code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
from __future__ import annotations
import typing
from collections.abc import Iterable
import numpy as np
_lowerCAmelCase : str = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007
_lowerCAmelCase : Tuple = typing.Union[np.floataa, int, float] # noqa: UP007
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> VectorOut:
'''simple docstring'''
return np.sqrt(np.sum((np.asarray(_lowerCamelCase ) - np.asarray(_lowerCamelCase )) ** 2 ) )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> VectorOut:
'''simple docstring'''
return sum((va - va) ** 2 for va, va in zip(_lowerCamelCase , _lowerCamelCase ) ) ** (1 / 2)
if __name__ == "__main__":
def lowerCamelCase_( ) -> None:
'''simple docstring'''
from timeit import timeit
print("Without Numpy" )
print(
timeit(
"euclidean_distance_no_np([1, 2, 3], [4, 5, 6])" , number=10000 , globals=globals() , ) )
print("With Numpy" )
print(
timeit(
"euclidean_distance([1, 2, 3], [4, 5, 6])" , number=10000 , globals=globals() , ) )
benchmark() | 340 |
"""simple docstring"""
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class A_ ( _a ):
lowerCAmelCase__ = 42
lowerCAmelCase__ = None
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=0.9_9_9 , _lowerCamelCase="cosine" , ) -> List[str]:
'''simple docstring'''
if alpha_transform_type == "cosine":
def alpha_bar_fn(_lowerCamelCase ):
return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(_lowerCamelCase ):
return math.exp(t * -1_2.0 )
else:
raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" )
_lowerCamelCase : str = []
for i in range(_lowerCamelCase ):
_lowerCamelCase : Any = i / num_diffusion_timesteps
_lowerCamelCase : Optional[Any] = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(_lowerCamelCase ) / alpha_bar_fn(_lowerCamelCase ) , _lowerCamelCase ) )
return torch.tensor(_lowerCamelCase , dtype=torch.floataa )
class A_ ( _a , _a ):
@register_to_config
def __init__( self: str ,__lowerCAmelCase: int = 1_000 ,__lowerCAmelCase: str = "fixed_small_log" ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[float] = 1.0 ,__lowerCAmelCase: str = "epsilon" ,__lowerCAmelCase: str = "squaredcos_cap_v2" ,):
'''simple docstring'''
if beta_schedule != "squaredcos_cap_v2":
raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" )
_lowerCamelCase : Union[str, Any] = betas_for_alpha_bar(__lowerCAmelCase )
_lowerCamelCase : Optional[int] = 1.0 - self.betas
_lowerCamelCase : Dict = torch.cumprod(self.alphas ,dim=0 )
_lowerCamelCase : int = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
_lowerCamelCase : Tuple = 1.0
# setable values
_lowerCamelCase : List[Any] = None
_lowerCamelCase : Union[str, Any] = torch.from_numpy(np.arange(0 ,__lowerCAmelCase )[::-1].copy() )
_lowerCamelCase : List[str] = variance_type
def _lowercase ( self: Any ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ):
'''simple docstring'''
return sample
def _lowercase ( self: Optional[int] ,__lowerCAmelCase: int ,__lowerCAmelCase: Union[str, torch.device] = None ):
'''simple docstring'''
_lowerCamelCase : str = num_inference_steps
_lowerCamelCase : str = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
_lowerCamelCase : Union[str, Any] = (np.arange(0 ,__lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa )
_lowerCamelCase : int = torch.from_numpy(__lowerCAmelCase ).to(__lowerCAmelCase )
def _lowercase ( self: List[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: List[str]=None ,__lowerCAmelCase: str=None ):
'''simple docstring'''
if prev_timestep is None:
_lowerCamelCase : List[str] = t - 1
_lowerCamelCase : Optional[int] = self.alphas_cumprod[t]
_lowerCamelCase : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
_lowerCamelCase : Dict = 1 - alpha_prod_t
_lowerCamelCase : str = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
_lowerCamelCase : List[Any] = self.betas[t]
else:
_lowerCamelCase : str = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
_lowerCamelCase : int = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
_lowerCamelCase : List[str] = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
_lowerCamelCase : Dict = torch.log(torch.clamp(__lowerCAmelCase ,min=1e-20 ) )
_lowerCamelCase : str = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
_lowerCamelCase : str = variance.log()
_lowerCamelCase : str = beta.log()
_lowerCamelCase : Optional[int] = (predicted_variance + 1) / 2
_lowerCamelCase : Union[str, Any] = frac * max_log + (1 - frac) * min_log
return variance
def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: int ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: bool = True ,):
'''simple docstring'''
_lowerCamelCase : str = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
_lowerCamelCase, _lowerCamelCase : int = torch.split(__lowerCAmelCase ,sample.shape[1] ,dim=1 )
else:
_lowerCamelCase : List[Any] = None
# 1. compute alphas, betas
if prev_timestep is None:
_lowerCamelCase : List[Any] = t - 1
_lowerCamelCase : Dict = self.alphas_cumprod[t]
_lowerCamelCase : int = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
_lowerCamelCase : Dict = 1 - alpha_prod_t
_lowerCamelCase : List[str] = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
_lowerCamelCase : Any = self.betas[t]
_lowerCamelCase : str = self.alphas[t]
else:
_lowerCamelCase : Any = 1 - alpha_prod_t / alpha_prod_t_prev
_lowerCamelCase : Optional[Any] = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
_lowerCamelCase : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
_lowerCamelCase : List[Any] = model_output
else:
raise ValueError(
F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`"""
" for the UnCLIPScheduler." )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
_lowerCamelCase : Any = torch.clamp(
__lowerCAmelCase ,-self.config.clip_sample_range ,self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_lowerCamelCase : List[str] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
_lowerCamelCase : Optional[int] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_lowerCamelCase : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
_lowerCamelCase : Union[str, Any] = 0
if t > 0:
_lowerCamelCase : Dict = randn_tensor(
model_output.shape ,dtype=model_output.dtype ,generator=__lowerCAmelCase ,device=model_output.device )
_lowerCamelCase : Any = self._get_variance(
__lowerCAmelCase ,predicted_variance=__lowerCAmelCase ,prev_timestep=__lowerCAmelCase ,)
if self.variance_type == "fixed_small_log":
_lowerCamelCase : Optional[Any] = variance
elif self.variance_type == "learned_range":
_lowerCamelCase : Optional[int] = (0.5 * variance).exp()
else:
raise ValueError(
F"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`"""
" for the UnCLIPScheduler." )
_lowerCamelCase : Dict = variance * variance_noise
_lowerCamelCase : List[Any] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=__lowerCAmelCase ,pred_original_sample=__lowerCAmelCase )
def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.IntTensor ,):
'''simple docstring'''
_lowerCamelCase : int = self.alphas_cumprod.to(device=original_samples.device ,dtype=original_samples.dtype )
_lowerCamelCase : Any = timesteps.to(original_samples.device )
_lowerCamelCase : List[Any] = alphas_cumprod[timesteps] ** 0.5
_lowerCamelCase : List[Any] = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
_lowerCamelCase : int = sqrt_alpha_prod.unsqueeze(-1 )
_lowerCamelCase : Union[str, Any] = (1 - alphas_cumprod[timesteps]) ** 0.5
_lowerCamelCase : str = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
_lowerCamelCase : Union[str, Any] = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
_lowerCamelCase : Dict = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples | 340 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
_lowerCAmelCase : Dict = {
'''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''',
# See all ViT models at https://huggingface.co/models?filter=vit
}
class A_ ( _a ):
lowerCAmelCase__ = 'vit'
def __init__( self: Tuple ,__lowerCAmelCase: Tuple=768 ,__lowerCAmelCase: Union[str, Any]=12 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: Optional[int]=3_072 ,__lowerCAmelCase: List[Any]="gelu" ,__lowerCAmelCase: Any=0.0 ,__lowerCAmelCase: int=0.0 ,__lowerCAmelCase: Optional[Any]=0.02 ,__lowerCAmelCase: Union[str, Any]=1e-12 ,__lowerCAmelCase: Dict=224 ,__lowerCAmelCase: Any=16 ,__lowerCAmelCase: Optional[int]=3 ,__lowerCAmelCase: Union[str, Any]=True ,__lowerCAmelCase: Dict=16 ,**__lowerCAmelCase: List[str] ,):
'''simple docstring'''
super().__init__(**__lowerCAmelCase )
_lowerCamelCase : int = hidden_size
_lowerCamelCase : int = num_hidden_layers
_lowerCamelCase : Dict = num_attention_heads
_lowerCamelCase : Tuple = intermediate_size
_lowerCamelCase : str = hidden_act
_lowerCamelCase : Optional[int] = hidden_dropout_prob
_lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob
_lowerCamelCase : List[Any] = initializer_range
_lowerCamelCase : Union[str, Any] = layer_norm_eps
_lowerCamelCase : Optional[int] = image_size
_lowerCamelCase : Optional[int] = patch_size
_lowerCamelCase : int = num_channels
_lowerCamelCase : str = qkv_bias
_lowerCamelCase : str = encoder_stride
class A_ ( _a ):
lowerCAmelCase__ = version.parse('1.11' )
@property
def _lowercase ( self: List[Any] ):
'''simple docstring'''
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
return 1e-4 | 340 |
"""simple docstring"""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConformerConfig,
WavaVecaConformerForCTC,
WavaVecaConformerForPreTraining,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
_lowerCAmelCase : List[str] = logging.get_logger(__name__)
_lowerCAmelCase : Dict = {
'''post_extract_proj''': '''feature_projection.projection''',
'''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''',
'''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''',
'''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''',
'''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''',
'''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''',
'''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''',
'''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''',
'''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''',
'''self_attn.rotary_emb''': '''encoder.embed_positions''',
'''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''',
'''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''',
'''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''',
'''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''',
'''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''',
'''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''',
'''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''',
'''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''',
'''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''',
'''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''',
'''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''',
'''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''',
'''final_layer_norm''': '''encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''encoder.layer_norm''',
'''w2v_model.layer_norm''': '''feature_projection.layer_norm''',
'''quantizer.weight_proj''': '''quantizer.weight_proj''',
'''quantizer.vars''': '''quantizer.codevectors''',
'''project_q''': '''project_q''',
'''final_proj''': '''project_hid''',
'''w2v_encoder.proj''': '''lm_head''',
'''mask_emb''': '''masked_spec_embed''',
}
_lowerCAmelCase : str = [
'''lm_head''',
'''quantizer.weight_proj''',
'''quantizer.codevectors''',
'''project_q''',
'''project_hid''',
]
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
'''simple docstring'''
for attribute in key.split("." ):
_lowerCamelCase : Tuple = getattr(_lowerCamelCase , _lowerCamelCase )
if weight_type is not None:
_lowerCamelCase : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ).shape
else:
_lowerCamelCase : Dict = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}""" )
if weight_type == "weight":
_lowerCamelCase : Tuple = value
elif weight_type == "weight_g":
_lowerCamelCase : List[str] = value
elif weight_type == "weight_v":
_lowerCamelCase : List[Any] = value
elif weight_type == "bias":
_lowerCamelCase : str = value
elif weight_type == "running_mean":
_lowerCamelCase : Optional[int] = value
elif weight_type == "running_var":
_lowerCamelCase : Optional[Any] = value
elif weight_type == "num_batches_tracked":
_lowerCamelCase : int = value
elif weight_type == "inv_freq":
_lowerCamelCase : List[str] = value
else:
_lowerCamelCase : Optional[Any] = value
logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]:
'''simple docstring'''
_lowerCamelCase : Dict = []
_lowerCamelCase : Optional[Any] = fairseq_model.state_dict()
_lowerCamelCase : List[Any] = hf_model.wavaveca_conformer.feature_extractor
for name, value in fairseq_dict.items():
_lowerCamelCase : Dict = False
if "conv_layers" in name:
load_conv_layer(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , )
_lowerCamelCase : List[Any] = True
else:
for key, mapped_key in MAPPING.items():
_lowerCamelCase : Dict = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
_lowerCamelCase : int = True
if "*" in mapped_key:
_lowerCamelCase : Tuple = name.split(_lowerCamelCase )[0].split("." )[-2]
_lowerCamelCase : int = mapped_key.replace("*" , _lowerCamelCase )
if "pos_bias_u" in name:
_lowerCamelCase : int = None
elif "pos_bias_v" in name:
_lowerCamelCase : Any = None
elif "weight_g" in name:
_lowerCamelCase : Any = "weight_g"
elif "weight_v" in name:
_lowerCamelCase : Any = "weight_v"
elif "bias" in name:
_lowerCamelCase : Optional[Any] = "bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
_lowerCamelCase : Dict = "weight"
elif "running_mean" in name:
_lowerCamelCase : str = "running_mean"
elif "inv_freq" in name:
_lowerCamelCase : List[Any] = "inv_freq"
elif "running_var" in name:
_lowerCamelCase : Tuple = "running_var"
elif "num_batches_tracked" in name:
_lowerCamelCase : str = "num_batches_tracked"
else:
_lowerCamelCase : Dict = None
set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
continue
if not is_used:
unused_weights.append(_lowerCamelCase )
logger.warning(F"""Unused weights: {unused_weights}""" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : int = full_name.split("conv_layers." )[-1]
_lowerCamelCase : List[Any] = name.split("." )
_lowerCamelCase : Union[str, Any] = int(items[0] )
_lowerCamelCase : List[Any] = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
_lowerCamelCase : str = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
_lowerCamelCase : int = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
_lowerCamelCase : Dict = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
_lowerCamelCase : Optional[Any] = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(_lowerCamelCase )
@torch.no_grad()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> Dict:
'''simple docstring'''
if config_path is not None:
_lowerCamelCase : Union[str, Any] = WavaVecaConformerConfig.from_pretrained(_lowerCamelCase , hidden_act="swish" )
else:
_lowerCamelCase : Dict = WavaVecaConformerConfig()
if "rope" in checkpoint_path:
_lowerCamelCase : List[Any] = "rotary"
if is_finetuned:
if dict_path:
_lowerCamelCase : Dict = Dictionary.load(_lowerCamelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
_lowerCamelCase : Optional[int] = target_dict.pad_index
_lowerCamelCase : Dict = target_dict.bos_index
_lowerCamelCase : Optional[Any] = target_dict.eos_index
_lowerCamelCase : str = len(target_dict.symbols )
_lowerCamelCase : int = os.path.join(_lowerCamelCase , "vocab.json" )
if not os.path.isdir(_lowerCamelCase ):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCamelCase ) )
return
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
_lowerCamelCase : Tuple = target_dict.indices
# fairseq has the <pad> and <s> switched
_lowerCamelCase : List[str] = 0
_lowerCamelCase : List[Any] = 1
with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_handle:
json.dump(_lowerCamelCase , _lowerCamelCase )
_lowerCamelCase : Optional[int] = WavaVecaCTCTokenizer(
_lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCamelCase , )
_lowerCamelCase : Tuple = True if config.feat_extract_norm == "layer" else False
_lowerCamelCase : Optional[Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , )
_lowerCamelCase : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase )
processor.save_pretrained(_lowerCamelCase )
_lowerCamelCase : List[Any] = WavaVecaConformerForCTC(_lowerCamelCase )
else:
_lowerCamelCase : Any = WavaVecaConformerForPreTraining(_lowerCamelCase )
if is_finetuned:
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} )
else:
_lowerCamelCase : List[Any] = argparse.Namespace(task="audio_pretraining" )
_lowerCamelCase : Optional[Any] = fairseq.tasks.setup_task(_lowerCamelCase )
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCamelCase )
_lowerCamelCase : Dict = model[0].eval()
recursively_load_weights(_lowerCamelCase , _lowerCamelCase , not is_finetuned )
hf_wavavec.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase : Tuple = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not'''
)
_lowerCAmelCase : str = parser.parse_args()
convert_wavaveca_conformer_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
) | 340 | 1 |
"""simple docstring"""
import collections
import json
import os
import re
from typing import TYPE_CHECKING, List, Optional, Tuple
import numpy as np
from ...tokenization_utils_fast import PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
_lowerCAmelCase : Any = logging.get_logger(__name__)
_lowerCAmelCase : Any = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''}
_lowerCAmelCase : Optional[int] = {
'''vocab_file''': {
'''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''',
},
'''emoji_file''': {
'''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''',
},
}
_lowerCAmelCase : Any = {
'''abeja/gpt-neox-japanese-2.7b''': 2048,
}
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Any:
'''simple docstring'''
with open(_lowerCamelCase , "r" , encoding="utf-8" ) as f:
_lowerCamelCase : Any = json.loads(f.read() )
_lowerCamelCase : str = collections.OrderedDict()
_lowerCamelCase : List[Any] = collections.OrderedDict()
_lowerCamelCase : List[Any] = collections.OrderedDict()
with open(_lowerCamelCase , "r" , encoding="utf-8" ) as f:
_lowerCamelCase : Union[str, Any] = f.readlines()
_lowerCamelCase : Dict = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token]
for idx, b in enumerate(_lowerCamelCase ):
_lowerCamelCase : int = b
_lowerCamelCase : Dict = idx
for wd in b:
_lowerCamelCase : Any = idx
return vocab, raw_vocab, ids_to_tokens, emoji
class A_ ( _a ):
lowerCAmelCase__ = VOCAB_FILES_NAMES
lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase__ = ['input_ids', 'attention_mask']
def __init__( self: str ,__lowerCAmelCase: str ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: List[str]="<|endoftext|>" ,__lowerCAmelCase: Any="<|endoftext|>" ,__lowerCAmelCase: Dict="<|startoftext|>" ,__lowerCAmelCase: List[str]="<|endoftext|>" ,__lowerCAmelCase: int=False ,**__lowerCAmelCase: Dict ,):
'''simple docstring'''
super().__init__(
unk_token=__lowerCAmelCase ,pad_token=__lowerCAmelCase ,bos_token=__lowerCAmelCase ,eos_token=__lowerCAmelCase ,do_clean_text=__lowerCAmelCase ,**__lowerCAmelCase ,)
if not os.path.isfile(__lowerCAmelCase ):
raise ValueError(
F"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"""
" model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" )
if not os.path.isfile(__lowerCAmelCase ):
raise ValueError(
F"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google"""
" pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" )
_lowerCamelCase : Union[str, Any] = do_clean_text
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = load_vocab_and_emoji(__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : List[Any] = SubWordJapaneseTokenizer(
vocab=self.vocab ,ids_to_tokens=self.ids_to_tokens ,emoji=self.emoji )
@property
def _lowercase ( self: Tuple ):
'''simple docstring'''
return len(self.raw_vocab )
def _lowercase ( self: List[str] ):
'''simple docstring'''
return dict(self.raw_vocab ,**self.added_tokens_encoder )
def _lowercase ( self: str ,__lowerCAmelCase: str ):
'''simple docstring'''
return self.subword_tokenizer.tokenize(__lowerCAmelCase ,clean=self.do_clean_text )
def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: List[str] ):
'''simple docstring'''
return self.vocab.get(__lowerCAmelCase ,self.vocab.get(self.unk_token ) )
def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: List[str] ):
'''simple docstring'''
return self.subword_tokenizer.convert_id_to_token(__lowerCAmelCase )
def _lowercase ( self: Dict ,__lowerCAmelCase: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = "".join(__lowerCAmelCase ).strip()
return out_string
def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: "Conversation" ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ) + [self.eos_token_id] )
if len(__lowerCAmelCase ) > self.model_max_length:
_lowerCamelCase : List[Any] = input_ids[-self.model_max_length :]
return input_ids
def _lowercase ( self: Tuple ,__lowerCAmelCase: str ,__lowerCAmelCase: Optional[str] = None ):
'''simple docstring'''
_lowerCamelCase : str = 0
if os.path.isdir(__lowerCAmelCase ):
_lowerCamelCase : Dict = os.path.join(
__lowerCAmelCase ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
_lowerCamelCase : List[str] = os.path.join(
__lowerCAmelCase ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] )
else:
_lowerCamelCase : str = (
(filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"]
)
_lowerCamelCase : Optional[int] = (
(filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"]
)
with open(__lowerCAmelCase ,"w" ,encoding="utf-8" ) as writer:
for token_index, token in self.ids_to_tokens.items():
if index != token_index:
logger.warning(
F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."""
