code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class lowerCAmelCase__ : def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : str = "cpu" , SCREAMING_SNAKE_CASE__ : str = "openai/clip-vit-large-patch14" ) -> List[Any]: __lowerCamelCase = device __lowerCamelCase = CLIPTokenizerFast.from_pretrained(UpperCamelCase_ ) __lowerCamelCase = [0.48145466, 0.4578275, 0.40821073] __lowerCamelCase = [0.26862954, 0.26130258, 0.27577711] __lowerCamelCase = torchvision.transforms.Normalize(self.image_mean , self.image_std ) __lowerCamelCase = torchvision.transforms.Resize(2_24 ) __lowerCamelCase = torchvision.transforms.CenterCrop(2_24 ) def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> int: __lowerCamelCase = self.resize(UpperCamelCase_ ) __lowerCamelCase = self.center_crop(UpperCamelCase_ ) __lowerCamelCase = self.normalize(UpperCamelCase_ ) return images def __call__( self : Any , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: __lowerCamelCase = self.tokenizer(text=UpperCamelCase_ , **UpperCamelCase_ ) __lowerCamelCase = self.preprocess_img(UpperCamelCase_ ) __lowerCamelCase = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class lowerCAmelCase__ ( nn.Module ): def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int]=10 , SCREAMING_SNAKE_CASE__ : List[str]=0.01 , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]="image" , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : Optional[int]=False , ) -> List[Any]: super().__init__() __lowerCamelCase = None __lowerCamelCase = device if device else get_device() if vqgan: __lowerCamelCase = vqgan else: __lowerCamelCase = load_vqgan(self.device , conf_path=UpperCamelCase_ , ckpt_path=UpperCamelCase_ ) self.vqgan.eval() if clip: __lowerCamelCase = clip else: __lowerCamelCase = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) __lowerCamelCase = ProcessorGradientFlow(device=self.device ) __lowerCamelCase = iterations __lowerCamelCase = lr __lowerCamelCase = log __lowerCamelCase = make_grid __lowerCamelCase = return_val __lowerCamelCase = quantize __lowerCamelCase = self.vqgan.decoder.z_shape def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Optional[int]=5 , SCREAMING_SNAKE_CASE__ : int=True ) -> str: __lowerCamelCase = [] if output_path is None: __lowerCamelCase = '''./animation.gif''' if input_path is None: __lowerCamelCase = self.save_path __lowerCamelCase = sorted(glob(input_path + '''/*''' ) ) if not len(UpperCamelCase_ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(UpperCamelCase_ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) __lowerCamelCase = total_duration / len(UpperCamelCase_ ) __lowerCamelCase = [frame_duration] * len(UpperCamelCase_ ) if extend_frames: __lowerCamelCase = 1.5 __lowerCamelCase = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(UpperCamelCase_ ) ) imageio.mimsave(UpperCamelCase_ , UpperCamelCase_ , duration=UpperCamelCase_ ) print(f'''gif saved to {output_path}''' ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Dict=None ) -> Any: if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError __lowerCamelCase = preprocess(Image.open(UpperCamelCase_ ) , target_image_size=2_56 ).to(self.device ) __lowerCamelCase = preprocess_vqgan(UpperCamelCase_ ) __lowerCamelCase , *__lowerCamelCase = self.vqgan.encode(UpperCamelCase_ ) return z def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] ) -> str: __lowerCamelCase = self.latent.detach().requires_grad_() __lowerCamelCase = base_latent + transform_vector if self.quantize: __lowerCamelCase , *__lowerCamelCase = self.vqgan.quantize(UpperCamelCase_ ) else: __lowerCamelCase = trans_latent return self.vqgan.decode(UpperCamelCase_ ) def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str]=None ) -> Tuple: __lowerCamelCase = self.clip_preprocessor(text=UpperCamelCase_ , images=UpperCamelCase_ , return_tensors='''pt''' , padding=UpperCamelCase_ ) __lowerCamelCase = self.clip(**UpperCamelCase_ ) __lowerCamelCase = clip_outputs.logits_per_image if weights is not None: __lowerCamelCase = similarity_logits * weights return similarity_logits.sum() def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]: __lowerCamelCase = self._get_clip_similarity(pos_prompts['''prompts'''] , UpperCamelCase_ , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: __lowerCamelCase = self._get_clip_similarity(neg_prompts['''prompts'''] , UpperCamelCase_ , weights=neg_prompts['''weights'''] ) else: __lowerCamelCase = torch.tensor([1] , device=self.device ) __lowerCamelCase = -torch.log(UpperCamelCase_ ) + torch.log(UpperCamelCase_ ) return loss def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: __lowerCamelCase = torch.randn_like(self.latent , requires_grad=UpperCamelCase_ , device=self.device ) __lowerCamelCase = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() __lowerCamelCase = self._add_vector(UpperCamelCase_ ) __lowerCamelCase = loop_post_process(UpperCamelCase_ ) __lowerCamelCase = self._get_CLIP_loss(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) print('''CLIP loss''' , UpperCamelCase_ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=UpperCamelCase_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[str]: wandb.init(reinit=UpperCamelCase_ , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: __lowerCamelCase = Image.open(UpperCamelCase_ ) __lowerCamelCase = image.resize((2_56, 2_56) ) wandb.log('''Original Image''' , wandb.Image(UpperCamelCase_ ) ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str ) -> Tuple: if not prompts: return [] __lowerCamelCase = [] __lowerCamelCase = [] if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(UpperCamelCase_ , (tuple, list) ): __lowerCamelCase = prompt[0] __lowerCamelCase = float(prompt[1] ) elif ":" in prompt: __lowerCamelCase , __lowerCamelCase = prompt.split(''':''' ) __lowerCamelCase = float(UpperCamelCase_ ) else: __lowerCamelCase = prompt __lowerCamelCase = 1.0 processed_prompts.append(UpperCamelCase_ ) weights.append(UpperCamelCase_ ) return { "prompts": processed_prompts, "weights": torch.tensor(UpperCamelCase_ , device=self.device ), } def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Any=None , ) -> Union[str, Any]: if image_path: __lowerCamelCase = self._get_latent(UpperCamelCase_ ) else: __lowerCamelCase = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) assert pos_prompts, "You must provide at least one positive prompt." __lowerCamelCase = self.process_prompts(UpperCamelCase_ ) __lowerCamelCase = self.process_prompts(UpperCamelCase_ ) if save_final and save_path is None: __lowerCamelCase = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(UpperCamelCase_ ): os.makedirs(UpperCamelCase_ ) else: __lowerCamelCase = save_path + '''_''' + get_timestamp() os.makedirs(UpperCamelCase_ ) __lowerCamelCase = save_path __lowerCamelCase = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(UpperCamelCase_ ) ) __lowerCamelCase = loop_post_process(UpperCamelCase_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ): if show_intermediate: show_pil(UpperCamelCase_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , f'''iter_{iter:03d}.png''' ) ) if self.log: wandb.log({'''Image''': wandb.Image(UpperCamelCase_ )} ) if show_final: show_pil(UpperCamelCase_ ) if save_final: transformed_img.save(os.path.join(self.save_path , f'''iter_{iter:03d}_final.png''' ) )
357
from functools import lru_cache def __magic_name__ ( __lowerCAmelCase : int ) -> set: __lowerCamelCase = 2 __lowerCamelCase = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__lowerCAmelCase ) if n > 1: factors.add(__lowerCAmelCase ) return factors @lru_cache def __magic_name__ ( __lowerCAmelCase : int ) -> int: return len(unique_prime_factors(__lowerCAmelCase ) ) def __magic_name__ ( __lowerCAmelCase : list ) -> bool: return len(set(__lowerCAmelCase ) ) in (0, 1) def __magic_name__ ( __lowerCAmelCase : int ) -> list: __lowerCamelCase = 2 while True: # Increment each value of a generated range __lowerCamelCase = [base + i for i in range(__lowerCAmelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. __lowerCamelCase = [upf_len(__lowerCAmelCase ) for x in group] checker.append(__lowerCAmelCase ) # If all numbers in the list are equal, return the group variable. if equality(__lowerCAmelCase ): return group # Increment our base variable by 1 base += 1 def __magic_name__ ( __lowerCAmelCase : int = 4 ) -> int: __lowerCamelCase = run(__lowerCAmelCase ) return results[0] if len(__lowerCAmelCase ) else None if __name__ == "__main__": print(solution())
339
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : List[Any] = { "BAAI/AltCLIP": "https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class lowerCAmelCase__ ( lowerCAmelCase_ ): a__ : str = 'altclip_text_model' def __init__( self : str , SCREAMING_SNAKE_CASE__ : int=25_00_02 , SCREAMING_SNAKE_CASE__ : int=10_24 , SCREAMING_SNAKE_CASE__ : str=24 , SCREAMING_SNAKE_CASE__ : Optional[Any]=16 , SCREAMING_SNAKE_CASE__ : Optional[int]=40_96 , SCREAMING_SNAKE_CASE__ : Tuple="gelu" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : str=5_14 , SCREAMING_SNAKE_CASE__ : Dict=1 , SCREAMING_SNAKE_CASE__ : Tuple=0.02 , SCREAMING_SNAKE_CASE__ : Dict=0.02 , SCREAMING_SNAKE_CASE__ : Optional[int]=1e-05 , SCREAMING_SNAKE_CASE__ : Dict=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : int="absolute" , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=7_68 , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> Optional[Any]: super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = initializer_range __lowerCamelCase = initializer_factor __lowerCamelCase = layer_norm_eps __lowerCamelCase = position_embedding_type __lowerCamelCase = use_cache __lowerCamelCase = project_dim class lowerCAmelCase__ ( lowerCAmelCase_ ): a__ : List[Any] = 'altclip_vision_model' def __init__( self : Any , SCREAMING_SNAKE_CASE__ : List[str]=7_68 , SCREAMING_SNAKE_CASE__ : Optional[int]=30_72 , SCREAMING_SNAKE_CASE__ : Optional[Any]=5_12 , SCREAMING_SNAKE_CASE__ : int=12 , SCREAMING_SNAKE_CASE__ : Any=12 , SCREAMING_SNAKE_CASE__ : Any=3 , SCREAMING_SNAKE_CASE__ : List[Any]=2_24 , SCREAMING_SNAKE_CASE__ : List[str]=32 , SCREAMING_SNAKE_CASE__ : List[str]="quick_gelu" , SCREAMING_SNAKE_CASE__ : str=1e-5 , SCREAMING_SNAKE_CASE__ : str=0.0 , SCREAMING_SNAKE_CASE__ : Dict=0.02 , SCREAMING_SNAKE_CASE__ : Optional[int]=1.0 , **SCREAMING_SNAKE_CASE__ : Tuple , ) -> Optional[int]: super().__init__(**__lowerCAmelCase ) __lowerCamelCase = hidden_size __lowerCamelCase = intermediate_size __lowerCamelCase = projection_dim __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = num_channels __lowerCamelCase = patch_size __lowerCamelCase = image_size __lowerCamelCase = initializer_range __lowerCamelCase = initializer_factor __lowerCamelCase = attention_dropout __lowerCamelCase = layer_norm_eps __lowerCamelCase = hidden_act @classmethod def __A ( cls : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : str ) -> Tuple: cls._set_token_in_kwargs(__lowerCAmelCase ) __lowerCamelCase , __lowerCamelCase = cls.get_config_dict(__lowerCAmelCase , **__lowerCAmelCase ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get('''model_type''' ) == "altclip": __lowerCamelCase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__lowerCAmelCase , **__lowerCAmelCase ) class lowerCAmelCase__ ( lowerCAmelCase_ ): a__ : Dict = 'altclip' a__ : Union[str, Any] = True def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : List[Any]=7_68 , SCREAMING_SNAKE_CASE__ : Dict=2.6592 , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Tuple: # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). __lowerCamelCase = kwargs.pop('''text_config_dict''' , __lowerCAmelCase ) __lowerCamelCase = kwargs.pop('''vision_config_dict''' , __lowerCAmelCase ) super().__init__(**__lowerCAmelCase ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: __lowerCamelCase = {} # This is the complete result when using `text_config_dict`. __lowerCamelCase = AltCLIPTextConfig(**__lowerCAmelCase ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: __lowerCamelCase = ( f'''`{key}` is found in both `text_config_dict` and `text_config` but with different values. ''' f'''The value `text_config_dict["{key}"]` will be used instead.''' ) # If inferred from default argument values (just to be super careful) else: __lowerCamelCase = ( f'''`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ''' f'''value `text_config["{key}"]` will be overriden.''' ) logger.warning(__lowerCAmelCase ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: __lowerCamelCase = {} # This is the complete result when using `vision_config_dict`. __lowerCamelCase = AltCLIPVisionConfig(**__lowerCAmelCase ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: __lowerCamelCase = { str(__lowerCAmelCase ): value for key, value in _vision_config_dict['''id2label'''].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: __lowerCamelCase = ( f'''`{key}` is found in both `vision_config_dict` and `vision_config` but with different ''' f'''values. The value `vision_config_dict["{key}"]` will be used instead.''' ) # If inferred from default argument values (just to be super careful) else: __lowerCamelCase = ( f'''`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ''' f'''The value `vision_config["{key}"]` will be overriden.''' ) logger.warning(__lowerCAmelCase ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: __lowerCamelCase = {} logger.info('''`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.''' ) if vision_config is None: __lowerCamelCase = {} logger.info('''`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.''' ) __lowerCamelCase = AltCLIPTextConfig(**__lowerCAmelCase ) __lowerCamelCase = AltCLIPVisionConfig(**__lowerCAmelCase ) __lowerCamelCase = projection_dim __lowerCamelCase = logit_scale_init_value __lowerCamelCase = 1.0 @classmethod def __A ( cls : List[str] , SCREAMING_SNAKE_CASE__ : AltCLIPTextConfig , SCREAMING_SNAKE_CASE__ : AltCLIPVisionConfig , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Union[str, Any]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__lowerCAmelCase ) def __A ( self : Union[str, Any] ) -> str: __lowerCamelCase = copy.deepcopy(self.__dict__ ) __lowerCamelCase = self.text_config.to_dict() __lowerCamelCase = self.vision_config.to_dict() __lowerCamelCase = self.__class__.model_type return output
358
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCAmelCase__ : def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=99 , SCREAMING_SNAKE_CASE__ : List[Any]=13 , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : int=9 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : int=32 , SCREAMING_SNAKE_CASE__ : Tuple=5 , SCREAMING_SNAKE_CASE__ : List[str]=4 , SCREAMING_SNAKE_CASE__ : str=37 , SCREAMING_SNAKE_CASE__ : int=8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.002 , SCREAMING_SNAKE_CASE__ : str=1 , SCREAMING_SNAKE_CASE__ : Tuple=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Dict=None , ) -> Optional[Any]: __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = encoder_seq_length __lowerCamelCase = decoder_seq_length # For common tests __lowerCamelCase = self.decoder_seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = d_ff __lowerCamelCase = relative_attention_num_buckets __lowerCamelCase = dropout_rate __lowerCamelCase = initializer_factor __lowerCamelCase = eos_token_id __lowerCamelCase = pad_token_id __lowerCamelCase = decoder_start_token_id __lowerCamelCase = None __lowerCamelCase = decoder_layers def __A ( self : Any ) -> Tuple: return TaConfig.from_pretrained('''google/umt5-base''' ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , ) -> Optional[int]: if attention_mask is None: __lowerCamelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __lowerCamelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __lowerCamelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ ) if decoder_head_mask is None: __lowerCamelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ ) if cross_attn_head_mask is None: __lowerCamelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def __A ( self : List[Any] ) -> Tuple: __lowerCamelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __lowerCamelCase = input_ids.clamp(self.pad_token_id + 1 ) __lowerCamelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) __lowerCamelCase = self.get_config() __lowerCamelCase = config.num_attention_heads __lowerCamelCase = self.prepare_inputs_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, input_dict def __A ( self : Tuple ) -> List[str]: __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs() return config, inputs_dict def __A ( self : Optional[Any] ) -> Any: return TaConfig( vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __A ( self : List[Any] ) -> Any: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> int: __lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCamelCase = model( input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = model(input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = result.last_hidden_state __lowerCamelCase = result.past_key_values __lowerCamelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Dict: __lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ).get_decoder().to(SCREAMING_SNAKE_CASE__ ).eval() # first forward pass __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) + 1 ) __lowerCamelCase , __lowerCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCamelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and __lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] # select random slice __lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCamelCase = output_from_no_past[:, -1, random_slice_idx].detach() __lowerCamelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Optional[int]: __lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ).half().eval() __lowerCamelCase = model(**SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(SCREAMING_SNAKE_CASE__ ).any().item() ) @require_torch class lowerCAmelCase__ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): a__ : List[Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) a__ : Union[str, Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () a__ : Tuple = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) a__ : int = True a__ : int = False a__ : Tuple = False a__ : Optional[int] = True a__ : Optional[int] = True # The small UMT5 model needs higher percentages for CPU/MP tests a__ : Tuple = [0.8, 0.9] def __A ( self : Tuple ) -> Tuple: __lowerCamelCase = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def __A ( self : List[str] ) -> Union[str, Any]: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = UMTaModel(config_and_inputs[0] ).to(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( SCREAMING_SNAKE_CASE__ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=SCREAMING_SNAKE_CASE__ , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __A ( self : Union[str, Any] ) -> Any: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*SCREAMING_SNAKE_CASE__ ) def __A ( self : Any ) -> Any: __lowerCamelCase = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = config_and_inputs[0] __lowerCamelCase = UMTaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() model.to(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ), } for attn_name, (name, mask) in zip(SCREAMING_SNAKE_CASE__ , head_masking.items() ): __lowerCamelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": __lowerCamelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=SCREAMING_SNAKE_CASE__ , return_dict_in_generate=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) # We check the state of decoder_attentions and cross_attentions just from the last step __lowerCamelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def __A ( self : Tuple ) -> Optional[Any]: pass @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def __A ( self : int ) -> Optional[Any]: __lowerCamelCase = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=SCREAMING_SNAKE_CASE__ , legacy=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] __lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , padding=SCREAMING_SNAKE_CASE__ ).input_ids # fmt: off __lowerCamelCase = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ] ) # fmt: on torch.testing.assert_allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model.generate(input_ids.to(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] __lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
339
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE__ : Any = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[int] = ["BeitFeatureExtractor"] SCREAMING_SNAKE_CASE__ : str = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Tuple = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : str = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
359
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Tuple = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class lowerCAmelCase__ ( __lowercase ): a__ : Union[str, Any] = """open-llama""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Any=10_00_00 , SCREAMING_SNAKE_CASE__ : Any=40_96 , SCREAMING_SNAKE_CASE__ : Any=1_10_08 , SCREAMING_SNAKE_CASE__ : Tuple=32 , SCREAMING_SNAKE_CASE__ : str=32 , SCREAMING_SNAKE_CASE__ : Any="silu" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=20_48 , SCREAMING_SNAKE_CASE__ : List[str]=0.02 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-6 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Dict=0 , SCREAMING_SNAKE_CASE__ : Tuple=1 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : List[str]=None , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> Dict: __lowerCamelCase = vocab_size __lowerCamelCase = max_position_embeddings __lowerCamelCase = hidden_size __lowerCamelCase = intermediate_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = initializer_range __lowerCamelCase = rms_norm_eps __lowerCamelCase = use_cache __lowerCamelCase = kwargs.pop( '''use_memorry_efficient_attention''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_dropout_prob __lowerCamelCase = use_stable_embedding __lowerCamelCase = shared_input_output_embedding __lowerCamelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , tie_word_embeddings=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) def __A ( self : Dict ) -> Optional[int]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , SCREAMING_SNAKE_CASE__ ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f'''got {self.rope_scaling}''' ) __lowerCamelCase = self.rope_scaling.get('''type''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.rope_scaling.get('''factor''' , SCREAMING_SNAKE_CASE__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
339
0
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__ : List[Any] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): a__ : int = XLMRobertaTokenizer a__ : Optional[Any] = XLMRobertaTokenizerFast a__ : Any = True a__ : Optional[int] = True def __A ( self : Union[str, Any] ) -> str: super().setUp() # We have a SentencePiece fixture for testing __lowerCamelCase = XLMRobertaTokenizer(__lowerCAmelCase , keep_accents=__lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self : int ) -> Optional[int]: __lowerCamelCase = '''<pad>''' __lowerCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) , __lowerCAmelCase ) def __A ( self : str ) -> str: __lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__lowerCAmelCase ) , 10_02 ) def __A ( self : str ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def __A ( self : Union[str, Any] ) -> int: __lowerCamelCase = XLMRobertaTokenizer(__lowerCAmelCase , keep_accents=__lowerCAmelCase ) __lowerCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowerCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __lowerCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowerCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __lowerCamelCase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def __A ( self : str ) -> str: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __lowerCamelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __lowerCamelCase = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) __lowerCamelCase = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = tokenizer_r.save_pretrained(__lowerCAmelCase ) __lowerCamelCase = tokenizer_p.save_pretrained(__lowerCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __lowerCamelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(__lowerCAmelCase , __lowerCAmelCase ) # Checks everything loads correctly in the same way __lowerCamelCase = tokenizer_r.from_pretrained(__lowerCAmelCase ) __lowerCamelCase = tokenizer_p.from_pretrained(__lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__lowerCAmelCase ) # Save tokenizer rust, legacy_format=True __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = tokenizer_r.save_pretrained(__lowerCAmelCase , legacy_format=__lowerCAmelCase ) __lowerCamelCase = tokenizer_p.save_pretrained(__lowerCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(__lowerCAmelCase , __lowerCAmelCase ) # Checks everything loads correctly in the same way __lowerCamelCase = tokenizer_r.from_pretrained(__lowerCAmelCase ) __lowerCamelCase = tokenizer_p.from_pretrained(__lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase ) ) shutil.rmtree(__lowerCAmelCase ) # Save tokenizer rust, legacy_format=False __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = tokenizer_r.save_pretrained(__lowerCAmelCase , legacy_format=__lowerCAmelCase ) __lowerCamelCase = tokenizer_p.save_pretrained(__lowerCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __lowerCamelCase = tokenizer_r.from_pretrained(__lowerCAmelCase ) __lowerCamelCase = tokenizer_p.from_pretrained(__lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase ) ) shutil.rmtree(__lowerCAmelCase ) @cached_property def __A ( self : Union[str, Any] ) -> Optional[Any]: return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def __A ( self : Any ) -> List[str]: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__lowerCAmelCase , f.name ) __lowerCamelCase = XLMRobertaTokenizer(f.name , keep_accents=__lowerCAmelCase ) __lowerCamelCase = pickle.dumps(__lowerCAmelCase ) pickle.loads(__lowerCAmelCase ) def __A ( self : int ) -> str: if not self.test_rust_tokenizer: return __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = '''I was born in 92000, and this is falsé.''' __lowerCamelCase = tokenizer.tokenize(__lowerCAmelCase ) __lowerCamelCase = rust_tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) __lowerCamelCase = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = tokenizer.encode(__lowerCAmelCase ) __lowerCamelCase = rust_tokenizer.encode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def __A ( self : Optional[Any] ) -> Optional[int]: __lowerCamelCase = '''Hello World!''' __lowerCamelCase = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__lowerCAmelCase , self.big_tokenizer.encode(__lowerCAmelCase ) ) @slow def __A ( self : List[str] ) -> str: __lowerCamelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) __lowerCamelCase = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__lowerCAmelCase , self.big_tokenizer.encode(__lowerCAmelCase ) ) @slow def __A ( self : Tuple ) -> Optional[int]: __lowerCamelCase = {'''input_ids''': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
360
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar SCREAMING_SNAKE_CASE__ : Any = TypeVar("KEY") SCREAMING_SNAKE_CASE__ : Dict = TypeVar("VAL") @dataclass(frozen=__lowercase , slots=__lowercase ) class lowerCAmelCase__ ( Generic[KEY, VAL] ): a__ : KEY a__ : VAL class lowerCAmelCase__ ( _Item ): def __init__( self : str ) -> None: super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __bool__( self : Tuple ) -> bool: return False SCREAMING_SNAKE_CASE__ : List[Any] = _DeletedItem() class lowerCAmelCase__ ( MutableMapping[KEY, VAL] ): def __init__( self : int , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.75 ) -> None: __lowerCamelCase = initial_block_size __lowerCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowerCamelCase = capacity_factor __lowerCamelCase = 0 def __A ( self : Any , SCREAMING_SNAKE_CASE__ : KEY ) -> int: return hash(SCREAMING_SNAKE_CASE__ ) % len(self._buckets ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> int: return (ind + 1) % len(self._buckets ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> bool: __lowerCamelCase = self._buckets[ind] if not stored: __lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self._len += 1 return True elif stored.key == key: __lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return True else: return False def __A ( self : Any ) -> bool: __lowerCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(SCREAMING_SNAKE_CASE__ ) def __A ( self : List[Any] ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False __lowerCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def __A ( self : int , SCREAMING_SNAKE_CASE__ : int ) -> None: __lowerCamelCase = self._buckets __lowerCamelCase = [None] * new_size __lowerCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def __A ( self : str ) -> None: self._resize(len(self._buckets ) * 2 ) def __A ( self : Dict ) -> None: self._resize(len(self._buckets ) // 2 ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY ) -> Iterator[int]: __lowerCamelCase = self._get_bucket_index(SCREAMING_SNAKE_CASE__ ) for _ in range(len(self._buckets ) ): yield ind __lowerCamelCase = self._get_next_ind(SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): if self._try_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): break def __setitem__( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None: if self._is_full(): self._size_up() self._add_item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __delitem__( self : List[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> None: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = self._buckets[ind] if item is None: raise KeyError(SCREAMING_SNAKE_CASE__ ) if item is _deleted: continue if item.key == key: __lowerCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> VAL: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(SCREAMING_SNAKE_CASE__ ) def __len__( self : int ) -> int: return self._len def __iter__( self : Tuple ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ) -> str: __lowerCamelCase = ''' ,'''.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
339
0
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class lowerCAmelCase__ ( __lowercase ): a__ : Union[str, Any] = """EncodecFeatureExtractor""" a__ : Union[str, Any] = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ) -> Tuple: super().__init__(_snake_case , _snake_case ) __lowerCamelCase = self.feature_extractor __lowerCamelCase = False def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=True ) -> Optional[int]: return self.tokenizer.get_decoder_prompt_ids(task=_snake_case , language=_snake_case , no_timestamps=_snake_case ) def __call__( self : Any , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : str ) -> Dict: if self._in_target_context_manager: return self.current_processor(*_snake_case , **_snake_case ) __lowerCamelCase = kwargs.pop('''audio''' , _snake_case ) __lowerCamelCase = kwargs.pop('''sampling_rate''' , _snake_case ) __lowerCamelCase = kwargs.pop('''text''' , _snake_case ) if len(_snake_case ) > 0: __lowerCamelCase = args[0] __lowerCamelCase = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: __lowerCamelCase = self.tokenizer(_snake_case , **_snake_case ) if audio is not None: __lowerCamelCase = self.feature_extractor(_snake_case , *_snake_case , sampling_rate=_snake_case , **_snake_case ) if audio is None: return inputs elif text is None: return audio_inputs else: __lowerCamelCase = audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: __lowerCamelCase = audio_inputs['''padding_mask'''] return inputs def __A ( self : str , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict: __lowerCamelCase = kwargs.pop('''audio''' , _snake_case ) __lowerCamelCase = kwargs.pop('''padding_mask''' , _snake_case ) if len(_snake_case ) > 0: __lowerCamelCase = args[0] __lowerCamelCase = args[1:] if audio_values is not None: return self._decode_audio(_snake_case , padding_mask=_snake_case ) else: return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def __A ( self : Dict , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Any ) -> Union[str, Any]: return self.tokenizer.decode(*_snake_case , **_snake_case ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict = None ) -> List[np.ndarray]: __lowerCamelCase = to_numpy(_snake_case ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = audio_values.shape if padding_mask is None: return list(_snake_case ) __lowerCamelCase = to_numpy(_snake_case ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __lowerCamelCase = seq_len - padding_mask.shape[-1] __lowerCamelCase = 1 - self.feature_extractor.padding_value __lowerCamelCase = np.pad(_snake_case , ((0, 0), (0, difference)) , '''constant''' , constant_values=_snake_case ) __lowerCamelCase = audio_values.tolist() for i in range(_snake_case ): __lowerCamelCase = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __lowerCamelCase = sliced_audio.reshape(_snake_case , -1 ) return audio_values
361
from datetime import datetime as dt import os from github import Github SCREAMING_SNAKE_CASE__ : Any = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def __magic_name__ ( ) -> Any: __lowerCamelCase = Github(os.environ['''GITHUB_TOKEN'''] ) __lowerCamelCase = g.get_repo('''huggingface/transformers''' ) __lowerCamelCase = repo.get_issues(state='''open''' ) for issue in open_issues: __lowerCamelCase = sorted([comment for comment in issue.get_comments()] , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase ) __lowerCamelCase = comments[0] if len(__lowerCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
339
0
import qiskit def __magic_name__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] ) -> qiskit.result.counts.Counts: __lowerCamelCase = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register __lowerCamelCase = qiskit.QuantumCircuit(lowercase_ , lowercase_ ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator __lowerCamelCase = qiskit.execute(lowercase_ , lowercase_ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase_ ) if __name__ == "__main__": print(F'Total count for various states are: {single_qubit_measure(1, 1)}')
362
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> str: if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __lowerCamelCase = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b" __lowerCamelCase = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b" __lowerCamelCase = max(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(__lowerCAmelCase ) , b_binary.zfill(__lowerCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
339
0
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): a__ : List[Any] = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : List[str]=0 ) -> List[Any]: __lowerCamelCase = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(_a ) ) __lowerCamelCase = np.random.RandomState(_a ) __lowerCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.75, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def __A ( self : Optional[Any] ) -> Tuple: __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=_a ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**_a ).images __lowerCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_28, 1_28, 3) __lowerCamelCase = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def __A ( self : Union[str, Any] ) -> Tuple: __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __lowerCamelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_a ) pipe.set_progress_bar_config(disable=_a ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**_a ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) __lowerCamelCase = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __A ( self : Optional[Any] ) -> Union[str, Any]: __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __lowerCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) # warmup pass to apply optimizations __lowerCamelCase = pipe(**self.get_dummy_inputs() ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**_a ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) __lowerCamelCase = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __A ( self : Tuple ) -> Union[str, Any]: __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __lowerCamelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**_a ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) __lowerCamelCase = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __A ( self : Any ) -> List[str]: __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __lowerCamelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**_a ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) __lowerCamelCase = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __A ( self : Optional[Any] ) -> Optional[int]: __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**_a ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) __lowerCamelCase = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): @property def __A ( self : Union[str, Any] ) -> List[str]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __A ( self : Optional[Any] ) -> int: __lowerCamelCase = ort.SessionOptions() __lowerCamelCase = False return options def __A ( self : Optional[Any] ) -> Optional[Any]: __lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __lowerCamelCase = init_image.resize((7_68, 5_12) ) # using the PNDM scheduler by default __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) __lowerCamelCase = '''A fantasy landscape, trending on artstation''' __lowerCamelCase = np.random.RandomState(0 ) __lowerCamelCase = pipe( prompt=_a , image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=_a , output_type='''np''' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) __lowerCamelCase = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def __A ( self : Optional[int] ) -> Tuple: __lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __lowerCamelCase = init_image.resize((7_68, 5_12) ) __lowerCamelCase = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=_a , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) __lowerCamelCase = '''A fantasy landscape, trending on artstation''' __lowerCamelCase = np.random.RandomState(0 ) __lowerCamelCase = pipe( prompt=_a , image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=_a , output_type='''np''' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) __lowerCamelCase = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
363
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : List[str] ) -> Dict: __lowerCamelCase = tempfile.mkdtemp() # fmt: off __lowerCamelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCamelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __lowerCamelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCamelCase = {'''unk_token''': '''<unk>'''} __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } __lowerCamelCase = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __A ( self : int , **SCREAMING_SNAKE_CASE__ : int ) -> Any: return CLIPTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Dict , **SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Dict ) -> Dict: shutil.rmtree(self.tmpdirname ) def __A ( self : str ) -> Any: __lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCamelCase = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self : List[Any] ) -> List[str]: __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = self.get_image_processor() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ ) def __A ( self : Union[str, Any] ) -> int: __lowerCamelCase = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCamelCase = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) __lowerCamelCase = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[Any] ) -> Union[str, Any]: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='''np''' ) __lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self : List[Any] ) -> Optional[int]: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = '''lower newer''' __lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self : List[Any] ) -> Any: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = '''lower newer''' __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def __A ( self : Optional[Any] ) -> List[str]: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE__ , visual_prompt=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def __A ( self : List[Any] ) -> Any: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCamelCase = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
339
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu SCREAMING_SNAKE_CASE__ : Optional[Any] = False class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : str ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __A ( self : List[Any] ) -> Union[str, Any]: return 12 @property def __A ( self : Dict ) -> Any: return 12 @property def __A ( self : Any ) -> str: return 32 @property def __A ( self : Optional[Any] ) -> int: torch.manual_seed(0 ) __lowerCamelCase = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def __A ( self : Dict ) -> List[str]: __lowerCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def __A ( self : Dict ) -> Any: torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(_SCREAMING_SNAKE_CASE ) @property def __A ( self : int ) -> List[str]: torch.manual_seed(0 ) __lowerCamelCase = 12 __lowerCamelCase = 12 __lowerCamelCase = { "attention_bias": True, "cross_attention_dim": 32, "attention_head_dim": height * width, "num_attention_heads": 1, "num_vector_embeds": self.num_embed, "num_embeds_ada_norm": self.num_embeds_ada_norm, "norm_num_groups": 32, "sample_size": width, "activation_fn": "geglu-approximate", } __lowerCamelCase = TransformeraDModel(**_SCREAMING_SNAKE_CASE ) return model def __A ( self : int ) -> Optional[int]: __lowerCamelCase = "cpu" __lowerCamelCase = self.dummy_vqvae __lowerCamelCase = self.dummy_text_encoder __lowerCamelCase = self.dummy_tokenizer __lowerCamelCase = self.dummy_transformer __lowerCamelCase = VQDiffusionScheduler(self.num_embed ) __lowerCamelCase = LearnedClassifierFreeSamplingEmbeddings(learnable=_SCREAMING_SNAKE_CASE ) __lowerCamelCase = VQDiffusionPipeline( vqvae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , transformer=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , learned_classifier_free_sampling_embeddings=_SCREAMING_SNAKE_CASE , ) __lowerCamelCase = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __lowerCamelCase = "teddy bear playing in the pool" __lowerCamelCase = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) __lowerCamelCase = pipe([prompt] , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type='''np''' ) __lowerCamelCase = output.images __lowerCamelCase = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) __lowerCamelCase = pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , output_type='''np''' , return_dict=_SCREAMING_SNAKE_CASE , num_inference_steps=2 )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowerCamelCase = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self : str ) -> Optional[int]: __lowerCamelCase = "cpu" __lowerCamelCase = self.dummy_vqvae __lowerCamelCase = self.dummy_text_encoder __lowerCamelCase = self.dummy_tokenizer __lowerCamelCase = self.dummy_transformer __lowerCamelCase = VQDiffusionScheduler(self.num_embed ) __lowerCamelCase = LearnedClassifierFreeSamplingEmbeddings( learnable=_SCREAMING_SNAKE_CASE , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) __lowerCamelCase = VQDiffusionPipeline( vqvae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , transformer=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , learned_classifier_free_sampling_embeddings=_SCREAMING_SNAKE_CASE , ) __lowerCamelCase = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __lowerCamelCase = "teddy bear playing in the pool" __lowerCamelCase = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) __lowerCamelCase = pipe([prompt] , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type='''np''' ) __lowerCamelCase = output.images __lowerCamelCase = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) __lowerCamelCase = pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , output_type='''np''' , return_dict=_SCREAMING_SNAKE_CASE , num_inference_steps=2 )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowerCamelCase = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : Optional[int] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : List[str] ) -> List[Any]: __lowerCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) __lowerCamelCase = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) __lowerCamelCase = pipeline.to(_SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __lowerCamelCase = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) __lowerCamelCase = pipeline( '''teddy bear playing in the pool''' , num_images_per_prompt=1 , generator=_SCREAMING_SNAKE_CASE , output_type='''np''' , ) __lowerCamelCase = output.images[0] assert image.shape == (2_56, 2_56, 3) assert np.abs(expected_image - image ).max() < 2.0
364
from __future__ import annotations def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : int | None = None , __lowerCAmelCase : int | None = None ) -> None: if start is None: __lowerCamelCase = 0 if end is None: __lowerCamelCase = len(__lowerCAmelCase ) - 1 if start >= end: return __lowerCamelCase = (start + end) // 2 slowsort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) slowsort(__lowerCAmelCase , mid + 1 , __lowerCAmelCase ) if sequence[end] < sequence[mid]: __lowerCamelCase , __lowerCamelCase = sequence[mid], sequence[end] slowsort(__lowerCAmelCase , __lowerCAmelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
339
0
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( snake_case__ , unittest.TestCase ): a__ : Dict = LongformerTokenizer a__ : Optional[Any] = True a__ : Optional[int] = LongformerTokenizerFast a__ : Optional[int] = True def __A ( self : Optional[int] ) -> List[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCamelCase = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] __lowerCamelCase = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) __lowerCamelCase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] __lowerCamelCase = {"unk_token": "<unk>"} __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCAmelCase_ ) ) def __A ( self : Dict , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def __A ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> str: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple: __lowerCamelCase = "lower newer" __lowerCamelCase = "lower newer" return input_text, output_text def __A ( self : List[str] ) -> int: __lowerCamelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCamelCase = "lower newer" __lowerCamelCase = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] __lowerCamelCase = tokenizer.tokenize(UpperCAmelCase_ ) # , add_prefix_space=True) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase = tokens + [tokenizer.unk_token] __lowerCamelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , UpperCAmelCase_ ) def __A ( self : Optional[int] ) -> Any: __lowerCamelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=UpperCAmelCase_ ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=UpperCAmelCase_ ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def __A ( self : List[Any] ) -> Dict: __lowerCamelCase = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) __lowerCamelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCAmelCase_ ) __lowerCamelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCAmelCase_ ) __lowerCamelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ ) __lowerCamelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __A ( self : Optional[int] ) -> int: __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = "Encode this sequence." __lowerCamelCase = tokenizer.byte_encoder[" ".encode('''utf-8''' )[0]] # Testing encoder arguments __lowerCamelCase = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __lowerCamelCase = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # Testing spaces after special tokens __lowerCamelCase = "<mask>" tokenizer.add_special_tokens( {'''mask_token''': AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ )} ) # mask token has a left space __lowerCamelCase = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) __lowerCamelCase = "Encode <mask> sequence" __lowerCamelCase = "Encode <mask>sequence" __lowerCamelCase = tokenizer.encode(UpperCAmelCase_ ) __lowerCamelCase = encoded.index(UpperCAmelCase_ ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase = tokenizer.encode(UpperCAmelCase_ ) __lowerCamelCase = encoded.index(UpperCAmelCase_ ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def __A ( self : Dict ) -> List[Any]: pass def __A ( self : Dict ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __lowerCamelCase = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) __lowerCamelCase = self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) __lowerCamelCase = "A, <mask> AllenNLP sentence." __lowerCamelCase = tokenizer_r.encode_plus(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ ) __lowerCamelCase = tokenizer_p.encode_plus(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __lowerCamelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __lowerCamelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( UpperCAmelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( UpperCAmelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def __A ( self : Union[str, Any] ) -> Dict: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ ) __lowerCamelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowerCamelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , UpperCAmelCase_ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , UpperCAmelCase_ ) self.assertEqual(post_processor_state['''trim_offsets'''] , UpperCAmelCase_ ) def __A ( self : Optional[Any] ) -> str: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __lowerCamelCase = "hello" # `hello` is a token in the vocabulary of `pretrained_name` __lowerCamelCase = f'''{text_of_1_token} {text_of_1_token}''' __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ ) __lowerCamelCase = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase_ ) + 1, len(UpperCAmelCase_ ) + 1 + len(UpperCAmelCase_ )) , ) __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ ) __lowerCamelCase = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase_ ) + 1, len(UpperCAmelCase_ ) + 1 + len(UpperCAmelCase_ )) , ) __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ ) __lowerCamelCase = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase_ ), len(UpperCAmelCase_ ) + 1 + len(UpperCAmelCase_ )) , ) __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ ) __lowerCamelCase = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase_ ), len(UpperCAmelCase_ ) + 1 + len(UpperCAmelCase_ )) , ) __lowerCamelCase = f''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ ) __lowerCamelCase = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase_ ) + 1, 1 + len(UpperCAmelCase_ ) + 1 + len(UpperCAmelCase_ )) , ) __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ ) __lowerCamelCase = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase_ ), 1 + len(UpperCAmelCase_ ) + 1 + len(UpperCAmelCase_ )) , ) __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ ) __lowerCamelCase = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase_ ), 1 + len(UpperCAmelCase_ ) + 1 + len(UpperCAmelCase_ )) , )
365
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Optional[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } SCREAMING_SNAKE_CASE__ : str = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } SCREAMING_SNAKE_CASE__ : int = {"facebook/blenderbot_small-90M": 512} def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Tuple: __lowerCamelCase = set() __lowerCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCamelCase = char __lowerCamelCase = set(__lowerCAmelCase ) return pairs class lowerCAmelCase__ ( __lowercase ): a__ : List[Any] = VOCAB_FILES_NAMES a__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple="__start__" , SCREAMING_SNAKE_CASE__ : Tuple="__end__" , SCREAMING_SNAKE_CASE__ : List[str]="__unk__" , SCREAMING_SNAKE_CASE__ : str="__null__" , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> Optional[Any]: super().__init__(unk_token=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as vocab_handle: __lowerCamelCase = json.load(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = {v: k for k, v in self.encoder.items()} with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as merges_handle: __lowerCamelCase = merges_handle.read().split('''\n''' )[1:-1] __lowerCamelCase = [tuple(merge.split() ) for merge in merges] __lowerCamelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __lowerCamelCase = {} @property def __A ( self : Dict ) -> int: return len(self.encoder ) def __A ( self : str ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : str ) -> str: if token in self.cache: return self.cache[token] __lowerCamelCase = re.sub('''([.,!?()])''' , R''' \1''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = re.sub('''(\')''' , R''' \1 ''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = re.sub(R'''\s{2,}''' , ''' ''' , SCREAMING_SNAKE_CASE__ ) if "\n" in token: __lowerCamelCase = token.replace('''\n''' , ''' __newln__''' ) __lowerCamelCase = token.split(''' ''' ) __lowerCamelCase = [] for token in tokens: if not len(SCREAMING_SNAKE_CASE__ ): continue __lowerCamelCase = token.lower() __lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) __lowerCamelCase = get_pairs(SCREAMING_SNAKE_CASE__ ) if not pairs: words.append(SCREAMING_SNAKE_CASE__ ) continue while True: __lowerCamelCase = min(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __lowerCamelCase , __lowerCamelCase = bigram __lowerCamelCase = [] __lowerCamelCase = 0 while i < len(SCREAMING_SNAKE_CASE__ ): try: __lowerCamelCase = word.index(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) new_word.extend(word[i:j] ) __lowerCamelCase = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(SCREAMING_SNAKE_CASE__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = new_word if len(SCREAMING_SNAKE_CASE__ ) == 1: break else: __lowerCamelCase = get_pairs(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = '''@@ '''.join(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = word[:-4] __lowerCamelCase = word words.append(SCREAMING_SNAKE_CASE__ ) return " ".join(SCREAMING_SNAKE_CASE__ ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: __lowerCamelCase = [] __lowerCamelCase = re.findall(R'''\S+\n?''' , SCREAMING_SNAKE_CASE__ ) for token in words: split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE__ ).split(''' ''' ) ) ) return split_tokens def __A ( self : str , SCREAMING_SNAKE_CASE__ : str ) -> int: __lowerCamelCase = token.lower() return self.encoder.get(SCREAMING_SNAKE_CASE__ , self.encoder.get(self.unk_token ) ) def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int ) -> str: return self.decoder.get(SCREAMING_SNAKE_CASE__ , self.unk_token ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: __lowerCamelCase = ''' '''.join(SCREAMING_SNAKE_CASE__ ).replace('''@@ ''' , '''''' ).strip() return out_string def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCamelCase = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) + '''\n''' ) __lowerCamelCase = 0 with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) __lowerCamelCase = token_index writer.write(''' '''.join(SCREAMING_SNAKE_CASE__ ) + '''\n''' ) index += 1 return vocab_file, merge_file
339
0
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __magic_name__ ( __lowerCAmelCase : Any ) -> int: __lowerCamelCase = filter(lambda __lowerCAmelCase : p.requires_grad , model.parameters() ) __lowerCamelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params SCREAMING_SNAKE_CASE__ : List[Any] = logging.getLogger(__name__) def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] ) -> List[Any]: if metric == "rouge2": __lowerCamelCase = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": __lowerCamelCase = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": __lowerCamelCase = '''{val_avg_em:.4f}-{step_count}''' elif metric == "loss": __lowerCamelCase = '''{val_avg_loss:.4f}-{step_count}''' else: raise NotImplementedError( f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ''' function.''' ) __lowerCamelCase = ModelCheckpoint( dirpath=SCREAMING_SNAKE_CASE_ , filename=SCREAMING_SNAKE_CASE_ , monitor=f'''val_{metric}''' , mode='''max''' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __magic_name__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] ) -> Any: return EarlyStopping( monitor=f'''val_{metric}''' , mode='''min''' if '''loss''' in metric else '''max''' , patience=SCREAMING_SNAKE_CASE_ , verbose=SCREAMING_SNAKE_CASE_ , ) class lowerCAmelCase__ ( pl.Callback ): def __A ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> int: __lowerCamelCase = {f'''lr_group_{i}''': param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowerCAmelCase__ ) @rank_zero_only def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int=True ) -> None: logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) __lowerCamelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results __lowerCamelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": __lowerCamelCase = od / '''test_results.txt''' __lowerCamelCase = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __lowerCamelCase = od / f'''{type_path}_results/{trainer.global_step:05d}.txt''' __lowerCamelCase = od / f'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=lowerCAmelCase__ ) generations_file.parent.mkdir(exist_ok=lowerCAmelCase__ ) with open(lowerCAmelCase__ , '''a+''' ) as writer: for key in sorted(lowerCAmelCase__ ): if key in ["log", "progress_bar", "preds"]: continue __lowerCamelCase = metrics[key] if isinstance(lowerCAmelCase__ , torch.Tensor ): __lowerCamelCase = val.item() __lowerCamelCase = f'''{key}: {val:.6f}\n''' writer.write(lowerCAmelCase__ ) if not save_generations: return if "preds" in metrics: __lowerCamelCase = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(lowerCAmelCase__ ) @rank_zero_only def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: try: __lowerCamelCase = pl_module.model.model.num_parameters() except AttributeError: __lowerCamelCase = pl_module.model.num_parameters() __lowerCamelCase = count_trainable_parameters(lowerCAmelCase__ ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[str]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowerCAmelCase__ , lowerCAmelCase__ , '''test''' ) @rank_zero_only def __A ( self : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> int: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
366
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): a__ : str = ShapEImgaImgPipeline a__ : Union[str, Any] = ["""image"""] a__ : Optional[int] = ["""image"""] a__ : Union[str, Any] = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] a__ : List[str] = False @property def __A ( self : Dict ) -> Optional[Any]: return 32 @property def __A ( self : Optional[int] ) -> Optional[int]: return 32 @property def __A ( self : Optional[int] ) -> List[Any]: return self.time_input_dim * 4 @property def __A ( self : str ) -> List[Any]: return 8 @property def __A ( self : Optional[Any] ) -> Union[str, Any]: torch.manual_seed(0 ) __lowerCamelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __lowerCamelCase = CLIPVisionModel(SCREAMING_SNAKE_CASE__ ) return model @property def __A ( self : Union[str, Any] ) -> Union[str, Any]: __lowerCamelCase = CLIPImageProcessor( crop_size=2_24 , do_center_crop=SCREAMING_SNAKE_CASE__ , do_normalize=SCREAMING_SNAKE_CASE__ , do_resize=SCREAMING_SNAKE_CASE__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=2_24 , ) return image_processor @property def __A ( self : Dict ) -> int: torch.manual_seed(0 ) __lowerCamelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } __lowerCamelCase = PriorTransformer(**SCREAMING_SNAKE_CASE__ ) return model @property def __A ( self : Tuple ) -> Dict: torch.manual_seed(0 ) __lowerCamelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } __lowerCamelCase = ShapERenderer(**SCREAMING_SNAKE_CASE__ ) return model def __A ( self : Optional[int] ) -> List[str]: __lowerCamelCase = self.dummy_prior __lowerCamelCase = self.dummy_image_encoder __lowerCamelCase = self.dummy_image_processor __lowerCamelCase = self.dummy_renderer __lowerCamelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=10_24 , prediction_type='''sample''' , use_karras_sigmas=SCREAMING_SNAKE_CASE__ , clip_sample=SCREAMING_SNAKE_CASE__ , clip_sample_range=1.0 , ) __lowerCamelCase = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def __A ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=0 ) -> int: __lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ): __lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: __lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def __A ( self : Union[str, Any] ) -> Dict: __lowerCamelCase = '''cpu''' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = output.images[0] __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowerCamelCase = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self : str ) -> Tuple: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self : Optional[Any] ) -> str: __lowerCamelCase = torch_device == '''cpu''' __lowerCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=SCREAMING_SNAKE_CASE__ , relax_max_difference=SCREAMING_SNAKE_CASE__ , ) def __A ( self : Dict ) -> Optional[int]: __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = 1 __lowerCamelCase = 2 __lowerCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) for key in inputs.keys(): if key in self.batch_params: __lowerCamelCase = batch_size * [inputs[key]] __lowerCamelCase = pipe(**SCREAMING_SNAKE_CASE__ , num_images_per_prompt=SCREAMING_SNAKE_CASE__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : str ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : str ) -> Union[str, Any]: __lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) __lowerCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) __lowerCamelCase = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) __lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(0 ) __lowerCamelCase = pipe( SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
