norm_eps
UpperCAmelCase : str = attention_dropout
UpperCAmelCase : str = initializer_range
UpperCAmelCase : Optional[int] = initializer_factor
@classmethod
def _lowercase( cls , A , **A ) -> "PretrainedConfig":
cls._set_token_in_kwargs(A )
UpperCAmelCase : int = cls.get_config_dict(A , **A )
# get the text config dict if we are loading from OwlViTConfig
if config_dict.get("""model_type""" ) == "owlvit":
UpperCAmelCase : Dict = config_dict["""text_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(A , **A )
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'owlvit_vision_model'
def __init__( self , A=768 , A=3072 , A=12 , A=12 , A=3 , A=768 , A=32 , A="quick_gelu" , A=1e-5 , A=0.0 , A=0.0_2 , A=1.0 , **A , ) -> Optional[int]:
super().__init__(**A )
UpperCAmelCase : Union[str, Any] = hidden_size
UpperCAmelCase : int = intermediate_size
UpperCAmelCase : Dict = num_hidden_layers
UpperCAmelCase : Any = num_attention_heads
UpperCAmelCase : str = num_channels
UpperCAmelCase : Any = image_size
UpperCAmelCase : Tuple = patch_size
UpperCAmelCase : Dict = hidden_act
UpperCAmelCase : Any = layer_norm_eps
UpperCAmelCase : int = attention_dropout
UpperCAmelCase : Any = initializer_range
UpperCAmelCase : List[Any] = initializer_factor
@classmethod
def _lowercase( cls , A , **A ) -> "PretrainedConfig":
cls._set_token_in_kwargs(A )
UpperCAmelCase : Union[str, Any] = cls.get_config_dict(A , **A )
# get the vision config dict if we are loading from OwlViTConfig
if config_dict.get("""model_type""" ) == "owlvit":
UpperCAmelCase : List[Any] = config_dict["""vision_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(A , **A )
class UpperCamelCase_ ( __magic_name__ ):
lowercase = 'owlvit'
lowercase = True
def __init__( self , A=None , A=None , A=512 , A=2.6_5_9_2 , A=True , **A , ) -> int:
super().__init__(**A )
if text_config is None:
UpperCAmelCase : str = {}
logger.info("""text_config is None. Initializing the OwlViTTextConfig with default values.""" )
if vision_config is None:
UpperCAmelCase : List[Any] = {}
logger.info("""vision_config is None. initializing the OwlViTVisionConfig with default values.""" )
UpperCAmelCase : int = OwlViTTextConfig(**A )
UpperCAmelCase : Optional[Any] = OwlViTVisionConfig(**A )
UpperCAmelCase : Union[str, Any] = projection_dim
UpperCAmelCase : int = logit_scale_init_value
UpperCAmelCase : Optional[Any] = return_dict
UpperCAmelCase : Any = 1.0
@classmethod
def _lowercase( cls , A , **A ) -> "PretrainedConfig":
cls._set_token_in_kwargs(A )
UpperCAmelCase : List[str] = cls.get_config_dict(A , **A )
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(A , **A )
@classmethod
def _lowercase( cls , A , A , **A ) -> Optional[Any]:
UpperCAmelCase : int = {}
UpperCAmelCase : int = text_config
UpperCAmelCase : Optional[Any] = vision_config
return cls.from_dict(A , **A )
def _lowercase( self ) -> Tuple:
UpperCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ )
UpperCAmelCase : List[str] = self.text_config.to_dict()
UpperCAmelCase : List[str] = self.vision_config.to_dict()
UpperCAmelCase : List[str] = self.__class__.model_type
return output
class UpperCamelCase_ ( __magic_name__ ):
@property
def _lowercase( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """sequence"""}),
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""attention_mask""", {0: """batch""", 1: """sequence"""}),
] )
@property
def _lowercase( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""logits_per_image""", {0: """batch"""}),
("""logits_per_text""", {0: """batch"""}),
("""text_embeds""", {0: """batch"""}),
("""image_embeds""", {0: """batch"""}),
] )
@property
def _lowercase( self ) -> float:
return 1e-4
def _lowercase( self , A , A = -1 , A = -1 , A = None , ) -> Mapping[str, Any]:
UpperCAmelCase : Any = super().generate_dummy_inputs(
processor.tokenizer , batch_size=A , seq_length=A , framework=A )
UpperCAmelCase : Optional[int] = super().generate_dummy_inputs(
processor.image_processor , batch_size=A , framework=A )
return {**text_input_dict, **image_input_dict}
@property
def _lowercase( self ) -> int:
return 14
| 370 |
'''simple docstring'''
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
a : List[str] = logging.getLogger(__name__)
class UpperCamelCase_ ( __magic_name__ ):
def __init__( self , A , A , A , A=None ) -> Union[str, Any]:
super().__init__(
A , question_encoder_tokenizer=A , generator_tokenizer=A , index=A , init_retrieval=A , )
UpperCAmelCase : Optional[Any] = None
def _lowercase( self , A ) -> List[Any]:
logger.info("""initializing retrieval""" )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info("""dist initialized""" )
# needs to be set manually
UpperCAmelCase : Tuple = self._infer_socket_ifname()
# avoid clash with the NCCL port
UpperCAmelCase : str = str(distributed_port + 1 )
UpperCAmelCase : Any = dist.new_group(ranks=A , backend="""gloo""" )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info("""dist not initialized / main""" )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def _lowercase( self ) -> Dict:
return dist.get_rank(group=self.process_group ) == 0
def _lowercase( self , A , A , A=torch.floataa ) -> str:
UpperCAmelCase : List[Any] = torch.empty(A , dtype=A )
dist.scatter(A , src=0 , scatter_list=A , group=self.process_group )
return target_tensor
def _lowercase( self ) -> Any:
UpperCAmelCase : List[Any] = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
UpperCAmelCase : Optional[int] = next((addr for addr in addrs if addr.startswith("""e""" )) , A )
return ifname
def _lowercase( self , A , A ) -> Tuple[np.ndarray, List[dict]]:
# single GPU training
if not dist.is_initialized():
UpperCAmelCase , UpperCAmelCase : str = self._main_retrieve(A , A )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A )
# distributed training
UpperCAmelCase : int = dist.get_world_size(group=self.process_group )
# gather logic
UpperCAmelCase : int = None
if self._is_main():
UpperCAmelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A )]
dist.gather(torch.tensor(A ) , dst=0 , gather_list=A , group=self.process_group )
# scatter logic
UpperCAmelCase : List[Any] = question_hidden_states.shape[0]
UpperCAmelCase : Tuple = []
UpperCAmelCase : Any = []
if self._is_main():
assert len(A ) == world_size
UpperCAmelCase , UpperCAmelCase : Optional[int] = self._main_retrieve(torch.cat(A ).numpy() , A )
UpperCAmelCase , UpperCAmelCase : Optional[Any] = torch.tensor(A ), torch.tensor(A )
UpperCAmelCase : List[str] = self._chunk_tensor(A , A )
UpperCAmelCase : Union[str, Any] = self._chunk_tensor(A , A )
UpperCAmelCase : Tuple = self._scattered(A , [n_queries, n_docs] , target_type=torch.intaa )
UpperCAmelCase : Optional[Any] = self._scattered(A , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
| 338 | 0 |
'''simple docstring'''
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import datasets
import datasets.config
from .utils import require_beam
class UpperCamelCase_ ( datasets.BeamBasedBuilder ):
def _lowercase( self ) -> Any:
return datasets.DatasetInfo(
features=datasets.Features({"""content""": datasets.Value("""string""" )} ) , supervised_keys=A , )
def _lowercase( self , A , A ) -> Tuple:
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_dummy_examples()} )]
def _lowercase( self , A , A ) -> Optional[Any]:
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(A )
class UpperCamelCase_ ( datasets.BeamBasedBuilder ):
def _lowercase( self ) -> Union[str, Any]:
return datasets.DatasetInfo(
features=datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) , supervised_keys=A , )
def _lowercase( self , A , A ) -> Any:
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_nested_examples()} )
]
def _lowercase( self , A , A ) -> Union[str, Any]:
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(A )
def __lowerCamelCase ( ) -> Optional[Any]:
return [(i, {"content": content}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )]
def __lowerCamelCase ( ) -> int:
return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )]
class UpperCamelCase_ ( __magic_name__ ):
@require_beam
def _lowercase( self ) -> List[Any]:
UpperCAmelCase : Any = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCAmelCase : int = DummyBeamDataset(cache_dir=A , beam_runner="""DirectRunner""" )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(A , builder.name , """default""" , """0.0.0""" , f'''{builder.name}-train.arrow''' ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) )
UpperCAmelCase : List[Any] = builder.as_dataset()
self.assertEqual(dset["""train"""].num_rows , A )
self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , A )
self.assertDictEqual(dset["""train"""][0] , get_test_dummy_examples()[0][1] )
self.assertDictEqual(
dset["""train"""][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(A , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) )
del dset
@require_beam
def _lowercase( self ) -> Dict:
import apache_beam as beam
UpperCAmelCase : Optional[int] = beam.io.parquetio.WriteToParquet
UpperCAmelCase : Any = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCAmelCase : Dict = DummyBeamDataset(cache_dir=A , beam_runner="""DirectRunner""" )
with patch("""apache_beam.io.parquetio.WriteToParquet""" ) as write_parquet_mock:
UpperCAmelCase : Optional[int] = partial(A , num_shards=2 )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(
A , builder.name , """default""" , """0.0.0""" , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) )
self.assertTrue(
os.path.exists(
os.path.join(
A , builder.name , """default""" , """0.0.0""" , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) )
UpperCAmelCase : Optional[Any] = builder.as_dataset()
self.assertEqual(dset["""train"""].num_rows , A )
self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , A )
# Order is not preserved when sharding, so we just check that all the elements are there
self.assertListEqual(sorted(dset["""train"""]["""content"""] ) , sorted(["""foo""", """bar""", """foobar"""] ) )
self.assertTrue(
os.path.exists(os.path.join(A , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) )
del dset
@require_beam
def _lowercase( self ) -> Any:
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCAmelCase : Optional[Any] = DummyBeamDataset(cache_dir=A )
self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare )
@require_beam
def _lowercase( self ) -> str:
UpperCAmelCase : Optional[Any] = len(get_test_nested_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCAmelCase : Any = NestedBeamDataset(cache_dir=A , beam_runner="""DirectRunner""" )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(A , builder.name , """default""" , """0.0.0""" , f'''{builder.name}-train.arrow''' ) ) )
self.assertDictEqual(
builder.info.features , datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) )
UpperCAmelCase : List[str] = builder.as_dataset()
self.assertEqual(dset["""train"""].num_rows , A )
self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , A )
self.assertDictEqual(dset["""train"""][0] , get_test_nested_examples()[0][1] )
self.assertDictEqual(
dset["""train"""][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(A , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) )
del dset
| 371 |
'''simple docstring'''
from typing import List, Optional
from tokenizers import ByteLevelBPETokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
a : List[Any] = logging.get_logger(__name__)
a : List[str] = {
"""vocab_file""": """vocab.json""",
"""merges_file""": """merges.txt""",
"""tokenizer_config_file""": """tokenizer_config.json""",
}
a : List[Any] = {
"""vocab_file""": {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"""
},
"""merges_file""": {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"""
},
"""tokenizer_config_file""": {
"""facebook/blenderbot_small-90M""": (
"""https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"""
)
},
}
a : List[Any] = {
"""facebook/blenderbot_small-90M""": 5_1_2,
}
class UpperCamelCase_ ( __magic_name__ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = BlenderbotSmallTokenizer
def __init__( self , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , A=True , **A , ) -> Union[str, Any]:
super().__init__(
ByteLevelBPETokenizer(
vocab=A , merges=A , add_prefix_space=A , trim_offsets=A , ) , bos_token=A , eos_token=A , unk_token=A , **A , )
UpperCAmelCase : Optional[Any] = add_prefix_space
def _lowercase( self , A , A=None ) -> Optional[Any]:
UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _lowercase( self , A , A = None ) -> List[int]:
UpperCAmelCase : Any = [self.sep_token_id]
UpperCAmelCase : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 338 | 0 |
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError
import requests
def __magic_name__ ( __lowerCAmelCase : str = "isbn/0140328726" ) -> dict:
__lowerCamelCase = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes
if new_olid.count('''/''' ) != 1:
__lowerCamelCase = f'''{olid} is not a valid Open Library olid'''
raise ValueError(__lowerCAmelCase )
return requests.get(f'''https://openlibrary.org/{new_olid}.json''' ).json()
def __magic_name__ ( __lowerCAmelCase : dict ) -> dict:
__lowerCamelCase = {
'''title''': '''Title''',
'''publish_date''': '''Publish date''',
'''authors''': '''Authors''',
'''number_of_pages''': '''Number of pages:''',
'''first_sentence''': '''First sentence''',
'''isbn_10''': '''ISBN (10)''',
'''isbn_13''': '''ISBN (13)''',
}
__lowerCamelCase = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()}
__lowerCamelCase = [
get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors''']
]
__lowerCamelCase = data['''First sentence''']['''value''']
for key, value in data.items():
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
__lowerCamelCase = ''', '''.join(__lowerCAmelCase )
return data
if __name__ == "__main__":
import doctest
doctest.testmod()
while True:
SCREAMING_SNAKE_CASE__ : Tuple = input("\nEnter the ISBN code to search (or 'quit' to stop): ").strip()
if isbn.lower() in ("", "q", "quit", "exit", "stop"):
break
if len(isbn) not in (10, 13) or not isbn.isdigit():
print(F'Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.')
continue
print(F'\nSearching Open Library for ISBN: {isbn}...\n')
try:
SCREAMING_SNAKE_CASE__ : Any = summarize_book(get_openlibrary_data(F'isbn/{isbn}'))
print("\n".join(F'{key}: {value}' for key, value in book_summary.items()))
except JSONDecodeError: # Workaround for requests.exceptions.RequestException:
print(F'Sorry, there are no results for ISBN: {isbn}.')
| 339 |
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int:
return abs(__lowerCAmelCase ) if a == 0 else greatest_common_divisor(b % a , __lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int:
while y: # --> when y=0 then loop will terminate and return x as final GCD.
__lowerCamelCase , __lowerCamelCase = y, x % y
return abs(__lowerCAmelCase )
def __magic_name__ ( ) -> Tuple:
try:
__lowerCamelCase = input('''Enter two integers separated by comma (,): ''' ).split(''',''' )
__lowerCamelCase = int(nums[0] )
__lowerCamelCase = int(nums[1] )
print(
f'''greatest_common_divisor({num_a}, {num_a}) = '''
f'''{greatest_common_divisor(__lowerCAmelCase , __lowerCAmelCase )}''' )
print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__lowerCAmelCase , __lowerCAmelCase )}''' )
except (IndexError, UnboundLocalError, ValueError):
print('''Wrong input''' )
if __name__ == "__main__":
main()
| 339 | 1 |
from __future__ import annotations
SCREAMING_SNAKE_CASE__ : Any = list[list[int]]
# assigning initial values to the grid
SCREAMING_SNAKE_CASE__ : Matrix = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
SCREAMING_SNAKE_CASE__ : Matrix = [
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def __magic_name__ ( __lowerCAmelCase : Matrix , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> bool:
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def __magic_name__ ( __lowerCAmelCase : Matrix ) -> tuple[int, int] | None:
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def __magic_name__ ( __lowerCAmelCase : Matrix ) -> Matrix | None:
if location := find_empty_location(__lowerCAmelCase ):
__lowerCamelCase , __lowerCamelCase = location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1 , 10 ):
if is_safe(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
__lowerCamelCase = digit
if sudoku(__lowerCAmelCase ) is not None:
return grid
__lowerCamelCase = 0
return None
def __magic_name__ ( __lowerCAmelCase : Matrix ) -> None:
for row in grid:
for cell in row:
print(__lowerCAmelCase , end=''' ''' )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print("\nExample grid:\n" + "=" * 20)
print_solution(example_grid)
print("\nExample grid solution:")
SCREAMING_SNAKE_CASE__ : Dict = sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print("Cannot find a solution.")
| 339 |
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
def __A ( self : Optional[int] ) -> Union[str, Any]:
__lowerCamelCase = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' )
__lowerCamelCase = AutoTokenizer.from_pretrained('''google/mt5-small''' )
__lowerCamelCase = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids
__lowerCamelCase = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids
__lowerCamelCase = shift_tokens_right(SCREAMING_SNAKE_CASE__ , model.config.pad_token_id , model.config.decoder_start_token_id )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ).logits
__lowerCamelCase = optax.softmax_cross_entropy(SCREAMING_SNAKE_CASE__ , onehot(SCREAMING_SNAKE_CASE__ , logits.shape[-1] ) ).mean()
__lowerCamelCase = -(labels.shape[-1] * loss.item())
__lowerCamelCase = -84.9127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 339 | 1 |
from __future__ import annotations
import random
import unittest
from transformers import TransfoXLConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFTransfoXLForSequenceClassification,
TFTransfoXLLMHeadModel,
TFTransfoXLModel,
)
class lowerCAmelCase__ :
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , ) -> Optional[Any]:
__lowerCamelCase = parent
__lowerCamelCase = 13
__lowerCamelCase = 7
__lowerCamelCase = 30
__lowerCamelCase = self.seq_length + self.mem_len
__lowerCamelCase = 15
__lowerCamelCase = True
__lowerCamelCase = True
__lowerCamelCase = 99
__lowerCamelCase = [10, 50, 80]
__lowerCamelCase = 32
__lowerCamelCase = 32
__lowerCamelCase = 4
__lowerCamelCase = 8
__lowerCamelCase = 1_28
__lowerCamelCase = 2
__lowerCamelCase = 2
__lowerCamelCase = None
__lowerCamelCase = 1
__lowerCamelCase = 0
__lowerCamelCase = 3
__lowerCamelCase = self.vocab_size - 1
__lowerCamelCase = 0.01
def __A ( self : str ) -> Tuple:
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCamelCase = None
if self.use_labels:
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCamelCase = TransfoXLConfig(
vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , )
return (config, input_ids_a, input_ids_a, lm_labels)
def __A ( self : Optional[int] ) -> Tuple:
random.seed(self.seed )
tf.random.set_seed(self.seed )
def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> str:
__lowerCamelCase = TFTransfoXLModel(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase , __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ ).to_tuple()
__lowerCamelCase = {'''input_ids''': input_ids_a, '''mems''': mems_a}
__lowerCamelCase , __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ ).to_tuple()
self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]:
__lowerCamelCase = TFTransfoXLLMHeadModel(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase , __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ ).to_tuple()
__lowerCamelCase = {'''input_ids''': input_ids_a, '''labels''': lm_labels}
__lowerCamelCase , __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ ).to_tuple()
__lowerCamelCase , __lowerCamelCase = model([input_ids_a, mems_a] ).to_tuple()
__lowerCamelCase = {'''input_ids''': input_ids_a, '''mems''': mems_a, '''labels''': lm_labels}
__lowerCamelCase , __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ ).to_tuple()
self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]:
__lowerCamelCase = TFTransfoXLForSequenceClassification(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self : Optional[int] ) -> Tuple:
__lowerCamelCase = self.prepare_config_and_inputs()
((__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase)) = config_and_inputs
__lowerCamelCase = {'''input_ids''': input_ids_a}
return config, inputs_dict
@require_tf
class lowerCAmelCase__ ( __lowercase , __lowercase , unittest.TestCase ):
a__ : List[Any] = (
(TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else ()
)
a__ : List[Any] = () if is_tf_available() else ()
a__ : Union[str, Any] = (
{
"""feature-extraction""": TFTransfoXLModel,
"""text-classification""": TFTransfoXLForSequenceClassification,
"""text-generation""": TFTransfoXLLMHeadModel,
"""zero-shot""": TFTransfoXLForSequenceClassification,
}
if is_tf_available()
else {}
)
# TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented
a__ : Tuple = False
a__ : int = False
a__ : List[str] = False
a__ : List[str] = False
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]:
if pipeline_test_casse_name == "TextGenerationPipelineTests":
# Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`.
# `TransfoXLConfig` was never used in pipeline tests: cannot create a simple
# tokenizer.
return True
return False
def __A ( self : Optional[Any] ) -> Dict:
__lowerCamelCase = TFTransfoXLModelTester(self )
__lowerCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , d_embed=37 )
def __A ( self : str ) -> Dict:
self.config_tester.run_common_tests()
def __A ( self : Union[str, Any] ) -> str:
self.model_tester.set_seed()
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_model(*SCREAMING_SNAKE_CASE__ )
def __A ( self : Dict ) -> Tuple:
self.model_tester.set_seed()
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_lm_head(*SCREAMING_SNAKE_CASE__ )
def __A ( self : int ) -> Dict:
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*SCREAMING_SNAKE_CASE__ )
def __A ( self : List[str] ) -> Tuple:
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCamelCase = [TFTransfoXLForSequenceClassification]
for model_class in self.all_model_classes:
__lowerCamelCase = model_class(SCREAMING_SNAKE_CASE__ )
assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer )
if model_class in list_other_models_with_output_ebd:
__lowerCamelCase = model.get_output_embeddings()
assert isinstance(SCREAMING_SNAKE_CASE__ , tf.keras.layers.Layer )
__lowerCamelCase = model.get_bias()
assert name is None
else:
__lowerCamelCase = model.get_output_embeddings()
assert x is None
__lowerCamelCase = model.get_bias()
assert name is None
def __A ( self : Optional[int] ) -> List[Any]:
# TODO JP: Make TransfoXL XLA compliant
pass
@slow
def __A ( self : List[str] ) -> int:
for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCamelCase = TFTransfoXLModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
@unittest.skip(reason='''This model doesn\'t play well with fit() due to not returning a single loss.''' )
def __A ( self : Optional[int] ) -> Optional[Any]:
pass
@require_tf
class lowerCAmelCase__ ( unittest.TestCase ):
@unittest.skip('''Skip test until #12651 is resolved.''' )
@slow
def __A ( self : Optional[Any] ) -> Tuple:
__lowerCamelCase = TFTransfoXLLMHeadModel.from_pretrained('''transfo-xl-wt103''' )
# fmt: off
__lowerCamelCase = tf.convert_to_tensor([[33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231
# fmt: on
# In 1991 , the remains of Russian Tsar Nicholas II and his family
# ( except for Alexei and Maria ) are discovered .
# The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the
# remainder of the story . 1883 Western Siberia ,
# a young Grigori Rasputin is asked by his father and a group of men to perform magic .
# Rasputin has a vision and denounces one of the men as a horse thief . Although his
# father initially slaps him for making such an accusation , Rasputin watches as the
# man is chased outside and beaten . Twenty years later , Rasputin sees a vision of
# the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous ,
# with people , even a bishop , begging for his blessing . <eod> </s> <eos>
# fmt: off
__lowerCamelCase = [33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0,33,1,18_57,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,28,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,0] # noqa: E231
# fmt: on
# In 1991, the remains of Russian Tsar Nicholas II and his family (
# except for Alexei and Maria ) are discovered. The voice of young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.
# 1883 Western Siberia, a young Grigori Rasputin is asked by his father
# and a group of men to perform magic. Rasputin has a vision and
# denounces one of the men as a horse thief. Although his father initially
# slaps him for making such an accusation, Rasputin watches as the man
# is chased outside and beaten. Twenty years later, Rasputin sees a vision
# of the Virgin Mary, prompting him to become a priest.
# Rasputin quickly becomes famous, with people, even a bishop, begging for
# his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar
# Nicholas II and his family were discovered. The voice of <unk> young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos>
__lowerCamelCase = model.generate(SCREAMING_SNAKE_CASE__ , max_length=2_00 , do_sample=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(output_ids[0].numpy().tolist() , SCREAMING_SNAKE_CASE__ )
| 339 |
import datasets
import faiss
import numpy as np
import streamlit as st
import torch
from elasticsearch import Elasticsearch
from elia_utils import (
embed_questions_for_retrieval,
make_qa_sas_model,
qa_sas_generate,
query_es_index,
query_qa_dense_index,
)
import transformers
from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer
SCREAMING_SNAKE_CASE__ : Optional[int] = "bart"
SCREAMING_SNAKE_CASE__ : Dict = True
@st.cache(allow_output_mutation=__lowerCAmelCase )
def __magic_name__ ( ) -> str:
if LOAD_DENSE_INDEX:
__lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' )
__lowerCamelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' )
__lowerCamelCase = qar_model.eval()
else:
__lowerCamelCase , __lowerCamelCase = (None, None)
if MODEL_TYPE == "bart":
__lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' )
__lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' )
__lowerCamelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' )
sas_model.load_state_dict(save_dict['''model'''] )
__lowerCamelCase = sas_model.eval()
else:
__lowerCamelCase , __lowerCamelCase = make_qa_sas_model(
model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' )
return (qar_tokenizer, qar_model, sas_tokenizer, sas_model)
@st.cache(allow_output_mutation=__lowerCAmelCase )
def __magic_name__ ( ) -> Optional[int]:
if LOAD_DENSE_INDEX:
__lowerCamelCase = faiss.StandardGpuResources()
__lowerCamelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train''']
__lowerCamelCase = np.memmap(
'''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , )
__lowerCamelCase = faiss.IndexFlatIP(128 )
__lowerCamelCase = faiss.index_cpu_to_gpu(__lowerCAmelCase , 1 , __lowerCAmelCase )
wikiaab_gpu_index_flat.add(__lowerCAmelCase ) # TODO fix for larger GPU
else:
__lowerCamelCase , __lowerCamelCase = (None, None)
__lowerCamelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] )
return (wikiaab_passages, wikiaab_gpu_index_flat, es_client)
@st.cache(allow_output_mutation=__lowerCAmelCase )
def __magic_name__ ( ) -> List[str]:
__lowerCamelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' )
__lowerCamelCase = elia['''train_eli5''']
__lowerCamelCase = np.memmap(
'''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) )
__lowerCamelCase = faiss.IndexFlatIP(128 )
eli5_train_q_index.add(__lowerCAmelCase )
return (elia_train, eli5_train_q_index)
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = load_indexes()
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = load_models()
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = load_train_data()
def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[str]=10 ) -> List[str]:
__lowerCamelCase = embed_questions_for_retrieval([question] , __lowerCAmelCase , __lowerCAmelCase )
__lowerCamelCase , __lowerCamelCase = eli5_train_q_index.search(__lowerCAmelCase , __lowerCAmelCase )
__lowerCamelCase = [elia_train[int(__lowerCAmelCase )] for i in I[0]]
return nn_examples
def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict="wiki40b" , __lowerCAmelCase : Any="dense" , __lowerCAmelCase : Dict=10 ) -> Union[str, Any]:
if source == "none":
__lowerCamelCase , __lowerCamelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), [])
else:
if method == "dense":
__lowerCamelCase , __lowerCamelCase = query_qa_dense_index(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
else:
__lowerCamelCase , __lowerCamelCase = query_es_index(
__lowerCAmelCase , __lowerCAmelCase , index_name='''english_wiki40b_snippets_100w''' , n_results=__lowerCAmelCase , )
__lowerCamelCase = [
(res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst
]
__lowerCamelCase = '''question: {} context: {}'''.format(__lowerCAmelCase , __lowerCAmelCase )
return question_doc, support_list
@st.cache(
hash_funcs={
torch.Tensor: (lambda __lowerCAmelCase : None),
transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __lowerCAmelCase : None),
} )
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str=64 , __lowerCAmelCase : Dict=256 , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : Optional[Any]=0.95 , __lowerCAmelCase : List[Any]=0.8 ) -> Any:
with torch.no_grad():
__lowerCamelCase = qa_sas_generate(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , num_answers=1 , num_beams=__lowerCAmelCase , min_len=__lowerCAmelCase , max_len=__lowerCAmelCase , do_sample=__lowerCAmelCase , temp=__lowerCAmelCase , top_p=__lowerCAmelCase , top_k=__lowerCAmelCase , max_input_length=1024 , device='''cuda:0''' , )[0]
return (answer, support_list)
st.title("Long Form Question Answering with ELI5")
# Start sidebar
SCREAMING_SNAKE_CASE__ : List[str] = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>"
SCREAMING_SNAKE_CASE__ : Dict = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % (
header_html,
)
st.sidebar.markdown(
header_full,
unsafe_allow_html=True,
)
# Long Form QA with ELI5 and Wikipedia
SCREAMING_SNAKE_CASE__ : int = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n"
st.sidebar.markdown(description, unsafe_allow_html=True)
SCREAMING_SNAKE_CASE__ : str = [
"Answer the question",
"View the retrieved document only",
"View the most similar ELI5 question and answer",
"Show me everything, please!",
]
SCREAMING_SNAKE_CASE__ : Optional[int] = st.sidebar.checkbox("Demo options")
if demo_options:
SCREAMING_SNAKE_CASE__ : Optional[int] = st.sidebar.selectbox(
"",
action_list,
index=3,
)
SCREAMING_SNAKE_CASE__ : Optional[Any] = action_list.index(action_st)
SCREAMING_SNAKE_CASE__ : int = st.sidebar.selectbox(
"",
["Show full text of passages", "Show passage section titles"],
index=0,
)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = show_type == "Show full text of passages"
else:
SCREAMING_SNAKE_CASE__ : Any = 3
SCREAMING_SNAKE_CASE__ : Any = True
SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.checkbox("Retrieval options")
if retrieval_options:
SCREAMING_SNAKE_CASE__ : Tuple = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n "
st.sidebar.markdown(retriever_info)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"])
SCREAMING_SNAKE_CASE__ : int = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"])
else:
SCREAMING_SNAKE_CASE__ : List[str] = "wiki40b"
SCREAMING_SNAKE_CASE__ : Optional[Any] = "dense"
SCREAMING_SNAKE_CASE__ : str = "beam"
SCREAMING_SNAKE_CASE__ : List[Any] = 2
SCREAMING_SNAKE_CASE__ : Optional[Any] = 64
SCREAMING_SNAKE_CASE__ : List[Any] = 256
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
SCREAMING_SNAKE_CASE__ : List[str] = st.sidebar.checkbox("Generation options")
if generate_options:
SCREAMING_SNAKE_CASE__ : Dict = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n "
st.sidebar.markdown(generate_info)
SCREAMING_SNAKE_CASE__ : List[str] = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"])
SCREAMING_SNAKE_CASE__ : Any = st.sidebar.slider(
"Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None
)
SCREAMING_SNAKE_CASE__ : str = st.sidebar.slider(
"Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None
)
if sampled == "beam":
SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None)
else:
SCREAMING_SNAKE_CASE__ : Any = st.sidebar.slider(
"Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None
)
SCREAMING_SNAKE_CASE__ : Dict = st.sidebar.slider(
"Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None
)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
# start main text
SCREAMING_SNAKE_CASE__ : Any = [
"<MY QUESTION>",
"How do people make chocolate?",
"Why do we get a fever when we are sick?",
"How can different animals perceive different colors?",
"What is natural language processing?",
"What's the best way to treat a sunburn?",
"What exactly are vitamins ?",
"How does nuclear energy provide electricity?",
"What's the difference between viruses and bacteria?",
"Why are flutes classified as woodwinds when most of them are made out of metal ?",
"Why do people like drinking coffee even though it tastes so bad?",
"What happens when wine ages? How does it make the wine taste better?",
"If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?",
"How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?",
"How does New Zealand have so many large bird predators?",
]
SCREAMING_SNAKE_CASE__ : List[str] = st.selectbox(
"What would you like to ask? ---- select <MY QUESTION> to enter a new query",
questions_list,
index=1,
)
if question_s == "<MY QUESTION>":
SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.text_input("Enter your question here:", "")
else:
SCREAMING_SNAKE_CASE__ : str = question_s
if st.button("Show me!"):
if action in [0, 1, 3]:
if index_type == "mixed":
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = make_support(question, source=wiki_source, method="dense", n_results=10)
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = make_support(question, source=wiki_source, method="sparse", n_results=10)
SCREAMING_SNAKE_CASE__ : int = []
for res_d, res_s in zip(support_list_dense, support_list_sparse):
if tuple(res_d) not in support_list:
support_list += [tuple(res_d)]
if tuple(res_s) not in support_list:
support_list += [tuple(res_s)]
SCREAMING_SNAKE_CASE__ : Optional[Any] = support_list[:10]
SCREAMING_SNAKE_CASE__ : Tuple = "<P> " + " <P> ".join([res[-1] for res in support_list])
else:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = make_support(question, source=wiki_source, method=index_type, n_results=10)
if action in [0, 3]:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = answer_question(
question_doc,
sas_model,
sas_tokenizer,
min_len=min_len,
max_len=int(max_len),
sampling=(sampled == "sampled"),
n_beams=n_beams,
top_p=top_p,
temp=temp,
)
st.markdown("### The model generated answer is:")
st.write(answer)
if action in [0, 1, 3] and wiki_source != "none":
st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:")
for i, res in enumerate(support_list):
SCREAMING_SNAKE_CASE__ : Optional[int] = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_"))
SCREAMING_SNAKE_CASE__ : Tuple = res[1].strip()
if sec_titles == "":
SCREAMING_SNAKE_CASE__ : Union[str, Any] = "[{}]({})".format(res[0], wiki_url)
else:
SCREAMING_SNAKE_CASE__ : Dict = sec_titles.split(" & ")
SCREAMING_SNAKE_CASE__ : int = " & ".join(
["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list]
)
st.markdown(
"{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections),
unsafe_allow_html=True,
)
if show_passages:
st.write(
"> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True
)
if action in [2, 3]:
SCREAMING_SNAKE_CASE__ : Any = find_nearest_training(question)
SCREAMING_SNAKE_CASE__ : List[Any] = nn_train_list[0]
st.markdown(
"--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"])
)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [
"{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""]))
for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"]))
if i == 0 or sc > 2
]
st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st)))
SCREAMING_SNAKE_CASE__ : List[Any] = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n"
st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
| 339 | 1 |
from __future__ import annotations
def __magic_name__ ( __lowerCAmelCase : dict , __lowerCAmelCase : str ) -> set[str]:
__lowerCamelCase , __lowerCamelCase = set(__lowerCAmelCase ), [start]
while stack:
__lowerCamelCase = stack.pop()
explored.add(__lowerCAmelCase )
# Differences from BFS:
# 1) pop last element instead of first one
# 2) add adjacent elements to stack without exploring them
for adj in reversed(graph[v] ):
if adj not in explored:
stack.append(__lowerCAmelCase )
return explored
SCREAMING_SNAKE_CASE__ : Tuple = {
"A": ["B", "C", "D"],
"B": ["A", "D", "E"],
"C": ["A", "F"],
"D": ["B", "D"],
"E": ["B", "F"],
"F": ["C", "E", "G"],
"G": ["F"],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
print(depth_first_search(G, "A"))
| 339 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ : List[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : str = {
"facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json",
"facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json",
"facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json",
"facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json",
"facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json",
"facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json",
"facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json",
"facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json",
"facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json",
}
class lowerCAmelCase__ ( __lowercase ):
a__ : Dict = """xmod"""
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_05_22 , SCREAMING_SNAKE_CASE__ : str=7_68 , SCREAMING_SNAKE_CASE__ : int=12 , SCREAMING_SNAKE_CASE__ : Dict=12 , SCREAMING_SNAKE_CASE__ : List[str]=30_72 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : List[Any]=0.02 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1e-12 , SCREAMING_SNAKE_CASE__ : List[str]=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : Any="absolute" , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=("en_XX",) , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , **SCREAMING_SNAKE_CASE__ : int , ) -> str:
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = hidden_act
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = type_vocab_size
__lowerCamelCase = initializer_range
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = position_embedding_type
__lowerCamelCase = use_cache
__lowerCamelCase = classifier_dropout
__lowerCamelCase = pre_norm
__lowerCamelCase = adapter_reduction_factor
__lowerCamelCase = adapter_layer_norm
__lowerCamelCase = adapter_reuse_layer_norm
__lowerCamelCase = ln_before_adapter
__lowerCamelCase = list(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = default_language
class lowerCAmelCase__ ( __lowercase ):
@property
def __A ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
__lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__lowerCamelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 339 | 1 |
def __magic_name__ ( __lowerCAmelCase : dict ) -> set:
__lowerCamelCase = set()
# edges = list of graph's edges
__lowerCamelCase = get_edges(__lowerCAmelCase )
# While there are still elements in edges list, take an arbitrary edge
# (from_node, to_node) and add his extremity to chosen_vertices and then
# remove all arcs adjacent to the from_node and to_node
while edges:
__lowerCamelCase , __lowerCamelCase = edges.pop()
chosen_vertices.add(__lowerCAmelCase )
chosen_vertices.add(__lowerCAmelCase )
for edge in edges.copy():
if from_node in edge or to_node in edge:
edges.discard(__lowerCAmelCase )
return chosen_vertices
def __magic_name__ ( __lowerCAmelCase : dict ) -> set:
__lowerCamelCase = set()
for from_node, to_nodes in graph.items():
for to_node in to_nodes:
edges.add((from_node, to_node) )
return edges
if __name__ == "__main__":
import doctest
doctest.testmod()
# graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
# print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
| 339 |
from collections import namedtuple
import requests
from lxml import html # type: ignore
SCREAMING_SNAKE_CASE__ : List[Any] = namedtuple("covid_data", "cases deaths recovered")
def __magic_name__ ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data:
__lowerCamelCase = '''//div[@class = "maincounter-number"]/span/text()'''
return covid_data(*html.fromstring(requests.get(__lowerCAmelCase ).content ).xpath(__lowerCAmelCase ) )
SCREAMING_SNAKE_CASE__ : List[str] = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}"
print(fmt.format(*covid_stats()))
| 339 | 1 |
from pathlib import PurePosixPath
from typing import Optional
import fsspec
from fsspec import AbstractFileSystem
from huggingface_hub.hf_api import DatasetInfo
from ..utils.file_utils import get_authentication_headers_for_url
from ..utils.hub import hf_hub_url
class lowerCAmelCase__ ( __lowercase ):
a__ : Optional[int] = """"""
a__ : List[str] = """hf-legacy""" # "hf://"" is reserved for hffs
def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[DatasetInfo] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = None , **SCREAMING_SNAKE_CASE__ : Tuple , ) -> List[Any]:
super().__init__(self , **SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = repo_info
__lowerCamelCase = token
__lowerCamelCase = None
def __A ( self : int ) -> List[Any]:
if self.dir_cache is None:
__lowerCamelCase = {}
for hf_file in self.repo_info.siblings:
# TODO(QL): add sizes
__lowerCamelCase = {
'''name''': hf_file.rfilename,
'''size''': None,
'''type''': '''file''',
}
self.dir_cache.update(
{
str(SCREAMING_SNAKE_CASE__ ): {'''name''': str(SCREAMING_SNAKE_CASE__ ), '''size''': None, '''type''': '''directory'''}
for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1]
} )
def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str = "rb" , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Tuple:
if not isinstance(self.repo_info , SCREAMING_SNAKE_CASE__ ):
raise NotImplementedError(f'''Open is only implemented for dataset repositories, but got {self.repo_info}''' )
__lowerCamelCase = hf_hub_url(self.repo_info.id , SCREAMING_SNAKE_CASE__ , revision=self.repo_info.sha )
return fsspec.open(
SCREAMING_SNAKE_CASE__ , mode=SCREAMING_SNAKE_CASE__ , headers=get_authentication_headers_for_url(SCREAMING_SNAKE_CASE__ , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open()
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]:
self._get_dirs()
__lowerCamelCase = self._strip_protocol(SCREAMING_SNAKE_CASE__ )
if path in self.dir_cache:
return self.dir_cache[path]
else:
raise FileNotFoundError(SCREAMING_SNAKE_CASE__ )
def __A ( self : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict=False , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> Any:
self._get_dirs()
__lowerCamelCase = PurePosixPath(path.strip('''/''' ) )
__lowerCamelCase = {}
for p, f in self.dir_cache.items():
__lowerCamelCase = PurePosixPath(p.strip('''/''' ) )
__lowerCamelCase = p.parent
if root == path:
__lowerCamelCase = f
__lowerCamelCase = list(paths.values() )
if detail:
return out
else:
return sorted(f['''name'''] for f in out )
| 339 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
SCREAMING_SNAKE_CASE__ : int = logging.getLogger(__name__)
@dataclass
class lowerCAmelCase__ :
a__ : str = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
a__ : Optional[str] = field(
default=__lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
a__ : Optional[str] = field(
default=__lowercase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
a__ : Optional[str] = field(
default=__lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether tp freeze the encoder."""} )
a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether to freeze the embeddings."""} )
@dataclass
class lowerCAmelCase__ :
a__ : str = field(
metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} )
a__ : Optional[str] = field(
default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , )
a__ : Optional[int] = field(
default=1_024 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a__ : Optional[int] = field(
default=128 , metadata={
"""help""": (
"""The maximum total sequence length for target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a__ : Optional[int] = field(
default=142 , metadata={
"""help""": (
"""The maximum total sequence length for validation target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded. """
"""This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """
"""during ``evaluate`` and ``predict``."""