" Please check that the vocabulary is not corrupted!" )
_lowerCamelCase : Optional[Any] = token_index
writer.write(",".join(__lowerCAmelCase ) + "\n" )
index += 1
with open(__lowerCAmelCase ,"w" ,encoding="utf-8" ) as writer:
json.dump(self.emoji ,__lowerCAmelCase )
return vocab_file, emoji_file
class A_ ( _a ):
def __init__( self: Optional[int] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : Any = vocab # same as swe
_lowerCamelCase : Tuple = ids_to_tokens # same as bpe
_lowerCamelCase : str = emoji
_lowerCamelCase : Union[str, Any] = np.max([len(__lowerCAmelCase ) for w in self.vocab.keys()] )
_lowerCamelCase : Union[str, Any] = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" )
_lowerCamelCase : Optional[Any] = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" )
_lowerCamelCase : Any = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" )
_lowerCamelCase : int = re.compile(
r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" )
_lowerCamelCase : Union[str, Any] = re.compile(
r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" )
_lowerCamelCase : Tuple = re.compile(
r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" )
_lowerCamelCase : List[Any] = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿"
_lowerCamelCase : str = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟"
_lowerCamelCase : Optional[Any] = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} )
def __len__( self: int ):
'''simple docstring'''
return len(self.ids_to_tokens )
def _lowercase ( self: Dict ,__lowerCAmelCase: int ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = self.content_repattera.sub("<URL>" ,__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = self.content_repattera.sub("<EMAIL>" ,__lowerCAmelCase )
_lowerCamelCase : int = self.content_repattera.sub("<TEL>" ,__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = self.content_repattera.sub("<DATE>" ,__lowerCAmelCase )
_lowerCamelCase : Tuple = self.content_repattera.sub("<DATE>" ,__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = self.content_repattera.sub("<PRICE>" ,__lowerCAmelCase )
_lowerCamelCase : int = content.translate(self.content_transa )
while "<BLOCK><BLOCK>" in content:
_lowerCamelCase : int = content.replace("<BLOCK><BLOCK>" ,"<BLOCK>" )
return content
def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: str ,__lowerCAmelCase: Optional[int]=False ):
'''simple docstring'''
_lowerCamelCase : List[str] = text.replace(" " ,"<SP>" )
_lowerCamelCase : Optional[int] = text.replace(" " ,"<SP>" )
_lowerCamelCase : Optional[Any] = text.replace("\r\n" ,"<BR>" )
_lowerCamelCase : Optional[int] = text.replace("\n" ,"<BR>" )
_lowerCamelCase : int = text.replace("\r" ,"<BR>" )
_lowerCamelCase : Tuple = text.replace("\t" ,"<TAB>" )
_lowerCamelCase : Dict = text.replace("—" ,"ー" )
_lowerCamelCase : List[Any] = text.replace("−" ,"ー" )
for k, v in self.emoji["emoji"].items():
if k in text:
_lowerCamelCase : str = text.replace(__lowerCAmelCase ,__lowerCAmelCase )
if clean:
_lowerCamelCase : Dict = self.clean_text(__lowerCAmelCase )
def check_simbol(__lowerCAmelCase: Optional[int] ):
_lowerCamelCase : int = x.encode()
if len(__lowerCAmelCase ) == 1 and len(__lowerCAmelCase ) == 2:
_lowerCamelCase : str = (int(e[0] ) << 8) + int(e[1] )
if (
(c >= 0xC2A1 and c <= 0xC2BF)
or (c >= 0xC780 and c <= 0xC783)
or (c >= 0xCAB9 and c <= 0xCBBF)
or (c >= 0xCC80 and c <= 0xCDA2)
):
return True
return False
def checkuae(__lowerCAmelCase: Union[str, Any] ):
_lowerCamelCase : List[str] = x.encode()
if len(__lowerCAmelCase ) == 1 and len(__lowerCAmelCase ) == 3:
_lowerCamelCase : Tuple = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] )
if c >= 0xE2_8080 and c <= 0xE2_B07F:
return True
return False
_lowerCamelCase : str = 0
_lowerCamelCase : Dict = []
while pos < len(__lowerCAmelCase ):
_lowerCamelCase : Any = min(len(__lowerCAmelCase ) ,pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3
_lowerCamelCase : Dict = [] # (token_id, token, pos)
for e in range(__lowerCAmelCase ,__lowerCAmelCase ,-1 ):
_lowerCamelCase : Any = text[pos:e]
if wd in self.vocab:
if wd[0] == "<" and len(__lowerCAmelCase ) > 2:
_lowerCamelCase : Any = [(self.vocab[wd], wd, e)]
break
else:
candidates.append((self.vocab[wd], wd, e) )
if len(__lowerCAmelCase ) > 0:
# the smallest token_id is adopted
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = sorted(__lowerCAmelCase ,key=lambda __lowerCAmelCase : x[0] )[0]
result.append(__lowerCAmelCase )
_lowerCamelCase : List[str] = e
else:
_lowerCamelCase : List[Any] = pos + 1
_lowerCamelCase : List[Any] = text[pos:end]
if check_simbol(__lowerCAmelCase ):
result.append("<KIGOU>" )
elif checkuae(__lowerCAmelCase ):
result.append("<U2000U2BFF>" )
else:
for i in wd.encode("utf-8" ):
result.append("<|byte%d|>" % i )
_lowerCamelCase : Optional[Any] = end
return result
def _lowercase ( self: List[str] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: int="\n" ):
'''simple docstring'''
_lowerCamelCase : List[Any] = []
_lowerCamelCase : List[str] = []
_lowerCamelCase : List[str] = self.ids_to_tokens[index][0]
if word[:6] == "<|byte" and word[-2:] == "|>":
byte_tokens.append(int(word[6:-2] ) )
else:
if len(__lowerCAmelCase ) > 0:
words.append(bytearray(__lowerCAmelCase ).decode("utf-8" ,errors="replace" ) )
_lowerCamelCase : Tuple = []
if word[:7] == "<|emoji" and word[-2:] == "|>":
words.append(self.emoji["emoji_inv"][word] )
elif word == "<SP>":
words.append(" " )
elif word == "<BR>":
words.append(__lowerCAmelCase )
elif word == "<TAB>":
words.append("\t" )
elif word == "<BLOCK>":
words.append("▀" )
elif word == "<KIGOU>":
words.append("ǀ" )
elif word == "<U2000U2BFF>":
words.append("‖" )
else:
words.append(__lowerCAmelCase )
if len(__lowerCAmelCase ) > 0:
words.append(bytearray(__lowerCAmelCase ).decode("utf-8" ,errors="replace" ) )
_lowerCamelCase : Union[str, Any] = "".join(__lowerCAmelCase )
return text | 340 |
"""simple docstring"""
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float:
'''simple docstring'''
_validate_point(_lowerCamelCase )
_validate_point(_lowerCamelCase )
if len(_lowerCamelCase ) != len(_lowerCamelCase ):
raise ValueError("Both points must be in the same n-dimensional space" )
return float(sum(abs(a - b ) for a, b in zip(_lowerCamelCase , _lowerCamelCase ) ) )
def lowerCamelCase_( _lowerCamelCase ) -> None:
'''simple docstring'''
if point:
if isinstance(_lowerCamelCase , _lowerCamelCase ):
for item in point:
if not isinstance(_lowerCamelCase , (int, float) ):
_lowerCamelCase : Dict = (
"Expected a list of numbers as input, found "
F"""{type(_lowerCamelCase ).__name__}"""
)
raise TypeError(_lowerCamelCase )
else:
_lowerCamelCase : Optional[int] = F"""Expected a list of numbers as input, found {type(_lowerCamelCase ).__name__}"""
raise TypeError(_lowerCamelCase )
else:
raise ValueError("Missing an input" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float:
'''simple docstring'''
_validate_point(_lowerCamelCase )
_validate_point(_lowerCamelCase )
if len(_lowerCamelCase ) != len(_lowerCamelCase ):
raise ValueError("Both points must be in the same n-dimensional space" )
return float(sum(abs(x - y ) for x, y in zip(_lowerCamelCase , _lowerCamelCase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 340 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import _LazyModule
_lowerCAmelCase : List[str] = {'''tokenization_byt5''': ['''ByT5Tokenizer''']}
if TYPE_CHECKING:
from .tokenization_byta import ByTaTokenizer
else:
import sys
_lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 340 |
"""simple docstring"""
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Optional[Any] = np.inf
def set_batch_size(_lowerCamelCase ) -> None:
nonlocal batch_size
if isinstance(_lowerCamelCase , _lowerCamelCase ):
_lowerCamelCase : Optional[int] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(_lowerCamelCase , _lowerCamelCase ):
_lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(_lowerCamelCase , _lowerCamelCase ) and feature.dtype == "binary":
_lowerCamelCase : List[str] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(_lowerCamelCase , _lowerCamelCase )
return None if batch_size is np.inf else batch_size
class A_ ( _a ):
def __init__( self: Optional[int] ,__lowerCAmelCase: NestedDataStructureLike[PathLike] ,__lowerCAmelCase: Optional[NamedSplit] = None ,__lowerCAmelCase: Optional[Features] = None ,__lowerCAmelCase: str = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: int ,):
'''simple docstring'''
super().__init__(
__lowerCAmelCase ,split=__lowerCAmelCase ,features=__lowerCAmelCase ,cache_dir=__lowerCAmelCase ,keep_in_memory=__lowerCAmelCase ,streaming=__lowerCAmelCase ,num_proc=__lowerCAmelCase ,**__lowerCAmelCase ,)
_lowerCamelCase : Tuple = path_or_paths if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) else {self.split: path_or_paths}
_lowerCamelCase : Any = _PACKAGED_DATASETS_MODULES["parquet"][1]
_lowerCamelCase : int = Parquet(
cache_dir=__lowerCAmelCase ,data_files=__lowerCAmelCase ,features=__lowerCAmelCase ,hash=__lowerCAmelCase ,**__lowerCAmelCase ,)
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
if self.streaming:
_lowerCamelCase : List[Any] = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
_lowerCamelCase : Tuple = None
_lowerCamelCase : Optional[int] = None
_lowerCamelCase : List[str] = None
_lowerCamelCase : str = None
self.builder.download_and_prepare(
download_config=__lowerCAmelCase ,download_mode=__lowerCAmelCase ,verification_mode=__lowerCAmelCase ,base_path=__lowerCAmelCase ,num_proc=self.num_proc ,)
_lowerCamelCase : Any = self.builder.as_dataset(
split=self.split ,verification_mode=__lowerCAmelCase ,in_memory=self.keep_in_memory )
return dataset
class A_ :
def __init__( self: str ,__lowerCAmelCase: Dataset ,__lowerCAmelCase: Union[PathLike, BinaryIO] ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: List[Any] ,):
'''simple docstring'''
_lowerCamelCase : Any = dataset
_lowerCamelCase : Any = path_or_buf
_lowerCamelCase : Any = batch_size or get_writer_batch_size(dataset.features )
_lowerCamelCase : List[str] = parquet_writer_kwargs
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase : Tuple = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf ,(str, bytes, os.PathLike) ):
with open(self.path_or_buf ,"wb+" ) as buffer:
_lowerCamelCase : str = self._write(file_obj=__lowerCAmelCase ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs )
else:
_lowerCamelCase : Optional[int] = self._write(file_obj=self.path_or_buf ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs )
return written
def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: BinaryIO ,__lowerCAmelCase: int ,**__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : List[str] = 0
_lowerCamelCase : Optional[int] = parquet_writer_kwargs.pop("path_or_buf" ,__lowerCAmelCase )
_lowerCamelCase : List[str] = self.dataset.features.arrow_schema
_lowerCamelCase : str = pq.ParquetWriter(__lowerCAmelCase ,schema=__lowerCAmelCase ,**__lowerCAmelCase )
for offset in logging.tqdm(
range(0 ,len(self.dataset ) ,__lowerCAmelCase ) ,unit="ba" ,disable=not logging.is_progress_bar_enabled() ,desc="Creating parquet from Arrow format" ,):
_lowerCamelCase : List[str] = query_table(
table=self.dataset._data ,key=slice(__lowerCAmelCase ,offset + batch_size ) ,indices=self.dataset._indices if self.dataset._indices is not None else None ,)
writer.write_table(__lowerCAmelCase )
written += batch.nbytes
writer.close()
return written | 340 | 1 |
"""simple docstring"""
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
_lowerCAmelCase : List[Any] = get_logger(__name__)
class A_ :
lowerCAmelCase__ = 'dummy_data'
lowerCAmelCase__ = 'datasets'
lowerCAmelCase__ = False
def __init__( self: List[str] ,__lowerCAmelCase: str ,__lowerCAmelCase: str ,__lowerCAmelCase: Union[Version, str] ,__lowerCAmelCase: Optional[str] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[List[Callable]] = None ,):
'''simple docstring'''
_lowerCamelCase : str = 0
_lowerCamelCase : List[str] = dataset_name
_lowerCamelCase : Optional[int] = cache_dir
_lowerCamelCase : Optional[int] = use_local_dummy_data
_lowerCamelCase : int = config
# download_callbacks take a single url as input
_lowerCamelCase : List[Callable] = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
_lowerCamelCase : int = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
_lowerCamelCase : Tuple = str(__lowerCAmelCase )
# to be downloaded
_lowerCamelCase : Optional[Any] = None
_lowerCamelCase : Dict = None
@property
def _lowercase ( self: str ):
'''simple docstring'''
if self._dummy_file is None:
_lowerCamelCase : List[str] = self.download_dummy_data()
return self._dummy_file
@property
def _lowercase ( self: str ):
'''simple docstring'''
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join("dummy" ,self.config.name ,self.version_name )
# structure is dummy / version_name
return os.path.join("dummy" ,self.version_name )
@property
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
return os.path.join(self.dummy_data_folder ,"dummy_data.zip" )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : Dict = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
_lowerCamelCase : Optional[int] = cached_path(
__lowerCAmelCase ,cache_dir=self.cache_dir ,extract_compressed_file=__lowerCAmelCase ,force_extract=__lowerCAmelCase )
return os.path.join(__lowerCAmelCase ,self.dummy_file_name )
@property
def _lowercase ( self: Tuple ):
'''simple docstring'''
return os.path.join(self.datasets_scripts_dir ,self.dataset_name ,self.dummy_zip_file )
@property
def _lowercase ( self: List[str] ):
'''simple docstring'''
if self._bucket_url is None:
_lowerCamelCase : List[str] = hf_github_url(self.dataset_name ,self.dummy_zip_file.replace(os.sep ,"/" ) )
return self._bucket_url
@property
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep ,"/" ).split("/" )[:-1] )
def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: str ,*__lowerCAmelCase: List[Any] ):
'''simple docstring'''
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
_lowerCamelCase : Tuple = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
_lowerCamelCase : Optional[Any] = self.dummy_file_name
# special case when data_url is a dict
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
return self.create_dummy_data_dict(__lowerCAmelCase ,__lowerCAmelCase )
elif isinstance(__lowerCAmelCase ,(list, tuple) ):
return self.create_dummy_data_list(__lowerCAmelCase ,__lowerCAmelCase )
else:
return self.create_dummy_data_single(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
return self.download_and_extract(__lowerCAmelCase )
def _lowercase ( self: List[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: int ):
'''simple docstring'''
return self.download_and_extract(__lowerCAmelCase )
def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
return path
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
return {}
def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: str ):
'''simple docstring'''
_lowerCamelCase : str = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
for single_url in single_urls:
download_callback(__lowerCAmelCase )
else:
_lowerCamelCase : Union[str, Any] = single_urls
download_callback(__lowerCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : Dict = [os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) ) for x in single_urls]
else:
_lowerCamelCase : Union[str, Any] = single_urls
_lowerCamelCase : List[str] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) )
_lowerCamelCase : List[Any] = value
# make sure that values are unique
if all(isinstance(__lowerCAmelCase ,__lowerCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