339
0
def __magic_name__ ( __lowerCAmelCase : str ) -> str: __lowerCamelCase = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def __magic_name__ ( __lowerCAmelCase : str ) -> dict[str, str]: __lowerCamelCase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __lowerCamelCase = remove_duplicates(key.upper() ) __lowerCamelCase = len(UpperCamelCase__ ) # First fill cipher with key characters __lowerCamelCase = {alphabet[i]: char for i, char in enumerate(UpperCamelCase__ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(UpperCamelCase__ ) , 26 ): __lowerCamelCase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __lowerCamelCase = alphabet[i - offset] __lowerCamelCase = char return cipher_alphabet def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : dict[str, str] ) -> str: return "".join(cipher_map.get(UpperCamelCase__ , UpperCamelCase__ ) for ch in message.upper() ) def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : dict[str, str] ) -> str: __lowerCamelCase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(UpperCamelCase__ , UpperCamelCase__ ) for ch in message.upper() ) def __magic_name__ ( ) -> None: __lowerCamelCase = input('''Enter message to encode or decode: ''' ).strip() __lowerCamelCase = input('''Enter keyword: ''' ).strip() __lowerCamelCase = input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: __lowerCamelCase = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) __lowerCamelCase = create_cipher_map(UpperCamelCase__ ) print(func(UpperCamelCase__ , UpperCamelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
367
import glob import os import random from string import ascii_lowercase, digits import cva SCREAMING_SNAKE_CASE__ : str = "" SCREAMING_SNAKE_CASE__ : Any = "" SCREAMING_SNAKE_CASE__ : Optional[Any] = "" SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 # (0 is vertical, 1 is horizontal) def __magic_name__ ( ) -> None: __lowerCamelCase , __lowerCamelCase = get_dataset(__lowerCAmelCase , __lowerCAmelCase ) print('''Processing...''' ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = update_image_and_anno(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for index, image in enumerate(__lowerCAmelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __lowerCamelCase = random_chars(32 ) __lowerCamelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __lowerCamelCase = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(f'''/{file_root}.jpg''' , __lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Success {index+1}/{len(__lowerCAmelCase )} with {file_name}''' ) __lowerCamelCase = [] for anno in new_annos[index]: __lowerCamelCase = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(__lowerCAmelCase ) with open(f'''/{file_root}.txt''' , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> tuple[list, list]: __lowerCamelCase = [] __lowerCamelCase = [] for label_file in glob.glob(os.path.join(__lowerCAmelCase , '''*.txt''' ) ): __lowerCamelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(__lowerCAmelCase ) as in_file: __lowerCamelCase = in_file.readlines() __lowerCamelCase = os.path.join(__lowerCAmelCase , f'''{label_name}.jpg''' ) __lowerCamelCase = [] for obj_list in obj_lists: __lowerCamelCase = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__lowerCAmelCase ) labels.append(__lowerCAmelCase ) return img_paths, labels def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int = 1 ) -> tuple[list, list, list]: __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] for idx in range(len(__lowerCAmelCase ) ): __lowerCamelCase = [] __lowerCamelCase = img_list[idx] path_list.append(__lowerCAmelCase ) __lowerCamelCase = anno_list[idx] __lowerCamelCase = cva.imread(__lowerCAmelCase ) if flip_type == 1: __lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: __lowerCamelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: __lowerCamelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__lowerCAmelCase ) new_imgs_list.append(__lowerCAmelCase ) return new_imgs_list, new_annos_lists, path_list def __magic_name__ ( __lowerCAmelCase : int = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" __lowerCamelCase = ascii_lowercase + digits return "".join(random.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
339
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : str = logging.get_logger(__name__) def __magic_name__ ( __lowerCAmelCase : str ) -> YolosConfig: __lowerCamelCase = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: __lowerCamelCase = 192 __lowerCamelCase = 768 __lowerCamelCase = 12 __lowerCamelCase = 3 __lowerCamelCase = [800, 1333] __lowerCamelCase = False elif yolos_name == "yolos_s_dWr": __lowerCamelCase = 330 __lowerCamelCase = 14 __lowerCamelCase = 6 __lowerCamelCase = 1320 elif "yolos_s" in yolos_name: __lowerCamelCase = 384 __lowerCamelCase = 1536 __lowerCamelCase = 12 __lowerCamelCase = 6 elif "yolos_b" in yolos_name: __lowerCamelCase = [800, 1344] __lowerCamelCase = 91 __lowerCamelCase = '''huggingface/label-files''' __lowerCamelCase = '''coco-detection-id2label.json''' __lowerCamelCase = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) __lowerCamelCase = {int(__lowerCamelCase ): v for k, v in idalabel.items()} __lowerCamelCase = idalabel __lowerCamelCase = {v: k for k, v in idalabel.items()} return config def __magic_name__ ( __lowerCAmelCase : dict , __lowerCAmelCase : YolosConfig , __lowerCAmelCase : bool = False ) -> Dict: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCamelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) __lowerCamelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase = in_proj_weight[: config.hidden_size, :] __lowerCamelCase = in_proj_bias[: config.hidden_size] __lowerCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCamelCase = in_proj_weight[-config.hidden_size :, :] __lowerCamelCase = in_proj_bias[-config.hidden_size :] def __magic_name__ ( __lowerCAmelCase : str ) -> str: if "backbone" in name: __lowerCamelCase = name.replace('''backbone''' , '''vit''' ) if "cls_token" in name: __lowerCamelCase = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "det_token" in name: __lowerCamelCase = name.replace('''det_token''' , '''embeddings.detection_tokens''' ) if "mid_pos_embed" in name: __lowerCamelCase = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' ) if "pos_embed" in name: __lowerCamelCase = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: __lowerCamelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "blocks" in name: __lowerCamelCase = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: __lowerCamelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: __lowerCamelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __lowerCamelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __lowerCamelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __lowerCamelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __lowerCamelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if "class_embed" in name: __lowerCamelCase = name.replace('''class_embed''' , '''class_labels_classifier''' ) if "bbox_embed" in name: __lowerCamelCase = name.replace('''bbox_embed''' , '''bbox_predictor''' ) if "vit.norm" in name: __lowerCamelCase = name.replace('''vit.norm''' , '''vit.layernorm''' ) return name def __magic_name__ ( __lowerCAmelCase : dict , __lowerCAmelCase : YolosForObjectDetection ) -> dict: for key in orig_state_dict.copy().keys(): __lowerCamelCase = orig_state_dict.pop(__lowerCamelCase ) if "qkv" in key: __lowerCamelCase = key.split('''.''' ) __lowerCamelCase = int(key_split[2] ) __lowerCamelCase = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: __lowerCamelCase = val[:dim, :] __lowerCamelCase = val[ dim : dim * 2, : ] __lowerCamelCase = val[-dim:, :] else: __lowerCamelCase = val[:dim] __lowerCamelCase = val[dim : dim * 2] __lowerCamelCase = val[-dim:] else: __lowerCamelCase = val return orig_state_dict def __magic_name__ ( ) -> torch.Tensor: __lowerCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowerCamelCase = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : bool = False ) -> Dict: __lowerCamelCase = get_yolos_config(__lowerCamelCase ) # load original state_dict __lowerCamelCase = torch.load(__lowerCamelCase , map_location='''cpu''' )['''model'''] # load 🤗 model __lowerCamelCase = YolosForObjectDetection(__lowerCamelCase ) model.eval() __lowerCamelCase = convert_state_dict(__lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) # Check outputs on an image, prepared by YolosImageProcessor __lowerCamelCase = 800 if yolos_name != '''yolos_ti''' else 512 __lowerCamelCase = YolosImageProcessor(format='''coco_detection''' , size=__lowerCamelCase ) __lowerCamelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) __lowerCamelCase = model(**__lowerCamelCase ) __lowerCamelCase , __lowerCamelCase = outputs.logits, outputs.pred_boxes __lowerCamelCase , __lowerCamelCase = None, None if yolos_name == "yolos_ti": __lowerCamelCase = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) __lowerCamelCase = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": __lowerCamelCase = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) __lowerCamelCase = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": __lowerCamelCase = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) __lowerCamelCase = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": __lowerCamelCase = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) __lowerCamelCase = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": __lowerCamelCase = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) __lowerCamelCase = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(f'''Unknown yolos_name: {yolos_name}''' ) assert torch.allclose(logits[0, :3, :3] , __lowerCamelCase , atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __lowerCamelCase , atol=1E-4 ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(f'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: __lowerCamelCase = { '''yolos_ti''': '''yolos-tiny''', '''yolos_s_200_pre''': '''yolos-small''', '''yolos_s_300_pre''': '''yolos-small-300''', '''yolos_s_dWr''': '''yolos-small-dwr''', '''yolos_base''': '''yolos-base''', } print('''Pushing to the hub...''' ) __lowerCamelCase = model_mapping[yolos_name] image_processor.push_to_hub(__lowerCamelCase , organization='''hustvl''' ) model.push_to_hub(__lowerCamelCase , organization='''hustvl''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\'," " \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
368
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated SCREAMING_SNAKE_CASE__ : Tuple = collections.namedtuple("_Datasets", ["train", "validation", "test"]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ SCREAMING_SNAKE_CASE__ : List[str] = "https://storage.googleapis.com/cvdf-datasets/mnist/" def __magic_name__ ( __lowerCAmelCase : Any ) -> int: __lowerCamelCase = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=__lowerCAmelCase )[0] @deprecated(__lowerCAmelCase , '''Please use tf.data to implement this functionality.''' ) def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> str: print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=__lowerCAmelCase ) as bytestream: __lowerCamelCase = _readaa(__lowerCAmelCase ) if magic != 2051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = bytestream.read(rows * cols * num_images ) __lowerCamelCase = numpy.frombuffer(__lowerCAmelCase , dtype=numpy.uinta ) __lowerCamelCase = data.reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 1 ) return data @deprecated(__lowerCAmelCase , '''Please use tf.one_hot on tensors.''' ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : List[Any] ) -> Dict: __lowerCamelCase = labels_dense.shape[0] __lowerCamelCase = numpy.arange(__lowerCAmelCase ) * num_classes __lowerCamelCase = numpy.zeros((num_labels, num_classes) ) __lowerCamelCase = 1 return labels_one_hot @deprecated(__lowerCAmelCase , '''Please use tf.data to implement this functionality.''' ) def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : str=False , __lowerCAmelCase : List[str]=10 ) -> List[str]: print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=__lowerCAmelCase ) as bytestream: __lowerCamelCase = _readaa(__lowerCAmelCase ) if magic != 2049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = bytestream.read(__lowerCAmelCase ) __lowerCamelCase = numpy.frombuffer(__lowerCAmelCase , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(__lowerCAmelCase , __lowerCAmelCase ) return labels class lowerCAmelCase__ : @deprecated( SCREAMING_SNAKE_CASE__ , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : str=dtypes.floataa , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : str=None , ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase = random_seed.get_seed(SCREAMING_SNAKE_CASE__ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) __lowerCamelCase = dtypes.as_dtype(SCREAMING_SNAKE_CASE__ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: __lowerCamelCase = 1_00_00 __lowerCamelCase = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'''images.shape: {images.shape} labels.shape: {labels.shape}''' __lowerCamelCase = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __lowerCamelCase = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __lowerCamelCase = images.astype(numpy.floataa ) __lowerCamelCase = numpy.multiply(SCREAMING_SNAKE_CASE__ , 1.0 / 255.0 ) __lowerCamelCase = images __lowerCamelCase = labels __lowerCamelCase = 0 __lowerCamelCase = 0 @property def __A ( self : str ) -> Optional[int]: return self._images @property def __A ( self : Any ) -> Dict: return self._labels @property def __A ( self : List[Any] ) -> int: return self._num_examples @property def __A ( self : str ) -> Any: return self._epochs_completed def __A ( self : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : str=True ) -> str: if fake_data: __lowerCamelCase = [1] * 7_84 __lowerCamelCase = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(SCREAMING_SNAKE_CASE__ )], [fake_label for _ in range(SCREAMING_SNAKE_CASE__ )], ) __lowerCamelCase = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __lowerCamelCase = numpy.arange(self._num_examples ) numpy.random.shuffle(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.images[perma] __lowerCamelCase = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __lowerCamelCase = self._num_examples - start __lowerCamelCase = self._images[start : self._num_examples] __lowerCamelCase = self._labels[start : self._num_examples] # Shuffle the data if shuffle: __lowerCamelCase = numpy.arange(self._num_examples ) numpy.random.shuffle(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.images[perm] __lowerCamelCase = self.labels[perm] # Start next epoch __lowerCamelCase = 0 __lowerCamelCase = batch_size - rest_num_examples __lowerCamelCase = self._index_in_epoch __lowerCamelCase = self._images[start:end] __lowerCamelCase = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size __lowerCamelCase = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(__lowerCAmelCase , '''Please write your own downloading logic.''' ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] ) -> List[Any]: if not gfile.Exists(__lowerCAmelCase ): gfile.MakeDirs(__lowerCAmelCase ) __lowerCamelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if not gfile.Exists(__lowerCAmelCase ): urllib.request.urlretrieve(__lowerCAmelCase , __lowerCAmelCase ) # noqa: S310 with gfile.GFile(__lowerCAmelCase ) as f: __lowerCamelCase = f.size() print('''Successfully downloaded''' , __lowerCAmelCase , __lowerCAmelCase , '''bytes.''' ) return filepath @deprecated( __lowerCAmelCase , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Dict=False , __lowerCAmelCase : List[str]=dtypes.floataa , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : int=5000 , __lowerCAmelCase : Any=None , __lowerCAmelCase : List[str]=DEFAULT_SOURCE_URL , ) -> Optional[Any]: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=__lowerCAmelCase , one_hot=__lowerCAmelCase , dtype=__lowerCAmelCase , seed=__lowerCAmelCase ) __lowerCamelCase = fake() __lowerCamelCase = fake() __lowerCamelCase = fake() return _Datasets(train=__lowerCAmelCase , validation=__lowerCAmelCase , test=__lowerCAmelCase ) if not source_url: # empty string check __lowerCamelCase = DEFAULT_SOURCE_URL __lowerCamelCase = '''train-images-idx3-ubyte.gz''' __lowerCamelCase = '''train-labels-idx1-ubyte.gz''' __lowerCamelCase = '''t10k-images-idx3-ubyte.gz''' __lowerCamelCase = '''t10k-labels-idx1-ubyte.gz''' __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + train_images_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_images(__lowerCAmelCase ) __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + train_labels_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_labels(__lowerCAmelCase , one_hot=__lowerCAmelCase ) __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + test_images_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_images(__lowerCAmelCase ) __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + test_labels_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_labels(__lowerCAmelCase , one_hot=__lowerCAmelCase ) if not 0 <= validation_size <= len(__lowerCAmelCase ): __lowerCamelCase = ( '''Validation size should be between 0 and ''' f'''{len(__lowerCAmelCase )}. Received: {validation_size}.''' ) raise ValueError(__lowerCAmelCase ) __lowerCamelCase = train_images[:validation_size] __lowerCamelCase = train_labels[:validation_size] __lowerCamelCase = train_images[validation_size:] __lowerCamelCase = train_labels[validation_size:] __lowerCamelCase = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} __lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) __lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) __lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) return _Datasets(train=__lowerCAmelCase , validation=__lowerCAmelCase , test=__lowerCAmelCase )
339
0
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowerCAmelCase__ : a__ : Optional[int] = 42 # setable values a__ : int = 42 a__ : Tuple = 42 a__ : List[Any] = None @classmethod def __A ( cls : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> int: return cls(common=_a , init_noise_sigma=_a , timesteps=_a ) @dataclass class lowerCAmelCase__ ( __lowercase ): a__ : Any = 42 class lowerCAmelCase__ ( __lowercase , __lowercase ): a__ : Optional[Any] = [e.name for e in FlaxKarrasDiffusionSchedulers] a__ : Optional[int] = 42 @property def __A ( self : Union[str, Any] ) -> str: return True @register_to_config def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Dict = 10_00 , SCREAMING_SNAKE_CASE__ : Tuple = 0.0001 , SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0.02 , SCREAMING_SNAKE_CASE__ : int = "linear" , SCREAMING_SNAKE_CASE__ : Union[str, Any] = None , SCREAMING_SNAKE_CASE__ : Union[str, Any] = "fixed_small" , SCREAMING_SNAKE_CASE__ : Optional[Any] = True , SCREAMING_SNAKE_CASE__ : Any = "epsilon" , SCREAMING_SNAKE_CASE__ : int = jnp.floataa , ) -> Dict: __lowerCamelCase = dtype def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] = None ) -> Any: if common is None: __lowerCamelCase = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution __lowerCamelCase = jnp.array(1.0 , dtype=self.dtype ) __lowerCamelCase = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=_a , init_noise_sigma=_a , timesteps=_a , ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str = None ) -> Optional[Any]: return sample def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] = () ) -> int: __lowerCamelCase = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (jnp.arange(0 , _a ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=_a , timesteps=_a , ) def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None ) -> Optional[int]: __lowerCamelCase = state.common.alphas_cumprod[t] __lowerCamelCase = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __lowerCamelCase = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __lowerCamelCase = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __lowerCamelCase = jnp.clip(_a , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __lowerCamelCase = jnp.log(jnp.clip(_a , a_min=1e-20 ) ) elif variance_type == "fixed_large": __lowerCamelCase = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __lowerCamelCase = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __lowerCamelCase = variance __lowerCamelCase = state.common.betas[t] __lowerCamelCase = (predicted_variance + 1) / 2 __lowerCamelCase = frac * max_log + (1 - frac) * min_log return variance def __A ( self : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict = None , SCREAMING_SNAKE_CASE__ : Dict = True , ) -> Optional[Any]: __lowerCamelCase = timestep if key is None: __lowerCamelCase = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __lowerCamelCase = jnp.split(_a , sample.shape[1] , axis=1 ) else: __lowerCamelCase = None # 1. compute alphas, betas __lowerCamelCase = state.common.alphas_cumprod[t] __lowerCamelCase = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) __lowerCamelCase = 1 - alpha_prod_t __lowerCamelCase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __lowerCamelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __lowerCamelCase = model_output elif self.config.prediction_type == "v_prediction": __lowerCamelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __lowerCamelCase = jnp.clip(_a , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowerCamelCase = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __lowerCamelCase = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowerCamelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __lowerCamelCase = jax.random.split(_a , num=1 ) __lowerCamelCase = jax.random.normal(_a , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(_a , _a , predicted_variance=_a ) ** 0.5) * noise __lowerCamelCase = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) __lowerCamelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=_a , state=_a ) def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> int: return add_noise_common(state.common , _a , _a , _a ) def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , ) -> List[str]: return get_velocity_common(state.common , _a , _a , _a ) def __len__( self : List[Any] ) -> Any: return self.config.num_train_timesteps
369
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "vocab_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt" ), "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt" ), }, "tokenizer_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli": ( "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE__ : List[Any] = { "squeezebert/squeezebert-uncased": 512, "squeezebert/squeezebert-mnli": 512, "squeezebert/squeezebert-mnli-headless": 512, } SCREAMING_SNAKE_CASE__ : Dict = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class lowerCAmelCase__ ( __lowercase ): a__ : Optional[int] = VOCAB_FILES_NAMES a__ : Any = PRETRAINED_VOCAB_FILES_MAP a__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Optional[Any] = SqueezeBertTokenizer def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[UNK]" , SCREAMING_SNAKE_CASE__ : Optional[int]="[SEP]" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[PAD]" , SCREAMING_SNAKE_CASE__ : Tuple="[CLS]" , SCREAMING_SNAKE_CASE__ : str="[MASK]" , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : int=None , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Optional[Any]: super().__init__( SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , SCREAMING_SNAKE_CASE__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , SCREAMING_SNAKE_CASE__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars ): __lowerCamelCase = getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop('''type''' ) ) __lowerCamelCase = do_lower_case __lowerCamelCase = strip_accents __lowerCamelCase = tokenize_chinese_chars __lowerCamelCase = normalizer_class(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = do_lower_case def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=None ) -> str: __lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: __lowerCamelCase = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ ) return tuple(SCREAMING_SNAKE_CASE__ )
339
0
from __future__ import annotations def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str ) -> Any: # noqa: E741 while r - l > 1: __lowerCamelCase = (l + r) // 2 if v[m] >= key: __lowerCamelCase = m else: __lowerCamelCase = m # noqa: E741 return r def __magic_name__ ( __lowerCAmelCase : list[int] ) -> Tuple: if len(__lowerCAmelCase ) == 0: return 0 __lowerCamelCase = [0] * len(__lowerCAmelCase ) __lowerCamelCase = 1 __lowerCamelCase = v[0] for i in range(1 , len(__lowerCAmelCase ) ): if v[i] < tail[0]: __lowerCamelCase = v[i] elif v[i] > tail[length - 1]: __lowerCamelCase = v[i] length += 1 else: __lowerCamelCase = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
370
from __future__ import annotations def __magic_name__ ( __lowerCAmelCase : list[int] ) -> bool: return len(set(__lowerCAmelCase ) ) == len(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
339
0
def __magic_name__ ( __lowerCAmelCase : str ) -> list[list[float]]: __lowerCamelCase = [] for data in source_data: for i, el in enumerate(_lowerCAmelCase ): if len(_lowerCAmelCase ) < i + 1: data_lists.append([] ) data_lists[i].append(float(_lowerCAmelCase ) ) return data_lists def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Any ) -> list[list[float]]: __lowerCamelCase = [] for dlist, weight in zip(_lowerCAmelCase , _lowerCAmelCase ): __lowerCamelCase = min(_lowerCAmelCase ) __lowerCamelCase = max(_lowerCAmelCase ) __lowerCamelCase = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: __lowerCamelCase = f'''Invalid weight of {weight:f} provided''' raise ValueError(_lowerCAmelCase ) score_lists.append(_lowerCAmelCase ) return score_lists def __magic_name__ ( __lowerCAmelCase : Optional[Any] ) -> list[float]: __lowerCamelCase = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(_lowerCAmelCase ): __lowerCamelCase = final_scores[j] + ele return final_scores def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] ) -> list[list[float]]: __lowerCamelCase = get_data(_lowerCAmelCase ) __lowerCamelCase = calculate_each_score(_lowerCAmelCase , _lowerCAmelCase ) __lowerCamelCase = generate_final_scores(_lowerCAmelCase ) # append scores to source data for i, ele in enumerate(_lowerCAmelCase ): source_data[i].append(_lowerCAmelCase ) return source_data
371
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ : Dict = { "configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Tuple = [ "FALCON_PRETRAINED_MODEL_ARCHIVE_LIST", "FalconForCausalLM", "FalconModel", "FalconPreTrainedModel", "FalconForSequenceClassification", "FalconForTokenClassification", "FalconForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
339
0
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__ = "▁" SCREAMING_SNAKE_CASE__ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowerCAmelCase__ ( __lowerCamelCase , unittest.TestCase ): a__ : List[Any] = BertGenerationTokenizer a__ : Optional[Any] = False a__ : str = True def __A ( self : Tuple ) -> Dict: super().setUp() __lowerCamelCase = BertGenerationTokenizer(__lowercase , keep_accents=__lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self : Tuple ) -> Tuple: __lowerCamelCase = '''<s>''' __lowerCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowercase ) , __lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowercase ) , __lowercase ) def __A ( self : Union[str, Any] ) -> Dict: __lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(__lowercase ) , 10_02 ) def __A ( self : Optional[Any] ) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def __A ( self : Optional[int] ) -> Tuple: __lowerCamelCase = BertGenerationTokenizer(__lowercase , keep_accents=__lowercase ) __lowerCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowercase ) , [2_85, 46, 10, 1_70, 3_82] , ) __lowerCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __lowerCamelCase = tokenizer.convert_tokens_to_ids(__lowercase ) self.assertListEqual( __lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(__lowercase ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __A ( self : int ) -> Any: return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def __A ( self : Union[str, Any] ) -> Dict: __lowerCamelCase = '''Hello World!''' __lowerCamelCase = [1_85_36, 22_60, 1_01] self.assertListEqual(__lowercase , self.big_tokenizer.encode(__lowercase ) ) @slow def __A ( self : Optional[Any] ) -> Dict: __lowerCamelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) __lowerCamelCase = [ 8_71, 4_19, 3_58, 9_46, 9_91, 25_21, 4_52, 3_58, 13_57, 3_87, 77_51, 35_36, 1_12, 9_85, 4_56, 1_26, 8_65, 9_38, 54_00, 57_34, 4_58, 13_68, 4_67, 7_86, 24_62, 52_46, 11_59, 6_33, 8_65, 45_19, 4_57, 5_82, 8_52, 25_57, 4_27, 9_16, 5_08, 4_05, 3_43_24, 4_97, 3_91, 4_08, 1_13_42, 12_44, 3_85, 1_00, 9_38, 9_85, 4_56, 5_74, 3_62, 1_25_97, 32_00, 31_29, 11_72, ] self.assertListEqual(__lowercase , self.big_tokenizer.encode(__lowercase ) ) @require_torch @slow def __A ( self : List[Any] ) -> Dict: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence __lowerCamelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] __lowerCamelCase = ''' '''.join(__lowercase ) __lowerCamelCase = self.big_tokenizer.encode_plus(__lowercase , return_tensors='''pt''' , return_token_type_ids=__lowercase ) __lowerCamelCase = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=__lowercase ) __lowerCamelCase = BertGenerationConfig() __lowerCamelCase = BertGenerationEncoder(__lowercase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__lowercase ) model(**__lowercase ) @slow def __A ( self : int ) -> Union[str, Any]: # fmt: off __lowerCamelCase = {'''input_ids''': [[3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14], [4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowercase , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
350
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: return abs(__lowerCAmelCase ) if a == 0 else greatest_common_divisor(b % a , __lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. __lowerCamelCase , __lowerCamelCase = y, x % y return abs(__lowerCAmelCase ) def __magic_name__ ( ) -> Tuple: try: __lowerCamelCase = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) __lowerCamelCase = int(nums[0] ) __lowerCamelCase = int(nums[1] ) print( f'''greatest_common_divisor({num_a}, {num_a}) = ''' f'''{greatest_common_divisor(__lowerCAmelCase , __lowerCAmelCase )}''' ) print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__lowerCAmelCase , __lowerCAmelCase )}''' ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
339
0
"""simple docstring""" def __magic_name__ ( __lowerCAmelCase : Optional[int] ) -> str: return "".join(chr(ord(_UpperCAmelCase ) - 32 ) if '''a''' <= char <= '''z''' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
351
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def __A ( self : Optional[int] ) -> Union[str, Any]: __lowerCamelCase = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) __lowerCamelCase = AutoTokenizer.from_pretrained('''google/mt5-small''' ) __lowerCamelCase = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids __lowerCamelCase = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids __lowerCamelCase = shift_tokens_right(SCREAMING_SNAKE_CASE__ , model.config.pad_token_id , model.config.decoder_start_token_id ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ).logits __lowerCamelCase = optax.softmax_cross_entropy(SCREAMING_SNAKE_CASE__ , onehot(SCREAMING_SNAKE_CASE__ , logits.shape[-1] ) ).mean() __lowerCamelCase = -(labels.shape[-1] * loss.item()) __lowerCamelCase = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
339
0
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Optional[Any] = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class lowerCAmelCase__ ( lowerCAmelCase_ ): a__ : Dict = """encodec""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str]=[1.5, 3.0, 6.0, 12.0, 24.0] , SCREAMING_SNAKE_CASE__ : List[Any]=2_40_00 , SCREAMING_SNAKE_CASE__ : List[str]=1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : List[str]=1_28 , SCREAMING_SNAKE_CASE__ : Optional[Any]=32 , SCREAMING_SNAKE_CASE__ : int=1 , SCREAMING_SNAKE_CASE__ : List[Any]=[8, 5, 4, 2] , SCREAMING_SNAKE_CASE__ : List[Any]="weight_norm" , SCREAMING_SNAKE_CASE__ : List[str]=7 , SCREAMING_SNAKE_CASE__ : Optional[Any]=7 , SCREAMING_SNAKE_CASE__ : str=3 , SCREAMING_SNAKE_CASE__ : Dict=2 , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Tuple="reflect" , SCREAMING_SNAKE_CASE__ : Optional[Any]=2 , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : Optional[int]=1.0 , SCREAMING_SNAKE_CASE__ : List[str]=10_24 , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : int=True , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> Tuple: __lowerCamelCase = target_bandwidths __lowerCamelCase = sampling_rate __lowerCamelCase = audio_channels __lowerCamelCase = normalize __lowerCamelCase = chunk_length_s __lowerCamelCase = overlap __lowerCamelCase = hidden_size __lowerCamelCase = num_filters __lowerCamelCase = num_residual_layers __lowerCamelCase = upsampling_ratios __lowerCamelCase = norm_type __lowerCamelCase = kernel_size __lowerCamelCase = last_kernel_size __lowerCamelCase = residual_kernel_size __lowerCamelCase = dilation_growth_rate __lowerCamelCase = use_causal_conv __lowerCamelCase = pad_mode __lowerCamelCase = compress __lowerCamelCase = num_lstm_layers __lowerCamelCase = trim_right_ratio __lowerCamelCase = codebook_size __lowerCamelCase = codebook_dim if codebook_dim is not None else hidden_size __lowerCamelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**__SCREAMING_SNAKE_CASE ) @property def __A ( self : Any ) -> List[Any]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __A ( self : Any ) -> Any: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def __A ( self : Dict ) -> Dict: __lowerCamelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def __A ( self : Optional[Any] ) -> Union[str, Any]: return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
352
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE__ : Optional[int] = "bart" SCREAMING_SNAKE_CASE__ : Dict = True @st.cache(allow_output_mutation=__lowerCAmelCase ) def __magic_name__ ( ) -> str: if LOAD_DENSE_INDEX: __lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) __lowerCamelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) __lowerCamelCase = qar_model.eval() else: __lowerCamelCase , __lowerCamelCase = (None, None) if MODEL_TYPE == "bart": __lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) __lowerCamelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) __lowerCamelCase = sas_model.eval() else: __lowerCamelCase , __lowerCamelCase = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__lowerCAmelCase ) def __magic_name__ ( ) -> Optional[int]: if LOAD_DENSE_INDEX: __lowerCamelCase = faiss.StandardGpuResources() __lowerCamelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] __lowerCamelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) __lowerCamelCase = faiss.IndexFlatIP(128 ) __lowerCamelCase = faiss.index_cpu_to_gpu(__lowerCAmelCase , 1 , __lowerCAmelCase ) wikiaab_gpu_index_flat.add(__lowerCAmelCase ) # TODO fix for larger GPU else: __lowerCamelCase , __lowerCamelCase = (None, None) __lowerCamelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__lowerCAmelCase ) def __magic_name__ ( ) -> List[str]: __lowerCamelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) __lowerCamelCase = elia['''train_eli5'''] __lowerCamelCase = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) __lowerCamelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(__lowerCAmelCase ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = load_indexes() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = load_models() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = load_train_data() def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[str]=10 ) -> List[str]: __lowerCamelCase = embed_questions_for_retrieval([question] , __lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase , __lowerCamelCase = eli5_train_q_index.search(__lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase = [elia_train[int(__lowerCAmelCase )] for i in I[0]] return nn_examples def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict="wiki40b" , __lowerCAmelCase : Any="dense" , __lowerCAmelCase : Dict=10 ) -> Union[str, Any]: if source == "none": __lowerCamelCase , __lowerCamelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": __lowerCamelCase , __lowerCamelCase = query_qa_dense_index( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: __lowerCamelCase , __lowerCamelCase = query_es_index( __lowerCAmelCase , __lowerCAmelCase , index_name='''english_wiki40b_snippets_100w''' , n_results=__lowerCAmelCase , ) __lowerCamelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] __lowerCamelCase = '''question: {} context: {}'''.format(__lowerCAmelCase , __lowerCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __lowerCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __lowerCAmelCase : None), } ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str=64 , __lowerCAmelCase : Dict=256 , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : Optional[Any]=0.95 , __lowerCAmelCase : List[Any]=0.8 ) -> Any: with torch.no_grad(): __lowerCamelCase = qa_sas_generate( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , num_answers=1 , num_beams=__lowerCAmelCase , min_len=__lowerCAmelCase , max_len=__lowerCAmelCase , do_sample=__lowerCAmelCase , temp=__lowerCAmelCase , top_p=__lowerCAmelCase , top_k=__lowerCAmelCase , max_input_length=1024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar SCREAMING_SNAKE_CASE__ : List[str] = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" SCREAMING_SNAKE_CASE__ : Dict = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE__ : int = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE__ : str = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] SCREAMING_SNAKE_CASE__ : Optional[int] = st.sidebar.checkbox("Demo options") if demo_options: SCREAMING_SNAKE_CASE__ : Optional[int] = st.sidebar.selectbox( "", action_list, index=3, ) SCREAMING_SNAKE_CASE__ : Optional[Any] = action_list.index(action_st) SCREAMING_SNAKE_CASE__ : int = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = show_type == "Show full text of passages" else: SCREAMING_SNAKE_CASE__ : Any = 3 SCREAMING_SNAKE_CASE__ : Any = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.checkbox("Retrieval options") if retrieval_options: SCREAMING_SNAKE_CASE__ : Tuple = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) SCREAMING_SNAKE_CASE__ : int = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: SCREAMING_SNAKE_CASE__ : List[str] = "wiki40b" SCREAMING_SNAKE_CASE__ : Optional[Any] = "dense" SCREAMING_SNAKE_CASE__ : str = "beam" SCREAMING_SNAKE_CASE__ : List[Any] = 2 SCREAMING_SNAKE_CASE__ : Optional[Any] = 64 SCREAMING_SNAKE_CASE__ : List[Any] = 256 SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : List[str] = st.sidebar.checkbox("Generation options") if generate_options: SCREAMING_SNAKE_CASE__ : Dict = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE__ : List[str] = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) SCREAMING_SNAKE_CASE__ : Any = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE__ : str = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE__ : Any = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE__ : Dict = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None # start main text SCREAMING_SNAKE_CASE__ : Any = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] SCREAMING_SNAKE_CASE__ : List[str] = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.text_input("Enter your question here:", "") else: SCREAMING_SNAKE_CASE__ : str = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = make_support(question, source=wiki_source, method="dense", n_results=10) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = make_support(question, source=wiki_source, method="sparse", n_results=10) SCREAMING_SNAKE_CASE__ : int = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE__ : Optional[Any] = support_list[:10] SCREAMING_SNAKE_CASE__ : Tuple = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE__ : Optional[int] = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) SCREAMING_SNAKE_CASE__ : Tuple = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE__ : Union[str, Any] = "[{}]({})".format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE__ : Dict = sec_titles.split(" & ") SCREAMING_SNAKE_CASE__ : int = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE__ : Any = find_nearest_training(question) SCREAMING_SNAKE_CASE__ : List[Any] = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) SCREAMING_SNAKE_CASE__ : List[Any] = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
339
0
import numpy as np from PIL import Image def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Any ) -> Dict: __lowerCamelCase = np.array(lowerCamelCase__ ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = 0 # compute the shape of the output matrix __lowerCamelCase = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape __lowerCamelCase = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix __lowerCamelCase = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __lowerCamelCase = 0 __lowerCamelCase = 0 return updated_arr def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] ) -> Optional[Any]: __lowerCamelCase = np.array(lowerCamelCase__ ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = 0 # compute the shape of the output matrix __lowerCamelCase = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape __lowerCamelCase = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix __lowerCamelCase = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __lowerCamelCase = 0 __lowerCamelCase = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="avgpooling", verbose=True) # Loading the image SCREAMING_SNAKE_CASE__ : str = Image.open("path_to_image") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
353
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : str = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class lowerCAmelCase__ ( __lowercase ): a__ : Dict = """xmod""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_05_22 , SCREAMING_SNAKE_CASE__ : str=7_68 , SCREAMING_SNAKE_CASE__ : int=12 , SCREAMING_SNAKE_CASE__ : Dict=12 , SCREAMING_SNAKE_CASE__ : List[str]=30_72 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : List[Any]=0.02 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1e-12 , SCREAMING_SNAKE_CASE__ : List[str]=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : Any="absolute" , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=("en_XX",) , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , **SCREAMING_SNAKE_CASE__ : int , ) -> str: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = position_embedding_type __lowerCamelCase = use_cache __lowerCamelCase = classifier_dropout __lowerCamelCase = pre_norm __lowerCamelCase = adapter_reduction_factor __lowerCamelCase = adapter_layer_norm __lowerCamelCase = adapter_reuse_layer_norm __lowerCamelCase = ln_before_adapter __lowerCamelCase = list(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = default_language class lowerCAmelCase__ ( __lowercase ): @property def __A ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
339
0
def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : int ) -> Dict: return int(input_a == input_a == 0 ) def __magic_name__ ( ) -> Dict: print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(f'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(f'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(f'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(f'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
354
from collections import namedtuple import requests from lxml import html # type: ignore SCREAMING_SNAKE_CASE__ : List[Any] = namedtuple("covid_data", "cases deaths recovered") def __magic_name__ ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data: __lowerCamelCase = '''//div[@class = "maincounter-number"]/span/text()''' return covid_data(*html.fromstring(requests.get(__lowerCAmelCase ).content ).xpath(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ : List[str] = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
339
0
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase__ ) class lowerCAmelCase__ ( lowerCAmelCase__ ): def __init__( self : List[str] , *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) self.check_model_type(_SCREAMING_SNAKE_CASE ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Tuple=None , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]: __lowerCamelCase , __lowerCamelCase = {}, {} if padding is not None: __lowerCamelCase = padding if truncation is not None: __lowerCamelCase = truncation if top_k is not None: __lowerCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict = None , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[Any]: if isinstance(_SCREAMING_SNAKE_CASE , (Image.Image, str) ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCamelCase = {'''image''': image, '''question''': question} else: __lowerCamelCase = image __lowerCamelCase = super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return results def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : Dict=False ) -> int: __lowerCamelCase = load_image(inputs['''image'''] ) __lowerCamelCase = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE ) __lowerCamelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) model_inputs.update(_SCREAMING_SNAKE_CASE ) return model_inputs def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: __lowerCamelCase = self.model(**_SCREAMING_SNAKE_CASE ) return model_outputs def __A ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any=5 ) -> Dict: if top_k > self.model.config.num_labels: __lowerCamelCase = self.model.config.num_labels if self.framework == "pt": __lowerCamelCase = model_outputs.logits.sigmoid()[0] __lowerCamelCase , __lowerCamelCase = probs.topk(_SCREAMING_SNAKE_CASE ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) __lowerCamelCase = scores.tolist() __lowerCamelCase = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )]
355
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) SCREAMING_SNAKE_CASE__ : int = logging.getLogger(__name__) @dataclass class lowerCAmelCase__ : a__ : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a__ : Optional[str] = field( default=__lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a__ : Optional[str] = field( default=__lowercase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a__ : Optional[str] = field( default=__lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether tp freeze the encoder."""} ) a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether to freeze the embeddings."""} ) @dataclass class lowerCAmelCase__ : a__ : str = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) a__ : Optional[str] = field( default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , ) a__ : Optional[int] = field( default=1_024 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field( default=128 , metadata={ """help""": ( """The maximum total sequence length for target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for validation target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded. """ """This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """ """during ``evaluate`` and ``predict``.""" ) } , ) a__ : Optional[int] = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for test target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} ) a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Source language id for translation."""} ) a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Target language id for translation."""} ) a__ : Optional[int] = field(default=__lowercase , metadata={"""help""": """# num_beams to use for evaluation."""} ) a__ : bool = field( default=__lowercase , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , ) def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : int ) -> Dict: logger.info(f'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(f''' {key} = {metrics[key]}''' ) save_json(__lowerCAmelCase , os.path.join(__lowerCAmelCase , f'''{split}_results.json''' ) ) def __magic_name__ ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_args_into_dataclasses() check_output_dir(__lowerCAmelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , __lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowerCamelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): assert hasattr(__lowerCAmelCase , __lowerCAmelCase ), f'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(__lowerCAmelCase , __lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) ) __lowerCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(__lowerCAmelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: __lowerCamelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(__lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(__lowerCAmelCase , __lowerCAmelCase ): __lowerCamelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: __lowerCamelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(__lowerCAmelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) __lowerCamelCase = SeqaSeqDataset # Get datasets __lowerCamelCase = ( dataset_class( __lowerCAmelCase , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) __lowerCamelCase = ( dataset_class( __lowerCAmelCase , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) __lowerCamelCase = ( dataset_class( __lowerCAmelCase , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer __lowerCamelCase = ( build_compute_metrics_fn(data_args.task , __lowerCAmelCase ) if training_args.predict_with_generate else None ) __lowerCamelCase = SeqaSeqTrainer( model=__lowerCAmelCase , args=__lowerCAmelCase , data_args=__lowerCAmelCase , train_dataset=__lowerCAmelCase , eval_dataset=__lowerCAmelCase , data_collator=SeqaSeqDataCollator( __lowerCAmelCase , __lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , ) __lowerCamelCase = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) __lowerCamelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) __lowerCamelCase = train_result.metrics __lowerCamelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , __lowerCAmelCase , training_args.output_dir ) all_metrics.update(__lowerCAmelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowerCamelCase = trainer.evaluate(metric_key_prefix='''val''' ) __lowerCamelCase = data_args.n_val __lowerCamelCase = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , __lowerCAmelCase , training_args.output_dir ) all_metrics.update(__lowerCAmelCase ) if training_args.do_predict: logger.info('''*** Predict ***''' ) __lowerCamelCase = trainer.predict(test_dataset=__lowerCAmelCase , metric_key_prefix='''test''' ) __lowerCamelCase = test_output.metrics __lowerCamelCase = data_args.n_test if trainer.is_world_process_zero(): __lowerCamelCase = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , __lowerCAmelCase , training_args.output_dir ) all_metrics.update(__lowerCAmelCase ) if training_args.predict_with_generate: __lowerCamelCase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) __lowerCamelCase = lmap(str.strip , __lowerCAmelCase ) write_txt_file(__lowerCAmelCase , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(__lowerCAmelCase , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Union[str, Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
339
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : str = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class lowerCAmelCase__ ( snake_case_ ): a__ : Any = """pix2struct_text_model""" a__ : str = ["""past_key_values"""] a__ : str = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Any=5_02_44 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=7_68 , SCREAMING_SNAKE_CASE__ : Optional[int]=64 , SCREAMING_SNAKE_CASE__ : Any=20_48 , SCREAMING_SNAKE_CASE__ : Any=12 , SCREAMING_SNAKE_CASE__ : List[Any]=12 , SCREAMING_SNAKE_CASE__ : Optional[int]=32 , SCREAMING_SNAKE_CASE__ : List[Any]=1_28 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1e-6 , SCREAMING_SNAKE_CASE__ : Any=1.0 , SCREAMING_SNAKE_CASE__ : List[str]="gelu_new" , SCREAMING_SNAKE_CASE__ : List[str]=0 , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : Tuple=0 , SCREAMING_SNAKE_CASE__ : Any=1 , SCREAMING_SNAKE_CASE__ : int=False , SCREAMING_SNAKE_CASE__ : List[Any]=True , **SCREAMING_SNAKE_CASE__ : List[Any] , ) -> int: __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = d_kv __lowerCamelCase = d_ff __lowerCamelCase = num_layers __lowerCamelCase = num_heads __lowerCamelCase = relative_attention_num_buckets __lowerCamelCase = relative_attention_max_distance __lowerCamelCase = dropout_rate __lowerCamelCase = layer_norm_epsilon __lowerCamelCase = initializer_factor __lowerCamelCase = use_cache __lowerCamelCase = eos_token_id __lowerCamelCase = decoder_start_token_id # for backwards compatibility __lowerCamelCase = dense_act_fn super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=SCREAMING_SNAKE_CASE__ , tie_word_embeddings=SCREAMING_SNAKE_CASE__ , is_decoder=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) @classmethod def __A ( cls : Any , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : Tuple ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": __lowerCamelCase = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class lowerCAmelCase__ ( snake_case_ ): a__ : Optional[int] = """pix2struct_vision_model""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=7_68 , SCREAMING_SNAKE_CASE__ : List[str]=7_68 , SCREAMING_SNAKE_CASE__ : List[str]=20_48 , SCREAMING_SNAKE_CASE__ : int=64 , SCREAMING_SNAKE_CASE__ : int=12 , SCREAMING_SNAKE_CASE__ : Tuple=12 , SCREAMING_SNAKE_CASE__ : Optional[Any]="gelu_new" , SCREAMING_SNAKE_CASE__ : int=1e-6 , SCREAMING_SNAKE_CASE__ : Dict=0.0 , SCREAMING_SNAKE_CASE__ : Any=0.0 , SCREAMING_SNAKE_CASE__ : Any=1e-10 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1.0 , SCREAMING_SNAKE_CASE__ : Any=40_96 , SCREAMING_SNAKE_CASE__ : Dict=32 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_28 , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> int: super().__init__(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = hidden_size __lowerCamelCase = patch_embed_hidden_size __lowerCamelCase = d_ff __lowerCamelCase = dropout_rate __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = initializer_range __lowerCamelCase = initializer_factor __lowerCamelCase = attention_dropout __lowerCamelCase = layer_norm_eps __lowerCamelCase = dense_act_fn __lowerCamelCase = seq_len __lowerCamelCase = relative_attention_num_buckets __lowerCamelCase = relative_attention_max_distance __lowerCamelCase = d_kv @classmethod def __A ( cls : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : int ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": __lowerCamelCase = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class lowerCAmelCase__ ( snake_case_ ): a__ : Tuple = """pix2struct""" a__ : Optional[Any] = True def __init__( self : str , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : List[str]=1.0 , SCREAMING_SNAKE_CASE__ : int=0.02 , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , **SCREAMING_SNAKE_CASE__ : Any , ) -> Optional[int]: super().__init__(tie_word_embeddings=SCREAMING_SNAKE_CASE__ , is_encoder_decoder=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if text_config is None: __lowerCamelCase = {} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' ) if vision_config is None: __lowerCamelCase = {} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' ) __lowerCamelCase = PixaStructTextConfig(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = PixaStructVisionConfig(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.text_config.decoder_start_token_id __lowerCamelCase = self.text_config.pad_token_id __lowerCamelCase = self.text_config.eos_token_id __lowerCamelCase = initializer_factor __lowerCamelCase = initializer_range __lowerCamelCase = self.initializer_range __lowerCamelCase = self.initializer_range __lowerCamelCase = is_vqa @classmethod def __A ( cls : List[str] , SCREAMING_SNAKE_CASE__ : PixaStructTextConfig , SCREAMING_SNAKE_CASE__ : PixaStructVisionConfig , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[Any]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **SCREAMING_SNAKE_CASE__ ) def __A ( self : int ) -> List[str]: __lowerCamelCase = copy.deepcopy(self.__dict__ ) __lowerCamelCase = self.text_config.to_dict() __lowerCamelCase = self.vision_config.to_dict() __lowerCamelCase = self.__class__.model_type return output
356
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase__ ( unittest.TestCase ): @property def __A ( self : List[Any] ) -> Optional[Any]: torch.manual_seed(0 ) __lowerCamelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def __A ( self : Optional[int] ) -> Optional[Any]: __lowerCamelCase = self.dummy_uncond_unet __lowerCamelCase = ScoreSdeVeScheduler() __lowerCamelCase = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) sde_ve.to(SCREAMING_SNAKE_CASE__ ) sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ ).images __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ )[ 0 ] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCamelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : Tuple ) -> str: __lowerCamelCase = '''google/ncsnpp-church-256''' __lowerCamelCase = UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = ScoreSdeVeScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) sde_ve.to(SCREAMING_SNAKE_CASE__ ) sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) __lowerCamelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
339
0
from __future__ import annotations class lowerCAmelCase__ : def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Tuple=None ) -> Optional[int]: __lowerCamelCase = data __lowerCamelCase = None def __repr__( self : str ) -> List[str]: __lowerCamelCase = [] __lowerCamelCase = self while temp: string_rep.append(f'''{temp.data}''' ) __lowerCamelCase = temp.next return "->".join(lowerCamelCase__ ) def __magic_name__ ( __lowerCAmelCase : list ) -> Optional[int]: """simple docstring""" if not elements_list: raise Exception('''The Elements List is empty''' ) __lowerCamelCase = Node(elements_list[0] ) for i in range(1 , len(__lowerCAmelCase ) ): __lowerCamelCase = Node(elements_list[i] ) __lowerCamelCase = current.next return head def __magic_name__ ( __lowerCAmelCase : Node ) -> str: """simple docstring""" if head_node is not None and isinstance(__lowerCAmelCase , __lowerCAmelCase ): print_reverse(head_node.next ) print(head_node.data ) def __magic_name__ ( ) -> Union[str, Any]: """simple docstring""" from doctest import testmod testmod() __lowerCamelCase = make_linked_list([14, 52, 14, 12, 43] ) print('''Linked List:''' ) print(__lowerCAmelCase ) print('''Elements in Reverse:''' ) print_reverse(__lowerCAmelCase ) if __name__ == "__main__": main()
357
from functools import lru_cache def __magic_name__ ( __lowerCAmelCase : int ) -> set: __lowerCamelCase = 2 __lowerCamelCase = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__lowerCAmelCase ) if n > 1: factors.add(__lowerCAmelCase ) return factors @lru_cache def __magic_name__ ( __lowerCAmelCase : int ) -> int: return len(unique_prime_factors(__lowerCAmelCase ) ) def __magic_name__ ( __lowerCAmelCase : list ) -> bool: return len(set(__lowerCAmelCase ) ) in (0, 1) def __magic_name__ ( __lowerCAmelCase : int ) -> list: __lowerCamelCase = 2 while True: # Increment each value of a generated range __lowerCamelCase = [base + i for i in range(__lowerCAmelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. __lowerCamelCase = [upf_len(__lowerCAmelCase ) for x in group] checker.append(__lowerCAmelCase ) # If all numbers in the list are equal, return the group variable. if equality(__lowerCAmelCase ): return group # Increment our base variable by 1 base += 1 def __magic_name__ ( __lowerCAmelCase : int = 4 ) -> int: __lowerCamelCase = run(__lowerCAmelCase ) return results[0] if len(__lowerCAmelCase ) else None if __name__ == "__main__": print(solution())
339
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ : List[Any] = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[str] = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : str = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : int = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Any = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
358