)
} , )
a__ : Optional[int] = field(
default=142 , metadata={
"""help""": (
"""The maximum total sequence length for test target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} )
a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} )
a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} )
a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Source language id for translation."""} )
a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Target language id for translation."""} )
a__ : Optional[int] = field(default=__lowercase , metadata={"""help""": """# num_beams to use for evaluation."""} )
a__ : bool = field(
default=__lowercase , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , )
def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : int ) -> Dict:
logger.info(f'''***** {split} metrics *****''' )
for key in sorted(metrics.keys() ):
logger.info(f''' {key} = {metrics[key]}''' )
save_json(__lowerCAmelCase , os.path.join(__lowerCAmelCase , f'''{split}_results.json''' ) )
def __magic_name__ ( ) -> Optional[Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_args_into_dataclasses()
check_output_dir(__lowerCAmelCase )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info('''Training/evaluation parameters %s''' , __lowerCAmelCase )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__lowerCamelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__lowerCamelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''')
for p in extra_model_params:
if getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
assert hasattr(__lowerCAmelCase , __lowerCAmelCase ), f'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute'''
setattr(__lowerCAmelCase , __lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) )
__lowerCamelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , )
# use task specific params
use_task_specific_params(__lowerCAmelCase , data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
__lowerCamelCase = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(__lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
__lowerCamelCase = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
__lowerCamelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(__lowerCAmelCase )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
__lowerCamelCase = SeqaSeqDataset
# Get datasets
__lowerCamelCase = (
dataset_class(
__lowerCAmelCase , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_train
else None
)
__lowerCamelCase = (
dataset_class(
__lowerCAmelCase , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
__lowerCamelCase = (
dataset_class(
__lowerCAmelCase , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_predict
else None
)
# Initialize our Trainer
__lowerCamelCase = (
build_compute_metrics_fn(data_args.task , __lowerCAmelCase ) if training_args.predict_with_generate else None
)
__lowerCamelCase = SeqaSeqTrainer(
model=__lowerCAmelCase , args=__lowerCAmelCase , data_args=__lowerCAmelCase , train_dataset=__lowerCAmelCase , eval_dataset=__lowerCAmelCase , data_collator=SeqaSeqDataCollator(
__lowerCAmelCase , __lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , )
__lowerCamelCase = {}
# Training
if training_args.do_train:
logger.info('''*** Train ***''' )
__lowerCamelCase = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
__lowerCamelCase = train_result.metrics
__lowerCamelCase = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics('''train''' , __lowerCAmelCase , training_args.output_dir )
all_metrics.update(__lowerCAmelCase )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
__lowerCamelCase = trainer.evaluate(metric_key_prefix='''val''' )
__lowerCamelCase = data_args.n_val
__lowerCamelCase = round(metrics['''val_loss'''] , 4 )
if trainer.is_world_process_zero():
handle_metrics('''val''' , __lowerCAmelCase , training_args.output_dir )
all_metrics.update(__lowerCAmelCase )
if training_args.do_predict:
logger.info('''*** Predict ***''' )
__lowerCamelCase = trainer.predict(test_dataset=__lowerCAmelCase , metric_key_prefix='''test''' )
__lowerCamelCase = test_output.metrics
__lowerCamelCase = data_args.n_test
if trainer.is_world_process_zero():
__lowerCamelCase = round(metrics['''test_loss'''] , 4 )
handle_metrics('''test''' , __lowerCAmelCase , training_args.output_dir )
all_metrics.update(__lowerCAmelCase )
if training_args.predict_with_generate:
__lowerCamelCase = tokenizer.batch_decode(
test_output.predictions , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase )
__lowerCamelCase = lmap(str.strip , __lowerCAmelCase )
write_txt_file(__lowerCAmelCase , os.path.join(training_args.output_dir , '''test_generations.txt''' ) )
if trainer.is_world_process_zero():
save_json(__lowerCAmelCase , os.path.join(training_args.output_dir , '''all_results.json''' ) )
return all_metrics
def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Union[str, Any]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 339 | 1 |
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
def __A ( self : Optional[int] ) -> Union[str, Any]:
__lowerCamelCase = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' )
__lowerCamelCase = AutoTokenizer.from_pretrained('''google/mt5-small''' )
__lowerCamelCase = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids
__lowerCamelCase = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids
__lowerCamelCase = shift_tokens_right(SCREAMING_SNAKE_CASE__ , model.config.pad_token_id , model.config.decoder_start_token_id )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ).logits
__lowerCamelCase = optax.softmax_cross_entropy(SCREAMING_SNAKE_CASE__ , onehot(SCREAMING_SNAKE_CASE__ , logits.shape[-1] ) ).mean()
__lowerCamelCase = -(labels.shape[-1] * loss.item())
__lowerCamelCase = -84.9127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 339 |
import unittest
import numpy as np
import torch
from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class lowerCAmelCase__ ( unittest.TestCase ):
@property
def __A ( self : List[Any] ) -> Optional[Any]:
torch.manual_seed(0 )
__lowerCamelCase = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def __A ( self : Optional[int] ) -> Optional[Any]:
__lowerCamelCase = self.dummy_uncond_unet
__lowerCamelCase = ScoreSdeVeScheduler()
__lowerCamelCase = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
sde_ve.to(SCREAMING_SNAKE_CASE__ )
sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ ).images
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ )[
0
]
__lowerCamelCase = image[0, -3:, -3:, -1]
__lowerCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__lowerCamelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : Tuple ) -> str:
__lowerCamelCase = '''google/ncsnpp-church-256'''
__lowerCamelCase = UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = ScoreSdeVeScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
sde_ve.to(SCREAMING_SNAKE_CASE__ )
sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
__lowerCamelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 339 | 1 |
import json
import os
import unittest
from transformers.models.roc_bert.tokenization_roc_bert import (
VOCAB_FILES_NAMES,
RoCBertBasicTokenizer,
RoCBertTokenizer,
RoCBertWordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class lowerCAmelCase__ ( __lowercase , unittest.TestCase ):
a__ : str = RoCBertTokenizer
a__ : Union[str, Any] = None
a__ : List[Any] = False
a__ : Optional[int] = True
a__ : List[Any] = filter_non_english
def __A ( self : Any ) -> int:
super().setUp()
__lowerCamelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d''']
__lowerCamelCase = {}
__lowerCamelCase = {}
for i, value in enumerate(SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase = i
__lowerCamelCase = i
__lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] )
__lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer:
json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ )
with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer:
json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ )
def __A ( self : List[Any] ) -> List[str]:
__lowerCamelCase = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
__lowerCamelCase = tokenizer.tokenize('''你好[SEP]你是谁''' )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] )
def __A ( self : Tuple ) -> str:
__lowerCamelCase = RoCBertBasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def __A ( self : Union[str, Any] ) -> int:
__lowerCamelCase = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __A ( self : Any ) -> Dict:
__lowerCamelCase = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def __A ( self : Optional[Any] ) -> Union[str, Any]:
__lowerCamelCase = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __A ( self : Optional[int] ) -> str:
__lowerCamelCase = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __A ( self : List[str] ) -> int:
__lowerCamelCase = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __A ( self : List[Any] ) -> List[str]:
__lowerCamelCase = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __A ( self : Dict ) -> List[str]:
__lowerCamelCase = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __A ( self : List[str] ) -> Optional[Any]:
__lowerCamelCase = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def __A ( self : Union[str, Any] ) -> List[str]:
__lowerCamelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
__lowerCamelCase = {}
for i, token in enumerate(SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase = i
__lowerCamelCase = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE__ , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
def __A ( self : Union[str, Any] ) -> Union[str, Any]:
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def __A ( self : int ) -> int:
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def __A ( self : Optional[Any] ) -> Dict:
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
def __A ( self : Dict ) -> Dict:
__lowerCamelCase = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
if self.test_rust_tokenizer:
__lowerCamelCase = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
def __A ( self : Optional[int] ) -> str:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__lowerCamelCase = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'''
__lowerCamelCase = tokenizer_r.encode_plus(
SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE__ , '''do_lower_case''' ) else False
__lowerCamelCase = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), '''A'''),
((1, 2), ''','''),
((3, 5), '''na'''),
((5, 6), '''##ï'''),
((6, 8), '''##ve'''),
((9, 15), tokenizer_r.mask_token),
((16, 21), '''Allen'''),
((21, 23), '''##NL'''),
((23, 24), '''##P'''),
((25, 33), '''sentence'''),
((33, 34), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), '''a'''),
((1, 2), ''','''),
((3, 8), '''naive'''),
((9, 15), tokenizer_r.mask_token),
((16, 21), '''allen'''),
((21, 23), '''##nl'''),
((23, 24), '''##p'''),
((25, 33), '''sentence'''),
((33, 34), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) )
self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] )
def __A ( self : List[str] ) -> int:
__lowerCamelCase = ['''的''', '''人''', '''有''']
__lowerCamelCase = ''''''.join(SCREAMING_SNAKE_CASE__ )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__lowerCamelCase = True
__lowerCamelCase = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tokenizer_p.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tokenizer_r.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = False
__lowerCamelCase = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tokenizer_r.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tokenizer_p.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ )
# it is expected that only the first Chinese character is not preceded by "##".
__lowerCamelCase = [
f'''##{token}''' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE__ )
]
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@slow
def __A ( self : Optional[int] ) -> Dict:
__lowerCamelCase = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
__lowerCamelCase = tokenizer.encode('''你好''' , add_special_tokens=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tokenizer.encode('''你是谁''' , add_special_tokens=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert encoded_sentence == [1] + text + [2]
assert encoded_pair == [1] + text + [2] + text_a + [2]
def __A ( self : Dict ) -> int:
__lowerCamelCase = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE__ )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__lowerCamelCase = '''你好,你是谁'''
__lowerCamelCase = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tokenizer.prepare_for_model(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tokenizer.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
| 339 |
from functools import lru_cache
def __magic_name__ ( __lowerCAmelCase : int ) -> set:
__lowerCamelCase = 2
__lowerCamelCase = set()
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.add(__lowerCAmelCase )
if n > 1:
factors.add(__lowerCAmelCase )
return factors
@lru_cache
def __magic_name__ ( __lowerCAmelCase : int ) -> int:
return len(unique_prime_factors(__lowerCAmelCase ) )
def __magic_name__ ( __lowerCAmelCase : list ) -> bool:
return len(set(__lowerCAmelCase ) ) in (0, 1)
def __magic_name__ ( __lowerCAmelCase : int ) -> list:
__lowerCamelCase = 2
while True:
# Increment each value of a generated range
__lowerCamelCase = [base + i for i in range(__lowerCAmelCase )]
# Run elements through out unique_prime_factors function
# Append our target number to the end.
__lowerCamelCase = [upf_len(__lowerCAmelCase ) for x in group]
checker.append(__lowerCAmelCase )
# If all numbers in the list are equal, return the group variable.
if equality(__lowerCAmelCase ):
return group
# Increment our base variable by 1
base += 1
def __magic_name__ ( __lowerCAmelCase : int = 4 ) -> int:
__lowerCamelCase = run(__lowerCAmelCase )
return results[0] if len(__lowerCAmelCase ) else None
if __name__ == "__main__":
print(solution())
| 339 | 1 |
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
SCREAMING_SNAKE_CASE__ : Optional[int] = logging.get_logger(__name__)
class lowerCAmelCase__ ( __lowercase ):
a__ : Optional[Any] = ["""pixel_values"""]
def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Union[int, float] = 1 / 2_55 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : int = 8 , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> None:
super().__init__(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = do_rescale
__lowerCamelCase = rescale_factor
__lowerCamelCase = do_pad
__lowerCamelCase = pad_size
def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> np.ndarray:
return rescale(SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ) -> str:
__lowerCamelCase , __lowerCamelCase = get_image_size(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = (old_height // size + 1) * size - old_height
__lowerCamelCase = (old_width // size + 1) * size - old_width
return pad(SCREAMING_SNAKE_CASE__ , ((0, pad_height), (0, pad_width)) , mode='''symmetric''' , data_format=SCREAMING_SNAKE_CASE__ )
def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : ImageInput , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[float] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE__ : str , ) -> str:
__lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale
__lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowerCamelCase = do_pad if do_pad is not None else self.do_pad
__lowerCamelCase = pad_size if pad_size is not None else self.pad_size
__lowerCamelCase = make_list_of_images(SCREAMING_SNAKE_CASE__ )
if not valid_images(SCREAMING_SNAKE_CASE__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
# All transformations expect numpy arrays.
__lowerCamelCase = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images]
if do_rescale:
__lowerCamelCase = [self.rescale(image=SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ ) for image in images]
if do_pad:
__lowerCamelCase = [self.pad(SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ ) for image in images]
__lowerCamelCase = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for image in images]
__lowerCamelCase = {'''pixel_values''': images}
return BatchFeature(data=SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ )
| 339 |
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class lowerCAmelCase__ :
def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=99 , SCREAMING_SNAKE_CASE__ : List[Any]=13 , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : int=9 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : int=32 , SCREAMING_SNAKE_CASE__ : Tuple=5 , SCREAMING_SNAKE_CASE__ : List[str]=4 , SCREAMING_SNAKE_CASE__ : str=37 , SCREAMING_SNAKE_CASE__ : int=8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.002 , SCREAMING_SNAKE_CASE__ : str=1 , SCREAMING_SNAKE_CASE__ : Tuple=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Dict=None , ) -> Optional[Any]:
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = encoder_seq_length
__lowerCamelCase = decoder_seq_length
# For common tests
__lowerCamelCase = self.decoder_seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_attention_mask
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = d_ff
__lowerCamelCase = relative_attention_num_buckets
__lowerCamelCase = dropout_rate
__lowerCamelCase = initializer_factor
__lowerCamelCase = eos_token_id
__lowerCamelCase = pad_token_id
__lowerCamelCase = decoder_start_token_id
__lowerCamelCase = None
__lowerCamelCase = decoder_layers
def __A ( self : Any ) -> Tuple:
return TaConfig.from_pretrained('''google/umt5-base''' )
def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , ) -> Optional[int]:
if attention_mask is None:
__lowerCamelCase = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
__lowerCamelCase = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
__lowerCamelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ )
if decoder_head_mask is None:
__lowerCamelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ )
if cross_attn_head_mask is None:
__lowerCamelCase = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def __A ( self : List[Any] ) -> Tuple:
__lowerCamelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
__lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
__lowerCamelCase = input_ids.clamp(self.pad_token_id + 1 )
__lowerCamelCase = decoder_input_ids.clamp(self.pad_token_id + 1 )
__lowerCamelCase = self.get_config()
__lowerCamelCase = config.num_attention_heads
__lowerCamelCase = self.prepare_inputs_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return config, input_dict
def __A ( self : Tuple ) -> List[str]:
__lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs()
return config, inputs_dict
def __A ( self : Optional[Any] ) -> Any:
return TaConfig(
vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def __A ( self : List[Any] ) -> Any:
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> int:
__lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ )
model.to(SCREAMING_SNAKE_CASE__ )
model.eval()
__lowerCamelCase = model(
input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = model(input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = result.last_hidden_state
__lowerCamelCase = result.past_key_values
__lowerCamelCase = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Dict:
__lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ).get_decoder().to(SCREAMING_SNAKE_CASE__ ).eval()
# first forward pass
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ )
self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) )
self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) + 1 )
__lowerCamelCase , __lowerCamelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
__lowerCamelCase = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
__lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )['''last_hidden_state''']
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ )['''last_hidden_state''']
# select random slice
__lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__lowerCamelCase = output_from_no_past[:, -1, random_slice_idx].detach()
__lowerCamelCase = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) )
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Optional[int]:
__lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ).half().eval()
__lowerCamelCase = model(**SCREAMING_SNAKE_CASE__ )['''last_hidden_state''']
self.parent.assertFalse(torch.isnan(SCREAMING_SNAKE_CASE__ ).any().item() )
@require_torch
class lowerCAmelCase__ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ):
a__ : List[Any] = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
a__ : Union[str, Any] = (UMTaForConditionalGeneration,) if is_torch_available() else ()
a__ : Tuple = (
{
"""conversational""": UMTaForConditionalGeneration,
"""feature-extraction""": UMTaModel,
"""summarization""": UMTaForConditionalGeneration,
"""text2text-generation""": UMTaForConditionalGeneration,
"""translation""": UMTaForConditionalGeneration,
"""question-answering""": UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
a__ : int = True
a__ : int = False
a__ : Tuple = False
a__ : Optional[int] = True
a__ : Optional[int] = True
# The small UMT5 model needs higher percentages for CPU/MP tests
a__ : Tuple = [0.8, 0.9]
def __A ( self : Tuple ) -> Tuple:
__lowerCamelCase = UMTaModelTester(self )
@unittest.skip('''Test has a segmentation fault on torch 1.8.0''' )
def __A ( self : List[str] ) -> Union[str, Any]:
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
__lowerCamelCase = UMTaModel(config_and_inputs[0] ).to(SCREAMING_SNAKE_CASE__ )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
SCREAMING_SNAKE_CASE__ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=SCREAMING_SNAKE_CASE__ , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def __A ( self : Union[str, Any] ) -> Any:
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*SCREAMING_SNAKE_CASE__ )
def __A ( self : Any ) -> Any:
__lowerCamelCase = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions''']
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
__lowerCamelCase = config_and_inputs[0]
__lowerCamelCase = UMTaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval()
model.to(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = {
'''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ),
'''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ),
'''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ),
}
for attn_name, (name, mask) in zip(SCREAMING_SNAKE_CASE__ , head_masking.items() ):
__lowerCamelCase = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
__lowerCamelCase = torch.ones(
config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model.generate(
config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=SCREAMING_SNAKE_CASE__ , return_dict_in_generate=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
# We check the state of decoder_attentions and cross_attentions just from the last step
__lowerCamelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' )
def __A ( self : Tuple ) -> Optional[Any]:
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
@unittest.skip(
'''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' )
def __A ( self : int ) -> Optional[Any]:
__lowerCamelCase = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=SCREAMING_SNAKE_CASE__ , legacy=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = [
'''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''',
'''No se como puedo <extra_id_0>.''',
'''This is the reason why we <extra_id_0> them.''',
'''The <extra_id_0> walks in <extra_id_1>, seats''',
'''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''',
]
__lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , padding=SCREAMING_SNAKE_CASE__ ).input_ids
# fmt: off
__lowerCamelCase = torch.tensor(
[
[ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1],
] )
# fmt: on
torch.testing.assert_allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model.generate(input_ids.to(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = [
'''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''',
'''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
]
__lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ )
self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
| 339 | 1 |
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> int:
__lowerCamelCase = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
__lowerCamelCase = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
__lowerCamelCase = 4
__lowerCamelCase = 48
__lowerCamelCase = '''pixelshuffle_aux'''
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
__lowerCamelCase = [6, 6, 6, 6]
__lowerCamelCase = 60
__lowerCamelCase = [6, 6, 6, 6]
__lowerCamelCase = '''pixelshuffledirect'''
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
__lowerCamelCase = 4
__lowerCamelCase = '''nearest+conv'''
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
__lowerCamelCase = 1
__lowerCamelCase = 1
__lowerCamelCase = 126
__lowerCamelCase = 7
__lowerCamelCase = 255.0
__lowerCamelCase = ''''''
return config
def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple ) -> str:
if "patch_embed.proj" in name and "layers" not in name:
__lowerCamelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "patch_embed.norm" in name:
__lowerCamelCase = name.replace('''patch_embed.norm''' , '''embeddings.patch_embeddings.layernorm''' )
if "layers" in name:
__lowerCamelCase = name.replace('''layers''' , '''encoder.stages''' )
if "residual_group.blocks" in name:
__lowerCamelCase = name.replace('''residual_group.blocks''' , '''layers''' )
if "attn.proj" in name:
__lowerCamelCase = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
__lowerCamelCase = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
__lowerCamelCase = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
__lowerCamelCase = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
__lowerCamelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
__lowerCamelCase = name.replace('''mlp.fc2''' , '''output.dense''' )
if "q_bias" in name:
__lowerCamelCase = name.replace('''q_bias''' , '''query.bias''' )
if "k_bias" in name:
__lowerCamelCase = name.replace('''k_bias''' , '''key.bias''' )
if "v_bias" in name:
__lowerCamelCase = name.replace('''v_bias''' , '''value.bias''' )
if "cpb_mlp" in name:
__lowerCamelCase = name.replace('''cpb_mlp''' , '''continuous_position_bias_mlp''' )
if "patch_embed.proj" in name:
__lowerCamelCase = name.replace('''patch_embed.proj''' , '''patch_embed.projection''' )
if name == "norm.weight":
__lowerCamelCase = '''layernorm.weight'''
if name == "norm.bias":
__lowerCamelCase = '''layernorm.bias'''
if "conv_first" in name:
__lowerCamelCase = name.replace('''conv_first''' , '''first_convolution''' )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
__lowerCamelCase = name.replace('''conv_last''' , '''final_convolution''' )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
__lowerCamelCase = name.replace('''conv_before_upsample.0''' , '''conv_before_upsample''' )
if "upsample.0" in name:
__lowerCamelCase = name.replace('''upsample.0''' , '''upsample.convolution_0''' )
if "upsample.2" in name:
__lowerCamelCase = name.replace('''upsample.2''' , '''upsample.convolution_1''' )
__lowerCamelCase = '''upsample.''' + name
elif config.upsampler == "pixelshuffledirect":
__lowerCamelCase = name.replace('''upsample.0.weight''' , '''upsample.conv.weight''' )
__lowerCamelCase = name.replace('''upsample.0.bias''' , '''upsample.conv.bias''' )
else:
pass
else:
__lowerCamelCase = '''swin2sr.''' + name
return name
def __magic_name__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict ) -> Any:
for key in orig_state_dict.copy().keys():
__lowerCamelCase = orig_state_dict.pop(__lowerCAmelCase )
if "qkv" in key:
__lowerCamelCase = key.split('''.''' )
__lowerCamelCase = int(key_split[1] )
__lowerCamelCase = int(key_split[4] )
__lowerCamelCase = config.embed_dim
if "weight" in key:
__lowerCamelCase = val[:dim, :]
__lowerCamelCase = val[dim : dim * 2, :]
__lowerCamelCase = val[-dim:, :]
else:
__lowerCamelCase = val[:dim]
__lowerCamelCase = val[dim : dim * 2]
__lowerCamelCase = val[-dim:]
pass
else:
__lowerCamelCase = val
return orig_state_dict
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : int ) -> Tuple:
__lowerCamelCase = get_config(__lowerCAmelCase )
__lowerCamelCase = SwinaSRForImageSuperResolution(__lowerCAmelCase )
model.eval()
__lowerCamelCase = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location='''cpu''' )
__lowerCamelCase = convert_state_dict(__lowerCAmelCase , __lowerCAmelCase )
__lowerCamelCase , __lowerCamelCase = model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase )
if len(__lowerCAmelCase ) > 0:
raise ValueError('''Missing keys when converting: {}'''.format(__lowerCAmelCase ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(f'''Unexpected key {key} in state_dict''' )
# verify values
__lowerCamelCase = '''https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true'''
__lowerCamelCase = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ).convert('''RGB''' )
__lowerCamelCase = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
__lowerCamelCase = 126 if '''Jpeg''' in checkpoint_url else 256
__lowerCamelCase = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
__lowerCamelCase = transforms(__lowerCAmelCase ).unsqueeze(0 )
if config.num_channels == 1:
__lowerCamelCase = pixel_values[:, 0, :, :].unsqueeze(1 )
__lowerCamelCase = model(__lowerCAmelCase )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
__lowerCamelCase = torch.Size([1, 3, 512, 512] )
__lowerCamelCase = torch.tensor(
[[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
__lowerCamelCase = torch.Size([1, 3, 1024, 1024] )
__lowerCamelCase = torch.tensor(
[[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
__lowerCamelCase = torch.Size([1, 3, 1024, 1024] )
__lowerCamelCase = torch.tensor(
[[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
__lowerCamelCase = torch.Size([1, 3, 512, 512] )
__lowerCamelCase = torch.tensor(
[[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
__lowerCamelCase = torch.Size([1, 3, 1024, 1024] )
__lowerCamelCase = torch.tensor(
[[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] )
assert (
outputs.reconstruction.shape == expected_shape
), f'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}'''
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , __lowerCAmelCase , atol=1E-3 )
print('''Looks ok!''' )
__lowerCamelCase = {
'''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''': (
'''swin2SR-classical-sr-x2-64'''
),
'''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth''': (
'''swin2SR-classical-sr-x4-64'''
),
'''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth''': (
'''swin2SR-compressed-sr-x4-48'''
),
'''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth''': (
'''swin2SR-lightweight-x2-64'''
),
'''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth''': (
'''swin2SR-realworld-sr-x4-64-bsrgan-psnr'''
),
}
__lowerCamelCase = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(__lowerCAmelCase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(__lowerCAmelCase )
if push_to_hub:
model.push_to_hub(f'''caidas/{model_name}''' )
processor.push_to_hub(f'''caidas/{model_name}''' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth",
type=str,
help="URL of the original Swin2SR checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the converted model to the hub.")