_lowerCamelCase : List[Any] = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Tuple ):
'''simple docstring'''
_lowerCamelCase : Dict = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
_lowerCamelCase : List[str] = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" ,__lowerCAmelCase ) ) for url in data_url )
_lowerCamelCase : Optional[Any] = all(
url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
_lowerCamelCase : Tuple = [data_url[0]] * len(__lowerCAmelCase )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(__lowerCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
_lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(single_url.split("/" )[-1] ) )
dummy_data_list.append(__lowerCAmelCase )
return dummy_data_list
def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: List[Any] ):
'''simple docstring'''
for download_callback in self.download_callbacks:
download_callback(__lowerCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
_lowerCamelCase : Optional[int] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(data_url.split("/" )[-1] ) )
if os.path.exists(__lowerCAmelCase ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
pass
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
pass
def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
def _iter_archive_members(__lowerCAmelCase: Any ):
# this preserves the order of the members inside the ZIP archive
_lowerCamelCase : Tuple = Path(self.dummy_file ).parent
_lowerCamelCase : str = path.relative_to(__lowerCAmelCase )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
_lowerCamelCase : Optional[int] = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = Path(__lowerCAmelCase )
_lowerCamelCase : int = _iter_archive_members(__lowerCAmelCase ) if self.use_local_dummy_data else path.rglob("*" )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith((".", "__") ):
yield file_path.relative_to(__lowerCAmelCase ).as_posix(), file_path.open("rb" )
def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : List[Any] = [paths]
for path in paths:
if os.path.isfile(__lowerCAmelCase ):
if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(__lowerCAmelCase ):
if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ):
continue
dirnames.sort()
for filename in sorted(__lowerCAmelCase ):
if filename.startswith((".", "__") ):
continue
yield os.path.join(__lowerCAmelCase ,__lowerCAmelCase ) | 340 |
"""simple docstring"""
import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def lowerCamelCase_( _lowerCamelCase ) -> Tuple:
'''simple docstring'''
_lowerCamelCase : Optional[int] = {}
_lowerCamelCase : Optional[int] = tokenizer(example["content"] , truncation=_lowerCamelCase )["input_ids"]
_lowerCamelCase : Dict = len(example["content"] ) / len(output["input_ids"] )
return output
_lowerCAmelCase : Tuple = HfArgumentParser(PretokenizationArguments)
_lowerCAmelCase : Optional[int] = parser.parse_args()
if args.num_workers is None:
_lowerCAmelCase : Any = multiprocessing.cpu_count()
_lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(args.tokenizer_dir)
_lowerCAmelCase : Union[str, Any] = time.time()
_lowerCAmelCase : Optional[int] = load_dataset(args.dataset_name, split='''train''')
print(f'''Dataset loaded in {time.time()-t_start:.2f}s''')
_lowerCAmelCase : Any = time.time()
_lowerCAmelCase : Dict = ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
'''repo_name''',
'''path''',
'''copies''',
'''size''',
'''content''',
'''license''',
'''hash''',
'''line_mean''',
'''line_max''',
'''alpha_frac''',
'''autogenerated''',
],
)
print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''')
_lowerCAmelCase : str = time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''') | 340 | 1 |
"""simple docstring"""
from typing import Optional, Tuple, Union
import torch
from einops import rearrange, reduce
from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput
_lowerCAmelCase : Optional[Any] = 8
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=BITS ) -> Any:
'''simple docstring'''
_lowerCamelCase : Optional[Any] = x.device
_lowerCamelCase : Optional[Any] = (x * 255).int().clamp(0 , 255 )
_lowerCamelCase : Dict = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_lowerCamelCase )
_lowerCamelCase : str = rearrange(_lowerCamelCase , "d -> d 1 1" )
_lowerCamelCase : str = rearrange(_lowerCamelCase , "b c h w -> b c 1 h w" )
_lowerCamelCase : Optional[int] = ((x & mask) != 0).float()
_lowerCamelCase : Any = rearrange(_lowerCamelCase , "b c d h w -> b (c d) h w" )
_lowerCamelCase : Optional[Any] = bits * 2 - 1
return bits
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=BITS ) -> Dict:
'''simple docstring'''
_lowerCamelCase : int = x.device
_lowerCamelCase : Union[str, Any] = (x > 0).int()
_lowerCamelCase : Union[str, Any] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_lowerCamelCase , dtype=torch.intaa )
_lowerCamelCase : str = rearrange(_lowerCamelCase , "d -> d 1 1" )
_lowerCamelCase : int = rearrange(_lowerCamelCase , "b (c d) h w -> b c d h w" , d=8 )
_lowerCamelCase : Dict = reduce(x * mask , "b c d h w -> b c h w" , "sum" )
return (dec / 255).clamp(0.0 , 1.0 )
def lowerCamelCase_( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0.0 , _lowerCamelCase = True , _lowerCamelCase=None , _lowerCamelCase = True , ) -> Union[DDIMSchedulerOutput, Tuple]:
'''simple docstring'''
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" )
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_sample -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_sample_direction -> "direction pointing to x_t"
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=t-1)
_lowerCamelCase : Optional[int] = timestep - self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
_lowerCamelCase : str = self.alphas_cumprod[timestep]
_lowerCamelCase : Tuple = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
_lowerCamelCase : str = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_lowerCamelCase : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
# 4. Clip "predicted x_0"
_lowerCamelCase : Dict = self.bit_scale
if self.config.clip_sample:
_lowerCamelCase : List[str] = torch.clamp(_lowerCamelCase , -scale , _lowerCamelCase )
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
_lowerCamelCase : Optional[Any] = self._get_variance(_lowerCamelCase , _lowerCamelCase )
_lowerCamelCase : Dict = eta * variance ** 0.5
if use_clipped_model_output:
# the model_output is always re-derived from the clipped x_0 in Glide
_lowerCamelCase : Optional[int] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_lowerCamelCase : Union[str, Any] = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_lowerCamelCase : int = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if eta > 0:
# randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
_lowerCamelCase : Dict = model_output.device if torch.is_tensor(_lowerCamelCase ) else "cpu"
_lowerCamelCase : Optional[int] = torch.randn(model_output.shape , dtype=model_output.dtype , generator=_lowerCamelCase ).to(_lowerCamelCase )
_lowerCamelCase : Optional[Any] = self._get_variance(_lowerCamelCase , _lowerCamelCase ) ** 0.5 * eta * noise
_lowerCamelCase : Dict = prev_sample + variance
if not return_dict:
return (prev_sample,)
return DDIMSchedulerOutput(prev_sample=_lowerCamelCase , pred_original_sample=_lowerCamelCase )
def lowerCamelCase_( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="epsilon" , _lowerCamelCase=None , _lowerCamelCase = True , ) -> Union[DDPMSchedulerOutput, Tuple]:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
_lowerCamelCase, _lowerCamelCase : List[str] = torch.split(_lowerCamelCase , sample.shape[1] , dim=1 )
else:
_lowerCamelCase : Union[str, Any] = None
# 1. compute alphas, betas
_lowerCamelCase : Dict = self.alphas_cumprod[t]
_lowerCamelCase : List[str] = self.alphas_cumprod[t - 1] if t > 0 else self.one
_lowerCamelCase : Optional[int] = 1 - alpha_prod_t
_lowerCamelCase : Any = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if prediction_type == "epsilon":
_lowerCamelCase : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif prediction_type == "sample":
_lowerCamelCase : List[str] = model_output
else:
raise ValueError(F"""Unsupported prediction_type {prediction_type}.""" )
# 3. Clip "predicted x_0"
_lowerCamelCase : Union[str, Any] = self.bit_scale
if self.config.clip_sample:
_lowerCamelCase : int = torch.clamp(_lowerCamelCase , -scale , _lowerCamelCase )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_lowerCamelCase : Any = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t
_lowerCamelCase : Optional[int] = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_lowerCamelCase : Any = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
_lowerCamelCase : Union[str, Any] = 0
if t > 0:
_lowerCamelCase : str = torch.randn(
model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=_lowerCamelCase ).to(model_output.device )
_lowerCamelCase : Union[str, Any] = (self._get_variance(_lowerCamelCase , predicted_variance=_lowerCamelCase ) ** 0.5) * noise
_lowerCamelCase : str = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return DDPMSchedulerOutput(prev_sample=_lowerCamelCase , pred_original_sample=_lowerCamelCase )
class A_ ( _a ):
def __init__( self: Any ,__lowerCAmelCase: UNetaDConditionModel ,__lowerCAmelCase: Union[DDIMScheduler, DDPMScheduler] ,__lowerCAmelCase: Optional[float] = 1.0 ,):
'''simple docstring'''
super().__init__()
_lowerCamelCase : Any = bit_scale
_lowerCamelCase : Optional[int] = (
ddim_bit_scheduler_step if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) else ddpm_bit_scheduler_step
)
self.register_modules(unet=__lowerCAmelCase ,scheduler=__lowerCAmelCase )
@torch.no_grad()
def __call__( self: List[Any] ,__lowerCAmelCase: Optional[int] = 256 ,__lowerCAmelCase: Optional[int] = 256 ,__lowerCAmelCase: Optional[int] = 50 ,__lowerCAmelCase: Optional[torch.Generator] = None ,__lowerCAmelCase: Optional[int] = 1 ,__lowerCAmelCase: Optional[str] = "pil" ,__lowerCAmelCase: bool = True ,**__lowerCAmelCase: Optional[Any] ,):
'''simple docstring'''
_lowerCamelCase : List[str] = torch.randn(
(batch_size, self.unet.config.in_channels, height, width) ,generator=__lowerCAmelCase ,)
_lowerCamelCase : Optional[int] = decimal_to_bits(__lowerCAmelCase ) * self.bit_scale
_lowerCamelCase : str = latents.to(self.device )
self.scheduler.set_timesteps(__lowerCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# predict the noise residual
_lowerCamelCase : Optional[int] = self.unet(__lowerCAmelCase ,__lowerCAmelCase ).sample
# compute the previous noisy sample x_t -> x_t-1
_lowerCamelCase : Any = self.scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ).prev_sample
_lowerCamelCase : Union[str, Any] = bits_to_decimal(__lowerCAmelCase )
if output_type == "pil":
_lowerCamelCase : Any = self.numpy_to_pil(__lowerCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__lowerCAmelCase ) | 340 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowerCAmelCase : Optional[Any] = {
'''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''],
'''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''],
'''processing_mctct''': ['''MCTCTProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Dict = [
'''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MCTCTForCTC''',
'''MCTCTModel''',
'''MCTCTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
_lowerCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 340 | 1 |
"""simple docstring"""
from collections.abc import Sequence
from queue import Queue
class A_ :
def __init__( self: Dict ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: Dict=None ):
'''simple docstring'''
_lowerCamelCase : List[Any] = start
_lowerCamelCase : Tuple = end
_lowerCamelCase : str = val
_lowerCamelCase : Optional[Any] = (start + end) // 2
_lowerCamelCase : Any = left
_lowerCamelCase : str = right
def __repr__( self: Tuple ):
'''simple docstring'''
return F"""SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})"""
class A_ :
def __init__( self: Any ,__lowerCAmelCase: Sequence ,__lowerCAmelCase: Tuple ):
'''simple docstring'''
_lowerCamelCase : List[Any] = collection
_lowerCamelCase : List[str] = function
if self.collection:
_lowerCamelCase : str = self._build_tree(0 ,len(__lowerCAmelCase ) - 1 )
def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: List[Any] ):
'''simple docstring'''
self._update_tree(self.root ,__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: int ,__lowerCAmelCase: int ,__lowerCAmelCase: str ):
'''simple docstring'''
return self._query_range(self.root ,__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: Dict ,__lowerCAmelCase: Any ,__lowerCAmelCase: Optional[Any] ):
'''simple docstring'''
if start == end:
return SegmentTreeNode(__lowerCAmelCase ,__lowerCAmelCase ,self.collection[start] )
_lowerCamelCase : Optional[int] = (start + end) // 2
_lowerCamelCase : Any = self._build_tree(__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : List[Any] = self._build_tree(mid + 1 ,__lowerCAmelCase )
return SegmentTreeNode(__lowerCAmelCase ,__lowerCAmelCase ,self.fn(left.val ,right.val ) ,__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Tuple ):
'''simple docstring'''
if node.start == i and node.end == i:
_lowerCamelCase : Any = val
return
if i <= node.mid:
self._update_tree(node.left ,__lowerCAmelCase ,__lowerCAmelCase )
else:
self._update_tree(node.right ,__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : Dict = self.fn(node.left.val ,node.right.val )
def _lowercase ( self: str ,__lowerCAmelCase: int ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Tuple ):
'''simple docstring'''
if node.start == i and node.end == j:
return node.val
if i <= node.mid:
if j <= node.mid:
# range in left child tree
return self._query_range(node.left ,__lowerCAmelCase ,__lowerCAmelCase )
else:
# range in left child tree and right child tree
return self.fn(
self._query_range(node.left ,__lowerCAmelCase ,node.mid ) ,self._query_range(node.right ,node.mid + 1 ,__lowerCAmelCase ) ,)
else:
# range in right child tree
return self._query_range(node.right ,__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
if self.root is not None:
_lowerCamelCase : List[str] = Queue()
queue.put(self.root )
while not queue.empty():
_lowerCamelCase : int = queue.get()
yield node
if node.left is not None:
queue.put(node.left )
if node.right is not None:
queue.put(node.right )
if __name__ == "__main__":
import operator
for fn in [operator.add, max, min]:
print('''*''' * 50)
_lowerCAmelCase : Any = SegmentTree([2, 1, 5, 3, 4], fn)
for node in arr.traverse():
print(node)
print()
arr.update(1, 5)
for node in arr.traverse():
print(node)
print()
print(arr.query_range(3, 4)) # 7
print(arr.query_range(2, 2)) # 5
print(arr.query_range(1, 3)) # 13
print() | 340 |
"""simple docstring"""
import logging
from transformers.configuration_utils import PretrainedConfig
_lowerCAmelCase : Optional[Any] = logging.getLogger(__name__)
class A_ ( _a ):
lowerCAmelCase__ = 'masked_bert'
def __init__( self: Union[str, Any] ,__lowerCAmelCase: Dict=30_522 ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Dict=12 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: List[Any]="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Tuple=512 ,__lowerCAmelCase: str=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Union[str, Any]=1e-12 ,__lowerCAmelCase: Union[str, Any]=0 ,__lowerCAmelCase: List[Any]="topK" ,__lowerCAmelCase: Optional[Any]="constant" ,__lowerCAmelCase: Optional[Any]=0.0 ,**__lowerCAmelCase: str ,):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCAmelCase ,**__lowerCAmelCase )