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCAmelCase__ : def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=99 , SCREAMING_SNAKE_CASE__ : List[Any]=13 , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : int=9 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : int=32 , SCREAMING_SNAKE_CASE__ : Tuple=5 , SCREAMING_SNAKE_CASE__ : List[str]=4 , SCREAMING_SNAKE_CASE__ : str=37 , SCREAMING_SNAKE_CASE__ : int=8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.002 , SCREAMING_SNAKE_CASE__ : str=1 , SCREAMING_SNAKE_CASE__ : Tuple=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Dict=None , ) -> Optional[Any]: __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = encoder_seq_length __lowerCamelCase = decoder_seq_length # For common tests __lowerCamelCase = self.decoder_seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = d_ff __lowerCamelCase = relative_attention_num_buckets __lowerCamelCase = dropout_rate __lowerCamelCase = initializer_factor __lowerCamelCase = eos_token_id __lowerCamelCase = pad_token_id __lowerCamelCase = decoder_start_token_id __lowerCamelCase = None __lowerCamelCase = decoder_layers def __A ( self : Any ) -> Tuple: return TaConfig.from_pretrained('''google/umt5-base''' ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , ) -> Optional[int]: if attention_mask is None: __lowerCamelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __lowerCamelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __lowerCamelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ ) if decoder_head_mask is None: __lowerCamelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ ) if cross_attn_head_mask is None: __lowerCamelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def __A ( self : List[Any] ) -> Tuple: __lowerCamelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __lowerCamelCase = input_ids.clamp(self.pad_token_id + 1 ) __lowerCamelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) __lowerCamelCase = self.get_config() __lowerCamelCase = config.num_attention_heads __lowerCamelCase = self.prepare_inputs_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, input_dict def __A ( self : Tuple ) -> List[str]: __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs() return config, inputs_dict def __A ( self : Optional[Any] ) -> Any: return TaConfig( vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __A ( self : List[Any] ) -> Any: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> int: __lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCamelCase = model( input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = model(input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = result.last_hidden_state __lowerCamelCase = result.past_key_values __lowerCamelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Dict: __lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ).get_decoder().to(SCREAMING_SNAKE_CASE__ ).eval() # first forward pass __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) + 1 ) __lowerCamelCase , __lowerCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCamelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and __lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] # select random slice __lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCamelCase = output_from_no_past[:, -1, random_slice_idx].detach() __lowerCamelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Optional[int]: __lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ).half().eval() __lowerCamelCase = model(**SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(SCREAMING_SNAKE_CASE__ ).any().item() ) @require_torch class lowerCAmelCase__ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): a__ : List[Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) a__ : Union[str, Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () a__ : Tuple = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) a__ : int = True a__ : int = False a__ : Tuple = False a__ : Optional[int] = True a__ : Optional[int] = True # The small UMT5 model needs higher percentages for CPU/MP tests a__ : Tuple = [0.8, 0.9] def __A ( self : Tuple ) -> Tuple: __lowerCamelCase = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def __A ( self : List[str] ) -> Union[str, Any]: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = UMTaModel(config_and_inputs[0] ).to(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( SCREAMING_SNAKE_CASE__ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=SCREAMING_SNAKE_CASE__ , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __A ( self : Union[str, Any] ) -> Any: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*SCREAMING_SNAKE_CASE__ ) def __A ( self : Any ) -> Any: __lowerCamelCase = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = config_and_inputs[0] __lowerCamelCase = UMTaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() model.to(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ), } for attn_name, (name, mask) in zip(SCREAMING_SNAKE_CASE__ , head_masking.items() ): __lowerCamelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": __lowerCamelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=SCREAMING_SNAKE_CASE__ , return_dict_in_generate=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) # We check the state of decoder_attentions and cross_attentions just from the last step __lowerCamelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def __A ( self : Tuple ) -> Optional[Any]: pass @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def __A ( self : int ) -> Optional[Any]: __lowerCamelCase = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=SCREAMING_SNAKE_CASE__ , legacy=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] __lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , padding=SCREAMING_SNAKE_CASE__ ).input_ids # fmt: off __lowerCamelCase = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ] ) # fmt: on torch.testing.assert_allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model.generate(input_ids.to(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] __lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
339
0
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
359
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Tuple = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class lowerCAmelCase__ ( __lowercase ): a__ : Union[str, Any] = """open-llama""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Any=10_00_00 , SCREAMING_SNAKE_CASE__ : Any=40_96 , SCREAMING_SNAKE_CASE__ : Any=1_10_08 , SCREAMING_SNAKE_CASE__ : Tuple=32 , SCREAMING_SNAKE_CASE__ : str=32 , SCREAMING_SNAKE_CASE__ : Any="silu" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=20_48 , SCREAMING_SNAKE_CASE__ : List[str]=0.02 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-6 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Dict=0 , SCREAMING_SNAKE_CASE__ : Tuple=1 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : List[str]=None , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> Dict: __lowerCamelCase = vocab_size __lowerCamelCase = max_position_embeddings __lowerCamelCase = hidden_size __lowerCamelCase = intermediate_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = initializer_range __lowerCamelCase = rms_norm_eps __lowerCamelCase = use_cache __lowerCamelCase = kwargs.pop( '''use_memorry_efficient_attention''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_dropout_prob __lowerCamelCase = use_stable_embedding __lowerCamelCase = shared_input_output_embedding __lowerCamelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , tie_word_embeddings=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) def __A ( self : Dict ) -> Optional[int]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , SCREAMING_SNAKE_CASE__ ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f'''got {self.rope_scaling}''' ) __lowerCamelCase = self.rope_scaling.get('''type''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.rope_scaling.get('''factor''' , SCREAMING_SNAKE_CASE__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
339
0
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: SCREAMING_SNAKE_CASE__ : int = None SCREAMING_SNAKE_CASE__ : Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Any = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE__ : Any = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", }, "tokenizer_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/tokenizer.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/tokenizer.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/tokenizer.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/tokenizer.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/tokenizer.json", }, } # TODO(PVP) - this should be removed in Transformers v5 SCREAMING_SNAKE_CASE__ : Optional[Any] = { "t5-small": 512, "t5-base": 512, "t5-large": 512, "t5-3b": 512, "t5-11b": 512, } class lowerCAmelCase__ ( _lowercase ): a__ : Optional[Any] = VOCAB_FILES_NAMES a__ : Dict = PRETRAINED_VOCAB_FILES_MAP a__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Tuple = ["""input_ids""", """attention_mask"""] a__ : Tuple = TaTokenizer a__ : Optional[int] = [] def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]="</s>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="<unk>" , SCREAMING_SNAKE_CASE__ : List[str]="<pad>" , SCREAMING_SNAKE_CASE__ : str=1_00 , SCREAMING_SNAKE_CASE__ : int=None , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> Optional[int]: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __lowerCamelCase = [f'''<extra_id_{i}>''' for i in range(__UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens __lowerCamelCase = len(set(filter(lambda SCREAMING_SNAKE_CASE__ : bool('''extra_id_''' in str(__UpperCamelCase ) ) , __UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( __UpperCamelCase , tokenizer_file=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , extra_ids=__UpperCamelCase , additional_special_tokens=__UpperCamelCase , **__UpperCamelCase , ) __lowerCamelCase = vocab_file __lowerCamelCase = False if not self.vocab_file else True __lowerCamelCase = extra_ids @staticmethod def __A ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ) -> Tuple: if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: __lowerCamelCase = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , __UpperCamelCase , ) return max_model_length def __A ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCamelCase = os.path.join( __UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ): copyfile(self.vocab_file , __UpperCamelCase ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: __lowerCamelCase = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: __lowerCamelCase = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: __lowerCamelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __A ( self : Tuple ) -> int: return list( set(filter(lambda SCREAMING_SNAKE_CASE__ : bool(re.search(R'''<extra_id_\d+>''' , __UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def __A ( self : Tuple ) -> Tuple: return [self.convert_tokens_to_ids(__UpperCamelCase ) for token in self.get_sentinel_tokens()]
360
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar SCREAMING_SNAKE_CASE__ : Any = TypeVar("KEY") SCREAMING_SNAKE_CASE__ : Dict = TypeVar("VAL") @dataclass(frozen=__lowercase , slots=__lowercase ) class lowerCAmelCase__ ( Generic[KEY, VAL] ): a__ : KEY a__ : VAL class lowerCAmelCase__ ( _Item ): def __init__( self : str ) -> None: super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __bool__( self : Tuple ) -> bool: return False SCREAMING_SNAKE_CASE__ : List[Any] = _DeletedItem() class lowerCAmelCase__ ( MutableMapping[KEY, VAL] ): def __init__( self : int , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.75 ) -> None: __lowerCamelCase = initial_block_size __lowerCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowerCamelCase = capacity_factor __lowerCamelCase = 0 def __A ( self : Any , SCREAMING_SNAKE_CASE__ : KEY ) -> int: return hash(SCREAMING_SNAKE_CASE__ ) % len(self._buckets ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> int: return (ind + 1) % len(self._buckets ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> bool: __lowerCamelCase = self._buckets[ind] if not stored: __lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self._len += 1 return True elif stored.key == key: __lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return True else: return False def __A ( self : Any ) -> bool: __lowerCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(SCREAMING_SNAKE_CASE__ ) def __A ( self : List[Any] ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False __lowerCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def __A ( self : int , SCREAMING_SNAKE_CASE__ : int ) -> None: __lowerCamelCase = self._buckets __lowerCamelCase = [None] * new_size __lowerCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def __A ( self : str ) -> None: self._resize(len(self._buckets ) * 2 ) def __A ( self : Dict ) -> None: self._resize(len(self._buckets ) // 2 ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY ) -> Iterator[int]: __lowerCamelCase = self._get_bucket_index(SCREAMING_SNAKE_CASE__ ) for _ in range(len(self._buckets ) ): yield ind __lowerCamelCase = self._get_next_ind(SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): if self._try_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): break def __setitem__( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None: if self._is_full(): self._size_up() self._add_item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __delitem__( self : List[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> None: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = self._buckets[ind] if item is None: raise KeyError(SCREAMING_SNAKE_CASE__ ) if item is _deleted: continue if item.key == key: __lowerCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> VAL: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(SCREAMING_SNAKE_CASE__ ) def __len__( self : int ) -> int: return self._len def __iter__( self : Tuple ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ) -> str: __lowerCamelCase = ''' ,'''.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
339
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase__ : def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : Dict=10 , SCREAMING_SNAKE_CASE__ : Any=3 , SCREAMING_SNAKE_CASE__ : Tuple=32 * 8 , SCREAMING_SNAKE_CASE__ : Tuple=32 * 8 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=4 , SCREAMING_SNAKE_CASE__ : Optional[int]=64 , ) -> Optional[Any]: __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = is_training __lowerCamelCase = use_auxiliary_loss __lowerCamelCase = num_queries __lowerCamelCase = num_channels __lowerCamelCase = min_size __lowerCamelCase = max_size __lowerCamelCase = num_labels __lowerCamelCase = hidden_dim __lowerCamelCase = hidden_dim def __A ( self : Tuple ) -> Dict: __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( UpperCAmelCase__ ) __lowerCamelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCAmelCase__ ) __lowerCamelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCAmelCase__ ) > 0.5 ).float() __lowerCamelCase = (torch.rand((self.batch_size, self.num_labels) , device=UpperCAmelCase__ ) > 0.5).long() __lowerCamelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __A ( self : Union[str, Any] ) -> str: __lowerCamelCase = MaskaFormerConfig( hidden_size=self.hidden_dim , ) __lowerCamelCase = self.num_queries __lowerCamelCase = self.num_labels __lowerCamelCase = [1, 1, 1, 1] __lowerCamelCase = self.num_channels __lowerCamelCase = 64 __lowerCamelCase = 1_28 __lowerCamelCase = self.hidden_dim __lowerCamelCase = self.hidden_dim __lowerCamelCase = self.hidden_dim return config def __A ( self : Union[str, Any] ) -> Optional[Any]: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]: __lowerCamelCase = output.encoder_hidden_states __lowerCamelCase = output.pixel_decoder_hidden_states __lowerCamelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(UpperCAmelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCAmelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCAmelCase__ ) , config.decoder_layers ) def __A ( self : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple=False ) -> Dict: with torch.no_grad(): __lowerCamelCase = MaskaFormerModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowerCamelCase = model(pixel_values=UpperCAmelCase__ , pixel_mask=UpperCAmelCase__ ) __lowerCamelCase = model(UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(UpperCAmelCase__ , UpperCAmelCase__ ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[int]: __lowerCamelCase = MaskaFormerForUniversalSegmentation(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() def comm_check_on_output(SCREAMING_SNAKE_CASE__ : Optional[int] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __lowerCamelCase = model(pixel_values=UpperCAmelCase__ , pixel_mask=UpperCAmelCase__ ) __lowerCamelCase = model(UpperCAmelCase__ ) comm_check_on_output(UpperCAmelCase__ ) __lowerCamelCase = model( pixel_values=UpperCAmelCase__ , pixel_mask=UpperCAmelCase__ , mask_labels=UpperCAmelCase__ , class_labels=UpperCAmelCase__ ) comm_check_on_output(UpperCAmelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCAmelCase__ ( __lowercase , __lowercase , unittest.TestCase ): a__ : List[str] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () a__ : List[str] = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} a__ : int = False a__ : List[Any] = False a__ : str = False a__ : int = False def __A ( self : Optional[int] ) -> List[str]: __lowerCamelCase = MaskaFormerModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ ) def __A ( self : int ) -> Optional[Any]: self.config_tester.run_common_tests() def __A ( self : Optional[Any] ) -> List[Any]: __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(UpperCAmelCase__ , **UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ ) def __A ( self : Optional[Any] ) -> Optional[int]: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*UpperCAmelCase__ ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def __A ( self : Tuple ) -> Any: pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def __A ( self : List[Any] ) -> List[str]: pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def __A ( self : List[Any] ) -> List[Any]: pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def __A ( self : Union[str, Any] ) -> Any: pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __A ( self : int ) -> Optional[Any]: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self : Tuple ) -> Union[str, Any]: pass def __A ( self : Union[str, Any] ) -> Any: __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(UpperCAmelCase__ ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) @slow def __A ( self : Dict ) -> Optional[Any]: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __lowerCamelCase = MaskaFormerModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def __A ( self : List[Any] ) -> Tuple: __lowerCamelCase = (self.model_tester.min_size,) * 2 __lowerCamelCase = { '''pixel_values''': torch.randn((2, 3, *size) , device=UpperCAmelCase__ ), '''mask_labels''': torch.randn((2, 10, *size) , device=UpperCAmelCase__ ), '''class_labels''': torch.zeros(2 , 10 , device=UpperCAmelCase__ ).long(), } __lowerCamelCase = self.model_tester.get_config() __lowerCamelCase = MaskaFormerForUniversalSegmentation(UpperCAmelCase__ ).to(UpperCAmelCase__ ) __lowerCamelCase = model(**UpperCAmelCase__ ) self.assertTrue(outputs.loss is not None ) def __A ( self : Optional[int] ) -> int: __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(UpperCAmelCase__ , **UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ ) def __A ( self : Optional[Any] ) -> Any: __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(UpperCAmelCase__ ).to(UpperCAmelCase__ ) __lowerCamelCase = model(**UpperCAmelCase__ , output_attentions=UpperCAmelCase__ ) self.assertTrue(outputs.attentions is not None ) def __A ( self : int ) -> str: if not self.model_tester.is_training: return __lowerCamelCase = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.train() __lowerCamelCase = model(UpperCAmelCase__ , mask_labels=UpperCAmelCase__ , class_labels=UpperCAmelCase__ ).loss loss.backward() def __A ( self : Tuple ) -> List[str]: __lowerCamelCase = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = model_class(UpperCAmelCase__ ).to(UpperCAmelCase__ ) model.train() __lowerCamelCase = model(UpperCAmelCase__ , mask_labels=UpperCAmelCase__ , class_labels=UpperCAmelCase__ ) __lowerCamelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __lowerCamelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __lowerCamelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __lowerCamelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=UpperCAmelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) SCREAMING_SNAKE_CASE__ : Dict = 1E-4 def __magic_name__ ( ) -> Optional[int]: __lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def __A ( self : Optional[int] ) -> str: return "facebook/mask2former-swin-small-coco-instance" @cached_property def __A ( self : Any ) -> Tuple: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def __A ( self : Union[str, Any] ) -> List[str]: __lowerCamelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(UpperCAmelCase__ ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(UpperCAmelCase__ , return_tensors='''pt''' ).to(UpperCAmelCase__ ) __lowerCamelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase__ , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __lowerCamelCase = model(**UpperCAmelCase__ ) __lowerCamelCase = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(UpperCAmelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__ ) ) __lowerCamelCase = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(UpperCAmelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__ ) ) __lowerCamelCase = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(UpperCAmelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__ ) ) def __A ( self : str ) -> Any: __lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(UpperCAmelCase__ ).eval() __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(UpperCAmelCase__ , return_tensors='''pt''' ).to(UpperCAmelCase__ ) __lowerCamelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase__ , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __lowerCamelCase = model(**UpperCAmelCase__ ) # masks_queries_logits __lowerCamelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __lowerCamelCase = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] __lowerCamelCase = torch.tensor(UpperCAmelCase__ ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__ ) ) # class_queries_logits __lowerCamelCase = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __lowerCamelCase = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__ ) ) def __A ( self : str ) -> Optional[int]: __lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(UpperCAmelCase__ ).eval() __lowerCamelCase = self.default_image_processor __lowerCamelCase = image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors='''pt''' , ) __lowerCamelCase = inputs['''pixel_values'''].to(UpperCAmelCase__ ) __lowerCamelCase = [el.to(UpperCAmelCase__ ) for el in inputs['''mask_labels''']] __lowerCamelCase = [el.to(UpperCAmelCase__ ) for el in inputs['''class_labels''']] with torch.no_grad(): __lowerCamelCase = model(**UpperCAmelCase__ ) self.assertTrue(outputs.loss is not None )
361
from datetime import datetime as dt import os from github import Github SCREAMING_SNAKE_CASE__ : Any = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def __magic_name__ ( ) -> Any: __lowerCamelCase = Github(os.environ['''GITHUB_TOKEN'''] ) __lowerCamelCase = g.get_repo('''huggingface/transformers''' ) __lowerCamelCase = repo.get_issues(state='''open''' ) for issue in open_issues: __lowerCamelCase = sorted([comment for comment in issue.get_comments()] , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase ) __lowerCamelCase = comments[0] if len(__lowerCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
339
0
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> List[str]: __lowerCamelCase = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) __lowerCamelCase = MaskFormerConfig(backbone_config=__lowerCAmelCase ) __lowerCamelCase = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok __lowerCamelCase = 847 __lowerCamelCase = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok __lowerCamelCase = 150 __lowerCamelCase = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok __lowerCamelCase = 171 __lowerCamelCase = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO __lowerCamelCase = 133 __lowerCamelCase = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok __lowerCamelCase = 19 __lowerCamelCase = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok __lowerCamelCase = 65 __lowerCamelCase = """mapillary-vistas-id2label.json""" __lowerCamelCase = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) __lowerCamelCase = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} return config def __magic_name__ ( __lowerCAmelCase : Dict ) -> Dict: __lowerCamelCase = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.layers.{i}.downsample.reduction.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.layers.{i}.downsample.norm.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.layers.{i}.downsample.norm.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f'''sem_seg_head.adapter_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', f'''mask_embedder.{i}.0.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', f'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def __magic_name__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] ) -> Dict: __lowerCamelCase = dct.pop(__lowerCAmelCase ) __lowerCamelCase = val def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str ) -> Tuple: __lowerCamelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowerCamelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowerCamelCase = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) __lowerCamelCase = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase = in_proj_weight[:dim, :] __lowerCamelCase = in_proj_bias[: dim] __lowerCamelCase = in_proj_weight[ dim : dim * 2, : ] __lowerCamelCase = in_proj_bias[ dim : dim * 2 ] __lowerCamelCase = in_proj_weight[ -dim :, : ] __lowerCamelCase = in_proj_bias[-dim :] # fmt: on def __magic_name__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple ) -> Optional[int]: # fmt: off __lowerCamelCase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCamelCase = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) __lowerCamelCase = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase = in_proj_weight[: hidden_size, :] __lowerCamelCase = in_proj_bias[:config.hidden_size] __lowerCamelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCamelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCamelCase = in_proj_weight[-hidden_size :, :] __lowerCamelCase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCamelCase = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) __lowerCamelCase = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase = in_proj_weight[: hidden_size, :] __lowerCamelCase = in_proj_bias[:config.hidden_size] __lowerCamelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCamelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCamelCase = in_proj_weight[-hidden_size :, :] __lowerCamelCase = in_proj_bias[-hidden_size :] # fmt: on def __magic_name__ ( ) -> torch.Tensor: __lowerCamelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCamelCase = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] = False ) -> str: __lowerCamelCase = get_maskformer_config(__lowerCAmelCase ) # load original state_dict with open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = pickle.load(__lowerCAmelCase ) __lowerCamelCase = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowerCamelCase = create_rename_keys(__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_swin_q_k_v(__lowerCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) # update to torch tensors for key, value in state_dict.items(): __lowerCamelCase = torch.from_numpy(__lowerCAmelCase ) # load 🤗 model __lowerCamelCase = MaskFormerForInstanceSegmentation(__lowerCAmelCase ) model.eval() for name, param in model.named_parameters(): print(__lowerCAmelCase , param.shape ) __lowerCamelCase = model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__lowerCAmelCase ) == 0, f'''Unexpected keys: {unexpected_keys}''' # verify results __lowerCamelCase = prepare_img() if "vistas" in model_name: __lowerCamelCase = 65 elif "cityscapes" in model_name: __lowerCamelCase = 6_5535 else: __lowerCamelCase = 255 __lowerCamelCase = True if """ade""" in model_name else False __lowerCamelCase = MaskFormerImageProcessor(ignore_index=__lowerCAmelCase , reduce_labels=__lowerCAmelCase ) __lowerCamelCase = image_processor(__lowerCAmelCase , return_tensors='''pt''' ) __lowerCamelCase = model(**__lowerCAmelCase ) print('''Logits:''' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowerCamelCase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , __lowerCAmelCase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(f'''nielsr/{model_name}''' ) image_processor.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="maskformer-swin-tiny-ade", type=str, help=("Name of the MaskFormer model you'd like to convert",), ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl", type=str, help="Path to the original state dict (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) SCREAMING_SNAKE_CASE : Dict = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
362
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> str: if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __lowerCamelCase = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b" __lowerCamelCase = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b" __lowerCamelCase = max(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(__lowerCAmelCase ) , b_binary.zfill(__lowerCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
339
0
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_logger(__name__) class lowerCAmelCase__ ( enum.Enum ): a__ : Optional[int] = """all_checks""" a__ : Any = """basic_checks""" a__ : List[str] = """no_checks""" class lowerCAmelCase__ ( _A ): pass class lowerCAmelCase__ ( _A ): pass class lowerCAmelCase__ ( _A ): pass class lowerCAmelCase__ ( _A ): pass def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Dict=None ) -> Union[str, Any]: if expected_checksums is None: logger.info('''Unable to verify checksums.''' ) return if len(set(lowercase__ ) - set(lowercase__ ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(lowercase__ ) - set(lowercase__ ) ) ) if len(set(lowercase__ ) - set(lowercase__ ) ) > 0: raise UnexpectedDownloadedFile(str(set(lowercase__ ) - set(lowercase__ ) ) ) __lowerCamelCase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] __lowerCamelCase = ''' for ''' + verification_name if verification_name is not None else '''''' if len(lowercase__ ) > 0: raise NonMatchingChecksumError( f'''Checksums didn\'t match{for_verification_name}:\n''' f'''{bad_urls}\n''' '''Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error''' ) logger.info('''All the checksums matched successfully''' + for_verification_name ) class lowerCAmelCase__ ( _A ): pass class lowerCAmelCase__ ( _A ): pass class lowerCAmelCase__ ( _A ): pass class lowerCAmelCase__ ( _A ): pass def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] ) -> int: if expected_splits is None: logger.info('''Unable to verify splits sizes.''' ) return if len(set(lowercase__ ) - set(lowercase__ ) ) > 0: raise ExpectedMoreSplits(str(set(lowercase__ ) - set(lowercase__ ) ) ) if len(set(lowercase__ ) - set(lowercase__ ) ) > 0: raise UnexpectedSplits(str(set(lowercase__ ) - set(lowercase__ ) ) ) __lowerCamelCase = [ {'''expected''': expected_splits[name], '''recorded''': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(lowercase__ ) > 0: raise NonMatchingSplitsSizesError(str(lowercase__ ) ) logger.info('''All the splits matched successfully.''' ) def __magic_name__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple = True ) -> str: if record_checksum: __lowerCamelCase = shaaaa() with open(lowercase__ , '''rb''' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , B'''''' ): m.update(lowercase__ ) __lowerCamelCase = m.hexdigest() else: __lowerCamelCase = None return {"num_bytes": os.path.getsize(lowercase__ ), "checksum": checksum} def __magic_name__ ( __lowerCAmelCase : Optional[int] ) -> int: if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
363
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : List[str] ) -> Dict: __lowerCamelCase = tempfile.mkdtemp() # fmt: off __lowerCamelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCamelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __lowerCamelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCamelCase = {'''unk_token''': '''<unk>'''} __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } __lowerCamelCase = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __A ( self : int , **SCREAMING_SNAKE_CASE__ : int ) -> Any: return CLIPTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Dict , **SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Dict ) -> Dict: shutil.rmtree(self.tmpdirname ) def __A ( self : str ) -> Any: __lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCamelCase = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self : List[Any] ) -> List[str]: __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = self.get_image_processor() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ ) def __A ( self : Union[str, Any] ) -> int: __lowerCamelCase = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCamelCase = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) __lowerCamelCase = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[Any] ) -> Union[str, Any]: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='''np''' ) __lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self : List[Any] ) -> Optional[int]: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = '''lower newer''' __lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self : List[Any] ) -> Any: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = '''lower newer''' __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def __A ( self : Optional[Any] ) -> List[str]: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE__ , visual_prompt=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def __A ( self : List[Any] ) -> Any: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCamelCase = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
339
0
def __magic_name__ ( __lowerCAmelCase : int ) -> str: if number > 0: raise ValueError('''input must be a negative integer''' ) __lowerCamelCase = len(bin(__snake_case )[3:] ) __lowerCamelCase = bin(abs(__snake_case ) - (1 << binary_number_length) )[3:] __lowerCamelCase = ( ( "1" + "0" * (binary_number_length - len(__snake_case )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
364
from __future__ import annotations def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : int | None = None , __lowerCAmelCase : int | None = None ) -> None: if start is None: __lowerCamelCase = 0 if end is None: __lowerCamelCase = len(__lowerCAmelCase ) - 1 if start >= end: return __lowerCamelCase = (start + end) // 2 slowsort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) slowsort(__lowerCAmelCase , mid + 1 , __lowerCAmelCase ) if sequence[end] < sequence[mid]: __lowerCamelCase , __lowerCamelCase = sequence[mid], sequence[end] slowsort(__lowerCAmelCase , __lowerCAmelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
339
0
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : Tuple=False ) -> Optional[int]: try: __lowerCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __lowerCamelCase = default else: # KEY is set, convert it to True or False. try: __lowerCamelCase = strtobool(_a ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''' ) return _value SCREAMING_SNAKE_CASE__ : Tuple = parse_flag_from_env("RUN_SLOW", default=False) SCREAMING_SNAKE_CASE__ : int = parse_flag_from_env("RUN_REMOTE", default=False) SCREAMING_SNAKE_CASE__ : Any = parse_flag_from_env("RUN_LOCAL", default=True) SCREAMING_SNAKE_CASE__ : Optional[Any] = parse_flag_from_env("RUN_PACKAGED", default=True) # Compression SCREAMING_SNAKE_CASE__ : Optional[int] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="test requires lz4") SCREAMING_SNAKE_CASE__ : List[str] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="test requires py7zr") SCREAMING_SNAKE_CASE__ : Union[str, Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="test requires zstandard") # Audio SCREAMING_SNAKE_CASE__ : str = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("soundfile") is None or version.parse(importlib_metadata.version("soundfile")) < version.parse("0.12.0"), reason="test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ", ) # Beam SCREAMING_SNAKE_CASE__ : List[Any] = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("0.3.2"), reason="test requires apache-beam and a compatible dill version", ) # Dill-cloudpickle compatibility SCREAMING_SNAKE_CASE__ : str = pytest.mark.skipif( config.DILL_VERSION <= version.parse("0.3.2"), reason="test requires dill>0.3.2 for cloudpickle compatibility", ) # Windows SCREAMING_SNAKE_CASE__ : str = pytest.mark.skipif( sys.platform == "win32", reason="test should not be run on Windows", ) def __magic_name__ ( __lowerCAmelCase : str ) -> Any: try: import faiss # noqa except ImportError: __lowerCamelCase = unittest.skip('''test requires faiss''' )(_a ) return test_case def __magic_name__ ( __lowerCAmelCase : int ) -> str: try: import regex # noqa except ImportError: __lowerCamelCase = unittest.skip('''test requires regex''' )(_a ) return test_case def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Optional[Any]: try: import elasticsearch # noqa except ImportError: __lowerCamelCase = unittest.skip('''test requires elasticsearch''' )(_a ) return test_case def __magic_name__ ( __lowerCAmelCase : Dict ) -> List[Any]: try: import sqlalchemy # noqa except ImportError: __lowerCamelCase = unittest.skip('''test requires sqlalchemy''' )(_a ) return test_case def __magic_name__ ( __lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: if not config.TORCH_AVAILABLE: __lowerCamelCase = unittest.skip('''test requires PyTorch''' )(_a ) return test_case def __magic_name__ ( __lowerCAmelCase : str ) -> List[Any]: if not config.TF_AVAILABLE: __lowerCamelCase = unittest.skip('''test requires TensorFlow''' )(_a ) return test_case def __magic_name__ ( __lowerCAmelCase : str ) -> Optional[int]: if not config.JAX_AVAILABLE: __lowerCamelCase = unittest.skip('''test requires JAX''' )(_a ) return test_case def __magic_name__ ( __lowerCAmelCase : Optional[Any] ) -> List[Any]: if not config.PIL_AVAILABLE: __lowerCamelCase = unittest.skip('''test requires Pillow''' )(_a ) return test_case def __magic_name__ ( __lowerCAmelCase : Tuple ) -> List[Any]: try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(_a ) else: return test_case def __magic_name__ ( __lowerCAmelCase : Optional[Any] ) -> List[Any]: try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(_a ) else: return test_case def __magic_name__ ( __lowerCAmelCase : Optional[int] ) -> List[Any]: try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(_a ) else: return test_case def __magic_name__ ( __lowerCAmelCase : str ) -> Union[str, Any]: def _require_spacy_model(__lowerCAmelCase : Dict ): try: import spacy # noqa F401 spacy.load(_a ) except ImportError: return unittest.skip('''test requires spacy''' )(_a ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(_a ) )(_a ) else: return test_case return _require_spacy_model def __magic_name__ ( __lowerCAmelCase : int ) -> Optional[int]: try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(_a ) else: return test_case def __magic_name__ ( __lowerCAmelCase : Any ) -> Tuple: try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(_a ) else: return test_case def __magic_name__ ( __lowerCAmelCase : Optional[Any] ) -> List[Any]: if not _run_slow_tests or _run_slow_tests == 0: __lowerCamelCase = unittest.skip('''test is slow''' )(_a ) return test_case def __magic_name__ ( __lowerCAmelCase : Tuple ) -> Any: if not _run_local_tests or _run_local_tests == 0: __lowerCamelCase = unittest.skip('''test is local''' )(_a ) return test_case def __magic_name__ ( __lowerCAmelCase : Optional[Any] ) -> str: if not _run_packaged_tests or _run_packaged_tests == 0: __lowerCamelCase = unittest.skip('''test is packaged''' )(_a ) return test_case def __magic_name__ ( __lowerCAmelCase : Tuple ) -> List[Any]: if not _run_remote_tests or _run_remote_tests == 0: __lowerCamelCase = unittest.skip('''test requires remote''' )(_a ) return test_case def __magic_name__ ( *__lowerCAmelCase : Optional[int] ) -> Union[str, Any]: def decorate(cls : List[str] ): for name, fn in cls.__dict__.items(): if callable(_a ) and name.startswith('''test''' ): for decorator in decorators: __lowerCamelCase = decorator(_a ) setattr(cls , _a , _a ) return cls return decorate class lowerCAmelCase__ ( __snake_case ): pass class lowerCAmelCase__ ( __snake_case ): a__ : Tuple = 0 a__ : Optional[int] = 1 a__ : Dict = 2 @contextmanager def __magic_name__ ( __lowerCAmelCase : Union[str, Any]=OfflineSimulationMode.CONNECTION_FAILS , __lowerCAmelCase : List[str]=1E-16 ) -> List[str]: __lowerCamelCase = requests.Session().request def timeout_request(__lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , **__lowerCAmelCase : int ): # Change the url to an invalid url so that the connection hangs __lowerCamelCase = """https://10.255.255.1""" if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( f'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''' ) __lowerCamelCase = timeout try: return online_request(_a , _a , **_a ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __lowerCamelCase = url __lowerCamelCase = e.args[0] __lowerCamelCase = (max_retry_error.args[0].replace('''10.255.255.1''' , f'''OfflineMock[{url}]''' ),) __lowerCamelCase = (max_retry_error,) raise def raise_connection_error(__lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : int ): raise requests.ConnectionError('''Offline mode is enabled.''' , request=_a ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' , _a ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' , _a ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' , _a ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def __magic_name__ ( *__lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : str ) -> List[Any]: __lowerCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_a , **_a ) as tmp_dir: try: os.chdir(_a ) yield finally: os.chdir(_a ) @contextmanager def __magic_name__ ( ) -> int: import gc gc.collect() __lowerCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __magic_name__ ( ) -> str: import gc gc.collect() __lowerCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __magic_name__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] ) -> Optional[Any]: return deepcopy(_a ).integers(0 , 100 , 10 ).tolist() == deepcopy(_a ).integers(0 , 100 , 10 ).tolist() def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> Optional[int]: import decorator from requests.exceptions import HTTPError def _wrapper(__lowerCAmelCase : Tuple , *__lowerCAmelCase : Union[str, Any] , **__lowerCAmelCase : Optional[int] ): try: return func(*_a , **_a ) except HTTPError as err: if str(_a ).startswith('''500''' ) or str(_a ).startswith('''502''' ): pytest.xfail(str(_a ) ) raise err return decorator.decorator(_wrapper , _a ) class lowerCAmelCase__ : def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str ) -> Any: __lowerCamelCase = returncode __lowerCamelCase = stdout __lowerCamelCase = stderr async def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] ) -> Optional[Any]: while True: __lowerCamelCase = await stream.readline() if line: callback(_a ) else: break async def __magic_name__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any=None , __lowerCAmelCase : Any=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : str=False ) -> Dict: if echo: print('''\nRunning: ''' , ''' '''.join(_a ) ) __lowerCamelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_a , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_a , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __lowerCamelCase = [] __lowerCamelCase = [] def tee(__lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any]="" ): __lowerCamelCase = line.decode('''utf-8''' ).rstrip() sink.append(_a ) if not quiet: print(_a , _a , file=_a ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __lowerCAmelCase : tee(_a , _a , sys.stdout , label='''stdout:''' ) ), _read_stream(p.stderr , lambda __lowerCAmelCase : tee(_a , _a , sys.stderr , label='''stderr:''' ) ), ] , timeout=_a , ) return _RunOutput(await p.wait() , _a , _a ) def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str=None , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : Tuple=180 , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : str=True ) -> int: __lowerCamelCase = asyncio.get_event_loop() __lowerCamelCase = loop.run_until_complete( _stream_subprocess(_a , env=_a , stdin=_a , timeout=_a , quiet=_a , echo=_a ) ) __lowerCamelCase = """ """.join(_a ) if result.returncode > 0: __lowerCamelCase = """\n""".join(result.stderr ) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'''\'{cmd_str}\' produced no output.''' ) return result def __magic_name__ ( ) -> Tuple: __lowerCamelCase = os.environ.get('''PYTEST_XDIST_WORKER''' , '''gw0''' ) __lowerCamelCase = re.sub(R'''^gw''' , '''''' , _a , 0 , re.M ) return int(_a ) def __magic_name__ ( ) -> Dict: __lowerCamelCase = 2_9500 __lowerCamelCase = pytest_xdist_worker_id() return port + uniq_delta
365
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Optional[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } SCREAMING_SNAKE_CASE__ : str = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } SCREAMING_SNAKE_CASE__ : int = {"facebook/blenderbot_small-90M": 512} def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Tuple: __lowerCamelCase = set() __lowerCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCamelCase = char __lowerCamelCase = set(__lowerCAmelCase ) return pairs class lowerCAmelCase__ ( __lowercase ): a__ : List[Any] = VOCAB_FILES_NAMES a__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple="__start__" , SCREAMING_SNAKE_CASE__ : Tuple="__end__" , SCREAMING_SNAKE_CASE__ : List[str]="__unk__" , SCREAMING_SNAKE_CASE__ : str="__null__" , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> Optional[Any]: super().__init__(unk_token=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as vocab_handle: __lowerCamelCase = json.load(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = {v: k for k, v in self.encoder.items()} with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as merges_handle: __lowerCamelCase = merges_handle.read().split('''\n''' )[1:-1] __lowerCamelCase = [tuple(merge.split() ) for merge in merges] __lowerCamelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __lowerCamelCase = {} @property def __A ( self : Dict ) -> int: return len(self.encoder ) def __A ( self : str ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : str ) -> str: if token in self.cache: return self.cache[token] __lowerCamelCase = re.sub('''([.,!?()])''' , R''' \1''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = re.sub('''(\')''' , R''' \1 ''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = re.sub(R'''\s{2,}''' , ''' ''' , SCREAMING_SNAKE_CASE__ ) if "\n" in token: __lowerCamelCase = token.replace('''\n''' , ''' __newln__''' ) __lowerCamelCase = token.split(''' ''' ) __lowerCamelCase = [] for token in tokens: if not len(SCREAMING_SNAKE_CASE__ ): continue __lowerCamelCase = token.lower() __lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) __lowerCamelCase = get_pairs(SCREAMING_SNAKE_CASE__ ) if not pairs: words.append(SCREAMING_SNAKE_CASE__ ) continue while True: __lowerCamelCase = min(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __lowerCamelCase , __lowerCamelCase = bigram __lowerCamelCase = [] __lowerCamelCase = 0 while i < len(SCREAMING_SNAKE_CASE__ ): try: __lowerCamelCase = word.index(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) new_word.extend(word[i:j] ) __lowerCamelCase = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(SCREAMING_SNAKE_CASE__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = new_word if len(SCREAMING_SNAKE_CASE__ ) == 1: break else: __lowerCamelCase = get_pairs(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = '''@@ '''.join(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = word[:-4] __lowerCamelCase = word words.append(SCREAMING_SNAKE_CASE__ ) return " ".join(SCREAMING_SNAKE_CASE__ ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: __lowerCamelCase = [] __lowerCamelCase = re.findall(R'''\S+\n?''' , SCREAMING_SNAKE_CASE__ ) for token in words: split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE__ ).split(''' ''' ) ) ) return split_tokens def __A ( self : str , SCREAMING_SNAKE_CASE__ : str ) -> int: __lowerCamelCase = token.lower() return self.encoder.get(SCREAMING_SNAKE_CASE__ , self.encoder.get(self.unk_token ) ) def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int ) -> str: return self.decoder.get(SCREAMING_SNAKE_CASE__ , self.unk_token ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: __lowerCamelCase = ''' '''.join(SCREAMING_SNAKE_CASE__ ).replace('''@@ ''' , '''''' ).strip() return out_string def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCamelCase = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) + '''\n''' ) __lowerCamelCase = 0 with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) __lowerCamelCase = token_index writer.write(''' '''.join(SCREAMING_SNAKE_CASE__ ) + '''\n''' ) index += 1 return vocab_file, merge_file
339
0
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : Union[str, Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() def __A ( self : str ) -> Dict: __lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __lowerCamelCase = '''xvjiarui/stable-diffusion-2-inpainting''' __lowerCamelCase , __lowerCamelCase = FlaxStableDiffusionInpaintPipeline.from_pretrained(_lowercase , safety_checker=_lowercase ) __lowerCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' __lowerCamelCase = jax.random.PRNGKey(0 ) __lowerCamelCase = 50 __lowerCamelCase = jax.device_count() __lowerCamelCase = num_samples * [prompt] __lowerCamelCase = num_samples * [init_image] __lowerCamelCase = num_samples * [mask_image] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = pipeline.prepare_inputs(_lowercase , _lowercase , _lowercase ) # shard inputs and rng __lowerCamelCase = replicate(_lowercase ) __lowerCamelCase = jax.random.split(_lowercase , jax.device_count() ) __lowerCamelCase = shard(_lowercase ) __lowerCamelCase = shard(_lowercase ) __lowerCamelCase = shard(_lowercase ) __lowerCamelCase = pipeline( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ) __lowerCamelCase = output.images.reshape(_lowercase , 5_12 , 5_12 , 3 ) __lowerCamelCase = images[0, 2_53:2_56, 2_53:2_56, -1] __lowerCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowerCamelCase = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
366
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): a__ : str = ShapEImgaImgPipeline a__ : Union[str, Any] = ["""image"""] a__ : Optional[int] = ["""image"""] a__ : Union[str, Any] = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] a__ : List[str] = False @property def __A ( self : Dict ) -> Optional[Any]: return 32 @property def __A ( self : Optional[int] ) -> Optional[int]: return 32 @property def __A ( self : Optional[int] ) -> List[Any]: return self.time_input_dim * 4 @property def __A ( self : str ) -> List[Any]: return 8 @property def __A ( self : Optional[Any] ) -> Union[str, Any]: torch.manual_seed(0 ) __lowerCamelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __lowerCamelCase = CLIPVisionModel(SCREAMING_SNAKE_CASE__ ) return model @property def __A ( self : Union[str, Any] ) -> Union[str, Any]: __lowerCamelCase = CLIPImageProcessor( crop_size=2_24 , do_center_crop=SCREAMING_SNAKE_CASE__ , do_normalize=SCREAMING_SNAKE_CASE__ , do_resize=SCREAMING_SNAKE_CASE__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=2_24 , ) return image_processor @property def __A ( self : Dict ) -> int: torch.manual_seed(0 ) __lowerCamelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } __lowerCamelCase = PriorTransformer(**SCREAMING_SNAKE_CASE__ ) return model @property def __A ( self : Tuple ) -> Dict: torch.manual_seed(0 ) __lowerCamelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } __lowerCamelCase = ShapERenderer(**SCREAMING_SNAKE_CASE__ ) return model def __A ( self : Optional[int] ) -> List[str]: __lowerCamelCase = self.dummy_prior __lowerCamelCase = self.dummy_image_encoder __lowerCamelCase = self.dummy_image_processor __lowerCamelCase = self.dummy_renderer __lowerCamelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=10_24 , prediction_type='''sample''' , use_karras_sigmas=SCREAMING_SNAKE_CASE__ , clip_sample=SCREAMING_SNAKE_CASE__ , clip_sample_range=1.0 , ) __lowerCamelCase = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def __A ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=0 ) -> int: __lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ): __lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: __lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def __A ( self : Union[str, Any] ) -> Dict: __lowerCamelCase = '''cpu''' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = output.images[0] __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowerCamelCase = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self : str ) -> Tuple: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self : Optional[Any] ) -> str: __lowerCamelCase = torch_device == '''cpu''' __lowerCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=SCREAMING_SNAKE_CASE__ , relax_max_difference=SCREAMING_SNAKE_CASE__ , ) def __A ( self : Dict ) -> Optional[int]: __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = 1 __lowerCamelCase = 2 __lowerCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) for key in inputs.keys(): if key in self.batch_params: __lowerCamelCase = batch_size * [inputs[key]] __lowerCamelCase = pipe(**SCREAMING_SNAKE_CASE__ , num_images_per_prompt=SCREAMING_SNAKE_CASE__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : str ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : str ) -> Union[str, Any]: __lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) __lowerCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) __lowerCamelCase = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) __lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(0 ) __lowerCamelCase = pipe( SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
339
0
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ "Audio", "Array2D", "Array3D", "Array4D", "Array5D", "ClassLabel", "Features", "Sequence", "Value", "Image", "Translation", "TranslationVariableLanguages", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
367
import glob import os import random from string import ascii_lowercase, digits import cva SCREAMING_SNAKE_CASE__ : str = "" SCREAMING_SNAKE_CASE__ : Any = "" SCREAMING_SNAKE_CASE__ : Optional[Any] = "" SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 # (0 is vertical, 1 is horizontal) def __magic_name__ ( ) -> None: __lowerCamelCase , __lowerCamelCase = get_dataset(__lowerCAmelCase , __lowerCAmelCase ) print('''Processing...''' ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = update_image_and_anno(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for index, image in enumerate(__lowerCAmelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __lowerCamelCase = random_chars(32 ) __lowerCamelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __lowerCamelCase = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(f'''/{file_root}.jpg''' , __lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Success {index+1}/{len(__lowerCAmelCase )} with {file_name}''' ) __lowerCamelCase = [] for anno in new_annos[index]: __lowerCamelCase = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(__lowerCAmelCase ) with open(f'''/{file_root}.txt''' , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> tuple[list, list]: __lowerCamelCase = [] __lowerCamelCase = [] for label_file in glob.glob(os.path.join(__lowerCAmelCase , '''*.txt''' ) ): __lowerCamelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(__lowerCAmelCase ) as in_file: __lowerCamelCase = in_file.readlines() __lowerCamelCase = os.path.join(__lowerCAmelCase , f'''{label_name}.jpg''' ) __lowerCamelCase = [] for obj_list in obj_lists: __lowerCamelCase = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__lowerCAmelCase ) labels.append(__lowerCAmelCase ) return img_paths, labels def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int = 1 ) -> tuple[list, list, list]: __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] for idx in range(len(__lowerCAmelCase ) ): __lowerCamelCase = [] __lowerCamelCase = img_list[idx] path_list.append(__lowerCAmelCase ) __lowerCamelCase = anno_list[idx] __lowerCamelCase = cva.imread(__lowerCAmelCase ) if flip_type == 1: __lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: __lowerCamelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: __lowerCamelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__lowerCAmelCase ) new_imgs_list.append(__lowerCAmelCase ) return new_imgs_list, new_annos_lists, path_list def __magic_name__ ( __lowerCAmelCase : int = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" __lowerCamelCase = ascii_lowercase + digits return "".join(random.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
339
0
from math import factorial def __magic_name__ ( __lowerCAmelCase : int = 100 ) -> int: return sum(map(__lowerCAmelCase , str(factorial(__lowerCAmelCase ) ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
368
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated SCREAMING_SNAKE_CASE__ : Tuple = collections.namedtuple("_Datasets", ["train", "validation", "test"]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ SCREAMING_SNAKE_CASE__ : List[str] = "https://storage.googleapis.com/cvdf-datasets/mnist/" def __magic_name__ ( __lowerCAmelCase : Any ) -> int: __lowerCamelCase = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=__lowerCAmelCase )[0] @deprecated(__lowerCAmelCase , '''Please use tf.data to implement this functionality.''' ) def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> str: print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=__lowerCAmelCase ) as bytestream: __lowerCamelCase = _readaa(__lowerCAmelCase ) if magic != 2051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = bytestream.read(rows * cols * num_images ) __lowerCamelCase = numpy.frombuffer(__lowerCAmelCase , dtype=numpy.uinta ) __lowerCamelCase = data.reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 1 ) return data @deprecated(__lowerCAmelCase , '''Please use tf.one_hot on tensors.''' ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : List[Any] ) -> Dict: __lowerCamelCase = labels_dense.shape[0] __lowerCamelCase = numpy.arange(__lowerCAmelCase ) * num_classes __lowerCamelCase = numpy.zeros((num_labels, num_classes) ) __lowerCamelCase = 1 return labels_one_hot @deprecated(__lowerCAmelCase , '''Please use tf.data to implement this functionality.''' ) def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : str=False , __lowerCAmelCase : List[str]=10 ) -> List[str]: print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=__lowerCAmelCase ) as bytestream: __lowerCamelCase = _readaa(__lowerCAmelCase ) if magic != 2049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = bytestream.read(__lowerCAmelCase ) __lowerCamelCase = numpy.frombuffer(__lowerCAmelCase , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(__lowerCAmelCase , __lowerCAmelCase ) return labels class lowerCAmelCase__ : @deprecated( SCREAMING_SNAKE_CASE__ , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : str=dtypes.floataa , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : str=None , ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase = random_seed.get_seed(SCREAMING_SNAKE_CASE__ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) __lowerCamelCase = dtypes.as_dtype(SCREAMING_SNAKE_CASE__ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: __lowerCamelCase = 1_00_00 __lowerCamelCase = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'''images.shape: {images.shape} labels.shape: {labels.shape}''' __lowerCamelCase = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __lowerCamelCase = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __lowerCamelCase = images.astype(numpy.floataa ) __lowerCamelCase = numpy.multiply(SCREAMING_SNAKE_CASE__ , 1.0 / 255.0 ) __lowerCamelCase = images __lowerCamelCase = labels __lowerCamelCase = 0 __lowerCamelCase = 0 @property def __A ( self : str ) -> Optional[int]: return self._images @property def __A ( self : Any ) -> Dict: return self._labels @property def __A ( self : List[Any] ) -> int: return self._num_examples @property def __A ( self : str ) -> Any: return self._epochs_completed def __A ( self : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : str=True ) -> str: if fake_data: __lowerCamelCase = [1] * 7_84 __lowerCamelCase = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(SCREAMING_SNAKE_CASE__ )], [fake_label for _ in range(SCREAMING_SNAKE_CASE__ )], ) __lowerCamelCase = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __lowerCamelCase = numpy.arange(self._num_examples ) numpy.random.shuffle(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.images[perma] __lowerCamelCase = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __lowerCamelCase = self._num_examples - start __lowerCamelCase = self._images[start : self._num_examples] __lowerCamelCase = self._labels[start : self._num_examples] # Shuffle the data if shuffle: __lowerCamelCase = numpy.arange(self._num_examples ) numpy.random.shuffle(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.images[perm] __lowerCamelCase = self.labels[perm] # Start next epoch __lowerCamelCase = 0 __lowerCamelCase = batch_size - rest_num_examples __lowerCamelCase = self._index_in_epoch __lowerCamelCase = self._images[start:end] __lowerCamelCase = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size __lowerCamelCase = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(__lowerCAmelCase , '''Please write your own downloading logic.''' ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] ) -> List[Any]: if not gfile.Exists(__lowerCAmelCase ): gfile.MakeDirs(__lowerCAmelCase ) __lowerCamelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if not gfile.Exists(__lowerCAmelCase ): urllib.request.urlretrieve(__lowerCAmelCase , __lowerCAmelCase ) # noqa: S310 with gfile.GFile(__lowerCAmelCase ) as f: __lowerCamelCase = f.size() print('''Successfully downloaded''' , __lowerCAmelCase , __lowerCAmelCase , '''bytes.''' ) return filepath @deprecated( __lowerCAmelCase , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Dict=False , __lowerCAmelCase : List[str]=dtypes.floataa , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : int=5000 , __lowerCAmelCase : Any=None , __lowerCAmelCase : List[str]=DEFAULT_SOURCE_URL , ) -> Optional[Any]: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=__lowerCAmelCase , one_hot=__lowerCAmelCase , dtype=__lowerCAmelCase , seed=__lowerCAmelCase ) __lowerCamelCase = fake() __lowerCamelCase = fake() __lowerCamelCase = fake() return _Datasets(train=__lowerCAmelCase , validation=__lowerCAmelCase , test=__lowerCAmelCase ) if not source_url: # empty string check __lowerCamelCase = DEFAULT_SOURCE_URL __lowerCamelCase = '''train-images-idx3-ubyte.gz''' __lowerCamelCase = '''train-labels-idx1-ubyte.gz''' __lowerCamelCase = '''t10k-images-idx3-ubyte.gz''' __lowerCamelCase = '''t10k-labels-idx1-ubyte.gz''' __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + train_images_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_images(__lowerCAmelCase ) __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + train_labels_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_labels(__lowerCAmelCase , one_hot=__lowerCAmelCase ) __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + test_images_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_images(__lowerCAmelCase ) __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + test_labels_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_labels(__lowerCAmelCase , one_hot=__lowerCAmelCase ) if not 0 <= validation_size <= len(__lowerCAmelCase ): __lowerCamelCase = ( '''Validation size should be between 0 and ''' f'''{len(__lowerCAmelCase )}. Received: {validation_size}.''' ) raise ValueError(__lowerCAmelCase ) __lowerCamelCase = train_images[:validation_size] __lowerCamelCase = train_labels[:validation_size] __lowerCamelCase = train_images[validation_size:] __lowerCamelCase = train_labels[validation_size:] __lowerCamelCase = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} __lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) __lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) __lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) return _Datasets(train=__lowerCAmelCase , validation=__lowerCAmelCase , test=__lowerCAmelCase )