SCREAMING_SNAKE_CASE__ : Any = parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 339 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Tuple = {
"s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json",
}
class lowerCAmelCase__ ( __lowercase ):
a__ : Union[str, Any] = """open-llama"""
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Any=10_00_00 , SCREAMING_SNAKE_CASE__ : Any=40_96 , SCREAMING_SNAKE_CASE__ : Any=1_10_08 , SCREAMING_SNAKE_CASE__ : Tuple=32 , SCREAMING_SNAKE_CASE__ : str=32 , SCREAMING_SNAKE_CASE__ : Any="silu" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=20_48 , SCREAMING_SNAKE_CASE__ : List[str]=0.02 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-6 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Dict=0 , SCREAMING_SNAKE_CASE__ : Tuple=1 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : List[str]=None , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> Dict:
__lowerCamelCase = vocab_size
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = hidden_size
__lowerCamelCase = intermediate_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = hidden_act
__lowerCamelCase = initializer_range
__lowerCamelCase = rms_norm_eps
__lowerCamelCase = use_cache
__lowerCamelCase = kwargs.pop(
'''use_memorry_efficient_attention''' , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_dropout_prob
__lowerCamelCase = use_stable_embedding
__lowerCamelCase = shared_input_output_embedding
__lowerCamelCase = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , tie_word_embeddings=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
def __A ( self : Dict ) -> Optional[int]:
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , SCREAMING_SNAKE_CASE__ ) or len(self.rope_scaling ) != 2:
raise ValueError(
'''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '''
f'''got {self.rope_scaling}''' )
__lowerCamelCase = self.rope_scaling.get('''type''' , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.rope_scaling.get('''factor''' , SCREAMING_SNAKE_CASE__ )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' )
if rope_scaling_factor is None or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or rope_scaling_factor <= 1.0:
raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
| 339 | 1 |
from __future__ import annotations
def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : int | None = None , __lowerCAmelCase : int | None = None ) -> None:
if start is None:
__lowerCamelCase = 0
if end is None:
__lowerCamelCase = len(__lowerCAmelCase ) - 1
if start >= end:
return
__lowerCamelCase = (start + end) // 2
slowsort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
slowsort(__lowerCAmelCase , mid + 1 , __lowerCAmelCase )
if sequence[end] < sequence[mid]:
__lowerCamelCase , __lowerCamelCase = sequence[mid], sequence[end]
slowsort(__lowerCAmelCase , __lowerCAmelCase , end - 1 )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 339 |
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
SCREAMING_SNAKE_CASE__ : Any = TypeVar("KEY")
SCREAMING_SNAKE_CASE__ : Dict = TypeVar("VAL")
@dataclass(frozen=__lowercase , slots=__lowercase )
class lowerCAmelCase__ ( Generic[KEY, VAL] ):
a__ : KEY
a__ : VAL
class lowerCAmelCase__ ( _Item ):
def __init__( self : str ) -> None:
super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __bool__( self : Tuple ) -> bool:
return False
SCREAMING_SNAKE_CASE__ : List[Any] = _DeletedItem()
class lowerCAmelCase__ ( MutableMapping[KEY, VAL] ):
def __init__( self : int , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.75 ) -> None:
__lowerCamelCase = initial_block_size
__lowerCamelCase = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
__lowerCamelCase = capacity_factor
__lowerCamelCase = 0
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : KEY ) -> int:
return hash(SCREAMING_SNAKE_CASE__ ) % len(self._buckets )
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> int:
return (ind + 1) % len(self._buckets )
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> bool:
__lowerCamelCase = self._buckets[ind]
if not stored:
__lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self._len += 1
return True
elif stored.key == key:
__lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return True
else:
return False
def __A ( self : Any ) -> bool:
__lowerCamelCase = len(self._buckets ) * self._capacity_factor
return len(self ) >= int(SCREAMING_SNAKE_CASE__ )
def __A ( self : List[Any] ) -> bool:
if len(self._buckets ) <= self._initial_block_size:
return False
__lowerCamelCase = len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def __A ( self : int , SCREAMING_SNAKE_CASE__ : int ) -> None:
__lowerCamelCase = self._buckets
__lowerCamelCase = [None] * new_size
__lowerCamelCase = 0
for item in old_buckets:
if item:
self._add_item(item.key , item.val )
def __A ( self : str ) -> None:
self._resize(len(self._buckets ) * 2 )
def __A ( self : Dict ) -> None:
self._resize(len(self._buckets ) // 2 )
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY ) -> Iterator[int]:
__lowerCamelCase = self._get_bucket_index(SCREAMING_SNAKE_CASE__ )
for _ in range(len(self._buckets ) ):
yield ind
__lowerCamelCase = self._get_next_ind(SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None:
for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ):
if self._try_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
break
def __setitem__( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None:
if self._is_full():
self._size_up()
self._add_item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __delitem__( self : List[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> None:
for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase = self._buckets[ind]
if item is None:
raise KeyError(SCREAMING_SNAKE_CASE__ )
if item is _deleted:
continue
if item.key == key:
__lowerCamelCase = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> VAL:
for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(SCREAMING_SNAKE_CASE__ )
def __len__( self : int ) -> int:
return self._len
def __iter__( self : Tuple ) -> Iterator[KEY]:
yield from (item.key for item in self._buckets if item)
def __repr__( self : Optional[Any] ) -> str:
__lowerCamelCase = ''' ,'''.join(
f'''{item.key}: {item.val}''' for item in self._buckets if item )
return f'''HashMap({val_string})'''
| 339 | 1 |
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def __magic_name__ ( __lowerCAmelCase : Tuple ) -> Tuple:
__lowerCamelCase = filter(lambda __lowerCAmelCase : p.requires_grad , model.parameters() )
__lowerCamelCase = sum([np.prod(p.size() ) for p in model_parameters] )
return params
SCREAMING_SNAKE_CASE__ : Optional[Any] = logging.getLogger(__name__)
def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] ) -> int:
if metric == "rouge2":
__lowerCamelCase = '''{val_avg_rouge2:.4f}-{step_count}'''
elif metric == "bleu":
__lowerCamelCase = '''{val_avg_bleu:.4f}-{step_count}'''
elif metric == "em":
__lowerCamelCase = '''{val_avg_em:.4f}-{step_count}'''
elif metric == "loss":
__lowerCamelCase = '''{val_avg_loss:.4f}-{step_count}'''
else:
raise NotImplementedError(
f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'''
''' function.''' )
__lowerCamelCase = ModelCheckpoint(
dirpath=__lowerCAmelCase , filename=__lowerCAmelCase , monitor=f'''val_{metric}''' , mode='''max''' , save_top_k=1 , every_n_epochs=1 , )
return checkpoint_callback
def __magic_name__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] ) -> List[Any]:
return EarlyStopping(
monitor=f'''val_{metric}''' , mode='''min''' if '''loss''' in metric else '''max''' , patience=__lowerCAmelCase , verbose=__lowerCAmelCase , )
class lowerCAmelCase__ ( pl.Callback ):
def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[str]:
__lowerCamelCase = {f'''lr_group_{i}''': param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(SCREAMING_SNAKE_CASE__ )
@rank_zero_only
def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : pl.Trainer , SCREAMING_SNAKE_CASE__ : pl.LightningModule , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict=True ) -> None:
logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''' )
__lowerCamelCase = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} )
# Log results
__lowerCamelCase = Path(pl_module.hparams.output_dir )
if type_path == "test":
__lowerCamelCase = od / '''test_results.txt'''
__lowerCamelCase = od / '''test_generations.txt'''
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
__lowerCamelCase = od / f'''{type_path}_results/{trainer.global_step:05d}.txt'''
__lowerCamelCase = od / f'''{type_path}_generations/{trainer.global_step:05d}.txt'''
results_file.parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE__ )
generations_file.parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE__ )
with open(SCREAMING_SNAKE_CASE__ , '''a+''' ) as writer:
for key in sorted(SCREAMING_SNAKE_CASE__ ):
if key in ["log", "progress_bar", "preds"]:
continue
__lowerCamelCase = metrics[key]
if isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ):
__lowerCamelCase = val.item()
__lowerCamelCase = f'''{key}: {val:.6f}\n'''
writer.write(SCREAMING_SNAKE_CASE__ )
if not save_generations:
return
if "preds" in metrics:
__lowerCamelCase = '''\n'''.join(metrics['''preds'''] )
generations_file.open('''w+''' ).write(SCREAMING_SNAKE_CASE__ )
@rank_zero_only
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str ) -> Dict:
try:
__lowerCamelCase = pl_module.model.model.num_parameters()
except AttributeError:
__lowerCamelCase = pl_module.model.num_parameters()
__lowerCamelCase = count_trainable_parameters(SCREAMING_SNAKE_CASE__ )
# mp stands for million parameters
trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} )
@rank_zero_only
def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : pl.Trainer , SCREAMING_SNAKE_CASE__ : pl.LightningModule ) -> Tuple:
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''test''' )
@rank_zero_only
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : pl.Trainer , SCREAMING_SNAKE_CASE__ : str ) -> Tuple:
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 339 |
from datetime import datetime as dt
import os
from github import Github
SCREAMING_SNAKE_CASE__ : Any = [
"good first issue",
"good second issue",
"good difficult issue",
"feature request",
"new model",
"wip",
]
def __magic_name__ ( ) -> Any:
__lowerCamelCase = Github(os.environ['''GITHUB_TOKEN'''] )
__lowerCamelCase = g.get_repo('''huggingface/transformers''' )
__lowerCamelCase = repo.get_issues(state='''open''' )
for issue in open_issues:
__lowerCamelCase = sorted([comment for comment in issue.get_comments()] , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase )
__lowerCamelCase = comments[0] if len(__lowerCAmelCase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state='''closed''' )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
'''This issue has been automatically marked as stale because it has not had '''
'''recent activity. If you think this still needs to be addressed '''
'''please comment on this thread.\n\nPlease note that issues that do not follow the '''
'''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) '''
'''are likely to be ignored.''' )
if __name__ == "__main__":
main()
| 339 | 1 |
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
SCREAMING_SNAKE_CASE__ : Tuple = logging.getLogger()
def __magic_name__ ( ) -> List[Any]:
__lowerCamelCase = argparse.ArgumentParser()
parser.add_argument('''-f''' )
__lowerCamelCase = parser.parse_args()
return args.f
class lowerCAmelCase__ ( __lowercase ):
def __A ( self : Dict ) -> None:
__lowerCamelCase = logging.StreamHandler(sys.stdout )
logger.addHandler(SCREAMING_SNAKE_CASE__ )
def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any:
__lowerCamelCase = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , '''run_glue_deebert.py''' )
with patch.object(SCREAMING_SNAKE_CASE__ , '''argv''' , SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(SCREAMING_SNAKE_CASE__ , 0.666 )
@slow
@require_torch_non_multi_gpu
def __A ( self : List[Any] ) -> Tuple:
__lowerCamelCase = '''
--model_type roberta
--model_name_or_path roberta-base
--task_name MRPC
--do_train
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--max_seq_length 128
--per_gpu_eval_batch_size=1
--per_gpu_train_batch_size=8
--learning_rate 2e-4
--num_train_epochs 3
--overwrite_output_dir
--seed 42
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--save_steps 0
--overwrite_cache
--eval_after_first_stage
'''.split()
self.run_and_check(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = '''
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--eval_each_highway
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
'''.split()
self.run_and_check(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = '''
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--early_exit_entropy 0.1
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
'''.split()
self.run_and_check(SCREAMING_SNAKE_CASE__ )
| 339 |
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> str:
if a < 0 or b < 0:
raise ValueError('''the value of both inputs must be positive''' )
__lowerCamelCase = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b"
__lowerCamelCase = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b"
__lowerCamelCase = max(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) )
return "0b" + "".join(
str(int(char_a == '''1''' and char_b == '''1''' ) )
for char_a, char_b in zip(a_binary.zfill(__lowerCAmelCase ) , b_binary.zfill(__lowerCAmelCase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 339 | 1 |
from unittest import TestCase
from datasets import Sequence, Value
from datasets.arrow_dataset import Dataset
class lowerCAmelCase__ ( __lowercase ):
def __A ( self : List[Any] ) -> Optional[int]:
return [
{"col_1": 3, "col_2": "a"},
{"col_1": 2, "col_2": "b"},
{"col_1": 1, "col_2": "c"},
{"col_1": 0, "col_2": "d"},
]
def __A ( self : Tuple ) -> Optional[int]:
__lowerCamelCase = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']}
return Dataset.from_dict(SCREAMING_SNAKE_CASE__ )
def __A ( self : List[str] ) -> Dict:
__lowerCamelCase = self._create_example_records()
__lowerCamelCase = Dataset.from_list(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] )
for i, r in enumerate(SCREAMING_SNAKE_CASE__ ):
self.assertDictEqual(SCREAMING_SNAKE_CASE__ , example_records[i] )
def __A ( self : Tuple ) -> List[Any]:
__lowerCamelCase = self._create_example_records()
__lowerCamelCase = Dataset.from_list(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} )
self.assertEqual(dset.info , dset_from_dict.info )
def __A ( self : List[str] ) -> List[str]: # checks what happens with missing columns
__lowerCamelCase = [{'''col_1''': 1}, {'''col_2''': '''x'''}]
__lowerCamelCase = Dataset.from_list(SCREAMING_SNAKE_CASE__ )
self.assertDictEqual(dset[0] , {'''col_1''': 1} )
self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns
def __A ( self : Optional[Any] ) -> Optional[Any]: # checks if the type can be inferred from the second record
__lowerCamelCase = [{'''col_1''': []}, {'''col_1''': [1, 2]}]
__lowerCamelCase = Dataset.from_list(SCREAMING_SNAKE_CASE__ )
self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) )
def __A ( self : Optional[int] ) -> Optional[Any]:
__lowerCamelCase = Dataset.from_list([] )
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 0 )
self.assertListEqual(dset.column_names , [] )
| 339 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPSegProcessor, ViTImageProcessor
@require_vision
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : List[str] ) -> Dict:
__lowerCamelCase = tempfile.mkdtemp()
# fmt: off
__lowerCamelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>''']
# fmt: on
__lowerCamelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) )
__lowerCamelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', '''''']
__lowerCamelCase = {'''unk_token''': '''<unk>'''}
__lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = {
'''do_resize''': True,
'''size''': 20,
'''do_center_crop''': True,
'''crop_size''': 18,
'''do_normalize''': True,
'''image_mean''': [0.48145466, 0.4578275, 0.40821073],
'''image_std''': [0.26862954, 0.26130258, 0.27577711],
}
__lowerCamelCase = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __A ( self : int , **SCREAMING_SNAKE_CASE__ : int ) -> Any:
return CLIPTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ )
def __A ( self : Dict , **SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]:
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]:
return ViTImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ )
def __A ( self : Dict ) -> Dict:
shutil.rmtree(self.tmpdirname )
def __A ( self : str ) -> Any:
__lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowerCamelCase = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __A ( self : List[Any] ) -> List[str]:
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = self.get_rust_tokenizer()
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
processor_slow.save_pretrained(self.tmpdirname )
__lowerCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
processor_fast.save_pretrained(self.tmpdirname )
__lowerCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ )
self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ )
self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ )
def __A ( self : Union[str, Any] ) -> int:
__lowerCamelCase = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowerCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
__lowerCamelCase = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
__lowerCamelCase = CLIPSegProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[Any] ) -> Union[str, Any]:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='''np''' )
__lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __A ( self : List[Any] ) -> Optional[int]:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = '''lower newer'''
__lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self : List[Any] ) -> Any:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = '''lower newer'''
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
processor()
def __A ( self : Optional[Any] ) -> List[str]:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE__ , visual_prompt=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
processor()
def __A ( self : List[Any] ) -> Any:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__lowerCamelCase = processor.batch_decode(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
| 339 | 1 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
def __A ( self : Any ) -> List[str]:
__lowerCamelCase = TFCamembertModel.from_pretrained('''jplu/tf-camembert-base''' )
__lowerCamelCase = tf.convert_to_tensor(
[[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )['''last_hidden_state''']
__lowerCamelCase = tf.TensorShape((1, 10, 7_68) )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ )
# compare the actual values for a slice.
__lowerCamelCase = tf.convert_to_tensor(
[[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
| 339 |
from __future__ import annotations
def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : int | None = None , __lowerCAmelCase : int | None = None ) -> None:
if start is None:
__lowerCamelCase = 0
if end is None:
__lowerCamelCase = len(__lowerCAmelCase ) - 1
if start >= end:
return
__lowerCamelCase = (start + end) // 2
slowsort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
slowsort(__lowerCAmelCase , mid + 1 , __lowerCAmelCase )
if sequence[end] < sequence[mid]:
__lowerCamelCase , __lowerCamelCase = sequence[mid], sequence[end]
slowsort(__lowerCAmelCase , __lowerCAmelCase , end - 1 )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 339 | 1 |
def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] ) -> List[Any]:
if index == r:
for j in range(__lowerCAmelCase ):
print(data[j] , end=''' ''' )
print(''' ''' )
return
# When no more elements are there to put in data[]
if i >= n:
return
# current is included, put next at next location
__lowerCamelCase = arr[i]
combination_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , index + 1 , __lowerCAmelCase , i + 1 )
# current is excluded, replace it with
# next (Note that i+1 is passed, but
# index is not changed)
combination_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , i + 1 )
# The main function that prints all combinations
# of size r in arr[] of size n. This function
# mainly uses combinationUtil()
def __magic_name__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] ) -> Optional[Any]:
# A temporary array to store all combination one by one
__lowerCamelCase = [0] * r
# Print all combination using temporary array 'data[]'
combination_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 0 , __lowerCAmelCase , 0 )
if __name__ == "__main__":
# Driver code to check the function above
SCREAMING_SNAKE_CASE__ : int = [10, 20, 30, 40, 50]
print_combination(arr, len(arr), 3)
# This code is contributed by Ambuj sahu
| 339 |
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Optional[Any] = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
SCREAMING_SNAKE_CASE__ : str = {
"vocab_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"
},
"merges_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"
},
"tokenizer_config_file": {
"facebook/blenderbot_small-90M": (
"https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"
)
},
}
SCREAMING_SNAKE_CASE__ : int = {"facebook/blenderbot_small-90M": 512}
def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Tuple:
__lowerCamelCase = set()
__lowerCamelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__lowerCamelCase = char
__lowerCamelCase = set(__lowerCAmelCase )
return pairs
class lowerCAmelCase__ ( __lowercase ):
a__ : List[Any] = VOCAB_FILES_NAMES
a__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ : Dict = ["""input_ids""", """attention_mask"""]
def __init__( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple="__start__" , SCREAMING_SNAKE_CASE__ : Tuple="__end__" , SCREAMING_SNAKE_CASE__ : List[str]="__unk__" , SCREAMING_SNAKE_CASE__ : str="__null__" , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> Optional[Any]:
super().__init__(unk_token=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as vocab_handle:
__lowerCamelCase = json.load(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = {v: k for k, v in self.encoder.items()}
with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as merges_handle:
__lowerCamelCase = merges_handle.read().split('''\n''' )[1:-1]
__lowerCamelCase = [tuple(merge.split() ) for merge in merges]
__lowerCamelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) )
__lowerCamelCase = {}
@property
def __A ( self : Dict ) -> int:
return len(self.encoder )
def __A ( self : str ) -> Dict:
return dict(self.encoder , **self.added_tokens_encoder )
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : str ) -> str:
if token in self.cache:
return self.cache[token]
__lowerCamelCase = re.sub('''([.,!?()])''' , R''' \1''' , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = re.sub('''(\')''' , R''' \1 ''' , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = re.sub(R'''\s{2,}''' , ''' ''' , SCREAMING_SNAKE_CASE__ )
if "\n" in token:
__lowerCamelCase = token.replace('''\n''' , ''' __newln__''' )
__lowerCamelCase = token.split(''' ''' )
__lowerCamelCase = []
for token in tokens:
if not len(SCREAMING_SNAKE_CASE__ ):
continue
__lowerCamelCase = token.lower()
__lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] )
__lowerCamelCase = get_pairs(SCREAMING_SNAKE_CASE__ )
if not pairs:
words.append(SCREAMING_SNAKE_CASE__ )
continue
while True:
__lowerCamelCase = min(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE__ , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
__lowerCamelCase , __lowerCamelCase = bigram
__lowerCamelCase = []
__lowerCamelCase = 0
while i < len(SCREAMING_SNAKE_CASE__ ):
try:
__lowerCamelCase = word.index(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
new_word.extend(word[i:j] )
__lowerCamelCase = j
except ValueError:
new_word.extend(word[i:] )
break
if word[i] == first and i < len(SCREAMING_SNAKE_CASE__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = new_word
if len(SCREAMING_SNAKE_CASE__ ) == 1:
break
else:
__lowerCamelCase = get_pairs(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = '''@@ '''.join(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = word[:-4]
__lowerCamelCase = word
words.append(SCREAMING_SNAKE_CASE__ )
return " ".join(SCREAMING_SNAKE_CASE__ )
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> List[str]:
__lowerCamelCase = []
__lowerCamelCase = re.findall(R'''\S+\n?''' , SCREAMING_SNAKE_CASE__ )
for token in words:
split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE__ ).split(''' ''' ) ) )
return split_tokens
def __A ( self : str , SCREAMING_SNAKE_CASE__ : str ) -> int:
__lowerCamelCase = token.lower()
return self.encoder.get(SCREAMING_SNAKE_CASE__ , self.encoder.get(self.unk_token ) )
def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int ) -> str:
return self.decoder.get(SCREAMING_SNAKE_CASE__ , self.unk_token )
def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str:
__lowerCamelCase = ''' '''.join(SCREAMING_SNAKE_CASE__ ).replace('''@@ ''' , '''''' ).strip()
return out_string
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__lowerCamelCase = os.path.join(
SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCamelCase = os.path.join(
SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) + '''\n''' )
__lowerCamelCase = 0
with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE__ : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
''' Please check that the tokenizer is not corrupted!''' )
__lowerCamelCase = token_index
writer.write(''' '''.join(SCREAMING_SNAKE_CASE__ ) + '''\n''' )
index += 1
return vocab_file, merge_file
| 339 | 1 |
from typing import TYPE_CHECKING
from ...utils import _LazyModule
SCREAMING_SNAKE_CASE__ : Optional[int] = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]}
if TYPE_CHECKING:
from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM
else:
import sys
SCREAMING_SNAKE_CASE__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 339 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowerCAmelCase__ ( __lowercase , unittest.TestCase ):
a__ : str = ShapEImgaImgPipeline
a__ : Union[str, Any] = ["""image"""]
a__ : Optional[int] = ["""image"""]
a__ : Union[str, Any] = [
"""num_images_per_prompt""",
"""num_inference_steps""",
"""generator""",
"""latents""",
"""guidance_scale""",
"""frame_size""",
"""output_type""",
"""return_dict""",
]
a__ : List[str] = False
@property
def __A ( self : Dict ) -> Optional[Any]:
return 32
@property
def __A ( self : Optional[int] ) -> Optional[int]:
return 32
@property
def __A ( self : Optional[int] ) -> List[Any]:
return self.time_input_dim * 4
@property
def __A ( self : str ) -> List[Any]:
return 8
@property
def __A ( self : Optional[Any] ) -> Union[str, Any]:
torch.manual_seed(0 )
__lowerCamelCase = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , )
__lowerCamelCase = CLIPVisionModel(SCREAMING_SNAKE_CASE__ )
return model
@property
def __A ( self : Union[str, Any] ) -> Union[str, Any]:
__lowerCamelCase = CLIPImageProcessor(
crop_size=2_24 , do_center_crop=SCREAMING_SNAKE_CASE__ , do_normalize=SCREAMING_SNAKE_CASE__ , do_resize=SCREAMING_SNAKE_CASE__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=2_24 , )
return image_processor
@property
def __A ( self : Dict ) -> int:
torch.manual_seed(0 )
__lowerCamelCase = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''embedding_proj_norm_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
__lowerCamelCase = PriorTransformer(**SCREAMING_SNAKE_CASE__ )
return model
@property
def __A ( self : Tuple ) -> Dict:
torch.manual_seed(0 )
__lowerCamelCase = {
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
__lowerCamelCase = ShapERenderer(**SCREAMING_SNAKE_CASE__ )
return model
def __A ( self : Optional[int] ) -> List[str]:
__lowerCamelCase = self.dummy_prior
__lowerCamelCase = self.dummy_image_encoder
__lowerCamelCase = self.dummy_image_processor
__lowerCamelCase = self.dummy_renderer
__lowerCamelCase = HeunDiscreteScheduler(
beta_schedule='''exp''' , num_train_timesteps=10_24 , prediction_type='''sample''' , use_karras_sigmas=SCREAMING_SNAKE_CASE__ , clip_sample=SCREAMING_SNAKE_CASE__ , clip_sample_range=1.0 , )
__lowerCamelCase = {
'''prior''': prior,
'''image_encoder''': image_encoder,
'''image_processor''': image_processor,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def __A ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=0 ) -> int:
__lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ )
if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ):
__lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE__ )
else:
__lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = {
'''image''': input_image,
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def __A ( self : Union[str, Any] ) -> Dict:
__lowerCamelCase = '''cpu'''
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = output.images[0]
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
__lowerCamelCase = np.array(
[
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __A ( self : str ) -> Tuple:
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def __A ( self : Optional[Any] ) -> str:
__lowerCamelCase = torch_device == '''cpu'''
__lowerCamelCase = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=SCREAMING_SNAKE_CASE__ , relax_max_difference=SCREAMING_SNAKE_CASE__ , )
def __A ( self : Dict ) -> Optional[int]:
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = 1
__lowerCamelCase = 2
__lowerCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ )
for key in inputs.keys():
if key in self.batch_params:
__lowerCamelCase = batch_size * [inputs[key]]
__lowerCamelCase = pipe(**SCREAMING_SNAKE_CASE__ , num_images_per_prompt=SCREAMING_SNAKE_CASE__ )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : str ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self : str ) -> Union[str, Any]:
__lowerCamelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' )
__lowerCamelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_img2img_out.npy''' )
__lowerCamelCase = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' )
__lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(0 )
__lowerCamelCase = pipe(
SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
| 339 | 1 |
from ...configuration_utils import PretrainedConfig
class lowerCAmelCase__ ( __lowercase ):
a__ : List[Any] = """bert-generation"""
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict=5_03_58 , SCREAMING_SNAKE_CASE__ : List[Any]=10_24 , SCREAMING_SNAKE_CASE__ : Dict=24 , SCREAMING_SNAKE_CASE__ : List[str]=16 , SCREAMING_SNAKE_CASE__ : Optional[int]=40_96 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5_12 , SCREAMING_SNAKE_CASE__ : Tuple=0.02 , SCREAMING_SNAKE_CASE__ : str=1e-12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1 , SCREAMING_SNAKE_CASE__ : int="absolute" , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> Dict:
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = hidden_act
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = initializer_range
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = position_embedding_type
__lowerCamelCase = use_cache
| 339 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
SCREAMING_SNAKE_CASE__ : str = ""
SCREAMING_SNAKE_CASE__ : Any = ""
SCREAMING_SNAKE_CASE__ : Optional[Any] = ""
SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 # (0 is vertical, 1 is horizontal)
def __magic_name__ ( ) -> None:
__lowerCamelCase , __lowerCamelCase = get_dataset(__lowerCAmelCase , __lowerCAmelCase )
print('''Processing...''' )
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = update_image_and_anno(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
for index, image in enumerate(__lowerCAmelCase ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
__lowerCamelCase = random_chars(32 )
__lowerCamelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0]
__lowerCamelCase = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}'''
cva.imwrite(f'''/{file_root}.jpg''' , __lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f'''Success {index+1}/{len(__lowerCAmelCase )} with {file_name}''' )
__lowerCamelCase = []
for anno in new_annos[index]:
__lowerCamelCase = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}'''
annos_list.append(__lowerCAmelCase )
with open(f'''/{file_root}.txt''' , '''w''' ) as outfile:
outfile.write('''\n'''.join(line for line in annos_list ) )
def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> tuple[list, list]:
__lowerCamelCase = []
__lowerCamelCase = []
for label_file in glob.glob(os.path.join(__lowerCAmelCase , '''*.txt''' ) ):
__lowerCamelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0]
with open(__lowerCAmelCase ) as in_file:
__lowerCamelCase = in_file.readlines()
__lowerCamelCase = os.path.join(__lowerCAmelCase , f'''{label_name}.jpg''' )
__lowerCamelCase = []
for obj_list in obj_lists:
__lowerCamelCase = obj_list.rstrip('''\n''' ).split(''' ''' )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(__lowerCAmelCase )
labels.append(__lowerCAmelCase )
return img_paths, labels
def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int = 1 ) -> tuple[list, list, list]:
__lowerCamelCase = []
__lowerCamelCase = []
__lowerCamelCase = []
for idx in range(len(__lowerCAmelCase ) ):
__lowerCamelCase = []
__lowerCamelCase = img_list[idx]
path_list.append(__lowerCAmelCase )
__lowerCamelCase = anno_list[idx]
__lowerCamelCase = cva.imread(__lowerCAmelCase )
if flip_type == 1:
__lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase )
for bbox in img_annos:
__lowerCamelCase = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
__lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase )
for bbox in img_annos:
__lowerCamelCase = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(__lowerCAmelCase )
new_imgs_list.append(__lowerCAmelCase )
return new_imgs_list, new_annos_lists, path_list
def __magic_name__ ( __lowerCAmelCase : int = 32 ) -> str:
assert number_char > 1, "The number of character should greater than 1"
__lowerCamelCase = ascii_lowercase + digits
return "".join(random.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 339 | 1 |
import math
import unittest
def __magic_name__ ( __lowerCAmelCase : int ) -> bool:
assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : Optional[int] ) -> Tuple:
self.assertTrue(is_prime(2 ) )
self.assertTrue(is_prime(3 ) )
self.assertTrue(is_prime(5 ) )
self.assertTrue(is_prime(7 ) )
self.assertTrue(is_prime(11 ) )
self.assertTrue(is_prime(13 ) )
self.assertTrue(is_prime(17 ) )
self.assertTrue(is_prime(19 ) )
self.assertTrue(is_prime(23 ) )
self.assertTrue(is_prime(29 ) )
def __A ( self : List[str] ) -> Dict:
with self.assertRaises(SCREAMING_SNAKE_CASE__ ):
is_prime(-19 )
self.assertFalse(
is_prime(0 ) , '''Zero doesn\'t have any positive factors, primes must have exactly two.''' , )
self.assertFalse(
is_prime(1 ) , '''One only has 1 positive factor, primes must have exactly two.''' , )
self.assertFalse(is_prime(2 * 2 ) )
self.assertFalse(is_prime(2 * 3 ) )
self.assertFalse(is_prime(3 * 3 ) )
self.assertFalse(is_prime(3 * 5 ) )
self.assertFalse(is_prime(3 * 5 * 7 ) )
if __name__ == "__main__":
unittest.main()
| 339 |
import collections
import gzip
import os
import urllib
import numpy
from tensorflow.python.framework import dtypes, random_seed
from tensorflow.python.platform import gfile
from tensorflow.python.util.deprecation import deprecated
SCREAMING_SNAKE_CASE__ : Tuple = collections.namedtuple("_Datasets", ["train", "validation", "test"])
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
SCREAMING_SNAKE_CASE__ : List[str] = "https://storage.googleapis.com/cvdf-datasets/mnist/"
def __magic_name__ ( __lowerCAmelCase : Any ) -> int:
__lowerCamelCase = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' )
return numpy.frombuffer(bytestream.read(4 ) , dtype=__lowerCAmelCase )[0]
@deprecated(__lowerCAmelCase , '''Please use tf.data to implement this functionality.''' )
def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> str:
print('''Extracting''' , f.name )
with gzip.GzipFile(fileobj=__lowerCAmelCase ) as bytestream:
__lowerCamelCase = _readaa(__lowerCAmelCase )
if magic != 2051:
raise ValueError(
'''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) )
__lowerCamelCase = _readaa(__lowerCAmelCase )
__lowerCamelCase = _readaa(__lowerCAmelCase )
__lowerCamelCase = _readaa(__lowerCAmelCase )
__lowerCamelCase = bytestream.read(rows * cols * num_images )
__lowerCamelCase = numpy.frombuffer(__lowerCAmelCase , dtype=numpy.uinta )
__lowerCamelCase = data.reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 1 )
return data
@deprecated(__lowerCAmelCase , '''Please use tf.one_hot on tensors.''' )
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : List[Any] ) -> Dict:
__lowerCamelCase = labels_dense.shape[0]
__lowerCamelCase = numpy.arange(__lowerCAmelCase ) * num_classes
__lowerCamelCase = numpy.zeros((num_labels, num_classes) )
__lowerCamelCase = 1
return labels_one_hot
@deprecated(__lowerCAmelCase , '''Please use tf.data to implement this functionality.''' )
def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : str=False , __lowerCAmelCase : List[str]=10 ) -> List[str]:
print('''Extracting''' , f.name )
with gzip.GzipFile(fileobj=__lowerCAmelCase ) as bytestream:
__lowerCamelCase = _readaa(__lowerCAmelCase )
if magic != 2049:
raise ValueError(
'''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) )
__lowerCamelCase = _readaa(__lowerCAmelCase )
__lowerCamelCase = bytestream.read(__lowerCAmelCase )
__lowerCamelCase = numpy.frombuffer(__lowerCAmelCase , dtype=numpy.uinta )
if one_hot:
return _dense_to_one_hot(__lowerCAmelCase , __lowerCAmelCase )
return labels
class lowerCAmelCase__ :
@deprecated(
SCREAMING_SNAKE_CASE__ , '''Please use alternatives such as official/mnist/_DataSet.py'''
''' from tensorflow/models.''' , )
def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : str=dtypes.floataa , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : str=None , ) -> Optional[int]:
__lowerCamelCase , __lowerCamelCase = random_seed.get_seed(SCREAMING_SNAKE_CASE__ )
# If op level seed is not set, use whatever graph level seed is returned
numpy.random.seed(seeda if seed is None else seeda )
__lowerCamelCase = dtypes.as_dtype(SCREAMING_SNAKE_CASE__ ).base_dtype
if dtype not in (dtypes.uinta, dtypes.floataa):
raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype )
if fake_data:
__lowerCamelCase = 1_00_00
__lowerCamelCase = one_hot
else:
assert (
images.shape[0] == labels.shape[0]
), f'''images.shape: {images.shape} labels.shape: {labels.shape}'''
__lowerCamelCase = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
if reshape:
assert images.shape[3] == 1
__lowerCamelCase = images.reshape(
images.shape[0] , images.shape[1] * images.shape[2] )
if dtype == dtypes.floataa:
# Convert from [0, 255] -> [0.0, 1.0].
__lowerCamelCase = images.astype(numpy.floataa )
__lowerCamelCase = numpy.multiply(SCREAMING_SNAKE_CASE__ , 1.0 / 255.0 )
__lowerCamelCase = images
__lowerCamelCase = labels
__lowerCamelCase = 0
__lowerCamelCase = 0
@property
def __A ( self : str ) -> Optional[int]:
return self._images
@property
def __A ( self : Any ) -> Dict:
return self._labels
@property
def __A ( self : List[Any] ) -> int:
return self._num_examples
@property
def __A ( self : str ) -> Any:
return self._epochs_completed
def __A ( self : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : str=True ) -> str:
if fake_data:
__lowerCamelCase = [1] * 7_84
__lowerCamelCase = [1] + [0] * 9 if self.one_hot else 0
return (
[fake_image for _ in range(SCREAMING_SNAKE_CASE__ )],
[fake_label for _ in range(SCREAMING_SNAKE_CASE__ )],
)
__lowerCamelCase = self._index_in_epoch
# Shuffle for the first epoch
if self._epochs_completed == 0 and start == 0 and shuffle:
__lowerCamelCase = numpy.arange(self._num_examples )
numpy.random.shuffle(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.images[perma]
__lowerCamelCase = self.labels[perma]
# Go to the next epoch
if start + batch_size > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Get the rest examples in this epoch
__lowerCamelCase = self._num_examples - start
__lowerCamelCase = self._images[start : self._num_examples]
__lowerCamelCase = self._labels[start : self._num_examples]
# Shuffle the data
if shuffle:
__lowerCamelCase = numpy.arange(self._num_examples )
numpy.random.shuffle(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.images[perm]
__lowerCamelCase = self.labels[perm]
# Start next epoch
__lowerCamelCase = 0
__lowerCamelCase = batch_size - rest_num_examples
__lowerCamelCase = self._index_in_epoch
__lowerCamelCase = self._images[start:end]
__lowerCamelCase = self._labels[start:end]
return (
numpy.concatenate((images_rest_part, images_new_part) , axis=0 ),
numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ),
)
else:
self._index_in_epoch += batch_size
__lowerCamelCase = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
@deprecated(__lowerCAmelCase , '''Please write your own downloading logic.''' )
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] ) -> List[Any]:
if not gfile.Exists(__lowerCAmelCase ):
gfile.MakeDirs(__lowerCAmelCase )
__lowerCamelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
if not gfile.Exists(__lowerCAmelCase ):
urllib.request.urlretrieve(__lowerCAmelCase , __lowerCAmelCase ) # noqa: S310
with gfile.GFile(__lowerCAmelCase ) as f:
__lowerCamelCase = f.size()
print('''Successfully downloaded''' , __lowerCAmelCase , __lowerCAmelCase , '''bytes.''' )
return filepath
@deprecated(
__lowerCAmelCase , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' )
def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Dict=False , __lowerCAmelCase : List[str]=dtypes.floataa , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : int=5000 , __lowerCAmelCase : Any=None , __lowerCAmelCase : List[str]=DEFAULT_SOURCE_URL , ) -> Optional[Any]:
if fake_data:
def fake():
return _DataSet(
[] , [] , fake_data=__lowerCAmelCase , one_hot=__lowerCAmelCase , dtype=__lowerCAmelCase , seed=__lowerCAmelCase )
__lowerCamelCase = fake()
__lowerCamelCase = fake()
__lowerCamelCase = fake()
return _Datasets(train=__lowerCAmelCase , validation=__lowerCAmelCase , test=__lowerCAmelCase )
if not source_url: # empty string check
__lowerCamelCase = DEFAULT_SOURCE_URL
__lowerCamelCase = '''train-images-idx3-ubyte.gz'''
__lowerCamelCase = '''train-labels-idx1-ubyte.gz'''
__lowerCamelCase = '''t10k-images-idx3-ubyte.gz'''
__lowerCamelCase = '''t10k-labels-idx1-ubyte.gz'''
__lowerCamelCase = _maybe_download(
__lowerCAmelCase , __lowerCAmelCase , source_url + train_images_file )
with gfile.Open(__lowerCAmelCase , '''rb''' ) as f:
__lowerCamelCase = _extract_images(__lowerCAmelCase )
__lowerCamelCase = _maybe_download(
__lowerCAmelCase , __lowerCAmelCase , source_url + train_labels_file )
with gfile.Open(__lowerCAmelCase , '''rb''' ) as f:
__lowerCamelCase = _extract_labels(__lowerCAmelCase , one_hot=__lowerCAmelCase )
__lowerCamelCase = _maybe_download(
__lowerCAmelCase , __lowerCAmelCase , source_url + test_images_file )
with gfile.Open(__lowerCAmelCase , '''rb''' ) as f:
__lowerCamelCase = _extract_images(__lowerCAmelCase )
__lowerCamelCase = _maybe_download(
__lowerCAmelCase , __lowerCAmelCase , source_url + test_labels_file )
with gfile.Open(__lowerCAmelCase , '''rb''' ) as f:
__lowerCamelCase = _extract_labels(__lowerCAmelCase , one_hot=__lowerCAmelCase )
if not 0 <= validation_size <= len(__lowerCAmelCase ):
__lowerCamelCase = (
'''Validation size should be between 0 and '''
f'''{len(__lowerCAmelCase )}. Received: {validation_size}.'''