_lowerCamelCase : List[Any] = vocab_size
_lowerCamelCase : Optional[Any] = hidden_size
_lowerCamelCase : Tuple = num_hidden_layers
_lowerCamelCase : Tuple = num_attention_heads
_lowerCamelCase : Optional[Any] = hidden_act
_lowerCamelCase : Optional[Any] = intermediate_size
_lowerCamelCase : str = hidden_dropout_prob
_lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob
_lowerCamelCase : str = max_position_embeddings
_lowerCamelCase : List[str] = type_vocab_size
_lowerCamelCase : Optional[int] = initializer_range
_lowerCamelCase : List[Any] = layer_norm_eps
_lowerCamelCase : int = pruning_method
_lowerCamelCase : str = mask_init
_lowerCamelCase : List[Any] = mask_scale | 340 | 1 |
"""simple docstring"""
import uuid
from typing import Any, Dict, List, Optional, Union
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
_lowerCAmelCase : List[str] = logging.get_logger(__name__)
class A_ :
def __init__( self: List[Any] ,__lowerCAmelCase: str = None ,__lowerCAmelCase: uuid.UUID = None ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: Tuple=None ):
'''simple docstring'''
if not conversation_id:
_lowerCamelCase : List[str] = uuid.uuida()
if past_user_inputs is None:
_lowerCamelCase : Dict = []
if generated_responses is None:
_lowerCamelCase : Optional[Any] = []
_lowerCamelCase : uuid.UUID = conversation_id
_lowerCamelCase : List[str] = past_user_inputs
_lowerCamelCase : List[str] = generated_responses
_lowerCamelCase : Optional[str] = text
def __eq__( self: Optional[int] ,__lowerCAmelCase: List[str] ):
'''simple docstring'''
if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
return False
if self.uuid == other.uuid:
return True
return (
self.new_user_input == other.new_user_input
and self.past_user_inputs == other.past_user_inputs
and self.generated_responses == other.generated_responses
)
def _lowercase ( self: Dict ,__lowerCAmelCase: str ,__lowerCAmelCase: bool = False ):
'''simple docstring'''
if self.new_user_input:
if overwrite:
logger.warning(
F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """
F"""with: \"{text}\".""" )
_lowerCamelCase : Tuple = text
else:
logger.warning(
F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """
F"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" )
else:
_lowerCamelCase : Optional[int] = text
def _lowercase ( self: Tuple ):
'''simple docstring'''
if self.new_user_input:
self.past_user_inputs.append(self.new_user_input )
_lowerCamelCase : str = None
def _lowercase ( self: List[str] ,__lowerCAmelCase: str ):
'''simple docstring'''
self.generated_responses.append(__lowerCAmelCase )
def _lowercase ( self: Any ):
'''simple docstring'''
for user_input, generated_response in zip(self.past_user_inputs ,self.generated_responses ):
yield True, user_input
yield False, generated_response
if self.new_user_input:
yield True, self.new_user_input
def __repr__( self: List[str] ):
'''simple docstring'''
_lowerCamelCase : Dict = F"""Conversation id: {self.uuid} \n"""
for is_user, text in self.iter_texts():
_lowerCamelCase : Dict = "user" if is_user else "bot"
output += F"""{name} >> {text} \n"""
return output
@add_end_docstrings(
_a , r'\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ' , )
class A_ ( _a ):
def __init__( self: Dict ,*__lowerCAmelCase: Dict ,**__lowerCAmelCase: Any ):
'''simple docstring'''
super().__init__(*__lowerCAmelCase ,**__lowerCAmelCase )
if self.tokenizer.pad_token_id is None:
_lowerCamelCase : Tuple = self.tokenizer.eos_token
def _lowercase ( self: Optional[int] ,__lowerCAmelCase: List[str]=None ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Tuple=None ,**__lowerCAmelCase: Tuple ):
'''simple docstring'''
_lowerCamelCase : Optional[Any] = {}
_lowerCamelCase : Any = {}
_lowerCamelCase : Tuple = {}
if min_length_for_response is not None:
_lowerCamelCase : Union[str, Any] = min_length_for_response
if minimum_tokens is not None:
_lowerCamelCase : Dict = minimum_tokens
if "max_length" in generate_kwargs:
_lowerCamelCase : Optional[Any] = generate_kwargs["max_length"]
# self.max_length = generate_kwargs.get("max_length", self.model.config.max_length)
if clean_up_tokenization_spaces is not None:
_lowerCamelCase : Union[str, Any] = clean_up_tokenization_spaces
if generate_kwargs:
forward_params.update(__lowerCAmelCase )
return preprocess_params, forward_params, postprocess_params
def __call__( self: Union[str, Any] ,__lowerCAmelCase: Union[Conversation, List[Conversation]] ,__lowerCAmelCase: Optional[int]=0 ,**__lowerCAmelCase: Any ):
'''simple docstring'''
_lowerCamelCase : int = super().__call__(__lowerCAmelCase ,num_workers=__lowerCAmelCase ,**__lowerCAmelCase )
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) == 1:
return outputs[0]
return outputs
def _lowercase ( self: Any ,__lowerCAmelCase: Conversation ,__lowerCAmelCase: List[str]=32 ):
'''simple docstring'''
if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
raise ValueError("ConversationalPipeline, expects Conversation as inputs" )
if conversation.new_user_input is None:
raise ValueError(
F"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """
"Add user inputs with the conversation's `add_user_input` method" )
if hasattr(self.tokenizer ,"_build_conversation_input_ids" ):
_lowerCamelCase : Tuple = self.tokenizer._build_conversation_input_ids(__lowerCAmelCase )
else:
# If the tokenizer cannot handle conversations, we default to only the old version
_lowerCamelCase : Optional[int] = self._legacy_parse_and_tokenize(__lowerCAmelCase )
if self.framework == "pt":
_lowerCamelCase : int = torch.LongTensor([input_ids] )
elif self.framework == "tf":
_lowerCamelCase : Tuple = tf.constant([input_ids] )
return {"input_ids": input_ids, "conversation": conversation}
def _lowercase ( self: List[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Tuple=10 ,**__lowerCAmelCase: Dict ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = generate_kwargs.get("max_length" ,self.model.config.max_length )
_lowerCamelCase : Any = model_inputs["input_ids"].shape[1]
if max_length - minimum_tokens < n:
logger.warning(F"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" )
_lowerCamelCase : Union[str, Any] = max_length - minimum_tokens
_lowerCamelCase : Optional[Any] = model_inputs["input_ids"][:, -trim:]
if "attention_mask" in model_inputs:
_lowerCamelCase : Dict = model_inputs["attention_mask"][:, -trim:]
_lowerCamelCase : str = model_inputs.pop("conversation" )
_lowerCamelCase : Tuple = max_length
_lowerCamelCase : Union[str, Any] = self.model.generate(**__lowerCAmelCase ,**__lowerCAmelCase )
if self.model.config.is_encoder_decoder:
_lowerCamelCase : Dict = 1
else:
_lowerCamelCase : Any = n
return {"output_ids": output_ids[:, start_position:], "conversation": conversation}
def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: str=True ):
'''simple docstring'''
_lowerCamelCase : Tuple = model_outputs["output_ids"]
_lowerCamelCase : Optional[Any] = self.tokenizer.decode(
output_ids[0] ,skip_special_tokens=__lowerCAmelCase ,clean_up_tokenization_spaces=__lowerCAmelCase ,)
_lowerCamelCase : List[str] = model_outputs["conversation"]
conversation.mark_processed()
conversation.append_response(__lowerCAmelCase )
return conversation
def _lowercase ( self: List[Any] ,__lowerCAmelCase: Conversation ):
'''simple docstring'''
_lowerCamelCase : Tuple = self.tokenizer.eos_token_id
_lowerCamelCase : int = []
for is_user, text in conversation.iter_texts():
if eos_token_id is not None:
input_ids.extend(self.tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ) + [eos_token_id] )
else:
input_ids.extend(self.tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ) )
if len(__lowerCAmelCase ) > self.tokenizer.model_max_length:
_lowerCamelCase : List[Any] = input_ids[-self.tokenizer.model_max_length :]
return input_ids | 340 |
"""simple docstring"""
import random
import unittest
import numpy as np
import transformers
from transformers import is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax
if is_flax_available():
import os
import jax.numpy as jnp
from jax import jit
from transformers import AutoTokenizer, FlaxAutoModelForCausalLM
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
_lowerCAmelCase : str = '''0.12''' # assumed parallelism: 8
if is_torch_available():
import torch
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) -> List[Any]:
'''simple docstring'''
if rng is None:
_lowerCamelCase : Union[str, Any] = random.Random()
_lowerCamelCase : Union[str, Any] = 1
for dim in shape:
total_dims *= dim
_lowerCamelCase : Optional[int] = []
for _ in range(_lowerCamelCase ):
values.append(rng.randint(0 , vocab_size - 1 ) )
_lowerCamelCase : Union[str, Any] = np.array(_lowerCamelCase , dtype=jnp.intaa ).reshape(_lowerCamelCase )
return output
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]:
'''simple docstring'''
_lowerCamelCase : Optional[int] = ids_tensor(_lowerCamelCase , vocab_size=2 , rng=_lowerCamelCase )
# make sure that at least one token is attended to for each batch
_lowerCamelCase : List[str] = 1
return attn_mask
@require_flax
class A_ :
lowerCAmelCase__ = None
lowerCAmelCase__ = ()
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
# cut to half length & take max batch_size 3
_lowerCamelCase : List[str] = 2
_lowerCamelCase : str = inputs["input_ids"].shape[-1] // 2
_lowerCamelCase : Tuple = inputs["input_ids"][:max_batch_size, :sequence_length]
_lowerCamelCase : Any = jnp.ones_like(__lowerCAmelCase )
_lowerCamelCase : List[Any] = attention_mask[:max_batch_size, :sequence_length]
# generate max 5 tokens
_lowerCamelCase : Optional[Any] = input_ids.shape[-1] + 5
if config.eos_token_id is not None and config.pad_token_id is None:
# hack to allow generate for models such as GPT2 as is done in `generate()`
_lowerCamelCase : List[str] = config.eos_token_id
return config, input_ids, attention_mask, max_length
@is_pt_flax_cross_test
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = self._get_input_ids_and_config()
_lowerCamelCase : List[Any] = False
_lowerCamelCase : Dict = max_length
_lowerCamelCase : Tuple = 0
for model_class in self.all_generative_model_classes:
_lowerCamelCase : str = model_class(__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning
_lowerCamelCase : Any = getattr(__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : Dict = pt_model_class(__lowerCAmelCase ).eval()
_lowerCamelCase : Optional[Any] = load_flax_weights_in_pytorch_model(__lowerCAmelCase ,flax_model.params )
_lowerCamelCase : int = flax_model.generate(__lowerCAmelCase ).sequences
_lowerCamelCase : Optional[int] = pt_model.generate(torch.tensor(__lowerCAmelCase ,dtype=torch.long ) )
if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]:
_lowerCamelCase : List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]]
self.assertListEqual(pt_generation_outputs.numpy().tolist() ,flax_generation_outputs.tolist() )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = self._get_input_ids_and_config()
_lowerCamelCase : Union[str, Any] = False
_lowerCamelCase : Union[str, Any] = max_length
for model_class in self.all_generative_model_classes:
_lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase )
_lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Dict = jit(model.generate )
_lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config()
_lowerCamelCase : List[Any] = True
_lowerCamelCase : Optional[int] = max_length
for model_class in self.all_generative_model_classes:
_lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase )
_lowerCamelCase : List[Any] = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Dict = jit(model.generate )
_lowerCamelCase : int = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config()
_lowerCamelCase : int = False
_lowerCamelCase : Optional[Any] = max_length
_lowerCamelCase : Dict = 2
for model_class in self.all_generative_model_classes:
_lowerCamelCase : List[str] = model_class(__lowerCAmelCase )
_lowerCamelCase : Dict = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Tuple = jit(model.generate )
_lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = self._get_input_ids_and_config()
_lowerCamelCase : Tuple = False
_lowerCamelCase : Union[str, Any] = max_length
_lowerCamelCase : List[str] = 2
_lowerCamelCase : Optional[int] = 2
for model_class in self.all_generative_model_classes:
_lowerCamelCase : List[Any] = model_class(__lowerCAmelCase )
_lowerCamelCase : str = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[0] ,input_ids.shape[0] * config.num_return_sequences )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config()
_lowerCamelCase : int = True
_lowerCamelCase : List[Any] = max_length
_lowerCamelCase : Optional[Any] = 0.8
_lowerCamelCase : Union[str, Any] = 10
_lowerCamelCase : List[str] = 0.3
_lowerCamelCase : Tuple = 1
_lowerCamelCase : Any = 8
_lowerCamelCase : str = 9
for model_class in self.all_generative_model_classes:
_lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase )
_lowerCamelCase : Any = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : int = jit(model.generate )
_lowerCamelCase : Optional[int] = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = self._get_input_ids_and_config()
_lowerCamelCase : List[str] = max_length
_lowerCamelCase : Tuple = 1
_lowerCamelCase : Any = 8
_lowerCamelCase : Dict = 9
for model_class in self.all_generative_model_classes:
_lowerCamelCase : Any = model_class(__lowerCAmelCase )
_lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Any = jit(model.generate )
_lowerCamelCase : Any = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: List[str] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config()
_lowerCamelCase : Dict = max_length
_lowerCamelCase : List[Any] = 2
_lowerCamelCase : Tuple = 1
_lowerCamelCase : List[str] = 8
_lowerCamelCase : List[Any] = 9
for model_class in self.all_generative_model_classes:
_lowerCamelCase : int = model_class(__lowerCAmelCase )
_lowerCamelCase : Optional[int] = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Tuple = jit(model.generate )
_lowerCamelCase : Optional[Any] = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config()
# pad attention mask on the left
_lowerCamelCase : Tuple = attention_mask.at[(0, 0)].set(0 )
_lowerCamelCase : Dict = False
_lowerCamelCase : Any = max_length
for model_class in self.all_generative_model_classes:
_lowerCamelCase : List[Any] = model_class(__lowerCAmelCase )
_lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Any = jit(model.generate )
_lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = self._get_input_ids_and_config()
# pad attention mask on the left
_lowerCamelCase : Optional[Any] = attention_mask.at[(0, 0)].set(0 )
_lowerCamelCase : List[str] = True
_lowerCamelCase : Optional[Any] = max_length
for model_class in self.all_generative_model_classes:
_lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Any = jit(model.generate )
_lowerCamelCase : List[Any] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config()
# pad attention mask on the left
_lowerCamelCase : List[str] = attention_mask.at[(0, 0)].set(0 )
_lowerCamelCase : int = 2
_lowerCamelCase : int = max_length
for model_class in self.all_generative_model_classes:
_lowerCamelCase : List[Any] = model_class(__lowerCAmelCase )
_lowerCamelCase : int = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Dict = jit(model.generate )
_lowerCamelCase : Dict = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
@require_flax
class A_ ( unittest.TestCase ):
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" )
_lowerCamelCase : Union[str, Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" )