339
0
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version SCREAMING_SNAKE_CASE__ : str = get_logger(__name__) class lowerCAmelCase__ : a__ : str = """dummy_data""" a__ : Dict = """datasets""" a__ : Union[str, Any] = False def __init__( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[Version, str] , SCREAMING_SNAKE_CASE__ : Optional[str] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[List[Callable]] = None , ) -> int: __lowerCamelCase = 0 __lowerCamelCase = dataset_name __lowerCamelCase = cache_dir __lowerCamelCase = use_local_dummy_data __lowerCamelCase = config # download_callbacks take a single url as input __lowerCamelCase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __lowerCamelCase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __lowerCamelCase = str(lowercase_ ) # to be downloaded __lowerCamelCase = None __lowerCamelCase = None @property def __A ( self : List[Any] ) -> Tuple: if self._dummy_file is None: __lowerCamelCase = self.download_dummy_data() return self._dummy_file @property def __A ( self : str ) -> List[Any]: if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def __A ( self : Any ) -> List[Any]: return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def __A ( self : Dict ) -> Tuple: __lowerCamelCase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __lowerCamelCase = cached_path( lowercase_ , cache_dir=self.cache_dir , extract_compressed_file=lowercase_ , force_extract=lowercase_ ) return os.path.join(lowercase_ , self.dummy_file_name ) @property def __A ( self : str ) -> Tuple: return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __A ( self : List[str] ) -> Optional[Any]: if self._bucket_url is None: __lowerCamelCase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def __A ( self : List[str] ) -> List[str]: if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict , *SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[Any]: if self.load_existing_dummy_data: # dummy data is downloaded and tested __lowerCamelCase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __lowerCamelCase = self.dummy_file_name # special case when data_url is a dict if isinstance(lowercase_ , lowercase_ ): return self.create_dummy_data_dict(lowercase_ , lowercase_ ) elif isinstance(lowercase_ , (list, tuple) ): return self.create_dummy_data_list(lowercase_ , lowercase_ ) else: return self.create_dummy_data_single(lowercase_ , lowercase_ ) def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Any , *SCREAMING_SNAKE_CASE__ : List[str] ) -> List[Any]: return self.download_and_extract(lowercase_ ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict: return self.download_and_extract(lowercase_ ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: return path def __A ( self : Union[str, Any] ) -> List[Any]: return {} def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: __lowerCamelCase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(lowercase_ , lowercase_ ): for single_url in single_urls: download_callback(lowercase_ ) else: __lowerCamelCase = single_urls download_callback(lowercase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(lowercase_ , lowercase_ ): __lowerCamelCase = [os.path.join(lowercase_ , urllib.parse.quote_plus(Path(lowercase_ ).name ) ) for x in single_urls] else: __lowerCamelCase = single_urls __lowerCamelCase = os.path.join(lowercase_ , urllib.parse.quote_plus(Path(lowercase_ ).name ) ) __lowerCamelCase = value # make sure that values are unique if all(isinstance(lowercase_ , lowercase_ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __lowerCamelCase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __A ( self : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Union[str, Any]: __lowerCamelCase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __lowerCamelCase = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , lowercase_ ) ) for url in data_url ) __lowerCamelCase = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __lowerCamelCase = [data_url[0]] * len(lowercase_ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(lowercase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowerCamelCase = os.path.join(lowercase_ , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(lowercase_ ) return dummy_data_list def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict ) -> Tuple: for download_callback in self.download_callbacks: download_callback(lowercase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowerCamelCase = os.path.join(lowercase_ , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(lowercase_ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __A ( self : List[Any] ) -> Any: pass def __A ( self : Optional[int] ) -> int: pass def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: def _iter_archive_members(SCREAMING_SNAKE_CASE__ : Any ): # this preserves the order of the members inside the ZIP archive __lowerCamelCase = Path(self.dummy_file ).parent __lowerCamelCase = path.relative_to(lowercase_ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __lowerCamelCase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(lowercase_ ) __lowerCamelCase = Path(lowercase_ ) __lowerCamelCase = _iter_archive_members(lowercase_ ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(lowercase_ ).as_posix(), file_path.open('''rb''' ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> Dict: if not isinstance(lowercase_ , lowercase_ ): __lowerCamelCase = [paths] for path in paths: if os.path.isfile(lowercase_ ): if os.path.basename(lowercase_ ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(lowercase_ ): if os.path.basename(lowercase_ ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(lowercase_ ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(lowercase_ , lowercase_ )
369
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "vocab_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt" ), "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt" ), }, "tokenizer_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli": ( "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE__ : List[Any] = { "squeezebert/squeezebert-uncased": 512, "squeezebert/squeezebert-mnli": 512, "squeezebert/squeezebert-mnli-headless": 512, } SCREAMING_SNAKE_CASE__ : Dict = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class lowerCAmelCase__ ( __lowercase ): a__ : Optional[int] = VOCAB_FILES_NAMES a__ : Any = PRETRAINED_VOCAB_FILES_MAP a__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Optional[Any] = SqueezeBertTokenizer def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[UNK]" , SCREAMING_SNAKE_CASE__ : Optional[int]="[SEP]" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[PAD]" , SCREAMING_SNAKE_CASE__ : Tuple="[CLS]" , SCREAMING_SNAKE_CASE__ : str="[MASK]" , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : int=None , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Optional[Any]: super().__init__( SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , SCREAMING_SNAKE_CASE__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , SCREAMING_SNAKE_CASE__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars ): __lowerCamelCase = getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop('''type''' ) ) __lowerCamelCase = do_lower_case __lowerCamelCase = strip_accents __lowerCamelCase = tokenize_chinese_chars __lowerCamelCase = normalizer_class(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = do_lower_case def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=None ) -> str: __lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: __lowerCamelCase = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ ) return tuple(SCREAMING_SNAKE_CASE__ )
339
0
from graphs.minimum_spanning_tree_kruskal import kruskal def __magic_name__ ( ) -> Union[str, Any]: __lowerCamelCase = 9 __lowerCamelCase = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] __lowerCamelCase = kruskal(_lowerCamelCase , _lowerCamelCase ) __lowerCamelCase = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(_lowerCamelCase ) == sorted(_lowerCamelCase )
370
from __future__ import annotations def __magic_name__ ( __lowerCAmelCase : list[int] ) -> bool: return len(set(__lowerCAmelCase ) ) == len(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
339
0
from __future__ import annotations def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: # Checks if the entire collection has been sorted if len(__lowerCAmelCase ) <= 1 or n <= 1: return insert_next(__lowerCAmelCase , n - 1 ) rec_insertion_sort(__lowerCAmelCase , n - 1 ) def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ) -> Any: # Checks order between adjacent elements if index >= len(__lowerCAmelCase ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __lowerCamelCase = ( collection[index], collection[index - 1], ) insert_next(__lowerCAmelCase , index + 1 ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : int = input("Enter integers separated by spaces: ") SCREAMING_SNAKE_CASE__ : int = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
371
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ : Dict = { "configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Tuple = [ "FALCON_PRETRAINED_MODEL_ARCHIVE_LIST", "FalconForCausalLM", "FalconModel", "FalconPreTrainedModel", "FalconForSequenceClassification", "FalconForTokenClassification", "FalconForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
339
0
from __future__ import annotations SCREAMING_SNAKE_CASE__ = tuple[int, int, int] SCREAMING_SNAKE_CASE__ = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase SCREAMING_SNAKE_CASE__ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" # -------------------------- default selection -------------------------- # rotors -------------------------- SCREAMING_SNAKE_CASE__ = "EGZWVONAHDCLFQMSIPJBYUKXTR" SCREAMING_SNAKE_CASE__ = "FOBHMDKEXQNRAULPGSJVTYICZW" SCREAMING_SNAKE_CASE__ = "ZJXESIUQLHAVRMDOYGTNFWPBKC" # reflector -------------------------- SCREAMING_SNAKE_CASE__ = { "A": "N", "N": "A", "B": "O", "O": "B", "C": "P", "P": "C", "D": "Q", "Q": "D", "E": "R", "R": "E", "F": "S", "S": "F", "G": "T", "T": "G", "H": "U", "U": "H", "I": "V", "V": "I", "J": "W", "W": "J", "K": "X", "X": "K", "L": "Y", "Y": "L", "M": "Z", "Z": "M", } # -------------------------- extra rotors -------------------------- SCREAMING_SNAKE_CASE__ = "RMDJXFUWGISLHVTCQNKYPBEZOA" SCREAMING_SNAKE_CASE__ = "SGLCPQWZHKXAREONTFBVIYJUDM" SCREAMING_SNAKE_CASE__ = "HVSICLTYKQUBXDWAJZOMFGPREN" SCREAMING_SNAKE_CASE__ = "RZWQHFMVDBKICJLNTUXAGYPSOE" SCREAMING_SNAKE_CASE__ = "LFKIJODBEGAMQPXVUHYSTCZRWN" SCREAMING_SNAKE_CASE__ = "KOAEGVDHXPQZMLFTYWJNBRCIUS" def __magic_name__ ( __lowerCAmelCase : RotorPositionT , __lowerCAmelCase : RotorSelectionT , __lowerCAmelCase : str ) -> int: if (unique_rotsel := len(set(lowerCamelCase__ ) )) < 3: __lowerCamelCase = f'''Please use 3 unique rotors (not {unique_rotsel})''' raise Exception(lowerCamelCase__ ) # Checks if rotor positions are valid __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = rotpos if not 0 < rotorposa <= len(lowerCamelCase__ ): __lowerCamelCase = f'''First rotor position is not within range of 1..26 ({rotorposa}''' raise ValueError(lowerCamelCase__ ) if not 0 < rotorposa <= len(lowerCamelCase__ ): __lowerCamelCase = f'''Second rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(lowerCamelCase__ ) if not 0 < rotorposa <= len(lowerCamelCase__ ): __lowerCamelCase = f'''Third rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(lowerCamelCase__ ) # Validates string and returns dict __lowerCamelCase = _plugboard(lowerCamelCase__ ) return rotpos, rotsel, pbdict def __magic_name__ ( __lowerCAmelCase : str ) -> Any: if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = f'''Plugboard setting isn\'t type string ({type(lowerCamelCase__ )})''' raise TypeError(lowerCamelCase__ ) elif len(lowerCamelCase__ ) % 2 != 0: __lowerCamelCase = f'''Odd number of symbols ({len(lowerCamelCase__ )})''' raise Exception(lowerCamelCase__ ) elif pbstring == "": return {} pbstring.replace(''' ''' , '''''' ) # Checks if all characters are unique __lowerCamelCase = set() for i in pbstring: if i not in abc: __lowerCamelCase = f'''\'{i}\' not in list of symbols''' raise Exception(lowerCamelCase__ ) elif i in tmppbl: __lowerCamelCase = f'''Duplicate symbol ({i})''' raise Exception(lowerCamelCase__ ) else: tmppbl.add(lowerCamelCase__ ) del tmppbl # Created the dictionary __lowerCamelCase = {} for j in range(0 , len(lowerCamelCase__ ) - 1 , 2 ): __lowerCamelCase = pbstring[j + 1] __lowerCamelCase = pbstring[j] return pb def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : RotorPositionT , __lowerCAmelCase : RotorSelectionT = (rotora, rotora, rotora) , __lowerCAmelCase : str = "" , ) -> Tuple: __lowerCamelCase = text.upper() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = _validator( lowerCamelCase__ , lowerCamelCase__ , plugb.upper() ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = rotor_position __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 __lowerCamelCase = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: __lowerCamelCase = plugboard[symbol] # rotor ra -------------------------- __lowerCamelCase = abc.index(lowerCamelCase__ ) + rotorposa __lowerCamelCase = rotora[index % len(lowerCamelCase__ )] # rotor rb -------------------------- __lowerCamelCase = abc.index(lowerCamelCase__ ) + rotorposa __lowerCamelCase = rotora[index % len(lowerCamelCase__ )] # rotor rc -------------------------- __lowerCamelCase = abc.index(lowerCamelCase__ ) + rotorposa __lowerCamelCase = rotora[index % len(lowerCamelCase__ )] # reflector -------------------------- # this is the reason you don't need another machine to decipher __lowerCamelCase = reflector[symbol] # 2nd rotors __lowerCamelCase = abc[rotora.index(lowerCamelCase__ ) - rotorposa] __lowerCamelCase = abc[rotora.index(lowerCamelCase__ ) - rotorposa] __lowerCamelCase = abc[rotora.index(lowerCamelCase__ ) - rotorposa] # 2nd plugboard if symbol in plugboard: __lowerCamelCase = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(lowerCamelCase__ ): __lowerCamelCase = 0 rotorposa += 1 if rotorposa >= len(lowerCamelCase__ ): __lowerCamelCase = 0 rotorposa += 1 if rotorposa >= len(lowerCamelCase__ ): __lowerCamelCase = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(lowerCamelCase__ ) return "".join(lowerCamelCase__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = "This is my Python script that emulates the Enigma machine from WWII." SCREAMING_SNAKE_CASE__ = (1, 1, 1) SCREAMING_SNAKE_CASE__ = "pictures" SCREAMING_SNAKE_CASE__ = (rotora, rotora, rotora) SCREAMING_SNAKE_CASE__ = enigma(message, rotor_pos, rotor_sel, pb) print("Encrypted message:", en) print("Decrypted message:", enigma(en, rotor_pos, rotor_sel, pb))
350
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: return abs(__lowerCAmelCase ) if a == 0 else greatest_common_divisor(b % a , __lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. __lowerCamelCase , __lowerCamelCase = y, x % y return abs(__lowerCAmelCase ) def __magic_name__ ( ) -> Tuple: try: __lowerCamelCase = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) __lowerCamelCase = int(nums[0] ) __lowerCamelCase = int(nums[1] ) print( f'''greatest_common_divisor({num_a}, {num_a}) = ''' f'''{greatest_common_divisor(__lowerCAmelCase , __lowerCAmelCase )}''' ) print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__lowerCAmelCase , __lowerCAmelCase )}''' ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
339
0
"""simple docstring""" def __magic_name__ ( __lowerCAmelCase : float , __lowerCAmelCase : int ) -> float: if digit_amount > 0: return round(number - int(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) return number - int(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(decimal_isolate(1.5_3, 0)) print(decimal_isolate(3_5.3_4_5, 1)) print(decimal_isolate(3_5.3_4_5, 2)) print(decimal_isolate(3_5.3_4_5, 3)) print(decimal_isolate(-1_4.7_8_9, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-1_4.1_2_3, 1)) print(decimal_isolate(-1_4.1_2_3, 2)) print(decimal_isolate(-1_4.1_2_3, 3))
351
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def __A ( self : Optional[int] ) -> Union[str, Any]: __lowerCamelCase = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) __lowerCamelCase = AutoTokenizer.from_pretrained('''google/mt5-small''' ) __lowerCamelCase = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids __lowerCamelCase = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids __lowerCamelCase = shift_tokens_right(SCREAMING_SNAKE_CASE__ , model.config.pad_token_id , model.config.decoder_start_token_id ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ).logits __lowerCamelCase = optax.softmax_cross_entropy(SCREAMING_SNAKE_CASE__ , onehot(SCREAMING_SNAKE_CASE__ , logits.shape[-1] ) ).mean() __lowerCamelCase = -(labels.shape[-1] * loss.item()) __lowerCamelCase = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
339
0
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE__ : Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : str = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) SCREAMING_SNAKE_CASE__ : Tuple = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) SCREAMING_SNAKE_CASE__ : int = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) SCREAMING_SNAKE_CASE__ : int = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) SCREAMING_SNAKE_CASE__ : Dict = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) SCREAMING_SNAKE_CASE__ : str = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) SCREAMING_SNAKE_CASE__ : List[Any] = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) SCREAMING_SNAKE_CASE__ : List[str] = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) SCREAMING_SNAKE_CASE__ : List[str] = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) SCREAMING_SNAKE_CASE__ : str = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) SCREAMING_SNAKE_CASE__ : List[str] = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) SCREAMING_SNAKE_CASE__ : Optional[int] = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) SCREAMING_SNAKE_CASE__ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) SCREAMING_SNAKE_CASE__ : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) SCREAMING_SNAKE_CASE__ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE__ : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE__ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) SCREAMING_SNAKE_CASE__ : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE__ : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE__ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) SCREAMING_SNAKE_CASE__ : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE__ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) SCREAMING_SNAKE_CASE__ : Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE__ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) SCREAMING_SNAKE_CASE__ : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowerCAmelCase__ ( _BaseAutoModelClass ): a__ : List[str] = FLAX_MODEL_MAPPING SCREAMING_SNAKE_CASE__ : Optional[Any] = auto_class_update(FlaxAutoModel) class lowerCAmelCase__ ( _BaseAutoModelClass ): a__ : Optional[int] = FLAX_MODEL_FOR_PRETRAINING_MAPPING SCREAMING_SNAKE_CASE__ : Optional[Any] = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class lowerCAmelCase__ ( _BaseAutoModelClass ): a__ : str = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE__ : Optional[int] = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class lowerCAmelCase__ ( _BaseAutoModelClass ): a__ : str = FLAX_MODEL_FOR_MASKED_LM_MAPPING SCREAMING_SNAKE_CASE__ : str = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class lowerCAmelCase__ ( _BaseAutoModelClass ): a__ : str = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE__ : Union[str, Any] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class lowerCAmelCase__ ( _BaseAutoModelClass ): a__ : Tuple = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE__ : List[str] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class lowerCAmelCase__ ( _BaseAutoModelClass ): a__ : List[str] = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING SCREAMING_SNAKE_CASE__ : Union[str, Any] = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class lowerCAmelCase__ ( _BaseAutoModelClass ): a__ : Any = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE__ : List[Any] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class lowerCAmelCase__ ( _BaseAutoModelClass ): a__ : List[Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING SCREAMING_SNAKE_CASE__ : Dict = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class lowerCAmelCase__ ( _BaseAutoModelClass ): a__ : Any = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING SCREAMING_SNAKE_CASE__ : Optional[int] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class lowerCAmelCase__ ( _BaseAutoModelClass ): a__ : Union[str, Any] = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE__ : Dict = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class lowerCAmelCase__ ( _BaseAutoModelClass ): a__ : List[Any] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE__ : List[str] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class lowerCAmelCase__ ( _BaseAutoModelClass ): a__ : Optional[int] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING SCREAMING_SNAKE_CASE__ : Dict = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
352
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE__ : Optional[int] = "bart" SCREAMING_SNAKE_CASE__ : Dict = True @st.cache(allow_output_mutation=__lowerCAmelCase ) def __magic_name__ ( ) -> str: if LOAD_DENSE_INDEX: __lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) __lowerCamelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) __lowerCamelCase = qar_model.eval() else: __lowerCamelCase , __lowerCamelCase = (None, None) if MODEL_TYPE == "bart": __lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) __lowerCamelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) __lowerCamelCase = sas_model.eval() else: __lowerCamelCase , __lowerCamelCase = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__lowerCAmelCase ) def __magic_name__ ( ) -> Optional[int]: if LOAD_DENSE_INDEX: __lowerCamelCase = faiss.StandardGpuResources() __lowerCamelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] __lowerCamelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) __lowerCamelCase = faiss.IndexFlatIP(128 ) __lowerCamelCase = faiss.index_cpu_to_gpu(__lowerCAmelCase , 1 , __lowerCAmelCase ) wikiaab_gpu_index_flat.add(__lowerCAmelCase ) # TODO fix for larger GPU else: __lowerCamelCase , __lowerCamelCase = (None, None) __lowerCamelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__lowerCAmelCase ) def __magic_name__ ( ) -> List[str]: __lowerCamelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) __lowerCamelCase = elia['''train_eli5'''] __lowerCamelCase = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) __lowerCamelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(__lowerCAmelCase ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = load_indexes() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = load_models() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = load_train_data() def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[str]=10 ) -> List[str]: __lowerCamelCase = embed_questions_for_retrieval([question] , __lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase , __lowerCamelCase = eli5_train_q_index.search(__lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase = [elia_train[int(__lowerCAmelCase )] for i in I[0]] return nn_examples def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict="wiki40b" , __lowerCAmelCase : Any="dense" , __lowerCAmelCase : Dict=10 ) -> Union[str, Any]: if source == "none": __lowerCamelCase , __lowerCamelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": __lowerCamelCase , __lowerCamelCase = query_qa_dense_index( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: __lowerCamelCase , __lowerCamelCase = query_es_index( __lowerCAmelCase , __lowerCAmelCase , index_name='''english_wiki40b_snippets_100w''' , n_results=__lowerCAmelCase , ) __lowerCamelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] __lowerCamelCase = '''question: {} context: {}'''.format(__lowerCAmelCase , __lowerCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __lowerCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __lowerCAmelCase : None), } ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str=64 , __lowerCAmelCase : Dict=256 , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : Optional[Any]=0.95 , __lowerCAmelCase : List[Any]=0.8 ) -> Any: with torch.no_grad(): __lowerCamelCase = qa_sas_generate( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , num_answers=1 , num_beams=__lowerCAmelCase , min_len=__lowerCAmelCase , max_len=__lowerCAmelCase , do_sample=__lowerCAmelCase , temp=__lowerCAmelCase , top_p=__lowerCAmelCase , top_k=__lowerCAmelCase , max_input_length=1024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar SCREAMING_SNAKE_CASE__ : List[str] = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" SCREAMING_SNAKE_CASE__ : Dict = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE__ : int = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE__ : str = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] SCREAMING_SNAKE_CASE__ : Optional[int] = st.sidebar.checkbox("Demo options") if demo_options: SCREAMING_SNAKE_CASE__ : Optional[int] = st.sidebar.selectbox( "", action_list, index=3, ) SCREAMING_SNAKE_CASE__ : Optional[Any] = action_list.index(action_st) SCREAMING_SNAKE_CASE__ : int = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = show_type == "Show full text of passages" else: SCREAMING_SNAKE_CASE__ : Any = 3 SCREAMING_SNAKE_CASE__ : Any = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.checkbox("Retrieval options") if retrieval_options: SCREAMING_SNAKE_CASE__ : Tuple = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) SCREAMING_SNAKE_CASE__ : int = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: SCREAMING_SNAKE_CASE__ : List[str] = "wiki40b" SCREAMING_SNAKE_CASE__ : Optional[Any] = "dense" SCREAMING_SNAKE_CASE__ : str = "beam" SCREAMING_SNAKE_CASE__ : List[Any] = 2 SCREAMING_SNAKE_CASE__ : Optional[Any] = 64 SCREAMING_SNAKE_CASE__ : List[Any] = 256 SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : List[str] = st.sidebar.checkbox("Generation options") if generate_options: SCREAMING_SNAKE_CASE__ : Dict = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE__ : List[str] = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) SCREAMING_SNAKE_CASE__ : Any = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE__ : str = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE__ : Any = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE__ : Dict = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None # start main text SCREAMING_SNAKE_CASE__ : Any = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] SCREAMING_SNAKE_CASE__ : List[str] = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.text_input("Enter your question here:", "") else: SCREAMING_SNAKE_CASE__ : str = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = make_support(question, source=wiki_source, method="dense", n_results=10) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = make_support(question, source=wiki_source, method="sparse", n_results=10) SCREAMING_SNAKE_CASE__ : int = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE__ : Optional[Any] = support_list[:10] SCREAMING_SNAKE_CASE__ : Tuple = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE__ : Optional[int] = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) SCREAMING_SNAKE_CASE__ : Tuple = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE__ : Union[str, Any] = "[{}]({})".format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE__ : Dict = sec_titles.split(" & ") SCREAMING_SNAKE_CASE__ : int = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE__ : Any = find_nearest_training(question) SCREAMING_SNAKE_CASE__ : List[Any] = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) SCREAMING_SNAKE_CASE__ : List[Any] = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
339
0
def __magic_name__ ( __lowerCAmelCase : int = 50 ) -> List[Any]: __lowerCamelCase = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F'{solution() = }')
353
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : str = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class lowerCAmelCase__ ( __lowercase ): a__ : Dict = """xmod""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_05_22 , SCREAMING_SNAKE_CASE__ : str=7_68 , SCREAMING_SNAKE_CASE__ : int=12 , SCREAMING_SNAKE_CASE__ : Dict=12 , SCREAMING_SNAKE_CASE__ : List[str]=30_72 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : List[Any]=0.02 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1e-12 , SCREAMING_SNAKE_CASE__ : List[str]=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : Any="absolute" , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=("en_XX",) , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , **SCREAMING_SNAKE_CASE__ : int , ) -> str: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = position_embedding_type __lowerCamelCase = use_cache __lowerCamelCase = classifier_dropout __lowerCamelCase = pre_norm __lowerCamelCase = adapter_reduction_factor __lowerCamelCase = adapter_layer_norm __lowerCamelCase = adapter_reuse_layer_norm __lowerCamelCase = ln_before_adapter __lowerCamelCase = list(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = default_language class lowerCAmelCase__ ( __lowercase ): @property def __A ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
339
0
import math def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : int = 0 , __lowerCAmelCase : int = 0 ) -> list: __lowerCamelCase = end or len(_lowerCAmelCase ) for i in range(_lowerCAmelCase , _lowerCAmelCase ): __lowerCamelCase = i __lowerCamelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __lowerCamelCase = array[temp_index - 1] temp_index -= 1 __lowerCamelCase = temp_index_value return array def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> None: # Max Heap __lowerCamelCase = index __lowerCamelCase = 2 * index + 1 # Left Node __lowerCamelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __lowerCamelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: __lowerCamelCase = right_index if largest != index: __lowerCamelCase = array[largest], array[index] heapify(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : list ) -> list: __lowerCamelCase = len(_lowerCAmelCase ) for i in range(n // 2 , -1 , -1 ): heapify(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i in range(n - 1 , 0 , -1 ): __lowerCamelCase = array[0], array[i] heapify(_lowerCAmelCase , 0 , _lowerCAmelCase ) return array def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: __lowerCamelCase = low __lowerCamelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __lowerCamelCase = array[j], array[i] i += 1 def __magic_name__ ( __lowerCAmelCase : list ) -> list: if len(_lowerCAmelCase ) == 0: return array __lowerCamelCase = 2 * math.ceil(math.loga(len(_lowerCAmelCase ) ) ) __lowerCamelCase = 16 return intro_sort(_lowerCAmelCase , 0 , len(_lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(_lowerCAmelCase ) max_depth -= 1 __lowerCamelCase = median_of_a(_lowerCAmelCase , _lowerCAmelCase , start + ((end - start) // 2) + 1 , end - 1 ) __lowerCamelCase = partition(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) intro_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __lowerCamelCase = p return insertion_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE__ : Dict = input("Enter numbers separated by a comma : ").strip() SCREAMING_SNAKE_CASE__ : int = [float(item) for item in user_input.split(",")] print(sort(unsorted))
354
from collections import namedtuple import requests from lxml import html # type: ignore SCREAMING_SNAKE_CASE__ : List[Any] = namedtuple("covid_data", "cases deaths recovered") def __magic_name__ ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data: __lowerCamelCase = '''//div[@class = "maincounter-number"]/span/text()''' return covid_data(*html.fromstring(requests.get(__lowerCAmelCase ).content ).xpath(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ : List[str] = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
339
0
import logging from transformers import PretrainedConfig SCREAMING_SNAKE_CASE__ : Tuple = logging.getLogger(__name__) SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "bertabs-finetuned-cnndm": "https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json", } class lowerCAmelCase__ ( __lowercase ): a__ : Any = """bertabs""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : int=3_05_22 , SCREAMING_SNAKE_CASE__ : str=5_12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=6 , SCREAMING_SNAKE_CASE__ : str=5_12 , SCREAMING_SNAKE_CASE__ : List[Any]=8 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.2 , SCREAMING_SNAKE_CASE__ : Dict=6 , SCREAMING_SNAKE_CASE__ : Optional[int]=7_68 , SCREAMING_SNAKE_CASE__ : Dict=8 , SCREAMING_SNAKE_CASE__ : List[Any]=20_48 , SCREAMING_SNAKE_CASE__ : Tuple=0.2 , **SCREAMING_SNAKE_CASE__ : Any , ) -> str: super().__init__(**lowerCamelCase_ ) __lowerCamelCase = vocab_size __lowerCamelCase = max_pos __lowerCamelCase = enc_layers __lowerCamelCase = enc_hidden_size __lowerCamelCase = enc_heads __lowerCamelCase = enc_ff_size __lowerCamelCase = enc_dropout __lowerCamelCase = dec_layers __lowerCamelCase = dec_hidden_size __lowerCamelCase = dec_heads __lowerCamelCase = dec_ff_size __lowerCamelCase = dec_dropout
355
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) SCREAMING_SNAKE_CASE__ : int = logging.getLogger(__name__) @dataclass class lowerCAmelCase__ : a__ : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a__ : Optional[str] = field( default=__lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a__ : Optional[str] = field( default=__lowercase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a__ : Optional[str] = field( default=__lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether tp freeze the encoder."""} ) a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether to freeze the embeddings."""} ) @dataclass class lowerCAmelCase__ : a__ : str = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) a__ : Optional[str] = field( default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , ) a__ : Optional[int] = field( default=1_024 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field( default=128 , metadata={ """help""": ( """The maximum total sequence length for target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for validation target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded. """ """This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """ """during ``evaluate`` and ``predict``.""" ) } , ) a__ : Optional[int] = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for test target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} ) a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Source language id for translation."""} ) a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Target language id for translation."""} ) a__ : Optional[int] = field(default=__lowercase , metadata={"""help""": """# num_beams to use for evaluation."""} ) a__ : bool = field( default=__lowercase , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , ) def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : int ) -> Dict: logger.info(f'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(f''' {key} = {metrics[key]}''' ) save_json(__lowerCAmelCase , os.path.join(__lowerCAmelCase , f'''{split}_results.json''' ) ) def __magic_name__ ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_args_into_dataclasses() check_output_dir(__lowerCAmelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , __lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowerCamelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): assert hasattr(__lowerCAmelCase , __lowerCAmelCase ), f'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(__lowerCAmelCase , __lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) ) __lowerCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(__lowerCAmelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: __lowerCamelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(__lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(__lowerCAmelCase , __lowerCAmelCase ): __lowerCamelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: __lowerCamelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(__lowerCAmelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) __lowerCamelCase = SeqaSeqDataset # Get datasets __lowerCamelCase = ( dataset_class( __lowerCAmelCase , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) __lowerCamelCase = ( dataset_class( __lowerCAmelCase , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) __lowerCamelCase = ( dataset_class( __lowerCAmelCase , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer __lowerCamelCase = ( build_compute_metrics_fn(data_args.task , __lowerCAmelCase ) if training_args.predict_with_generate else None ) __lowerCamelCase = SeqaSeqTrainer( model=__lowerCAmelCase , args=__lowerCAmelCase , data_args=__lowerCAmelCase , train_dataset=__lowerCAmelCase , eval_dataset=__lowerCAmelCase , data_collator=SeqaSeqDataCollator( __lowerCAmelCase , __lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , ) __lowerCamelCase = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) __lowerCamelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) __lowerCamelCase = train_result.metrics __lowerCamelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , __lowerCAmelCase , training_args.output_dir ) all_metrics.update(__lowerCAmelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowerCamelCase = trainer.evaluate(metric_key_prefix='''val''' ) __lowerCamelCase = data_args.n_val __lowerCamelCase = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , __lowerCAmelCase , training_args.output_dir ) all_metrics.update(__lowerCAmelCase ) if training_args.do_predict: logger.info('''*** Predict ***''' ) __lowerCamelCase = trainer.predict(test_dataset=__lowerCAmelCase , metric_key_prefix='''test''' ) __lowerCamelCase = test_output.metrics __lowerCamelCase = data_args.n_test if trainer.is_world_process_zero(): __lowerCamelCase = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , __lowerCAmelCase , training_args.output_dir ) all_metrics.update(__lowerCAmelCase ) if training_args.predict_with_generate: __lowerCamelCase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) __lowerCamelCase = lmap(str.strip , __lowerCAmelCase ) write_txt_file(__lowerCAmelCase , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(__lowerCAmelCase , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Union[str, Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
339
0
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( _lowerCamelCase ): a__ : Union[str, Any] = (DDPMParallelScheduler,) def __A ( self : List[Any] , **SCREAMING_SNAKE_CASE__ : str ) -> Optional[int]: __lowerCamelCase = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**lowercase_ ) return config def __A ( self : List[Any] ) -> int: for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowercase_ ) def __A ( self : Optional[Any] ) -> Optional[Any]: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def __A ( self : Optional[Any] ) -> str: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def __A ( self : List[str] ) -> List[Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowercase_ ) def __A ( self : Optional[Any] ) -> str: for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase_ ) def __A ( self : Optional[Any] ) -> int: self.check_over_configs(thresholding=lowercase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowercase_ , prediction_type=lowercase_ , sample_max_value=lowercase_ , ) def __A ( self : List[str] ) -> List[Any]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def __A ( self : Union[str, Any] ) -> List[Any]: for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=lowercase_ ) def __A ( self : Dict ) -> str: __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**lowercase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.02 ) ) < 1e-5 def __A ( self : Dict ) -> List[str]: __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**lowercase_ ) __lowerCamelCase = len(lowercase_ ) __lowerCamelCase = self.dummy_model() __lowerCamelCase = self.dummy_sample_deter __lowerCamelCase = self.dummy_sample_deter + 0.1 __lowerCamelCase = self.dummy_sample_deter - 0.1 __lowerCamelCase = samplea.shape[0] __lowerCamelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) __lowerCamelCase = torch.arange(lowercase_ )[0:3, None].repeat(1 , lowercase_ ) __lowerCamelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __lowerCamelCase = scheduler.batch_step_no_noise(lowercase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) __lowerCamelCase = torch.sum(torch.abs(lowercase_ ) ) __lowerCamelCase = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.5005 ) < 1e-3 def __A ( self : str ) -> Tuple: __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**lowercase_ ) __lowerCamelCase = len(lowercase_ ) __lowerCamelCase = self.dummy_model() __lowerCamelCase = self.dummy_sample_deter __lowerCamelCase = torch.manual_seed(0 ) for t in reversed(range(lowercase_ ) ): # 1. predict noise residual __lowerCamelCase = model(lowercase_ , lowercase_ ) # 2. predict previous mean of sample x_t-1 __lowerCamelCase = scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ ).prev_sample __lowerCamelCase = pred_prev_sample __lowerCamelCase = torch.sum(torch.abs(lowercase_ ) ) __lowerCamelCase = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __A ( self : int ) -> List[str]: __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''' ) __lowerCamelCase = scheduler_class(**lowercase_ ) __lowerCamelCase = len(lowercase_ ) __lowerCamelCase = self.dummy_model() __lowerCamelCase = self.dummy_sample_deter __lowerCamelCase = torch.manual_seed(0 ) for t in reversed(range(lowercase_ ) ): # 1. predict noise residual __lowerCamelCase = model(lowercase_ , lowercase_ ) # 2. predict previous mean of sample x_t-1 __lowerCamelCase = scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ ).prev_sample __lowerCamelCase = pred_prev_sample __lowerCamelCase = torch.sum(torch.abs(lowercase_ ) ) __lowerCamelCase = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __A ( self : int ) -> List[str]: __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**lowercase_ ) __lowerCamelCase = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=lowercase_ ) __lowerCamelCase = scheduler.timesteps for i, timestep in enumerate(lowercase_ ): if i == len(lowercase_ ) - 1: __lowerCamelCase = -1 else: __lowerCamelCase = timesteps[i + 1] __lowerCamelCase = scheduler.previous_timestep(lowercase_ ) __lowerCamelCase = prev_t.item() self.assertEqual(lowercase_ , lowercase_ ) def __A ( self : str ) -> Tuple: __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**lowercase_ ) __lowerCamelCase = [1_00, 87, 50, 51, 0] with self.assertRaises(lowercase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=lowercase_ ) def __A ( self : Union[str, Any] ) -> int: __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**lowercase_ ) __lowerCamelCase = [1_00, 87, 50, 1, 0] __lowerCamelCase = len(lowercase_ ) with self.assertRaises(lowercase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=lowercase_ , timesteps=lowercase_ ) def __A ( self : Any ) -> Optional[int]: __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**lowercase_ ) __lowerCamelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( lowercase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=lowercase_ )
356
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase__ ( unittest.TestCase ): @property def __A ( self : List[Any] ) -> Optional[Any]: torch.manual_seed(0 ) __lowerCamelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def __A ( self : Optional[int] ) -> Optional[Any]: __lowerCamelCase = self.dummy_uncond_unet __lowerCamelCase = ScoreSdeVeScheduler() __lowerCamelCase = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) sde_ve.to(SCREAMING_SNAKE_CASE__ ) sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ ).images __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ )[ 0 ] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCamelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : Tuple ) -> str: __lowerCamelCase = '''google/ncsnpp-church-256''' __lowerCamelCase = UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = ScoreSdeVeScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) sde_ve.to(SCREAMING_SNAKE_CASE__ ) sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) __lowerCamelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
339
0
from manim import * class lowerCAmelCase__ ( A__ ): def __A ( self : int ) -> Union[str, Any]: __lowerCamelCase = Rectangle(height=0.5 , width=0.5 ) __lowerCamelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __lowerCamelCase = [mem.copy() for i in range(6 )] __lowerCamelCase = [mem.copy() for i in range(6 )] __lowerCamelCase = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __lowerCamelCase = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __lowerCamelCase = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __lowerCamelCase = Text('''CPU''' , font_size=24 ) __lowerCamelCase = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase__ ) __lowerCamelCase = [mem.copy() for i in range(1 )] __lowerCamelCase = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __lowerCamelCase = Text('''GPU''' , font_size=24 ) __lowerCamelCase = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) gpu.align_to(lowerCamelCase__ , lowerCamelCase__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCamelCase__ ) __lowerCamelCase = [mem.copy() for i in range(6 )] __lowerCamelCase = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __lowerCamelCase = Text('''Model''' , font_size=24 ) __lowerCamelCase = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , ) __lowerCamelCase = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) __lowerCamelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __lowerCamelCase = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ , run_time=2.5 ) , Write(lowerCamelCase__ ) , Write(lowerCamelCase__ ) ) self.add(lowerCamelCase__ ) __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] for i, rect in enumerate(lowerCamelCase__ ): __lowerCamelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ , opacity=0.7 ) cpu_target.move_to(lowerCamelCase__ ) cpu_target.generate_target() __lowerCamelCase = 0.46 / 4 __lowerCamelCase = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowerCamelCase__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=lowerCamelCase__ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=lowerCamelCase__ , buff=0.0 ) cpu_targs.append(lowerCamelCase__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase__ ) ) second_animations.append(MoveToTarget(lowerCamelCase__ , run_time=1.5 ) ) self.play(*lowerCamelCase__ ) self.play(*lowerCamelCase__ ) self.wait()
357
from functools import lru_cache def __magic_name__ ( __lowerCAmelCase : int ) -> set: __lowerCamelCase = 2 __lowerCamelCase = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__lowerCAmelCase ) if n > 1: factors.add(__lowerCAmelCase ) return factors @lru_cache def __magic_name__ ( __lowerCAmelCase : int ) -> int: return len(unique_prime_factors(__lowerCAmelCase ) ) def __magic_name__ ( __lowerCAmelCase : list ) -> bool: return len(set(__lowerCAmelCase ) ) in (0, 1) def __magic_name__ ( __lowerCAmelCase : int ) -> list: __lowerCamelCase = 2 while True: # Increment each value of a generated range __lowerCamelCase = [base + i for i in range(__lowerCAmelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. __lowerCamelCase = [upf_len(__lowerCAmelCase ) for x in group] checker.append(__lowerCAmelCase ) # If all numbers in the list are equal, return the group variable. if equality(__lowerCAmelCase ): return group # Increment our base variable by 1 base += 1 def __magic_name__ ( __lowerCAmelCase : int = 4 ) -> int: __lowerCamelCase = run(__lowerCAmelCase ) return results[0] if len(__lowerCAmelCase ) else None if __name__ == "__main__": print(solution())
339
0
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml SCREAMING_SNAKE_CASE__ : Any = NewType("DataClass", Any) SCREAMING_SNAKE_CASE__ : List[str] = NewType("DataClassType", Any) def __magic_name__ ( __lowerCAmelCase : Any ) -> int: if isinstance(A_ , A_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def __magic_name__ ( __lowerCAmelCase : List[str] ) -> str: __lowerCamelCase = {str(A_ ): choice for choice in choices} return lambda __lowerCAmelCase : str_to_choice.get(A_ , A_ ) def __magic_name__ ( *, __lowerCAmelCase : Any = None , __lowerCAmelCase : List[Any] = None , __lowerCAmelCase : Tuple = dataclasses.MISSING , __lowerCAmelCase : str = dataclasses.MISSING , __lowerCAmelCase : Optional[int] = None , **__lowerCAmelCase : Tuple , ) -> Any: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __lowerCamelCase = {} if aliases is not None: __lowerCamelCase = aliases if help is not None: __lowerCamelCase = help return dataclasses.field(metadata=A_ , default=A_ , default_factory=A_ , **A_ ) class lowerCAmelCase__ ( a_ ): a__ : Optional[int] = 42 def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Union[DataClassType, Iterable[DataClassType]] , **SCREAMING_SNAKE_CASE__ : str ) -> List[str]: # To make the default appear when using --help if "formatter_class" not in kwargs: __lowerCamelCase = ArgumentDefaultsHelpFormatter super().__init__(**lowercase_ ) if dataclasses.is_dataclass(lowercase_ ): __lowerCamelCase = [dataclass_types] __lowerCamelCase = list(lowercase_ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(lowercase_ ) @staticmethod def __A ( SCREAMING_SNAKE_CASE__ : ArgumentParser , SCREAMING_SNAKE_CASE__ : dataclasses.Field ) -> List[Any]: __lowerCamelCase = f'''--{field.name}''' __lowerCamelCase = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , lowercase_ ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) __lowerCamelCase = kwargs.pop('''aliases''' , [] ) if isinstance(lowercase_ , lowercase_ ): __lowerCamelCase = [aliases] __lowerCamelCase = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(lowercase_ , '''UnionType''' ) and isinstance(lowercase_ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(lowercase_ ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' f''' Problem encountered in field \'{field.name}\'.''' ) if type(lowercase_ ) not in field.type.__args__: # filter `str` in Union __lowerCamelCase = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __lowerCamelCase = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __lowerCamelCase = ( field.type.__args__[0] if isinstance(lowercase_ , field.type.__args__[1] ) else field.type.__args__[1] ) __lowerCamelCase = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __lowerCamelCase = {} if origin_type is Literal or (isinstance(field.type , lowercase_ ) and issubclass(field.type , lowercase_ )): if origin_type is Literal: __lowerCamelCase = field.type.__args__ else: __lowerCamelCase = [x.value for x in field.type] __lowerCamelCase = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: __lowerCamelCase = field.default else: __lowerCamelCase = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __lowerCamelCase = copy(lowercase_ ) # Hack because type=bool in argparse does not behave as we want. __lowerCamelCase = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __lowerCamelCase = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __lowerCamelCase = default # This tells argparse we accept 0 or 1 value after --field_name __lowerCamelCase = '''?''' # This is the value that will get picked if we do --field_name (without value) __lowerCamelCase = True elif isclass(lowercase_ ) and issubclass(lowercase_ , lowercase_ ): __lowerCamelCase = field.type.__args__[0] __lowerCamelCase = '''+''' if field.default_factory is not dataclasses.MISSING: __lowerCamelCase = field.default_factory() elif field.default is dataclasses.MISSING: __lowerCamelCase = True else: __lowerCamelCase = field.type if field.default is not dataclasses.MISSING: __lowerCamelCase = field.default elif field.default_factory is not dataclasses.MISSING: __lowerCamelCase = field.default_factory() else: __lowerCamelCase = True parser.add_argument(lowercase_ , *lowercase_ , **lowercase_ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __lowerCamelCase = False parser.add_argument(f'''--no_{field.name}''' , action='''store_false''' , dest=field.name , **lowercase_ ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : DataClassType ) -> Optional[int]: if hasattr(lowercase_ , '''_argument_group_name''' ): __lowerCamelCase = self.add_argument_group(dtype._argument_group_name ) else: __lowerCamelCase = self try: __lowerCamelCase = get_type_hints(lowercase_ ) except NameError: raise RuntimeError( f'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(lowercase_ ): __lowerCamelCase = '''.'''.join(map(lowercase_ , sys.version_info[:3] ) ) raise RuntimeError( f'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(lowercase_ ): if not field.init: continue __lowerCamelCase = type_hints[field.name] self._parse_dataclass_field(lowercase_ , lowercase_ ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : List[str]=None , ) -> str: if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __lowerCamelCase = [] if args_filename: args_files.append(Path(lowercase_ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __lowerCamelCase = ArgumentParser() args_file_parser.add_argument(lowercase_ , type=lowercase_ , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) __lowerCamelCase = args_file_parser.parse_known_args(args=lowercase_ ) __lowerCamelCase = vars(lowercase_ ).get(args_file_flag.lstrip('''-''' ) , lowercase_ ) if cmd_args_file_paths: args_files.extend([Path(lowercase_ ) for p in cmd_args_file_paths] ) __lowerCamelCase = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __lowerCamelCase = file_args + args if args is not None else file_args + sys.argv[1:] __lowerCamelCase = self.parse_known_args(args=lowercase_ ) __lowerCamelCase = [] for dtype in self.dataclass_types: __lowerCamelCase = {f.name for f in dataclasses.fields(lowercase_ ) if f.init} __lowerCamelCase = {k: v for k, v in vars(lowercase_ ).items() if k in keys} for k in keys: delattr(lowercase_ , lowercase_ ) __lowerCamelCase = dtype(**lowercase_ ) outputs.append(lowercase_ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(lowercase_ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Dict[str, Any] , SCREAMING_SNAKE_CASE__ : bool = False ) -> List[Any]: __lowerCamelCase = set(args.keys() ) __lowerCamelCase = [] for dtype in self.dataclass_types: __lowerCamelCase = {f.name for f in dataclasses.fields(lowercase_ ) if f.init} __lowerCamelCase = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __lowerCamelCase = dtype(**lowercase_ ) outputs.append(lowercase_ ) if not allow_extra_keys and unused_keys: raise ValueError(f'''Some keys are not used by the HfArgumentParser: {sorted(lowercase_ )}''' ) return tuple(lowercase_ ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : bool = False ) -> Dict: with open(Path(lowercase_ ) , encoding='''utf-8''' ) as open_json_file: __lowerCamelCase = json.loads(open_json_file.read() ) __lowerCamelCase = self.parse_dict(lowercase_ , allow_extra_keys=lowercase_ ) return tuple(lowercase_ ) def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : bool = False ) -> int: __lowerCamelCase = self.parse_dict(yaml.safe_load(Path(lowercase_ ).read_text() ) , allow_extra_keys=lowercase_ ) return tuple(lowercase_ )
358
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCAmelCase__ : def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=99 , SCREAMING_SNAKE_CASE__ : List[Any]=13 , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : int=9 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : int=32 , SCREAMING_SNAKE_CASE__ : Tuple=5 , SCREAMING_SNAKE_CASE__ : List[str]=4 , SCREAMING_SNAKE_CASE__ : str=37 , SCREAMING_SNAKE_CASE__ : int=8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.002 , SCREAMING_SNAKE_CASE__ : str=1 , SCREAMING_SNAKE_CASE__ : Tuple=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Dict=None , ) -> Optional[Any]: __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = encoder_seq_length __lowerCamelCase = decoder_seq_length # For common tests __lowerCamelCase = self.decoder_seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = d_ff __lowerCamelCase = relative_attention_num_buckets __lowerCamelCase = dropout_rate __lowerCamelCase = initializer_factor __lowerCamelCase = eos_token_id __lowerCamelCase = pad_token_id __lowerCamelCase = decoder_start_token_id __lowerCamelCase = None __lowerCamelCase = decoder_layers def __A ( self : Any ) -> Tuple: return TaConfig.from_pretrained('''google/umt5-base''' ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , ) -> Optional[int]: if attention_mask is None: __lowerCamelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __lowerCamelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __lowerCamelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ ) if decoder_head_mask is None: __lowerCamelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ ) if cross_attn_head_mask is None: __lowerCamelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def __A ( self : List[Any] ) -> Tuple: __lowerCamelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __lowerCamelCase = input_ids.clamp(self.pad_token_id + 1 ) __lowerCamelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) __lowerCamelCase = self.get_config() __lowerCamelCase = config.num_attention_heads __lowerCamelCase = self.prepare_inputs_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, input_dict def __A ( self : Tuple ) -> List[str]: __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs() return config, inputs_dict def __A ( self : Optional[Any] ) -> Any: return TaConfig( vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __A ( self : List[Any] ) -> Any: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> int: __lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCamelCase = model( input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = model(input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = result.last_hidden_state __lowerCamelCase = result.past_key_values __lowerCamelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Dict: __lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ).get_decoder().to(SCREAMING_SNAKE_CASE__ ).eval() # first forward pass __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) + 1 ) __lowerCamelCase , __lowerCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCamelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and __lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] # select random slice __lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCamelCase = output_from_no_past[:, -1, random_slice_idx].detach() __lowerCamelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Optional[int]: __lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ).half().eval() __lowerCamelCase = model(**SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(SCREAMING_SNAKE_CASE__ ).any().item() ) @require_torch class lowerCAmelCase__ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): a__ : List[Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) a__ : Union[str, Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () a__ : Tuple = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) a__ : int = True a__ : int = False a__ : Tuple = False a__ : Optional[int] = True a__ : Optional[int] = True # The small UMT5 model needs higher percentages for CPU/MP tests a__ : Tuple = [0.8, 0.9] def __A ( self : Tuple ) -> Tuple: __lowerCamelCase = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def __A ( self : List[str] ) -> Union[str, Any]: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = UMTaModel(config_and_inputs[0] ).to(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( SCREAMING_SNAKE_CASE__ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=SCREAMING_SNAKE_CASE__ , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __A ( self : Union[str, Any] ) -> Any: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*SCREAMING_SNAKE_CASE__ ) def __A ( self : Any ) -> Any: __lowerCamelCase = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = config_and_inputs[0] __lowerCamelCase = UMTaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() model.to(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ), } for attn_name, (name, mask) in zip(SCREAMING_SNAKE_CASE__ , head_masking.items() ): __lowerCamelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": __lowerCamelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=SCREAMING_SNAKE_CASE__ , return_dict_in_generate=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) # We check the state of decoder_attentions and cross_attentions just from the last step __lowerCamelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def __A ( self : Tuple ) -> Optional[Any]: pass @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def __A ( self : int ) -> Optional[Any]: __lowerCamelCase = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=SCREAMING_SNAKE_CASE__ , legacy=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] __lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , padding=SCREAMING_SNAKE_CASE__ ).input_ids # fmt: off __lowerCamelCase = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ] ) # fmt: on torch.testing.assert_allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model.generate(input_ids.to(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] __lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