)
raise ValueError(__lowerCAmelCase )
__lowerCamelCase = train_images[:validation_size]
__lowerCamelCase = train_labels[:validation_size]
__lowerCamelCase = train_images[validation_size:]
__lowerCamelCase = train_labels[validation_size:]
__lowerCamelCase = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed}
__lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase )
__lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase )
__lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase )
return _Datasets(train=__lowerCAmelCase , validation=__lowerCAmelCase , test=__lowerCAmelCase )
| 339 | 1 |
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> str:
return "\n".join(
f'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1 ) )
if __name__ == "__main__":
print(multiplication_table(number=5, number_of_terms=10))
| 339 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {
"vocab_file": {
"squeezebert/squeezebert-uncased": (
"https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt"
),
"squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt",
"squeezebert/squeezebert-mnli-headless": (
"https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"squeezebert/squeezebert-uncased": (
"https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json"
),
"squeezebert/squeezebert-mnli": (
"https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json"
),
"squeezebert/squeezebert-mnli-headless": (
"https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json"
),
},
}
SCREAMING_SNAKE_CASE__ : List[Any] = {
"squeezebert/squeezebert-uncased": 512,
"squeezebert/squeezebert-mnli": 512,
"squeezebert/squeezebert-mnli-headless": 512,
}
SCREAMING_SNAKE_CASE__ : Dict = {
"squeezebert/squeezebert-uncased": {"do_lower_case": True},
"squeezebert/squeezebert-mnli": {"do_lower_case": True},
"squeezebert/squeezebert-mnli-headless": {"do_lower_case": True},
}
class lowerCAmelCase__ ( __lowercase ):
a__ : Optional[int] = VOCAB_FILES_NAMES
a__ : Any = PRETRAINED_VOCAB_FILES_MAP
a__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION
a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ : Optional[Any] = SqueezeBertTokenizer
def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[UNK]" , SCREAMING_SNAKE_CASE__ : Optional[int]="[SEP]" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[PAD]" , SCREAMING_SNAKE_CASE__ : Tuple="[CLS]" , SCREAMING_SNAKE_CASE__ : str="[MASK]" , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : int=None , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Optional[Any]:
super().__init__(
SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , SCREAMING_SNAKE_CASE__ ) != do_lower_case
or normalizer_state.get('''strip_accents''' , SCREAMING_SNAKE_CASE__ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars
):
__lowerCamelCase = getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop('''type''' ) )
__lowerCamelCase = do_lower_case
__lowerCamelCase = strip_accents
__lowerCamelCase = tokenize_chinese_chars
__lowerCamelCase = normalizer_class(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = do_lower_case
def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=None ) -> str:
__lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]:
__lowerCamelCase = [self.sep_token_id]
__lowerCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]:
__lowerCamelCase = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ )
return tuple(SCREAMING_SNAKE_CASE__ )
| 339 | 1 |
def __magic_name__ ( __lowerCAmelCase : str ) -> bool:
if not all(x.isalpha() for x in string ):
raise ValueError('''String must only contain alphabetic characters.''' )
__lowerCamelCase = sorted(string.lower() )
return len(__lowerCAmelCase ) == len(set(__lowerCAmelCase ) )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ : Union[str, Any] = input("Enter a string ").strip()
SCREAMING_SNAKE_CASE__ : List[Any] = is_isogram(input_str)
print(F'{input_str} is {"an" if isogram else "not an"} isogram.')
| 339 |
from __future__ import annotations
def __magic_name__ ( __lowerCAmelCase : list[int] ) -> bool:
return len(set(__lowerCAmelCase ) ) == len(__lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 339 | 1 |
import os
SCREAMING_SNAKE_CASE__ : Optional[int] = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1_000}
def __magic_name__ ( __lowerCAmelCase : str ) -> int:
__lowerCamelCase = 0
__lowerCamelCase = 0
while index < len(__lowerCAmelCase ) - 1:
__lowerCamelCase = SYMBOLS[numerals[index]]
__lowerCamelCase = SYMBOLS[numerals[index + 1]]
if current_value < next_value:
total_value -= current_value
else:
total_value += current_value
index += 1
total_value += SYMBOLS[numerals[index]]
return total_value
def __magic_name__ ( __lowerCAmelCase : int ) -> str:
__lowerCamelCase = ''''''
__lowerCamelCase = num // 1000
numerals += m_count * "M"
num %= 1000
__lowerCamelCase = num // 100
if c_count == 9:
numerals += "CM"
c_count -= 9
elif c_count == 4:
numerals += "CD"
c_count -= 4
if c_count >= 5:
numerals += "D"
c_count -= 5
numerals += c_count * "C"
num %= 100
__lowerCamelCase = num // 10
if x_count == 9:
numerals += "XC"
x_count -= 9
elif x_count == 4:
numerals += "XL"
x_count -= 4
if x_count >= 5:
numerals += "L"
x_count -= 5
numerals += x_count * "X"
num %= 10
if num == 9:
numerals += "IX"
num -= 9
elif num == 4:
numerals += "IV"
num -= 4
if num >= 5:
numerals += "V"
num -= 5
numerals += num * "I"
return numerals
def __magic_name__ ( __lowerCAmelCase : str = "/p089_roman.txt" ) -> int:
__lowerCamelCase = 0
with open(os.path.dirname(__lowerCAmelCase ) + roman_numerals_filename ) as filea:
__lowerCamelCase = filea.readlines()
for line in lines:
__lowerCamelCase = line.strip()
__lowerCamelCase = parse_roman_numerals(__lowerCAmelCase )
__lowerCamelCase = generate_roman_numerals(__lowerCAmelCase )
savings += len(__lowerCAmelCase ) - len(__lowerCAmelCase )
return savings
if __name__ == "__main__":
print(F'{solution() = }')
| 339 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ : Dict = {
"configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : Tuple = [
"FALCON_PRETRAINED_MODEL_ARCHIVE_LIST",
"FalconForCausalLM",
"FalconModel",
"FalconPreTrainedModel",
"FalconForSequenceClassification",
"FalconForTokenClassification",
"FalconForQuestionAnswering",
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 339 | 1 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
SCREAMING_SNAKE_CASE__ : int = logging.getLogger(__name__)
@dataclass
class lowerCAmelCase__ :
a__ : str = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
a__ : Optional[str] = field(
default=__lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
a__ : Optional[str] = field(
default=__lowercase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
a__ : Optional[str] = field(
default=__lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether tp freeze the encoder."""} )
a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether to freeze the embeddings."""} )
@dataclass
class lowerCAmelCase__ :
a__ : str = field(
metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} )
a__ : Optional[str] = field(
default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , )
a__ : Optional[int] = field(
default=1_024 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a__ : Optional[int] = field(
default=128 , metadata={
"""help""": (
"""The maximum total sequence length for target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a__ : Optional[int] = field(
default=142 , metadata={
"""help""": (
"""The maximum total sequence length for validation target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded. """
"""This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """
"""during ``evaluate`` and ``predict``."""
)
} , )
a__ : Optional[int] = field(
default=142 , metadata={
"""help""": (
"""The maximum total sequence length for test target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} )
a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} )
a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} )
a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Source language id for translation."""} )
a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Target language id for translation."""} )
a__ : Optional[int] = field(default=__lowercase , metadata={"""help""": """# num_beams to use for evaluation."""} )
a__ : bool = field(
default=__lowercase , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , )
def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : int ) -> Dict:
logger.info(f'''***** {split} metrics *****''' )
for key in sorted(metrics.keys() ):
logger.info(f''' {key} = {metrics[key]}''' )
save_json(__lowerCAmelCase , os.path.join(__lowerCAmelCase , f'''{split}_results.json''' ) )
def __magic_name__ ( ) -> Optional[Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_args_into_dataclasses()
check_output_dir(__lowerCAmelCase )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info('''Training/evaluation parameters %s''' , __lowerCAmelCase )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__lowerCamelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__lowerCamelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''')
for p in extra_model_params:
if getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
assert hasattr(__lowerCAmelCase , __lowerCAmelCase ), f'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute'''
setattr(__lowerCAmelCase , __lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) )
__lowerCamelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , )
# use task specific params
use_task_specific_params(__lowerCAmelCase , data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
__lowerCamelCase = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(__lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
__lowerCamelCase = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
__lowerCamelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(__lowerCAmelCase )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
__lowerCamelCase = SeqaSeqDataset
# Get datasets
__lowerCamelCase = (
dataset_class(
__lowerCAmelCase , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_train
else None
)
__lowerCamelCase = (
dataset_class(
__lowerCAmelCase , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
__lowerCamelCase = (
dataset_class(
__lowerCAmelCase , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_predict
else None
)
# Initialize our Trainer
__lowerCamelCase = (
build_compute_metrics_fn(data_args.task , __lowerCAmelCase ) if training_args.predict_with_generate else None
)
__lowerCamelCase = SeqaSeqTrainer(
model=__lowerCAmelCase , args=__lowerCAmelCase , data_args=__lowerCAmelCase , train_dataset=__lowerCAmelCase , eval_dataset=__lowerCAmelCase , data_collator=SeqaSeqDataCollator(
__lowerCAmelCase , __lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , )
__lowerCamelCase = {}
# Training
if training_args.do_train:
logger.info('''*** Train ***''' )
__lowerCamelCase = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
__lowerCamelCase = train_result.metrics
__lowerCamelCase = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics('''train''' , __lowerCAmelCase , training_args.output_dir )
all_metrics.update(__lowerCAmelCase )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
__lowerCamelCase = trainer.evaluate(metric_key_prefix='''val''' )
__lowerCamelCase = data_args.n_val
__lowerCamelCase = round(metrics['''val_loss'''] , 4 )
if trainer.is_world_process_zero():
handle_metrics('''val''' , __lowerCAmelCase , training_args.output_dir )
all_metrics.update(__lowerCAmelCase )
if training_args.do_predict:
logger.info('''*** Predict ***''' )
__lowerCamelCase = trainer.predict(test_dataset=__lowerCAmelCase , metric_key_prefix='''test''' )
__lowerCamelCase = test_output.metrics
__lowerCamelCase = data_args.n_test
if trainer.is_world_process_zero():
__lowerCamelCase = round(metrics['''test_loss'''] , 4 )
handle_metrics('''test''' , __lowerCAmelCase , training_args.output_dir )
all_metrics.update(__lowerCAmelCase )
if training_args.predict_with_generate:
__lowerCamelCase = tokenizer.batch_decode(
test_output.predictions , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase )
__lowerCamelCase = lmap(str.strip , __lowerCAmelCase )
write_txt_file(__lowerCAmelCase , os.path.join(training_args.output_dir , '''test_generations.txt''' ) )
if trainer.is_world_process_zero():
save_json(__lowerCAmelCase , os.path.join(training_args.output_dir , '''all_results.json''' ) )
return all_metrics
def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Union[str, Any]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 339 |
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int:
return abs(__lowerCAmelCase ) if a == 0 else greatest_common_divisor(b % a , __lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int:
while y: # --> when y=0 then loop will terminate and return x as final GCD.
__lowerCamelCase , __lowerCamelCase = y, x % y
return abs(__lowerCAmelCase )
def __magic_name__ ( ) -> Tuple:
try:
__lowerCamelCase = input('''Enter two integers separated by comma (,): ''' ).split(''',''' )
__lowerCamelCase = int(nums[0] )
__lowerCamelCase = int(nums[1] )
print(
f'''greatest_common_divisor({num_a}, {num_a}) = '''
f'''{greatest_common_divisor(__lowerCAmelCase , __lowerCAmelCase )}''' )
print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__lowerCAmelCase , __lowerCAmelCase )}''' )
except (IndexError, UnboundLocalError, ValueError):
print('''Wrong input''' )
if __name__ == "__main__":
main()
| 339 | 1 |
import copy
import fnmatch
import json
import os
import pickle as pkl
import shutil
import sys
import tarfile
import tempfile
from collections import OrderedDict
from contextlib import contextmanager
from functools import partial
from hashlib import shaaaa
from io import BytesIO
from pathlib import Path
from urllib.parse import urlparse
from zipfile import ZipFile, is_zipfile
import cva
import numpy as np
import requests
import wget
from filelock import FileLock
from PIL import Image
from tqdm.auto import tqdm
from yaml import Loader, dump, load
try:
import torch
SCREAMING_SNAKE_CASE__ : Any = True
except ImportError:
SCREAMING_SNAKE_CASE__ : str = False
try:
from torch.hub import _get_torch_home
SCREAMING_SNAKE_CASE__ : Optional[Any] = _get_torch_home()
except ImportError:
SCREAMING_SNAKE_CASE__ : List[Any] = os.path.expanduser(
os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch"))
)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.join(torch_cache_home, "transformers")
SCREAMING_SNAKE_CASE__ : List[Any] = "https://cdn.huggingface.co"
SCREAMING_SNAKE_CASE__ : Dict = "https://s3.amazonaws.com/models.huggingface.co/bert"
SCREAMING_SNAKE_CASE__ : List[str] = "/".join(str(Path(__file__).resolve()).split("/")[:-1])
SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(PATH, "config.yaml")
SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(PATH, "attributes.txt")
SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(PATH, "objects.txt")
SCREAMING_SNAKE_CASE__ : Dict = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path)
SCREAMING_SNAKE_CASE__ : Tuple = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE)
SCREAMING_SNAKE_CASE__ : Dict = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE)
SCREAMING_SNAKE_CASE__ : Tuple = "pytorch_model.bin"
SCREAMING_SNAKE_CASE__ : Union[str, Any] = "config.yaml"
def __magic_name__ ( __lowerCAmelCase : Optional[int]=OBJECTS , __lowerCAmelCase : Any=ATTRIBUTES ) -> Any:
__lowerCamelCase = []
with open(__lowerCAmelCase ) as f:
for object in f.readlines():
vg_classes.append(object.split(''',''' )[0].lower().strip() )
__lowerCamelCase = []
with open(__lowerCAmelCase ) as f:
for object in f.readlines():
vg_attrs.append(object.split(''',''' )[0].lower().strip() )
return vg_classes, vg_attrs
def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> Tuple:
__lowerCamelCase = OrderedDict()
with open(__lowerCAmelCase , '''rb''' ) as f:
__lowerCamelCase = pkl.load(__lowerCAmelCase )['''model''']
for k in copy.deepcopy(list(ckp.keys() ) ):
__lowerCamelCase = ckp.pop(__lowerCAmelCase )
if isinstance(__lowerCAmelCase , np.ndarray ):
__lowerCamelCase = torch.tensor(__lowerCAmelCase )
else:
assert isinstance(__lowerCAmelCase , torch.tensor ), type(__lowerCAmelCase )
__lowerCamelCase = v
return r
class lowerCAmelCase__ :
a__ : Optional[Any] = {}
def __init__( self : Any , SCREAMING_SNAKE_CASE__ : dict , SCREAMING_SNAKE_CASE__ : str = "root" , SCREAMING_SNAKE_CASE__ : Tuple=0 ) -> Optional[Any]:
__lowerCamelCase = name
__lowerCamelCase = level
__lowerCamelCase = {}
for k, v in dictionary.items():
if v is None:
raise ValueError()
__lowerCamelCase = copy.deepcopy(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = copy.deepcopy(SCREAMING_SNAKE_CASE__ )
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase = Config(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ , level=level + 1 )
__lowerCamelCase = v
setattr(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = d
def __repr__( self : int ) -> Union[str, Any]:
return str(list((self._pointer.keys()) ) )
def __setattr__( self : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[str]:
__lowerCamelCase = val
__lowerCamelCase = val
__lowerCamelCase = key.split('''.''' )
__lowerCamelCase = len(SCREAMING_SNAKE_CASE__ ) - 1
__lowerCamelCase = self._pointer
if len(SCREAMING_SNAKE_CASE__ ) > 1:
for i, l in enumerate(SCREAMING_SNAKE_CASE__ ):
if hasattr(self , SCREAMING_SNAKE_CASE__ ) and isinstance(getattr(self , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ):
setattr(getattr(self , SCREAMING_SNAKE_CASE__ ) , '''.'''.join(levels[i:] ) , SCREAMING_SNAKE_CASE__ )
if l == last_level:
__lowerCamelCase = val
else:
__lowerCamelCase = pointer[l]
def __A ( self : List[str] ) -> Dict:
return self._pointer
def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Any:
with open(f'''{file_name}''' , '''w''' ) as stream:
dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str ) -> Dict:
with open(f'''{file_name}''' , '''w''' ) as stream:
json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@staticmethod
def __A ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]:
with open(SCREAMING_SNAKE_CASE__ ) as stream:
__lowerCamelCase = load(SCREAMING_SNAKE_CASE__ , Loader=SCREAMING_SNAKE_CASE__ )
return data
def __str__( self : int ) -> Any:
__lowerCamelCase = ''' '''
if self._name != "root":
__lowerCamelCase = f'''{t * (self._level-1)}{self._name}:\n'''
else:
__lowerCamelCase = ''''''
__lowerCamelCase = self._level
for i, (k, v) in enumerate(self._pointer.items() ):
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
r += f'''{t * (self._level)}{v}\n'''
self._level += 1
else:
r += f'''{t * (self._level)}{k}: {v} ({type(SCREAMING_SNAKE_CASE__ ).__name__})\n'''
__lowerCamelCase = level
return r[:-1]
@classmethod
def __A ( cls : List[str] , SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : str ) -> Any:
__lowerCamelCase , __lowerCamelCase = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
return cls(SCREAMING_SNAKE_CASE__ )
@classmethod
def __A ( cls : str , SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : Tuple ) -> Dict:
__lowerCamelCase = kwargs.pop('''cache_dir''' , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = kwargs.pop('''force_download''' , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = kwargs.pop('''resume_download''' , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = kwargs.pop('''proxies''' , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = kwargs.pop('''local_files_only''' , SCREAMING_SNAKE_CASE__ )
if os.path.isdir(SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
elif os.path.isfile(SCREAMING_SNAKE_CASE__ ) or is_remote_url(SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase = pretrained_model_name_or_path
else:
__lowerCamelCase = hf_bucket_url(SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , use_cdn=SCREAMING_SNAKE_CASE__ )
try:
# Load from URL or cache if already cached
__lowerCamelCase = cached_path(
SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , )
# Load config dict
if resolved_config_file is None:
raise EnvironmentError
__lowerCamelCase = Config.load_yaml(SCREAMING_SNAKE_CASE__ )
except EnvironmentError:
__lowerCamelCase = '''Can\'t load config for'''
raise EnvironmentError(SCREAMING_SNAKE_CASE__ )
if resolved_config_file == config_file:
print('''loading configuration file from path''' )
else:
print('''loading configuration file cache''' )
return Config.load_yaml(SCREAMING_SNAKE_CASE__ ), kwargs
def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> Tuple:
__lowerCamelCase = torch.load('''dump.pt''' , map_location=in_tensor.device )
__lowerCamelCase = in_tensor.numpy()
__lowerCamelCase = out_tensor.numpy()[0]
print(na.shape , na[0, 0, :5] )
print(na.shape , na[0, 0, :5] )
assert np.allclose(__lowerCAmelCase , __lowerCAmelCase , rtol=0.01 , atol=0.1 ), (
f'''{sum([1 for x in np.isclose(__lowerCAmelCase , __lowerCAmelCase , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %'''
" element-wise mismatch"
)
raise Exception('''tensors are all good''' )
# Hugging face functions below
def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Union[str, Any]:
__lowerCamelCase = urlparse(__lowerCAmelCase )
return parsed.scheme in ("http", "https")
def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any]=True ) -> str:
__lowerCamelCase = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX
__lowerCamelCase = '''/''' not in model_id
if legacy_format:
return f'''{endpoint}/{model_id}-{filename}'''
else:
return f'''{endpoint}/{model_id}/{filename}'''
def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : int=None , __lowerCAmelCase : Optional[int]=0 , __lowerCAmelCase : Tuple=None , ) -> Optional[Any]:
__lowerCamelCase = '''python/{}'''.format(sys.version.split()[0] )
if _torch_available:
ua += "; torch/{}".format(torch.__version__ )
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
ua += "; " + "; ".join('''{}/{}'''.format(__lowerCAmelCase , __lowerCAmelCase ) for k, v in user_agent.items() )
elif isinstance(__lowerCAmelCase , __lowerCAmelCase ):
ua += "; " + user_agent
__lowerCamelCase = {'''user-agent''': ua}
if resume_size > 0:
__lowerCamelCase = '''bytes=%d-''' % (resume_size,)
__lowerCamelCase = requests.get(__lowerCAmelCase , stream=__lowerCAmelCase , proxies=__lowerCAmelCase , headers=__lowerCAmelCase )
if response.status_code == 416: # Range not satisfiable
return
__lowerCamelCase = response.headers.get('''Content-Length''' )
__lowerCamelCase = resume_size + int(__lowerCAmelCase ) if content_length is not None else None
__lowerCamelCase = tqdm(
unit='''B''' , unit_scale=__lowerCAmelCase , total=__lowerCAmelCase , initial=__lowerCAmelCase , desc='''Downloading''' , )
for chunk in response.iter_content(chunk_size=1024 ):
if chunk: # filter out keep-alive new chunks
progress.update(len(__lowerCAmelCase ) )
temp_file.write(__lowerCAmelCase )
progress.close()
def __magic_name__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Any=False , __lowerCAmelCase : str=None , __lowerCAmelCase : Optional[Any]=10 , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Union[str, Any]=False , ) -> Dict:
if cache_dir is None:
__lowerCamelCase = TRANSFORMERS_CACHE
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
__lowerCamelCase = str(__lowerCAmelCase )
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
__lowerCamelCase = None
if not local_files_only:
try:
__lowerCamelCase = requests.head(__lowerCAmelCase , allow_redirects=__lowerCAmelCase , proxies=__lowerCAmelCase , timeout=__lowerCAmelCase )
if response.status_code == 200:
__lowerCamelCase = response.headers.get('''ETag''' )
except (EnvironmentError, requests.exceptions.Timeout):
# etag is already None
pass
__lowerCamelCase = url_to_filename(__lowerCAmelCase , __lowerCAmelCase )
# get cache path to put the file
__lowerCamelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
# etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible.
# try to get the last downloaded one
if etag is None:
if os.path.exists(__lowerCAmelCase ):
return cache_path
else:
__lowerCamelCase = [
file
for file in fnmatch.filter(os.listdir(__lowerCAmelCase ) , filename + '''.*''' )
if not file.endswith('''.json''' ) and not file.endswith('''.lock''' )
]
if len(__lowerCAmelCase ) > 0:
return os.path.join(__lowerCAmelCase , matching_files[-1] )
else:
# If files cannot be found and local_files_only=True,
# the models might've been found if local_files_only=False
# Notify the user about that
if local_files_only:
raise ValueError(
'''Cannot find the requested files in the cached path and outgoing traffic has been'''
''' disabled. To enable model look-ups and downloads online, set \'local_files_only\''''
''' to False.''' )
return None
# From now on, etag is not None.
if os.path.exists(__lowerCAmelCase ) and not force_download:
return cache_path
# Prevent parallel downloads of the same file with a lock.
__lowerCamelCase = cache_path + '''.lock'''
with FileLock(__lowerCAmelCase ):
# If the download just completed while the lock was activated.
if os.path.exists(__lowerCAmelCase ) and not force_download:
# Even if returning early like here, the lock will be released.
return cache_path
if resume_download:
__lowerCamelCase = cache_path + '''.incomplete'''
@contextmanager
def _resumable_file_manager():
with open(__lowerCAmelCase , '''a+b''' ) as f:
yield f
__lowerCamelCase = _resumable_file_manager
if os.path.exists(__lowerCAmelCase ):
__lowerCamelCase = os.stat(__lowerCAmelCase ).st_size
else:
__lowerCamelCase = 0
else:
__lowerCamelCase = partial(tempfile.NamedTemporaryFile , dir=__lowerCAmelCase , delete=__lowerCAmelCase )
__lowerCamelCase = 0
# Download to temporary file, then copy to cache dir once finished.
# Otherwise you get corrupt cache entries if the download gets interrupted.
with temp_file_manager() as temp_file:
print(
'''%s not found in cache or force_download set to True, downloading to %s''' , __lowerCAmelCase , temp_file.name , )
http_get(
__lowerCAmelCase , __lowerCAmelCase , proxies=__lowerCAmelCase , resume_size=__lowerCAmelCase , user_agent=__lowerCAmelCase , )
os.replace(temp_file.name , __lowerCAmelCase )
__lowerCamelCase = {'''url''': url, '''etag''': etag}
__lowerCamelCase = cache_path + '''.json'''
with open(__lowerCAmelCase , '''w''' ) as meta_file:
json.dump(__lowerCAmelCase , __lowerCAmelCase )
return cache_path
def __magic_name__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any]=None ) -> int:
__lowerCamelCase = url.encode('''utf-8''' )
__lowerCamelCase = shaaaa(__lowerCAmelCase )
__lowerCamelCase = url_hash.hexdigest()
if etag:
__lowerCamelCase = etag.encode('''utf-8''' )
__lowerCamelCase = shaaaa(__lowerCAmelCase )
filename += "." + etag_hash.hexdigest()
if url.endswith('''.h5''' ):
filename += ".h5"
return filename
def __magic_name__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : List[Any]=False , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Dict=False , __lowerCAmelCase : Dict=False , ) -> List[str]:
if cache_dir is None:
__lowerCamelCase = TRANSFORMERS_CACHE
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
__lowerCamelCase = str(__lowerCAmelCase )
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
__lowerCamelCase = str(__lowerCAmelCase )
if is_remote_url(__lowerCAmelCase ):
# URL, so get it from the cache (downloading if necessary)
__lowerCamelCase = get_from_cache(
__lowerCAmelCase , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , proxies=__lowerCAmelCase , resume_download=__lowerCAmelCase , user_agent=__lowerCAmelCase , local_files_only=__lowerCAmelCase , )
elif os.path.exists(__lowerCAmelCase ):
# File, and it exists.
__lowerCamelCase = url_or_filename
elif urlparse(__lowerCAmelCase ).scheme == "":