_lowerCamelCase : Optional[Any] = "Hello world"
_lowerCamelCase : str = tokenizer(__lowerCAmelCase ,return_tensors="np" ).input_ids
# typos are quickly detected (the correct argument is `do_sample`)
with self.assertRaisesRegex(__lowerCAmelCase ,"do_samples" ):
model.generate(__lowerCAmelCase ,do_samples=__lowerCAmelCase )
# arbitrary arguments that will not be used anywhere are also not accepted
with self.assertRaisesRegex(__lowerCAmelCase ,"foo" ):
_lowerCamelCase : List[str] = {"foo": "bar"}
model.generate(__lowerCAmelCase ,**__lowerCAmelCase ) | 340 | 1 |
"""simple docstring"""
import requests
from bsa import BeautifulSoup
def lowerCamelCase_( _lowerCamelCase = "AAPL" ) -> str:
'''simple docstring'''
_lowerCamelCase : str = F"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}"""
_lowerCamelCase : Dict = BeautifulSoup(requests.get(_lowerCamelCase ).text , "html.parser" )
_lowerCamelCase : str = "My(6px) Pos(r) smartphone_Mt(6px)"
return soup.find("div" , class_=class_ ).find("span" ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''') | 340 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowerCAmelCase : List[str] = logging.get_logger(__name__)
_lowerCAmelCase : int = {
'''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''',
'''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''',
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
}
class A_ ( _a ):
lowerCAmelCase__ = 'mobilenet_v1'
def __init__( self: Tuple ,__lowerCAmelCase: int=3 ,__lowerCAmelCase: Dict=224 ,__lowerCAmelCase: int=1.0 ,__lowerCAmelCase: Tuple=8 ,__lowerCAmelCase: List[str]="relu6" ,__lowerCAmelCase: int=True ,__lowerCAmelCase: List[Any]=0.9_99 ,__lowerCAmelCase: Optional[int]=0.02 ,__lowerCAmelCase: Optional[int]=0.0_01 ,**__lowerCAmelCase: str ,):
'''simple docstring'''
super().__init__(**__lowerCAmelCase )
if depth_multiplier <= 0:
raise ValueError("depth_multiplier must be greater than zero." )
_lowerCamelCase : List[str] = num_channels
_lowerCamelCase : Union[str, Any] = image_size
_lowerCamelCase : List[Any] = depth_multiplier
_lowerCamelCase : Any = min_depth
_lowerCamelCase : Tuple = hidden_act
_lowerCamelCase : Dict = tf_padding
_lowerCamelCase : Union[str, Any] = classifier_dropout_prob
_lowerCamelCase : Tuple = initializer_range
_lowerCamelCase : List[Any] = layer_norm_eps
class A_ ( _a ):
lowerCAmelCase__ = version.parse('1.11' )
@property
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
return OrderedDict([("pixel_values", {0: "batch"})] )
@property
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
if self.task == "image-classification":
return OrderedDict([("logits", {0: "batch"})] )
else:
return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] )
@property
def _lowercase ( self: Any ):
'''simple docstring'''
return 1e-4 | 340 | 1 |
"""simple docstring"""
import argparse
import os
import jax as jnp
import numpy as onp
import torch
import torch.nn as nn
from music_spectrogram_diffusion import inference
from tax import checkpoints
from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline
from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder
_lowerCAmelCase : Tuple = '''base_with_context'''
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : int = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"] ) )
_lowerCamelCase : Optional[Any] = nn.Parameter(
torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=_lowerCamelCase )
for lyr_num, lyr in enumerate(model.encoders ):
_lowerCamelCase : List[Any] = weights[F"""layers_{lyr_num}"""]
_lowerCamelCase : Dict = nn.Parameter(
torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) )
_lowerCamelCase : Optional[int] = ly_weight["attention"]
_lowerCamelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) )
_lowerCamelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) )
_lowerCamelCase : int = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) )
_lowerCamelCase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) )
_lowerCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) )
_lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) )
_lowerCamelCase : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) )
_lowerCamelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) )
_lowerCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) )
return model
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]:
'''simple docstring'''
_lowerCamelCase : int = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T ) )
_lowerCamelCase : Union[str, Any] = nn.Parameter(
torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=_lowerCamelCase )
for lyr_num, lyr in enumerate(model.encoders ):
_lowerCamelCase : Tuple = weights[F"""layers_{lyr_num}"""]
_lowerCamelCase : Tuple = ly_weight["attention"]
_lowerCamelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) )
_lowerCamelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) )
_lowerCamelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) )
_lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) )
_lowerCamelCase : Optional[Any] = nn.Parameter(
torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) )
_lowerCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) )
_lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) )
_lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) )
_lowerCamelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) )
_lowerCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) )
return model
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T ) )
_lowerCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T ) )
_lowerCamelCase : Dict = nn.Parameter(
torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=_lowerCamelCase )
_lowerCamelCase : List[str] = nn.Parameter(
torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T ) )
for lyr_num, lyr in enumerate(model.decoders ):
_lowerCamelCase : Union[str, Any] = weights[F"""layers_{lyr_num}"""]
_lowerCamelCase : Dict = nn.Parameter(
torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"] ) )
_lowerCamelCase : Dict = nn.Parameter(
torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T ) )
_lowerCamelCase : Union[str, Any] = ly_weight["self_attention"]
_lowerCamelCase : int = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) )
_lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) )
_lowerCamelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) )
_lowerCamelCase : int = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) )
_lowerCamelCase : Optional[int] = ly_weight["MultiHeadDotProductAttention_0"]
_lowerCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) )
_lowerCamelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) )
_lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) )
_lowerCamelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) )
_lowerCamelCase : str = nn.Parameter(
torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"] ) )
_lowerCamelCase : str = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) )
_lowerCamelCase : int = nn.Parameter(
torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T ) )
_lowerCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) )
_lowerCamelCase : int = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) )
_lowerCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) )
_lowerCamelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"] ) )
_lowerCamelCase : str = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T ) )
return model
def lowerCamelCase_( _lowerCamelCase ) -> Dict:
'''simple docstring'''
_lowerCamelCase : Optional[Any] = checkpoints.load_tax_checkpoint(args.checkpoint_path )
_lowerCamelCase : Dict = jnp.tree_util.tree_map(onp.array , _lowerCamelCase )
_lowerCamelCase : int = [
"from __gin__ import dynamic_registration",
"from music_spectrogram_diffusion.models.diffusion import diffusion_utils",
"diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0",
"diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()",
]
_lowerCamelCase : Tuple = os.path.join(args.checkpoint_path , ".." , "config.gin" )
_lowerCamelCase : Any = inference.parse_training_gin_file(_lowerCamelCase , _lowerCamelCase )
_lowerCamelCase : int = inference.InferenceModel(args.checkpoint_path , _lowerCamelCase )
_lowerCamelCase : str = DDPMScheduler(beta_schedule="squaredcos_cap_v2" , variance_type="fixed_large" )
_lowerCamelCase : Dict = SpectrogramNotesEncoder(
max_length=synth_model.sequence_length["inputs"] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , )
_lowerCamelCase : Dict = SpectrogramContEncoder(
input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["targets_context"] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , )
_lowerCamelCase : Optional[int] = TaFilmDecoder(
input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["targets_context"] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , )
_lowerCamelCase : Union[str, Any] = load_notes_encoder(ta_checkpoint["target"]["token_encoder"] , _lowerCamelCase )
_lowerCamelCase : Dict = load_continuous_encoder(ta_checkpoint["target"]["continuous_encoder"] , _lowerCamelCase )
_lowerCamelCase : List[Any] = load_decoder(ta_checkpoint["target"]["decoder"] , _lowerCamelCase )
_lowerCamelCase : List[Any] = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder" )
_lowerCamelCase : Dict = SpectrogramDiffusionPipeline(
notes_encoder=_lowerCamelCase , continuous_encoder=_lowerCamelCase , decoder=_lowerCamelCase , scheduler=_lowerCamelCase , melgan=_lowerCamelCase , )
if args.save:
pipe.save_pretrained(args.output_path )
if __name__ == "__main__":
_lowerCAmelCase : Optional[Any] = argparse.ArgumentParser()
parser.add_argument('''--output_path''', default=None, type=str, required=True, help='''Path to the converted model.''')
parser.add_argument(
'''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.'''
)
parser.add_argument(
'''--checkpoint_path''',
default=f'''{MODEL}/checkpoint_500000''',
type=str,
required=False,
help='''Path to the original jax model checkpoint.''',
)
_lowerCAmelCase : Dict = parser.parse_args()
main(args) | 340 |
"""simple docstring"""
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def lowerCamelCase_( _lowerCamelCase ) -> Any:
'''simple docstring'''
for param in module.parameters():
_lowerCamelCase : Optional[int] = False
def lowerCamelCase_( ) -> List[str]:
'''simple docstring'''
_lowerCamelCase : Optional[Any] = "cuda" if torch.cuda.is_available() else "cpu"
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
_lowerCamelCase : int = "mps"
if device == "mps":
print(
"WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"
" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"
" with generations." )
return device
def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Dict = plt.imshow(_lowerCamelCase )
fig.axes.get_xaxis().set_visible(_lowerCamelCase )
fig.axes.get_yaxis().set_visible(_lowerCamelCase )
plt.show()
def lowerCamelCase_( ) -> str:
'''simple docstring'''
_lowerCamelCase : Tuple = datetime.now()
_lowerCamelCase : Tuple = current_time.strftime("%H:%M:%S" )
return timestamp | 340 | 1 |
"""simple docstring"""
import os
import unittest
from transformers import FunnelTokenizer, FunnelTokenizerFast
from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A_ ( _a , unittest.TestCase ):
lowerCAmelCase__ = FunnelTokenizer
lowerCAmelCase__ = FunnelTokenizerFast
lowerCAmelCase__ = True
lowerCAmelCase__ = True
def _lowercase ( self: Any ):
'''simple docstring'''
super().setUp()
_lowerCamelCase : Optional[int] = [
"<unk>",
"<cls>",
"<sep>",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
_lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
def _lowercase ( self: str ,**__lowerCAmelCase: List[Any] ):
'''simple docstring'''
return FunnelTokenizer.from_pretrained(self.tmpdirname ,**__lowerCAmelCase )
def _lowercase ( self: int ,**__lowerCAmelCase: Optional[Any] ):
'''simple docstring'''
return FunnelTokenizerFast.from_pretrained(self.tmpdirname ,**__lowerCAmelCase )
def _lowercase ( self: List[Any] ,__lowerCAmelCase: str ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = "UNwant\u00E9d,running"
_lowerCamelCase : Tuple = "unwanted, running"
return input_text, output_text
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase : Optional[Any] = self.tokenizer_class(self.vocab_file )
_lowerCamelCase : Any = tokenizer.tokenize("UNwant\u00E9d,running" )
self.assertListEqual(__lowerCAmelCase ,["un", "##want", "##ed", ",", "runn", "##ing"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) ,[7, 4, 5, 10, 8, 9] )
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = self.get_tokenizers(do_lower_case=__lowerCAmelCase )
for tokenizer in tokenizers:
_lowerCamelCase : Union[str, Any] = tokenizer("UNwant\u00E9d,running" )
_lowerCamelCase : str = len(inputs["input_ids"] ) - 1
self.assertListEqual(inputs["token_type_ids"] ,[2] + [0] * sentence_len )
_lowerCamelCase : Tuple = tokenizer("UNwant\u00E9d,running" ,"UNwant\u00E9d,running" )
self.assertListEqual(inputs["token_type_ids"] ,[2] + [0] * sentence_len + [1] * sentence_len ) | 340 |
"""simple docstring"""
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str:
'''simple docstring'''
_lowerCamelCase : int = len(_lowerCamelCase )
_lowerCamelCase : int = len(_lowerCamelCase )
_lowerCamelCase : int = (
first_str_length if first_str_length > second_str_length else second_str_length
)
_lowerCamelCase : list = []
for char_count in range(_lowerCamelCase ):
if char_count < first_str_length:
output_list.append(first_str[char_count] )
if char_count < second_str_length:
output_list.append(second_str[char_count] )
return "".join(_lowerCamelCase )
if __name__ == "__main__":
print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''') | 340 | 1 |
"""simple docstring"""
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : Dict = len(_lowerCamelCase )
_lowerCamelCase : List[str] = len(matrix[0] )
_lowerCamelCase : Optional[Any] = min(_lowerCamelCase , _lowerCamelCase )
for row in range(_lowerCamelCase ):
# Check if diagonal element is not zero
if matrix[row][row] != 0:
# Eliminate all the elements below the diagonal
for col in range(row + 1 , _lowerCamelCase ):
_lowerCamelCase : Dict = matrix[col][row] / matrix[row][row]
for i in range(_lowerCamelCase , _lowerCamelCase ):
matrix[col][i] -= multiplier * matrix[row][i]
else:
# Find a non-zero diagonal element to swap rows
_lowerCamelCase : List[Any] = True
for i in range(row + 1 , _lowerCamelCase ):
if matrix[i][row] != 0:
_lowerCamelCase, _lowerCamelCase : List[str] = matrix[i], matrix[row]
_lowerCamelCase : Optional[Any] = False
break
if reduce:
rank -= 1
for i in range(_lowerCamelCase ):
_lowerCamelCase : Any = matrix[i][rank]
# Reduce the row pointer by one to stay on the same row
row -= 1
return rank
if __name__ == "__main__":
import doctest
doctest.testmod() | 340 |
"""simple docstring"""
_lowerCAmelCase : Tuple = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple:
'''simple docstring'''
_lowerCamelCase : Any = [False] * len(_lowerCamelCase )
_lowerCamelCase : Union[str, Any] = [s]
_lowerCamelCase : str = True
while queue:
_lowerCamelCase : Optional[int] = queue.pop(0 )
for ind in range(len(graph[u] ) ):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(_lowerCamelCase )
_lowerCamelCase : Any = True
_lowerCamelCase : Any = u
return visited[t]
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
_lowerCamelCase : List[str] = [-1] * (len(_lowerCamelCase ))
_lowerCamelCase : Union[str, Any] = 0
_lowerCamelCase : Union[str, Any] = []
_lowerCamelCase : List[str] = [i[:] for i in graph] # Record original cut, copy.
while bfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
_lowerCamelCase : Any = float("Inf" )
_lowerCamelCase : Dict = sink
while s != source:
# Find the minimum value in select path
_lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , graph[parent[s]][s] )
_lowerCamelCase : Union[str, Any] = parent[s]
max_flow += path_flow
_lowerCamelCase : Optional[Any] = sink
while v != source:
_lowerCamelCase : Union[str, Any] = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
_lowerCamelCase : List[str] = parent[v]
for i in range(len(_lowerCamelCase ) ):
for j in range(len(graph[0] ) ):
if graph[i][j] == 0 and temp[i][j] > 0:
res.append((i, j) )
return res
if __name__ == "__main__":
print(mincut(test_graph, source=0, sink=5)) | 340 | 1 |
"""simple docstring"""
def lowerCamelCase_( _lowerCamelCase ) -> bool:
'''simple docstring'''
if not isinstance(_lowerCamelCase , _lowerCamelCase ):
_lowerCamelCase : Optional[int] = F"""Input value of [number={number}] must be an integer"""
raise TypeError(_lowerCamelCase )
if number < 0:
return False
_lowerCamelCase : str = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod() | 340 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
_lowerCAmelCase : List[str] = {
'''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''',
'''umberto-commoncrawl-cased-v1''': (
'''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json'''
),
'''umberto-wikipedia-uncased-v1''': (
'''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json'''
),
}
class A_ ( _a ):
lowerCAmelCase__ = 'camembert'
def __init__( self: Tuple ,__lowerCAmelCase: Union[str, Any]=30_522 ,__lowerCAmelCase: Optional[Any]=768 ,__lowerCAmelCase: Union[str, Any]=12 ,__lowerCAmelCase: int=12 ,__lowerCAmelCase: Optional[int]=3_072 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: Optional[Any]=0.1 ,__lowerCAmelCase: int=512 ,__lowerCAmelCase: Union[str, Any]=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Any=1 ,__lowerCAmelCase: Any=0 ,__lowerCAmelCase: Optional[int]=2 ,__lowerCAmelCase: Any="absolute" ,__lowerCAmelCase: Dict=True ,__lowerCAmelCase: Tuple=None ,**__lowerCAmelCase: Dict ,):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCAmelCase ,bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ,**__lowerCAmelCase )
_lowerCamelCase : List[str] = vocab_size
_lowerCamelCase : Any = hidden_size
_lowerCamelCase : Union[str, Any] = num_hidden_layers
_lowerCamelCase : str = num_attention_heads
_lowerCamelCase : List[Any] = hidden_act
_lowerCamelCase : int = intermediate_size
_lowerCamelCase : str = hidden_dropout_prob
_lowerCamelCase : List[str] = attention_probs_dropout_prob
_lowerCamelCase : Optional[Any] = max_position_embeddings
_lowerCamelCase : str = type_vocab_size
_lowerCamelCase : Dict = initializer_range
_lowerCamelCase : Union[str, Any] = layer_norm_eps
_lowerCamelCase : Tuple = position_embedding_type
_lowerCamelCase : List[Any] = use_cache
_lowerCamelCase : Dict = classifier_dropout
class A_ ( _a ):
@property
def _lowercase ( self: Any ):
'''simple docstring'''
if self.task == "multiple-choice":
_lowerCamelCase : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"}
else:
_lowerCamelCase : int = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] ) | 340 | 1 |
"""simple docstring"""
import numpy
# List of input, output pairs
_lowerCAmelCase : Union[str, Any] = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
_lowerCAmelCase : str = (((515, 22, 13), 555), ((61, 35, 49), 150))
_lowerCAmelCase : int = [2, 4, 1, 5]
_lowerCAmelCase : Dict = len(train_data)
_lowerCAmelCase : int = 0.009
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase="train" ) -> int:
'''simple docstring'''
return calculate_hypothesis_value(_lowerCamelCase , _lowerCamelCase ) - output(
_lowerCamelCase , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> Tuple:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = 0
for i in range(len(_lowerCamelCase ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Dict:
'''simple docstring'''
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=m ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Tuple = 0
for i in range(_lowerCamelCase ):
if index == -1:
summation_value += _error(_lowerCamelCase )
else:
summation_value += _error(_lowerCamelCase ) * train_data[i][0][index]
return summation_value
def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]:
'''simple docstring'''
_lowerCamelCase : int = summation_of_cost_derivative(_lowerCamelCase , _lowerCamelCase ) / m
return cost_derivative_value
def lowerCamelCase_( ) -> str:
'''simple docstring'''
global parameter_vector
# Tune these values to set a tolerance value for predicted output
_lowerCamelCase : str = 0.0_0_0_0_0_2
_lowerCamelCase : List[str] = 0
_lowerCamelCase : Optional[Any] = 0
while True:
j += 1
_lowerCamelCase : int = [0, 0, 0, 0]
for i in range(0 , len(_lowerCamelCase ) ):
_lowerCamelCase : Any = get_cost_derivative(i - 1 )
_lowerCamelCase : Union[str, Any] = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
_lowerCamelCase , _lowerCamelCase , atol=_lowerCamelCase , rtol=_lowerCamelCase , ):
break
_lowerCamelCase : List[str] = temp_parameter_vector
print(("Number of iterations:", j) )
def lowerCamelCase_( ) -> int:
'''simple docstring'''
for i in range(len(_lowerCamelCase ) ):
print(("Actual output value:", output(_lowerCamelCase , "test" )) )
print(("Hypothesis output:", calculate_hypothesis_value(_lowerCamelCase , "test" )) )
if __name__ == "__main__":
run_gradient_descent()
print('''\nTesting gradient descent for a linear hypothesis function.\n''')
test_gradient_descent() | 340 |
"""simple docstring"""
from collections import defaultdict
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : Optional[int] = 1
_lowerCamelCase : str = True
for v in tree[start]:
if v not in visited:
ret += dfs(_lowerCamelCase )
if ret % 2 == 0:
cuts.append(_lowerCamelCase )
return ret
def lowerCamelCase_( ) -> int:
'''simple docstring'''
dfs(1 )
if __name__ == "__main__":
_lowerCAmelCase , _lowerCAmelCase : Optional[Any] = 10, 9
_lowerCAmelCase : str = defaultdict(list)
_lowerCAmelCase : dict[int, bool] = {}
_lowerCAmelCase : list[int] = []
_lowerCAmelCase : Any = 0
_lowerCAmelCase : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)]
for u, v in edges:
tree[u].append(v)
tree[v].append(u)
even_tree()
print(len(cuts) - 1) | 340 | 1 |
"""simple docstring"""
from math import pi, sqrt, tan
def lowerCamelCase_( _lowerCamelCase ) -> float:
'''simple docstring'''
if side_length < 0:
raise ValueError("surface_area_cube() only accepts non-negative values" )
return 6 * side_length**2
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> float:
'''simple docstring'''
if length < 0 or breadth < 0 or height < 0:
raise ValueError("surface_area_cuboid() only accepts non-negative values" )
return 2 * ((length * breadth) + (breadth * height) + (length * height))
def lowerCamelCase_( _lowerCamelCase ) -> float:
'''simple docstring'''
if radius < 0:
raise ValueError("surface_area_sphere() only accepts non-negative values" )
return 4 * pi * radius**2
def lowerCamelCase_( _lowerCamelCase ) -> float:
'''simple docstring'''
if radius < 0:
raise ValueError("surface_area_hemisphere() only accepts non-negative values" )
return 3 * pi * radius**2
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float:
'''simple docstring'''
if radius < 0 or height < 0:
raise ValueError("surface_area_cone() only accepts non-negative values" )
return pi * radius * (radius + (height**2 + radius**2) ** 0.5)
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> float:
'''simple docstring'''
if radius_a < 0 or radius_a < 0 or height < 0:
raise ValueError(
"surface_area_conical_frustum() only accepts non-negative values" )
_lowerCamelCase : Optional[int] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5
return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2)
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float:
'''simple docstring'''
if radius < 0 or height < 0:
raise ValueError("surface_area_cylinder() only accepts non-negative values" )
return 2 * pi * radius * (height + radius)
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float:
'''simple docstring'''
if torus_radius < 0 or tube_radius < 0:
raise ValueError("surface_area_torus() only accepts non-negative values" )
if torus_radius < tube_radius:
raise ValueError(
"surface_area_torus() does not support spindle or self intersecting tori" )
return 4 * pow(_lowerCamelCase , 2 ) * torus_radius * tube_radius
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float:
'''simple docstring'''
if length < 0 or width < 0:
raise ValueError("area_rectangle() only accepts non-negative values" )
return length * width
def lowerCamelCase_( _lowerCamelCase ) -> float:
'''simple docstring'''
if side_length < 0:
raise ValueError("area_square() only accepts non-negative values" )
return side_length**2
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float:
'''simple docstring'''
if base < 0 or height < 0:
raise ValueError("area_triangle() only accepts non-negative values" )
return (base * height) / 2
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> float:
'''simple docstring'''
if sidea < 0 or sidea < 0 or sidea < 0:
raise ValueError("area_triangle_three_sides() only accepts non-negative values" )
elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea:
raise ValueError("Given three sides do not form a triangle" )
_lowerCamelCase : str = (sidea + sidea + sidea) / 2
_lowerCamelCase : List[Any] = sqrt(
semi_perimeter
* (semi_perimeter - sidea)
* (semi_perimeter - sidea)
* (semi_perimeter - sidea) )
return area
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float:
'''simple docstring'''
if base < 0 or height < 0:
raise ValueError("area_parallelogram() only accepts non-negative values" )
return base * height
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> float:
'''simple docstring'''
if basea < 0 or basea < 0 or height < 0:
raise ValueError("area_trapezium() only accepts non-negative values" )
return 1 / 2 * (basea + basea) * height
def lowerCamelCase_( _lowerCamelCase ) -> float:
'''simple docstring'''
if radius < 0:
raise ValueError("area_circle() only accepts non-negative values" )
return pi * radius**2
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float:
'''simple docstring'''
if radius_x < 0 or radius_y < 0:
raise ValueError("area_ellipse() only accepts non-negative values" )
return pi * radius_x * radius_y
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float:
'''simple docstring'''
if diagonal_a < 0 or diagonal_a < 0:
raise ValueError("area_rhombus() only accepts non-negative values" )
return 1 / 2 * diagonal_a * diagonal_a
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float:
'''simple docstring'''
if not isinstance(_lowerCamelCase , _lowerCamelCase ) or sides < 3:
raise ValueError(
"area_reg_polygon() only accepts integers greater than or \
equal to three as number of sides" )
elif length < 0:
raise ValueError(
"area_reg_polygon() only accepts non-negative values as \
length of a side" )
return (sides * length**2) / (4 * tan(pi / sides ))
return (sides * length**2) / (4 * tan(pi / sides ))
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True) # verbose so we can see methods missing tests
print('''[DEMO] Areas of various geometric shapes: \n''')
print(f'''Rectangle: {area_rectangle(10, 20) = }''')
print(f'''Square: {area_square(10) = }''')
print(f'''Triangle: {area_triangle(10, 10) = }''')
print(f'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''')
print(f'''Parallelogram: {area_parallelogram(10, 20) = }''')
print(f'''Rhombus: {area_rhombus(10, 20) = }''')
print(f'''Trapezium: {area_trapezium(10, 20, 30) = }''')
print(f'''Circle: {area_circle(20) = }''')
print(f'''Ellipse: {area_ellipse(10, 20) = }''')
print('''\nSurface Areas of various geometric shapes: \n''')
print(f'''Cube: {surface_area_cube(20) = }''')
print(f'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''')
print(f'''Sphere: {surface_area_sphere(20) = }''')
print(f'''Hemisphere: {surface_area_hemisphere(20) = }''')
print(f'''Cone: {surface_area_cone(10, 20) = }''')
print(f'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''')
print(f'''Cylinder: {surface_area_cylinder(10, 20) = }''')
print(f'''Torus: {surface_area_torus(20, 10) = }''')
print(f'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''')
print(f'''Square: {area_reg_polygon(4, 10) = }''')
print(f'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''') | 340 |
"""simple docstring"""
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
_lowerCAmelCase : Optional[int] = '''__DUMMY_TRANSFORMERS_USER__'''
_lowerCAmelCase : Dict = '''Dummy User'''
_lowerCAmelCase : Optional[int] = '''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'''
_lowerCAmelCase : Tuple = '''https://hub-ci.huggingface.co'''
_lowerCAmelCase : Any = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}'''
_lowerCAmelCase : Tuple = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}'''
_lowerCAmelCase : Dict = Path('''~/.huggingface/hub_ci_token''').expanduser()
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
monkeypatch.setattr(
"huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , _lowerCamelCase )
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> Tuple:
'''simple docstring'''
monkeypatch.setattr("datasets.config.HF_ENDPOINT" , _lowerCamelCase )
monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , _lowerCamelCase )
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , _lowerCamelCase )
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Dict:
'''simple docstring'''
HfFolder.save_token(_lowerCamelCase )
yield
HfFolder.delete_token()
@pytest.fixture(scope="session" )
def lowerCamelCase_( ) -> str:
'''simple docstring'''
return HfApi(endpoint=_lowerCamelCase )
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : Dict = HfFolder.get_token()
HfFolder.save_token(_lowerCamelCase )
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(_lowerCamelCase )
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
def _cleanup_repo(_lowerCamelCase ):
hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" )
return _cleanup_repo
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> List[str]:
'''simple docstring'''
@contextmanager
def _temporary_repo(_lowerCamelCase ):
try:
yield repo_id
finally:
cleanup_repo(_lowerCamelCase )
return _temporary_repo
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
_lowerCamelCase : Tuple = F"""repo_txt_data-{int(time.time() * 10e3 )}"""
_lowerCamelCase : List[str] = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase )
hf_api.upload_file(
token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data/text_data.txt" , repo_id=_lowerCamelCase , repo_type="dataset" , )
yield repo_id
try:
hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
'''simple docstring'''
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
'''simple docstring'''
_lowerCamelCase : List[Any] = F"""repo_zipped_txt_data-{int(time.time() * 10e3 )}"""
_lowerCamelCase : Dict = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase )
hf_api.upload_file(
token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , )
yield repo_id
try:
hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict:
'''simple docstring'''
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
'''simple docstring'''
_lowerCamelCase : Any = F"""repo_zipped_img_data-{int(time.time() * 10e3 )}"""
_lowerCamelCase : List[Any] = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase )
hf_api.upload_file(
token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , )
yield repo_id
try:
hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
return hf_private_dataset_repo_zipped_img_data_ | 340 | 1 |
"""simple docstring"""
from collections import defaultdict
from math import gcd
def lowerCamelCase_( _lowerCamelCase = 1500000 ) -> int:
'''simple docstring'''
_lowerCamelCase : defaultdict = defaultdict(_lowerCamelCase )
_lowerCamelCase : List[Any] = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , _lowerCamelCase , 2 ):
if gcd(_lowerCamelCase , _lowerCamelCase ) > 1:
continue
_lowerCamelCase : Tuple = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(_lowerCamelCase , limit + 1 , _lowerCamelCase ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(f'''{solution() = }''') | 340 |
"""simple docstring"""
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from ...models.controlnet import ControlNetModel, ControlNetOutput
from ...models.modeling_utils import ModelMixin
from ...utils import logging
_lowerCAmelCase : Dict = logging.get_logger(__name__)
class A_ ( _a ):
def __init__( self: List[Any] ,__lowerCAmelCase: Union[List[ControlNetModel], Tuple[ControlNetModel]] ):
'''simple docstring'''
super().__init__()
_lowerCamelCase : Tuple = nn.ModuleList(__lowerCAmelCase )
def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Union[torch.Tensor, float, int] ,__lowerCAmelCase: torch.Tensor ,__lowerCAmelCase: List[torch.tensor] ,__lowerCAmelCase: List[float] ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[Dict[str, Any]] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,):
'''simple docstring'''
for i, (image, scale, controlnet) in enumerate(zip(__lowerCAmelCase ,__lowerCAmelCase ,self.nets ) ):
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = controlnet(
__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,)
# merge samples
if i == 0:
_lowerCamelCase, _lowerCamelCase : Optional[Any] = down_samples, mid_sample
else:
_lowerCamelCase : Optional[int] = [
samples_prev + samples_curr
for samples_prev, samples_curr in zip(__lowerCAmelCase ,__lowerCAmelCase )
]
mid_block_res_sample += mid_sample
return down_block_res_samples, mid_block_res_sample
def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Union[str, os.PathLike] ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Callable = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[str] = None ,):
'''simple docstring'''
_lowerCamelCase : List[Any] = 0
_lowerCamelCase : str = save_directory
for controlnet in self.nets:
controlnet.save_pretrained(
__lowerCAmelCase ,is_main_process=__lowerCAmelCase ,save_function=__lowerCAmelCase ,safe_serialization=__lowerCAmelCase ,variant=__lowerCAmelCase ,)
idx += 1
_lowerCamelCase : int = model_path_to_save + F"""_{idx}"""
@classmethod
def _lowercase ( cls: Any ,__lowerCAmelCase: Optional[Union[str, os.PathLike]] ,**__lowerCAmelCase: int ):
'''simple docstring'''
_lowerCamelCase : int = 0
_lowerCamelCase : str = []