339
0
import os SCREAMING_SNAKE_CASE__ : Dict = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1_000} def __magic_name__ ( __lowerCAmelCase : List[str] ) -> List[str]: __lowerCamelCase = 0 __lowerCamelCase = 0 while index < len(_lowercase ) - 1: __lowerCamelCase = SYMBOLS[numerals[index]] __lowerCamelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def __magic_name__ ( __lowerCAmelCase : Optional[Any] ) -> Tuple: __lowerCamelCase = '''''' __lowerCamelCase = num // 1000 numerals += m_count * "M" num %= 1000 __lowerCamelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 __lowerCamelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def __magic_name__ ( __lowerCAmelCase : Any = "/p089_roman.txt" ) -> List[Any]: __lowerCamelCase = 0 with open(os.path.dirname(_lowercase ) + roman_numerals_filename ) as filea: __lowerCamelCase = filea.readlines() for line in lines: __lowerCamelCase = line.strip() __lowerCamelCase = parse_roman_numerals(_lowercase ) __lowerCamelCase = generate_roman_numerals(_lowercase ) savings += len(_lowercase ) - len(_lowercase ) return savings if __name__ == "__main__": print(F'{solution() = }')
359
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Tuple = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class lowerCAmelCase__ ( __lowercase ): a__ : Union[str, Any] = """open-llama""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Any=10_00_00 , SCREAMING_SNAKE_CASE__ : Any=40_96 , SCREAMING_SNAKE_CASE__ : Any=1_10_08 , SCREAMING_SNAKE_CASE__ : Tuple=32 , SCREAMING_SNAKE_CASE__ : str=32 , SCREAMING_SNAKE_CASE__ : Any="silu" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=20_48 , SCREAMING_SNAKE_CASE__ : List[str]=0.02 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-6 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Dict=0 , SCREAMING_SNAKE_CASE__ : Tuple=1 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : List[str]=None , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> Dict: __lowerCamelCase = vocab_size __lowerCamelCase = max_position_embeddings __lowerCamelCase = hidden_size __lowerCamelCase = intermediate_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = initializer_range __lowerCamelCase = rms_norm_eps __lowerCamelCase = use_cache __lowerCamelCase = kwargs.pop( '''use_memorry_efficient_attention''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_dropout_prob __lowerCamelCase = use_stable_embedding __lowerCamelCase = shared_input_output_embedding __lowerCamelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , tie_word_embeddings=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) def __A ( self : Dict ) -> Optional[int]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , SCREAMING_SNAKE_CASE__ ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f'''got {self.rope_scaling}''' ) __lowerCamelCase = self.rope_scaling.get('''type''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.rope_scaling.get('''factor''' , SCREAMING_SNAKE_CASE__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
339
0
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple ) -> Optional[Any]: __lowerCamelCase = [] for part_id in partition_order: __lowerCamelCase = df.where(f'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(__lowerCAmelCase ): expected_row_ids_and_row_dicts.append((f'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __magic_name__ ( ) -> str: __lowerCamelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __lowerCamelCase = spark.range(100 ).repartition(1 ) __lowerCamelCase = Spark(__lowerCAmelCase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __magic_name__ ( ) -> str: __lowerCamelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __lowerCamelCase = spark.range(10 ).repartition(2 ) __lowerCamelCase = [1, 0] __lowerCamelCase = _generate_iterable_examples(__lowerCAmelCase , __lowerCAmelCase ) # Reverse the partitions. __lowerCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , __lowerCAmelCase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): __lowerCamelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __magic_name__ ( ) -> List[Any]: __lowerCamelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __lowerCamelCase = spark.range(10 ).repartition(1 ) __lowerCamelCase = SparkExamplesIterable(__lowerCAmelCase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ): assert row_id == f'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __magic_name__ ( ) -> Any: __lowerCamelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __lowerCamelCase = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: __lowerCamelCase = lambda __lowerCAmelCase : x.reverse() __lowerCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , [2, 1, 0] ) __lowerCamelCase = SparkExamplesIterable(__lowerCAmelCase ).shuffle_data_sources(__lowerCAmelCase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ): __lowerCamelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __magic_name__ ( ) -> Dict: __lowerCamelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __lowerCamelCase = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 __lowerCamelCase = SparkExamplesIterable(__lowerCAmelCase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 __lowerCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , [0, 2] ) for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ): __lowerCamelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 __lowerCamelCase = SparkExamplesIterable(__lowerCAmelCase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 __lowerCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , [1, 3] ) for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ): __lowerCamelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __magic_name__ ( ) -> Any: __lowerCamelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __lowerCamelCase = spark.range(100 ).repartition(1 ) __lowerCamelCase = Spark(__lowerCAmelCase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
360
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar SCREAMING_SNAKE_CASE__ : Any = TypeVar("KEY") SCREAMING_SNAKE_CASE__ : Dict = TypeVar("VAL") @dataclass(frozen=__lowercase , slots=__lowercase ) class lowerCAmelCase__ ( Generic[KEY, VAL] ): a__ : KEY a__ : VAL class lowerCAmelCase__ ( _Item ): def __init__( self : str ) -> None: super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __bool__( self : Tuple ) -> bool: return False SCREAMING_SNAKE_CASE__ : List[Any] = _DeletedItem() class lowerCAmelCase__ ( MutableMapping[KEY, VAL] ): def __init__( self : int , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.75 ) -> None: __lowerCamelCase = initial_block_size __lowerCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowerCamelCase = capacity_factor __lowerCamelCase = 0 def __A ( self : Any , SCREAMING_SNAKE_CASE__ : KEY ) -> int: return hash(SCREAMING_SNAKE_CASE__ ) % len(self._buckets ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> int: return (ind + 1) % len(self._buckets ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> bool: __lowerCamelCase = self._buckets[ind] if not stored: __lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self._len += 1 return True elif stored.key == key: __lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return True else: return False def __A ( self : Any ) -> bool: __lowerCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(SCREAMING_SNAKE_CASE__ ) def __A ( self : List[Any] ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False __lowerCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def __A ( self : int , SCREAMING_SNAKE_CASE__ : int ) -> None: __lowerCamelCase = self._buckets __lowerCamelCase = [None] * new_size __lowerCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def __A ( self : str ) -> None: self._resize(len(self._buckets ) * 2 ) def __A ( self : Dict ) -> None: self._resize(len(self._buckets ) // 2 ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY ) -> Iterator[int]: __lowerCamelCase = self._get_bucket_index(SCREAMING_SNAKE_CASE__ ) for _ in range(len(self._buckets ) ): yield ind __lowerCamelCase = self._get_next_ind(SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): if self._try_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): break def __setitem__( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None: if self._is_full(): self._size_up() self._add_item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __delitem__( self : List[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> None: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = self._buckets[ind] if item is None: raise KeyError(SCREAMING_SNAKE_CASE__ ) if item is _deleted: continue if item.key == key: __lowerCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> VAL: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(SCREAMING_SNAKE_CASE__ ) def __len__( self : int ) -> int: return self._len def __iter__( self : Tuple ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ) -> str: __lowerCamelCase = ''' ,'''.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
339
0
from ...configuration_utils import PretrainedConfig class lowerCAmelCase__ ( __lowercase ): a__ : List[str] = """bert-generation""" def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5_03_58 , SCREAMING_SNAKE_CASE__ : List[Any]=10_24 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=24 , SCREAMING_SNAKE_CASE__ : int=16 , SCREAMING_SNAKE_CASE__ : int=40_96 , SCREAMING_SNAKE_CASE__ : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=5_12 , SCREAMING_SNAKE_CASE__ : List[Any]=0.02 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1e-12 , SCREAMING_SNAKE_CASE__ : Dict=0 , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : List[str]=1 , SCREAMING_SNAKE_CASE__ : Optional[int]="absolute" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , **SCREAMING_SNAKE_CASE__ : str , ) -> List[str]: super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = position_embedding_type __lowerCamelCase = use_cache
361
from datetime import datetime as dt import os from github import Github SCREAMING_SNAKE_CASE__ : Any = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def __magic_name__ ( ) -> Any: __lowerCamelCase = Github(os.environ['''GITHUB_TOKEN'''] ) __lowerCamelCase = g.get_repo('''huggingface/transformers''' ) __lowerCamelCase = repo.get_issues(state='''open''' ) for issue in open_issues: __lowerCamelCase = sorted([comment for comment in issue.get_comments()] , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase ) __lowerCamelCase = comments[0] if len(__lowerCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
339
0
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py SCREAMING_SNAKE_CASE : Any = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE : Optional[Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) SCREAMING_SNAKE_CASE : Tuple = transformers.models.auto.configuration_auto.CONFIG_MAPPING SCREAMING_SNAKE_CASE : List[Any] = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : int , __lowerCAmelCase : Tuple ) -> Any: __lowerCamelCase = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'''config.{attribute}''' in modeling_source or f'''getattr(config, "{attribute}"''' in modeling_source or f'''getattr(self.config, "{attribute}"''' in modeling_source ): __lowerCamelCase = True # Deal with multi-line cases elif ( re.search( Rf'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' , __lowerCAmelCase , ) is not None ): __lowerCamelCase = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: __lowerCamelCase = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files __lowerCamelCase = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] __lowerCamelCase = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed __lowerCamelCase = True if not attribute_used: __lowerCamelCase = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: __lowerCamelCase = True elif attribute in ["tie_word_embeddings"] and default_value is False: __lowerCamelCase = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: __lowerCamelCase = True elif attribute.endswith('''_token_id''' ): __lowerCamelCase = True # configuration class specific cases if not case_allowed: __lowerCamelCase = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) __lowerCamelCase = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def __magic_name__ ( __lowerCAmelCase : Union[str, Any] ) -> str: __lowerCamelCase = dict(inspect.signature(config_class.__init__ ).parameters ) __lowerCamelCase = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] __lowerCamelCase = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass __lowerCamelCase = {} if len(config_class.attribute_map ) > 0: __lowerCamelCase = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files __lowerCamelCase = inspect.getsourcefile(__lowerCAmelCase ) __lowerCamelCase = os.path.dirname(__lowerCAmelCase ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. __lowerCamelCase = [os.path.join(__lowerCAmelCase , __lowerCAmelCase ) for fn in os.listdir(__lowerCAmelCase ) if fn.startswith('''modeling_''' )] # Get the source code strings __lowerCamelCase = [] for path in modeling_paths: if os.path.isfile(__lowerCAmelCase ): with open(__lowerCAmelCase ) as fp: modeling_sources.append(fp.read() ) __lowerCamelCase = [] for config_param, default_value in zip(__lowerCAmelCase , __lowerCAmelCase ): # `attributes` here is all the variant names for `config_param` __lowerCamelCase = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): unused_attributes.append(attributes[0] ) return sorted(__lowerCAmelCase ) def __magic_name__ ( ) -> Optional[Any]: __lowerCamelCase = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) __lowerCamelCase = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda __lowerCAmelCase : inspect.isclass(__lowerCAmelCase ) and issubclass(__lowerCAmelCase , __lowerCAmelCase ) and inspect.getmodule(__lowerCAmelCase ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: __lowerCamelCase = check_config_attributes_being_used(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: __lowerCamelCase = unused_attributes if len(__lowerCAmelCase ) > 0: __lowerCamelCase = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += f'''{name}: {attributes}\n''' raise ValueError(__lowerCAmelCase ) if __name__ == "__main__": check_config_attributes()
362
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> str: if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __lowerCamelCase = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b" __lowerCamelCase = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b" __lowerCamelCase = max(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(__lowerCAmelCase ) , b_binary.zfill(__lowerCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
339
0
from __future__ import annotations from typing import Any def __magic_name__ ( __lowerCAmelCase : list ) -> int: if not postfix_notation: return 0 __lowerCamelCase = {"+", "-", "*", "/"} __lowerCamelCase = [] for token in postfix_notation: if token in operations: __lowerCamelCase = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(_lowercase ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
363
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : List[str] ) -> Dict: __lowerCamelCase = tempfile.mkdtemp() # fmt: off __lowerCamelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCamelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __lowerCamelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCamelCase = {'''unk_token''': '''<unk>'''} __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } __lowerCamelCase = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __A ( self : int , **SCREAMING_SNAKE_CASE__ : int ) -> Any: return CLIPTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Dict , **SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Dict ) -> Dict: shutil.rmtree(self.tmpdirname ) def __A ( self : str ) -> Any: __lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCamelCase = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self : List[Any] ) -> List[str]: __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = self.get_image_processor() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ ) def __A ( self : Union[str, Any] ) -> int: __lowerCamelCase = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCamelCase = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) __lowerCamelCase = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[Any] ) -> Union[str, Any]: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='''np''' ) __lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self : List[Any] ) -> Optional[int]: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = '''lower newer''' __lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self : List[Any] ) -> Any: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = '''lower newer''' __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def __A ( self : Optional[Any] ) -> List[str]: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE__ , visual_prompt=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def __A ( self : List[Any] ) -> Any: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCamelCase = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
339
0
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: if exponent == 1: return base if exponent % 2 == 0: __lowerCamelCase = _modexpt(__lowerCAmelCase , exponent // 2 , __lowerCAmelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__lowerCAmelCase , exponent - 1 , __lowerCAmelCase )) % modulo_value def __magic_name__ ( __lowerCAmelCase : int = 1777 , __lowerCAmelCase : int = 1855 , __lowerCAmelCase : int = 8 ) -> int: __lowerCamelCase = base for _ in range(1 , __lowerCAmelCase ): __lowerCamelCase = _modexpt(__lowerCAmelCase , __lowerCAmelCase , 10**digits ) return result if __name__ == "__main__": print(F'{solution() = }')
364
from __future__ import annotations def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : int | None = None , __lowerCAmelCase : int | None = None ) -> None: if start is None: __lowerCamelCase = 0 if end is None: __lowerCamelCase = len(__lowerCAmelCase ) - 1 if start >= end: return __lowerCamelCase = (start + end) // 2 slowsort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) slowsort(__lowerCAmelCase , mid + 1 , __lowerCAmelCase ) if sequence[end] < sequence[mid]: __lowerCamelCase , __lowerCamelCase = sequence[mid], sequence[end] slowsort(__lowerCAmelCase , __lowerCAmelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
339
0
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib SCREAMING_SNAKE_CASE__ : List[str] = threading.Lock() SCREAMING_SNAKE_CASE__ : Optional[int] = None SCREAMING_SNAKE_CASE__ : Tuple = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } SCREAMING_SNAKE_CASE__ : Any = logging.WARNING SCREAMING_SNAKE_CASE__ : Tuple = True def __magic_name__ ( ) -> Any: __lowerCamelCase = os.getenv('''TRANSFORMERS_VERBOSITY''' , snake_case__ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f'''Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ''' f'''has to be one of: { ', '.join(log_levels.keys() ) }''' ) return _default_log_level def __magic_name__ ( ) -> str: return __name__.split('''.''' )[0] def __magic_name__ ( ) -> logging.Logger: return logging.getLogger(_get_library_name() ) def __magic_name__ ( ) -> None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return __lowerCamelCase = logging.StreamHandler() # Set sys.stderr as stream. __lowerCamelCase = sys.stderr.flush # Apply our default configuration to the library root logger. __lowerCamelCase = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) __lowerCamelCase = False def __magic_name__ ( ) -> None: global _default_handler with _lock: if not _default_handler: return __lowerCamelCase = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) __lowerCamelCase = None def __magic_name__ ( ) -> Optional[int]: return log_levels def __magic_name__ ( __lowerCAmelCase : Optional[str] = None ) -> logging.Logger: if name is None: __lowerCamelCase = _get_library_name() _configure_library_root_logger() return logging.getLogger(snake_case__ ) def __magic_name__ ( ) -> int: _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def __magic_name__ ( __lowerCAmelCase : int ) -> None: _configure_library_root_logger() _get_library_root_logger().setLevel(snake_case__ ) def __magic_name__ ( ) -> List[str]: return set_verbosity(snake_case__ ) def __magic_name__ ( ) -> List[str]: return set_verbosity(snake_case__ ) def __magic_name__ ( ) -> str: return set_verbosity(snake_case__ ) def __magic_name__ ( ) -> Dict: return set_verbosity(snake_case__ ) def __magic_name__ ( ) -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def __magic_name__ ( ) -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def __magic_name__ ( __lowerCAmelCase : logging.Handler ) -> None: _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(snake_case__ ) def __magic_name__ ( __lowerCAmelCase : logging.Handler ) -> None: _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(snake_case__ ) def __magic_name__ ( ) -> None: _configure_library_root_logger() __lowerCamelCase = False def __magic_name__ ( ) -> None: _configure_library_root_logger() __lowerCamelCase = True def __magic_name__ ( ) -> None: __lowerCamelCase = _get_library_root_logger().handlers for handler in handlers: __lowerCamelCase = logging.Formatter('''[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s''' ) handler.setFormatter(snake_case__ ) def __magic_name__ ( ) -> None: __lowerCamelCase = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(snake_case__ ) def __magic_name__ ( self : str , *__lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : List[str] ) -> Union[str, Any]: __lowerCamelCase = os.getenv('''TRANSFORMERS_NO_ADVISORY_WARNINGS''' , snake_case__ ) if no_advisory_warnings: return self.warning(*snake_case__ , **snake_case__ ) SCREAMING_SNAKE_CASE__ : List[Any] = warning_advice @functools.lru_cache(snake_case__ ) def __magic_name__ ( self : List[str] , *__lowerCAmelCase : int , **__lowerCAmelCase : List[Any] ) -> List[Any]: self.warning(*snake_case__ , **snake_case__ ) SCREAMING_SNAKE_CASE__ : str = warning_once class lowerCAmelCase__ : def __init__( self : List[str] , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[str]: # pylint: disable=unused-argument __lowerCamelCase = args[0] if args else None def __iter__( self : Optional[Any] ) -> Optional[Any]: return iter(self._iterator ) def __getattr__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Any: def empty_fn(*SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : Dict ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Tuple ) -> Optional[int]: return self def __exit__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: return class lowerCAmelCase__ : def __call__( self : Dict , *SCREAMING_SNAKE_CASE__ : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any: if _tqdm_active: return tqdm_lib.tqdm(*lowerCAmelCase_ , **lowerCAmelCase_ ) else: return EmptyTqdm(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __A ( self : List[Any] , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : int ) -> int: __lowerCamelCase = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __A ( self : Any ) -> Union[str, Any]: if _tqdm_active: return tqdm_lib.tqdm.get_lock() SCREAMING_SNAKE_CASE__ : List[Any] = _tqdm_cls() def __magic_name__ ( ) -> bool: global _tqdm_active return bool(_tqdm_active ) def __magic_name__ ( ) -> List[str]: global _tqdm_active __lowerCamelCase = True hf_hub_utils.enable_progress_bars() def __magic_name__ ( ) -> Optional[int]: global _tqdm_active __lowerCamelCase = False hf_hub_utils.disable_progress_bars()
365
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Optional[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } SCREAMING_SNAKE_CASE__ : str = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } SCREAMING_SNAKE_CASE__ : int = {"facebook/blenderbot_small-90M": 512} def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Tuple: __lowerCamelCase = set() __lowerCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCamelCase = char __lowerCamelCase = set(__lowerCAmelCase ) return pairs class lowerCAmelCase__ ( __lowercase ): a__ : List[Any] = VOCAB_FILES_NAMES a__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple="__start__" , SCREAMING_SNAKE_CASE__ : Tuple="__end__" , SCREAMING_SNAKE_CASE__ : List[str]="__unk__" , SCREAMING_SNAKE_CASE__ : str="__null__" , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> Optional[Any]: super().__init__(unk_token=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as vocab_handle: __lowerCamelCase = json.load(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = {v: k for k, v in self.encoder.items()} with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as merges_handle: __lowerCamelCase = merges_handle.read().split('''\n''' )[1:-1] __lowerCamelCase = [tuple(merge.split() ) for merge in merges] __lowerCamelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __lowerCamelCase = {} @property def __A ( self : Dict ) -> int: return len(self.encoder ) def __A ( self : str ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : str ) -> str: if token in self.cache: return self.cache[token] __lowerCamelCase = re.sub('''([.,!?()])''' , R''' \1''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = re.sub('''(\')''' , R''' \1 ''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = re.sub(R'''\s{2,}''' , ''' ''' , SCREAMING_SNAKE_CASE__ ) if "\n" in token: __lowerCamelCase = token.replace('''\n''' , ''' __newln__''' ) __lowerCamelCase = token.split(''' ''' ) __lowerCamelCase = [] for token in tokens: if not len(SCREAMING_SNAKE_CASE__ ): continue __lowerCamelCase = token.lower() __lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) __lowerCamelCase = get_pairs(SCREAMING_SNAKE_CASE__ ) if not pairs: words.append(SCREAMING_SNAKE_CASE__ ) continue while True: __lowerCamelCase = min(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __lowerCamelCase , __lowerCamelCase = bigram __lowerCamelCase = [] __lowerCamelCase = 0 while i < len(SCREAMING_SNAKE_CASE__ ): try: __lowerCamelCase = word.index(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) new_word.extend(word[i:j] ) __lowerCamelCase = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(SCREAMING_SNAKE_CASE__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = new_word if len(SCREAMING_SNAKE_CASE__ ) == 1: break else: __lowerCamelCase = get_pairs(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = '''@@ '''.join(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = word[:-4] __lowerCamelCase = word words.append(SCREAMING_SNAKE_CASE__ ) return " ".join(SCREAMING_SNAKE_CASE__ ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: __lowerCamelCase = [] __lowerCamelCase = re.findall(R'''\S+\n?''' , SCREAMING_SNAKE_CASE__ ) for token in words: split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE__ ).split(''' ''' ) ) ) return split_tokens def __A ( self : str , SCREAMING_SNAKE_CASE__ : str ) -> int: __lowerCamelCase = token.lower() return self.encoder.get(SCREAMING_SNAKE_CASE__ , self.encoder.get(self.unk_token ) ) def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int ) -> str: return self.decoder.get(SCREAMING_SNAKE_CASE__ , self.unk_token ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: __lowerCamelCase = ''' '''.join(SCREAMING_SNAKE_CASE__ ).replace('''@@ ''' , '''''' ).strip() return out_string def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCamelCase = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) + '''\n''' ) __lowerCamelCase = 0 with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) __lowerCamelCase = token_index writer.write(''' '''.join(SCREAMING_SNAKE_CASE__ ) + '''\n''' ) index += 1 return vocab_file, merge_file
339
0
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py SCREAMING_SNAKE_CASE__ : List[Any] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE__ : Optional[int] = direct_transformers_import(PATH_TO_TRANSFORMERS) SCREAMING_SNAKE_CASE__ : Optional[int] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` SCREAMING_SNAKE_CASE__ : Union[str, Any] = re.compile(r"\[(.+?)\]\((https://huggingface\.co/.+?)\)") SCREAMING_SNAKE_CASE__ : Tuple = { 'DecisionTransformerConfig', 'EncoderDecoderConfig', 'MusicgenConfig', 'RagConfig', 'SpeechEncoderDecoderConfig', 'TimmBackboneConfig', 'VisionEncoderDecoderConfig', 'VisionTextDualEncoderConfig', 'LlamaConfig', } def __magic_name__ ( __lowerCAmelCase : Any ) -> Any: __lowerCamelCase = None # source code of `config_class` __lowerCamelCase = inspect.getsource(lowerCAmelCase__ ) __lowerCamelCase = _re_checkpoint.findall(lowerCAmelCase__ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('''/''' ): __lowerCamelCase = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link __lowerCamelCase = f'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: __lowerCamelCase = ckpt_name break return checkpoint def __magic_name__ ( ) -> Any: __lowerCamelCase = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue __lowerCamelCase = get_checkpoint_from_config_class(lowerCAmelCase__ ) __lowerCamelCase = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: __lowerCamelCase = """\n""".join(sorted(lowerCAmelCase__ ) ) raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
366
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): a__ : str = ShapEImgaImgPipeline a__ : Union[str, Any] = ["""image"""] a__ : Optional[int] = ["""image"""] a__ : Union[str, Any] = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] a__ : List[str] = False @property def __A ( self : Dict ) -> Optional[Any]: return 32 @property def __A ( self : Optional[int] ) -> Optional[int]: return 32 @property def __A ( self : Optional[int] ) -> List[Any]: return self.time_input_dim * 4 @property def __A ( self : str ) -> List[Any]: return 8 @property def __A ( self : Optional[Any] ) -> Union[str, Any]: torch.manual_seed(0 ) __lowerCamelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __lowerCamelCase = CLIPVisionModel(SCREAMING_SNAKE_CASE__ ) return model @property def __A ( self : Union[str, Any] ) -> Union[str, Any]: __lowerCamelCase = CLIPImageProcessor( crop_size=2_24 , do_center_crop=SCREAMING_SNAKE_CASE__ , do_normalize=SCREAMING_SNAKE_CASE__ , do_resize=SCREAMING_SNAKE_CASE__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=2_24 , ) return image_processor @property def __A ( self : Dict ) -> int: torch.manual_seed(0 ) __lowerCamelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } __lowerCamelCase = PriorTransformer(**SCREAMING_SNAKE_CASE__ ) return model @property def __A ( self : Tuple ) -> Dict: torch.manual_seed(0 ) __lowerCamelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } __lowerCamelCase = ShapERenderer(**SCREAMING_SNAKE_CASE__ ) return model def __A ( self : Optional[int] ) -> List[str]: __lowerCamelCase = self.dummy_prior __lowerCamelCase = self.dummy_image_encoder __lowerCamelCase = self.dummy_image_processor __lowerCamelCase = self.dummy_renderer __lowerCamelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=10_24 , prediction_type='''sample''' , use_karras_sigmas=SCREAMING_SNAKE_CASE__ , clip_sample=SCREAMING_SNAKE_CASE__ , clip_sample_range=1.0 , ) __lowerCamelCase = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def __A ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=0 ) -> int: __lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ): __lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: __lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def __A ( self : Union[str, Any] ) -> Dict: __lowerCamelCase = '''cpu''' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = output.images[0] __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowerCamelCase = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self : str ) -> Tuple: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self : Optional[Any] ) -> str: __lowerCamelCase = torch_device == '''cpu''' __lowerCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=SCREAMING_SNAKE_CASE__ , relax_max_difference=SCREAMING_SNAKE_CASE__ , ) def __A ( self : Dict ) -> Optional[int]: __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = 1 __lowerCamelCase = 2 __lowerCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) for key in inputs.keys(): if key in self.batch_params: __lowerCamelCase = batch_size * [inputs[key]] __lowerCamelCase = pipe(**SCREAMING_SNAKE_CASE__ , num_images_per_prompt=SCREAMING_SNAKE_CASE__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : str ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : str ) -> Union[str, Any]: __lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) __lowerCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) __lowerCamelCase = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) __lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(0 ) __lowerCamelCase = pipe( SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
339
0
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): a__ : Any = DebertaTokenizer a__ : List[Any] = True a__ : Dict = DebertaTokenizerFast def __A ( self : List[str] ) -> str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCamelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] __lowerCamelCase = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) __lowerCamelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __lowerCamelCase = {'''unk_token''': '''[UNK]'''} __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase__ ) ) def __A ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Dict: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[int]: __lowerCamelCase = '''lower newer''' __lowerCamelCase = '''lower newer''' return input_text, output_text def __A ( self : Union[str, Any] ) -> List[Any]: __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = '''lower newer''' __lowerCamelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __lowerCamelCase = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = tokens + [tokenizer.unk_token] __lowerCamelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def __A ( self : Optional[Any] ) -> str: __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = tokenizer('''Hello''' , '''World''' ) __lowerCamelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , UpperCamelCase__ ) @slow def __A ( self : Optional[Any] ) -> Dict: __lowerCamelCase = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCamelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCamelCase__ ) __lowerCamelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCamelCase__ ) __lowerCamelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) __lowerCamelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def __A ( self : Union[str, Any] ) -> str: __lowerCamelCase = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __lowerCamelCase = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) __lowerCamelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] __lowerCamelCase = tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ ) __lowerCamelCase = [tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) for seq in encoding['''input_ids''']] # fmt: off __lowerCamelCase = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __lowerCamelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , UpperCamelCase__ ) for expected, decoded in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
367
import glob import os import random from string import ascii_lowercase, digits import cva SCREAMING_SNAKE_CASE__ : str = "" SCREAMING_SNAKE_CASE__ : Any = "" SCREAMING_SNAKE_CASE__ : Optional[Any] = "" SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 # (0 is vertical, 1 is horizontal) def __magic_name__ ( ) -> None: __lowerCamelCase , __lowerCamelCase = get_dataset(__lowerCAmelCase , __lowerCAmelCase ) print('''Processing...''' ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = update_image_and_anno(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for index, image in enumerate(__lowerCAmelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __lowerCamelCase = random_chars(32 ) __lowerCamelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __lowerCamelCase = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(f'''/{file_root}.jpg''' , __lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Success {index+1}/{len(__lowerCAmelCase )} with {file_name}''' ) __lowerCamelCase = [] for anno in new_annos[index]: __lowerCamelCase = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(__lowerCAmelCase ) with open(f'''/{file_root}.txt''' , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> tuple[list, list]: __lowerCamelCase = [] __lowerCamelCase = [] for label_file in glob.glob(os.path.join(__lowerCAmelCase , '''*.txt''' ) ): __lowerCamelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(__lowerCAmelCase ) as in_file: __lowerCamelCase = in_file.readlines() __lowerCamelCase = os.path.join(__lowerCAmelCase , f'''{label_name}.jpg''' ) __lowerCamelCase = [] for obj_list in obj_lists: __lowerCamelCase = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__lowerCAmelCase ) labels.append(__lowerCAmelCase ) return img_paths, labels def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int = 1 ) -> tuple[list, list, list]: __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] for idx in range(len(__lowerCAmelCase ) ): __lowerCamelCase = [] __lowerCamelCase = img_list[idx] path_list.append(__lowerCAmelCase ) __lowerCamelCase = anno_list[idx] __lowerCamelCase = cva.imread(__lowerCAmelCase ) if flip_type == 1: __lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: __lowerCamelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: __lowerCamelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__lowerCAmelCase ) new_imgs_list.append(__lowerCAmelCase ) return new_imgs_list, new_annos_lists, path_list def __magic_name__ ( __lowerCAmelCase : int = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" __lowerCamelCase = ascii_lowercase + digits return "".join(random.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
339
0
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
368
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated SCREAMING_SNAKE_CASE__ : Tuple = collections.namedtuple("_Datasets", ["train", "validation", "test"]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ SCREAMING_SNAKE_CASE__ : List[str] = "https://storage.googleapis.com/cvdf-datasets/mnist/" def __magic_name__ ( __lowerCAmelCase : Any ) -> int: __lowerCamelCase = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=__lowerCAmelCase )[0] @deprecated(__lowerCAmelCase , '''Please use tf.data to implement this functionality.''' ) def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> str: print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=__lowerCAmelCase ) as bytestream: __lowerCamelCase = _readaa(__lowerCAmelCase ) if magic != 2051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = bytestream.read(rows * cols * num_images ) __lowerCamelCase = numpy.frombuffer(__lowerCAmelCase , dtype=numpy.uinta ) __lowerCamelCase = data.reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 1 ) return data @deprecated(__lowerCAmelCase , '''Please use tf.one_hot on tensors.''' ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : List[Any] ) -> Dict: __lowerCamelCase = labels_dense.shape[0] __lowerCamelCase = numpy.arange(__lowerCAmelCase ) * num_classes __lowerCamelCase = numpy.zeros((num_labels, num_classes) ) __lowerCamelCase = 1 return labels_one_hot @deprecated(__lowerCAmelCase , '''Please use tf.data to implement this functionality.''' ) def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : str=False , __lowerCAmelCase : List[str]=10 ) -> List[str]: print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=__lowerCAmelCase ) as bytestream: __lowerCamelCase = _readaa(__lowerCAmelCase ) if magic != 2049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = bytestream.read(__lowerCAmelCase ) __lowerCamelCase = numpy.frombuffer(__lowerCAmelCase , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(__lowerCAmelCase , __lowerCAmelCase ) return labels class lowerCAmelCase__ : @deprecated( SCREAMING_SNAKE_CASE__ , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : str=dtypes.floataa , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : str=None , ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase = random_seed.get_seed(SCREAMING_SNAKE_CASE__ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) __lowerCamelCase = dtypes.as_dtype(SCREAMING_SNAKE_CASE__ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: __lowerCamelCase = 1_00_00 __lowerCamelCase = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'''images.shape: {images.shape} labels.shape: {labels.shape}''' __lowerCamelCase = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __lowerCamelCase = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __lowerCamelCase = images.astype(numpy.floataa ) __lowerCamelCase = numpy.multiply(SCREAMING_SNAKE_CASE__ , 1.0 / 255.0 ) __lowerCamelCase = images __lowerCamelCase = labels __lowerCamelCase = 0 __lowerCamelCase = 0 @property def __A ( self : str ) -> Optional[int]: return self._images @property def __A ( self : Any ) -> Dict: return self._labels @property def __A ( self : List[Any] ) -> int: return self._num_examples @property def __A ( self : str ) -> Any: return self._epochs_completed def __A ( self : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : str=True ) -> str: if fake_data: __lowerCamelCase = [1] * 7_84 __lowerCamelCase = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(SCREAMING_SNAKE_CASE__ )], [fake_label for _ in range(SCREAMING_SNAKE_CASE__ )], ) __lowerCamelCase = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __lowerCamelCase = numpy.arange(self._num_examples ) numpy.random.shuffle(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.images[perma] __lowerCamelCase = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __lowerCamelCase = self._num_examples - start __lowerCamelCase = self._images[start : self._num_examples] __lowerCamelCase = self._labels[start : self._num_examples] # Shuffle the data if shuffle: __lowerCamelCase = numpy.arange(self._num_examples ) numpy.random.shuffle(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.images[perm] __lowerCamelCase = self.labels[perm] # Start next epoch __lowerCamelCase = 0 __lowerCamelCase = batch_size - rest_num_examples __lowerCamelCase = self._index_in_epoch __lowerCamelCase = self._images[start:end] __lowerCamelCase = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size __lowerCamelCase = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(__lowerCAmelCase , '''Please write your own downloading logic.''' ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] ) -> List[Any]: if not gfile.Exists(__lowerCAmelCase ): gfile.MakeDirs(__lowerCAmelCase ) __lowerCamelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if not gfile.Exists(__lowerCAmelCase ): urllib.request.urlretrieve(__lowerCAmelCase , __lowerCAmelCase ) # noqa: S310 with gfile.GFile(__lowerCAmelCase ) as f: __lowerCamelCase = f.size() print('''Successfully downloaded''' , __lowerCAmelCase , __lowerCAmelCase , '''bytes.''' ) return filepath @deprecated( __lowerCAmelCase , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Dict=False , __lowerCAmelCase : List[str]=dtypes.floataa , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : int=5000 , __lowerCAmelCase : Any=None , __lowerCAmelCase : List[str]=DEFAULT_SOURCE_URL , ) -> Optional[Any]: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=__lowerCAmelCase , one_hot=__lowerCAmelCase , dtype=__lowerCAmelCase , seed=__lowerCAmelCase ) __lowerCamelCase = fake() __lowerCamelCase = fake() __lowerCamelCase = fake() return _Datasets(train=__lowerCAmelCase , validation=__lowerCAmelCase , test=__lowerCAmelCase ) if not source_url: # empty string check __lowerCamelCase = DEFAULT_SOURCE_URL __lowerCamelCase = '''train-images-idx3-ubyte.gz''' __lowerCamelCase = '''train-labels-idx1-ubyte.gz''' __lowerCamelCase = '''t10k-images-idx3-ubyte.gz''' __lowerCamelCase = '''t10k-labels-idx1-ubyte.gz''' __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + train_images_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_images(__lowerCAmelCase ) __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + train_labels_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_labels(__lowerCAmelCase , one_hot=__lowerCAmelCase ) __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + test_images_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_images(__lowerCAmelCase ) __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + test_labels_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_labels(__lowerCAmelCase , one_hot=__lowerCAmelCase ) if not 0 <= validation_size <= len(__lowerCAmelCase ): __lowerCamelCase = ( '''Validation size should be between 0 and ''' f'''{len(__lowerCAmelCase )}. Received: {validation_size}.''' ) raise ValueError(__lowerCAmelCase ) __lowerCamelCase = train_images[:validation_size] __lowerCamelCase = train_labels[:validation_size] __lowerCamelCase = train_images[validation_size:] __lowerCamelCase = train_labels[validation_size:] __lowerCamelCase = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} __lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) __lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) __lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) return _Datasets(train=__lowerCAmelCase , validation=__lowerCAmelCase , test=__lowerCAmelCase )
339
0
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : int = {"vocab_file": "sentencepiece.model"} SCREAMING_SNAKE_CASE__ : Dict = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } SCREAMING_SNAKE_CASE__ : Dict = { "google/rembert": 256, } class lowerCAmelCase__ ( __a ): a__ : Dict = VOCAB_FILES_NAMES a__ : List[str] = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int=False , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[CLS]" , SCREAMING_SNAKE_CASE__ : str="[SEP]" , SCREAMING_SNAKE_CASE__ : Any="[UNK]" , SCREAMING_SNAKE_CASE__ : List[str]="[SEP]" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[PAD]" , SCREAMING_SNAKE_CASE__ : Dict="[CLS]" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[MASK]" , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> int: super().__init__( do_lower_case=UpperCamelCase__ , remove_space=UpperCamelCase__ , keep_accents=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , **UpperCamelCase__ , ) __lowerCamelCase = do_lower_case __lowerCamelCase = remove_space __lowerCamelCase = keep_accents __lowerCamelCase = vocab_file __lowerCamelCase = spm.SentencePieceProcessor() self.sp_model.Load(UpperCamelCase__ ) @property def __A ( self : Optional[int] ) -> Any: return len(self.sp_model ) def __A ( self : List[str] ) -> Dict: __lowerCamelCase = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ) -> str: __lowerCamelCase = self.__dict__.copy() __lowerCamelCase = None return state def __setstate__( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict ) -> Dict: __lowerCamelCase = d __lowerCamelCase = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any=False ) -> Union[str, Any]: __lowerCamelCase = self.sp_model.EncodeAsPieces(UpperCamelCase__ ) return pieces def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: return self.sp_model.PieceToId(UpperCamelCase__ ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any: return self.sp_model.IdToPiece(UpperCamelCase__ ) def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Dict: __lowerCamelCase = self.sp_model.decode_pieces(UpperCamelCase__ ) return out_string def __A ( self : Any , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1] def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCamelCase__ ): logger.error('''Vocabulary path ({}) should be a directory'''.format(UpperCamelCase__ ) ) return __lowerCamelCase = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) return (out_vocab_file,)
369
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "vocab_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt" ), "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt" ), }, "tokenizer_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli": ( "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE__ : List[Any] = { "squeezebert/squeezebert-uncased": 512, "squeezebert/squeezebert-mnli": 512, "squeezebert/squeezebert-mnli-headless": 512, } SCREAMING_SNAKE_CASE__ : Dict = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class lowerCAmelCase__ ( __lowercase ): a__ : Optional[int] = VOCAB_FILES_NAMES a__ : Any = PRETRAINED_VOCAB_FILES_MAP a__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Optional[Any] = SqueezeBertTokenizer def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[UNK]" , SCREAMING_SNAKE_CASE__ : Optional[int]="[SEP]" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[PAD]" , SCREAMING_SNAKE_CASE__ : Tuple="[CLS]" , SCREAMING_SNAKE_CASE__ : str="[MASK]" , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : int=None , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Optional[Any]: super().__init__( SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , SCREAMING_SNAKE_CASE__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , SCREAMING_SNAKE_CASE__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars ): __lowerCamelCase = getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop('''type''' ) ) __lowerCamelCase = do_lower_case __lowerCamelCase = strip_accents __lowerCamelCase = tokenize_chinese_chars __lowerCamelCase = normalizer_class(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = do_lower_case def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=None ) -> str: __lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: __lowerCamelCase = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ ) return tuple(SCREAMING_SNAKE_CASE__ )
339
0
def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> Union[str, Any]: __lowerCamelCase = len(snake_case_ ) __lowerCamelCase = [] for i in range(len(snake_case_ ) - pat_len + 1 ): __lowerCamelCase = True for j in range(snake_case_ ): if s[i + j] != pattern[j]: __lowerCamelCase = False break if match_found: position.append(snake_case_ ) return position if __name__ == "__main__": assert naive_pattern_search("ABCDEFG", "DE") == [3] print(naive_pattern_search("ABAAABCDBBABCDDEBCABC", "ABC"))
370
from __future__ import annotations def __magic_name__ ( __lowerCAmelCase : list[int] ) -> bool: return len(set(__lowerCAmelCase ) ) == len(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
339
0
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers SCREAMING_SNAKE_CASE__ : Dict = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py') def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int=None ) -> int: require_version(deps[pkg] , a__ )
371
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ : Dict = { "configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Tuple = [ "FALCON_PRETRAINED_MODEL_ARCHIVE_LIST", "FalconForCausalLM", "FalconModel", "FalconPreTrainedModel", "FalconForSequenceClassification", "FalconForTokenClassification", "FalconForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
339
0
def __magic_name__ ( __lowerCAmelCase : Dict ) -> Any: if isinstance(__a , __a ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if isinstance(__a , __a ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if num == 0: return "0b0" __lowerCamelCase = False if num < 0: __lowerCamelCase = True __lowerCamelCase = -num __lowerCamelCase = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(__a ) for e in binary ) return "0b" + "".join(str(__a ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
350
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: return abs(__lowerCAmelCase ) if a == 0 else greatest_common_divisor(b % a , __lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. __lowerCamelCase , __lowerCamelCase = y, x % y return abs(__lowerCAmelCase ) def __magic_name__ ( ) -> Tuple: try: __lowerCamelCase = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) __lowerCamelCase = int(nums[0] ) __lowerCamelCase = int(nums[1] ) print( f'''greatest_common_divisor({num_a}, {num_a}) = ''' f'''{greatest_common_divisor(__lowerCAmelCase , __lowerCAmelCase )}''' ) print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__lowerCAmelCase , __lowerCAmelCase )}''' ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
339
0
"""simple docstring""" from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class lowerCAmelCase__ : pass
351
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def __A ( self : Optional[int] ) -> Union[str, Any]: __lowerCamelCase = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) __lowerCamelCase = AutoTokenizer.from_pretrained('''google/mt5-small''' ) __lowerCamelCase = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids __lowerCamelCase = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids __lowerCamelCase = shift_tokens_right(SCREAMING_SNAKE_CASE__ , model.config.pad_token_id , model.config.decoder_start_token_id ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ).logits __lowerCamelCase = optax.softmax_cross_entropy(SCREAMING_SNAKE_CASE__ , onehot(SCREAMING_SNAKE_CASE__ , logits.shape[-1] ) ).mean() __lowerCamelCase = -(labels.shape[-1] * loss.item()) __lowerCamelCase = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
339
0
SCREAMING_SNAKE_CASE__ : Optional[int] = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
352
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE__ : Optional[int] = "bart" SCREAMING_SNAKE_CASE__ : Dict = True @st.cache(allow_output_mutation=__lowerCAmelCase ) def __magic_name__ ( ) -> str: if LOAD_DENSE_INDEX: __lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) __lowerCamelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) __lowerCamelCase = qar_model.eval() else: __lowerCamelCase , __lowerCamelCase = (None, None) if MODEL_TYPE == "bart": __lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) __lowerCamelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) __lowerCamelCase = sas_model.eval() else: __lowerCamelCase , __lowerCamelCase = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__lowerCAmelCase ) def __magic_name__ ( ) -> Optional[int]: if LOAD_DENSE_INDEX: __lowerCamelCase = faiss.StandardGpuResources() __lowerCamelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] __lowerCamelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) __lowerCamelCase = faiss.IndexFlatIP(128 ) __lowerCamelCase = faiss.index_cpu_to_gpu(__lowerCAmelCase , 1 , __lowerCAmelCase ) wikiaab_gpu_index_flat.add(__lowerCAmelCase ) # TODO fix for larger GPU else: __lowerCamelCase , __lowerCamelCase = (None, None) __lowerCamelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__lowerCAmelCase ) def __magic_name__ ( ) -> List[str]: __lowerCamelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) __lowerCamelCase = elia['''train_eli5'''] __lowerCamelCase = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) __lowerCamelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(__lowerCAmelCase ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = load_indexes() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = load_models() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = load_train_data() def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[str]=10 ) -> List[str]: __lowerCamelCase = embed_questions_for_retrieval([question] , __lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase , __lowerCamelCase = eli5_train_q_index.search(__lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase = [elia_train[int(__lowerCAmelCase )] for i in I[0]] return nn_examples def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict="wiki40b" , __lowerCAmelCase : Any="dense" , __lowerCAmelCase : Dict=10 ) -> Union[str, Any]: if source == "none": __lowerCamelCase , __lowerCamelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": __lowerCamelCase , __lowerCamelCase = query_qa_dense_index( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: __lowerCamelCase , __lowerCamelCase = query_es_index( __lowerCAmelCase , __lowerCAmelCase , index_name='''english_wiki40b_snippets_100w''' , n_results=__lowerCAmelCase , ) __lowerCamelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] __lowerCamelCase = '''question: {} context: {}'''.format(__lowerCAmelCase , __lowerCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __lowerCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __lowerCAmelCase : None), } ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str=64 , __lowerCAmelCase : Dict=256 , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : Optional[Any]=0.95 , __lowerCAmelCase : List[Any]=0.8 ) -> Any: with torch.no_grad(): __lowerCamelCase = qa_sas_generate( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , num_answers=1 , num_beams=__lowerCAmelCase , min_len=__lowerCAmelCase , max_len=__lowerCAmelCase , do_sample=__lowerCAmelCase , temp=__lowerCAmelCase , top_p=__lowerCAmelCase , top_k=__lowerCAmelCase , max_input_length=1024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar SCREAMING_SNAKE_CASE__ : List[str] = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" SCREAMING_SNAKE_CASE__ : Dict = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE__ : int = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE__ : str = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] SCREAMING_SNAKE_CASE__ : Optional[int] = st.sidebar.checkbox("Demo options") if demo_options: SCREAMING_SNAKE_CASE__ : Optional[int] = st.sidebar.selectbox( "", action_list, index=3, ) SCREAMING_SNAKE_CASE__ : Optional[Any] = action_list.index(action_st) SCREAMING_SNAKE_CASE__ : int = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = show_type == "Show full text of passages" else: SCREAMING_SNAKE_CASE__ : Any = 3 SCREAMING_SNAKE_CASE__ : Any = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.checkbox("Retrieval options") if retrieval_options: SCREAMING_SNAKE_CASE__ : Tuple = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) SCREAMING_SNAKE_CASE__ : int = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: SCREAMING_SNAKE_CASE__ : List[str] = "wiki40b" SCREAMING_SNAKE_CASE__ : Optional[Any] = "dense" SCREAMING_SNAKE_CASE__ : str = "beam" SCREAMING_SNAKE_CASE__ : List[Any] = 2 SCREAMING_SNAKE_CASE__ : Optional[Any] = 64 SCREAMING_SNAKE_CASE__ : List[Any] = 256 SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : List[str] = st.sidebar.checkbox("Generation options") if generate_options: SCREAMING_SNAKE_CASE__ : Dict = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE__ : List[str] = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) SCREAMING_SNAKE_CASE__ : Any = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE__ : str = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE__ : Any = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE__ : Dict = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None # start main text SCREAMING_SNAKE_CASE__ : Any = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] SCREAMING_SNAKE_CASE__ : List[str] = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.text_input("Enter your question here:", "") else: SCREAMING_SNAKE_CASE__ : str = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = make_support(question, source=wiki_source, method="dense", n_results=10) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = make_support(question, source=wiki_source, method="sparse", n_results=10) SCREAMING_SNAKE_CASE__ : int = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE__ : Optional[Any] = support_list[:10] SCREAMING_SNAKE_CASE__ : Tuple = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE__ : Optional[int] = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) SCREAMING_SNAKE_CASE__ : Tuple = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE__ : Union[str, Any] = "[{}]({})".format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE__ : Dict = sec_titles.split(" & ") SCREAMING_SNAKE_CASE__ : int = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE__ : Any = find_nearest_training(question) SCREAMING_SNAKE_CASE__ : List[Any] = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) SCREAMING_SNAKE_CASE__ : List[Any] = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
339