# File, but it doesn't exist.
raise EnvironmentError('''file {} not found'''.format(__lowerCAmelCase ) )
else:
# Something unknown
raise ValueError('''unable to parse {} as a URL or as a local path'''.format(__lowerCAmelCase ) )
if extract_compressed_file:
if not is_zipfile(__lowerCAmelCase ) and not tarfile.is_tarfile(__lowerCAmelCase ):
return output_path
# Path where we extract compressed archives
# We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/"
__lowerCamelCase , __lowerCamelCase = os.path.split(__lowerCAmelCase )
__lowerCamelCase = output_file.replace('''.''' , '''-''' ) + '''-extracted'''
__lowerCamelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
if os.path.isdir(__lowerCAmelCase ) and os.listdir(__lowerCAmelCase ) and not force_extract:
return output_path_extracted
# Prevent parallel extractions
__lowerCamelCase = output_path + '''.lock'''
with FileLock(__lowerCAmelCase ):
shutil.rmtree(__lowerCAmelCase , ignore_errors=__lowerCAmelCase )
os.makedirs(__lowerCAmelCase )
if is_zipfile(__lowerCAmelCase ):
with ZipFile(__lowerCAmelCase , '''r''' ) as zip_file:
zip_file.extractall(__lowerCAmelCase )
zip_file.close()
elif tarfile.is_tarfile(__lowerCAmelCase ):
__lowerCamelCase = tarfile.open(__lowerCAmelCase )
tar_file.extractall(__lowerCAmelCase )
tar_file.close()
else:
raise EnvironmentError('''Archive format of {} could not be identified'''.format(__lowerCAmelCase ) )
return output_path_extracted
return output_path
def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any]="," ) -> Any:
assert isinstance(__lowerCAmelCase , __lowerCAmelCase )
if os.path.isfile(__lowerCAmelCase ):
with open(__lowerCAmelCase ) as f:
__lowerCamelCase = eval(f.read() )
else:
__lowerCamelCase = requests.get(__lowerCAmelCase )
try:
__lowerCamelCase = requests.json()
except Exception:
__lowerCamelCase = req.content.decode()
assert data is not None, "could not connect"
try:
__lowerCamelCase = eval(__lowerCAmelCase )
except Exception:
__lowerCamelCase = data.split('''\n''' )
req.close()
return data
def __magic_name__ ( __lowerCAmelCase : Optional[Any] ) -> List[str]:
__lowerCamelCase = requests.get(__lowerCAmelCase )
__lowerCamelCase = np.array(Image.open(BytesIO(response.content ) ) )
return img
def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> str:
__lowerCamelCase = url.split('''/''' )[-1]
if fn not in os.listdir(os.getcwd() ):
wget.download(__lowerCAmelCase )
with open(__lowerCAmelCase , '''rb''' ) as stream:
__lowerCamelCase = pkl.load(__lowerCAmelCase )
__lowerCamelCase = weights.pop('''model''' )
__lowerCamelCase = {}
for k, v in model.items():
__lowerCamelCase = torch.from_numpy(__lowerCAmelCase )
if "running_var" in k:
__lowerCamelCase = torch.tensor([0] )
__lowerCamelCase = k.replace('''running_var''' , '''num_batches_tracked''' )
__lowerCamelCase = zero
return new
def __magic_name__ ( ) -> Any:
print(f'''{os.path.abspath(os.path.join(__lowerCAmelCase , os.pardir ) )}/demo.ipynb''' )
def __magic_name__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict="RGB" ) -> str:
assert isinstance(__lowerCAmelCase , __lowerCAmelCase )
if os.path.isfile(__lowerCAmelCase ):
__lowerCamelCase = cva.imread(__lowerCAmelCase )
else:
__lowerCamelCase = get_image_from_url(__lowerCAmelCase )
assert img is not None, f'''could not connect to: {im}'''
__lowerCamelCase = cva.cvtColor(__lowerCAmelCase , cva.COLOR_BGR2RGB )
if input_format == "RGB":
__lowerCamelCase = img[:, :, ::-1]
return img
def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple=1 ) -> Optional[int]:
return (images[i : i + batch] for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase ))
| 339 |
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
def __A ( self : Optional[int] ) -> Union[str, Any]:
__lowerCamelCase = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' )
__lowerCamelCase = AutoTokenizer.from_pretrained('''google/mt5-small''' )
__lowerCamelCase = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids
__lowerCamelCase = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids
__lowerCamelCase = shift_tokens_right(SCREAMING_SNAKE_CASE__ , model.config.pad_token_id , model.config.decoder_start_token_id )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ).logits
__lowerCamelCase = optax.softmax_cross_entropy(SCREAMING_SNAKE_CASE__ , onehot(SCREAMING_SNAKE_CASE__ , logits.shape[-1] ) ).mean()
__lowerCamelCase = -(labels.shape[-1] * loss.item())
__lowerCamelCase = -84.9127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 339 | 1 |
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : Dict ) -> List[Any]:
__lowerCamelCase = '''ylacombe/bark-small'''
__lowerCamelCase = tempfile.mkdtemp()
__lowerCamelCase = '''en_speaker_1'''
__lowerCamelCase = '''This is a test string'''
__lowerCamelCase = '''speaker_embeddings_path.json'''
__lowerCamelCase = '''speaker_embeddings'''
def __A ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Tuple ) -> str:
return AutoTokenizer.from_pretrained(self.checkpoint , **SCREAMING_SNAKE_CASE__ )
def __A ( self : str ) -> int:
shutil.rmtree(self.tmpdirname )
def __A ( self : Optional[Any] ) -> Optional[int]:
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(self.tmpdirname )
__lowerCamelCase = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def __A ( self : Union[str, Any] ) -> Tuple:
__lowerCamelCase = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
__lowerCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
__lowerCamelCase = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def __A ( self : Union[str, Any] ) -> Tuple:
__lowerCamelCase = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
__lowerCamelCase = 35
__lowerCamelCase = 2
__lowerCamelCase = 8
__lowerCamelCase = {
'''semantic_prompt''': np.ones(SCREAMING_SNAKE_CASE__ ),
'''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ),
'''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
__lowerCamelCase = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = inputs['''history_prompt''']
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE__ , np.array([] ) ).tolist() )
# test loading voice preset from npz file
__lowerCamelCase = os.path.join(self.tmpdirname , '''file.npz''' )
np.savez(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = inputs['''history_prompt''']
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE__ , np.array([] ) ).tolist() )
# test loading voice preset from the hub
__lowerCamelCase = processor(text=self.input_string , voice_preset=self.voice_preset )
def __A ( self : Union[str, Any] ) -> List[str]:
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = processor(text=self.input_string )
__lowerCamelCase = tokenizer(
self.input_string , padding='''max_length''' , max_length=2_56 , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
| 339 |
import datasets
import faiss
import numpy as np
import streamlit as st
import torch
from elasticsearch import Elasticsearch
from elia_utils import (
embed_questions_for_retrieval,
make_qa_sas_model,
qa_sas_generate,
query_es_index,
query_qa_dense_index,
)
import transformers
from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer
SCREAMING_SNAKE_CASE__ : Optional[int] = "bart"
SCREAMING_SNAKE_CASE__ : Dict = True
@st.cache(allow_output_mutation=__lowerCAmelCase )
def __magic_name__ ( ) -> str:
if LOAD_DENSE_INDEX:
__lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' )
__lowerCamelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' )
__lowerCamelCase = qar_model.eval()
else:
__lowerCamelCase , __lowerCamelCase = (None, None)
if MODEL_TYPE == "bart":
__lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' )
__lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' )
__lowerCamelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' )
sas_model.load_state_dict(save_dict['''model'''] )
__lowerCamelCase = sas_model.eval()
else:
__lowerCamelCase , __lowerCamelCase = make_qa_sas_model(
model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' )
return (qar_tokenizer, qar_model, sas_tokenizer, sas_model)
@st.cache(allow_output_mutation=__lowerCAmelCase )
def __magic_name__ ( ) -> Optional[int]:
if LOAD_DENSE_INDEX:
__lowerCamelCase = faiss.StandardGpuResources()
__lowerCamelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train''']
__lowerCamelCase = np.memmap(
'''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , )
__lowerCamelCase = faiss.IndexFlatIP(128 )
__lowerCamelCase = faiss.index_cpu_to_gpu(__lowerCAmelCase , 1 , __lowerCAmelCase )
wikiaab_gpu_index_flat.add(__lowerCAmelCase ) # TODO fix for larger GPU
else:
__lowerCamelCase , __lowerCamelCase = (None, None)
__lowerCamelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] )
return (wikiaab_passages, wikiaab_gpu_index_flat, es_client)
@st.cache(allow_output_mutation=__lowerCAmelCase )
def __magic_name__ ( ) -> List[str]:
__lowerCamelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' )
__lowerCamelCase = elia['''train_eli5''']
__lowerCamelCase = np.memmap(
'''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) )
__lowerCamelCase = faiss.IndexFlatIP(128 )
eli5_train_q_index.add(__lowerCAmelCase )
return (elia_train, eli5_train_q_index)
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = load_indexes()
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = load_models()
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = load_train_data()
def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[str]=10 ) -> List[str]:
__lowerCamelCase = embed_questions_for_retrieval([question] , __lowerCAmelCase , __lowerCAmelCase )
__lowerCamelCase , __lowerCamelCase = eli5_train_q_index.search(__lowerCAmelCase , __lowerCAmelCase )
__lowerCamelCase = [elia_train[int(__lowerCAmelCase )] for i in I[0]]
return nn_examples
def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict="wiki40b" , __lowerCAmelCase : Any="dense" , __lowerCAmelCase : Dict=10 ) -> Union[str, Any]:
if source == "none":
__lowerCamelCase , __lowerCamelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), [])
else:
if method == "dense":
__lowerCamelCase , __lowerCamelCase = query_qa_dense_index(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
else:
__lowerCamelCase , __lowerCamelCase = query_es_index(
__lowerCAmelCase , __lowerCAmelCase , index_name='''english_wiki40b_snippets_100w''' , n_results=__lowerCAmelCase , )
__lowerCamelCase = [
(res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst
]
__lowerCamelCase = '''question: {} context: {}'''.format(__lowerCAmelCase , __lowerCAmelCase )
return question_doc, support_list
@st.cache(
hash_funcs={
torch.Tensor: (lambda __lowerCAmelCase : None),
transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __lowerCAmelCase : None),
} )
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str=64 , __lowerCAmelCase : Dict=256 , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : Optional[Any]=0.95 , __lowerCAmelCase : List[Any]=0.8 ) -> Any:
with torch.no_grad():
__lowerCamelCase = qa_sas_generate(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , num_answers=1 , num_beams=__lowerCAmelCase , min_len=__lowerCAmelCase , max_len=__lowerCAmelCase , do_sample=__lowerCAmelCase , temp=__lowerCAmelCase , top_p=__lowerCAmelCase , top_k=__lowerCAmelCase , max_input_length=1024 , device='''cuda:0''' , )[0]
return (answer, support_list)
st.title("Long Form Question Answering with ELI5")
# Start sidebar
SCREAMING_SNAKE_CASE__ : List[str] = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>"
SCREAMING_SNAKE_CASE__ : Dict = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % (
header_html,
)
st.sidebar.markdown(
header_full,
unsafe_allow_html=True,
)
# Long Form QA with ELI5 and Wikipedia
SCREAMING_SNAKE_CASE__ : int = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n"
st.sidebar.markdown(description, unsafe_allow_html=True)
SCREAMING_SNAKE_CASE__ : str = [
"Answer the question",
"View the retrieved document only",
"View the most similar ELI5 question and answer",
"Show me everything, please!",
]
SCREAMING_SNAKE_CASE__ : Optional[int] = st.sidebar.checkbox("Demo options")
if demo_options:
SCREAMING_SNAKE_CASE__ : Optional[int] = st.sidebar.selectbox(
"",
action_list,
index=3,
)
SCREAMING_SNAKE_CASE__ : Optional[Any] = action_list.index(action_st)
SCREAMING_SNAKE_CASE__ : int = st.sidebar.selectbox(
"",
["Show full text of passages", "Show passage section titles"],
index=0,
)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = show_type == "Show full text of passages"
else:
SCREAMING_SNAKE_CASE__ : Any = 3
SCREAMING_SNAKE_CASE__ : Any = True
SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.checkbox("Retrieval options")
if retrieval_options:
SCREAMING_SNAKE_CASE__ : Tuple = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n "
st.sidebar.markdown(retriever_info)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"])
SCREAMING_SNAKE_CASE__ : int = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"])
else:
SCREAMING_SNAKE_CASE__ : List[str] = "wiki40b"
SCREAMING_SNAKE_CASE__ : Optional[Any] = "dense"
SCREAMING_SNAKE_CASE__ : str = "beam"
SCREAMING_SNAKE_CASE__ : List[Any] = 2
SCREAMING_SNAKE_CASE__ : Optional[Any] = 64
SCREAMING_SNAKE_CASE__ : List[Any] = 256
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
SCREAMING_SNAKE_CASE__ : List[str] = st.sidebar.checkbox("Generation options")
if generate_options:
SCREAMING_SNAKE_CASE__ : Dict = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n "
st.sidebar.markdown(generate_info)
SCREAMING_SNAKE_CASE__ : List[str] = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"])
SCREAMING_SNAKE_CASE__ : Any = st.sidebar.slider(
"Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None
)
SCREAMING_SNAKE_CASE__ : str = st.sidebar.slider(
"Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None
)
if sampled == "beam":
SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None)
else:
SCREAMING_SNAKE_CASE__ : Any = st.sidebar.slider(
"Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None
)
SCREAMING_SNAKE_CASE__ : Dict = st.sidebar.slider(
"Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None
)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
# start main text
SCREAMING_SNAKE_CASE__ : Any = [
"<MY QUESTION>",
"How do people make chocolate?",
"Why do we get a fever when we are sick?",
"How can different animals perceive different colors?",
"What is natural language processing?",
"What's the best way to treat a sunburn?",
"What exactly are vitamins ?",
"How does nuclear energy provide electricity?",
"What's the difference between viruses and bacteria?",
"Why are flutes classified as woodwinds when most of them are made out of metal ?",
"Why do people like drinking coffee even though it tastes so bad?",
"What happens when wine ages? How does it make the wine taste better?",
"If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?",
"How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?",
"How does New Zealand have so many large bird predators?",
]
SCREAMING_SNAKE_CASE__ : List[str] = st.selectbox(
"What would you like to ask? ---- select <MY QUESTION> to enter a new query",
questions_list,
index=1,
)
if question_s == "<MY QUESTION>":
SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.text_input("Enter your question here:", "")
else:
SCREAMING_SNAKE_CASE__ : str = question_s
if st.button("Show me!"):
if action in [0, 1, 3]:
if index_type == "mixed":
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = make_support(question, source=wiki_source, method="dense", n_results=10)
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = make_support(question, source=wiki_source, method="sparse", n_results=10)
SCREAMING_SNAKE_CASE__ : int = []
for res_d, res_s in zip(support_list_dense, support_list_sparse):
if tuple(res_d) not in support_list:
support_list += [tuple(res_d)]
if tuple(res_s) not in support_list:
support_list += [tuple(res_s)]
SCREAMING_SNAKE_CASE__ : Optional[Any] = support_list[:10]
SCREAMING_SNAKE_CASE__ : Tuple = "<P> " + " <P> ".join([res[-1] for res in support_list])
else:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = make_support(question, source=wiki_source, method=index_type, n_results=10)
if action in [0, 3]:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = answer_question(
question_doc,
sas_model,
sas_tokenizer,
min_len=min_len,
max_len=int(max_len),
sampling=(sampled == "sampled"),
n_beams=n_beams,
top_p=top_p,
temp=temp,
)
st.markdown("### The model generated answer is:")
st.write(answer)
if action in [0, 1, 3] and wiki_source != "none":
st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:")
for i, res in enumerate(support_list):
SCREAMING_SNAKE_CASE__ : Optional[int] = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_"))
SCREAMING_SNAKE_CASE__ : Tuple = res[1].strip()
if sec_titles == "":
SCREAMING_SNAKE_CASE__ : Union[str, Any] = "[{}]({})".format(res[0], wiki_url)
else:
SCREAMING_SNAKE_CASE__ : Dict = sec_titles.split(" & ")
SCREAMING_SNAKE_CASE__ : int = " & ".join(
["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list]
)
st.markdown(
"{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections),
unsafe_allow_html=True,
)
if show_passages:
st.write(
"> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True
)
if action in [2, 3]:
SCREAMING_SNAKE_CASE__ : Any = find_nearest_training(question)
SCREAMING_SNAKE_CASE__ : List[Any] = nn_train_list[0]
st.markdown(
"--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"])
)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [
"{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""]))
for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"]))
if i == 0 or sc > 2
]
st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st)))
SCREAMING_SNAKE_CASE__ : List[Any] = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n"
st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
| 339 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : int = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
SCREAMING_SNAKE_CASE__ : Dict = {
"vocab_file": {
"distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt",
"distilbert-base-uncased-distilled-squad": (
"https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt"
),
"distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt",
"distilbert-base-cased-distilled-squad": (
"https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt"
),
"distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt",
"distilbert-base-multilingual-cased": (
"https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json",
"distilbert-base-uncased-distilled-squad": (
"https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json"
),
"distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json",
"distilbert-base-cased-distilled-squad": (
"https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json"
),
"distilbert-base-german-cased": (
"https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json"
),
"distilbert-base-multilingual-cased": (
"https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json"
),
},
}
SCREAMING_SNAKE_CASE__ : Optional[int] = {
"distilbert-base-uncased": 512,
"distilbert-base-uncased-distilled-squad": 512,
"distilbert-base-cased": 512,
"distilbert-base-cased-distilled-squad": 512,
"distilbert-base-german-cased": 512,
"distilbert-base-multilingual-cased": 512,
}
SCREAMING_SNAKE_CASE__ : str = {
"distilbert-base-uncased": {"do_lower_case": True},
"distilbert-base-uncased-distilled-squad": {"do_lower_case": True},
"distilbert-base-cased": {"do_lower_case": False},
"distilbert-base-cased-distilled-squad": {"do_lower_case": False},
"distilbert-base-german-cased": {"do_lower_case": False},
"distilbert-base-multilingual-cased": {"do_lower_case": False},
}
class lowerCAmelCase__ ( __lowercase ):
a__ : Tuple = VOCAB_FILES_NAMES
a__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
a__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ : List[Any] = PRETRAINED_INIT_CONFIGURATION
a__ : Dict = ["""input_ids""", """attention_mask"""]
a__ : List[Any] = DistilBertTokenizer
def __init__( self : str , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Any="[UNK]" , SCREAMING_SNAKE_CASE__ : Optional[Any]="[SEP]" , SCREAMING_SNAKE_CASE__ : Tuple="[PAD]" , SCREAMING_SNAKE_CASE__ : Dict="[CLS]" , SCREAMING_SNAKE_CASE__ : Tuple="[MASK]" , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : List[Any]=None , **SCREAMING_SNAKE_CASE__ : List[Any] , ) -> Any:
super().__init__(
SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , SCREAMING_SNAKE_CASE__ ) != do_lower_case
or normalizer_state.get('''strip_accents''' , SCREAMING_SNAKE_CASE__ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars
):
__lowerCamelCase = getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop('''type''' ) )
__lowerCamelCase = do_lower_case
__lowerCamelCase = strip_accents
__lowerCamelCase = tokenize_chinese_chars
__lowerCamelCase = normalizer_class(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = do_lower_case
def __A ( self : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any=None ) -> Dict:
__lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self : int , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]:
__lowerCamelCase = [self.sep_token_id]
__lowerCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]:
__lowerCamelCase = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ )
return tuple(SCREAMING_SNAKE_CASE__ )
| 339 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ : List[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : str = {
"facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json",
"facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json",
"facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json",
"facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json",
"facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json",
"facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json",
"facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json",
"facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json",
"facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json",
}
class lowerCAmelCase__ ( __lowercase ):
a__ : Dict = """xmod"""
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_05_22 , SCREAMING_SNAKE_CASE__ : str=7_68 , SCREAMING_SNAKE_CASE__ : int=12 , SCREAMING_SNAKE_CASE__ : Dict=12 , SCREAMING_SNAKE_CASE__ : List[str]=30_72 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : List[Any]=0.02 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1e-12 , SCREAMING_SNAKE_CASE__ : List[str]=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : Any="absolute" , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=("en_XX",) , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , **SCREAMING_SNAKE_CASE__ : int , ) -> str:
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = hidden_act
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = type_vocab_size
__lowerCamelCase = initializer_range
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = position_embedding_type
__lowerCamelCase = use_cache
__lowerCamelCase = classifier_dropout
__lowerCamelCase = pre_norm
__lowerCamelCase = adapter_reduction_factor
__lowerCamelCase = adapter_layer_norm
__lowerCamelCase = adapter_reuse_layer_norm
__lowerCamelCase = ln_before_adapter
__lowerCamelCase = list(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = default_language
class lowerCAmelCase__ ( __lowercase ):
@property
def __A ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
__lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__lowerCamelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 339 | 1 |
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class lowerCAmelCase__ ( unittest.TestCase ):
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str]=13 , SCREAMING_SNAKE_CASE__ : int=7 , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=99 , SCREAMING_SNAKE_CASE__ : Tuple=32 , SCREAMING_SNAKE_CASE__ : Dict=5 , SCREAMING_SNAKE_CASE__ : Any=4 , SCREAMING_SNAKE_CASE__ : str=37 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : str=5_12 , SCREAMING_SNAKE_CASE__ : Tuple=16 , SCREAMING_SNAKE_CASE__ : Optional[int]=2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE__ : int=4 , ) -> List[str]:
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_attention_mask
__lowerCamelCase = use_token_type_ids
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = type_vocab_size
__lowerCamelCase = type_sequence_label_size
__lowerCamelCase = initializer_range
__lowerCamelCase = num_choices
def __A ( self : str ) -> List[Any]:
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCamelCase = None
if self.use_attention_mask:
__lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCamelCase = None
if self.use_token_type_ids:
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowerCamelCase = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def __A ( self : Union[str, Any] ) -> int:
__lowerCamelCase = self.prepare_config_and_inputs()
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs
__lowerCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
@require_flax
class lowerCAmelCase__ ( __lowercase , unittest.TestCase ):
a__ : str = True
a__ : Dict = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def __A ( self : List[Any] ) -> List[Any]:
__lowerCamelCase = FlaxRoFormerModelTester(self )
@slow
def __A ( self : Tuple ) -> Optional[Any]:
for model_class_name in self.all_model_classes:
__lowerCamelCase = model_class_name.from_pretrained('''junnyu/roformer_chinese_small''' , from_pt=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
@require_flax
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
def __A ( self : Optional[int] ) -> List[Any]:
__lowerCamelCase = FlaxRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' )
__lowerCamelCase = jnp.array([[0, 1, 2, 3, 4, 5]] )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )[0]
__lowerCamelCase = 5_00_00
__lowerCamelCase = (1, 6, vocab_size)
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = jnp.array(
[[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
| 339 |
from collections import namedtuple
import requests
from lxml import html # type: ignore
SCREAMING_SNAKE_CASE__ : List[Any] = namedtuple("covid_data", "cases deaths recovered")
def __magic_name__ ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data:
__lowerCamelCase = '''//div[@class = "maincounter-number"]/span/text()'''
return covid_data(*html.fromstring(requests.get(__lowerCAmelCase ).content ).xpath(__lowerCAmelCase ) )
SCREAMING_SNAKE_CASE__ : List[str] = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}"
print(fmt.format(*covid_stats()))
| 339 | 1 |
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_multi_gpu
from accelerate.utils import patch_environment
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : int ) -> Any:
__lowerCamelCase = inspect.getfile(accelerate.test_utils )
__lowerCamelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] )
__lowerCamelCase = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] )
__lowerCamelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] )
@require_multi_gpu
def __A ( self : Tuple ) -> Dict:
print(f'''Found {torch.cuda.device_count()} devices.''' )
__lowerCamelCase = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() )
@require_multi_gpu
def __A ( self : Union[str, Any] ) -> str:
print(f'''Found {torch.cuda.device_count()} devices.''' )
__lowerCamelCase = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path]
print(f'''Command: {cmd}''' )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() )
@require_multi_gpu
def __A ( self : Optional[int] ) -> Optional[Any]:
__lowerCamelCase = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() )
@require_multi_gpu
def __A ( self : List[Any] ) -> Any:
print(f'''Found {torch.cuda.device_count()} devices, using 2 devices only''' )
__lowerCamelCase = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path]
with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ):
execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ : int = Accelerator()
SCREAMING_SNAKE_CASE__ : Dict = (accelerator.state.process_index + 2, 10)
SCREAMING_SNAKE_CASE__ : Optional[int] = torch.randint(0, 10, shape).to(accelerator.device)
SCREAMING_SNAKE_CASE__ : int = ""
SCREAMING_SNAKE_CASE__ : Dict = accelerator.pad_across_processes(tensor)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0):
error_msg += "Padding was not done with the right value (0)."
SCREAMING_SNAKE_CASE__ : int = accelerator.pad_across_processes(tensor, pad_first=True)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
SCREAMING_SNAKE_CASE__ : Optional[int] = accelerator.state.num_processes - accelerator.state.process_index - 1
if not torch.equal(tensora[index:], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[:index] == 0):
error_msg += "Padding was not done with the right value (0)."
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 339 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
SCREAMING_SNAKE_CASE__ : int = logging.getLogger(__name__)
@dataclass
class lowerCAmelCase__ :
a__ : str = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
a__ : Optional[str] = field(
default=__lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
a__ : Optional[str] = field(
default=__lowercase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
a__ : Optional[str] = field(
default=__lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether tp freeze the encoder."""} )
a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether to freeze the embeddings."""} )
@dataclass
class lowerCAmelCase__ :
a__ : str = field(
metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} )
a__ : Optional[str] = field(
default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , )
a__ : Optional[int] = field(
default=1_024 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a__ : Optional[int] = field(
default=128 , metadata={
"""help""": (
"""The maximum total sequence length for target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a__ : Optional[int] = field(
default=142 , metadata={
"""help""": (
"""The maximum total sequence length for validation target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded. """
"""This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """
"""during ``evaluate`` and ``predict``."""
)
} , )
a__ : Optional[int] = field(
default=142 , metadata={
"""help""": (
"""The maximum total sequence length for test target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} )
a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} )
a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} )
a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Source language id for translation."""} )
a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Target language id for translation."""} )
a__ : Optional[int] = field(default=__lowercase , metadata={"""help""": """# num_beams to use for evaluation."""} )
a__ : bool = field(
default=__lowercase , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , )
def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : int ) -> Dict:
logger.info(f'''***** {split} metrics *****''' )
for key in sorted(metrics.keys() ):
logger.info(f''' {key} = {metrics[key]}''' )
save_json(__lowerCAmelCase , os.path.join(__lowerCAmelCase , f'''{split}_results.json''' ) )
def __magic_name__ ( ) -> Optional[Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_args_into_dataclasses()
check_output_dir(__lowerCAmelCase )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info('''Training/evaluation parameters %s''' , __lowerCAmelCase )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__lowerCamelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__lowerCamelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''')
for p in extra_model_params:
if getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
assert hasattr(__lowerCAmelCase , __lowerCAmelCase ), f'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute'''
setattr(__lowerCAmelCase , __lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) )
__lowerCamelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , )
# use task specific params
use_task_specific_params(__lowerCAmelCase , data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
__lowerCamelCase = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(__lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
__lowerCamelCase = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
__lowerCamelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(__lowerCAmelCase )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
__lowerCamelCase = SeqaSeqDataset
# Get datasets
__lowerCamelCase = (
dataset_class(
__lowerCAmelCase , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_train
else None
)
__lowerCamelCase = (
dataset_class(
__lowerCAmelCase , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
__lowerCamelCase = (
dataset_class(
__lowerCAmelCase , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_predict
else None
)
# Initialize our Trainer
__lowerCamelCase = (
build_compute_metrics_fn(data_args.task , __lowerCAmelCase ) if training_args.predict_with_generate else None
)
__lowerCamelCase = SeqaSeqTrainer(
model=__lowerCAmelCase , args=__lowerCAmelCase , data_args=__lowerCAmelCase , train_dataset=__lowerCAmelCase , eval_dataset=__lowerCAmelCase , data_collator=SeqaSeqDataCollator(
__lowerCAmelCase , __lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , )
__lowerCamelCase = {}
# Training
if training_args.do_train:
logger.info('''*** Train ***''' )
__lowerCamelCase = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
__lowerCamelCase = train_result.metrics
__lowerCamelCase = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics('''train''' , __lowerCAmelCase , training_args.output_dir )
all_metrics.update(__lowerCAmelCase )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
__lowerCamelCase = trainer.evaluate(metric_key_prefix='''val''' )
__lowerCamelCase = data_args.n_val
__lowerCamelCase = round(metrics['''val_loss'''] , 4 )
if trainer.is_world_process_zero():
handle_metrics('''val''' , __lowerCAmelCase , training_args.output_dir )
all_metrics.update(__lowerCAmelCase )
if training_args.do_predict:
logger.info('''*** Predict ***''' )
__lowerCamelCase = trainer.predict(test_dataset=__lowerCAmelCase , metric_key_prefix='''test''' )
__lowerCamelCase = test_output.metrics
__lowerCamelCase = data_args.n_test
if trainer.is_world_process_zero():
__lowerCamelCase = round(metrics['''test_loss'''] , 4 )
handle_metrics('''test''' , __lowerCAmelCase , training_args.output_dir )
all_metrics.update(__lowerCAmelCase )
if training_args.predict_with_generate:
__lowerCamelCase = tokenizer.batch_decode(
test_output.predictions , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase )
__lowerCamelCase = lmap(str.strip , __lowerCAmelCase )
write_txt_file(__lowerCAmelCase , os.path.join(training_args.output_dir , '''test_generations.txt''' ) )
if trainer.is_world_process_zero():
save_json(__lowerCAmelCase , os.path.join(training_args.output_dir , '''all_results.json''' ) )
return all_metrics
def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Union[str, Any]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 339 | 1 |
from __future__ import annotations
def __magic_name__ ( __lowerCAmelCase : int ) -> list[int]:
__lowerCamelCase = [True] * limit
__lowerCamelCase = False
__lowerCamelCase = False
__lowerCamelCase = True
for i in range(3 , int(limit**0.5 + 1 ) , 2 ):
__lowerCamelCase = i * 2
while index < limit:
__lowerCamelCase = False
__lowerCamelCase = index + i
__lowerCamelCase = [2]
for i in range(3 , __lowerCAmelCase , 2 ):
if is_prime[i]:
primes.append(__lowerCAmelCase )
return primes
def __magic_name__ ( __lowerCAmelCase : int = 100_0000 ) -> int:
__lowerCamelCase = prime_sieve(__lowerCAmelCase )
__lowerCamelCase = 0
__lowerCamelCase = 0
for i in range(len(__lowerCAmelCase ) ):
for j in range(i + length , len(__lowerCAmelCase ) ):
__lowerCamelCase = sum(primes[i:j] )
if sol >= ceiling:
break
if sol in primes:
__lowerCamelCase = j - i
__lowerCamelCase = sol
return largest
if __name__ == "__main__":
print(F'{solution() = }')
| 339 |
import unittest
import numpy as np
import torch
from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class lowerCAmelCase__ ( unittest.TestCase ):
@property
def __A ( self : List[Any] ) -> Optional[Any]:
torch.manual_seed(0 )
__lowerCamelCase = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def __A ( self : Optional[int] ) -> Optional[Any]:
__lowerCamelCase = self.dummy_uncond_unet
__lowerCamelCase = ScoreSdeVeScheduler()
__lowerCamelCase = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
sde_ve.to(SCREAMING_SNAKE_CASE__ )
sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ ).images
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ )[
0
]
__lowerCamelCase = image[0, -3:, -3:, -1]
__lowerCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__lowerCamelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : Tuple ) -> str:
__lowerCamelCase = '''google/ncsnpp-church-256'''
__lowerCamelCase = UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = ScoreSdeVeScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
sde_ve.to(SCREAMING_SNAKE_CASE__ )
sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ ).images
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
__lowerCamelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 339 | 1 |
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class lowerCAmelCase__ ( __lowercase ):
def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str ) -> Optional[int]:
with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as input_file:
__lowerCamelCase = re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' )
__lowerCamelCase = input_file.read()
__lowerCamelCase = regexp.search(SCREAMING_SNAKE_CASE__ )
return match
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : str ) -> int:
with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as input_file:
__lowerCamelCase = re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL )
__lowerCamelCase = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
__lowerCamelCase = regexp.finditer(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = [match for match in matches if match is not None and match.group(1 ) is not None]
return matches[0] if matches else None
def __A ( self : Union[str, Any] ) -> Any:
__lowerCamelCase = Path('''./datasets''' )
__lowerCamelCase = list(dataset_paths.absolute().glob('''**/*.py''' ) )
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(SCREAMING_SNAKE_CASE__ ) ):
raise AssertionError(f'''open(...) must use utf-8 encoding in {dataset}''' )
def __A ( self : Dict ) -> Any:
__lowerCamelCase = Path('''./datasets''' )
__lowerCamelCase = list(dataset_paths.absolute().glob('''**/*.py''' ) )
for dataset in dataset_files:
if self._no_print_statements(str(SCREAMING_SNAKE_CASE__ ) ):
raise AssertionError(f'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
| 339 |
from functools import lru_cache
def __magic_name__ ( __lowerCAmelCase : int ) -> set:
__lowerCamelCase = 2
__lowerCamelCase = set()
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.add(__lowerCAmelCase )
if n > 1:
factors.add(__lowerCAmelCase )
return factors
@lru_cache
def __magic_name__ ( __lowerCAmelCase : int ) -> int:
return len(unique_prime_factors(__lowerCAmelCase ) )
def __magic_name__ ( __lowerCAmelCase : list ) -> bool:
return len(set(__lowerCAmelCase ) ) in (0, 1)
def __magic_name__ ( __lowerCAmelCase : int ) -> list:
__lowerCamelCase = 2
while True:
# Increment each value of a generated range
__lowerCamelCase = [base + i for i in range(__lowerCAmelCase )]
# Run elements through out unique_prime_factors function
# Append our target number to the end.
__lowerCamelCase = [upf_len(__lowerCAmelCase ) for x in group]
checker.append(__lowerCAmelCase )
# If all numbers in the list are equal, return the group variable.
if equality(__lowerCAmelCase ):
return group
# Increment our base variable by 1
base += 1
def __magic_name__ ( __lowerCAmelCase : int = 4 ) -> int:
__lowerCamelCase = run(__lowerCAmelCase )
return results[0] if len(__lowerCAmelCase ) else None
if __name__ == "__main__":
print(solution())
| 339 | 1 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCAmelCase__ ( __lowercase ):
a__ : List[Any] = """ClapFeatureExtractor"""
a__ : int = ("""RobertaTokenizer""", """RobertaTokenizerFast""")
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]:
super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __call__( self : List[str] , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , **SCREAMING_SNAKE_CASE__ : int ) -> Any:
__lowerCamelCase = kwargs.pop('''sampling_rate''' , SCREAMING_SNAKE_CASE__ )
if text is None and audios is None:
raise ValueError('''You have to specify either text or audios. Both cannot be none.''' )
if text is not None:
__lowerCamelCase = self.tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
if audios is not None:
__lowerCamelCase = self.feature_extractor(
SCREAMING_SNAKE_CASE__ , sampling_rate=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
if text is not None and audios is not None:
__lowerCamelCase = audio_features.input_features
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE__ ) , tensor_type=SCREAMING_SNAKE_CASE__ )
def __A ( self : str , *SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[str]:
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
def __A ( self : str , *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> List[Any]:
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
@property
def __A ( self : List[Any] ) -> Optional[Any]:
__lowerCamelCase = self.tokenizer.model_input_names
__lowerCamelCase = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
| 339 |
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class lowerCAmelCase__ :
def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=99 , SCREAMING_SNAKE_CASE__ : List[Any]=13 , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : int=9 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : int=32 , SCREAMING_SNAKE_CASE__ : Tuple=5 , SCREAMING_SNAKE_CASE__ : List[str]=4 , SCREAMING_SNAKE_CASE__ : str=37 , SCREAMING_SNAKE_CASE__ : int=8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.002 , SCREAMING_SNAKE_CASE__ : str=1 , SCREAMING_SNAKE_CASE__ : Tuple=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Dict=None , ) -> Optional[Any]:
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = encoder_seq_length
__lowerCamelCase = decoder_seq_length
# For common tests
__lowerCamelCase = self.decoder_seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_attention_mask
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = d_ff
__lowerCamelCase = relative_attention_num_buckets
__lowerCamelCase = dropout_rate
__lowerCamelCase = initializer_factor
__lowerCamelCase = eos_token_id
__lowerCamelCase = pad_token_id
__lowerCamelCase = decoder_start_token_id
__lowerCamelCase = None
__lowerCamelCase = decoder_layers
def __A ( self : Any ) -> Tuple:
return TaConfig.from_pretrained('''google/umt5-base''' )
def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , ) -> Optional[int]:
if attention_mask is None:
__lowerCamelCase = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
__lowerCamelCase = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
__lowerCamelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ )
if decoder_head_mask is None:
__lowerCamelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ )
if cross_attn_head_mask is None:
__lowerCamelCase = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def __A ( self : List[Any] ) -> Tuple:
__lowerCamelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
__lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
__lowerCamelCase = input_ids.clamp(self.pad_token_id + 1 )
__lowerCamelCase = decoder_input_ids.clamp(self.pad_token_id + 1 )
__lowerCamelCase = self.get_config()
__lowerCamelCase = config.num_attention_heads
__lowerCamelCase = self.prepare_inputs_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return config, input_dict
def __A ( self : Tuple ) -> List[str]:
__lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs()
return config, inputs_dict
def __A ( self : Optional[Any] ) -> Any:
return TaConfig(
vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def __A ( self : List[Any] ) -> Any:
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> int:
__lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ )
model.to(SCREAMING_SNAKE_CASE__ )
model.eval()
__lowerCamelCase = model(
input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = model(input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = result.last_hidden_state
__lowerCamelCase = result.past_key_values
__lowerCamelCase = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Dict:
__lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ).get_decoder().to(SCREAMING_SNAKE_CASE__ ).eval()
# first forward pass
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ )
self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) )
self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) + 1 )
__lowerCamelCase , __lowerCamelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
__lowerCamelCase = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
__lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )['''last_hidden_state''']
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ )['''last_hidden_state''']
# select random slice
__lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__lowerCamelCase = output_from_no_past[:, -1, random_slice_idx].detach()
__lowerCamelCase = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) )
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Optional[int]:
__lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ).half().eval()
__lowerCamelCase = model(**SCREAMING_SNAKE_CASE__ )['''last_hidden_state''']
self.parent.assertFalse(torch.isnan(SCREAMING_SNAKE_CASE__ ).any().item() )
@require_torch
class lowerCAmelCase__ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ):
a__ : List[Any] = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
a__ : Union[str, Any] = (UMTaForConditionalGeneration,) if is_torch_available() else ()
a__ : Tuple = (
{
"""conversational""": UMTaForConditionalGeneration,
"""feature-extraction""": UMTaModel,
"""summarization""": UMTaForConditionalGeneration,
"""text2text-generation""": UMTaForConditionalGeneration,
"""translation""": UMTaForConditionalGeneration,
"""question-answering""": UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
a__ : int = True
a__ : int = False
a__ : Tuple = False
a__ : Optional[int] = True
a__ : Optional[int] = True
# The small UMT5 model needs higher percentages for CPU/MP tests
a__ : Tuple = [0.8, 0.9]
def __A ( self : Tuple ) -> Tuple:
__lowerCamelCase = UMTaModelTester(self )
@unittest.skip('''Test has a segmentation fault on torch 1.8.0''' )
def __A ( self : List[str] ) -> Union[str, Any]:
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
__lowerCamelCase = UMTaModel(config_and_inputs[0] ).to(SCREAMING_SNAKE_CASE__ )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
SCREAMING_SNAKE_CASE__ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=SCREAMING_SNAKE_CASE__ , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def __A ( self : Union[str, Any] ) -> Any:
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*SCREAMING_SNAKE_CASE__ )
def __A ( self : Any ) -> Any:
__lowerCamelCase = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions''']
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
__lowerCamelCase = config_and_inputs[0]
__lowerCamelCase = UMTaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval()
model.to(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = {
'''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ),
'''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ),
'''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ),
}
for attn_name, (name, mask) in zip(SCREAMING_SNAKE_CASE__ , head_masking.items() ):
__lowerCamelCase = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
__lowerCamelCase = torch.ones(
config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model.generate(
config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=SCREAMING_SNAKE_CASE__ , return_dict_in_generate=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
# We check the state of decoder_attentions and cross_attentions just from the last step
__lowerCamelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' )
def __A ( self : Tuple ) -> Optional[Any]:
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
@unittest.skip(
'''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' )
def __A ( self : int ) -> Optional[Any]:
__lowerCamelCase = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=SCREAMING_SNAKE_CASE__ , legacy=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = [
'''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''',
'''No se como puedo <extra_id_0>.''',
'''This is the reason why we <extra_id_0> them.''',
'''The <extra_id_0> walks in <extra_id_1>, seats''',
'''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''',
]
__lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , padding=SCREAMING_SNAKE_CASE__ ).input_ids
# fmt: off
__lowerCamelCase = torch.tensor(
[
[ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1],
] )
# fmt: on
torch.testing.assert_allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model.generate(input_ids.to(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = [
'''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''',
'''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
]
__lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ )
self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
| 339 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ : int = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : int = {
"YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json",
"YituTech/conv-bert-medium-small": (
"https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json"
),
"YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json",
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class lowerCAmelCase__ ( __lowercase ):
a__ : str = """convbert"""
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int=3_05_22 , SCREAMING_SNAKE_CASE__ : Optional[int]=7_68 , SCREAMING_SNAKE_CASE__ : Tuple=12 , SCREAMING_SNAKE_CASE__ : str=12 , SCREAMING_SNAKE_CASE__ : List[str]=30_72 , SCREAMING_SNAKE_CASE__ : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5_12 , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : str=0.02 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1e-12 , SCREAMING_SNAKE_CASE__ : Tuple=1 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : Any=7_68 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : Tuple=9 , SCREAMING_SNAKE_CASE__ : Dict=1 , SCREAMING_SNAKE_CASE__ : List[Any]=None , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> Optional[Any]:
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = type_vocab_size
__lowerCamelCase = initializer_range
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = embedding_size
__lowerCamelCase = head_ratio
__lowerCamelCase = conv_kernel_size
__lowerCamelCase = num_groups
__lowerCamelCase = classifier_dropout
class lowerCAmelCase__ ( __lowercase ):
@property
def __A ( self : Dict ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
__lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__lowerCamelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 339 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Tuple = {
"s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json",
}
class lowerCAmelCase__ ( __lowercase ):
a__ : Union[str, Any] = """open-llama"""
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Any=10_00_00 , SCREAMING_SNAKE_CASE__ : Any=40_96 , SCREAMING_SNAKE_CASE__ : Any=1_10_08 , SCREAMING_SNAKE_CASE__ : Tuple=32 , SCREAMING_SNAKE_CASE__ : str=32 , SCREAMING_SNAKE_CASE__ : Any="silu" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=20_48 , SCREAMING_SNAKE_CASE__ : List[str]=0.02 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-6 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Dict=0 , SCREAMING_SNAKE_CASE__ : Tuple=1 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : List[str]=None , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> Dict:
__lowerCamelCase = vocab_size
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = hidden_size
__lowerCamelCase = intermediate_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = hidden_act
__lowerCamelCase = initializer_range
__lowerCamelCase = rms_norm_eps
__lowerCamelCase = use_cache
__lowerCamelCase = kwargs.pop(
'''use_memorry_efficient_attention''' , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_dropout_prob
__lowerCamelCase = use_stable_embedding
__lowerCamelCase = shared_input_output_embedding
__lowerCamelCase = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , tie_word_embeddings=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
def __A ( self : Dict ) -> Optional[int]:
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , SCREAMING_SNAKE_CASE__ ) or len(self.rope_scaling ) != 2:
raise ValueError(
'''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '''
f'''got {self.rope_scaling}''' )
__lowerCamelCase = self.rope_scaling.get('''type''' , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.rope_scaling.get('''factor''' , SCREAMING_SNAKE_CASE__ )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' )
if rope_scaling_factor is None or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or rope_scaling_factor <= 1.0:
raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
| 339 | 1 |
def __magic_name__ ( __lowerCAmelCase : str ) -> bool:
return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''') )
def __magic_name__ ( __lowerCAmelCase : str ) -> bool:
__lowerCamelCase = credit_card_number
__lowerCamelCase = 0
__lowerCamelCase = len(__lowerCAmelCase ) - 2
for i in range(__lowerCAmelCase , -1 , -2 ):