# load controlnet and append to list until no controlnet directory exists anymore
# first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained`
# second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ...
_lowerCamelCase : Dict = pretrained_model_path
while os.path.isdir(__lowerCAmelCase ):
_lowerCamelCase : List[Any] = ControlNetModel.from_pretrained(__lowerCAmelCase ,**__lowerCAmelCase )
controlnets.append(__lowerCAmelCase )
idx += 1
_lowerCamelCase : Tuple = pretrained_model_path + F"""_{idx}"""
logger.info(F"""{len(__lowerCAmelCase )} controlnets loaded from {pretrained_model_path}.""" )
if len(__lowerCAmelCase ) == 0:
raise ValueError(
F"""No ControlNets found under {os.path.dirname(__lowerCAmelCase )}. Expected at least {pretrained_model_path + '_0'}.""" )
return cls(__lowerCAmelCase ) | 340 | 1 |
"""simple docstring"""
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float:
'''simple docstring'''
_validate_point(_lowerCamelCase )
_validate_point(_lowerCamelCase )
if len(_lowerCamelCase ) != len(_lowerCamelCase ):
raise ValueError("Both points must be in the same n-dimensional space" )
return float(sum(abs(a - b ) for a, b in zip(_lowerCamelCase , _lowerCamelCase ) ) )
def lowerCamelCase_( _lowerCamelCase ) -> None:
'''simple docstring'''
if point:
if isinstance(_lowerCamelCase , _lowerCamelCase ):
for item in point:
if not isinstance(_lowerCamelCase , (int, float) ):
_lowerCamelCase : Dict = (
"Expected a list of numbers as input, found "
F"""{type(_lowerCamelCase ).__name__}"""
)
raise TypeError(_lowerCamelCase )
else:
_lowerCamelCase : Optional[int] = F"""Expected a list of numbers as input, found {type(_lowerCamelCase ).__name__}"""
raise TypeError(_lowerCamelCase )
else:
raise ValueError("Missing an input" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float:
'''simple docstring'''
_validate_point(_lowerCamelCase )
_validate_point(_lowerCamelCase )
if len(_lowerCamelCase ) != len(_lowerCamelCase ):
raise ValueError("Both points must be in the same n-dimensional space" )
return float(sum(abs(x - y ) for x, y in zip(_lowerCamelCase , _lowerCamelCase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 340 |
"""simple docstring"""
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SegformerConfig,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCAmelCase : int = logging.get_logger(__name__)
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[str]:
'''simple docstring'''
_lowerCamelCase : Tuple = OrderedDict()
for key, value in state_dict.items():
if encoder_only and not key.startswith("head" ):
_lowerCamelCase : Tuple = "segformer.encoder." + key
if key.startswith("backbone" ):
_lowerCamelCase : Any = key.replace("backbone" , "segformer.encoder" )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
_lowerCamelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )]
_lowerCamelCase : int = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(_lowerCamelCase )-1}""" )
if "norm" in key:
_lowerCamelCase : Optional[Any] = key.replace("norm" , "layer_norm" )
if "segformer.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
_lowerCamelCase : Dict = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )]
_lowerCamelCase : Tuple = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(_lowerCamelCase )-1}""" )
if "layer_norm1" in key:
_lowerCamelCase : Union[str, Any] = key.replace("layer_norm1" , "layer_norm_1" )
if "layer_norm2" in key:
_lowerCamelCase : int = key.replace("layer_norm2" , "layer_norm_2" )
if "block" in key:
# replace for example block1 by block.0
_lowerCamelCase : Union[str, Any] = key[key.find("block" ) + len("block" )]
_lowerCamelCase : Optional[Any] = key.replace(F"""block{idx}""" , F"""block.{int(_lowerCamelCase )-1}""" )
if "attn.q" in key:
_lowerCamelCase : Optional[int] = key.replace("attn.q" , "attention.self.query" )
if "attn.proj" in key:
_lowerCamelCase : List[str] = key.replace("attn.proj" , "attention.output.dense" )
if "attn" in key:
_lowerCamelCase : Tuple = key.replace("attn" , "attention.self" )
if "fc1" in key:
_lowerCamelCase : Optional[Any] = key.replace("fc1" , "dense1" )
if "fc2" in key:
_lowerCamelCase : Dict = key.replace("fc2" , "dense2" )
if "linear_pred" in key:
_lowerCamelCase : int = key.replace("linear_pred" , "classifier" )
if "linear_fuse" in key:
_lowerCamelCase : str = key.replace("linear_fuse.conv" , "linear_fuse" )
_lowerCamelCase : Optional[Any] = key.replace("linear_fuse.bn" , "batch_norm" )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
_lowerCamelCase : Union[str, Any] = key[key.find("linear_c" ) + len("linear_c" )]
_lowerCamelCase : Optional[int] = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(_lowerCamelCase )-1}""" )
if key.startswith("head" ):
_lowerCamelCase : List[str] = key.replace("head" , "classifier" )
_lowerCamelCase : Union[str, Any] = value
return new_state_dict
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
_lowerCamelCase : Optional[Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" )
_lowerCamelCase : Optional[Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" )
# next, add keys and values (in that order) to the state dict
_lowerCamelCase : int = kv_weight[
: config.hidden_sizes[i], :
]
_lowerCamelCase : int = kv_bias[: config.hidden_sizes[i]]
_lowerCamelCase : Optional[int] = kv_weight[
config.hidden_sizes[i] :, :
]
_lowerCamelCase : Optional[Any] = kv_bias[
config.hidden_sizes[i] :
]
def lowerCamelCase_( ) -> Dict:
'''simple docstring'''
_lowerCamelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg"
_lowerCamelCase : Union[str, Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw )
return image
@torch.no_grad()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict:
'''simple docstring'''
_lowerCamelCase : Any = SegformerConfig()
_lowerCamelCase : int = False
# set attributes based on model_name
_lowerCamelCase : Any = "huggingface/label-files"
if "segformer" in model_name:
_lowerCamelCase : str = model_name[len("segformer." ) : len("segformer." ) + 2]
if "ade" in model_name:
_lowerCamelCase : str = 150
_lowerCamelCase : Dict = "ade20k-id2label.json"
_lowerCamelCase : Dict = (1, 150, 128, 128)
elif "city" in model_name:
_lowerCamelCase : List[str] = 19
_lowerCamelCase : Tuple = "cityscapes-id2label.json"
_lowerCamelCase : Tuple = (1, 19, 128, 128)
else:
raise ValueError(F"""Model {model_name} not supported""" )
elif "mit" in model_name:
_lowerCamelCase : List[str] = True
_lowerCamelCase : Tuple = model_name[4:6]
_lowerCamelCase : Tuple = 1000
_lowerCamelCase : List[Any] = "imagenet-1k-id2label.json"
_lowerCamelCase : List[Any] = (1, 1000)
else:
raise ValueError(F"""Model {model_name} not supported""" )
# set config attributes
_lowerCamelCase : Optional[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) )
_lowerCamelCase : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()}
_lowerCamelCase : Optional[Any] = idalabel
_lowerCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()}
if size == "b0":
pass
elif size == "b1":
_lowerCamelCase : int = [64, 128, 320, 512]
_lowerCamelCase : int = 256
elif size == "b2":
_lowerCamelCase : Tuple = [64, 128, 320, 512]
_lowerCamelCase : List[Any] = 768
_lowerCamelCase : Any = [3, 4, 6, 3]
elif size == "b3":
_lowerCamelCase : Tuple = [64, 128, 320, 512]
_lowerCamelCase : Union[str, Any] = 768
_lowerCamelCase : Optional[Any] = [3, 4, 18, 3]
elif size == "b4":
_lowerCamelCase : str = [64, 128, 320, 512]
_lowerCamelCase : Optional[Any] = 768
_lowerCamelCase : Dict = [3, 8, 27, 3]
elif size == "b5":
_lowerCamelCase : int = [64, 128, 320, 512]
_lowerCamelCase : Tuple = 768
_lowerCamelCase : Tuple = [3, 6, 40, 3]
else:
raise ValueError(F"""Size {size} not supported""" )
# load image processor (only resize + normalize)
_lowerCamelCase : Dict = SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=_lowerCamelCase , align=_lowerCamelCase , do_random_crop=_lowerCamelCase )
# prepare image
_lowerCamelCase : List[str] = prepare_img()
_lowerCamelCase : Dict = image_processor(images=_lowerCamelCase , return_tensors="pt" ).pixel_values
logger.info(F"""Converting model {model_name}...""" )
# load original state dict
if encoder_only:
_lowerCamelCase : Tuple = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) )
else:
_lowerCamelCase : int = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) )["state_dict"]
# rename keys
_lowerCamelCase : str = rename_keys(_lowerCamelCase , encoder_only=_lowerCamelCase )
if not encoder_only:
del state_dict["decode_head.conv_seg.weight"]
del state_dict["decode_head.conv_seg.bias"]
# key and value matrices need special treatment
read_in_k_v(_lowerCamelCase , _lowerCamelCase )
# create HuggingFace model and load state dict
if encoder_only:
_lowerCamelCase : Tuple = False
_lowerCamelCase : Optional[int] = SegformerForImageClassification(_lowerCamelCase )
else:
_lowerCamelCase : List[str] = SegformerForSemanticSegmentation(_lowerCamelCase )
model.load_state_dict(_lowerCamelCase )
model.eval()
# forward pass
_lowerCamelCase : Any = model(_lowerCamelCase )
_lowerCamelCase : Dict = outputs.logits
# set expected_slice based on model name
# ADE20k checkpoints
if model_name == "segformer.b0.512x512.ade.160k":
_lowerCamelCase : str = torch.tensor(
[
[[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]],
[[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]],
[[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]],
] )
elif model_name == "segformer.b1.512x512.ade.160k":
_lowerCamelCase : Any = torch.tensor(
[
[[-7.5_8_2_0, -8.7_2_3_1, -8.3_2_1_5], [-8.0_6_0_0, -1_0.3_5_2_9, -1_0.0_3_0_4], [-7.5_2_0_8, -9.4_1_0_3, -9.6_2_3_9]],
[[-1_2.6_9_1_8, -1_3.8_9_9_4, -1_3.7_1_3_7], [-1_3.3_1_9_6, -1_5.7_5_2_3, -1_5.4_7_8_9], [-1_2.9_3_4_3, -1_4.8_7_5_7, -1_4.9_6_8_9]],
[[-1_1.1_9_1_1, -1_1.9_4_2_1, -1_1.3_2_4_3], [-1_1.3_3_4_2, -1_3.6_8_3_9, -1_3.3_5_8_1], [-1_0.3_9_0_9, -1_2.1_8_3_2, -1_2.4_8_5_8]],
] )
elif model_name == "segformer.b2.512x512.ade.160k":
_lowerCamelCase : int = torch.tensor(
[
[[-1_1.8_1_7_3, -1_4.3_8_5_0, -1_6.3_1_2_8], [-1_4.5_6_4_8, -1_6.5_8_0_4, -1_8.6_5_6_8], [-1_4.7_2_2_3, -1_5.7_3_8_7, -1_8.4_2_1_8]],
[[-1_5.7_2_9_0, -1_7.9_1_7_1, -1_9.4_4_2_3], [-1_8.3_1_0_5, -1_9.9_4_4_8, -2_1.4_6_6_1], [-1_7.9_2_9_6, -1_8.6_4_9_7, -2_0.7_9_1_0]],
[[-1_5.0_7_8_3, -1_7.0_3_3_6, -1_8.2_7_8_9], [-1_6.8_7_7_1, -1_8.6_8_7_0, -2_0.1_6_1_2], [-1_6.2_4_5_4, -1_7.1_4_2_6, -1_9.5_0_5_5]],
] )
elif model_name == "segformer.b3.512x512.ade.160k":
_lowerCamelCase : Optional[Any] = torch.tensor(
[
[[-9.0_8_7_8, -1_0.2_0_8_1, -1_0.1_8_9_1], [-9.3_1_4_4, -1_0.7_9_4_1, -1_0.9_8_4_3], [-9.2_2_9_4, -1_0.3_8_5_5, -1_0.5_7_0_4]],
[[-1_2.2_3_1_6, -1_3.9_0_6_8, -1_3.6_1_0_2], [-1_2.9_1_6_1, -1_4.3_7_0_2, -1_4.3_2_3_5], [-1_2.5_2_3_3, -1_3.7_1_7_4, -1_3.7_9_3_2]],
[[-1_4.6_2_7_5, -1_5.2_4_9_0, -1_4.9_7_2_7], [-1_4.3_4_0_0, -1_5.9_6_8_7, -1_6.2_8_2_7], [-1_4.1_4_8_4, -1_5.4_0_3_3, -1_5.8_9_3_7]],
] )
elif model_name == "segformer.b4.512x512.ade.160k":
_lowerCamelCase : List[str] = torch.tensor(
[
[[-1_2.3_1_4_4, -1_3.2_4_4_7, -1_4.0_8_0_2], [-1_3.3_6_1_4, -1_4.5_8_1_6, -1_5.6_1_1_7], [-1_3.3_3_4_0, -1_4.4_4_3_3, -1_6.2_2_1_9]],
[[-1_9.2_7_8_1, -2_0.4_1_2_8, -2_0.7_5_0_6], [-2_0.6_1_5_3, -2_1.6_5_6_6, -2_2.0_9_9_8], [-1_9.9_8_0_0, -2_1.0_4_3_0, -2_2.1_4_9_4]],
[[-1_8.8_7_3_9, -1_9.7_8_0_4, -2_1.1_8_3_4], [-2_0.1_2_3_3, -2_1.6_7_6_5, -2_3.2_9_4_4], [-2_0.0_3_1_5, -2_1.2_6_4_1, -2_3.6_9_4_4]],
] )
elif model_name == "segformer.b5.640x640.ade.160k":
_lowerCamelCase : Any = torch.tensor(
[
[[-9.5_5_2_4, -1_2.0_8_3_5, -1_1.7_3_4_8], [-1_0.5_2_2_9, -1_3.6_4_4_6, -1_4.5_6_6_2], [-9.5_8_4_2, -1_2.8_8_5_1, -1_3.9_4_1_4]],
[[-1_5.3_4_3_2, -1_7.5_3_2_3, -1_7.0_8_1_8], [-1_6.3_3_3_0, -1_8.9_2_5_5, -1_9.2_1_0_1], [-1_5.1_3_4_0, -1_7.7_8_4_8, -1_8.3_9_7_1]],
[[-1_2.6_0_7_2, -1_4.9_4_8_6, -1_4.6_6_3_1], [-1_3.7_6_2_9, -1_7.0_9_0_7, -1_7.7_7_4_5], [-1_2.7_8_9_9, -1_6.1_6_9_5, -1_7.1_6_7_1]],
] )
# Cityscapes checkpoints
elif model_name == "segformer.b0.1024x1024.city.160k":
_lowerCamelCase : Dict = torch.tensor(
[
[[-1_1.9_2_9_5, -1_3.4_0_5_7, -1_4.8_1_0_6], [-1_3.3_4_3_1, -1_4.8_1_7_9, -1_5.3_7_8_1], [-1_4.2_8_3_6, -1_5.5_9_4_2, -1_6.1_5_8_8]],
[[-1_1.4_9_0_6, -1_2.8_0_6_7, -1_3.6_5_6_4], [-1_3.1_1_8_9, -1_4.0_5_0_0, -1_4.1_5_4_3], [-1_3.8_7_4_8, -1_4.5_1_3_6, -1_4.8_7_8_9]],
[[0.5_3_7_4, 0.1_0_6_7, -0.4_7_4_2], [0.1_1_4_1, -0.2_2_5_5, -0.7_0_9_9], [-0.3_0_0_0, -0.5_9_2_4, -1.3_1_0_5]],
] )
elif model_name == "segformer.b0.512x1024.city.160k":
_lowerCamelCase : Optional[int] = torch.tensor(
[
[[-7.8_2_1_7, -9.8_7_6_7, -1_0.1_7_1_7], [-9.4_4_3_8, -1_0.9_0_5_8, -1_1.4_0_4_7], [-9.7_9_3_9, -1_2.3_4_9_5, -1_2.1_0_7_9]],
[[-7.1_5_1_4, -9.5_3_3_6, -1_0.0_8_6_0], [-9.7_7_7_6, -1_1.6_8_2_2, -1_1.8_4_3_9], [-1_0.1_4_1_1, -1_2.7_6_5_5, -1_2.8_9_7_2]],
[[0.3_0_2_1, 0.0_8_0_5, -0.2_3_1_0], [-0.0_3_2_8, -0.1_6_0_5, -0.2_7_1_4], [-0.1_4_0_8, -0.5_4_7_7, -0.6_9_7_6]],
] )
elif model_name == "segformer.b0.640x1280.city.160k":
_lowerCamelCase : Tuple = torch.tensor(
[
[
[-1.13_72e01, -1.27_87e01, -1.34_77e01],
[-1.25_36e01, -1.41_94e01, -1.44_09e01],
[-1.32_17e01, -1.48_88e01, -1.53_27e01],
],
[
[-1.47_91e01, -1.71_22e01, -1.82_77e01],
[-1.71_63e01, -1.91_92e01, -1.95_33e01],
[-1.78_97e01, -1.99_91e01, -2.03_15e01],
],
[
[7.67_23e-01, 4.19_21e-01, -7.78_78e-02],
[4.77_72e-01, 9.55_57e-03, -2.80_82e-01],
[3.60_32e-01, -2.48_26e-01, -5.11_68e-01],
],
] )
elif model_name == "segformer.b0.768x768.city.160k":
_lowerCamelCase : Union[str, Any] = torch.tensor(
[
[[-9.4_9_5_9, -1_1.3_0_8_7, -1_1.7_4_7_9], [-1_1.0_0_2_5, -1_2.6_5_4_0, -1_2.3_3_1_9], [-1_1.4_0_6_4, -1_3.0_4_8_7, -1_2.9_9_0_5]],
[[-9.8_9_0_5, -1_1.3_0_8_4, -1_2.0_8_5_4], [-1_1.1_7_2_6, -1_2.7_6_9_8, -1_2.9_5_8_3], [-1_1.5_9_8_5, -1_3.3_2_7_8, -1_4.1_7_7_4]],
[[0.2_2_1_3, 0.0_1_9_2, -0.2_4_6_6], [-0.1_7_3_1, -0.4_2_1_3, -0.4_8_7_4], [-0.3_1_2_6, -0.6_5_4_1, -1.1_3_8_9]],
] )
elif model_name == "segformer.b1.1024x1024.city.160k":
_lowerCamelCase : List[Any] = torch.tensor(
[
[[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]],
[[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]],
[[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]],
] )
elif model_name == "segformer.b2.1024x1024.city.160k":
_lowerCamelCase : Tuple = torch.tensor(
[
[[-1_6.0_9_7_6, -1_6.4_8_5_6, -1_7.3_9_6_2], [-1_6.6_2_3_4, -1_9.0_3_4_2, -1_9.7_6_8_5], [-1_6.0_9_0_0, -1_8.0_6_6_1, -1_9.1_1_8_0]],
[[-1_8.4_7_5_0, -1_8.8_4_8_8, -1_9.5_0_7_4], [-1_9.4_0_3_0, -2_2.1_5_7_0, -2_2.5_9_7_7], [-1_9.1_1_9_1, -2_0.8_4_8_6, -2_2.3_7_8_3]],
[[-4.5_1_7_8, -5.5_0_3_7, -6.5_1_0_9], [-5.0_8_8_4, -7.2_1_7_4, -8.0_3_3_4], [-4.4_1_5_6, -5.8_1_1_7, -7.2_9_7_0]],
] )
elif model_name == "segformer.b3.1024x1024.city.160k":
_lowerCamelCase : Any = torch.tensor(
[
[[-1_4.2_0_8_1, -1_4.4_7_3_2, -1_4.1_9_7_7], [-1_4.5_8_6_7, -1_6.4_4_2_3, -1_6.6_3_5_6], [-1_3.4_4_4_1, -1_4.9_6_8_5, -1_6.8_6_9_6]],
[[-1_4.4_5_7_6, -1_4.7_0_7_3, -1_5.0_4_5_1], [-1_5.0_8_1_6, -1_7.6_2_3_7, -1_7.9_8_7_3], [-1_4.4_2_1_3, -1_6.0_1_9_9, -1_8.5_9_9_2]],
[[-4.7_3_4_9, -4.9_5_8_8, -5.0_9_6_6], [-4.3_2_1_0, -6.9_3_2_5, -7.2_5_9_1], [-3.4_3_1_2, -4.7_4_8_4, -7.1_9_1_7]],
] )
elif model_name == "segformer.b4.1024x1024.city.160k":
_lowerCamelCase : List[str] = torch.tensor(
[
[[-1_1.7_7_3_7, -1_1.9_5_2_6, -1_1.3_2_7_3], [-1_3.6_6_9_2, -1_4.4_5_7_4, -1_3.8_8_7_8], [-1_3.8_9_3_7, -1_4.6_9_2_4, -1_5.9_3_4_5]],
[[-1_4.6_7_0_6, -1_4.5_3_3_0, -1_4.1_3_0_6], [-1_6.1_5_0_2, -1_6.8_1_8_0, -1_6.4_2_6_9], [-1_6.8_3_3_8, -1_7.8_9_3_9, -2_0.1_7_4_6]],
[[1.0_4_9_1, 0.8_2_8_9, 1.0_3_1_0], [1.1_0_4_4, 0.5_2_1_9, 0.8_0_5_5], [1.0_8_9_9, 0.6_9_2_6, 0.5_5_9_0]],
] )
elif model_name == "segformer.b5.1024x1024.city.160k":
_lowerCamelCase : str = torch.tensor(
[
[[-1_2.5_6_4_1, -1_3.4_7_7_7, -1_3.0_6_8_4], [-1_3.9_5_8_7, -1_5.8_9_8_3, -1_6.6_5_5_7], [-1_3.3_1_0_9, -1_5.7_3_5_0, -1_6.3_1_4_1]],