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Tuple = { """Salesforce/blip-vqa-base""": """https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json""", """Salesforce/blip-vqa-capfit-large""": ( """https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json""" ), """Salesforce/blip-image-captioning-base""": ( """https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json""" ), """Salesforce/blip-image-captioning-large""": ( """https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json""" ), """Salesforce/blip-itm-base-coco""": """https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json""", """Salesforce/blip-itm-large-coco""": """https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json""", """Salesforce/blip-itm-base-flikr""": """https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json""", """Salesforce/blip-itm-large-flikr""": ( """https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json""" ), } class lowerCAmelCase__ ( __lowercase ): a__ : Any = "blip_text_model" def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[int]=3_05_24 , SCREAMING_SNAKE_CASE__ : int=7_68 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=7_68 , SCREAMING_SNAKE_CASE__ : Dict=30_72 , SCREAMING_SNAKE_CASE__ : Optional[int]=7_68 , SCREAMING_SNAKE_CASE__ : List[Any]=12 , SCREAMING_SNAKE_CASE__ : Dict=8 , SCREAMING_SNAKE_CASE__ : Tuple=5_12 , SCREAMING_SNAKE_CASE__ : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Any=1e-12 , SCREAMING_SNAKE_CASE__ : Any=0.0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE__ : List[str]=0.02 , SCREAMING_SNAKE_CASE__ : int=3_05_22 , SCREAMING_SNAKE_CASE__ : Optional[Any]=2 , SCREAMING_SNAKE_CASE__ : int=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1_02 , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Dict=True , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> int: super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , sep_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = encoder_hidden_size __lowerCamelCase = intermediate_size __lowerCamelCase = projection_dim __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = max_position_embeddings __lowerCamelCase = layer_norm_eps __lowerCamelCase = hidden_act __lowerCamelCase = initializer_range __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = is_decoder __lowerCamelCase = use_cache @classmethod def __A ( cls : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : str ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the text config dict if we are loading from BlipConfig if config_dict.get('''model_type''' ) == "blip": __lowerCamelCase = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class lowerCAmelCase__ ( __lowercase ): a__ : str = "blip_vision_model" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : int=7_68 , SCREAMING_SNAKE_CASE__ : List[Any]=30_72 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5_12 , SCREAMING_SNAKE_CASE__ : str=12 , SCREAMING_SNAKE_CASE__ : Any=12 , SCREAMING_SNAKE_CASE__ : int=3_84 , SCREAMING_SNAKE_CASE__ : Dict=16 , SCREAMING_SNAKE_CASE__ : Dict="gelu" , SCREAMING_SNAKE_CASE__ : Dict=1e-5 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.0 , SCREAMING_SNAKE_CASE__ : Optional[int]=1e-10 , **SCREAMING_SNAKE_CASE__ : int , ) -> List[str]: super().__init__(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = hidden_size __lowerCamelCase = intermediate_size __lowerCamelCase = projection_dim __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = patch_size __lowerCamelCase = image_size __lowerCamelCase = initializer_range __lowerCamelCase = attention_dropout __lowerCamelCase = layer_norm_eps __lowerCamelCase = hidden_act @classmethod def __A ( cls : Dict , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : Tuple ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('''model_type''' ) == "blip": __lowerCamelCase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class lowerCAmelCase__ ( __lowercase ): a__ : Optional[int] = "blip" a__ : List[Any] = True def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Any=5_12 , SCREAMING_SNAKE_CASE__ : int=2.6592 , SCREAMING_SNAKE_CASE__ : List[str]=2_56 , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> str: super().__init__(**SCREAMING_SNAKE_CASE__ ) if text_config is None: __lowerCamelCase = {} logger.info('''`text_config` is `None`. Initializing the `BlipTextConfig` with default values.''' ) if vision_config is None: __lowerCamelCase = {} logger.info('''`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.''' ) __lowerCamelCase = BlipTextConfig(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = BlipVisionConfig(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.vision_config.hidden_size __lowerCamelCase = projection_dim __lowerCamelCase = logit_scale_init_value __lowerCamelCase = 1.0 __lowerCamelCase = 0.02 __lowerCamelCase = image_text_hidden_size @classmethod def __A ( cls : str , SCREAMING_SNAKE_CASE__ : BlipTextConfig , SCREAMING_SNAKE_CASE__ : BlipVisionConfig , **SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Any ) -> Tuple: __lowerCamelCase = copy.deepcopy(self.__dict__ ) __lowerCamelCase = self.text_config.to_dict() __lowerCamelCase = self.vision_config.to_dict() __lowerCamelCase = self.__class__.model_type return output
353
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : str = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class lowerCAmelCase__ ( __lowercase ): a__ : Dict = """xmod""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_05_22 , SCREAMING_SNAKE_CASE__ : str=7_68 , SCREAMING_SNAKE_CASE__ : int=12 , SCREAMING_SNAKE_CASE__ : Dict=12 , SCREAMING_SNAKE_CASE__ : List[str]=30_72 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : List[Any]=0.02 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1e-12 , SCREAMING_SNAKE_CASE__ : List[str]=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : Any="absolute" , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=("en_XX",) , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , **SCREAMING_SNAKE_CASE__ : int , ) -> str: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = position_embedding_type __lowerCamelCase = use_cache __lowerCamelCase = classifier_dropout __lowerCamelCase = pre_norm __lowerCamelCase = adapter_reduction_factor __lowerCamelCase = adapter_layer_norm __lowerCamelCase = adapter_reuse_layer_norm __lowerCamelCase = ln_before_adapter __lowerCamelCase = list(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = default_language class lowerCAmelCase__ ( __lowercase ): @property def __A ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
339
0
import math from numpy import inf from scipy.integrate import quad def __magic_name__ ( __lowerCAmelCase : float ) -> Optional[Any]: if num <= 0: raise ValueError('''math domain error''' ) return quad(__lowerCAmelCase , 0 , __lowerCAmelCase , args=(__lowerCAmelCase) )[0] def __magic_name__ ( __lowerCAmelCase : float , __lowerCAmelCase : float ) -> Dict: return math.pow(__lowerCAmelCase , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
354
from collections import namedtuple import requests from lxml import html # type: ignore SCREAMING_SNAKE_CASE__ : List[Any] = namedtuple("covid_data", "cases deaths recovered") def __magic_name__ ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data: __lowerCamelCase = '''//div[@class = "maincounter-number"]/span/text()''' return covid_data(*html.fromstring(requests.get(__lowerCAmelCase ).content ).xpath(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ : List[str] = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
339
0
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def __magic_name__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple ) -> Optional[int]: __lowerCamelCase = BigBirdConfig.from_json_file(__lowerCAmelCase ) print(f'''Building PyTorch model from configuration: {config}''' ) if is_trivia_qa: __lowerCamelCase = BigBirdForQuestionAnswering(__lowerCAmelCase ) else: __lowerCamelCase = BigBirdForPreTraining(__lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(__lowerCAmelCase , __lowerCAmelCase , is_trivia_qa=__lowerCAmelCase ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--big_bird_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head." ) SCREAMING_SNAKE_CASE__ : Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
355
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) SCREAMING_SNAKE_CASE__ : int = logging.getLogger(__name__) @dataclass class lowerCAmelCase__ : a__ : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a__ : Optional[str] = field( default=__lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a__ : Optional[str] = field( default=__lowercase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a__ : Optional[str] = field( default=__lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether tp freeze the encoder."""} ) a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether to freeze the embeddings."""} ) @dataclass class lowerCAmelCase__ : a__ : str = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) a__ : Optional[str] = field( default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , ) a__ : Optional[int] = field( default=1_024 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field( default=128 , metadata={ """help""": ( """The maximum total sequence length for target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for validation target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded. """ """This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """ """during ``evaluate`` and ``predict``.""" ) } , ) a__ : Optional[int] = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for test target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} ) a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Source language id for translation."""} ) a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Target language id for translation."""} ) a__ : Optional[int] = field(default=__lowercase , metadata={"""help""": """# num_beams to use for evaluation."""} ) a__ : bool = field( default=__lowercase , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , ) def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : int ) -> Dict: logger.info(f'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(f''' {key} = {metrics[key]}''' ) save_json(__lowerCAmelCase , os.path.join(__lowerCAmelCase , f'''{split}_results.json''' ) ) def __magic_name__ ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_args_into_dataclasses() check_output_dir(__lowerCAmelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , __lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowerCamelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): assert hasattr(__lowerCAmelCase , __lowerCAmelCase ), f'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(__lowerCAmelCase , __lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) ) __lowerCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(__lowerCAmelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: __lowerCamelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(__lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(__lowerCAmelCase , __lowerCAmelCase ): __lowerCamelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: __lowerCamelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(__lowerCAmelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) __lowerCamelCase = SeqaSeqDataset # Get datasets __lowerCamelCase = ( dataset_class( __lowerCAmelCase , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) __lowerCamelCase = ( dataset_class( __lowerCAmelCase , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) __lowerCamelCase = ( dataset_class( __lowerCAmelCase , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer __lowerCamelCase = ( build_compute_metrics_fn(data_args.task , __lowerCAmelCase ) if training_args.predict_with_generate else None ) __lowerCamelCase = SeqaSeqTrainer( model=__lowerCAmelCase , args=__lowerCAmelCase , data_args=__lowerCAmelCase , train_dataset=__lowerCAmelCase , eval_dataset=__lowerCAmelCase , data_collator=SeqaSeqDataCollator( __lowerCAmelCase , __lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , ) __lowerCamelCase = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) __lowerCamelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) __lowerCamelCase = train_result.metrics __lowerCamelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , __lowerCAmelCase , training_args.output_dir ) all_metrics.update(__lowerCAmelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowerCamelCase = trainer.evaluate(metric_key_prefix='''val''' ) __lowerCamelCase = data_args.n_val __lowerCamelCase = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , __lowerCAmelCase , training_args.output_dir ) all_metrics.update(__lowerCAmelCase ) if training_args.do_predict: logger.info('''*** Predict ***''' ) __lowerCamelCase = trainer.predict(test_dataset=__lowerCAmelCase , metric_key_prefix='''test''' ) __lowerCamelCase = test_output.metrics __lowerCamelCase = data_args.n_test if trainer.is_world_process_zero(): __lowerCamelCase = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , __lowerCAmelCase , training_args.output_dir ) all_metrics.update(__lowerCAmelCase ) if training_args.predict_with_generate: __lowerCamelCase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) __lowerCamelCase = lmap(str.strip , __lowerCAmelCase ) write_txt_file(__lowerCAmelCase , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(__lowerCAmelCase , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Union[str, Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
339
0
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): a__ : Dict = StableDiffusionDiffEditPipeline a__ : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""height""", """width""", """image"""} | {"""image_latents"""} a__ : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"""image"""} | {"""image_latents"""} a__ : Optional[int] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a__ : Tuple = frozenset([] ) def __A ( self : int ) -> Optional[int]: torch.manual_seed(0 ) __lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__lowerCamelCase , ) __lowerCamelCase = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , ) __lowerCamelCase = DDIMInverseScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=__lowerCamelCase , set_alpha_to_zero=__lowerCamelCase , ) torch.manual_seed(0 ) __lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) __lowerCamelCase = CLIPTextModel(__lowerCamelCase ) __lowerCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowerCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''inverse_scheduler''': inverse_scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __A ( self : str , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=0 ) -> str: __lowerCamelCase = floats_tensor((1, 16, 16) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) __lowerCamelCase = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) if str(__lowerCamelCase ).startswith('''mps''' ): __lowerCamelCase = torch.manual_seed(__lowerCamelCase ) else: __lowerCamelCase = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) __lowerCamelCase = { '''prompt''': '''a dog and a newt''', '''mask_image''': mask, '''image_latents''': latents, '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any]=0 ) -> int: __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert('''RGB''' ) if str(__lowerCamelCase ).startswith('''mps''' ): __lowerCamelCase = torch.manual_seed(__lowerCamelCase ) else: __lowerCamelCase = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) __lowerCamelCase = { '''image''': image, '''source_prompt''': '''a cat and a frog''', '''target_prompt''': '''a dog and a newt''', '''generator''': generator, '''num_inference_steps''': 2, '''num_maps_per_mask''': 2, '''mask_encode_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any]=0 ) -> Tuple: __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert('''RGB''' ) if str(__lowerCamelCase ).startswith('''mps''' ): __lowerCamelCase = torch.manual_seed(__lowerCamelCase ) else: __lowerCamelCase = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) __lowerCamelCase = { '''image''': image, '''prompt''': '''a cat and a frog''', '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''decode_latents''': True, '''output_type''': '''numpy''', } return inputs def __A ( self : Optional[Any] ) -> Optional[int]: if not hasattr(self.pipeline_class , '''_optional_components''' ): return __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) __lowerCamelCase = self.get_dummy_inputs(__lowerCamelCase ) __lowerCamelCase = pipe(**__lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__lowerCamelCase ) __lowerCamelCase = self.pipeline_class.from_pretrained(__lowerCamelCase ) pipe_loaded.to(__lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=__lowerCamelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(__lowerCamelCase , __lowerCamelCase ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) __lowerCamelCase = self.get_dummy_inputs(__lowerCamelCase ) __lowerCamelCase = pipe_loaded(**__lowerCamelCase )[0] __lowerCamelCase = np.abs(output - output_loaded ).max() self.assertLess(__lowerCamelCase , 1e-4 ) def __A ( self : Union[str, Any] ) -> Any: __lowerCamelCase = '''cpu''' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __lowerCamelCase = self.get_dummy_mask_inputs(__lowerCamelCase ) __lowerCamelCase = pipe.generate_mask(**__lowerCamelCase ) __lowerCamelCase = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) __lowerCamelCase = np.array([0] * 9 ) __lowerCamelCase = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCamelCase , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def __A ( self : List[Any] ) -> Optional[int]: __lowerCamelCase = '''cpu''' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __lowerCamelCase = self.get_dummy_inversion_inputs(__lowerCamelCase ) __lowerCamelCase = pipe.invert(**__lowerCamelCase ).images __lowerCamelCase = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __lowerCamelCase = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , ) __lowerCamelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCamelCase , 1e-3 ) def __A ( self : str ) -> int: super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def __A ( self : Optional[Any] ) -> Any: __lowerCamelCase = '''cpu''' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = {'''beta_start''': 0.00085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''} __lowerCamelCase = DPMSolverMultistepScheduler(**__lowerCamelCase ) __lowerCamelCase = DPMSolverMultistepInverseScheduler(**__lowerCamelCase ) __lowerCamelCase = self.pipeline_class(**__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __lowerCamelCase = self.get_dummy_inversion_inputs(__lowerCamelCase ) __lowerCamelCase = pipe.invert(**__lowerCamelCase ).images __lowerCamelCase = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __lowerCamelCase = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , ) __lowerCamelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCamelCase , 1e-3 ) @require_torch_gpu @slow class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : int ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def __A ( cls : Dict ) -> Optional[int]: __lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' ) __lowerCamelCase = raw_image.convert('''RGB''' ).resize((7_68, 7_68) ) __lowerCamelCase = raw_image def __A ( self : Union[str, Any] ) -> str: __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=__lowerCamelCase , torch_dtype=torch.floataa ) __lowerCamelCase = DDIMScheduler.from_config(pipe.scheduler.config ) __lowerCamelCase = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__lowerCamelCase ) __lowerCamelCase = '''a bowl of fruit''' __lowerCamelCase = '''a bowl of pears''' __lowerCamelCase = pipe.generate_mask( image=self.raw_image , source_prompt=__lowerCamelCase , target_prompt=__lowerCamelCase , generator=__lowerCamelCase , ) __lowerCamelCase = pipe.invert( prompt=__lowerCamelCase , image=self.raw_image , inpaint_strength=0.7 , generator=__lowerCamelCase ).latents __lowerCamelCase = pipe( prompt=__lowerCamelCase , mask_image=__lowerCamelCase , image_latents=__lowerCamelCase , generator=__lowerCamelCase , negative_prompt=__lowerCamelCase , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0] __lowerCamelCase = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1 def __A ( self : Optional[int] ) -> Any: __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=__lowerCamelCase , torch_dtype=torch.floataa ) __lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowerCamelCase = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__lowerCamelCase ) __lowerCamelCase = '''a bowl of fruit''' __lowerCamelCase = '''a bowl of pears''' __lowerCamelCase = pipe.generate_mask( image=self.raw_image , source_prompt=__lowerCamelCase , target_prompt=__lowerCamelCase , generator=__lowerCamelCase , ) __lowerCamelCase = pipe.invert( prompt=__lowerCamelCase , image=self.raw_image , inpaint_strength=0.7 , generator=__lowerCamelCase , num_inference_steps=25 , ).latents __lowerCamelCase = pipe( prompt=__lowerCamelCase , mask_image=__lowerCamelCase , image_latents=__lowerCamelCase , generator=__lowerCamelCase , negative_prompt=__lowerCamelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0] __lowerCamelCase = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1
356
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase__ ( unittest.TestCase ): @property def __A ( self : List[Any] ) -> Optional[Any]: torch.manual_seed(0 ) __lowerCamelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def __A ( self : Optional[int] ) -> Optional[Any]: __lowerCamelCase = self.dummy_uncond_unet __lowerCamelCase = ScoreSdeVeScheduler() __lowerCamelCase = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) sde_ve.to(SCREAMING_SNAKE_CASE__ ) sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ ).images __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ )[ 0 ] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCamelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : Tuple ) -> str: __lowerCamelCase = '''google/ncsnpp-church-256''' __lowerCamelCase = UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = ScoreSdeVeScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) sde_ve.to(SCREAMING_SNAKE_CASE__ ) sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) __lowerCamelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
339
0
from typing import Union import fire import torch from tqdm import tqdm def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str = "cpu" , __lowerCAmelCase : Union[str, None] = None ) -> None: """simple docstring""" __lowerCamelCase = torch.load(UpperCAmelCase_ , map_location=UpperCAmelCase_ ) for k, v in tqdm(state_dict.items() ): if not isinstance(UpperCAmelCase_ , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) __lowerCamelCase = v.half() if save_path is None: # overwrite src_path __lowerCamelCase = src_path torch.save(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": fire.Fire(convert)
357
from functools import lru_cache def __magic_name__ ( __lowerCAmelCase : int ) -> set: __lowerCamelCase = 2 __lowerCamelCase = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__lowerCAmelCase ) if n > 1: factors.add(__lowerCAmelCase ) return factors @lru_cache def __magic_name__ ( __lowerCAmelCase : int ) -> int: return len(unique_prime_factors(__lowerCAmelCase ) ) def __magic_name__ ( __lowerCAmelCase : list ) -> bool: return len(set(__lowerCAmelCase ) ) in (0, 1) def __magic_name__ ( __lowerCAmelCase : int ) -> list: __lowerCamelCase = 2 while True: # Increment each value of a generated range __lowerCamelCase = [base + i for i in range(__lowerCAmelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. __lowerCamelCase = [upf_len(__lowerCAmelCase ) for x in group] checker.append(__lowerCAmelCase ) # If all numbers in the list are equal, return the group variable. if equality(__lowerCAmelCase ): return group # Increment our base variable by 1 base += 1 def __magic_name__ ( __lowerCAmelCase : int = 4 ) -> int: __lowerCamelCase = run(__lowerCAmelCase ) return results[0] if len(__lowerCAmelCase ) else None if __name__ == "__main__": print(solution())
339
0
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase__ : def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any]=3 , SCREAMING_SNAKE_CASE__ : str=32 , SCREAMING_SNAKE_CASE__ : int=3 , SCREAMING_SNAKE_CASE__ : Dict=10 , SCREAMING_SNAKE_CASE__ : Tuple=[10, 20, 30, 40] , SCREAMING_SNAKE_CASE__ : Optional[int]=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : int="relu" , SCREAMING_SNAKE_CASE__ : Any=3 , SCREAMING_SNAKE_CASE__ : int=None , ) -> Dict: __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = num_channels __lowerCamelCase = embeddings_size __lowerCamelCase = hidden_sizes __lowerCamelCase = depths __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = hidden_act __lowerCamelCase = num_labels __lowerCamelCase = scope __lowerCamelCase = len(__snake_case ) def __A ( self : Dict ) -> Optional[Any]: __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCamelCase = self.get_config() return config, pixel_values, labels def __A ( self : Tuple ) -> List[str]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple ) -> int: __lowerCamelCase = TFRegNetModel(config=__snake_case ) __lowerCamelCase = model(__snake_case , training=__snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: __lowerCamelCase = self.num_labels __lowerCamelCase = TFRegNetForImageClassification(__snake_case ) __lowerCamelCase = model(__snake_case , labels=__snake_case , training=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self : Union[str, Any] ) -> Dict: __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase = config_and_inputs __lowerCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): a__ : Dict = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () a__ : Optional[Any] = ( {"""feature-extraction""": TFRegNetModel, """image-classification""": TFRegNetForImageClassification} if is_tf_available() else {} ) a__ : Dict = False a__ : Optional[Any] = False a__ : Dict = False a__ : List[Any] = False a__ : Dict = False def __A ( self : Optional[int] ) -> Any: __lowerCamelCase = TFRegNetModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def __A ( self : Tuple ) -> int: return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __A ( self : Dict ) -> Union[str, Any]: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def __A ( self : List[str] ) -> Dict: super().test_keras_fit() @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __A ( self : Tuple ) -> Optional[Any]: pass def __A ( self : str ) -> Union[str, Any]: __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(__snake_case ) __lowerCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case ) def __A ( self : str ) -> Optional[Any]: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def __A ( self : Tuple ) -> str: def check_hidden_states_output(SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any ): __lowerCamelCase = model_class(__snake_case ) __lowerCamelCase = model(**self._prepare_for_class(__snake_case , __snake_case ) , training=__snake_case ) __lowerCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCamelCase = self.model_tester.num_stages self.assertEqual(len(__snake_case ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: __lowerCamelCase = layer_type __lowerCamelCase = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def __A ( self : str ) -> Optional[Any]: __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple={} ): __lowerCamelCase = model(__snake_case , return_dict=__snake_case , **__snake_case ) __lowerCamelCase = model(__snake_case , return_dict=__snake_case , **__snake_case ).to_tuple() def recursive_check(SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple ): if isinstance(__snake_case , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__snake_case , __snake_case ): recursive_check(__snake_case , __snake_case ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(__snake_case , __snake_case ) ) , msg=( '''Tuple and dict output are not equal. Difference:''' f''' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}''' ) , ) recursive_check(__snake_case , __snake_case ) for model_class in self.all_model_classes: __lowerCamelCase = model_class(__snake_case ) __lowerCamelCase = self._prepare_for_class(__snake_case , __snake_case ) __lowerCamelCase = self._prepare_for_class(__snake_case , __snake_case ) check_equivalence(__snake_case , __snake_case , __snake_case ) __lowerCamelCase = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) __lowerCamelCase = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) check_equivalence(__snake_case , __snake_case , __snake_case ) __lowerCamelCase = self._prepare_for_class(__snake_case , __snake_case ) __lowerCamelCase = self._prepare_for_class(__snake_case , __snake_case ) check_equivalence(__snake_case , __snake_case , __snake_case , {'''output_hidden_states''': True} ) __lowerCamelCase = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) __lowerCamelCase = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) check_equivalence(__snake_case , __snake_case , __snake_case , {'''output_hidden_states''': True} ) def __A ( self : Dict ) -> Tuple: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @slow def __A ( self : Any ) -> Tuple: for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = TFRegNetModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def __magic_name__ ( ) -> Any: __lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def __A ( self : Optional[Any] ) -> Dict: return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __A ( self : List[str] ) -> Dict: __lowerCamelCase = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(images=__snake_case , return_tensors='''tf''' ) # forward pass __lowerCamelCase = model(**__snake_case , training=__snake_case ) # verify the logits __lowerCamelCase = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , __snake_case ) __lowerCamelCase = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , __snake_case , atol=1e-4 )
358
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCAmelCase__ : def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=99 , SCREAMING_SNAKE_CASE__ : List[Any]=13 , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : int=9 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : int=32 , SCREAMING_SNAKE_CASE__ : Tuple=5 , SCREAMING_SNAKE_CASE__ : List[str]=4 , SCREAMING_SNAKE_CASE__ : str=37 , SCREAMING_SNAKE_CASE__ : int=8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.002 , SCREAMING_SNAKE_CASE__ : str=1 , SCREAMING_SNAKE_CASE__ : Tuple=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Dict=None , ) -> Optional[Any]: __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = encoder_seq_length __lowerCamelCase = decoder_seq_length # For common tests __lowerCamelCase = self.decoder_seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = d_ff __lowerCamelCase = relative_attention_num_buckets __lowerCamelCase = dropout_rate __lowerCamelCase = initializer_factor __lowerCamelCase = eos_token_id __lowerCamelCase = pad_token_id __lowerCamelCase = decoder_start_token_id __lowerCamelCase = None __lowerCamelCase = decoder_layers def __A ( self : Any ) -> Tuple: return TaConfig.from_pretrained('''google/umt5-base''' ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , ) -> Optional[int]: if attention_mask is None: __lowerCamelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __lowerCamelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __lowerCamelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ ) if decoder_head_mask is None: __lowerCamelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ ) if cross_attn_head_mask is None: __lowerCamelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def __A ( self : List[Any] ) -> Tuple: __lowerCamelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __lowerCamelCase = input_ids.clamp(self.pad_token_id + 1 ) __lowerCamelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) __lowerCamelCase = self.get_config() __lowerCamelCase = config.num_attention_heads __lowerCamelCase = self.prepare_inputs_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, input_dict def __A ( self : Tuple ) -> List[str]: __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs() return config, inputs_dict def __A ( self : Optional[Any] ) -> Any: return TaConfig( vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __A ( self : List[Any] ) -> Any: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> int: __lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCamelCase = model( input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = model(input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = result.last_hidden_state __lowerCamelCase = result.past_key_values __lowerCamelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Dict: __lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ).get_decoder().to(SCREAMING_SNAKE_CASE__ ).eval() # first forward pass __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) + 1 ) __lowerCamelCase , __lowerCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCamelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and __lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] # select random slice __lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCamelCase = output_from_no_past[:, -1, random_slice_idx].detach() __lowerCamelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Optional[int]: __lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ).half().eval() __lowerCamelCase = model(**SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(SCREAMING_SNAKE_CASE__ ).any().item() ) @require_torch class lowerCAmelCase__ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): a__ : List[Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) a__ : Union[str, Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () a__ : Tuple = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) a__ : int = True a__ : int = False a__ : Tuple = False a__ : Optional[int] = True a__ : Optional[int] = True # The small UMT5 model needs higher percentages for CPU/MP tests a__ : Tuple = [0.8, 0.9] def __A ( self : Tuple ) -> Tuple: __lowerCamelCase = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def __A ( self : List[str] ) -> Union[str, Any]: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = UMTaModel(config_and_inputs[0] ).to(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( SCREAMING_SNAKE_CASE__ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=SCREAMING_SNAKE_CASE__ , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __A ( self : Union[str, Any] ) -> Any: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*SCREAMING_SNAKE_CASE__ ) def __A ( self : Any ) -> Any: __lowerCamelCase = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = config_and_inputs[0] __lowerCamelCase = UMTaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() model.to(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ), } for attn_name, (name, mask) in zip(SCREAMING_SNAKE_CASE__ , head_masking.items() ): __lowerCamelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": __lowerCamelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=SCREAMING_SNAKE_CASE__ , return_dict_in_generate=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) # We check the state of decoder_attentions and cross_attentions just from the last step __lowerCamelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def __A ( self : Tuple ) -> Optional[Any]: pass @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def __A ( self : int ) -> Optional[Any]: __lowerCamelCase = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=SCREAMING_SNAKE_CASE__ , legacy=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] __lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , padding=SCREAMING_SNAKE_CASE__ ).input_ids # fmt: off __lowerCamelCase = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ] ) # fmt: on torch.testing.assert_allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model.generate(input_ids.to(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] __lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
339
0
from datetime import datetime import matplotlib.pyplot as plt import torch def __magic_name__ ( __lowerCAmelCase : str ) -> Optional[Any]: for param in module.parameters(): __lowerCamelCase = False def __magic_name__ ( ) -> Union[str, Any]: __lowerCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): __lowerCamelCase = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def __magic_name__ ( __lowerCAmelCase : str ) -> Optional[int]: __lowerCamelCase = plt.imshow(lowerCAmelCase__ ) fig.axes.get_xaxis().set_visible(lowerCAmelCase__ ) fig.axes.get_yaxis().set_visible(lowerCAmelCase__ ) plt.show() def __magic_name__ ( ) -> int: __lowerCamelCase = datetime.now() __lowerCamelCase = current_time.strftime('''%H:%M:%S''' ) return timestamp
359
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Tuple = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class lowerCAmelCase__ ( __lowercase ): a__ : Union[str, Any] = """open-llama""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Any=10_00_00 , SCREAMING_SNAKE_CASE__ : Any=40_96 , SCREAMING_SNAKE_CASE__ : Any=1_10_08 , SCREAMING_SNAKE_CASE__ : Tuple=32 , SCREAMING_SNAKE_CASE__ : str=32 , SCREAMING_SNAKE_CASE__ : Any="silu" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=20_48 , SCREAMING_SNAKE_CASE__ : List[str]=0.02 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-6 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Dict=0 , SCREAMING_SNAKE_CASE__ : Tuple=1 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : List[str]=None , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> Dict: __lowerCamelCase = vocab_size __lowerCamelCase = max_position_embeddings __lowerCamelCase = hidden_size __lowerCamelCase = intermediate_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = initializer_range __lowerCamelCase = rms_norm_eps __lowerCamelCase = use_cache __lowerCamelCase = kwargs.pop( '''use_memorry_efficient_attention''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_dropout_prob __lowerCamelCase = use_stable_embedding __lowerCamelCase = shared_input_output_embedding __lowerCamelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , tie_word_embeddings=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) def __A ( self : Dict ) -> Optional[int]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , SCREAMING_SNAKE_CASE__ ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f'''got {self.rope_scaling}''' ) __lowerCamelCase = self.rope_scaling.get('''type''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.rope_scaling.get('''factor''' , SCREAMING_SNAKE_CASE__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
339
0
from __future__ import annotations import typing from collections import Counter def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> typing.Counter[int]: __lowerCamelCase = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(__lowerCAmelCase , max_perimeter + 1 ): __lowerCamelCase = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(__lowerCAmelCase ): __lowerCamelCase = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def __magic_name__ ( __lowerCAmelCase : List[Any] = 1000 ) -> int: __lowerCamelCase = pythagorean_triple(__lowerCAmelCase ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F'Perimeter {solution()} has maximum solutions')
360
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar SCREAMING_SNAKE_CASE__ : Any = TypeVar("KEY") SCREAMING_SNAKE_CASE__ : Dict = TypeVar("VAL") @dataclass(frozen=__lowercase , slots=__lowercase ) class lowerCAmelCase__ ( Generic[KEY, VAL] ): a__ : KEY a__ : VAL class lowerCAmelCase__ ( _Item ): def __init__( self : str ) -> None: super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __bool__( self : Tuple ) -> bool: return False SCREAMING_SNAKE_CASE__ : List[Any] = _DeletedItem() class lowerCAmelCase__ ( MutableMapping[KEY, VAL] ): def __init__( self : int , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.75 ) -> None: __lowerCamelCase = initial_block_size __lowerCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowerCamelCase = capacity_factor __lowerCamelCase = 0 def __A ( self : Any , SCREAMING_SNAKE_CASE__ : KEY ) -> int: return hash(SCREAMING_SNAKE_CASE__ ) % len(self._buckets ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> int: return (ind + 1) % len(self._buckets ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> bool: __lowerCamelCase = self._buckets[ind] if not stored: __lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self._len += 1 return True elif stored.key == key: __lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return True else: return False def __A ( self : Any ) -> bool: __lowerCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(SCREAMING_SNAKE_CASE__ ) def __A ( self : List[Any] ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False __lowerCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def __A ( self : int , SCREAMING_SNAKE_CASE__ : int ) -> None: __lowerCamelCase = self._buckets __lowerCamelCase = [None] * new_size __lowerCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def __A ( self : str ) -> None: self._resize(len(self._buckets ) * 2 ) def __A ( self : Dict ) -> None: self._resize(len(self._buckets ) // 2 ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY ) -> Iterator[int]: __lowerCamelCase = self._get_bucket_index(SCREAMING_SNAKE_CASE__ ) for _ in range(len(self._buckets ) ): yield ind __lowerCamelCase = self._get_next_ind(SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): if self._try_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): break def __setitem__( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None: if self._is_full(): self._size_up() self._add_item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __delitem__( self : List[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> None: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = self._buckets[ind] if item is None: raise KeyError(SCREAMING_SNAKE_CASE__ ) if item is _deleted: continue if item.key == key: __lowerCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> VAL: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(SCREAMING_SNAKE_CASE__ ) def __len__( self : int ) -> int: return self._len def __iter__( self : Tuple ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ) -> str: __lowerCamelCase = ''' ,'''.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
339
0
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( '''split_dict''' , [ SplitDict(), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1337 , num_examples=42 , dataset_name='''my_dataset''' )} ), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'''train''': SplitInfo()} ), ] , ) def __magic_name__ ( __lowerCAmelCase : SplitDict ) -> Any: __lowerCamelCase = split_dict._to_yaml_list() assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) __lowerCamelCase = SplitDict._from_yaml_list(__lowerCAmelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump __lowerCamelCase = None # the split name of split_dict takes over the name of the split info object __lowerCamelCase = split_name assert split_dict == reloaded @pytest.mark.parametrize( '''split_info''' , [SplitInfo(), SplitInfo(dataset_name=__lowerCAmelCase ), SplitInfo(dataset_name='''my_dataset''' )] ) def __magic_name__ ( __lowerCAmelCase : str ) -> Optional[int]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files __lowerCamelCase = asdict(SplitDict({'''train''': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
361
from datetime import datetime as dt import os from github import Github SCREAMING_SNAKE_CASE__ : Any = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def __magic_name__ ( ) -> Any: __lowerCamelCase = Github(os.environ['''GITHUB_TOKEN'''] ) __lowerCamelCase = g.get_repo('''huggingface/transformers''' ) __lowerCamelCase = repo.get_issues(state='''open''' ) for issue in open_issues: __lowerCamelCase = sorted([comment for comment in issue.get_comments()] , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase ) __lowerCamelCase = comments[0] if len(__lowerCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
339
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=__lowercase ) class lowerCAmelCase__ ( __lowercase ): a__ : Tuple = field(default="""audio-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) a__ : int = Features({"""audio""": Audio()} ) a__ : List[str] = Features({"""labels""": ClassLabel} ) a__ : Dict = """audio""" a__ : List[Any] = """labels""" def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]: if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __a ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __lowerCamelCase = copy.deepcopy(self ) __lowerCamelCase = self.label_schema.copy() __lowerCamelCase = features[self.label_column] __lowerCamelCase = label_schema return task_template @property def __A ( self : List[str] ) -> Dict[str, str]: return { self.audio_column: "audio", self.label_column: "labels", }
362
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> str: if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __lowerCamelCase = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b" __lowerCamelCase = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b" __lowerCamelCase = max(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(__lowerCAmelCase ) , b_binary.zfill(__lowerCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
339
0
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : Optional[int] ) -> Optional[int]: super().tearDown() gc.collect() def __A ( self : str ) -> Tuple: __lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __lowerCamelCase = '''xvjiarui/stable-diffusion-2-inpainting''' __lowerCamelCase , __lowerCamelCase = FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase__ , safety_checker=UpperCamelCase__ ) __lowerCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' __lowerCamelCase = jax.random.PRNGKey(0 ) __lowerCamelCase = 50 __lowerCamelCase = jax.device_count() __lowerCamelCase = num_samples * [prompt] __lowerCamelCase = num_samples * [init_image] __lowerCamelCase = num_samples * [mask_image] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = pipeline.prepare_inputs(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # shard inputs and rng __lowerCamelCase = replicate(UpperCamelCase__ ) __lowerCamelCase = jax.random.split(UpperCamelCase__ , jax.device_count() ) __lowerCamelCase = shard(UpperCamelCase__ ) __lowerCamelCase = shard(UpperCamelCase__ ) __lowerCamelCase = shard(UpperCamelCase__ ) __lowerCamelCase = pipeline( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , jit=UpperCamelCase__ ) __lowerCamelCase = output.images.reshape(UpperCamelCase__ , 5_12 , 5_12 , 3 ) __lowerCamelCase = images[0, 2_53:2_56, 2_53:2_56, -1] __lowerCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowerCamelCase = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
363
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : List[str] ) -> Dict: __lowerCamelCase = tempfile.mkdtemp() # fmt: off __lowerCamelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCamelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __lowerCamelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCamelCase = {'''unk_token''': '''<unk>'''} __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } __lowerCamelCase = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __A ( self : int , **SCREAMING_SNAKE_CASE__ : int ) -> Any: return CLIPTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Dict , **SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Dict ) -> Dict: shutil.rmtree(self.tmpdirname ) def __A ( self : str ) -> Any: __lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCamelCase = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self : List[Any] ) -> List[str]: __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = self.get_image_processor() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ ) def __A ( self : Union[str, Any] ) -> int: __lowerCamelCase = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCamelCase = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) __lowerCamelCase = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[Any] ) -> Union[str, Any]: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='''np''' ) __lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self : List[Any] ) -> Optional[int]: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = '''lower newer''' __lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self : List[Any] ) -> Any: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = '''lower newer''' __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def __A ( self : Optional[Any] ) -> List[str]: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE__ , visual_prompt=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def __A ( self : List[Any] ) -> Any: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCamelCase = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
339
0
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowerCAmelCase__ : a__ : int a__ : TreeNode | None = None a__ : TreeNode | None = None SCREAMING_SNAKE_CASE__ : Tuple = namedtuple("CoinsDistribResult", "moves excess") def __magic_name__ ( __lowerCAmelCase : TreeNode | None ) -> Dict: if root is None: return 0 # Validation def count_nodes(__lowerCAmelCase : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(__lowerCAmelCase : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(SCREAMING_SNAKE_CASE_ ) != count_coins(SCREAMING_SNAKE_CASE_ ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(__lowerCAmelCase : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __lowerCamelCase , __lowerCamelCase = get_distrib(node.left ) __lowerCamelCase , __lowerCamelCase = get_distrib(node.right ) __lowerCamelCase = 1 - left_distrib_excess __lowerCamelCase = 1 - right_distrib_excess __lowerCamelCase = ( left_distrib_moves + right_distrib_moves + abs(SCREAMING_SNAKE_CASE_ ) + abs(SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return get_distrib(SCREAMING_SNAKE_CASE_ )[0] if __name__ == "__main__": import doctest doctest.testmod()
364
from __future__ import annotations def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : int | None = None , __lowerCAmelCase : int | None = None ) -> None: if start is None: __lowerCamelCase = 0 if end is None: __lowerCamelCase = len(__lowerCAmelCase ) - 1 if start >= end: return __lowerCamelCase = (start + end) // 2 slowsort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) slowsort(__lowerCAmelCase , mid + 1 , __lowerCAmelCase ) if sequence[end] < sequence[mid]: __lowerCamelCase , __lowerCamelCase = sequence[mid], sequence[end] slowsort(__lowerCAmelCase , __lowerCAmelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
339
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart SCREAMING_SNAKE_CASE__ : Dict = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "facebook/bart-base": 1_024, "facebook/bart-large": 1_024, "facebook/bart-large-mnli": 1_024, "facebook/bart-large-cnn": 1_024, "facebook/bart-large-xsum": 1_024, "yjernite/bart_eli5": 1_024, } class lowerCAmelCase__ ( a__ ): a__ : Any = VOCAB_FILES_NAMES a__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP a__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Optional[int] = ["input_ids", "attention_mask"] a__ : Dict = BartTokenizer def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : str="replace" , SCREAMING_SNAKE_CASE__ : Optional[int]="<s>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[int]="</s>" , SCREAMING_SNAKE_CASE__ : List[str]="<s>" , SCREAMING_SNAKE_CASE__ : List[str]="<unk>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE__ : Dict="<mask>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , SCREAMING_SNAKE_CASE__ : Tuple=True , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> Optional[Any]: super().__init__( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , SCREAMING_SNAKE_CASE_ ) != add_prefix_space: __lowerCamelCase = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('''type''' ) ) __lowerCamelCase = add_prefix_space __lowerCamelCase = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __lowerCamelCase = 'post_processor' __lowerCamelCase = getattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if tokenizer_component_instance: __lowerCamelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __lowerCamelCase = tuple(state['''sep'''] ) if "cls" in state: __lowerCamelCase = tuple(state['''cls'''] ) __lowerCamelCase = False if state.get('''add_prefix_space''' , SCREAMING_SNAKE_CASE_ ) != add_prefix_space: __lowerCamelCase = add_prefix_space __lowerCamelCase = True if state.get('''trim_offsets''' , SCREAMING_SNAKE_CASE_ ) != trim_offsets: __lowerCamelCase = trim_offsets __lowerCamelCase = True if changes_to_apply: __lowerCamelCase = getattr(SCREAMING_SNAKE_CASE_ , state.pop('''type''' ) ) __lowerCamelCase = component_class(**SCREAMING_SNAKE_CASE_ ) setattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @property def __A ( self : Tuple ) -> str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : Any ) -> List[str]: __lowerCamelCase = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else value __lowerCamelCase = value def __A ( self : Any , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> BatchEncoding: __lowerCamelCase = kwargs.get('''is_split_into_words''' , SCREAMING_SNAKE_CASE_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def __A ( self : int , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> BatchEncoding: __lowerCamelCase = kwargs.get('''is_split_into_words''' , SCREAMING_SNAKE_CASE_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict = None ) -> Tuple[str]: __lowerCamelCase = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any=None ) -> List[str]: __lowerCamelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any = None ) -> List[int]: __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
365
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Optional[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } SCREAMING_SNAKE_CASE__ : str = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } SCREAMING_SNAKE_CASE__ : int = {"facebook/blenderbot_small-90M": 512} def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Tuple: __lowerCamelCase = set() __lowerCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCamelCase = char __lowerCamelCase = set(__lowerCAmelCase ) return pairs class lowerCAmelCase__ ( __lowercase ): a__ : List[Any] = VOCAB_FILES_NAMES a__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple="__start__" , SCREAMING_SNAKE_CASE__ : Tuple="__end__" , SCREAMING_SNAKE_CASE__ : List[str]="__unk__" , SCREAMING_SNAKE_CASE__ : str="__null__" , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> Optional[Any]: super().__init__(unk_token=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as vocab_handle: __lowerCamelCase = json.load(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = {v: k for k, v in self.encoder.items()} with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as merges_handle: __lowerCamelCase = merges_handle.read().split('''\n''' )[1:-1] __lowerCamelCase = [tuple(merge.split() ) for merge in merges] __lowerCamelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __lowerCamelCase = {} @property def __A ( self : Dict ) -> int: return len(self.encoder ) def __A ( self : str ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : str ) -> str: if token in self.cache: return self.cache[token] __lowerCamelCase = re.sub('''([.,!?()])''' , R''' \1''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = re.sub('''(\')''' , R''' \1 ''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = re.sub(R'''\s{2,}''' , ''' ''' , SCREAMING_SNAKE_CASE__ ) if "\n" in token: __lowerCamelCase = token.replace('''\n''' , ''' __newln__''' ) __lowerCamelCase = token.split(''' ''' ) __lowerCamelCase = [] for token in tokens: if not len(SCREAMING_SNAKE_CASE__ ): continue __lowerCamelCase = token.lower() __lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) __lowerCamelCase = get_pairs(SCREAMING_SNAKE_CASE__ ) if not pairs: words.append(SCREAMING_SNAKE_CASE__ ) continue while True: __lowerCamelCase = min(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __lowerCamelCase , __lowerCamelCase = bigram __lowerCamelCase = [] __lowerCamelCase = 0 while i < len(SCREAMING_SNAKE_CASE__ ): try: __lowerCamelCase = word.index(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) new_word.extend(word[i:j] ) __lowerCamelCase = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(SCREAMING_SNAKE_CASE__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = new_word if len(SCREAMING_SNAKE_CASE__ ) == 1: break else: __lowerCamelCase = get_pairs(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = '''@@ '''.join(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = word[:-4] __lowerCamelCase = word words.append(SCREAMING_SNAKE_CASE__ ) return " ".join(SCREAMING_SNAKE_CASE__ ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: __lowerCamelCase = [] __lowerCamelCase = re.findall(R'''\S+\n?''' , SCREAMING_SNAKE_CASE__ ) for token in words: split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE__ ).split(''' ''' ) ) ) return split_tokens def __A ( self : str , SCREAMING_SNAKE_CASE__ : str ) -> int: __lowerCamelCase = token.lower() return self.encoder.get(SCREAMING_SNAKE_CASE__ , self.encoder.get(self.unk_token ) ) def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int ) -> str: return self.decoder.get(SCREAMING_SNAKE_CASE__ , self.unk_token ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: __lowerCamelCase = ''' '''.join(SCREAMING_SNAKE_CASE__ ).replace('''@@ ''' , '''''' ).strip() return out_string def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCamelCase = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) + '''\n''' ) __lowerCamelCase = 0 with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) __lowerCamelCase = token_index writer.write(''' '''.join(SCREAMING_SNAKE_CASE__ ) + '''\n''' ) index += 1 return vocab_file, merge_file
339
0
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType SCREAMING_SNAKE_CASE__ : str = logging.get_logger(__name__) class lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE ): a__ : str = """vision-encoder-decoder""" a__ : List[Any] = True def __init__( self : List[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[int]: super().__init__(**SCREAMING_SNAKE_CASE__ ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'''A configuraton of type {self.model_type} cannot be instantiated because ''' f'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) __lowerCamelCase = kwargs.pop('''encoder''' ) __lowerCamelCase = encoder_config.pop('''model_type''' ) __lowerCamelCase = kwargs.pop('''decoder''' ) __lowerCamelCase = decoder_config.pop('''model_type''' ) __lowerCamelCase = AutoConfig.for_model(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = AutoConfig.for_model(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = True @classmethod def __A ( cls : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> PretrainedConfig: logger.info('''Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) __lowerCamelCase = True __lowerCamelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] ) -> Optional[int]: __lowerCamelCase = copy.deepcopy(self.__dict__ ) __lowerCamelCase = self.encoder.to_dict() __lowerCamelCase = self.decoder.to_dict() __lowerCamelCase = self.__class__.model_type return output class lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE ): a__ : List[str] = version.parse("""1.11""" ) @property def __A ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __A ( self : Optional[int] ) -> float: return 1e-4 @property def __A ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({'''last_hidden_state''': {0: '''batch''', 1: '''encoder_sequence'''}} ) class lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE ): @property def __A ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: __lowerCamelCase = OrderedDict() __lowerCamelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} __lowerCamelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} __lowerCamelCase = {0: '''batch''', 1: '''encoder_sequence'''} return common_inputs def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple = -1 , SCREAMING_SNAKE_CASE__ : Union[str, Any] = -1 , SCREAMING_SNAKE_CASE__ : Optional[int] = False , SCREAMING_SNAKE_CASE__ : str = None , ) -> Mapping[str, Any]: import torch __lowerCamelCase = OrderedDict() __lowerCamelCase = super().generate_dummy_inputs( SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , seq_length=SCREAMING_SNAKE_CASE__ , is_pair=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase = dummy_input['''input_ids'''].shape __lowerCamelCase = (batch, encoder_sequence, self._config.encoder_hidden_size) __lowerCamelCase = dummy_input.pop('''input_ids''' ) __lowerCamelCase = dummy_input.pop('''attention_mask''' ) __lowerCamelCase = torch.zeros(SCREAMING_SNAKE_CASE__ ) return common_inputs class lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE ): @property def __A ( self : int ) -> None: pass def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str = "default" ) -> OnnxConfig: __lowerCamelCase = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
366
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): a__ : str = ShapEImgaImgPipeline a__ : Union[str, Any] = ["""image"""] a__ : Optional[int] = ["""image"""] a__ : Union[str, Any] = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] a__ : List[str] = False @property def __A ( self : Dict ) -> Optional[Any]: return 32 @property def __A ( self : Optional[int] ) -> Optional[int]: return 32 @property def __A ( self : Optional[int] ) -> List[Any]: return self.time_input_dim * 4 @property def __A ( self : str ) -> List[Any]: return 8 @property def __A ( self : Optional[Any] ) -> Union[str, Any]: torch.manual_seed(0 ) __lowerCamelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __lowerCamelCase = CLIPVisionModel(SCREAMING_SNAKE_CASE__ ) return model @property def __A ( self : Union[str, Any] ) -> Union[str, Any]: __lowerCamelCase = CLIPImageProcessor( crop_size=2_24 , do_center_crop=SCREAMING_SNAKE_CASE__ , do_normalize=SCREAMING_SNAKE_CASE__ , do_resize=SCREAMING_SNAKE_CASE__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=2_24 , ) return image_processor @property def __A ( self : Dict ) -> int: torch.manual_seed(0 ) __lowerCamelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } __lowerCamelCase = PriorTransformer(**SCREAMING_SNAKE_CASE__ ) return model @property def __A ( self : Tuple ) -> Dict: torch.manual_seed(0 ) __lowerCamelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } __lowerCamelCase = ShapERenderer(**SCREAMING_SNAKE_CASE__ ) return model def __A ( self : Optional[int] ) -> List[str]: __lowerCamelCase = self.dummy_prior __lowerCamelCase = self.dummy_image_encoder __lowerCamelCase = self.dummy_image_processor __lowerCamelCase = self.dummy_renderer __lowerCamelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=10_24 , prediction_type='''sample''' , use_karras_sigmas=SCREAMING_SNAKE_CASE__ , clip_sample=SCREAMING_SNAKE_CASE__ , clip_sample_range=1.0 , ) __lowerCamelCase = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def __A ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=0 ) -> int: __lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ): __lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: __lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def __A ( self : Union[str, Any] ) -> Dict: __lowerCamelCase = '''cpu''' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = output.images[0] __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowerCamelCase = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self : str ) -> Tuple: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self : Optional[Any] ) -> str: __lowerCamelCase = torch_device == '''cpu''' __lowerCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=SCREAMING_SNAKE_CASE__ , relax_max_difference=SCREAMING_SNAKE_CASE__ , ) def __A ( self : Dict ) -> Optional[int]: __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = 1 __lowerCamelCase = 2 __lowerCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) for key in inputs.keys(): if key in self.batch_params: __lowerCamelCase = batch_size * [inputs[key]] __lowerCamelCase = pipe(**SCREAMING_SNAKE_CASE__ , num_images_per_prompt=SCREAMING_SNAKE_CASE__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : str ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : str ) -> Union[str, Any]: __lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) __lowerCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) __lowerCamelCase = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) __lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(0 ) __lowerCamelCase = pipe( SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