# double the value of every second digit
__lowerCamelCase = int(cc_number[i] )
digit *= 2
# If doubling of a number results in a two digit number
# i.e greater than 9(e.g., 6 × 2 = 12),
# then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6),
# to get a single digit number.
if digit > 9:
digit %= 10
digit += 1
__lowerCamelCase = cc_number[:i] + str(__lowerCAmelCase ) + cc_number[i + 1 :]
total += digit
# Sum up the remaining digits
for i in range(len(__lowerCAmelCase ) - 1 , -1 , -2 ):
total += int(cc_number[i] )
return total % 10 == 0
def __magic_name__ ( __lowerCAmelCase : str ) -> bool:
__lowerCamelCase = f'''{credit_card_number} is an invalid credit card number because'''
if not credit_card_number.isdigit():
print(f'''{error_message} it has nonnumerical characters.''' )
return False
if not 13 <= len(__lowerCAmelCase ) <= 16:
print(f'''{error_message} of its length.''' )
return False
if not validate_initial_digits(__lowerCAmelCase ):
print(f'''{error_message} of its first two digits.''' )
return False
if not luhn_validation(__lowerCAmelCase ):
print(f'''{error_message} it fails the Luhn check.''' )
return False
print(f'''{credit_card_number} is a valid credit card number.''' )
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
validate_credit_card_number("4111111111111111")
validate_credit_card_number("32323")
| 339 |
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
SCREAMING_SNAKE_CASE__ : Any = TypeVar("KEY")
SCREAMING_SNAKE_CASE__ : Dict = TypeVar("VAL")
@dataclass(frozen=__lowercase , slots=__lowercase )
class lowerCAmelCase__ ( Generic[KEY, VAL] ):
a__ : KEY
a__ : VAL
class lowerCAmelCase__ ( _Item ):
def __init__( self : str ) -> None:
super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __bool__( self : Tuple ) -> bool:
return False
SCREAMING_SNAKE_CASE__ : List[Any] = _DeletedItem()
class lowerCAmelCase__ ( MutableMapping[KEY, VAL] ):
def __init__( self : int , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.75 ) -> None:
__lowerCamelCase = initial_block_size
__lowerCamelCase = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
__lowerCamelCase = capacity_factor
__lowerCamelCase = 0
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : KEY ) -> int:
return hash(SCREAMING_SNAKE_CASE__ ) % len(self._buckets )
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> int:
return (ind + 1) % len(self._buckets )
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> bool:
__lowerCamelCase = self._buckets[ind]
if not stored:
__lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self._len += 1
return True
elif stored.key == key:
__lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return True
else:
return False
def __A ( self : Any ) -> bool:
__lowerCamelCase = len(self._buckets ) * self._capacity_factor
return len(self ) >= int(SCREAMING_SNAKE_CASE__ )
def __A ( self : List[Any] ) -> bool:
if len(self._buckets ) <= self._initial_block_size:
return False
__lowerCamelCase = len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def __A ( self : int , SCREAMING_SNAKE_CASE__ : int ) -> None:
__lowerCamelCase = self._buckets
__lowerCamelCase = [None] * new_size
__lowerCamelCase = 0
for item in old_buckets:
if item:
self._add_item(item.key , item.val )
def __A ( self : str ) -> None:
self._resize(len(self._buckets ) * 2 )
def __A ( self : Dict ) -> None:
self._resize(len(self._buckets ) // 2 )
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY ) -> Iterator[int]:
__lowerCamelCase = self._get_bucket_index(SCREAMING_SNAKE_CASE__ )
for _ in range(len(self._buckets ) ):
yield ind
__lowerCamelCase = self._get_next_ind(SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None:
for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ):
if self._try_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
break
def __setitem__( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None:
if self._is_full():
self._size_up()
self._add_item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __delitem__( self : List[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> None:
for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase = self._buckets[ind]
if item is None:
raise KeyError(SCREAMING_SNAKE_CASE__ )
if item is _deleted:
continue
if item.key == key:
__lowerCamelCase = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> VAL:
for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(SCREAMING_SNAKE_CASE__ )
def __len__( self : int ) -> int:
return self._len
def __iter__( self : Tuple ) -> Iterator[KEY]:
yield from (item.key for item in self._buckets if item)
def __repr__( self : Optional[Any] ) -> str:
__lowerCamelCase = ''' ,'''.join(
f'''{item.key}: {item.val}''' for item in self._buckets if item )
return f'''HashMap({val_string})'''
| 339 | 1 |
# This script creates a super tiny model that is useful inside tests, when we just want to test that
# the machinery works, without needing to the check the quality of the outcomes.
#
# This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny -
# all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and
# emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files.
# The latter is done by `fsmt-make-super-tiny-model.py`.
#
# It will be used then as "stas/tiny-wmt19-en-ru"
from pathlib import Path
import json
import tempfile
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE__ : str = "tiny-wmt19-en-ru"
# Build
# borrowed from a test
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"w</w>",
"r</w>",
"t</w>",
"lo",
"low",
"er</w>",
"low</w>",
"lowest</w>",
"newer</w>",
"wider</w>",
"<unk>",
]
SCREAMING_SNAKE_CASE__ : Dict = dict(zip(vocab, range(len(vocab))))
SCREAMING_SNAKE_CASE__ : List[Any] = ["l o 123", "lo w 1456", "e r</w> 1789", ""]
with tempfile.TemporaryDirectory() as tmpdirname:
SCREAMING_SNAKE_CASE__ : str = Path(tmpdirname)
SCREAMING_SNAKE_CASE__ : List[Any] = build_dir / VOCAB_FILES_NAMES["src_vocab_file"]
SCREAMING_SNAKE_CASE__ : Tuple = build_dir / VOCAB_FILES_NAMES["tgt_vocab_file"]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = build_dir / VOCAB_FILES_NAMES["merges_file"]
with open(src_vocab_file, "w") as fp:
fp.write(json.dumps(vocab_tokens))
with open(tgt_vocab_file, "w") as fp:
fp.write(json.dumps(vocab_tokens))
with open(merges_file, "w") as fp:
fp.write("\n".join(merges))
SCREAMING_SNAKE_CASE__ : Optional[int] = FSMTTokenizer(
langs=["en", "ru"],
src_vocab_size=len(vocab),
tgt_vocab_size=len(vocab),
src_vocab_file=src_vocab_file,
tgt_vocab_file=tgt_vocab_file,
merges_file=merges_file,
)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = FSMTConfig(
langs=["ru", "en"],
src_vocab_size=1_000,
tgt_vocab_size=1_000,
d_model=4,
encoder_layers=1,
decoder_layers=1,
encoder_ffn_dim=4,
decoder_ffn_dim=4,
encoder_attention_heads=1,
decoder_attention_heads=1,
)
SCREAMING_SNAKE_CASE__ : int = FSMTForConditionalGeneration(config)
print(F'num of params {tiny_model.num_parameters()}')
# Test
SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer(["Making tiny model"], return_tensors="pt")
SCREAMING_SNAKE_CASE__ : int = tiny_model(**batch)
print("test output:", len(outputs.logits[0]))
# Save
tiny_model.half() # makes it smaller
tiny_model.save_pretrained(mname_tiny)
tokenizer.save_pretrained(mname_tiny)
print(F'Generated {mname_tiny}')
# Upload
# transformers-cli upload tiny-wmt19-en-ru
| 339 |
from datetime import datetime as dt
import os
from github import Github
SCREAMING_SNAKE_CASE__ : Any = [
"good first issue",
"good second issue",
"good difficult issue",
"feature request",
"new model",
"wip",
]
def __magic_name__ ( ) -> Any:
__lowerCamelCase = Github(os.environ['''GITHUB_TOKEN'''] )
__lowerCamelCase = g.get_repo('''huggingface/transformers''' )
__lowerCamelCase = repo.get_issues(state='''open''' )
for issue in open_issues:
__lowerCamelCase = sorted([comment for comment in issue.get_comments()] , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase )
__lowerCamelCase = comments[0] if len(__lowerCAmelCase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state='''closed''' )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
'''This issue has been automatically marked as stale because it has not had '''
'''recent activity. If you think this still needs to be addressed '''
'''please comment on this thread.\n\nPlease note that issues that do not follow the '''
'''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) '''
'''are likely to be ignored.''' )
if __name__ == "__main__":
main()
| 339 | 1 |
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase__ ( __lowercase ):
a__ : List[str] = (EulerDiscreteScheduler,)
a__ : Any = 10
def __A ( self : Any , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any:
__lowerCamelCase = {
'''num_train_timesteps''': 11_00,
'''beta_start''': 0.0001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**SCREAMING_SNAKE_CASE__ )
return config
def __A ( self : int ) -> Dict:
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ )
def __A ( self : List[str] ) -> int:
for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE__ , beta_end=SCREAMING_SNAKE_CASE__ )
def __A ( self : Any ) -> str:
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[int] ) -> int:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ )
def __A ( self : Dict ) -> str:
__lowerCamelCase = self.scheduler_classes[0]
__lowerCamelCase = self.get_scheduler_config()
__lowerCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE__ )
scheduler.set_timesteps(self.num_inference_steps )
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = self.dummy_model()
__lowerCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
__lowerCamelCase = sample.to(SCREAMING_SNAKE_CASE__ )
for i, t in enumerate(scheduler.timesteps ):
__lowerCamelCase = scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = output.prev_sample
__lowerCamelCase = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 10.0807 ) < 1e-2
assert abs(result_mean.item() - 0.0131 ) < 1e-3
def __A ( self : Union[str, Any] ) -> str:
__lowerCamelCase = self.scheduler_classes[0]
__lowerCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''' )
__lowerCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE__ )
scheduler.set_timesteps(self.num_inference_steps )
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = self.dummy_model()
__lowerCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
__lowerCamelCase = sample.to(SCREAMING_SNAKE_CASE__ )
for i, t in enumerate(scheduler.timesteps ):
__lowerCamelCase = scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = output.prev_sample
__lowerCamelCase = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 0.0002 ) < 1e-2
assert abs(result_mean.item() - 2.2_676e-06 ) < 1e-3
def __A ( self : Optional[Any] ) -> Tuple:
__lowerCamelCase = self.scheduler_classes[0]
__lowerCamelCase = self.get_scheduler_config()
__lowerCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE__ )
scheduler.set_timesteps(self.num_inference_steps , device=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = self.dummy_model()
__lowerCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
__lowerCamelCase = sample.to(SCREAMING_SNAKE_CASE__ )
for t in scheduler.timesteps:
__lowerCamelCase = scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = output.prev_sample
__lowerCamelCase = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 10.0807 ) < 1e-2
assert abs(result_mean.item() - 0.0131 ) < 1e-3
def __A ( self : int ) -> Optional[int]:
__lowerCamelCase = self.scheduler_classes[0]
__lowerCamelCase = self.get_scheduler_config()
__lowerCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE__ , use_karras_sigmas=SCREAMING_SNAKE_CASE__ )
scheduler.set_timesteps(self.num_inference_steps , device=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = self.dummy_model()
__lowerCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
__lowerCamelCase = sample.to(SCREAMING_SNAKE_CASE__ )
for t in scheduler.timesteps:
__lowerCamelCase = scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = output.prev_sample
__lowerCamelCase = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 124.52299499511719 ) < 1e-2
assert abs(result_mean.item() - 0.16213932633399963 ) < 1e-3
| 339 |
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> str:
if a < 0 or b < 0:
raise ValueError('''the value of both inputs must be positive''' )
__lowerCamelCase = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b"
__lowerCamelCase = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b"
__lowerCamelCase = max(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) )
return "0b" + "".join(
str(int(char_a == '''1''' and char_b == '''1''' ) )
for char_a, char_b in zip(a_binary.zfill(__lowerCAmelCase ) , b_binary.zfill(__lowerCAmelCase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 339 | 1 |
from __future__ import annotations
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTForImageClassification, TFViTModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class lowerCAmelCase__ :
def __init__( self : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str]=13 , SCREAMING_SNAKE_CASE__ : List[Any]=30 , SCREAMING_SNAKE_CASE__ : Optional[int]=2 , SCREAMING_SNAKE_CASE__ : Optional[int]=3 , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Tuple=32 , SCREAMING_SNAKE_CASE__ : Dict=2 , SCREAMING_SNAKE_CASE__ : List[Any]=4 , SCREAMING_SNAKE_CASE__ : List[str]=37 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=10 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE__ : List[str]=3 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , ) -> List[Any]:
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = image_size
__lowerCamelCase = patch_size
__lowerCamelCase = num_channels
__lowerCamelCase = is_training
__lowerCamelCase = use_labels
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = type_sequence_label_size
__lowerCamelCase = initializer_range
__lowerCamelCase = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__lowerCamelCase = (image_size // patch_size) ** 2
__lowerCamelCase = num_patches + 1
def __A ( self : str ) -> Tuple:
__lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowerCamelCase = None
if self.use_labels:
__lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowerCamelCase = self.get_config()
return config, pixel_values, labels
def __A ( self : str ) -> Any:
return ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , )
def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
__lowerCamelCase = TFViTModel(config=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# Test with an image with different size than the one specified in config.
__lowerCamelCase = self.image_size // 2
__lowerCamelCase = pixel_values[:, :, :image_size, :image_size]
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , interpolate_pos_encoding=SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = (image_size // self.patch_size) ** 2 + 1
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) )
def __A ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]:
__lowerCamelCase = self.type_sequence_label_size
__lowerCamelCase = TFViTForImageClassification(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# Test with an image with different size than the one specified in config.
__lowerCamelCase = self.image_size // 2
__lowerCamelCase = pixel_values[:, :, :image_size, :image_size]
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , interpolate_pos_encoding=SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__lowerCamelCase = 1
__lowerCamelCase = TFViTForImageClassification(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __A ( self : str ) -> Any:
__lowerCamelCase = self.prepare_config_and_inputs()
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs
__lowerCamelCase = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class lowerCAmelCase__ ( __lowercase , __lowercase , unittest.TestCase ):
a__ : int = (TFViTModel, TFViTForImageClassification) if is_tf_available() else ()
a__ : Union[str, Any] = (
{"""feature-extraction""": TFViTModel, """image-classification""": TFViTForImageClassification}
if is_tf_available()
else {}
)
a__ : Dict = False
a__ : str = False
a__ : Dict = False
def __A ( self : Dict ) -> str:
__lowerCamelCase = TFViTModelTester(self )
__lowerCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ , hidden_size=37 )
def __A ( self : Optional[Any] ) -> int:
self.config_tester.run_common_tests()
@unittest.skip(reason='''ViT does not use inputs_embeds''' )
def __A ( self : int ) -> Optional[int]:
pass
@unittest.skip(reason='''ViT does not use inputs_embeds''' )
def __A ( self : Union[str, Any] ) -> Union[str, Any]:
pass
def __A ( self : List[Any] ) -> Optional[int]:
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase = model_class(SCREAMING_SNAKE_CASE__ )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
__lowerCamelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE__ , tf.keras.layers.Layer ) )
def __A ( self : Any ) -> int:
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase = model_class(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCamelCase = [*signature.parameters.keys()]
__lowerCamelCase = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ )
def __A ( self : int ) -> Union[str, Any]:
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ )
def __A ( self : str ) -> Tuple:
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ )
@slow
def __A ( self : str ) -> Optional[Any]:
__lowerCamelCase = TFViTModel.from_pretrained('''google/vit-base-patch16-224''' )
self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
def __magic_name__ ( ) -> Tuple:
__lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class lowerCAmelCase__ ( unittest.TestCase ):
@cached_property
def __A ( self : str ) -> int:
return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None
@slow
def __A ( self : Dict ) -> int:
__lowerCamelCase = TFViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' )
__lowerCamelCase = self.default_image_processor
__lowerCamelCase = prepare_img()
__lowerCamelCase = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''tf''' )
# forward pass
__lowerCamelCase = model(**SCREAMING_SNAKE_CASE__ )
# verify the logits
__lowerCamelCase = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tf.constant([-0.2744, 0.8215, -0.0836] )
tf.debugging.assert_near(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 )
| 339 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPSegProcessor, ViTImageProcessor
@require_vision
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : List[str] ) -> Dict:
__lowerCamelCase = tempfile.mkdtemp()
# fmt: off
__lowerCamelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>''']
# fmt: on
__lowerCamelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) )
__lowerCamelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', '''''']
__lowerCamelCase = {'''unk_token''': '''<unk>'''}
__lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = {
'''do_resize''': True,
'''size''': 20,
'''do_center_crop''': True,
'''crop_size''': 18,
'''do_normalize''': True,
'''image_mean''': [0.48145466, 0.4578275, 0.40821073],
'''image_std''': [0.26862954, 0.26130258, 0.27577711],
}
__lowerCamelCase = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __A ( self : int , **SCREAMING_SNAKE_CASE__ : int ) -> Any:
return CLIPTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ )
def __A ( self : Dict , **SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]:
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]:
return ViTImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ )
def __A ( self : Dict ) -> Dict:
shutil.rmtree(self.tmpdirname )
def __A ( self : str ) -> Any:
__lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowerCamelCase = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __A ( self : List[Any] ) -> List[str]:
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = self.get_rust_tokenizer()
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
processor_slow.save_pretrained(self.tmpdirname )
__lowerCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
processor_fast.save_pretrained(self.tmpdirname )
__lowerCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ )
self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ )
self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ )
def __A ( self : Union[str, Any] ) -> int:
__lowerCamelCase = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowerCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
__lowerCamelCase = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
__lowerCamelCase = CLIPSegProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[Any] ) -> Union[str, Any]:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='''np''' )
__lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __A ( self : List[Any] ) -> Optional[int]:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = '''lower newer'''
__lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self : List[Any] ) -> Any:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = '''lower newer'''
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
processor()
def __A ( self : Optional[Any] ) -> List[str]:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = self.prepare_image_inputs()
__lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE__ , visual_prompt=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
processor()
def __A ( self : List[Any] ) -> Any:
__lowerCamelCase = self.get_image_processor()
__lowerCamelCase = self.get_tokenizer()
__lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__lowerCamelCase = processor.batch_decode(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
| 339 | 1 |
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__)
@add_end_docstrings(__lowercase )
class lowerCAmelCase__ ( __lowercase ):
def __init__( self : str , *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]:
super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
requires_backends(self , '''vision''' )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING )
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ) -> Optional[int]:
__lowerCamelCase = {}
__lowerCamelCase = {}
if prompt is not None:
__lowerCamelCase = prompt
if generate_kwargs is not None:
__lowerCamelCase = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
__lowerCamelCase = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
'''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,'''
''' please use only one''' )
__lowerCamelCase = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int:
return super().__call__(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
def __A ( self : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any]=None ) -> Dict:
__lowerCamelCase = load_image(SCREAMING_SNAKE_CASE__ )
if prompt is not None:
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise ValueError(
f'''Received an invalid text input, got - {type(SCREAMING_SNAKE_CASE__ )} - but expected a single string. '''
'''Note also that one single text can be provided for conditional image to text generation.''' )
__lowerCamelCase = self.model.config.model_type
if model_type == "git":
__lowerCamelCase = self.image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors=self.framework )
__lowerCamelCase = self.tokenizer(text=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ).input_ids
__lowerCamelCase = [self.tokenizer.cls_token_id] + input_ids
__lowerCamelCase = torch.tensor(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 )
model_inputs.update({'''input_ids''': input_ids} )
elif model_type == "pix2struct":
__lowerCamelCase = self.image_processor(images=SCREAMING_SNAKE_CASE__ , header_text=SCREAMING_SNAKE_CASE__ , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
__lowerCamelCase = self.image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors=self.framework )
__lowerCamelCase = self.tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors=self.framework )
model_inputs.update(SCREAMING_SNAKE_CASE__ )
else:
raise ValueError(f'''Model type {model_type} does not support conditional text generation''' )
else:
__lowerCamelCase = self.image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
__lowerCamelCase = None
return model_inputs
def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str]=None ) -> Optional[Any]:
# Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the
# pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first.
if (
"input_ids" in model_inputs
and isinstance(model_inputs['''input_ids'''] , SCREAMING_SNAKE_CASE__ )
and all(x is None for x in model_inputs['''input_ids'''] )
):
__lowerCamelCase = None
if generate_kwargs is None:
__lowerCamelCase = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
__lowerCamelCase = model_inputs.pop(self.model.main_input_name )
__lowerCamelCase = self.model.generate(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
return model_outputs
def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str:
__lowerCamelCase = []
for output_ids in model_outputs:
__lowerCamelCase = {
'''generated_text''': self.tokenizer.decode(
SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ , )
}
records.append(SCREAMING_SNAKE_CASE__ )
return records
| 339 |
from __future__ import annotations
def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : int | None = None , __lowerCAmelCase : int | None = None ) -> None:
if start is None:
__lowerCamelCase = 0
if end is None:
__lowerCamelCase = len(__lowerCAmelCase ) - 1
if start >= end:
return
__lowerCamelCase = (start + end) // 2
slowsort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
slowsort(__lowerCAmelCase , mid + 1 , __lowerCAmelCase )
if sequence[end] < sequence[mid]:
__lowerCamelCase , __lowerCamelCase = sequence[mid], sequence[end]
slowsort(__lowerCAmelCase , __lowerCAmelCase , end - 1 )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 339 | 1 |
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
SCREAMING_SNAKE_CASE__ : Any = TypeVar("KEY")
SCREAMING_SNAKE_CASE__ : Dict = TypeVar("VAL")
@dataclass(frozen=__lowercase , slots=__lowercase )
class lowerCAmelCase__ ( Generic[KEY, VAL] ):
a__ : KEY
a__ : VAL
class lowerCAmelCase__ ( _Item ):
def __init__( self : str ) -> None:
super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __bool__( self : Tuple ) -> bool:
return False
SCREAMING_SNAKE_CASE__ : List[Any] = _DeletedItem()
class lowerCAmelCase__ ( MutableMapping[KEY, VAL] ):
def __init__( self : int , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.75 ) -> None:
__lowerCamelCase = initial_block_size
__lowerCamelCase = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
__lowerCamelCase = capacity_factor
__lowerCamelCase = 0
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : KEY ) -> int:
return hash(SCREAMING_SNAKE_CASE__ ) % len(self._buckets )
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> int:
return (ind + 1) % len(self._buckets )
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> bool:
__lowerCamelCase = self._buckets[ind]
if not stored:
__lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self._len += 1
return True
elif stored.key == key:
__lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return True
else:
return False
def __A ( self : Any ) -> bool:
__lowerCamelCase = len(self._buckets ) * self._capacity_factor
return len(self ) >= int(SCREAMING_SNAKE_CASE__ )
def __A ( self : List[Any] ) -> bool:
if len(self._buckets ) <= self._initial_block_size:
return False
__lowerCamelCase = len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def __A ( self : int , SCREAMING_SNAKE_CASE__ : int ) -> None:
__lowerCamelCase = self._buckets
__lowerCamelCase = [None] * new_size
__lowerCamelCase = 0
for item in old_buckets:
if item:
self._add_item(item.key , item.val )
def __A ( self : str ) -> None:
self._resize(len(self._buckets ) * 2 )
def __A ( self : Dict ) -> None:
self._resize(len(self._buckets ) // 2 )
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY ) -> Iterator[int]:
__lowerCamelCase = self._get_bucket_index(SCREAMING_SNAKE_CASE__ )
for _ in range(len(self._buckets ) ):
yield ind
__lowerCamelCase = self._get_next_ind(SCREAMING_SNAKE_CASE__ )
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None:
for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ):
if self._try_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
break
def __setitem__( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None:
if self._is_full():
self._size_up()
self._add_item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __delitem__( self : List[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> None:
for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase = self._buckets[ind]
if item is None:
raise KeyError(SCREAMING_SNAKE_CASE__ )
if item is _deleted:
continue
if item.key == key:
__lowerCamelCase = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> VAL:
for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(SCREAMING_SNAKE_CASE__ )
def __len__( self : int ) -> int:
return self._len
def __iter__( self : Tuple ) -> Iterator[KEY]:
yield from (item.key for item in self._buckets if item)
def __repr__( self : Optional[Any] ) -> str:
__lowerCamelCase = ''' ,'''.join(
f'''{item.key}: {item.val}''' for item in self._buckets if item )
return f'''HashMap({val_string})'''
| 339 |
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Optional[Any] = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
SCREAMING_SNAKE_CASE__ : str = {
"vocab_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"
},
"merges_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"
},
"tokenizer_config_file": {
"facebook/blenderbot_small-90M": (
"https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"
)
},
}
SCREAMING_SNAKE_CASE__ : int = {"facebook/blenderbot_small-90M": 512}
def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Tuple:
__lowerCamelCase = set()
__lowerCamelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__lowerCamelCase = char
__lowerCamelCase = set(__lowerCAmelCase )
return pairs
class lowerCAmelCase__ ( __lowercase ):
a__ : List[Any] = VOCAB_FILES_NAMES
a__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ : Dict = ["""input_ids""", """attention_mask"""]
def __init__( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple="__start__" , SCREAMING_SNAKE_CASE__ : Tuple="__end__" , SCREAMING_SNAKE_CASE__ : List[str]="__unk__" , SCREAMING_SNAKE_CASE__ : str="__null__" , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> Optional[Any]:
super().__init__(unk_token=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as vocab_handle:
__lowerCamelCase = json.load(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = {v: k for k, v in self.encoder.items()}
with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as merges_handle:
__lowerCamelCase = merges_handle.read().split('''\n''' )[1:-1]
__lowerCamelCase = [tuple(merge.split() ) for merge in merges]
__lowerCamelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) )
__lowerCamelCase = {}
@property
def __A ( self : Dict ) -> int:
return len(self.encoder )
def __A ( self : str ) -> Dict:
return dict(self.encoder , **self.added_tokens_encoder )
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : str ) -> str:
if token in self.cache:
return self.cache[token]
__lowerCamelCase = re.sub('''([.,!?()])''' , R''' \1''' , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = re.sub('''(\')''' , R''' \1 ''' , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = re.sub(R'''\s{2,}''' , ''' ''' , SCREAMING_SNAKE_CASE__ )
if "\n" in token:
__lowerCamelCase = token.replace('''\n''' , ''' __newln__''' )
__lowerCamelCase = token.split(''' ''' )
__lowerCamelCase = []
for token in tokens:
if not len(SCREAMING_SNAKE_CASE__ ):
continue
__lowerCamelCase = token.lower()
__lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] )
__lowerCamelCase = get_pairs(SCREAMING_SNAKE_CASE__ )
if not pairs:
words.append(SCREAMING_SNAKE_CASE__ )
continue
while True:
__lowerCamelCase = min(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE__ , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
__lowerCamelCase , __lowerCamelCase = bigram
__lowerCamelCase = []
__lowerCamelCase = 0
while i < len(SCREAMING_SNAKE_CASE__ ):
try:
__lowerCamelCase = word.index(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
new_word.extend(word[i:j] )
__lowerCamelCase = j
except ValueError:
new_word.extend(word[i:] )
break
if word[i] == first and i < len(SCREAMING_SNAKE_CASE__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = new_word
if len(SCREAMING_SNAKE_CASE__ ) == 1:
break
else:
__lowerCamelCase = get_pairs(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = '''@@ '''.join(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = word[:-4]
__lowerCamelCase = word
words.append(SCREAMING_SNAKE_CASE__ )
return " ".join(SCREAMING_SNAKE_CASE__ )
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> List[str]:
__lowerCamelCase = []
__lowerCamelCase = re.findall(R'''\S+\n?''' , SCREAMING_SNAKE_CASE__ )
for token in words:
split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE__ ).split(''' ''' ) ) )
return split_tokens
def __A ( self : str , SCREAMING_SNAKE_CASE__ : str ) -> int:
__lowerCamelCase = token.lower()
return self.encoder.get(SCREAMING_SNAKE_CASE__ , self.encoder.get(self.unk_token ) )
def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int ) -> str:
return self.decoder.get(SCREAMING_SNAKE_CASE__ , self.unk_token )
def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str:
__lowerCamelCase = ''' '''.join(SCREAMING_SNAKE_CASE__ ).replace('''@@ ''' , '''''' ).strip()
return out_string
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__lowerCamelCase = os.path.join(
SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
__lowerCamelCase = os.path.join(
SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) + '''\n''' )
__lowerCamelCase = 0
with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE__ : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
''' Please check that the tokenizer is not corrupted!''' )
__lowerCamelCase = token_index
writer.write(''' '''.join(SCREAMING_SNAKE_CASE__ ) + '''\n''' )
index += 1
return vocab_file, merge_file
| 339 | 1 |
import math
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ : List[str] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : int = {
"facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json",
# See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio
}
class lowerCAmelCase__ ( __lowercase ):
a__ : Tuple = """data2vec-audio"""
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=32 , SCREAMING_SNAKE_CASE__ : Optional[int]=7_68 , SCREAMING_SNAKE_CASE__ : List[str]=12 , SCREAMING_SNAKE_CASE__ : Tuple=12 , SCREAMING_SNAKE_CASE__ : List[Any]=30_72 , SCREAMING_SNAKE_CASE__ : Optional[int]="gelu" , SCREAMING_SNAKE_CASE__ : List[str]=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : Dict=0.0 , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.02 , SCREAMING_SNAKE_CASE__ : Any=1e-5 , SCREAMING_SNAKE_CASE__ : Dict="gelu" , SCREAMING_SNAKE_CASE__ : Tuple=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , SCREAMING_SNAKE_CASE__ : List[Any]=(5, 2, 2, 2, 2, 2, 2) , SCREAMING_SNAKE_CASE__ : Dict=(10, 3, 3, 3, 3, 2, 2) , SCREAMING_SNAKE_CASE__ : int=False , SCREAMING_SNAKE_CASE__ : List[str]=16 , SCREAMING_SNAKE_CASE__ : Tuple=19 , SCREAMING_SNAKE_CASE__ : Optional[Any]=5 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.05 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=10 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : int=0.0 , SCREAMING_SNAKE_CASE__ : Dict=10 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]="sum" , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : Optional[Any]=2_56 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=(5_12, 5_12, 5_12, 5_12, 15_00) , SCREAMING_SNAKE_CASE__ : Dict=(5, 3, 3, 1, 1) , SCREAMING_SNAKE_CASE__ : List[str]=(1, 2, 3, 1, 1) , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : Dict=1 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Tuple=3 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : List[str]=3 , SCREAMING_SNAKE_CASE__ : Any=None , **SCREAMING_SNAKE_CASE__ : Any , ) -> Any:
super().__init__(**SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = hidden_size
__lowerCamelCase = feat_extract_activation
__lowerCamelCase = list(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = list(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = list(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = conv_bias
__lowerCamelCase = num_conv_pos_embeddings
__lowerCamelCase = num_conv_pos_embedding_groups
__lowerCamelCase = conv_pos_kernel_size
__lowerCamelCase = len(self.conv_dim )
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = num_attention_heads
__lowerCamelCase = hidden_dropout
__lowerCamelCase = attention_dropout
__lowerCamelCase = activation_dropout
__lowerCamelCase = feat_proj_dropout
__lowerCamelCase = final_dropout
__lowerCamelCase = layerdrop
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = initializer_range
__lowerCamelCase = vocab_size
__lowerCamelCase = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__lowerCamelCase = mask_time_prob
__lowerCamelCase = mask_time_length
__lowerCamelCase = mask_time_min_masks
__lowerCamelCase = mask_feature_prob
__lowerCamelCase = mask_feature_length
__lowerCamelCase = mask_feature_min_masks
# ctc loss
__lowerCamelCase = ctc_loss_reduction
__lowerCamelCase = ctc_zero_infinity
# adapter
__lowerCamelCase = add_adapter
__lowerCamelCase = adapter_kernel_size
__lowerCamelCase = adapter_stride
__lowerCamelCase = num_adapter_layers
__lowerCamelCase = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
__lowerCamelCase = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
__lowerCamelCase = list(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = list(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = list(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = xvector_output_dim
@property
def __A ( self : Tuple ) -> Optional[Any]:
return math.prod(self.conv_stride )
| 339 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowerCAmelCase__ ( __lowercase , unittest.TestCase ):
a__ : str = ShapEImgaImgPipeline
a__ : Union[str, Any] = ["""image"""]
a__ : Optional[int] = ["""image"""]
a__ : Union[str, Any] = [
"""num_images_per_prompt""",
"""num_inference_steps""",
"""generator""",
"""latents""",
"""guidance_scale""",
"""frame_size""",
"""output_type""",
"""return_dict""",
]
a__ : List[str] = False
@property
def __A ( self : Dict ) -> Optional[Any]:
return 32
@property
def __A ( self : Optional[int] ) -> Optional[int]:
return 32
@property
def __A ( self : Optional[int] ) -> List[Any]:
return self.time_input_dim * 4
@property
def __A ( self : str ) -> List[Any]:
return 8
@property
def __A ( self : Optional[Any] ) -> Union[str, Any]:
torch.manual_seed(0 )
__lowerCamelCase = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , )
__lowerCamelCase = CLIPVisionModel(SCREAMING_SNAKE_CASE__ )
return model
@property
def __A ( self : Union[str, Any] ) -> Union[str, Any]:
__lowerCamelCase = CLIPImageProcessor(
crop_size=2_24 , do_center_crop=SCREAMING_SNAKE_CASE__ , do_normalize=SCREAMING_SNAKE_CASE__ , do_resize=SCREAMING_SNAKE_CASE__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=2_24 , )
return image_processor
@property
def __A ( self : Dict ) -> int:
torch.manual_seed(0 )
__lowerCamelCase = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''embedding_proj_norm_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
__lowerCamelCase = PriorTransformer(**SCREAMING_SNAKE_CASE__ )
return model
@property
def __A ( self : Tuple ) -> Dict:
torch.manual_seed(0 )
__lowerCamelCase = {
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
__lowerCamelCase = ShapERenderer(**SCREAMING_SNAKE_CASE__ )
return model
def __A ( self : Optional[int] ) -> List[str]:
__lowerCamelCase = self.dummy_prior
__lowerCamelCase = self.dummy_image_encoder
__lowerCamelCase = self.dummy_image_processor
__lowerCamelCase = self.dummy_renderer
__lowerCamelCase = HeunDiscreteScheduler(
beta_schedule='''exp''' , num_train_timesteps=10_24 , prediction_type='''sample''' , use_karras_sigmas=SCREAMING_SNAKE_CASE__ , clip_sample=SCREAMING_SNAKE_CASE__ , clip_sample_range=1.0 , )
__lowerCamelCase = {
'''prior''': prior,
'''image_encoder''': image_encoder,
'''image_processor''': image_processor,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def __A ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=0 ) -> int:
__lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ )
if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ):
__lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE__ )
else:
__lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = {
'''image''': input_image,
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def __A ( self : Union[str, Any] ) -> Dict:
__lowerCamelCase = '''cpu'''
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) )
__lowerCamelCase = output.images[0]
__lowerCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
__lowerCamelCase = np.array(
[
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __A ( self : str ) -> Tuple:
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def __A ( self : Optional[Any] ) -> str:
__lowerCamelCase = torch_device == '''cpu'''
__lowerCamelCase = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=SCREAMING_SNAKE_CASE__ , relax_max_difference=SCREAMING_SNAKE_CASE__ , )
def __A ( self : Dict ) -> Optional[int]:
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = 1
__lowerCamelCase = 2
__lowerCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ )
for key in inputs.keys():
if key in self.batch_params:
__lowerCamelCase = batch_size * [inputs[key]]
__lowerCamelCase = pipe(**SCREAMING_SNAKE_CASE__ , num_images_per_prompt=SCREAMING_SNAKE_CASE__ )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : str ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self : str ) -> Union[str, Any]:
__lowerCamelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' )
__lowerCamelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_img2img_out.npy''' )
__lowerCamelCase = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' )
__lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(0 )
__lowerCamelCase = pipe(
SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
| 339 | 1 |
import asyncio
import os
import shutil
import subprocess
import sys
import tempfile
import unittest
from distutils.util import strtobool
from functools import partial
from pathlib import Path
from typing import List, Union
from unittest import mock
import torch
from ..state import AcceleratorState, PartialState
from ..utils import (
gather,
is_bnb_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_mps_available,
is_safetensors_available,
is_tensorboard_available,
is_torch_version,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
def __magic_name__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int=False ) -> Optional[int]:
try:
__lowerCamelCase = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
__lowerCamelCase = default
else:
# KEY is set, convert it to True or False.
try:
__lowerCamelCase = strtobool(__lowerCAmelCase )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(f'''If set, {key} must be yes or no.''' )
return _value
SCREAMING_SNAKE_CASE__ : Tuple = parse_flag_from_env("RUN_SLOW", default=False)
def __magic_name__ ( __lowerCAmelCase : Any ) -> str:
return unittest.skip('''Test was skipped''' )(__lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> List[Any]:
return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(__lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : Any ) -> Any:
return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(__lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> Dict:
return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(__lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : str ) -> Any:
return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(__lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : Union[str, Any] ) -> Optional[Any]:
return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(__lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : int ) -> int:
return unittest.skipUnless(
is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(__lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : Dict ) -> Optional[int]:
return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(__lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : Tuple ) -> Any:
return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(__lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : Dict ) -> Optional[Any]:
return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(__lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : Optional[int] ) -> Tuple:
return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(__lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : str ) -> int:
return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(__lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> List[str]:
return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(__lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : Tuple ) -> Union[str, Any]:
return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(__lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : Union[str, Any] ) -> Optional[int]:
return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(__lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : Tuple ) -> Tuple:
return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(__lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : Dict=None , __lowerCAmelCase : Dict=None ) -> List[str]:
if test_case is None:
return partial(__lowerCAmelCase , version=__lowerCAmelCase )
return unittest.skipUnless(is_torch_version('''>=''' , __lowerCAmelCase ) , f'''test requires torch version >= {version}''' )(__lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : Tuple ) -> Optional[Any]:
return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(__lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : Union[str, Any] ) -> Optional[Any]:
return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(__lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : Dict ) -> Any:
return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Any = (
any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available()
)
def __magic_name__ ( __lowerCAmelCase : str ) -> int:
return unittest.skipUnless(
_atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(__lowerCAmelCase )
class lowerCAmelCase__ ( unittest.TestCase ):
a__ : Any = True
@classmethod
def __A ( cls : Any ) -> Optional[Any]:
__lowerCamelCase = tempfile.mkdtemp()
@classmethod
def __A ( cls : Optional[Any] ) -> List[str]:
if os.path.exists(cls.tmpdir ):
shutil.rmtree(cls.tmpdir )
def __A ( self : int ) -> Any:
if self.clear_on_setup:
for path in Path(self.tmpdir ).glob('''**/*''' ):
if path.is_file():
path.unlink()
elif path.is_dir():
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : Optional[Any] ) -> Tuple:
super().tearDown()
# Reset the state of the AcceleratorState singleton.
AcceleratorState._reset_state()
PartialState._reset_state()
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Union[mock.Mock, List[mock.Mock]] ) -> int:
__lowerCamelCase = mocks if isinstance(SCREAMING_SNAKE_CASE__ , (tuple, list) ) else [mocks]
for m in self.mocks:
m.start()
self.addCleanup(m.stop )
def __magic_name__ ( __lowerCAmelCase : str ) -> Optional[Any]:
__lowerCamelCase = AcceleratorState()
__lowerCamelCase = tensor[None].clone().to(state.device )
__lowerCamelCase = gather(__lowerCAmelCase ).cpu()
__lowerCamelCase = tensor[0].cpu()
for i in range(tensors.shape[0] ):
if not torch.equal(tensors[i] , __lowerCAmelCase ):
return False
return True
class lowerCAmelCase__ :
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]:
__lowerCamelCase = returncode
__lowerCamelCase = stdout
__lowerCamelCase = stderr
async def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] ) -> List[Any]:
while True:
__lowerCamelCase = await stream.readline()
if line:
callback(__lowerCAmelCase )
else:
break
async def __magic_name__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : int=None , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Dict=False ) -> _RunOutput:
if echo:
print('''\nRunning: ''' , ''' '''.join(__lowerCAmelCase ) )
__lowerCamelCase = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=__lowerCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__lowerCAmelCase , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
__lowerCamelCase = []
__lowerCamelCase = []
def tee(__lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any]="" ):
__lowerCamelCase = line.decode('''utf-8''' ).rstrip()
sink.append(__lowerCAmelCase )
if not quiet:
print(__lowerCAmelCase , __lowerCAmelCase , file=__lowerCAmelCase )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
asyncio.create_task(_read_stream(p.stdout , lambda __lowerCAmelCase : tee(__lowerCAmelCase , __lowerCAmelCase , sys.stdout , label='''stdout:''' ) ) ),
asyncio.create_task(_read_stream(p.stderr , lambda __lowerCAmelCase : tee(__lowerCAmelCase , __lowerCAmelCase , sys.stderr , label='''stderr:''' ) ) ),
] , timeout=__lowerCAmelCase , )
return _RunOutput(await p.wait() , __lowerCAmelCase , __lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Dict=180 , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[Any]=True ) -> _RunOutput:
__lowerCamelCase = asyncio.get_event_loop()
__lowerCamelCase = loop.run_until_complete(
_stream_subprocess(__lowerCAmelCase , env=__lowerCAmelCase , stdin=__lowerCAmelCase , timeout=__lowerCAmelCase , quiet=__lowerCAmelCase , echo=__lowerCAmelCase ) )
__lowerCamelCase = ''' '''.join(__lowerCAmelCase )
if result.returncode > 0:
__lowerCamelCase = '''\n'''.join(result.stderr )
raise RuntimeError(
f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n'''
f'''The combined stderr from workers follows:\n{stderr}''' )
return result
class lowerCAmelCase__ ( __lowercase ):
pass
def __magic_name__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str]=False ) -> List[str]:
try:
__lowerCamelCase = subprocess.check_output(__lowerCAmelCase , stderr=subprocess.STDOUT )
if return_stdout:
if hasattr(__lowerCAmelCase , '''decode''' ):
__lowerCamelCase = output.decode('''utf-8''' )
return output
except subprocess.CalledProcessError as e:
raise SubprocessCallException(
f'''Command `{' '.join(__lowerCAmelCase )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
| 339 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
SCREAMING_SNAKE_CASE__ : str = ""
SCREAMING_SNAKE_CASE__ : Any = ""
SCREAMING_SNAKE_CASE__ : Optional[Any] = ""
SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 # (0 is vertical, 1 is horizontal)
def __magic_name__ ( ) -> None:
__lowerCamelCase , __lowerCamelCase = get_dataset(__lowerCAmelCase , __lowerCAmelCase )
print('''Processing...''' )
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = update_image_and_anno(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
for index, image in enumerate(__lowerCAmelCase ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
__lowerCamelCase = random_chars(32 )
__lowerCamelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0]
__lowerCamelCase = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}'''
cva.imwrite(f'''/{file_root}.jpg''' , __lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f'''Success {index+1}/{len(__lowerCAmelCase )} with {file_name}''' )
__lowerCamelCase = []
for anno in new_annos[index]:
__lowerCamelCase = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}'''
annos_list.append(__lowerCAmelCase )
with open(f'''/{file_root}.txt''' , '''w''' ) as outfile:
outfile.write('''\n'''.join(line for line in annos_list ) )
def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> tuple[list, list]:
__lowerCamelCase = []
__lowerCamelCase = []
for label_file in glob.glob(os.path.join(__lowerCAmelCase , '''*.txt''' ) ):
__lowerCamelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0]
with open(__lowerCAmelCase ) as in_file:
__lowerCamelCase = in_file.readlines()
__lowerCamelCase = os.path.join(__lowerCAmelCase , f'''{label_name}.jpg''' )
__lowerCamelCase = []
for obj_list in obj_lists:
__lowerCamelCase = obj_list.rstrip('''\n''' ).split(''' ''' )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(__lowerCAmelCase )
labels.append(__lowerCAmelCase )
return img_paths, labels
def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int = 1 ) -> tuple[list, list, list]:
__lowerCamelCase = []
__lowerCamelCase = []
__lowerCamelCase = []
for idx in range(len(__lowerCAmelCase ) ):
__lowerCamelCase = []
__lowerCamelCase = img_list[idx]
path_list.append(__lowerCAmelCase )
__lowerCamelCase = anno_list[idx]
__lowerCamelCase = cva.imread(__lowerCAmelCase )
if flip_type == 1:
__lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase )
for bbox in img_annos:
__lowerCamelCase = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
__lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase )
for bbox in img_annos:
__lowerCamelCase = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(__lowerCAmelCase )
new_imgs_list.append(__lowerCAmelCase )
return new_imgs_list, new_annos_lists, path_list
def __magic_name__ ( __lowerCAmelCase : int = 32 ) -> str:
assert number_char > 1, "The number of character should greater than 1"
__lowerCamelCase = ascii_lowercase + digits
return "".join(random.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 339 | 1 |
import argparse
from collections import defaultdict
def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : List[str] ) -> Any:
__lowerCamelCase = f'''{file}_{class_name}_{test_name}'''
done_test[_id] += 1
with open(__lowerCAmelCase , '''r''' ) as f:
__lowerCamelCase = f.readlines()
__lowerCamelCase = f'''class {class_name}('''
__lowerCamelCase = f'''{4 * ' '}def {test_name}('''
__lowerCamelCase = f'''{8 * ' '}{correct_line.split()[0]}'''
__lowerCamelCase = f'''{16 * ' '}{correct_line.split()[0]}'''
__lowerCamelCase = False
__lowerCamelCase = False
__lowerCamelCase = False
__lowerCamelCase = False
__lowerCamelCase = 0
__lowerCamelCase = 0
__lowerCamelCase = []
for line in lines:
if line.startswith(__lowerCAmelCase ):
__lowerCamelCase = True
elif in_class and line.startswith(__lowerCAmelCase ):
__lowerCamelCase = True
elif in_class and in_func and (line.startswith(__lowerCAmelCase ) or line.startswith(__lowerCAmelCase )):
__lowerCamelCase = len(line.split(correct_line.split()[0] )[0] )
count += 1
if count == done_test[_id]:
__lowerCamelCase = True
if in_class and in_func and in_line:
if ")" not in line:
continue
else:
__lowerCamelCase = True
if in_class and in_func and in_line and insert_line:
new_lines.append(f'''{spaces * ' '}{correct_line}''' )
__lowerCamelCase = __lowerCamelCase = __lowerCamelCase = __lowerCamelCase = False
else:
new_lines.append(__lowerCAmelCase )
with open(__lowerCAmelCase , '''w''' ) as f:
for line in new_lines:
f.write(__lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple=None ) -> Tuple:
if fail is not None:
with open(__lowerCAmelCase , '''r''' ) as f:
__lowerCamelCase = {l.strip() for l in f.readlines()}
else:
__lowerCamelCase = None
with open(__lowerCAmelCase , '''r''' ) as f:
__lowerCamelCase = f.readlines()
__lowerCamelCase = defaultdict(__lowerCAmelCase )
for line in correct_lines:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = line.split(''';''' )
if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures:
overwrite_file(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ : List[Any] = argparse.ArgumentParser()
parser.add_argument("--correct_filename", help="filename of tests with expected result")
parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None)
SCREAMING_SNAKE_CASE__ : Tuple = parser.parse_args()
main(args.correct_filename, args.fail_filename)
| 339 |
import collections
import gzip
import os
import urllib
import numpy
from tensorflow.python.framework import dtypes, random_seed
from tensorflow.python.platform import gfile
from tensorflow.python.util.deprecation import deprecated
SCREAMING_SNAKE_CASE__ : Tuple = collections.namedtuple("_Datasets", ["train", "validation", "test"])
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
SCREAMING_SNAKE_CASE__ : List[str] = "https://storage.googleapis.com/cvdf-datasets/mnist/"
def __magic_name__ ( __lowerCAmelCase : Any ) -> int:
__lowerCamelCase = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' )
return numpy.frombuffer(bytestream.read(4 ) , dtype=__lowerCAmelCase )[0]
@deprecated(__lowerCAmelCase , '''Please use tf.data to implement this functionality.''' )
def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> str:
print('''Extracting''' , f.name )
with gzip.GzipFile(fileobj=__lowerCAmelCase ) as bytestream:
__lowerCamelCase = _readaa(__lowerCAmelCase )
if magic != 2051:
raise ValueError(
'''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) )
__lowerCamelCase = _readaa(__lowerCAmelCase )
__lowerCamelCase = _readaa(__lowerCAmelCase )
__lowerCamelCase = _readaa(__lowerCAmelCase )
__lowerCamelCase = bytestream.read(rows * cols * num_images )
__lowerCamelCase = numpy.frombuffer(__lowerCAmelCase , dtype=numpy.uinta )
__lowerCamelCase = data.reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 1 )
return data
@deprecated(__lowerCAmelCase , '''Please use tf.one_hot on tensors.''' )
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : List[Any] ) -> Dict:
__lowerCamelCase = labels_dense.shape[0]
__lowerCamelCase = numpy.arange(__lowerCAmelCase ) * num_classes
__lowerCamelCase = numpy.zeros((num_labels, num_classes) )
__lowerCamelCase = 1
return labels_one_hot
@deprecated(__lowerCAmelCase , '''Please use tf.data to implement this functionality.''' )
def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : str=False , __lowerCAmelCase : List[str]=10 ) -> List[str]:
print('''Extracting''' , f.name )
with gzip.GzipFile(fileobj=__lowerCAmelCase ) as bytestream:
__lowerCamelCase = _readaa(__lowerCAmelCase )
if magic != 2049:
raise ValueError(
'''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) )
__lowerCamelCase = _readaa(__lowerCAmelCase )
__lowerCamelCase = bytestream.read(__lowerCAmelCase )
__lowerCamelCase = numpy.frombuffer(__lowerCAmelCase , dtype=numpy.uinta )
if one_hot:
return _dense_to_one_hot(__lowerCAmelCase , __lowerCAmelCase )
return labels
class lowerCAmelCase__ :
@deprecated(
SCREAMING_SNAKE_CASE__ , '''Please use alternatives such as official/mnist/_DataSet.py'''
''' from tensorflow/models.''' , )
def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : str=dtypes.floataa , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : str=None , ) -> Optional[int]:
__lowerCamelCase , __lowerCamelCase = random_seed.get_seed(SCREAMING_SNAKE_CASE__ )
# If op level seed is not set, use whatever graph level seed is returned
numpy.random.seed(seeda if seed is None else seeda )
__lowerCamelCase = dtypes.as_dtype(SCREAMING_SNAKE_CASE__ ).base_dtype
if dtype not in (dtypes.uinta, dtypes.floataa):
raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype )
if fake_data:
__lowerCamelCase = 1_00_00
__lowerCamelCase = one_hot
else:
assert (
images.shape[0] == labels.shape[0]
), f'''images.shape: {images.shape} labels.shape: {labels.shape}'''
__lowerCamelCase = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
if reshape:
assert images.shape[3] == 1
__lowerCamelCase = images.reshape(
images.shape[0] , images.shape[1] * images.shape[2] )
if dtype == dtypes.floataa:
# Convert from [0, 255] -> [0.0, 1.0].
__lowerCamelCase = images.astype(numpy.floataa )
__lowerCamelCase = numpy.multiply(SCREAMING_SNAKE_CASE__ , 1.0 / 255.0 )
__lowerCamelCase = images
__lowerCamelCase = labels
__lowerCamelCase = 0
__lowerCamelCase = 0
@property
def __A ( self : str ) -> Optional[int]:
return self._images
@property
def __A ( self : Any ) -> Dict:
return self._labels
@property
def __A ( self : List[Any] ) -> int:
return self._num_examples
@property
def __A ( self : str ) -> Any:
return self._epochs_completed
def __A ( self : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : str=True ) -> str:
if fake_data:
__lowerCamelCase = [1] * 7_84
__lowerCamelCase = [1] + [0] * 9 if self.one_hot else 0
return (
[fake_image for _ in range(SCREAMING_SNAKE_CASE__ )],
[fake_label for _ in range(SCREAMING_SNAKE_CASE__ )],
)
__lowerCamelCase = self._index_in_epoch
# Shuffle for the first epoch
if self._epochs_completed == 0 and start == 0 and shuffle:
__lowerCamelCase = numpy.arange(self._num_examples )
numpy.random.shuffle(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.images[perma]
__lowerCamelCase = self.labels[perma]
# Go to the next epoch
if start + batch_size > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Get the rest examples in this epoch
__lowerCamelCase = self._num_examples - start
__lowerCamelCase = self._images[start : self._num_examples]
__lowerCamelCase = self._labels[start : self._num_examples]
# Shuffle the data
if shuffle:
__lowerCamelCase = numpy.arange(self._num_examples )
numpy.random.shuffle(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.images[perm]
__lowerCamelCase = self.labels[perm]
# Start next epoch
__lowerCamelCase = 0
__lowerCamelCase = batch_size - rest_num_examples
__lowerCamelCase = self._index_in_epoch
__lowerCamelCase = self._images[start:end]
__lowerCamelCase = self._labels[start:end]
return (
numpy.concatenate((images_rest_part, images_new_part) , axis=0 ),
numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ),
)
else:
self._index_in_epoch += batch_size
__lowerCamelCase = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
@deprecated(__lowerCAmelCase , '''Please write your own downloading logic.''' )
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] ) -> List[Any]:
if not gfile.Exists(__lowerCAmelCase ):
gfile.MakeDirs(__lowerCAmelCase )
__lowerCamelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
if not gfile.Exists(__lowerCAmelCase ):
urllib.request.urlretrieve(__lowerCAmelCase , __lowerCAmelCase ) # noqa: S310
with gfile.GFile(__lowerCAmelCase ) as f:
__lowerCamelCase = f.size()
print('''Successfully downloaded''' , __lowerCAmelCase , __lowerCAmelCase , '''bytes.''' )
return filepath
@deprecated(
__lowerCAmelCase , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' )
def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Dict=False , __lowerCAmelCase : List[str]=dtypes.floataa , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : int=5000 , __lowerCAmelCase : Any=None , __lowerCAmelCase : List[str]=DEFAULT_SOURCE_URL , ) -> Optional[Any]:
if fake_data:
def fake():
return _DataSet(
[] , [] , fake_data=__lowerCAmelCase , one_hot=__lowerCAmelCase , dtype=__lowerCAmelCase , seed=__lowerCAmelCase )
__lowerCamelCase = fake()
__lowerCamelCase = fake()
__lowerCamelCase = fake()
return _Datasets(train=__lowerCAmelCase , validation=__lowerCAmelCase , test=__lowerCAmelCase )
if not source_url: # empty string check
__lowerCamelCase = DEFAULT_SOURCE_URL
__lowerCamelCase = '''train-images-idx3-ubyte.gz'''
__lowerCamelCase = '''train-labels-idx1-ubyte.gz'''
__lowerCamelCase = '''t10k-images-idx3-ubyte.gz'''
__lowerCamelCase = '''t10k-labels-idx1-ubyte.gz'''
__lowerCamelCase = _maybe_download(
__lowerCAmelCase , __lowerCAmelCase , source_url + train_images_file )
with gfile.Open(__lowerCAmelCase , '''rb''' ) as f:
__lowerCamelCase = _extract_images(__lowerCAmelCase )
__lowerCamelCase = _maybe_download(
__lowerCAmelCase , __lowerCAmelCase , source_url + train_labels_file )
with gfile.Open(__lowerCAmelCase , '''rb''' ) as f:
__lowerCamelCase = _extract_labels(__lowerCAmelCase , one_hot=__lowerCAmelCase )
__lowerCamelCase = _maybe_download(
__lowerCAmelCase , __lowerCAmelCase , source_url + test_images_file )
with gfile.Open(__lowerCAmelCase , '''rb''' ) as f:
__lowerCamelCase = _extract_images(__lowerCAmelCase )
__lowerCamelCase = _maybe_download(
__lowerCAmelCase , __lowerCAmelCase , source_url + test_labels_file )
with gfile.Open(__lowerCAmelCase , '''rb''' ) as f:
__lowerCamelCase = _extract_labels(__lowerCAmelCase , one_hot=__lowerCAmelCase )
if not 0 <= validation_size <= len(__lowerCAmelCase ):
__lowerCamelCase = (
'''Validation size should be between 0 and '''
f'''{len(__lowerCAmelCase )}. Received: {validation_size}.'''
)
raise ValueError(__lowerCAmelCase )
__lowerCamelCase = train_images[:validation_size]
__lowerCamelCase = train_labels[:validation_size]
__lowerCamelCase = train_images[validation_size:]
__lowerCamelCase = train_labels[validation_size:]
__lowerCamelCase = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed}
__lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase )
__lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase )
__lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase )
return _Datasets(train=__lowerCAmelCase , validation=__lowerCAmelCase , test=__lowerCAmelCase )
| 339 | 1 |
import warnings
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
from ...models import UNetaDModel
from ...schedulers import RePaintScheduler
from ...utils import PIL_INTERPOLATION, logging, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name
def __magic_name__ ( __lowerCAmelCase : Union[List, PIL.Image.Image, torch.Tensor] ) -> Optional[Any]:
warnings.warn(
'''The preprocess method is deprecated and will be removed in a future version. Please'''
''' use VaeImageProcessor.preprocess instead''' , __lowerCAmelCase , )
if isinstance(__lowerCAmelCase , torch.Tensor ):
return image
elif isinstance(__lowerCAmelCase , PIL.Image.Image ):
__lowerCamelCase = [image]
if isinstance(image[0] , PIL.Image.Image ):
__lowerCamelCase , __lowerCamelCase = image[0].size
__lowerCamelCase , __lowerCamelCase = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
__lowerCamelCase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image]
__lowerCamelCase = np.concatenate(__lowerCAmelCase , axis=0 )
__lowerCamelCase = np.array(__lowerCAmelCase ).astype(np.floataa ) / 255.0
__lowerCamelCase = image.transpose(0 , 3 , 1 , 2 )
__lowerCamelCase = 2.0 * image - 1.0
__lowerCamelCase = torch.from_numpy(__lowerCAmelCase )
elif isinstance(image[0] , torch.Tensor ):
__lowerCamelCase = torch.cat(__lowerCAmelCase , dim=0 )
return image
def __magic_name__ ( __lowerCAmelCase : Union[List, PIL.Image.Image, torch.Tensor] ) -> int:
if isinstance(__lowerCAmelCase , torch.Tensor ):
return mask
elif isinstance(__lowerCAmelCase , PIL.Image.Image ):
__lowerCamelCase = [mask]
if isinstance(mask[0] , PIL.Image.Image ):
__lowerCamelCase , __lowerCamelCase = mask[0].size
__lowerCamelCase , __lowerCamelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
__lowerCamelCase = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask]
__lowerCamelCase = np.concatenate(__lowerCAmelCase , axis=0 )
__lowerCamelCase = mask.astype(np.floataa ) / 255.0
__lowerCamelCase = 0
__lowerCamelCase = 1
__lowerCamelCase = torch.from_numpy(__lowerCAmelCase )
elif isinstance(mask[0] , torch.Tensor ):
__lowerCamelCase = torch.cat(__lowerCAmelCase , dim=0 )
return mask
class lowerCAmelCase__ ( __lowercase ):
a__ : UNetaDModel
a__ : RePaintScheduler
def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]:
super().__init__()
self.register_modules(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
@torch.no_grad()
def __call__( self : int , SCREAMING_SNAKE_CASE__ : Union[torch.Tensor, PIL.Image.Image] , SCREAMING_SNAKE_CASE__ : Union[torch.Tensor, PIL.Image.Image] , SCREAMING_SNAKE_CASE__ : int = 2_50 , SCREAMING_SNAKE_CASE__ : float = 0.0 , SCREAMING_SNAKE_CASE__ : int = 10 , SCREAMING_SNAKE_CASE__ : int = 10 , SCREAMING_SNAKE_CASE__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE__ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]:
__lowerCamelCase = image
__lowerCamelCase = _preprocess_image(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = original_image.to(device=self.device , dtype=self.unet.dtype )
__lowerCamelCase = _preprocess_mask(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = mask_image.to(device=self.device , dtype=self.unet.dtype )
__lowerCamelCase = original_image.shape[0]
# sample gaussian noise to begin the loop
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) != batch_size:
raise ValueError(
f'''You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE__ )}, but requested an effective batch'''
f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
__lowerCamelCase = original_image.shape
__lowerCamelCase = randn_tensor(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.device )
__lowerCamelCase = eta
__lowerCamelCase = self.scheduler.timesteps[0] + 1
__lowerCamelCase = generator[0] if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else generator
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
if t < t_last:
# predict the noise residual
__lowerCamelCase = self.unet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).sample
# compute previous image: x_t -> x_t-1
__lowerCamelCase = self.scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample
else:
# compute the reverse: x_t-1 -> x_t
__lowerCamelCase = self.scheduler.undo_step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = t
__lowerCamelCase = (image / 2 + 0.5).clamp(0 , 1 )
__lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__lowerCamelCase = self.numpy_to_pil(SCREAMING_SNAKE_CASE__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE__ )
| 339 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {
"vocab_file": {
"squeezebert/squeezebert-uncased": (
"https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt"
),
"squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt",
"squeezebert/squeezebert-mnli-headless": (
"https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"squeezebert/squeezebert-uncased": (
"https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json"
),
"squeezebert/squeezebert-mnli": (
"https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json"
),
"squeezebert/squeezebert-mnli-headless": (
"https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json"
),
},
}
SCREAMING_SNAKE_CASE__ : List[Any] = {
"squeezebert/squeezebert-uncased": 512,
"squeezebert/squeezebert-mnli": 512,
"squeezebert/squeezebert-mnli-headless": 512,
}
SCREAMING_SNAKE_CASE__ : Dict = {
"squeezebert/squeezebert-uncased": {"do_lower_case": True},
"squeezebert/squeezebert-mnli": {"do_lower_case": True},
"squeezebert/squeezebert-mnli-headless": {"do_lower_case": True},
}
class lowerCAmelCase__ ( __lowercase ):
a__ : Optional[int] = VOCAB_FILES_NAMES
a__ : Any = PRETRAINED_VOCAB_FILES_MAP
a__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION
a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ : Optional[Any] = SqueezeBertTokenizer
def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[UNK]" , SCREAMING_SNAKE_CASE__ : Optional[int]="[SEP]" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[PAD]" , SCREAMING_SNAKE_CASE__ : Tuple="[CLS]" , SCREAMING_SNAKE_CASE__ : str="[MASK]" , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : int=None , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Optional[Any]:
super().__init__(
SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , SCREAMING_SNAKE_CASE__ ) != do_lower_case
or normalizer_state.get('''strip_accents''' , SCREAMING_SNAKE_CASE__ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars
):
__lowerCamelCase = getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop('''type''' ) )
__lowerCamelCase = do_lower_case
__lowerCamelCase = strip_accents
__lowerCamelCase = tokenize_chinese_chars
__lowerCamelCase = normalizer_class(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = do_lower_case
def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=None ) -> str:
__lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]:
__lowerCamelCase = [self.sep_token_id]
__lowerCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]:
__lowerCamelCase = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ )
return tuple(SCREAMING_SNAKE_CASE__ )
| 339 | 1 |
from functools import lru_cache
def __magic_name__ ( __lowerCAmelCase : int ) -> set:
__lowerCamelCase = 2
__lowerCamelCase = set()
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.add(__lowerCAmelCase )
if n > 1:
factors.add(__lowerCAmelCase )
return factors
@lru_cache
def __magic_name__ ( __lowerCAmelCase : int ) -> int:
return len(unique_prime_factors(__lowerCAmelCase ) )
def __magic_name__ ( __lowerCAmelCase : list ) -> bool:
return len(set(__lowerCAmelCase ) ) in (0, 1)
def __magic_name__ ( __lowerCAmelCase : int ) -> list:
__lowerCamelCase = 2
while True:
# Increment each value of a generated range
__lowerCamelCase = [base + i for i in range(__lowerCAmelCase )]
# Run elements through out unique_prime_factors function
# Append our target number to the end.
__lowerCamelCase = [upf_len(__lowerCAmelCase ) for x in group]
checker.append(__lowerCAmelCase )
# If all numbers in the list are equal, return the group variable.
if equality(__lowerCAmelCase ):
return group
# Increment our base variable by 1
base += 1
def __magic_name__ ( __lowerCAmelCase : int = 4 ) -> int:
__lowerCamelCase = run(__lowerCAmelCase )
return results[0] if len(__lowerCAmelCase ) else None
if __name__ == "__main__":
print(solution())
| 339 |
from __future__ import annotations
def __magic_name__ ( __lowerCAmelCase : list[int] ) -> bool:
return len(set(__lowerCAmelCase ) ) == len(__lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 339 | 1 |
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMInverseScheduler,
DDIMScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
StableDiffusionDiffEditPipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_image, slow
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class lowerCAmelCase__ ( __lowercase , __lowercase , unittest.TestCase ):
a__ : Dict = StableDiffusionDiffEditPipeline
a__ : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""height""", """width""", """image"""} | {"""image_latents"""}
a__ : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"""image"""} | {"""image_latents"""}
a__ : int = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
a__ : Tuple = frozenset([] )
def __A ( self : List[str] ) -> Any:
torch.manual_seed(0 )
__lowerCamelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = DDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=SCREAMING_SNAKE_CASE__ , set_alpha_to_one=SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = DDIMInverseScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=SCREAMING_SNAKE_CASE__ , set_alpha_to_zero=SCREAMING_SNAKE_CASE__ , )
torch.manual_seed(0 )
__lowerCamelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , )
torch.manual_seed(0 )
__lowerCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , )
__lowerCamelCase = CLIPTextModel(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
__lowerCamelCase = {
'''unet''': unet,
'''scheduler''': scheduler,
'''inverse_scheduler''': inverse_scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=0 ) -> Dict:
__lowerCamelCase = floats_tensor((1, 16, 16) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ )
if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ):
__lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE__ )
else:
__lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = {
'''prompt''': '''a dog and a newt''',
'''mask_image''': mask,
'''image_latents''': latents,
'''generator''': generator,
'''num_inference_steps''': 2,
'''inpaint_strength''': 1.0,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple=0 ) -> Dict:
__lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__lowerCamelCase = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE__ ) ).convert('''RGB''' )
if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ):
__lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE__ )
else:
__lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = {
'''image''': image,
'''source_prompt''': '''a cat and a frog''',
'''target_prompt''': '''a dog and a newt''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''num_maps_per_mask''': 2,
'''mask_encode_strength''': 1.0,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int=0 ) -> Union[str, Any]:
__lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__lowerCamelCase = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE__ ) ).convert('''RGB''' )
if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ):
__lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE__ )
else:
__lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = {
'''image''': image,
'''prompt''': '''a cat and a frog''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''inpaint_strength''': 1.0,
'''guidance_scale''': 6.0,
'''decode_latents''': True,
'''output_type''': '''numpy''',
}
return inputs
def __A ( self : str ) -> Union[str, Any]:
if not hasattr(self.pipeline_class , '''_optional_components''' ):
return
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
# set all optional components to None and update pipeline config accordingly
for optional_component in pipe._optional_components:
setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} )
__lowerCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe(**SCREAMING_SNAKE_CASE__ )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.pipeline_class.from_pretrained(SCREAMING_SNAKE_CASE__ )
pipe_loaded.to(SCREAMING_SNAKE_CASE__ )
pipe_loaded.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , )
__lowerCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe_loaded(**SCREAMING_SNAKE_CASE__ )[0]
__lowerCamelCase = np.abs(output - output_loaded ).max()
self.assertLess(SCREAMING_SNAKE_CASE__ , 1e-4 )
def __A ( self : List[Any] ) -> List[str]:
__lowerCamelCase = '''cpu'''
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.get_dummy_mask_inputs(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe.generate_mask(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = mask[0, -3:, -3:]
self.assertEqual(mask.shape , (1, 16, 16) )
__lowerCamelCase = np.array([0] * 9 )
__lowerCamelCase = np.abs(mask_slice.flatten() - expected_slice ).max()
self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-3 )
self.assertEqual(mask[0, -3, -4] , 0 )
def __A ( self : Tuple ) -> List[str]:
__lowerCamelCase = '''cpu'''
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.get_dummy_inversion_inputs(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe.invert(**SCREAMING_SNAKE_CASE__ ).images
__lowerCamelCase = image[0, -1, -3:, -3:]
self.assertEqual(image.shape , (2, 32, 32, 3) )
__lowerCamelCase = np.array(
[0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , )
__lowerCamelCase = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-3 )
def __A ( self : List[Any] ) -> Optional[Any]:
super().test_inference_batch_single_identical(expected_max_diff=5e-3 )
def __A ( self : Tuple ) -> Any:
__lowerCamelCase = '''cpu'''
__lowerCamelCase = self.get_dummy_components()
__lowerCamelCase = {'''beta_start''': 0.00085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''}
__lowerCamelCase = DPMSolverMultistepScheduler(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = DPMSolverMultistepInverseScheduler(**SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = self.get_dummy_inversion_inputs(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = pipe.invert(**SCREAMING_SNAKE_CASE__ ).images
__lowerCamelCase = image[0, -1, -3:, -3:]
self.assertEqual(image.shape , (2, 32, 32, 3) )
__lowerCamelCase = np.array(
[0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , )
__lowerCamelCase = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-3 )
@require_torch_gpu
@slow
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : Optional[Any] ) -> List[Any]:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@classmethod
def __A ( cls : Tuple ) -> List[str]:
__lowerCamelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' )
__lowerCamelCase = raw_image.convert('''RGB''' ).resize((7_68, 7_68) )
__lowerCamelCase = raw_image
def __A ( self : Optional[Any] ) -> Optional[int]:
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = StableDiffusionDiffEditPipeline.from_pretrained(
'''stabilityai/stable-diffusion-2-1''' , safety_checker=SCREAMING_SNAKE_CASE__ , torch_dtype=torch.floataa )
__lowerCamelCase = DDIMScheduler.from_config(pipe.scheduler.config )
__lowerCamelCase = DDIMInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = '''a bowl of fruit'''
__lowerCamelCase = '''a bowl of pears'''
__lowerCamelCase = pipe.generate_mask(
image=self.raw_image , source_prompt=SCREAMING_SNAKE_CASE__ , target_prompt=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = pipe.invert(
prompt=SCREAMING_SNAKE_CASE__ , image=self.raw_image , inpaint_strength=0.7 , generator=SCREAMING_SNAKE_CASE__ ).latents
__lowerCamelCase = pipe(
prompt=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , image_latents=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , negative_prompt=SCREAMING_SNAKE_CASE__ , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0]
__lowerCamelCase = (
np.array(
load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/diffedit/pears.png''' ).resize((7_68, 7_68) ) )
/ 2_55
)
assert np.abs((expected_image - image).max() ) < 5e-1
def __A ( self : Any ) -> str:
__lowerCamelCase = torch.manual_seed(0 )
__lowerCamelCase = StableDiffusionDiffEditPipeline.from_pretrained(
'''stabilityai/stable-diffusion-2-1''' , safety_checker=SCREAMING_SNAKE_CASE__ , torch_dtype=torch.floataa )
__lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
__lowerCamelCase = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = '''a bowl of fruit'''
__lowerCamelCase = '''a bowl of pears'''
__lowerCamelCase = pipe.generate_mask(
image=self.raw_image , source_prompt=SCREAMING_SNAKE_CASE__ , target_prompt=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = pipe.invert(
prompt=SCREAMING_SNAKE_CASE__ , image=self.raw_image , inpaint_strength=0.7 , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=25 , ).latents
__lowerCamelCase = pipe(
prompt=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , image_latents=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , negative_prompt=SCREAMING_SNAKE_CASE__ , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0]
__lowerCamelCase = (
np.array(
load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/diffedit/pears.png''' ).resize((7_68, 7_68) ) )
/ 2_55
)
assert np.abs((expected_image - image).max() ) < 5e-1
| 339 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ : Dict = {
"configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : Tuple = [
"FALCON_PRETRAINED_MODEL_ARCHIVE_LIST",
"FalconForCausalLM",
"FalconModel",
"FalconPreTrainedModel",
"FalconForSequenceClassification",
"FalconForTokenClassification",
"FalconForQuestionAnswering",
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 339 | 1 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ : Optional[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : int = {
"google/mobilenet_v1_1.0_224": "https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json",
"google/mobilenet_v1_0.75_192": "https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json",
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
}
class lowerCAmelCase__ ( __lowercase ):
a__ : Any = """mobilenet_v1"""
def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : Optional[int]=2_24 , SCREAMING_SNAKE_CASE__ : Any=1.0 , SCREAMING_SNAKE_CASE__ : List[Any]=8 , SCREAMING_SNAKE_CASE__ : Union[str, Any]="relu6" , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Optional[int]=0.999 , SCREAMING_SNAKE_CASE__ : Any=0.02 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.001 , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> Optional[int]:
super().__init__(**SCREAMING_SNAKE_CASE__ )
if depth_multiplier <= 0:
raise ValueError('''depth_multiplier must be greater than zero.''' )
__lowerCamelCase = num_channels
__lowerCamelCase = image_size
__lowerCamelCase = depth_multiplier
__lowerCamelCase = min_depth
__lowerCamelCase = hidden_act
__lowerCamelCase = tf_padding
__lowerCamelCase = classifier_dropout_prob
__lowerCamelCase = initializer_range
__lowerCamelCase = layer_norm_eps
class lowerCAmelCase__ ( __lowercase ):
a__ : List[str] = version.parse("""1.11""" )
@property
def __A ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict([('''pixel_values''', {0: '''batch'''})] )
@property
def __A ( self : Dict ) -> Mapping[str, Mapping[int, str]]:
if self.task == "image-classification":
return OrderedDict([('''logits''', {0: '''batch'''})] )
else:
return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] )
@property
def __A ( self : Optional[Any] ) -> float:
return 1e-4
| 339 |
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int:
return abs(__lowerCAmelCase ) if a == 0 else greatest_common_divisor(b % a , __lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int:
while y: # --> when y=0 then loop will terminate and return x as final GCD.
__lowerCamelCase , __lowerCamelCase = y, x % y
return abs(__lowerCAmelCase )
def __magic_name__ ( ) -> Tuple:
try:
__lowerCamelCase = input('''Enter two integers separated by comma (,): ''' ).split(''',''' )
__lowerCamelCase = int(nums[0] )
__lowerCamelCase = int(nums[1] )
print(
f'''greatest_common_divisor({num_a}, {num_a}) = '''
f'''{greatest_common_divisor(__lowerCAmelCase , __lowerCAmelCase )}''' )
print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__lowerCAmelCase , __lowerCAmelCase )}''' )
except (IndexError, UnboundLocalError, ValueError):
print('''Wrong input''' )
if __name__ == "__main__":
main()
| 339 | 1 |
SCREAMING_SNAKE_CASE__ : str = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
SCREAMING_SNAKE_CASE__ : List[Any] = [{"type": "code", "content": INSTALL_CONTENT}]
SCREAMING_SNAKE_CASE__ : Any = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 339 |
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
def __A ( self : Optional[int] ) -> Union[str, Any]:
__lowerCamelCase = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' )
__lowerCamelCase = AutoTokenizer.from_pretrained('''google/mt5-small''' )
__lowerCamelCase = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids
__lowerCamelCase = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids
__lowerCamelCase = shift_tokens_right(SCREAMING_SNAKE_CASE__ , model.config.pad_token_id , model.config.decoder_start_token_id )
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ).logits
__lowerCamelCase = optax.softmax_cross_entropy(SCREAMING_SNAKE_CASE__ , onehot(SCREAMING_SNAKE_CASE__ , logits.shape[-1] ) ).mean()
__lowerCamelCase = -(labels.shape[-1] * loss.item())
__lowerCamelCase = -84.9127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 339 | 1 |
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotSmallConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
SCREAMING_SNAKE_CASE__ : Any = "platform"
import jax
import jax.numpy as jnp
from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
shift_tokens_right,
)
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Dict=None , __lowerCAmelCase : str=None , __lowerCAmelCase : int=None , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Optional[int]=None , ) -> Optional[Any]:
if attention_mask is None:
__lowerCamelCase = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
__lowerCamelCase = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
__lowerCamelCase = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
__lowerCamelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
__lowerCamelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class lowerCAmelCase__ :
def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str]=13 , SCREAMING_SNAKE_CASE__ : Dict=7 , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : List[str]=99 , SCREAMING_SNAKE_CASE__ : Optional[Any]=16 , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Any=4 , SCREAMING_SNAKE_CASE__ : Any=4 , SCREAMING_SNAKE_CASE__ : Dict="gelu" , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=0.1 , SCREAMING_SNAKE_CASE__ : Dict=32 , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : int=0.02 , ) -> List[str]:
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = eos_token_id
__lowerCamelCase = pad_token_id
__lowerCamelCase = bos_token_id
__lowerCamelCase = initializer_range
def __A ( self : Dict ) -> str:
__lowerCamelCase = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size )
__lowerCamelCase = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 )
__lowerCamelCase = shift_tokens_right(SCREAMING_SNAKE_CASE__ , 1 , 2 )
__lowerCamelCase = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = prepare_blenderbot_inputs_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return config, inputs_dict
def __A ( self : Any ) -> Dict:
__lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs()
return config, inputs_dict
def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]:
__lowerCamelCase = 20
__lowerCamelCase = model_class_name(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model.encode(inputs_dict['''input_ids'''] )
__lowerCamelCase , __lowerCamelCase = (
inputs_dict['''decoder_input_ids'''],
inputs_dict['''decoder_attention_mask'''],
)
__lowerCamelCase = model.init_cache(decoder_input_ids.shape[0] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' )
__lowerCamelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__lowerCamelCase = model.decode(
decoder_input_ids[:, :-1] , SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ , decoder_position_ids=SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' )
__lowerCamelCase = model.decode(
decoder_input_ids[:, -1:] , SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = model.decode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]:
__lowerCamelCase = 20
__lowerCamelCase = model_class_name(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model.encode(inputs_dict['''input_ids'''] )
__lowerCamelCase , __lowerCamelCase = (
inputs_dict['''decoder_input_ids'''],
inputs_dict['''decoder_attention_mask'''],
)
__lowerCamelCase = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
__lowerCamelCase = model.init_cache(decoder_input_ids.shape[0] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__lowerCamelCase = model.decode(
decoder_input_ids[:, :-1] , SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ , decoder_position_ids=SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' )
__lowerCamelCase = model.decode(
decoder_input_ids[:, -1:] , SCREAMING_SNAKE_CASE__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , decoder_position_ids=SCREAMING_SNAKE_CASE__ , )
__lowerCamelCase = model.decode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
@require_flax
class lowerCAmelCase__ ( unittest.TestCase ):
a__ : Optional[Any] = 99
def __A ( self : str ) -> List[Any]:
__lowerCamelCase = np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
__lowerCamelCase = input_ids.shape[0]
__lowerCamelCase = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def __A ( self : str ) -> int:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self._get_config_and_data()
__lowerCamelCase = FlaxBlenderbotSmallForConditionalGeneration(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = lm_model(input_ids=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs['''logits'''].shape , SCREAMING_SNAKE_CASE__ )
def __A ( self : int ) -> str:
__lowerCamelCase = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
__lowerCamelCase = FlaxBlenderbotSmallForConditionalGeneration(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa )
__lowerCamelCase = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa )
__lowerCamelCase = lm_model(input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = (*summary.shape, config.vocab_size)
self.assertEqual(outputs['''logits'''].shape , SCREAMING_SNAKE_CASE__ )
def __A ( self : List[str] ) -> List[Any]:
__lowerCamelCase = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa )
__lowerCamelCase = shift_tokens_right(SCREAMING_SNAKE_CASE__ , 1 , 2 )
__lowerCamelCase = np.equal(SCREAMING_SNAKE_CASE__ , 1 ).astype(np.floataa ).sum()
__lowerCamelCase = np.equal(SCREAMING_SNAKE_CASE__ , 1 ).astype(np.floataa ).sum()
self.assertEqual(shifted.shape , input_ids.shape )
self.assertEqual(SCREAMING_SNAKE_CASE__ , n_pad_before - 1 )
self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() )
@require_flax
class lowerCAmelCase__ ( __lowercase , unittest.TestCase , __lowercase ):
a__ : Tuple = True
a__ : List[Any] = (
(
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallForConditionalGeneration,
)
if is_flax_available()
else ()
)
a__ : Tuple = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else ()
def __A ( self : List[Any] ) -> Optional[int]:
__lowerCamelCase = FlaxBlenderbotSmallModelTester(self )
def __A ( self : Tuple ) -> List[Any]:
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __A ( self : List[Any] ) -> int:
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __A ( self : List[str] ) -> List[str]:
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowerCamelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model_class(SCREAMING_SNAKE_CASE__ )
@jax.jit
def encode_jitted(SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , **SCREAMING_SNAKE_CASE__ : int ):
return model.encode(input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )
with self.subTest('''JIT Enabled''' ):
__lowerCamelCase = encode_jitted(**SCREAMING_SNAKE_CASE__ ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
__lowerCamelCase = encode_jitted(**SCREAMING_SNAKE_CASE__ ).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) )
for jitted_output, output in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
self.assertEqual(jitted_output.shape , output.shape )
def __A ( self : Tuple ) -> Tuple:
__lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowerCamelCase = model_class(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] )
__lowerCamelCase = {
'''decoder_input_ids''': inputs_dict['''decoder_input_ids'''],
'''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''],
'''encoder_outputs''': encoder_outputs,
}
@jax.jit
def decode_jitted(SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str ):
return model.decode(
decoder_input_ids=SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , encoder_outputs=SCREAMING_SNAKE_CASE__ , )
with self.subTest('''JIT Enabled''' ):
__lowerCamelCase = decode_jitted(**SCREAMING_SNAKE_CASE__ ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
__lowerCamelCase = decode_jitted(**SCREAMING_SNAKE_CASE__ ).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) )
for jitted_output, output in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def __A ( self : Dict ) -> int:
for model_class_name in self.all_model_classes:
__lowerCamelCase = model_class_name.from_pretrained('''facebook/blenderbot_small-90M''' )
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
__lowerCamelCase = np.ones((1, 1) ) * model.config.eos_token_id
__lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
| 339 |
import datasets
import faiss
import numpy as np
import streamlit as st
import torch
from elasticsearch import Elasticsearch
from elia_utils import (
embed_questions_for_retrieval,
make_qa_sas_model,
qa_sas_generate,
query_es_index,
query_qa_dense_index,
)
import transformers
from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer
SCREAMING_SNAKE_CASE__ : Optional[int] = "bart"
SCREAMING_SNAKE_CASE__ : Dict = True
@st.cache(allow_output_mutation=__lowerCAmelCase )
def __magic_name__ ( ) -> str:
if LOAD_DENSE_INDEX:
__lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' )
__lowerCamelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' )
__lowerCamelCase = qar_model.eval()
else:
__lowerCamelCase , __lowerCamelCase = (None, None)
if MODEL_TYPE == "bart":
__lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' )
__lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' )
__lowerCamelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' )
sas_model.load_state_dict(save_dict['''model'''] )
__lowerCamelCase = sas_model.eval()
else:
__lowerCamelCase , __lowerCamelCase = make_qa_sas_model(
model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' )
return (qar_tokenizer, qar_model, sas_tokenizer, sas_model)
@st.cache(allow_output_mutation=__lowerCAmelCase )
def __magic_name__ ( ) -> Optional[int]:
if LOAD_DENSE_INDEX:
__lowerCamelCase = faiss.StandardGpuResources()
__lowerCamelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train''']
__lowerCamelCase = np.memmap(
'''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , )
__lowerCamelCase = faiss.IndexFlatIP(128 )
__lowerCamelCase = faiss.index_cpu_to_gpu(__lowerCAmelCase , 1 , __lowerCAmelCase )
wikiaab_gpu_index_flat.add(__lowerCAmelCase ) # TODO fix for larger GPU
else:
__lowerCamelCase , __lowerCamelCase = (None, None)
__lowerCamelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] )
return (wikiaab_passages, wikiaab_gpu_index_flat, es_client)
@st.cache(allow_output_mutation=__lowerCAmelCase )
def __magic_name__ ( ) -> List[str]:
__lowerCamelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' )
__lowerCamelCase = elia['''train_eli5''']
__lowerCamelCase = np.memmap(
'''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) )
__lowerCamelCase = faiss.IndexFlatIP(128 )
eli5_train_q_index.add(__lowerCAmelCase )
return (elia_train, eli5_train_q_index)
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = load_indexes()
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = load_models()
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = load_train_data()
def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[str]=10 ) -> List[str]:
__lowerCamelCase = embed_questions_for_retrieval([question] , __lowerCAmelCase , __lowerCAmelCase )
__lowerCamelCase , __lowerCamelCase = eli5_train_q_index.search(__lowerCAmelCase , __lowerCAmelCase )
__lowerCamelCase = [elia_train[int(__lowerCAmelCase )] for i in I[0]]
return nn_examples
def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict="wiki40b" , __lowerCAmelCase : Any="dense" , __lowerCAmelCase : Dict=10 ) -> Union[str, Any]:
if source == "none":
__lowerCamelCase , __lowerCamelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), [])
else:
if method == "dense":
__lowerCamelCase , __lowerCamelCase = query_qa_dense_index(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
else:
__lowerCamelCase , __lowerCamelCase = query_es_index(
__lowerCAmelCase , __lowerCAmelCase , index_name='''english_wiki40b_snippets_100w''' , n_results=__lowerCAmelCase , )
__lowerCamelCase = [
(res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst
]
__lowerCamelCase = '''question: {} context: {}'''.format(__lowerCAmelCase , __lowerCAmelCase )
return question_doc, support_list
@st.cache(
hash_funcs={
torch.Tensor: (lambda __lowerCAmelCase : None),
transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __lowerCAmelCase : None),
} )
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str=64 , __lowerCAmelCase : Dict=256 , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : Optional[Any]=0.95 , __lowerCAmelCase : List[Any]=0.8 ) -> Any:
with torch.no_grad():
__lowerCamelCase = qa_sas_generate(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , num_answers=1 , num_beams=__lowerCAmelCase , min_len=__lowerCAmelCase , max_len=__lowerCAmelCase , do_sample=__lowerCAmelCase , temp=__lowerCAmelCase , top_p=__lowerCAmelCase , top_k=__lowerCAmelCase , max_input_length=1024 , device='''cuda:0''' , )[0]
return (answer, support_list)
st.title("Long Form Question Answering with ELI5")
# Start sidebar
SCREAMING_SNAKE_CASE__ : List[str] = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>"
SCREAMING_SNAKE_CASE__ : Dict = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % (
header_html,
)
st.sidebar.markdown(
header_full,
unsafe_allow_html=True,
)
# Long Form QA with ELI5 and Wikipedia
SCREAMING_SNAKE_CASE__ : int = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n"
st.sidebar.markdown(description, unsafe_allow_html=True)
SCREAMING_SNAKE_CASE__ : str = [
"Answer the question",
"View the retrieved document only",
"View the most similar ELI5 question and answer",
"Show me everything, please!",
]
SCREAMING_SNAKE_CASE__ : Optional[int] = st.sidebar.checkbox("Demo options")
if demo_options:
SCREAMING_SNAKE_CASE__ : Optional[int] = st.sidebar.selectbox(
"",
action_list,
index=3,
)
SCREAMING_SNAKE_CASE__ : Optional[Any] = action_list.index(action_st)
SCREAMING_SNAKE_CASE__ : int = st.sidebar.selectbox(
"",
["Show full text of passages", "Show passage section titles"],
index=0,
)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = show_type == "Show full text of passages"
else:
SCREAMING_SNAKE_CASE__ : Any = 3
SCREAMING_SNAKE_CASE__ : Any = True
SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.checkbox("Retrieval options")
if retrieval_options:
SCREAMING_SNAKE_CASE__ : Tuple = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n "
st.sidebar.markdown(retriever_info)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"])
SCREAMING_SNAKE_CASE__ : int = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"])
else:
SCREAMING_SNAKE_CASE__ : List[str] = "wiki40b"
SCREAMING_SNAKE_CASE__ : Optional[Any] = "dense"
SCREAMING_SNAKE_CASE__ : str = "beam"
SCREAMING_SNAKE_CASE__ : List[Any] = 2
SCREAMING_SNAKE_CASE__ : Optional[Any] = 64
SCREAMING_SNAKE_CASE__ : List[Any] = 256
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
SCREAMING_SNAKE_CASE__ : List[str] = st.sidebar.checkbox("Generation options")
if generate_options:
SCREAMING_SNAKE_CASE__ : Dict = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n "
st.sidebar.markdown(generate_info)
SCREAMING_SNAKE_CASE__ : List[str] = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"])
SCREAMING_SNAKE_CASE__ : Any = st.sidebar.slider(
"Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None
)
SCREAMING_SNAKE_CASE__ : str = st.sidebar.slider(
"Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None
)
if sampled == "beam":
SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None)
else:
SCREAMING_SNAKE_CASE__ : Any = st.sidebar.slider(
"Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None
)
SCREAMING_SNAKE_CASE__ : Dict = st.sidebar.slider(
"Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None
)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
# start main text
SCREAMING_SNAKE_CASE__ : Any = [
"<MY QUESTION>",
"How do people make chocolate?",
"Why do we get a fever when we are sick?",
"How can different animals perceive different colors?",
"What is natural language processing?",
"What's the best way to treat a sunburn?",
"What exactly are vitamins ?",
"How does nuclear energy provide electricity?",
"What's the difference between viruses and bacteria?",
"Why are flutes classified as woodwinds when most of them are made out of metal ?",
"Why do people like drinking coffee even though it tastes so bad?",
"What happens when wine ages? How does it make the wine taste better?",
"If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?",
"How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?",
"How does New Zealand have so many large bird predators?",
]
SCREAMING_SNAKE_CASE__ : List[str] = st.selectbox(
"What would you like to ask? ---- select <MY QUESTION> to enter a new query",
questions_list,
index=1,
)
if question_s == "<MY QUESTION>":
SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.text_input("Enter your question here:", "")
else:
SCREAMING_SNAKE_CASE__ : str = question_s
if st.button("Show me!"):
if action in [0, 1, 3]:
if index_type == "mixed":
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = make_support(question, source=wiki_source, method="dense", n_results=10)
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = make_support(question, source=wiki_source, method="sparse", n_results=10)
SCREAMING_SNAKE_CASE__ : int = []
for res_d, res_s in zip(support_list_dense, support_list_sparse):
if tuple(res_d) not in support_list:
support_list += [tuple(res_d)]
if tuple(res_s) not in support_list:
support_list += [tuple(res_s)]
SCREAMING_SNAKE_CASE__ : Optional[Any] = support_list[:10]
SCREAMING_SNAKE_CASE__ : Tuple = "<P> " + " <P> ".join([res[-1] for res in support_list])
else:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = make_support(question, source=wiki_source, method=index_type, n_results=10)
if action in [0, 3]:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = answer_question(
question_doc,
sas_model,
sas_tokenizer,
min_len=min_len,
max_len=int(max_len),
sampling=(sampled == "sampled"),
n_beams=n_beams,
top_p=top_p,
temp=temp,
)
st.markdown("### The model generated answer is:")
st.write(answer)
if action in [0, 1, 3] and wiki_source != "none":
st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:")
for i, res in enumerate(support_list):
SCREAMING_SNAKE_CASE__ : Optional[int] = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_"))
SCREAMING_SNAKE_CASE__ : Tuple = res[1].strip()
if sec_titles == "":
SCREAMING_SNAKE_CASE__ : Union[str, Any] = "[{}]({})".format(res[0], wiki_url)
else:
SCREAMING_SNAKE_CASE__ : Dict = sec_titles.split(" & ")
SCREAMING_SNAKE_CASE__ : int = " & ".join(
["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list]
)
st.markdown(
"{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections),
unsafe_allow_html=True,
)
if show_passages:
st.write(
"> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True
)
if action in [2, 3]:
SCREAMING_SNAKE_CASE__ : Any = find_nearest_training(question)
SCREAMING_SNAKE_CASE__ : List[Any] = nn_train_list[0]
st.markdown(
"--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"])
)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [
"{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""]))
for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"]))
if i == 0 or sc > 2
]
st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st)))
SCREAMING_SNAKE_CASE__ : List[Any] = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n"
st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
| 339 | 1 |
def __magic_name__ ( __lowerCAmelCase : list ) -> list:
for i in range(len(__lowerCAmelCase ) - 1 , 0 , -1 ):
__lowerCamelCase = False
for j in range(__lowerCAmelCase , 0 , -1 ):
if unsorted[j] < unsorted[j - 1]:
__lowerCamelCase , __lowerCamelCase = unsorted[j - 1], unsorted[j]
__lowerCamelCase = True
for j in range(__lowerCAmelCase ):
if unsorted[j] > unsorted[j + 1]:
__lowerCamelCase , __lowerCamelCase = unsorted[j + 1], unsorted[j]
__lowerCamelCase = True
if not swapped:
break
return unsorted
if __name__ == "__main__":
import doctest
doctest.testmod()
SCREAMING_SNAKE_CASE__ : str = input("Enter numbers separated by a comma:\n").strip()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [int(item) for item in user_input.split(",")]
print(F'{cocktail_shaker_sort(unsorted) = }')
| 339 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ : List[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : str = {
"facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json",
"facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json",
"facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json",
"facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json",
"facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json",
"facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json",
"facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json",
"facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json",
"facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json",
}
class lowerCAmelCase__ ( __lowercase ):
a__ : Dict = """xmod"""
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_05_22 , SCREAMING_SNAKE_CASE__ : str=7_68 , SCREAMING_SNAKE_CASE__ : int=12 , SCREAMING_SNAKE_CASE__ : Dict=12 , SCREAMING_SNAKE_CASE__ : List[str]=30_72 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : List[Any]=0.02 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1e-12 , SCREAMING_SNAKE_CASE__ : List[str]=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : Any="absolute" , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=("en_XX",) , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , **SCREAMING_SNAKE_CASE__ : int , ) -> str:
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = hidden_act
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = type_vocab_size
__lowerCamelCase = initializer_range
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = position_embedding_type
__lowerCamelCase = use_cache
__lowerCamelCase = classifier_dropout
__lowerCamelCase = pre_norm
__lowerCamelCase = adapter_reduction_factor
__lowerCamelCase = adapter_layer_norm
__lowerCamelCase = adapter_reuse_layer_norm
__lowerCamelCase = ln_before_adapter
__lowerCamelCase = list(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase = default_language
class lowerCAmelCase__ ( __lowercase ):
@property
def __A ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
__lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__lowerCamelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 339 | 1 |
import os
from pathlib import Path
from unittest.mock import patch
import pytest
import zstandard as zstd
from datasets.download.download_config import DownloadConfig
from datasets.utils.file_utils import (
OfflineModeIsEnabled,
cached_path,
fsspec_get,
fsspec_head,
ftp_get,
ftp_head,
get_from_cache,
http_get,
http_head,
)
SCREAMING_SNAKE_CASE__ : Optional[int] = "\\n Text data.\n Second line of data."
SCREAMING_SNAKE_CASE__ : List[str] = "file"
@pytest.fixture(scope='''session''' )
def __magic_name__ ( __lowerCAmelCase : Any ) -> int:
__lowerCamelCase = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''')
__lowerCamelCase = bytes(__lowerCAmelCase , '''utf-8''' )
with zstd.open(__lowerCAmelCase , '''wb''' ) as f:
f.write(__lowerCAmelCase )
return path
@pytest.fixture
def __magic_name__ ( __lowerCAmelCase : Tuple ) -> Tuple:
with open(os.path.join(tmpfs.local_root_dir , __lowerCAmelCase ) , '''w''' ) as f:
f.write(__lowerCAmelCase )
return FILE_PATH
@pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] )
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] ) -> List[Any]:
__lowerCamelCase = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path}
__lowerCamelCase = input_paths[compression_format]
__lowerCamelCase = tmp_path / '''cache'''
__lowerCamelCase = DownloadConfig(cache_dir=__lowerCAmelCase , extract_compressed_file=__lowerCAmelCase )
__lowerCamelCase = cached_path(__lowerCAmelCase , download_config=__lowerCAmelCase )
with open(__lowerCAmelCase ) as f:
__lowerCamelCase = f.read()
with open(__lowerCAmelCase ) as f:
__lowerCamelCase = f.read()
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize('''default_extracted''' , [True, False] )
@pytest.mark.parametrize('''default_cache_dir''' , [True, False] )
def __magic_name__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] ) -> Optional[int]:
__lowerCamelCase = '''custom_cache'''
__lowerCamelCase = '''custom_extracted_dir'''
__lowerCamelCase = tmp_path / '''custom_extracted_path'''
if default_extracted:
__lowerCamelCase = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''')
else:
monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , __lowerCAmelCase )
monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(__lowerCAmelCase ) )
__lowerCamelCase = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir)
__lowerCamelCase = xz_file
__lowerCamelCase = (
DownloadConfig(extract_compressed_file=__lowerCAmelCase )
if default_cache_dir
else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=__lowerCAmelCase )
)
__lowerCamelCase = cached_path(__lowerCAmelCase , download_config=__lowerCAmelCase )
assert Path(__lowerCAmelCase ).parent.parts[-2:] == expected
def __magic_name__ ( __lowerCAmelCase : List[str] ) -> str:
# absolute path
__lowerCamelCase = str(Path(__lowerCAmelCase ).resolve() )
assert cached_path(__lowerCAmelCase ) == text_file
# relative path
__lowerCamelCase = str(Path(__lowerCAmelCase ).resolve().relative_to(Path(os.getcwd() ) ) )
assert cached_path(__lowerCAmelCase ) == text_file
def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> Tuple:
# absolute path
__lowerCamelCase = str(tmp_path.resolve() / '''__missing_file__.txt''' )
with pytest.raises(__lowerCAmelCase ):
cached_path(__lowerCAmelCase )
# relative path
__lowerCamelCase = '''./__missing_file__.txt'''
with pytest.raises(__lowerCAmelCase ):
cached_path(__lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : Union[str, Any] ) -> List[Any]:
__lowerCamelCase = get_from_cache(f'''tmp://{tmpfs_file}''' )
with open(__lowerCAmelCase ) as f:
__lowerCamelCase = f.read()
assert output_file_content == FILE_CONTENT
@patch('''datasets.config.HF_DATASETS_OFFLINE''' , __lowerCAmelCase )
def __magic_name__ ( ) -> int:
with pytest.raises(__lowerCAmelCase ):
cached_path('''https://huggingface.co''' )
@patch('''datasets.config.HF_DATASETS_OFFLINE''' , __lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : Union[str, Any] ) -> int:
__lowerCamelCase = tmp_path_factory.mktemp('''data''' ) / '''file.html'''
with pytest.raises(__lowerCAmelCase ):
http_get('''https://huggingface.co''' , temp_file=__lowerCAmelCase )
with pytest.raises(__lowerCAmelCase ):
http_head('''https://huggingface.co''' )
@patch('''datasets.config.HF_DATASETS_OFFLINE''' , __lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : Any ) -> str:
__lowerCamelCase = tmp_path_factory.mktemp('''data''' ) / '''file.html'''
with pytest.raises(__lowerCAmelCase ):
ftp_get('''ftp://huggingface.co''' , temp_file=__lowerCAmelCase )
with pytest.raises(__lowerCAmelCase ):
ftp_head('''ftp://huggingface.co''' )
@patch('''datasets.config.HF_DATASETS_OFFLINE''' , __lowerCAmelCase )
def __magic_name__ ( __lowerCAmelCase : Dict ) -> Any:
__lowerCamelCase = tmp_path_factory.mktemp('''data''' ) / '''file.html'''
with pytest.raises(__lowerCAmelCase ):
fsspec_get('''s3://huggingface.co''' , temp_file=__lowerCAmelCase )
with pytest.raises(__lowerCAmelCase ):
fsspec_head('''s3://huggingface.co''' )
| 339 |
from collections import namedtuple
import requests
from lxml import html # type: ignore
SCREAMING_SNAKE_CASE__ : List[Any] = namedtuple("covid_data", "cases deaths recovered")
def __magic_name__ ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data:
__lowerCamelCase = '''//div[@class = "maincounter-number"]/span/text()'''
return covid_data(*html.fromstring(requests.get(__lowerCAmelCase ).content ).xpath(__lowerCAmelCase ) )
SCREAMING_SNAKE_CASE__ : List[str] = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}"
print(fmt.format(*covid_stats()))
| 339 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.