339
0
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : Any ) -> int: __lowerCamelCase = 0 def __A ( self : List[str] ) -> Optional[Any]: __lowerCamelCase = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(__lowercase , __lowercase ) def __A ( self : Tuple ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = Path(__lowercase ) / '''preprocessor_config.json''' __lowerCamelCase = Path(__lowercase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w''' ) ) __lowerCamelCase = AutoImageProcessor.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) def __A ( self : Tuple ) -> Union[str, Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = Path(__lowercase ) / '''preprocessor_config.json''' __lowerCamelCase = Path(__lowercase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w''' ) ) __lowerCamelCase = AutoImageProcessor.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) def __A ( self : Optional[int] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = CLIPConfig() # Create a dummy config file with image_proceesor_type __lowerCamelCase = Path(__lowercase ) / '''preprocessor_config.json''' __lowerCamelCase = Path(__lowercase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __lowerCamelCase = AutoImageProcessor.from_pretrained(__lowercase ).to_dict() config_dict.pop('''image_processor_type''' ) __lowerCamelCase = CLIPImageProcessor(**__lowercase ) # save in new folder model_config.save_pretrained(__lowercase ) config.save_pretrained(__lowercase ) __lowerCamelCase = AutoImageProcessor.from_pretrained(__lowercase ) # make sure private variable is not incorrectly saved __lowerCamelCase = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(__lowercase , __lowercase ) def __A ( self : Union[str, Any] ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = Path(__lowercase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''' ) , ) __lowerCamelCase = AutoImageProcessor.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) def __A ( self : Tuple ) -> Optional[int]: with self.assertRaisesRegex( __lowercase , '''clip-base is not a local folder and is not a valid model identifier''' ): __lowerCamelCase = AutoImageProcessor.from_pretrained('''clip-base''' ) def __A ( self : Any ) -> List[Any]: with self.assertRaisesRegex( __lowercase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __lowerCamelCase = AutoImageProcessor.from_pretrained(__lowercase , revision='''aaaaaa''' ) def __A ( self : Union[str, Any] ) -> List[str]: with self.assertRaisesRegex( __lowercase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): __lowerCamelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __A ( self : Union[str, Any] ) -> str: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowercase ): __lowerCamelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowercase ): __lowerCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase ) __lowerCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__lowercase ) __lowerCamelCase = AutoImageProcessor.from_pretrained(__lowercase , trust_remote_code=__lowercase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def __A ( self : Tuple ) -> Optional[Any]: try: AutoConfig.register('''custom''' , __lowercase ) AutoImageProcessor.register(__lowercase , __lowercase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowercase ): AutoImageProcessor.register(__lowercase , __lowercase ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = Path(__lowercase ) / '''preprocessor_config.json''' __lowerCamelCase = Path(__lowercase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w''' ) ) __lowerCamelCase = CustomImageProcessor.from_pretrained(__lowercase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__lowercase ) __lowerCamelCase = AutoImageProcessor.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __A ( self : Optional[int] ) -> List[Any]: class lowerCAmelCase__ ( UpperCAmelCase_ ): a__ : List[str] = True try: AutoConfig.register('''custom''' , __lowercase ) AutoImageProcessor.register(__lowercase , __lowercase ) # If remote code is not set, the default is to use local __lowerCamelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __lowerCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __lowerCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(__lowercase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
367
import glob import os import random from string import ascii_lowercase, digits import cva SCREAMING_SNAKE_CASE__ : str = "" SCREAMING_SNAKE_CASE__ : Any = "" SCREAMING_SNAKE_CASE__ : Optional[Any] = "" SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 # (0 is vertical, 1 is horizontal) def __magic_name__ ( ) -> None: __lowerCamelCase , __lowerCamelCase = get_dataset(__lowerCAmelCase , __lowerCAmelCase ) print('''Processing...''' ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = update_image_and_anno(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for index, image in enumerate(__lowerCAmelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __lowerCamelCase = random_chars(32 ) __lowerCamelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __lowerCamelCase = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(f'''/{file_root}.jpg''' , __lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Success {index+1}/{len(__lowerCAmelCase )} with {file_name}''' ) __lowerCamelCase = [] for anno in new_annos[index]: __lowerCamelCase = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(__lowerCAmelCase ) with open(f'''/{file_root}.txt''' , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> tuple[list, list]: __lowerCamelCase = [] __lowerCamelCase = [] for label_file in glob.glob(os.path.join(__lowerCAmelCase , '''*.txt''' ) ): __lowerCamelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(__lowerCAmelCase ) as in_file: __lowerCamelCase = in_file.readlines() __lowerCamelCase = os.path.join(__lowerCAmelCase , f'''{label_name}.jpg''' ) __lowerCamelCase = [] for obj_list in obj_lists: __lowerCamelCase = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__lowerCAmelCase ) labels.append(__lowerCAmelCase ) return img_paths, labels def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int = 1 ) -> tuple[list, list, list]: __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] for idx in range(len(__lowerCAmelCase ) ): __lowerCamelCase = [] __lowerCamelCase = img_list[idx] path_list.append(__lowerCAmelCase ) __lowerCamelCase = anno_list[idx] __lowerCamelCase = cva.imread(__lowerCAmelCase ) if flip_type == 1: __lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: __lowerCamelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: __lowerCamelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__lowerCAmelCase ) new_imgs_list.append(__lowerCAmelCase ) return new_imgs_list, new_annos_lists, path_list def __magic_name__ ( __lowerCAmelCase : int = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" __lowerCamelCase = ascii_lowercase + digits return "".join(random.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
339
0
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class lowerCAmelCase__ ( UpperCamelCase__ , unittest.TestCase ): a__ : Dict = FlaxAutoencoderKL @property def __A ( self : Tuple ) -> Union[str, Any]: __lowerCamelCase = 4 __lowerCamelCase = 3 __lowerCamelCase = (32, 32) __lowerCamelCase = jax.random.PRNGKey(0 ) __lowerCamelCase = jax.random.uniform(__a , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def __A ( self : int ) -> Dict: __lowerCamelCase = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } __lowerCamelCase = self.dummy_input return init_dict, inputs_dict
368
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated SCREAMING_SNAKE_CASE__ : Tuple = collections.namedtuple("_Datasets", ["train", "validation", "test"]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ SCREAMING_SNAKE_CASE__ : List[str] = "https://storage.googleapis.com/cvdf-datasets/mnist/" def __magic_name__ ( __lowerCAmelCase : Any ) -> int: __lowerCamelCase = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=__lowerCAmelCase )[0] @deprecated(__lowerCAmelCase , '''Please use tf.data to implement this functionality.''' ) def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> str: print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=__lowerCAmelCase ) as bytestream: __lowerCamelCase = _readaa(__lowerCAmelCase ) if magic != 2051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = bytestream.read(rows * cols * num_images ) __lowerCamelCase = numpy.frombuffer(__lowerCAmelCase , dtype=numpy.uinta ) __lowerCamelCase = data.reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 1 ) return data @deprecated(__lowerCAmelCase , '''Please use tf.one_hot on tensors.''' ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : List[Any] ) -> Dict: __lowerCamelCase = labels_dense.shape[0] __lowerCamelCase = numpy.arange(__lowerCAmelCase ) * num_classes __lowerCamelCase = numpy.zeros((num_labels, num_classes) ) __lowerCamelCase = 1 return labels_one_hot @deprecated(__lowerCAmelCase , '''Please use tf.data to implement this functionality.''' ) def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : str=False , __lowerCAmelCase : List[str]=10 ) -> List[str]: print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=__lowerCAmelCase ) as bytestream: __lowerCamelCase = _readaa(__lowerCAmelCase ) if magic != 2049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = bytestream.read(__lowerCAmelCase ) __lowerCamelCase = numpy.frombuffer(__lowerCAmelCase , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(__lowerCAmelCase , __lowerCAmelCase ) return labels class lowerCAmelCase__ : @deprecated( SCREAMING_SNAKE_CASE__ , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : str=dtypes.floataa , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : str=None , ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase = random_seed.get_seed(SCREAMING_SNAKE_CASE__ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) __lowerCamelCase = dtypes.as_dtype(SCREAMING_SNAKE_CASE__ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: __lowerCamelCase = 1_00_00 __lowerCamelCase = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'''images.shape: {images.shape} labels.shape: {labels.shape}''' __lowerCamelCase = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __lowerCamelCase = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __lowerCamelCase = images.astype(numpy.floataa ) __lowerCamelCase = numpy.multiply(SCREAMING_SNAKE_CASE__ , 1.0 / 255.0 ) __lowerCamelCase = images __lowerCamelCase = labels __lowerCamelCase = 0 __lowerCamelCase = 0 @property def __A ( self : str ) -> Optional[int]: return self._images @property def __A ( self : Any ) -> Dict: return self._labels @property def __A ( self : List[Any] ) -> int: return self._num_examples @property def __A ( self : str ) -> Any: return self._epochs_completed def __A ( self : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : str=True ) -> str: if fake_data: __lowerCamelCase = [1] * 7_84 __lowerCamelCase = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(SCREAMING_SNAKE_CASE__ )], [fake_label for _ in range(SCREAMING_SNAKE_CASE__ )], ) __lowerCamelCase = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __lowerCamelCase = numpy.arange(self._num_examples ) numpy.random.shuffle(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.images[perma] __lowerCamelCase = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __lowerCamelCase = self._num_examples - start __lowerCamelCase = self._images[start : self._num_examples] __lowerCamelCase = self._labels[start : self._num_examples] # Shuffle the data if shuffle: __lowerCamelCase = numpy.arange(self._num_examples ) numpy.random.shuffle(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.images[perm] __lowerCamelCase = self.labels[perm] # Start next epoch __lowerCamelCase = 0 __lowerCamelCase = batch_size - rest_num_examples __lowerCamelCase = self._index_in_epoch __lowerCamelCase = self._images[start:end] __lowerCamelCase = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size __lowerCamelCase = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(__lowerCAmelCase , '''Please write your own downloading logic.''' ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] ) -> List[Any]: if not gfile.Exists(__lowerCAmelCase ): gfile.MakeDirs(__lowerCAmelCase ) __lowerCamelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if not gfile.Exists(__lowerCAmelCase ): urllib.request.urlretrieve(__lowerCAmelCase , __lowerCAmelCase ) # noqa: S310 with gfile.GFile(__lowerCAmelCase ) as f: __lowerCamelCase = f.size() print('''Successfully downloaded''' , __lowerCAmelCase , __lowerCAmelCase , '''bytes.''' ) return filepath @deprecated( __lowerCAmelCase , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Dict=False , __lowerCAmelCase : List[str]=dtypes.floataa , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : int=5000 , __lowerCAmelCase : Any=None , __lowerCAmelCase : List[str]=DEFAULT_SOURCE_URL , ) -> Optional[Any]: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=__lowerCAmelCase , one_hot=__lowerCAmelCase , dtype=__lowerCAmelCase , seed=__lowerCAmelCase ) __lowerCamelCase = fake() __lowerCamelCase = fake() __lowerCamelCase = fake() return _Datasets(train=__lowerCAmelCase , validation=__lowerCAmelCase , test=__lowerCAmelCase ) if not source_url: # empty string check __lowerCamelCase = DEFAULT_SOURCE_URL __lowerCamelCase = '''train-images-idx3-ubyte.gz''' __lowerCamelCase = '''train-labels-idx1-ubyte.gz''' __lowerCamelCase = '''t10k-images-idx3-ubyte.gz''' __lowerCamelCase = '''t10k-labels-idx1-ubyte.gz''' __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + train_images_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_images(__lowerCAmelCase ) __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + train_labels_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_labels(__lowerCAmelCase , one_hot=__lowerCAmelCase ) __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + test_images_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_images(__lowerCAmelCase ) __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + test_labels_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_labels(__lowerCAmelCase , one_hot=__lowerCAmelCase ) if not 0 <= validation_size <= len(__lowerCAmelCase ): __lowerCamelCase = ( '''Validation size should be between 0 and ''' f'''{len(__lowerCAmelCase )}. Received: {validation_size}.''' ) raise ValueError(__lowerCAmelCase ) __lowerCamelCase = train_images[:validation_size] __lowerCamelCase = train_labels[:validation_size] __lowerCamelCase = train_images[validation_size:] __lowerCamelCase = train_labels[validation_size:] __lowerCamelCase = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} __lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) __lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) __lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) return _Datasets(train=__lowerCAmelCase , validation=__lowerCAmelCase , test=__lowerCAmelCase )
339
0
import math import tensorflow as tf from packaging import version def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Union[str, Any]: __lowerCamelCase = tf.convert_to_tensor(lowerCAmelCase_ ) __lowerCamelCase = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> str: __lowerCamelCase = tf.convert_to_tensor(lowerCAmelCase_ ) __lowerCamelCase = tf.cast(math.pi , x.dtype ) __lowerCamelCase = tf.cast(0.044715 , x.dtype ) __lowerCamelCase = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCAmelCase_ , 3 )) )) return x * cdf def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Union[str, Any]: __lowerCamelCase = tf.convert_to_tensor(lowerCAmelCase_ ) return x * tf.tanh(tf.math.softplus(lowerCAmelCase_ ) ) def __magic_name__ ( __lowerCAmelCase : Any ) -> List[str]: __lowerCamelCase = tf.convert_to_tensor(lowerCAmelCase_ ) __lowerCamelCase = tf.cast(0.044715 , x.dtype ) __lowerCamelCase = tf.cast(0.7978845608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> Optional[int]: __lowerCamelCase = tf.convert_to_tensor(lowerCAmelCase_ ) __lowerCamelCase = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __magic_name__ ( __lowerCAmelCase : Optional[Any] ) -> Dict: return tf.clip_by_value(_gelu(lowerCAmelCase_ ) , -10 , 10 ) def __magic_name__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict=-1 ) -> List[Any]: __lowerCamelCase = tf.split(lowerCAmelCase_ , 2 , axis=lowerCAmelCase_ ) return a * tf.math.sigmoid(lowerCAmelCase_ ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def __magic_name__ ( __lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: return tf.keras.activations.gelu(lowerCAmelCase_ , approximate=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ : Dict = tf.keras.activations.gelu SCREAMING_SNAKE_CASE__ : Any = approximate_gelu_wrap else: SCREAMING_SNAKE_CASE__ : int = _gelu SCREAMING_SNAKE_CASE__ : int = _gelu_new SCREAMING_SNAKE_CASE__ : Any = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def __magic_name__ ( __lowerCAmelCase : Optional[Any] ) -> Optional[int]: if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f'''function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}''' )
369
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "vocab_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt" ), "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt" ), }, "tokenizer_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli": ( "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE__ : List[Any] = { "squeezebert/squeezebert-uncased": 512, "squeezebert/squeezebert-mnli": 512, "squeezebert/squeezebert-mnli-headless": 512, } SCREAMING_SNAKE_CASE__ : Dict = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class lowerCAmelCase__ ( __lowercase ): a__ : Optional[int] = VOCAB_FILES_NAMES a__ : Any = PRETRAINED_VOCAB_FILES_MAP a__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Optional[Any] = SqueezeBertTokenizer def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[UNK]" , SCREAMING_SNAKE_CASE__ : Optional[int]="[SEP]" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[PAD]" , SCREAMING_SNAKE_CASE__ : Tuple="[CLS]" , SCREAMING_SNAKE_CASE__ : str="[MASK]" , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : int=None , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Optional[Any]: super().__init__( SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , SCREAMING_SNAKE_CASE__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , SCREAMING_SNAKE_CASE__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars ): __lowerCamelCase = getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop('''type''' ) ) __lowerCamelCase = do_lower_case __lowerCamelCase = strip_accents __lowerCamelCase = tokenize_chinese_chars __lowerCamelCase = normalizer_class(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = do_lower_case def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=None ) -> str: __lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: __lowerCamelCase = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ ) return tuple(SCREAMING_SNAKE_CASE__ )
339
0
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( __snake_case ): a__ : Union[str, Any] = (IPNDMScheduler,) a__ : Optional[Any] = (("""num_inference_steps""", 50),) def __A ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[Any]: __lowerCamelCase = {"num_train_timesteps": 10_00} config.update(**UpperCamelCase__ ) return config def __A ( self : int , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , **SCREAMING_SNAKE_CASE__ : int ) -> Tuple: __lowerCamelCase = dict(self.forward_default_kwargs ) __lowerCamelCase = kwargs.pop('''num_inference_steps''' , UpperCamelCase__ ) __lowerCamelCase = self.dummy_sample __lowerCamelCase = 0.1 * sample __lowerCamelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __lowerCamelCase = self.get_scheduler_config(**UpperCamelCase__ ) __lowerCamelCase = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals __lowerCamelCase = dummy_past_residuals[:] if time_step is None: __lowerCamelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) __lowerCamelCase = scheduler_class.from_pretrained(UpperCamelCase__ ) new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals __lowerCamelCase = dummy_past_residuals[:] __lowerCamelCase = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample __lowerCamelCase = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" __lowerCamelCase = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample __lowerCamelCase = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __A ( self : Optional[int] ) -> Any: pass def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]: __lowerCamelCase = dict(self.forward_default_kwargs ) __lowerCamelCase = kwargs.pop('''num_inference_steps''' , UpperCamelCase__ ) __lowerCamelCase = self.dummy_sample __lowerCamelCase = 0.1 * sample __lowerCamelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) __lowerCamelCase = dummy_past_residuals[:] if time_step is None: __lowerCamelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) __lowerCamelCase = scheduler_class.from_pretrained(UpperCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) __lowerCamelCase = dummy_past_residuals[:] __lowerCamelCase = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample __lowerCamelCase = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" __lowerCamelCase = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample __lowerCamelCase = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __A ( self : Dict , **SCREAMING_SNAKE_CASE__ : Tuple ) -> Dict: __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config(**UpperCamelCase__ ) __lowerCamelCase = scheduler_class(**UpperCamelCase__ ) __lowerCamelCase = 10 __lowerCamelCase = self.dummy_model() __lowerCamelCase = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): __lowerCamelCase = model(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): __lowerCamelCase = model(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample return sample def __A ( self : List[str] ) -> Optional[Any]: __lowerCamelCase = dict(self.forward_default_kwargs ) __lowerCamelCase = kwargs.pop('''num_inference_steps''' , UpperCamelCase__ ) for scheduler_class in self.scheduler_classes: __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**UpperCamelCase__ ) __lowerCamelCase = self.dummy_sample __lowerCamelCase = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase__ , '''set_timesteps''' ): scheduler.set_timesteps(UpperCamelCase__ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase__ , '''set_timesteps''' ): __lowerCamelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __lowerCamelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __lowerCamelCase = dummy_past_residuals[:] __lowerCamelCase = scheduler.timesteps[5] __lowerCamelCase = scheduler.timesteps[6] __lowerCamelCase = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample __lowerCamelCase = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __lowerCamelCase = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample __lowerCamelCase = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __A ( self : Optional[int] ) -> List[Any]: for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def __A ( self : Any ) -> Any: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def __A ( self : Union[str, Any] ) -> Tuple: __lowerCamelCase = self.full_loop() __lowerCamelCase = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 2_54_05_29 ) < 10
370
from __future__ import annotations def __magic_name__ ( __lowerCAmelCase : list[int] ) -> bool: return len(set(__lowerCAmelCase ) ) == len(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
339
0
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline SCREAMING_SNAKE_CASE__ : Tuple = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCAmelCase__ ( datasets.BuilderConfig ): a__ : Optional[datasets.Features] = None a__ : str = "utf-8" a__ : Optional[str] = None a__ : Optional[str] = None a__ : bool = True # deprecated a__ : Optional[int] = None # deprecated a__ : int = 10 << 20 # 10MB a__ : Optional[bool] = None class lowerCAmelCase__ ( datasets.ArrowBasedBuilder ): a__ : Optional[Any] = JsonConfig def __A ( self : Optional[int] ) -> List[str]: if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) __lowerCamelCase = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Any ) -> List[str]: if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) __lowerCamelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__snake_case , (str, list, tuple) ): __lowerCamelCase = data_files if isinstance(__snake_case , __snake_case ): __lowerCamelCase = [files] __lowerCamelCase = [dl_manager.iter_files(__snake_case ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __lowerCamelCase = [] for split_name, files in data_files.items(): if isinstance(__snake_case , __snake_case ): __lowerCamelCase = [files] __lowerCamelCase = [dl_manager.iter_files(__snake_case ) for file in files] splits.append(datasets.SplitGenerator(name=__snake_case , gen_kwargs={'''files''': files} ) ) return splits def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : pa.Table ) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): __lowerCamelCase = self.config.features.arrow_schema.field(__snake_case ).type __lowerCamelCase = pa_table.append_column(__snake_case , pa.array([None] * len(__snake_case ) , type=__snake_case ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example __lowerCamelCase = table_cast(__snake_case , self.config.features.arrow_schema ) return pa_table def __A ( self : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]: for file_idx, file in enumerate(itertools.chain.from_iterable(__snake_case ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__snake_case , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: __lowerCamelCase = json.load(__snake_case ) # We keep only the field we are interested in __lowerCamelCase = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__snake_case , (list, tuple) ): __lowerCamelCase = set().union(*[row.keys() for row in dataset] ) __lowerCamelCase = {col: [row.get(__snake_case ) for row in dataset] for col in keys} else: __lowerCamelCase = dataset __lowerCamelCase = pa.Table.from_pydict(__snake_case ) yield file_idx, self._cast_table(__snake_case ) # If the file has one json object per line else: with open(__snake_case , '''rb''' ) as f: __lowerCamelCase = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small __lowerCamelCase = max(self.config.chunksize // 32 , 16 << 10 ) __lowerCamelCase = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: __lowerCamelCase = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__snake_case ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": __lowerCamelCase = batch.decode(self.config.encoding , errors=__snake_case ).encode('''utf-8''' ) try: while True: try: __lowerCamelCase = paj.read_json( io.BytesIO(__snake_case ) , read_options=paj.ReadOptions(block_size=__snake_case ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__snake_case , pa.ArrowInvalid ) and "straddling" not in str(__snake_case ) or block_size > len(__snake_case ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'''Batch of {len(__snake_case )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( __snake_case , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: __lowerCamelCase = json.load(__snake_case ) except json.JSONDecodeError: logger.error(f'''Failed to read file \'{file}\' with error {type(__snake_case )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__snake_case , __snake_case ): # list is the only sequence type supported in JSON try: __lowerCamelCase = set().union(*[row.keys() for row in dataset] ) __lowerCamelCase = {col: [row.get(__snake_case ) for row in dataset] for col in keys} __lowerCamelCase = pa.Table.from_pydict(__snake_case ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'''Failed to read file \'{file}\' with error {type(__snake_case )}: {e}''' ) raise ValueError(f'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(__snake_case ) break else: logger.error(f'''Failed to read file \'{file}\' with error {type(__snake_case )}: {e}''' ) raise ValueError( f'''Not able to read records in the JSON file at {file}. ''' f'''You should probably indicate the field of the JSON file containing your records. ''' f'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' f'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__snake_case ) batch_idx += 1
371
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ : Dict = { "configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Tuple = [ "FALCON_PRETRAINED_MODEL_ARCHIVE_LIST", "FalconForCausalLM", "FalconModel", "FalconPreTrainedModel", "FalconForSequenceClassification", "FalconForTokenClassification", "FalconForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
339
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} SCREAMING_SNAKE_CASE__ = { "vocab_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json" ), }, "merges_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt" ), }, } SCREAMING_SNAKE_CASE__ = { "allenai/longformer-base-4096": 4_096, "allenai/longformer-large-4096": 4_096, "allenai/longformer-large-4096-finetuned-triviaqa": 4_096, "allenai/longformer-base-4096-extra.pos.embd.only": 4_096, "allenai/longformer-large-4096-extra.pos.embd.only": 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __magic_name__ ( ) -> int: __lowerCamelCase = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) __lowerCamelCase = bs[:] __lowerCamelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowerCAmelCase ) cs.append(2**8 + n ) n += 1 __lowerCamelCase = [chr(__lowerCAmelCase ) for n in cs] return dict(zip(__lowerCAmelCase , __lowerCAmelCase ) ) def __magic_name__ ( __lowerCAmelCase : str ) -> Dict: __lowerCamelCase = set() __lowerCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCamelCase = char return pairs class lowerCAmelCase__ ( __lowercase ): a__ : int = VOCAB_FILES_NAMES a__ : Dict = PRETRAINED_VOCAB_FILES_MAP a__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any]="replace" , SCREAMING_SNAKE_CASE__ : Dict="<s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="</s>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : List[Any]="<unk>" , SCREAMING_SNAKE_CASE__ : Dict="<pad>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<mask>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , **SCREAMING_SNAKE_CASE__ : int , ) -> Tuple: __lowerCamelCase = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else bos_token __lowerCamelCase = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else eos_token __lowerCamelCase = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else sep_token __lowerCamelCase = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else cls_token __lowerCamelCase = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else unk_token __lowerCamelCase = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token super().__init__( errors=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as vocab_handle: __lowerCamelCase = json.load(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = {v: k for k, v in self.encoder.items()} __lowerCamelCase = errors # how to handle errors in decoding __lowerCamelCase = bytes_to_unicode() __lowerCamelCase = {v: k for k, v in self.byte_encoder.items()} with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as merges_handle: __lowerCamelCase = merges_handle.read().split('''\n''' )[1:-1] __lowerCamelCase = [tuple(merge.split() ) for merge in bpe_merges] __lowerCamelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __lowerCamelCase = {} __lowerCamelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowerCamelCase = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def __A ( self : Any ) -> Optional[int]: return len(self.encoder ) def __A ( self : List[str] ) -> Any: return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[int]: if token in self.cache: return self.cache[token] __lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = get_pairs(SCREAMING_SNAKE_CASE__ ) if not pairs: return token while True: __lowerCamelCase = min(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __lowerCamelCase , __lowerCamelCase = bigram __lowerCamelCase = [] __lowerCamelCase = 0 while i < len(SCREAMING_SNAKE_CASE__ ): try: __lowerCamelCase = word.index(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowerCamelCase = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = new_word if len(SCREAMING_SNAKE_CASE__ ) == 1: break else: __lowerCamelCase = get_pairs(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = ''' '''.join(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = word return word def __A ( self : str , SCREAMING_SNAKE_CASE__ : str ) -> Any: __lowerCamelCase = [] for token in re.findall(self.pat , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE__ ).split(''' ''' ) ) return bpe_tokens def __A ( self : str , SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: return self.encoder.get(SCREAMING_SNAKE_CASE__ , self.encoder.get(self.unk_token ) ) def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: return self.decoder.get(SCREAMING_SNAKE_CASE__ ) def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : Tuple ) -> Union[str, Any]: __lowerCamelCase = ''''''.join(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCamelCase = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) + '''\n''' ) __lowerCamelCase = 0 with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) __lowerCamelCase = token_index writer.write(''' '''.join(SCREAMING_SNAKE_CASE__ ) + '''\n''' ) index += 1 return vocab_file, merge_file def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] __lowerCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict=False , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Dict: __lowerCamelCase = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE__ ) > 0 and not text[0].isspace()): __lowerCamelCase = ''' ''' + text return (text, kwargs)
350
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: return abs(__lowerCAmelCase ) if a == 0 else greatest_common_divisor(b % a , __lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. __lowerCamelCase , __lowerCamelCase = y, x % y return abs(__lowerCAmelCase ) def __magic_name__ ( ) -> Tuple: try: __lowerCamelCase = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) __lowerCamelCase = int(nums[0] ) __lowerCamelCase = int(nums[1] ) print( f'''greatest_common_divisor({num_a}, {num_a}) = ''' f'''{greatest_common_divisor(__lowerCAmelCase , __lowerCAmelCase )}''' ) print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__lowerCAmelCase , __lowerCAmelCase )}''' ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
339
0
"""simple docstring""" from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class lowerCAmelCase__ ( __lowercase , __lowercase ): a__ : List[str] = """pixel_values""" a__ : Any = False a__ : str = TimmBackboneConfig def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : str ) -> Tuple: requires_backends(self , '''timm''' ) super().__init__(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = config if config.backbone is None: raise ValueError('''backbone is not set in the config. Please set it to a timm model name.''' ) if config.backbone not in timm.list_models(): raise ValueError(f'''backbone {config.backbone} is not supported by timm.''' ) if hasattr(SCREAMING_SNAKE_CASE__ , '''out_features''' ) and config.out_features is not None: raise ValueError('''out_features is not supported by TimmBackbone. Please use out_indices instead.''' ) __lowerCamelCase = getattr(SCREAMING_SNAKE_CASE__ , '''use_pretrained_backbone''' , SCREAMING_SNAKE_CASE__ ) if pretrained is None: raise ValueError('''use_pretrained_backbone is not set in the config. Please set it to True or False.''' ) # We just take the final layer by default. This matches the default for the transformers models. __lowerCamelCase = config.out_indices if getattr(SCREAMING_SNAKE_CASE__ , '''out_indices''' , SCREAMING_SNAKE_CASE__ ) is not None else (-1,) __lowerCamelCase = timm.create_model( config.backbone , pretrained=SCREAMING_SNAKE_CASE__ , features_only=config.features_only , in_chans=config.num_channels , out_indices=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. __lowerCamelCase = self._backbone.return_layers __lowerCamelCase = {layer['''module''']: str(SCREAMING_SNAKE_CASE__ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(SCREAMING_SNAKE_CASE__ ) @classmethod def __A ( cls : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[str]: requires_backends(cls , ['''vision''', '''timm'''] ) from ...models.timm_backbone import TimmBackboneConfig __lowerCamelCase = kwargs.pop('''config''' , TimmBackboneConfig() ) __lowerCamelCase = kwargs.pop('''use_timm_backbone''' , SCREAMING_SNAKE_CASE__ ) if not use_timm: raise ValueError('''use_timm_backbone must be True for timm backbones''' ) __lowerCamelCase = kwargs.pop('''num_channels''' , config.num_channels ) __lowerCamelCase = kwargs.pop('''features_only''' , config.features_only ) __lowerCamelCase = kwargs.pop('''use_pretrained_backbone''' , config.use_pretrained_backbone ) __lowerCamelCase = kwargs.pop('''out_indices''' , config.out_indices ) __lowerCamelCase = TimmBackboneConfig( backbone=SCREAMING_SNAKE_CASE__ , num_channels=SCREAMING_SNAKE_CASE__ , features_only=SCREAMING_SNAKE_CASE__ , use_pretrained_backbone=SCREAMING_SNAKE_CASE__ , out_indices=SCREAMING_SNAKE_CASE__ , ) return super()._from_config(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: pass def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , **SCREAMING_SNAKE_CASE__ : str ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: __lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('''Cannot output attentions for timm backbones at the moment''' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone __lowerCamelCase = self._all_layers __lowerCamelCase = self._backbone(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self._return_layers __lowerCamelCase = tuple(hidden_states[i] for i in self.out_indices ) else: __lowerCamelCase = self._backbone(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = None __lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ ) if hidden_states is not None else None if not return_dict: __lowerCamelCase = (feature_maps,) if output_hidden_states: __lowerCamelCase = output + (hidden_states,) return output return BackboneOutput(feature_maps=SCREAMING_SNAKE_CASE__ , hidden_states=SCREAMING_SNAKE_CASE__ , attentions=SCREAMING_SNAKE_CASE__ )
351
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def __A ( self : Optional[int] ) -> Union[str, Any]: __lowerCamelCase = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) __lowerCamelCase = AutoTokenizer.from_pretrained('''google/mt5-small''' ) __lowerCamelCase = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids __lowerCamelCase = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids __lowerCamelCase = shift_tokens_right(SCREAMING_SNAKE_CASE__ , model.config.pad_token_id , model.config.decoder_start_token_id ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ).logits __lowerCamelCase = optax.softmax_cross_entropy(SCREAMING_SNAKE_CASE__ , onehot(SCREAMING_SNAKE_CASE__ , logits.shape[-1] ) ).mean() __lowerCamelCase = -(labels.shape[-1] * loss.item()) __lowerCamelCase = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
339
0
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict=13 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=7 , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : List[str]=99 , SCREAMING_SNAKE_CASE__ : Optional[Any]=32 , SCREAMING_SNAKE_CASE__ : Tuple=5 , SCREAMING_SNAKE_CASE__ : List[Any]=4 , SCREAMING_SNAKE_CASE__ : str=37 , SCREAMING_SNAKE_CASE__ : int="gelu" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : Any=1_28 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=32 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=16 , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.02 , SCREAMING_SNAKE_CASE__ : str=3 , SCREAMING_SNAKE_CASE__ : Dict=4 , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , ) -> Dict: __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = scope def __A ( self : List[Any] ) -> Union[str, Any]: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self : int ) -> Any: return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , ) def __A ( self : List[Any] ) -> Any: ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) = self.prepare_config_and_inputs() __lowerCamelCase = True __lowerCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any ) -> Tuple: __lowerCamelCase = NezhaModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __A ( self : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> List[Any]: __lowerCamelCase = True __lowerCamelCase = NezhaModel(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCamelCase = model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , encoder_attention_mask=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple: __lowerCamelCase = NezhaForMaskedLM(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any ) -> Any: __lowerCamelCase = NezhaForNextSentencePrediction(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCamelCase = model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any: __lowerCamelCase = NezhaForPreTraining(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCamelCase = model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , next_sentence_label=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> str: __lowerCamelCase = NezhaForQuestionAnswering(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCamelCase = model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , start_positions=SCREAMING_SNAKE_CASE__ , end_positions=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any: __lowerCamelCase = self.num_labels __lowerCamelCase = NezhaForSequenceClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> str: __lowerCamelCase = self.num_labels __lowerCamelCase = NezhaForTokenClassification(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: __lowerCamelCase = self.num_choices __lowerCamelCase = NezhaForMultipleChoice(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self : Optional[int] ) -> Optional[Any]: __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) = config_and_inputs __lowerCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): a__ : Tuple = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) a__ : Dict = ( { """feature-extraction""": NezhaModel, """fill-mask""": NezhaForMaskedLM, """question-answering""": NezhaForQuestionAnswering, """text-classification""": NezhaForSequenceClassification, """token-classification""": NezhaForTokenClassification, """zero-shot""": NezhaForSequenceClassification, } if is_torch_available() else {} ) a__ : int = True def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict=False ) -> Any: __lowerCamelCase = super()._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) if return_labels: if model_class in get_values(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) return inputs_dict def __A ( self : List[Any] ) -> Any: __lowerCamelCase = NezhaModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def __A ( self : Optional[Any] ) -> Tuple: self.config_tester.run_common_tests() def __A ( self : List[Any] ) -> Any: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def __A ( self : Union[str, Any] ) -> Optional[Any]: __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*SCREAMING_SNAKE_CASE__ ) def __A ( self : Dict ) -> str: # This regression test was failing with PyTorch < 1.3 ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __lowerCamelCase = None self.model_tester.create_and_check_model_as_decoder( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) def __A ( self : List[Any] ) -> Dict: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE__ ) def __A ( self : Any ) -> Optional[Any]: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] ) -> Dict: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*SCREAMING_SNAKE_CASE__ ) def __A ( self : Union[str, Any] ) -> int: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*SCREAMING_SNAKE_CASE__ ) def __A ( self : Dict ) -> Dict: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[Any] ) -> int: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[Any] ) -> List[str]: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE__ ) @slow def __A ( self : Any ) -> Tuple: for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = NezhaModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @slow @require_torch_gpu def __A ( self : List[Any] ) -> Union[str, Any]: __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return __lowerCamelCase = True __lowerCamelCase = model_class(config=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.jit.trace( SCREAMING_SNAKE_CASE__ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , '''bert.pt''' ) ) __lowerCamelCase = torch.jit.load(os.path.join(SCREAMING_SNAKE_CASE__ , '''bert.pt''' ) , map_location=SCREAMING_SNAKE_CASE__ ) loaded(inputs_dict['''input_ids'''].to(SCREAMING_SNAKE_CASE__ ) , inputs_dict['''attention_mask'''].to(SCREAMING_SNAKE_CASE__ ) ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def __A ( self : List[Any] ) -> Optional[int]: __lowerCamelCase = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowerCamelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowerCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )[0] __lowerCamelCase = torch.Size((1, 6, 7_68) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) ) @slow def __A ( self : Dict ) -> List[str]: __lowerCamelCase = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowerCamelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowerCamelCase = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )[0] __lowerCamelCase = torch.Size((1, 6, 2_11_28) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.tensor( [[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
352
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE__ : Optional[int] = "bart" SCREAMING_SNAKE_CASE__ : Dict = True @st.cache(allow_output_mutation=__lowerCAmelCase ) def __magic_name__ ( ) -> str: if LOAD_DENSE_INDEX: __lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) __lowerCamelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) __lowerCamelCase = qar_model.eval() else: __lowerCamelCase , __lowerCamelCase = (None, None) if MODEL_TYPE == "bart": __lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) __lowerCamelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) __lowerCamelCase = sas_model.eval() else: __lowerCamelCase , __lowerCamelCase = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__lowerCAmelCase ) def __magic_name__ ( ) -> Optional[int]: if LOAD_DENSE_INDEX: __lowerCamelCase = faiss.StandardGpuResources() __lowerCamelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] __lowerCamelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) __lowerCamelCase = faiss.IndexFlatIP(128 ) __lowerCamelCase = faiss.index_cpu_to_gpu(__lowerCAmelCase , 1 , __lowerCAmelCase ) wikiaab_gpu_index_flat.add(__lowerCAmelCase ) # TODO fix for larger GPU else: __lowerCamelCase , __lowerCamelCase = (None, None) __lowerCamelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__lowerCAmelCase ) def __magic_name__ ( ) -> List[str]: __lowerCamelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) __lowerCamelCase = elia['''train_eli5'''] __lowerCamelCase = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) __lowerCamelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(__lowerCAmelCase ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = load_indexes() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = load_models() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = load_train_data() def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[str]=10 ) -> List[str]: __lowerCamelCase = embed_questions_for_retrieval([question] , __lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase , __lowerCamelCase = eli5_train_q_index.search(__lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase = [elia_train[int(__lowerCAmelCase )] for i in I[0]] return nn_examples def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict="wiki40b" , __lowerCAmelCase : Any="dense" , __lowerCAmelCase : Dict=10 ) -> Union[str, Any]: if source == "none": __lowerCamelCase , __lowerCamelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": __lowerCamelCase , __lowerCamelCase = query_qa_dense_index( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: __lowerCamelCase , __lowerCamelCase = query_es_index( __lowerCAmelCase , __lowerCAmelCase , index_name='''english_wiki40b_snippets_100w''' , n_results=__lowerCAmelCase , ) __lowerCamelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] __lowerCamelCase = '''question: {} context: {}'''.format(__lowerCAmelCase , __lowerCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __lowerCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __lowerCAmelCase : None), } ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str=64 , __lowerCAmelCase : Dict=256 , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : Optional[Any]=0.95 , __lowerCAmelCase : List[Any]=0.8 ) -> Any: with torch.no_grad(): __lowerCamelCase = qa_sas_generate( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , num_answers=1 , num_beams=__lowerCAmelCase , min_len=__lowerCAmelCase , max_len=__lowerCAmelCase , do_sample=__lowerCAmelCase , temp=__lowerCAmelCase , top_p=__lowerCAmelCase , top_k=__lowerCAmelCase , max_input_length=1024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar SCREAMING_SNAKE_CASE__ : List[str] = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" SCREAMING_SNAKE_CASE__ : Dict = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE__ : int = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE__ : str = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] SCREAMING_SNAKE_CASE__ : Optional[int] = st.sidebar.checkbox("Demo options") if demo_options: SCREAMING_SNAKE_CASE__ : Optional[int] = st.sidebar.selectbox( "", action_list, index=3, ) SCREAMING_SNAKE_CASE__ : Optional[Any] = action_list.index(action_st) SCREAMING_SNAKE_CASE__ : int = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = show_type == "Show full text of passages" else: SCREAMING_SNAKE_CASE__ : Any = 3 SCREAMING_SNAKE_CASE__ : Any = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.checkbox("Retrieval options") if retrieval_options: SCREAMING_SNAKE_CASE__ : Tuple = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) SCREAMING_SNAKE_CASE__ : int = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: SCREAMING_SNAKE_CASE__ : List[str] = "wiki40b" SCREAMING_SNAKE_CASE__ : Optional[Any] = "dense" SCREAMING_SNAKE_CASE__ : str = "beam" SCREAMING_SNAKE_CASE__ : List[Any] = 2 SCREAMING_SNAKE_CASE__ : Optional[Any] = 64 SCREAMING_SNAKE_CASE__ : List[Any] = 256 SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : List[str] = st.sidebar.checkbox("Generation options") if generate_options: SCREAMING_SNAKE_CASE__ : Dict = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE__ : List[str] = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) SCREAMING_SNAKE_CASE__ : Any = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE__ : str = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE__ : Any = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE__ : Dict = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None # start main text SCREAMING_SNAKE_CASE__ : Any = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] SCREAMING_SNAKE_CASE__ : List[str] = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE__ : Union[str, Any] = st.text_input("Enter your question here:", "") else: SCREAMING_SNAKE_CASE__ : str = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = make_support(question, source=wiki_source, method="dense", n_results=10) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = make_support(question, source=wiki_source, method="sparse", n_results=10) SCREAMING_SNAKE_CASE__ : int = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE__ : Optional[Any] = support_list[:10] SCREAMING_SNAKE_CASE__ : Tuple = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE__ : Optional[int] = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) SCREAMING_SNAKE_CASE__ : Tuple = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE__ : Union[str, Any] = "[{}]({})".format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE__ : Dict = sec_titles.split(" & ") SCREAMING_SNAKE_CASE__ : int = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE__ : Any = find_nearest_training(question) SCREAMING_SNAKE_CASE__ : List[Any] = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) SCREAMING_SNAKE_CASE__ : List[Any] = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
339
0
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def __magic_name__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int=False ) -> Optional[int]: try: __lowerCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __lowerCamelCase = default else: # KEY is set, convert it to True or False. try: __lowerCamelCase = strtobool(__lowerCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''' ) return _value SCREAMING_SNAKE_CASE__ : Tuple = parse_flag_from_env("RUN_SLOW", default=False) def __magic_name__ ( __lowerCAmelCase : Any ) -> str: return unittest.skip('''Test was skipped''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> List[Any]: return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Any ) -> Any: return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> Dict: return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : str ) -> Any: return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Union[str, Any] ) -> Optional[Any]: return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : int ) -> int: return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Dict ) -> Optional[int]: return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Tuple ) -> Any: return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Dict ) -> Optional[Any]: return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Optional[int] ) -> Tuple: return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : str ) -> int: return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> List[str]: return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Tuple ) -> Union[str, Any]: return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Union[str, Any] ) -> Optional[int]: return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Tuple ) -> Tuple: return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Dict=None , __lowerCAmelCase : Dict=None ) -> List[str]: if test_case is None: return partial(__lowerCAmelCase , version=__lowerCAmelCase ) return unittest.skipUnless(is_torch_version('''>=''' , __lowerCAmelCase ) , f'''test requires torch version >= {version}''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Tuple ) -> Optional[Any]: return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Union[str, Any] ) -> Optional[Any]: return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(__lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Dict ) -> Any: return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def __magic_name__ ( __lowerCAmelCase : str ) -> int: return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(__lowerCAmelCase ) class lowerCAmelCase__ ( unittest.TestCase ): a__ : Any = True @classmethod def __A ( cls : Any ) -> Optional[Any]: __lowerCamelCase = tempfile.mkdtemp() @classmethod def __A ( cls : Optional[Any] ) -> List[str]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __A ( self : int ) -> Any: if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(SCREAMING_SNAKE_CASE__ ) class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : Optional[Any] ) -> Tuple: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Union[mock.Mock, List[mock.Mock]] ) -> int: __lowerCamelCase = mocks if isinstance(SCREAMING_SNAKE_CASE__ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def __magic_name__ ( __lowerCAmelCase : str ) -> Optional[Any]: __lowerCamelCase = AcceleratorState() __lowerCamelCase = tensor[None].clone().to(state.device ) __lowerCamelCase = gather(__lowerCAmelCase ).cpu() __lowerCamelCase = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __lowerCAmelCase ): return False return True class lowerCAmelCase__ : def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: __lowerCamelCase = returncode __lowerCamelCase = stdout __lowerCamelCase = stderr async def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] ) -> List[Any]: while True: __lowerCamelCase = await stream.readline() if line: callback(__lowerCAmelCase ) else: break async def __magic_name__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : int=None , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Dict=False ) -> _RunOutput: if echo: print('''\nRunning: ''' , ''' '''.join(__lowerCAmelCase ) ) __lowerCamelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__lowerCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__lowerCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __lowerCamelCase = [] __lowerCamelCase = [] def tee(__lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any]="" ): __lowerCamelCase = line.decode('''utf-8''' ).rstrip() sink.append(__lowerCAmelCase ) if not quiet: print(__lowerCAmelCase , __lowerCAmelCase , file=__lowerCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __lowerCAmelCase : tee(__lowerCAmelCase , __lowerCAmelCase , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __lowerCAmelCase : tee(__lowerCAmelCase , __lowerCAmelCase , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=__lowerCAmelCase , ) return _RunOutput(await p.wait() , __lowerCAmelCase , __lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Dict=180 , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[Any]=True ) -> _RunOutput: __lowerCamelCase = asyncio.get_event_loop() __lowerCamelCase = loop.run_until_complete( _stream_subprocess(__lowerCAmelCase , env=__lowerCAmelCase , stdin=__lowerCAmelCase , timeout=__lowerCAmelCase , quiet=__lowerCAmelCase , echo=__lowerCAmelCase ) ) __lowerCamelCase = ''' '''.join(__lowerCAmelCase ) if result.returncode > 0: __lowerCamelCase = '''\n'''.join(result.stderr ) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''' ) return result class lowerCAmelCase__ ( __lowercase ): pass def __magic_name__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str]=False ) -> List[str]: try: __lowerCamelCase = subprocess.check_output(__lowerCAmelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__lowerCAmelCase , '''decode''' ): __lowerCamelCase = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'''Command `{' '.join(__lowerCAmelCase )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
353
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : str = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class lowerCAmelCase__ ( __lowercase ): a__ : Dict = """xmod""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_05_22 , SCREAMING_SNAKE_CASE__ : str=7_68 , SCREAMING_SNAKE_CASE__ : int=12 , SCREAMING_SNAKE_CASE__ : Dict=12 , SCREAMING_SNAKE_CASE__ : List[str]=30_72 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : List[Any]=0.02 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1e-12 , SCREAMING_SNAKE_CASE__ : List[str]=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : Any="absolute" , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=("en_XX",) , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , **SCREAMING_SNAKE_CASE__ : int , ) -> str: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = position_embedding_type __lowerCamelCase = use_cache __lowerCamelCase = classifier_dropout __lowerCamelCase = pre_norm __lowerCamelCase = adapter_reduction_factor __lowerCamelCase = adapter_layer_norm __lowerCamelCase = adapter_reuse_layer_norm __lowerCamelCase = ln_before_adapter __lowerCamelCase = list(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = default_language class lowerCAmelCase__ ( __lowercase ): @property def __A ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
339
0
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__) class lowerCAmelCase__ ( __lowercase ): def __init__( self : str , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : List[str] ) -> None: warnings.warn( '''The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use FlavaImageProcessor instead.''' , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
354
from collections import namedtuple import requests from lxml import html # type: ignore SCREAMING_SNAKE_CASE__ : List[Any] = namedtuple("covid_data", "cases deaths recovered") def __magic_name__ ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data: __lowerCamelCase = '''//div[@class = "maincounter-number"]/span/text()''' return covid_data(*html.fromstring(requests.get(__lowerCAmelCase ).content ).xpath(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ : List[str] = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
339
0
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> str: if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __lowerCamelCase = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b" __lowerCamelCase = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b" __lowerCamelCase = max(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(__lowerCAmelCase ) , b_binary.zfill(__lowerCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
355
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) SCREAMING_SNAKE_CASE__ : int = logging.getLogger(__name__) @dataclass class lowerCAmelCase__ : a__ : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a__ : Optional[str] = field( default=__lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a__ : Optional[str] = field( default=__lowercase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a__ : Optional[str] = field( default=__lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether tp freeze the encoder."""} ) a__ : bool = field(default=__lowercase , metadata={"""help""": """Whether to freeze the embeddings."""} ) @dataclass class lowerCAmelCase__ : a__ : str = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) a__ : Optional[str] = field( default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , ) a__ : Optional[int] = field( default=1_024 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field( default=128 , metadata={ """help""": ( """The maximum total sequence length for target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for validation target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded. """ """This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """ """during ``evaluate`` and ``predict``.""" ) } , ) a__ : Optional[int] = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for test target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} ) a__ : Optional[int] = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} ) a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Source language id for translation."""} ) a__ : Optional[str] = field(default=__lowercase , metadata={"""help""": """Target language id for translation."""} ) a__ : Optional[int] = field(default=__lowercase , metadata={"""help""": """# num_beams to use for evaluation."""} ) a__ : bool = field( default=__lowercase , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , ) def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : int ) -> Dict: logger.info(f'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(f''' {key} = {metrics[key]}''' ) save_json(__lowerCAmelCase , os.path.join(__lowerCAmelCase , f'''{split}_results.json''' ) ) def __magic_name__ ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_args_into_dataclasses() check_output_dir(__lowerCAmelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , __lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowerCamelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): assert hasattr(__lowerCAmelCase , __lowerCAmelCase ), f'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(__lowerCAmelCase , __lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) ) __lowerCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(__lowerCAmelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: __lowerCamelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(__lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(__lowerCAmelCase , __lowerCAmelCase ): __lowerCamelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: __lowerCamelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(__lowerCAmelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) __lowerCamelCase = SeqaSeqDataset # Get datasets __lowerCamelCase = ( dataset_class( __lowerCAmelCase , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) __lowerCamelCase = ( dataset_class( __lowerCAmelCase , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) __lowerCamelCase = ( dataset_class( __lowerCAmelCase , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer __lowerCamelCase = ( build_compute_metrics_fn(data_args.task , __lowerCAmelCase ) if training_args.predict_with_generate else None ) __lowerCamelCase = SeqaSeqTrainer( model=__lowerCAmelCase , args=__lowerCAmelCase , data_args=__lowerCAmelCase , train_dataset=__lowerCAmelCase , eval_dataset=__lowerCAmelCase , data_collator=SeqaSeqDataCollator( __lowerCAmelCase , __lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , ) __lowerCamelCase = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) __lowerCamelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) __lowerCamelCase = train_result.metrics __lowerCamelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , __lowerCAmelCase , training_args.output_dir ) all_metrics.update(__lowerCAmelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowerCamelCase = trainer.evaluate(metric_key_prefix='''val''' ) __lowerCamelCase = data_args.n_val __lowerCamelCase = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , __lowerCAmelCase , training_args.output_dir ) all_metrics.update(__lowerCAmelCase ) if training_args.do_predict: logger.info('''*** Predict ***''' ) __lowerCamelCase = trainer.predict(test_dataset=__lowerCAmelCase , metric_key_prefix='''test''' ) __lowerCamelCase = test_output.metrics __lowerCamelCase = data_args.n_test if trainer.is_world_process_zero(): __lowerCamelCase = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , __lowerCAmelCase , training_args.output_dir ) all_metrics.update(__lowerCAmelCase ) if training_args.predict_with_generate: __lowerCamelCase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) __lowerCamelCase = lmap(str.strip , __lowerCAmelCase ) write_txt_file(__lowerCAmelCase , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(__lowerCAmelCase , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Union[str, Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
339
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCAmelCase__ ( __lowercase ): a__ : str = """philschmid/bart-large-cnn-samsum""" a__ : Union[str, Any] = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) a__ : List[str] = """summarizer""" a__ : Union[str, Any] = AutoTokenizer a__ : Tuple = AutoModelForSeqaSeqLM a__ : int = ["""text"""] a__ : List[Any] = ["""text"""] def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : Any ) -> Union[str, Any]: return self.pre_processor(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , truncation=SCREAMING_SNAKE_CASE__ ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : Tuple ) -> Any: return self.model.generate(**SCREAMING_SNAKE_CASE__ )[0] def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[Any]: return self.pre_processor.decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ )
356
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase__ ( unittest.TestCase ): @property def __A ( self : List[Any] ) -> Optional[Any]: torch.manual_seed(0 ) __lowerCamelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def __A ( self : Optional[int] ) -> Optional[Any]: __lowerCamelCase = self.dummy_uncond_unet __lowerCamelCase = ScoreSdeVeScheduler() __lowerCamelCase = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) sde_ve.to(SCREAMING_SNAKE_CASE__ ) sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ ).images __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ )[ 0 ] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCamelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : Tuple ) -> str: __lowerCamelCase = '''google/ncsnpp-church-256''' __lowerCamelCase = UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = ScoreSdeVeScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) sde_ve.to(SCREAMING_SNAKE_CASE__ ) sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=SCREAMING_SNAKE_CASE__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) __lowerCamelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
339
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : List[Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } SCREAMING_SNAKE_CASE__ : Dict = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def __magic_name__ ( __lowerCAmelCase : Any ) -> str: """simple docstring""" __lowerCamelCase = {} with open(__lowerCAmelCase , '''r''' ) as file: for line_number, line in enumerate(__lowerCAmelCase ): __lowerCamelCase = line.strip() if line: __lowerCamelCase = line.split() __lowerCamelCase = line_number __lowerCamelCase = words[0] __lowerCamelCase = value return result def __magic_name__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] ) -> int: """simple docstring""" for attribute in key.split('''.''' ): __lowerCamelCase = getattr(__lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCAmelCase ): __lowerCamelCase = PARAM_MAPPING[full_name.split('''.''' )[-1]] __lowerCamelCase = '''param''' if weight_type is not None and weight_type != "param": __lowerCamelCase = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape elif weight_type is not None and weight_type == "param": __lowerCamelCase = hf_pointer for attribute in hf_param_name.split('''.''' ): __lowerCamelCase = getattr(__lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase = shape_pointer.shape # let's reduce dimension __lowerCamelCase = value[0] else: __lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): __lowerCamelCase = getattr(__lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase = value else: __lowerCamelCase = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def __magic_name__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int ) -> List[str]: """simple docstring""" __lowerCamelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCAmelCase ): __lowerCamelCase = PARAM_MAPPING[full_name.split('''.''' )[-1]] __lowerCamelCase = '''param''' if weight_type is not None and weight_type != "param": __lowerCamelCase = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __lowerCamelCase = '''.'''.join([key, hf_param_name] ) else: __lowerCamelCase = key __lowerCamelCase = value if '''lm_head''' in full_key else value[0] SCREAMING_SNAKE_CASE__ : List[str] = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : List[Any]=None ) -> int: """simple docstring""" __lowerCamelCase = False for key, mapped_key in MAPPING.items(): __lowerCamelCase = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(__lowerCAmelCase )[0].split('''.''' )[-2] __lowerCamelCase = mapped_key.replace('''*''' , __lowerCAmelCase ) if "weight_g" in name: __lowerCamelCase = '''weight_g''' elif "weight_v" in name: __lowerCamelCase = '''weight_v''' elif "bias" in name: __lowerCamelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCamelCase = '''weight''' else: __lowerCamelCase = None if hf_dict is not None: rename_dict(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return is_used return is_used def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : str , __lowerCAmelCase : Any ) -> int: """simple docstring""" __lowerCamelCase = [] __lowerCamelCase = fairseq_model.state_dict() __lowerCamelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) __lowerCamelCase = True else: __lowerCamelCase = load_wavaveca_layer(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : Any ) -> int: """simple docstring""" __lowerCamelCase = full_name.split('''conv_layers.''' )[-1] __lowerCamelCase = name.split('''.''' ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __lowerCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __lowerCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) __lowerCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) __lowerCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def __magic_name__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Any=None , __lowerCAmelCase : int=True , __lowerCAmelCase : Any=False ) -> List[str]: """simple docstring""" if config_path is not None: __lowerCamelCase = WavaVecaConfig.from_pretrained(__lowerCAmelCase ) else: __lowerCamelCase = WavaVecaConfig() if is_seq_class: __lowerCamelCase = read_txt_into_dict(__lowerCAmelCase ) __lowerCamelCase = idalabel __lowerCamelCase = WavaVecaForSequenceClassification(__lowerCAmelCase ) __lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) feature_extractor.save_pretrained(__lowerCAmelCase ) elif is_finetuned: if dict_path: __lowerCamelCase = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowerCamelCase = target_dict.pad_index __lowerCamelCase = target_dict.bos_index __lowerCamelCase = target_dict.eos_index __lowerCamelCase = len(target_dict.symbols ) __lowerCamelCase = os.path.join(__lowerCAmelCase , '''vocab.json''' ) if not os.path.isdir(__lowerCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) __lowerCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched __lowerCamelCase = 0 __lowerCamelCase = 1 with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__lowerCAmelCase , ) __lowerCamelCase = True if config.feat_extract_norm == '''layer''' else False __lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) __lowerCamelCase = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) __lowerCamelCase = WavaVecaForCTC(__lowerCAmelCase ) else: __lowerCamelCase = WavaVecaForPreTraining(__lowerCAmelCase ) if is_finetuned or is_seq_class: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __lowerCamelCase = argparse.Namespace(task='''audio_pretraining''' ) __lowerCamelCase = fairseq.tasks.setup_task(__lowerCAmelCase ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCAmelCase ) __lowerCamelCase = model[0].eval() recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Optional[int] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) SCREAMING_SNAKE_CASE__ : Optional[int] = parser.parse_args() SCREAMING_SNAKE_CASE__ : Union[str, Any] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
357
from functools import lru_cache def __magic_name__ ( __lowerCAmelCase : int ) -> set: __lowerCamelCase = 2 __lowerCamelCase = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__lowerCAmelCase ) if n > 1: factors.add(__lowerCAmelCase ) return factors @lru_cache def __magic_name__ ( __lowerCAmelCase : int ) -> int: return len(unique_prime_factors(__lowerCAmelCase ) ) def __magic_name__ ( __lowerCAmelCase : list ) -> bool: return len(set(__lowerCAmelCase ) ) in (0, 1) def __magic_name__ ( __lowerCAmelCase : int ) -> list: __lowerCamelCase = 2 while True: # Increment each value of a generated range __lowerCamelCase = [base + i for i in range(__lowerCAmelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. __lowerCamelCase = [upf_len(__lowerCAmelCase ) for x in group] checker.append(__lowerCAmelCase ) # If all numbers in the list are equal, return the group variable. if equality(__lowerCAmelCase ): return group # Increment our base variable by 1 base += 1 def __magic_name__ ( __lowerCAmelCase : int = 4 ) -> int: __lowerCamelCase = run(__lowerCAmelCase ) return results[0] if len(__lowerCAmelCase ) else None if __name__ == "__main__": print(solution())
339
0
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version SCREAMING_SNAKE_CASE__ : Tuple = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize SCREAMING_SNAKE_CASE__ : Union[str, Any] = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" SCREAMING_SNAKE_CASE__ : List[str] = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" SCREAMING_SNAKE_CASE__ : Dict = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def __A ( self : Optional[Any] ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'''] , reference_urls=[ '''https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score''', '''https://en.wikipedia.org/wiki/METEOR''', ] , ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Any ) -> Dict: import nltk nltk.download('''wordnet''' ) if NLTK_VERSION >= version.Version('''3.6.5''' ): nltk.download('''punkt''' ) if NLTK_VERSION >= version.Version('''3.6.6''' ): nltk.download('''omw-1.4''' ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple=0.9 , SCREAMING_SNAKE_CASE__ : Optional[Any]=3 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.5 ) -> Dict: if NLTK_VERSION >= version.Version('''3.6.5''' ): __lowerCamelCase = [ meteor_score.single_meteor_score( word_tokenize(SCREAMING_SNAKE_CASE__ ) , word_tokenize(SCREAMING_SNAKE_CASE__ ) , alpha=SCREAMING_SNAKE_CASE__ , beta=SCREAMING_SNAKE_CASE__ , gamma=SCREAMING_SNAKE_CASE__ ) for ref, pred in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ] else: __lowerCamelCase = [ meteor_score.single_meteor_score(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , alpha=SCREAMING_SNAKE_CASE__ , beta=SCREAMING_SNAKE_CASE__ , gamma=SCREAMING_SNAKE_CASE__ ) for ref, pred in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ] return {"meteor": np.mean(SCREAMING_SNAKE_CASE__ )}
358
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCAmelCase__ : def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=99 , SCREAMING_SNAKE_CASE__ : List[Any]=13 , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : int=9 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : int=32 , SCREAMING_SNAKE_CASE__ : Tuple=5 , SCREAMING_SNAKE_CASE__ : List[str]=4 , SCREAMING_SNAKE_CASE__ : str=37 , SCREAMING_SNAKE_CASE__ : int=8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.002 , SCREAMING_SNAKE_CASE__ : str=1 , SCREAMING_SNAKE_CASE__ : Tuple=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Dict=None , ) -> Optional[Any]: __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = encoder_seq_length __lowerCamelCase = decoder_seq_length # For common tests __lowerCamelCase = self.decoder_seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = d_ff __lowerCamelCase = relative_attention_num_buckets __lowerCamelCase = dropout_rate __lowerCamelCase = initializer_factor __lowerCamelCase = eos_token_id __lowerCamelCase = pad_token_id __lowerCamelCase = decoder_start_token_id __lowerCamelCase = None __lowerCamelCase = decoder_layers def __A ( self : Any ) -> Tuple: return TaConfig.from_pretrained('''google/umt5-base''' ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , ) -> Optional[int]: if attention_mask is None: __lowerCamelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __lowerCamelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __lowerCamelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ ) if decoder_head_mask is None: __lowerCamelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ ) if cross_attn_head_mask is None: __lowerCamelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def __A ( self : List[Any] ) -> Tuple: __lowerCamelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __lowerCamelCase = input_ids.clamp(self.pad_token_id + 1 ) __lowerCamelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) __lowerCamelCase = self.get_config() __lowerCamelCase = config.num_attention_heads __lowerCamelCase = self.prepare_inputs_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, input_dict def __A ( self : Tuple ) -> List[str]: __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs() return config, inputs_dict def __A ( self : Optional[Any] ) -> Any: return TaConfig( vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __A ( self : List[Any] ) -> Any: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> int: __lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCamelCase = model( input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = model(input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = result.last_hidden_state __lowerCamelCase = result.past_key_values __lowerCamelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Dict: __lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ).get_decoder().to(SCREAMING_SNAKE_CASE__ ).eval() # first forward pass __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) + 1 ) __lowerCamelCase , __lowerCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCamelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and __lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] # select random slice __lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCamelCase = output_from_no_past[:, -1, random_slice_idx].detach() __lowerCamelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Optional[int]: __lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ).half().eval() __lowerCamelCase = model(**SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(SCREAMING_SNAKE_CASE__ ).any().item() ) @require_torch class lowerCAmelCase__ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): a__ : List[Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) a__ : Union[str, Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () a__ : Tuple = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) a__ : int = True a__ : int = False a__ : Tuple = False a__ : Optional[int] = True a__ : Optional[int] = True # The small UMT5 model needs higher percentages for CPU/MP tests a__ : Tuple = [0.8, 0.9] def __A ( self : Tuple ) -> Tuple: __lowerCamelCase = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def __A ( self : List[str] ) -> Union[str, Any]: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = UMTaModel(config_and_inputs[0] ).to(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( SCREAMING_SNAKE_CASE__ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=SCREAMING_SNAKE_CASE__ , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __A ( self : Union[str, Any] ) -> Any: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*SCREAMING_SNAKE_CASE__ ) def __A ( self : Any ) -> Any: __lowerCamelCase = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = config_and_inputs[0] __lowerCamelCase = UMTaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() model.to(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ), } for attn_name, (name, mask) in zip(SCREAMING_SNAKE_CASE__ , head_masking.items() ): __lowerCamelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": __lowerCamelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=SCREAMING_SNAKE_CASE__ , return_dict_in_generate=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) # We check the state of decoder_attentions and cross_attentions just from the last step __lowerCamelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def __A ( self : Tuple ) -> Optional[Any]: pass @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def __A ( self : int ) -> Optional[Any]: __lowerCamelCase = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=SCREAMING_SNAKE_CASE__ , legacy=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] __lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , padding=SCREAMING_SNAKE_CASE__ ).input_ids # fmt: off __lowerCamelCase = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ] ) # fmt: on torch.testing.assert_allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model.generate(input_ids.to(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] __lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
339
0
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path SCREAMING_SNAKE_CASE__ : Optional[Any] = Path(__file__).resolve().parents[3] / "src" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) SCREAMING_SNAKE_CASE__ : str = {"base": "patrickvonplaten/wav2vec2_tiny_random", "robust": "patrickvonplaten/wav2vec2_tiny_random_robust"} SCREAMING_SNAKE_CASE__ : int = "zero2" SCREAMING_SNAKE_CASE__ : Union[str, Any] = "zero3" SCREAMING_SNAKE_CASE__ : Tuple = [ZEROa, ZEROa] def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : str ) -> Dict: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param __lowerCamelCase = parameterized.to_safe_name('''_'''.join(str(__lowerCAmelCase ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test SCREAMING_SNAKE_CASE__ : int = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCAmelCase__ ( __lowercase ): @parameterized.expand(SCREAMING_SNAKE_CASE__ , name_func=SCREAMING_SNAKE_CASE__ ) def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[int]: self.run_and_check( stage=SCREAMING_SNAKE_CASE__ , model=SCREAMING_SNAKE_CASE__ , distributed=SCREAMING_SNAKE_CASE__ , fpaa=SCREAMING_SNAKE_CASE__ , ) @require_torch_multi_gpu @parameterized.expand(SCREAMING_SNAKE_CASE__ , name_func=SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]: self.run_and_check( stage=SCREAMING_SNAKE_CASE__ , model=SCREAMING_SNAKE_CASE__ , distributed=SCREAMING_SNAKE_CASE__ , fpaa=SCREAMING_SNAKE_CASE__ , ) @parameterized.expand(SCREAMING_SNAKE_CASE__ , name_func=SCREAMING_SNAKE_CASE__ ) def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]: self.run_and_check( stage=SCREAMING_SNAKE_CASE__ , model=SCREAMING_SNAKE_CASE__ , distributed=SCREAMING_SNAKE_CASE__ , fpaa=SCREAMING_SNAKE_CASE__ , ) @require_torch_multi_gpu @parameterized.expand(SCREAMING_SNAKE_CASE__ , name_func=SCREAMING_SNAKE_CASE__ ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> List[Any]: self.run_and_check( stage=SCREAMING_SNAKE_CASE__ , model=SCREAMING_SNAKE_CASE__ , distributed=SCREAMING_SNAKE_CASE__ , fpaa=SCREAMING_SNAKE_CASE__ , ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : Any ) -> Dict: # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int = 10 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = True , ) -> Tuple: __lowerCamelCase = models[model] __lowerCamelCase = self.run_trainer( stage=SCREAMING_SNAKE_CASE__ , model_name=SCREAMING_SNAKE_CASE__ , eval_steps=SCREAMING_SNAKE_CASE__ , num_train_epochs=1 , distributed=SCREAMING_SNAKE_CASE__ , fpaa=SCREAMING_SNAKE_CASE__ , ) self.do_checks(SCREAMING_SNAKE_CASE__ ) return output_dir def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int = 10 , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = True , ) -> Optional[Any]: __lowerCamelCase = self.get_auto_remove_tmp_dir('''./xxx''' , after=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = f''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(SCREAMING_SNAKE_CASE__ )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files __lowerCamelCase = f'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() __lowerCamelCase = [f'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] __lowerCamelCase = self.get_launcher(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=self.get_env() ) return output_dir def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str]=False ) -> str: # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) __lowerCamelCase = min(2 , get_gpu_count() ) if distributed else 1 return f'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
359
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Tuple = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class lowerCAmelCase__ ( __lowercase ): a__ : Union[str, Any] = """open-llama""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Any=10_00_00 , SCREAMING_SNAKE_CASE__ : Any=40_96 , SCREAMING_SNAKE_CASE__ : Any=1_10_08 , SCREAMING_SNAKE_CASE__ : Tuple=32 , SCREAMING_SNAKE_CASE__ : str=32 , SCREAMING_SNAKE_CASE__ : Any="silu" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=20_48 , SCREAMING_SNAKE_CASE__ : List[str]=0.02 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-6 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Dict=0 , SCREAMING_SNAKE_CASE__ : Tuple=1 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : List[str]=None , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> Dict: __lowerCamelCase = vocab_size __lowerCamelCase = max_position_embeddings __lowerCamelCase = hidden_size __lowerCamelCase = intermediate_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = initializer_range __lowerCamelCase = rms_norm_eps __lowerCamelCase = use_cache __lowerCamelCase = kwargs.pop( '''use_memorry_efficient_attention''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_dropout_prob __lowerCamelCase = use_stable_embedding __lowerCamelCase = shared_input_output_embedding __lowerCamelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , tie_word_embeddings=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) def __A ( self : Dict ) -> Optional[int]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , SCREAMING_SNAKE_CASE__ ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f'''got {self.rope_scaling}''' ) __lowerCamelCase = self.rope_scaling.get('''type''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.rope_scaling.get('''factor''' , SCREAMING_SNAKE_CASE__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
339
0
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging SCREAMING_SNAKE_CASE__ : Optional[int] = logging.get_logger(__name__) class lowerCAmelCase__ ( __lowercase ): a__ : Optional[Any] = ["""pixel_values"""] def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Union[int, float] = 1 / 2_55 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : int = 8 , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> None: super().__init__(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_pad __lowerCamelCase = pad_size def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> np.ndarray: return rescale(SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ) -> str: __lowerCamelCase , __lowerCamelCase = get_image_size(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = (old_height // size + 1) * size - old_height __lowerCamelCase = (old_width // size + 1) * size - old_width return pad(SCREAMING_SNAKE_CASE__ , ((0, pad_height), (0, pad_width)) , mode='''symmetric''' , data_format=SCREAMING_SNAKE_CASE__ ) def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : ImageInput , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[float] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE__ : str , ) -> str: __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_pad if do_pad is not None else self.do_pad __lowerCamelCase = pad_size if pad_size is not None else self.pad_size __lowerCamelCase = make_list_of_images(SCREAMING_SNAKE_CASE__ ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ ) for image in images] if do_pad: __lowerCamelCase = [self.pad(SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ ) for image in images] __lowerCamelCase = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for image in images] __lowerCamelCase = {'''pixel_values''': images} return BatchFeature(data=SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ )
360
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar SCREAMING_SNAKE_CASE__ : Any = TypeVar("KEY") SCREAMING_SNAKE_CASE__ : Dict = TypeVar("VAL") @dataclass(frozen=__lowercase , slots=__lowercase ) class lowerCAmelCase__ ( Generic[KEY, VAL] ): a__ : KEY a__ : VAL class lowerCAmelCase__ ( _Item ): def __init__( self : str ) -> None: super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __bool__( self : Tuple ) -> bool: return False SCREAMING_SNAKE_CASE__ : List[Any] = _DeletedItem() class lowerCAmelCase__ ( MutableMapping[KEY, VAL] ): def __init__( self : int , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.75 ) -> None: __lowerCamelCase = initial_block_size __lowerCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowerCamelCase = capacity_factor __lowerCamelCase = 0 def __A ( self : Any , SCREAMING_SNAKE_CASE__ : KEY ) -> int: return hash(SCREAMING_SNAKE_CASE__ ) % len(self._buckets ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> int: return (ind + 1) % len(self._buckets ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> bool: __lowerCamelCase = self._buckets[ind] if not stored: __lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self._len += 1 return True elif stored.key == key: __lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return True else: return False def __A ( self : Any ) -> bool: __lowerCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(SCREAMING_SNAKE_CASE__ ) def __A ( self : List[Any] ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False __lowerCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def __A ( self : int , SCREAMING_SNAKE_CASE__ : int ) -> None: __lowerCamelCase = self._buckets __lowerCamelCase = [None] * new_size __lowerCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def __A ( self : str ) -> None: self._resize(len(self._buckets ) * 2 ) def __A ( self : Dict ) -> None: self._resize(len(self._buckets ) // 2 ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY ) -> Iterator[int]: __lowerCamelCase = self._get_bucket_index(SCREAMING_SNAKE_CASE__ ) for _ in range(len(self._buckets ) ): yield ind __lowerCamelCase = self._get_next_ind(SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): if self._try_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): break def __setitem__( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None: if self._is_full(): self._size_up() self._add_item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __delitem__( self : List[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> None: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = self._buckets[ind] if item is None: raise KeyError(SCREAMING_SNAKE_CASE__ ) if item is _deleted: continue if item.key == key: __lowerCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> VAL: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(SCREAMING_SNAKE_CASE__ ) def __len__( self : int ) -> int: return self._len def __iter__( self : Tuple ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ) -> str: __lowerCamelCase = ''' ,'''.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
339
0
import math def __magic_name__ ( __lowerCAmelCase : int ) -> list[int]: __lowerCamelCase = [] __lowerCamelCase = 2 __lowerCamelCase = int(math.sqrt(__lowerCAmelCase ) ) # Size of every segment __lowerCamelCase = [True] * (end + 1) __lowerCamelCase = [] while start <= end: if temp[start] is True: in_prime.append(__lowerCAmelCase ) for i in range(start * start , end + 1 , __lowerCAmelCase ): __lowerCamelCase = False start += 1 prime += in_prime __lowerCamelCase = end + 1 __lowerCamelCase = min(2 * end , __lowerCAmelCase ) while low <= n: __lowerCamelCase = [True] * (high - low + 1) for each in in_prime: __lowerCamelCase = math.floor(low / each ) * each if t < low: t += each for j in range(__lowerCAmelCase , high + 1 , __lowerCAmelCase ): __lowerCamelCase = False for j in range(len(__lowerCAmelCase ) ): if temp[j] is True: prime.append(j + low ) __lowerCamelCase = high + 1 __lowerCamelCase = min(high + end , __lowerCAmelCase ) return prime print(sieve(10**6))
361
from datetime import datetime as dt import os from github import Github SCREAMING_SNAKE_CASE__ : Any = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def __magic_name__ ( ) -> Any: __lowerCamelCase = Github(os.environ['''GITHUB_TOKEN'''] ) __lowerCamelCase = g.get_repo('''huggingface/transformers''' ) __lowerCamelCase = repo.get_issues(state='''open''' ) for issue in open_issues: __lowerCamelCase = sorted([comment for comment in issue.get_comments()] , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase ) __lowerCamelCase = comments[0] if len(__lowerCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
339
0
def __magic_name__ ( __lowerCAmelCase : list ) -> list: for i in range(len(__lowerCAmelCase ) - 1 , 0 , -1 ): __lowerCamelCase = False for j in range(__lowerCAmelCase , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: __lowerCamelCase , __lowerCamelCase = unsorted[j - 1], unsorted[j] __lowerCamelCase = True for j in range(__lowerCAmelCase ): if unsorted[j] > unsorted[j + 1]: __lowerCamelCase , __lowerCamelCase = unsorted[j + 1], unsorted[j] __lowerCamelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : str = input("Enter numbers separated by a comma:\n").strip() SCREAMING_SNAKE_CASE : Union[str, Any] = [int(item) for item in user_input.split(",")] print(F'{cocktail_shaker_sort(unsorted) = }')
362
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> str: if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __lowerCamelCase = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b" __lowerCamelCase = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b" __lowerCamelCase = max(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(__lowerCAmelCase ) , b_binary.zfill(__lowerCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
339
0
from __future__ import annotations def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : int | None = None , __lowerCAmelCase : int | None = None ) -> None: if start is None: __lowerCamelCase = 0 if end is None: __lowerCamelCase = len(__lowerCAmelCase ) - 1 if start >= end: return __lowerCamelCase = (start + end) // 2 slowsort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) slowsort(__lowerCAmelCase , mid + 1 , __lowerCAmelCase ) if sequence[end] < sequence[mid]: __lowerCamelCase , __lowerCamelCase = sequence[mid], sequence[end] slowsort(__lowerCAmelCase , __lowerCAmelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
363
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : List[str] ) -> Dict: __lowerCamelCase = tempfile.mkdtemp() # fmt: off __lowerCamelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCamelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __lowerCamelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCamelCase = {'''unk_token''': '''<unk>'''} __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } __lowerCamelCase = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __A ( self : int , **SCREAMING_SNAKE_CASE__ : int ) -> Any: return CLIPTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Dict , **SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Dict ) -> Dict: shutil.rmtree(self.tmpdirname ) def __A ( self : str ) -> Any: __lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCamelCase = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self : List[Any] ) -> List[str]: __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = self.get_image_processor() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ ) def __A ( self : Union[str, Any] ) -> int: __lowerCamelCase = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCamelCase = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) __lowerCamelCase = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[Any] ) -> Union[str, Any]: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='''np''' ) __lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self : List[Any] ) -> Optional[int]: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = '''lower newer''' __lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self : List[Any] ) -> Any: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = '''lower newer''' __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def __A ( self : Optional[Any] ) -> List[str]: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE__ , visual_prompt=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def __A ( self : List[Any] ) -> Any: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCamelCase = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
339
0
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): @property def __A ( self : List[str] ) -> Dict: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __A ( self : Optional[Any] ) -> Any: __lowerCamelCase = ort.SessionOptions() __lowerCamelCase = False return options def __A ( self : Any ) -> str: __lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __lowerCamelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = '''A red cat sitting on a park bench''' __lowerCamelCase = np.random.RandomState(0 ) __lowerCamelCase = pipe( prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=10 , generator=SCREAMING_SNAKE_CASE__ , output_type='''np''' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __lowerCamelCase = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __A ( self : Optional[int] ) -> int: __lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __lowerCamelCase = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) __lowerCamelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=SCREAMING_SNAKE_CASE__ , safety_checker=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = '''A red cat sitting on a park bench''' __lowerCamelCase = np.random.RandomState(0 ) __lowerCamelCase = pipe( prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=20 , generator=SCREAMING_SNAKE_CASE__ , output_type='''np''' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __lowerCamelCase = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
364
from __future__ import annotations def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : int | None = None , __lowerCAmelCase : int | None = None ) -> None: if start is None: __lowerCamelCase = 0 if end is None: __lowerCamelCase = len(__lowerCAmelCase ) - 1 if start >= end: return __lowerCamelCase = (start + end) // 2 slowsort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) slowsort(__lowerCAmelCase , mid + 1 , __lowerCAmelCase ) if sequence[end] < sequence[mid]: __lowerCamelCase , __lowerCamelCase = sequence[mid], sequence[end] slowsort(__lowerCAmelCase , __lowerCAmelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
339
0
def __magic_name__ ( __lowerCAmelCase : float , __lowerCAmelCase : float ) -> float: return price * (1 + tax_rate) if __name__ == "__main__": print(F'{price_plus_tax(100, 0.2_5) = }') print(F'{price_plus_tax(125.50, 0.0_5) = }')
365
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Optional[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } SCREAMING_SNAKE_CASE__ : str = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } SCREAMING_SNAKE_CASE__ : int = {"facebook/blenderbot_small-90M": 512} def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Tuple: __lowerCamelCase = set() __lowerCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCamelCase = char __lowerCamelCase = set(__lowerCAmelCase ) return pairs class lowerCAmelCase__ ( __lowercase ): a__ : List[Any] = VOCAB_FILES_NAMES a__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple="__start__" , SCREAMING_SNAKE_CASE__ : Tuple="__end__" , SCREAMING_SNAKE_CASE__ : List[str]="__unk__" , SCREAMING_SNAKE_CASE__ : str="__null__" , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> Optional[Any]: super().__init__(unk_token=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as vocab_handle: __lowerCamelCase = json.load(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = {v: k for k, v in self.encoder.items()} with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as merges_handle: __lowerCamelCase = merges_handle.read().split('''\n''' )[1:-1] __lowerCamelCase = [tuple(merge.split() ) for merge in merges] __lowerCamelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __lowerCamelCase = {} @property def __A ( self : Dict ) -> int: return len(self.encoder ) def __A ( self : str ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : str ) -> str: if token in self.cache: return self.cache[token] __lowerCamelCase = re.sub('''([.,!?()])''' , R''' \1''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = re.sub('''(\')''' , R''' \1 ''' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = re.sub(R'''\s{2,}''' , ''' ''' , SCREAMING_SNAKE_CASE__ ) if "\n" in token: __lowerCamelCase = token.replace('''\n''' , ''' __newln__''' ) __lowerCamelCase = token.split(''' ''' ) __lowerCamelCase = [] for token in tokens: if not len(SCREAMING_SNAKE_CASE__ ): continue __lowerCamelCase = token.lower() __lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) __lowerCamelCase = get_pairs(SCREAMING_SNAKE_CASE__ ) if not pairs: words.append(SCREAMING_SNAKE_CASE__ ) continue while True: __lowerCamelCase = min(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __lowerCamelCase , __lowerCamelCase = bigram __lowerCamelCase = [] __lowerCamelCase = 0 while i < len(SCREAMING_SNAKE_CASE__ ): try: __lowerCamelCase = word.index(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) new_word.extend(word[i:j] ) __lowerCamelCase = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(SCREAMING_SNAKE_CASE__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCamelCase = tuple(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = new_word if len(SCREAMING_SNAKE_CASE__ ) == 1: break else: __lowerCamelCase = get_pairs(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = '''@@ '''.join(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = word[:-4] __lowerCamelCase = word words.append(SCREAMING_SNAKE_CASE__ ) return " ".join(SCREAMING_SNAKE_CASE__ ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: __lowerCamelCase = [] __lowerCamelCase = re.findall(R'''\S+\n?''' , SCREAMING_SNAKE_CASE__ ) for token in words: split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE__ ).split(''' ''' ) ) ) return split_tokens def __A ( self : str , SCREAMING_SNAKE_CASE__ : str ) -> int: __lowerCamelCase = token.lower() return self.encoder.get(SCREAMING_SNAKE_CASE__ , self.encoder.get(self.unk_token ) ) def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int ) -> str: return self.decoder.get(SCREAMING_SNAKE_CASE__ , self.unk_token ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: __lowerCamelCase = ''' '''.join(SCREAMING_SNAKE_CASE__ ).replace('''@@ ''' , '''''' ).strip() return out_string def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCamelCase = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) + '''\n''' ) __lowerCamelCase = 0 with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) __lowerCamelCase = token_index writer.write(''' '''.join(SCREAMING_SNAKE_CASE__ ) + '''\n''' ) index += 1 return vocab_file, merge_file
339
0
from __future__ import annotations def __magic_name__ ( __lowerCAmelCase : list ) -> float: if not nums: raise ValueError('''List is empty''' ) return sum(__lowerCAmelCase ) / len(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
366
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): a__ : str = ShapEImgaImgPipeline a__ : Union[str, Any] = ["""image"""] a__ : Optional[int] = ["""image"""] a__ : Union[str, Any] = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] a__ : List[str] = False @property def __A ( self : Dict ) -> Optional[Any]: return 32 @property def __A ( self : Optional[int] ) -> Optional[int]: return 32 @property def __A ( self : Optional[int] ) -> List[Any]: return self.time_input_dim * 4 @property def __A ( self : str ) -> List[Any]: return 8 @property def __A ( self : Optional[Any] ) -> Union[str, Any]: torch.manual_seed(0 ) __lowerCamelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __lowerCamelCase = CLIPVisionModel(SCREAMING_SNAKE_CASE__ ) return model @property def __A ( self : Union[str, Any] ) -> Union[str, Any]: __lowerCamelCase = CLIPImageProcessor( crop_size=2_24 , do_center_crop=SCREAMING_SNAKE_CASE__ , do_normalize=SCREAMING_SNAKE_CASE__ , do_resize=SCREAMING_SNAKE_CASE__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=2_24 , ) return image_processor @property def __A ( self : Dict ) -> int: torch.manual_seed(0 ) __lowerCamelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } __lowerCamelCase = PriorTransformer(**SCREAMING_SNAKE_CASE__ ) return model @property def __A ( self : Tuple ) -> Dict: torch.manual_seed(0 ) __lowerCamelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } __lowerCamelCase = ShapERenderer(**SCREAMING_SNAKE_CASE__ ) return model def __A ( self : Optional[int] ) -> List[str]: __lowerCamelCase = self.dummy_prior __lowerCamelCase = self.dummy_image_encoder __lowerCamelCase = self.dummy_image_processor __lowerCamelCase = self.dummy_renderer __lowerCamelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=10_24 , prediction_type='''sample''' , use_karras_sigmas=SCREAMING_SNAKE_CASE__ , clip_sample=SCREAMING_SNAKE_CASE__ , clip_sample_range=1.0 , ) __lowerCamelCase = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def __A ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=0 ) -> int: __lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ): __lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: __lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def __A ( self : Union[str, Any] ) -> Dict: __lowerCamelCase = '''cpu''' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = output.images[0] __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowerCamelCase = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self : str ) -> Tuple: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self : Optional[Any] ) -> str: __lowerCamelCase = torch_device == '''cpu''' __lowerCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=SCREAMING_SNAKE_CASE__ , relax_max_difference=SCREAMING_SNAKE_CASE__ , ) def __A ( self : Dict ) -> Optional[int]: __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = 1 __lowerCamelCase = 2 __lowerCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) for key in inputs.keys(): if key in self.batch_params: __lowerCamelCase = batch_size * [inputs[key]] __lowerCamelCase = pipe(**SCREAMING_SNAKE_CASE__ , num_images_per_prompt=SCREAMING_SNAKE_CASE__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : str ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : str ) -> Union[str, Any]: __lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) __lowerCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) __lowerCamelCase = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) __lowerCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(0 ) __lowerCamelCase = pipe( SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
339
0
from ...configuration_utils import PretrainedConfig SCREAMING_SNAKE_CASE__ : Optional[Any] = { "google/tapas-base-finetuned-sqa": ( "https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json" ), "google/tapas-base-finetuned-wtq": ( "https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json" ), "google/tapas-base-finetuned-wikisql-supervised": ( "https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json" ), "google/tapas-base-finetuned-tabfact": ( "https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json" ), } class lowerCAmelCase__ ( __lowercase ): a__ : Optional[Any] = """tapas""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict=3_05_22 , SCREAMING_SNAKE_CASE__ : int=7_68 , SCREAMING_SNAKE_CASE__ : str=12 , SCREAMING_SNAKE_CASE__ : List[Any]=12 , SCREAMING_SNAKE_CASE__ : Tuple=30_72 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=10_24 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=[3, 2_56, 2_56, 2, 2_56, 2_56, 10] , SCREAMING_SNAKE_CASE__ : int=0.02 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1e-12 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : Any=10.0 , SCREAMING_SNAKE_CASE__ : Dict=0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1.0 , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=1.0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : List[str]=1.0 , SCREAMING_SNAKE_CASE__ : Dict=1.0 , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : int="ratio" , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Dict=64 , SCREAMING_SNAKE_CASE__ : Dict=32 , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : int=False , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Dict=None , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_sizes __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps # Fine-tuning task hyperparameters __lowerCamelCase = positive_label_weight __lowerCamelCase = num_aggregation_labels __lowerCamelCase = aggregation_loss_weight __lowerCamelCase = use_answer_as_supervision __lowerCamelCase = answer_loss_importance __lowerCamelCase = use_normalized_answer_loss __lowerCamelCase = huber_loss_delta __lowerCamelCase = temperature __lowerCamelCase = aggregation_temperature __lowerCamelCase = use_gumbel_for_cells __lowerCamelCase = use_gumbel_for_aggregation __lowerCamelCase = average_approximation_function __lowerCamelCase = cell_selection_preference __lowerCamelCase = answer_loss_cutoff __lowerCamelCase = max_num_rows __lowerCamelCase = max_num_columns __lowerCamelCase = average_logits_per_cell __lowerCamelCase = select_one_column __lowerCamelCase = allow_empty_column_selection __lowerCamelCase = init_cell_selection_weights_to_zero __lowerCamelCase = reset_position_index_per_cell __lowerCamelCase = disable_per_token_loss # Aggregation hyperparameters __lowerCamelCase = aggregation_labels __lowerCamelCase = no_aggregation_label_index if isinstance(self.aggregation_labels , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in aggregation_labels.items()}
367
import glob import os import random from string import ascii_lowercase, digits import cva SCREAMING_SNAKE_CASE__ : str = "" SCREAMING_SNAKE_CASE__ : Any = "" SCREAMING_SNAKE_CASE__ : Optional[Any] = "" SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 # (0 is vertical, 1 is horizontal) def __magic_name__ ( ) -> None: __lowerCamelCase , __lowerCamelCase = get_dataset(__lowerCAmelCase , __lowerCAmelCase ) print('''Processing...''' ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = update_image_and_anno(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for index, image in enumerate(__lowerCAmelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __lowerCamelCase = random_chars(32 ) __lowerCamelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __lowerCamelCase = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(f'''/{file_root}.jpg''' , __lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Success {index+1}/{len(__lowerCAmelCase )} with {file_name}''' ) __lowerCamelCase = [] for anno in new_annos[index]: __lowerCamelCase = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(__lowerCAmelCase ) with open(f'''/{file_root}.txt''' , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def __magic_name__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> tuple[list, list]: __lowerCamelCase = [] __lowerCamelCase = [] for label_file in glob.glob(os.path.join(__lowerCAmelCase , '''*.txt''' ) ): __lowerCamelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(__lowerCAmelCase ) as in_file: __lowerCamelCase = in_file.readlines() __lowerCamelCase = os.path.join(__lowerCAmelCase , f'''{label_name}.jpg''' ) __lowerCamelCase = [] for obj_list in obj_lists: __lowerCamelCase = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__lowerCAmelCase ) labels.append(__lowerCAmelCase ) return img_paths, labels def __magic_name__ ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int = 1 ) -> tuple[list, list, list]: __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] for idx in range(len(__lowerCAmelCase ) ): __lowerCamelCase = [] __lowerCamelCase = img_list[idx] path_list.append(__lowerCAmelCase ) __lowerCamelCase = anno_list[idx] __lowerCamelCase = cva.imread(__lowerCAmelCase ) if flip_type == 1: __lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: __lowerCamelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __lowerCamelCase = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: __lowerCamelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__lowerCAmelCase ) new_imgs_list.append(__lowerCAmelCase ) return new_imgs_list, new_annos_lists, path_list def __magic_name__ ( __lowerCAmelCase : int = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" __lowerCamelCase = ascii_lowercase + digits return "".join(random.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
339
0
from sklearn.metrics import mean_squared_error import datasets SCREAMING_SNAKE_CASE__ : Union[str, Any] = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" SCREAMING_SNAKE_CASE__ : List[str] = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" SCREAMING_SNAKE_CASE__ : Tuple = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def __A ( self : Union[str, Any] ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def __A ( self : Tuple ) -> Any: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : List[str]="uniform_average" , SCREAMING_SNAKE_CASE__ : Dict=True ) -> Union[str, Any]: __lowerCamelCase = mean_squared_error( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , sample_weight=SCREAMING_SNAKE_CASE__ , multioutput=SCREAMING_SNAKE_CASE__ , squared=SCREAMING_SNAKE_CASE__ ) return {"mse": mse}
368
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated SCREAMING_SNAKE_CASE__ : Tuple = collections.namedtuple("_Datasets", ["train", "validation", "test"]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ SCREAMING_SNAKE_CASE__ : List[str] = "https://storage.googleapis.com/cvdf-datasets/mnist/" def __magic_name__ ( __lowerCAmelCase : Any ) -> int: __lowerCamelCase = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=__lowerCAmelCase )[0] @deprecated(__lowerCAmelCase , '''Please use tf.data to implement this functionality.''' ) def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> str: print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=__lowerCAmelCase ) as bytestream: __lowerCamelCase = _readaa(__lowerCAmelCase ) if magic != 2051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = bytestream.read(rows * cols * num_images ) __lowerCamelCase = numpy.frombuffer(__lowerCAmelCase , dtype=numpy.uinta ) __lowerCamelCase = data.reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 1 ) return data @deprecated(__lowerCAmelCase , '''Please use tf.one_hot on tensors.''' ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : List[Any] ) -> Dict: __lowerCamelCase = labels_dense.shape[0] __lowerCamelCase = numpy.arange(__lowerCAmelCase ) * num_classes __lowerCamelCase = numpy.zeros((num_labels, num_classes) ) __lowerCamelCase = 1 return labels_one_hot @deprecated(__lowerCAmelCase , '''Please use tf.data to implement this functionality.''' ) def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : str=False , __lowerCAmelCase : List[str]=10 ) -> List[str]: print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=__lowerCAmelCase ) as bytestream: __lowerCamelCase = _readaa(__lowerCAmelCase ) if magic != 2049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) __lowerCamelCase = _readaa(__lowerCAmelCase ) __lowerCamelCase = bytestream.read(__lowerCAmelCase ) __lowerCamelCase = numpy.frombuffer(__lowerCAmelCase , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(__lowerCAmelCase , __lowerCAmelCase ) return labels class lowerCAmelCase__ : @deprecated( SCREAMING_SNAKE_CASE__ , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : str=dtypes.floataa , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : str=None , ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase = random_seed.get_seed(SCREAMING_SNAKE_CASE__ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) __lowerCamelCase = dtypes.as_dtype(SCREAMING_SNAKE_CASE__ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: __lowerCamelCase = 1_00_00 __lowerCamelCase = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'''images.shape: {images.shape} labels.shape: {labels.shape}''' __lowerCamelCase = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __lowerCamelCase = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __lowerCamelCase = images.astype(numpy.floataa ) __lowerCamelCase = numpy.multiply(SCREAMING_SNAKE_CASE__ , 1.0 / 255.0 ) __lowerCamelCase = images __lowerCamelCase = labels __lowerCamelCase = 0 __lowerCamelCase = 0 @property def __A ( self : str ) -> Optional[int]: return self._images @property def __A ( self : Any ) -> Dict: return self._labels @property def __A ( self : List[Any] ) -> int: return self._num_examples @property def __A ( self : str ) -> Any: return self._epochs_completed def __A ( self : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : str=True ) -> str: if fake_data: __lowerCamelCase = [1] * 7_84 __lowerCamelCase = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(SCREAMING_SNAKE_CASE__ )], [fake_label for _ in range(SCREAMING_SNAKE_CASE__ )], ) __lowerCamelCase = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __lowerCamelCase = numpy.arange(self._num_examples ) numpy.random.shuffle(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.images[perma] __lowerCamelCase = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __lowerCamelCase = self._num_examples - start __lowerCamelCase = self._images[start : self._num_examples] __lowerCamelCase = self._labels[start : self._num_examples] # Shuffle the data if shuffle: __lowerCamelCase = numpy.arange(self._num_examples ) numpy.random.shuffle(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.images[perm] __lowerCamelCase = self.labels[perm] # Start next epoch __lowerCamelCase = 0 __lowerCamelCase = batch_size - rest_num_examples __lowerCamelCase = self._index_in_epoch __lowerCamelCase = self._images[start:end] __lowerCamelCase = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size __lowerCamelCase = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(__lowerCAmelCase , '''Please write your own downloading logic.''' ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] ) -> List[Any]: if not gfile.Exists(__lowerCAmelCase ): gfile.MakeDirs(__lowerCAmelCase ) __lowerCamelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if not gfile.Exists(__lowerCAmelCase ): urllib.request.urlretrieve(__lowerCAmelCase , __lowerCAmelCase ) # noqa: S310 with gfile.GFile(__lowerCAmelCase ) as f: __lowerCamelCase = f.size() print('''Successfully downloaded''' , __lowerCAmelCase , __lowerCAmelCase , '''bytes.''' ) return filepath @deprecated( __lowerCAmelCase , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Dict=False , __lowerCAmelCase : List[str]=dtypes.floataa , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : int=5000 , __lowerCAmelCase : Any=None , __lowerCAmelCase : List[str]=DEFAULT_SOURCE_URL , ) -> Optional[Any]: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=__lowerCAmelCase , one_hot=__lowerCAmelCase , dtype=__lowerCAmelCase , seed=__lowerCAmelCase ) __lowerCamelCase = fake() __lowerCamelCase = fake() __lowerCamelCase = fake() return _Datasets(train=__lowerCAmelCase , validation=__lowerCAmelCase , test=__lowerCAmelCase ) if not source_url: # empty string check __lowerCamelCase = DEFAULT_SOURCE_URL __lowerCamelCase = '''train-images-idx3-ubyte.gz''' __lowerCamelCase = '''train-labels-idx1-ubyte.gz''' __lowerCamelCase = '''t10k-images-idx3-ubyte.gz''' __lowerCamelCase = '''t10k-labels-idx1-ubyte.gz''' __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + train_images_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_images(__lowerCAmelCase ) __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + train_labels_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_labels(__lowerCAmelCase , one_hot=__lowerCAmelCase ) __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + test_images_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_images(__lowerCAmelCase ) __lowerCamelCase = _maybe_download( __lowerCAmelCase , __lowerCAmelCase , source_url + test_labels_file ) with gfile.Open(__lowerCAmelCase , '''rb''' ) as f: __lowerCamelCase = _extract_labels(__lowerCAmelCase , one_hot=__lowerCAmelCase ) if not 0 <= validation_size <= len(__lowerCAmelCase ): __lowerCamelCase = ( '''Validation size should be between 0 and ''' f'''{len(__lowerCAmelCase )}. Received: {validation_size}.''' ) raise ValueError(__lowerCAmelCase ) __lowerCamelCase = train_images[:validation_size] __lowerCamelCase = train_labels[:validation_size] __lowerCamelCase = train_images[validation_size:] __lowerCamelCase = train_labels[validation_size:] __lowerCamelCase = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} __lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) __lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) __lowerCamelCase = _DataSet(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) return _Datasets(train=__lowerCAmelCase , validation=__lowerCAmelCase , test=__lowerCAmelCase )
339
0