[[-1_4.7_0_7_4, -1_5.4_3_5_2, -1_4.5_9_4_4], [-1_6.6_3_5_3, -1_8.1_6_6_3, -1_8.6_1_2_0], [-1_5.1_7_0_2, -1_8.0_3_2_9, -1_8.1_5_4_7]],
[[-1.7_9_9_0, -2.0_9_5_1, -1.7_7_8_4], [-2.6_3_9_7, -3.8_2_4_5, -3.9_6_8_6], [-1.5_2_6_4, -2.8_1_2_6, -2.9_3_1_6]],
] )
else:
_lowerCamelCase : Dict = logits.argmax(-1 ).item()
print("Predicted class:" , model.config.idalabel[predicted_class_idx] )
# verify logits
if not encoder_only:
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1e-2 )
# finally, save model and image processor
logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" )
Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase )
model.save_pretrained(_lowerCamelCase )
image_processor.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase : str = argparse.ArgumentParser()
parser.add_argument(
'''--model_name''',
default='''segformer.b0.512x512.ade.160k''',
type=str,
help='''Name of the model you\'d like to convert.''',
)
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
_lowerCAmelCase : str = parser.parse_args()
convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path) | 340 | 1 |
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
from multiprocessing import get_context
from pathlib import Path
import datasets
import numpy as np
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoProcessor
from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available
from ..wavaveca.test_feature_extraction_wavaveca import floats_list
if is_pyctcdecode_available():
from huggingface_hub import snapshot_download
from pyctcdecode import BeamSearchDecoderCTC
from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM
from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput
if is_torch_available():
from transformers import WavaVecaForCTC
@require_pyctcdecode
class A_ ( unittest.TestCase ):
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase : Dict = "| <pad> <unk> <s> </s> a b c d e f g h i j k".split()
_lowerCamelCase : List[Any] = dict(zip(__lowerCAmelCase ,range(len(__lowerCAmelCase ) ) ) )
_lowerCamelCase : Optional[int] = {
"unk_token": "<unk>",
"bos_token": "<s>",
"eos_token": "</s>",
}
_lowerCamelCase : Any = {
"feature_size": 1,
"padding_value": 0.0,
"sampling_rate": 16_000,
"return_attention_mask": False,
"do_normalize": True,
}
_lowerCamelCase : Optional[int] = tempfile.mkdtemp()
_lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] )
_lowerCamelCase : List[Any] = os.path.join(self.tmpdirname ,__lowerCAmelCase )
with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp:
fp.write(json.dumps(__lowerCAmelCase ) + "\n" )
with open(self.feature_extraction_file ,"w" ,encoding="utf-8" ) as fp:
fp.write(json.dumps(__lowerCAmelCase ) + "\n" )
# load decoder from hub
_lowerCamelCase : Optional[Any] = "hf-internal-testing/ngram-beam-search-decoder"
def _lowercase ( self: str ,**__lowerCAmelCase: str ):
'''simple docstring'''
_lowerCamelCase : List[str] = self.add_kwargs_tokens_map.copy()
kwargs.update(__lowerCAmelCase )
return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname ,**__lowerCAmelCase )
def _lowercase ( self: int ,**__lowerCAmelCase: Union[str, Any] ):
'''simple docstring'''
return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname ,**__lowerCAmelCase )
def _lowercase ( self: int ,**__lowerCAmelCase: List[str] ):
'''simple docstring'''
return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name ,**__lowerCAmelCase )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def _lowercase ( self: List[str] ):
'''simple docstring'''
_lowerCamelCase : Tuple = self.get_tokenizer()
_lowerCamelCase : Tuple = self.get_feature_extractor()
_lowerCamelCase : Dict = self.get_decoder()
_lowerCamelCase : Optional[int] = WavaVecaProcessorWithLM(tokenizer=__lowerCAmelCase ,feature_extractor=__lowerCAmelCase ,decoder=__lowerCAmelCase )
processor.save_pretrained(self.tmpdirname )
_lowerCamelCase : List[str] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname )
# tokenizer
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer ,__lowerCAmelCase )
# feature extractor
self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor ,__lowerCAmelCase )
# decoder
self.assertEqual(processor.decoder._alphabet.labels ,decoder._alphabet.labels )
self.assertEqual(
processor.decoder.model_container[decoder._model_key]._unigram_set ,decoder.model_container[decoder._model_key]._unigram_set ,)
self.assertIsInstance(processor.decoder ,__lowerCAmelCase )
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : Dict = WavaVecaProcessorWithLM(
tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() )
processor.save_pretrained(self.tmpdirname )
# make sure that error is thrown when decoder alphabet doesn't match
_lowerCamelCase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained(
self.tmpdirname ,alpha=5.0 ,beta=3.0 ,score_boundary=-7.0 ,unk_score_offset=3 )
# decoder
self.assertEqual(processor.language_model.alpha ,5.0 )
self.assertEqual(processor.language_model.beta ,3.0 )
self.assertEqual(processor.language_model.score_boundary ,-7.0 )
self.assertEqual(processor.language_model.unk_score_offset ,3 )
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase : List[Any] = self.get_tokenizer()
# add token to trigger raise
tokenizer.add_tokens(["xx"] )
with self.assertRaisesRegex(__lowerCAmelCase ,"include" ):
WavaVecaProcessorWithLM(
tokenizer=__lowerCAmelCase ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() )
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : List[str] = self.get_feature_extractor()
_lowerCamelCase : int = self.get_tokenizer()
_lowerCamelCase : Dict = self.get_decoder()
_lowerCamelCase : List[Any] = WavaVecaProcessorWithLM(tokenizer=__lowerCAmelCase ,feature_extractor=__lowerCAmelCase ,decoder=__lowerCAmelCase )
_lowerCamelCase : List[Any] = floats_list((3, 1_000) )
_lowerCamelCase : Optional[int] = feature_extractor(__lowerCAmelCase ,return_tensors="np" )
_lowerCamelCase : Optional[int] = processor(__lowerCAmelCase ,return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 )
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase : Any = self.get_feature_extractor()
_lowerCamelCase : Dict = self.get_tokenizer()
_lowerCamelCase : Tuple = self.get_decoder()
_lowerCamelCase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=__lowerCAmelCase ,feature_extractor=__lowerCAmelCase ,decoder=__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = "This is a test string"
_lowerCamelCase : List[str] = processor(text=__lowerCAmelCase )
_lowerCamelCase : int = tokenizer(__lowerCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] ,encoded_processor[key] )
def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Optional[Any]=(2, 10, 16) ,__lowerCAmelCase: Optional[Any]=77 ):
'''simple docstring'''
np.random.seed(__lowerCAmelCase )
return np.random.rand(*__lowerCAmelCase )
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase : Any = self.get_feature_extractor()
_lowerCamelCase : str = self.get_tokenizer()
_lowerCamelCase : Optional[Any] = self.get_decoder()
_lowerCamelCase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=__lowerCAmelCase ,feature_extractor=__lowerCAmelCase ,decoder=__lowerCAmelCase )
_lowerCamelCase : Tuple = self._get_dummy_logits(shape=(10, 16) ,seed=13 )
_lowerCamelCase : List[Any] = processor.decode(__lowerCAmelCase )
_lowerCamelCase : Any = decoder.decode_beams(__lowerCAmelCase )[0]
self.assertEqual(decoded_decoder[0] ,decoded_processor.text )
self.assertEqual("</s> <s> </s>" ,decoded_processor.text )
self.assertEqual(decoded_decoder[-2] ,decoded_processor.logit_score )
self.assertEqual(decoded_decoder[-1] ,decoded_processor.lm_score )
@parameterized.expand([[None], ["fork"], ["spawn"]] )
def _lowercase ( self: Any ,__lowerCAmelCase: int ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = self.get_feature_extractor()
_lowerCamelCase : Union[str, Any] = self.get_tokenizer()
_lowerCamelCase : Optional[int] = self.get_decoder()
_lowerCamelCase : int = WavaVecaProcessorWithLM(tokenizer=__lowerCAmelCase ,feature_extractor=__lowerCAmelCase ,decoder=__lowerCAmelCase )
_lowerCamelCase : List[str] = self._get_dummy_logits()
# note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM.
# otherwise, the LM won't be available to the pool's sub-processes.
# manual logic used to allow parameterized test for both pool=None and pool=Pool(...)
if pool_context is None:
_lowerCamelCase : Tuple = processor.batch_decode(__lowerCAmelCase )
else:
with get_context(__lowerCAmelCase ).Pool() as pool:
_lowerCamelCase : str = processor.batch_decode(__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : Dict = list(__lowerCAmelCase )
with get_context("fork" ).Pool() as p:
_lowerCamelCase : Any = decoder.decode_beams_batch(__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = [], [], []
for beams in decoded_beams:
texts_decoder.append(beams[0][0] )
logit_scores_decoder.append(beams[0][-2] )
lm_scores_decoder.append(beams[0][-1] )
self.assertListEqual(__lowerCAmelCase ,decoded_processor.text )
self.assertListEqual(["<s> <s> </s>", "<s> <s> <s>"] ,decoded_processor.text )
self.assertListEqual(__lowerCAmelCase ,decoded_processor.logit_score )
self.assertListEqual(__lowerCAmelCase ,decoded_processor.lm_score )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = self.get_feature_extractor()
_lowerCamelCase : Any = self.get_tokenizer()
_lowerCamelCase : Tuple = self.get_decoder()
_lowerCamelCase : Optional[int] = WavaVecaProcessorWithLM(tokenizer=__lowerCAmelCase ,feature_extractor=__lowerCAmelCase ,decoder=__lowerCAmelCase )
_lowerCamelCase : Tuple = self._get_dummy_logits()
_lowerCamelCase : str = 15
_lowerCamelCase : Optional[Any] = -20.0
_lowerCamelCase : Optional[Any] = -4.0
_lowerCamelCase : Optional[Any] = processor.batch_decode(
__lowerCAmelCase ,beam_width=__lowerCAmelCase ,beam_prune_logp=__lowerCAmelCase ,token_min_logp=__lowerCAmelCase ,)
_lowerCamelCase : List[Any] = decoded_processor_out.text
_lowerCamelCase : Any = list(__lowerCAmelCase )
with get_context("fork" ).Pool() as pool:
_lowerCamelCase : Optional[int] = decoder.decode_beams_batch(
__lowerCAmelCase ,__lowerCAmelCase ,beam_width=__lowerCAmelCase ,beam_prune_logp=__lowerCAmelCase ,token_min_logp=__lowerCAmelCase ,)
_lowerCamelCase : List[Any] = [d[0][0] for d in decoded_decoder_out]
_lowerCamelCase : List[str] = [d[0][2] for d in decoded_decoder_out]
_lowerCamelCase : Dict = [d[0][3] for d in decoded_decoder_out]
self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase )
self.assertListEqual(["</s> <s> <s>", "<s> <s> <s>"] ,__lowerCAmelCase )
self.assertTrue(np.array_equal(__lowerCAmelCase ,decoded_processor_out.logit_score ) )
self.assertTrue(np.allclose([-20.0_54, -18.4_47] ,__lowerCAmelCase ,atol=1e-3 ) )
self.assertTrue(np.array_equal(__lowerCAmelCase ,decoded_processor_out.lm_score ) )
self.assertTrue(np.allclose([-15.5_54, -13.94_74] ,__lowerCAmelCase ,atol=1e-3 ) )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : Any = self.get_feature_extractor()
_lowerCamelCase : Dict = self.get_tokenizer()
_lowerCamelCase : str = self.get_decoder()
_lowerCamelCase : Tuple = WavaVecaProcessorWithLM(tokenizer=__lowerCAmelCase ,feature_extractor=__lowerCAmelCase ,decoder=__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = self._get_dummy_logits()
_lowerCamelCase : Optional[int] = 2.0
_lowerCamelCase : Any = 5.0
_lowerCamelCase : Dict = -20.0
_lowerCamelCase : List[str] = True
_lowerCamelCase : Optional[int] = processor.batch_decode(
__lowerCAmelCase ,alpha=__lowerCAmelCase ,beta=__lowerCAmelCase ,unk_score_offset=__lowerCAmelCase ,lm_score_boundary=__lowerCAmelCase ,)
_lowerCamelCase : str = decoded_processor_out.text
_lowerCamelCase : Any = list(__lowerCAmelCase )
decoder.reset_params(
alpha=__lowerCAmelCase ,beta=__lowerCAmelCase ,unk_score_offset=__lowerCAmelCase ,lm_score_boundary=__lowerCAmelCase ,)
with get_context("fork" ).Pool() as pool:
_lowerCamelCase : str = decoder.decode_beams_batch(
__lowerCAmelCase ,__lowerCAmelCase ,)
_lowerCamelCase : Optional[Any] = [d[0][0] for d in decoded_decoder_out]
self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase )
self.assertListEqual(["<s> </s> <s> </s> </s>", "</s> </s> <s> </s> </s>"] ,__lowerCAmelCase )
_lowerCamelCase : Any = processor.decoder.model_container[processor.decoder._model_key]
self.assertEqual(lm_model.alpha ,2.0 )
self.assertEqual(lm_model.beta ,5.0 )
self.assertEqual(lm_model.unk_score_offset ,-20.0 )
self.assertEqual(lm_model.score_boundary ,__lowerCAmelCase )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : Any = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" )
_lowerCamelCase : List[str] = processor.decoder.model_container[processor.decoder._model_key]
_lowerCamelCase : str = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute()
_lowerCamelCase : Optional[int] = os.listdir(__lowerCAmelCase )
_lowerCamelCase : List[Any] = ["alphabet.json", "language_model"]
downloaded_decoder_files.sort()
expected_decoder_files.sort()
# test that only decoder relevant files from
# https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main
# are downloaded and none of the rest (e.g. README.md, ...)
self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : Any = snapshot_download("hf-internal-testing/processor_with_lm" )
_lowerCamelCase : str = WavaVecaProcessorWithLM.from_pretrained(__lowerCAmelCase )
_lowerCamelCase : int = processor.decoder.model_container[processor.decoder._model_key]
_lowerCamelCase : List[Any] = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute()
_lowerCamelCase : str = os.listdir(__lowerCAmelCase )
_lowerCamelCase : Dict = os.listdir(__lowerCAmelCase )
local_decoder_files.sort()
expected_decoder_files.sort()
# test that both decoder form hub and local files in cache are the same
self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : List[Any] = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" )
_lowerCamelCase : int = AutoProcessor.from_pretrained("hf-internal-testing/processor_with_lm" )
_lowerCamelCase : int = floats_list((3, 1_000) )
_lowerCamelCase : List[str] = processor_wavaveca(__lowerCAmelCase ,return_tensors="np" )
_lowerCamelCase : Tuple = processor_auto(__lowerCAmelCase ,return_tensors="np" )
for key in input_wavaveca.keys():
self.assertAlmostEqual(input_wavaveca[key].sum() ,input_auto[key].sum() ,delta=1e-2 )
_lowerCamelCase : List[str] = self._get_dummy_logits()
_lowerCamelCase : Tuple = processor_wavaveca.batch_decode(__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = processor_auto.batch_decode(__lowerCAmelCase )
self.assertListEqual(decoded_wavaveca.text ,decoded_auto.text )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : str = self.get_feature_extractor()
_lowerCamelCase : Optional[int] = self.get_tokenizer()
_lowerCamelCase : str = self.get_decoder()
_lowerCamelCase : Tuple = WavaVecaProcessorWithLM(tokenizer=__lowerCAmelCase ,feature_extractor=__lowerCAmelCase ,decoder=__lowerCAmelCase )
self.assertListEqual(
processor.model_input_names ,feature_extractor.model_input_names ,msg="`processor` and `feature_extractor` model input names do not match" ,)
@staticmethod
def _lowercase ( __lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: int ):
'''simple docstring'''
_lowerCamelCase : Tuple = [d[key] for d in offsets]
return retrieved_list
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : str = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" )
_lowerCamelCase : List[Any] = self._get_dummy_logits()[0]
_lowerCamelCase : Any = processor.decode(__lowerCAmelCase ,output_word_offsets=__lowerCAmelCase )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) ,4 )
self.assertTrue("text" in outputs )
self.assertTrue("word_offsets" in outputs )
self.assertTrue(isinstance(__lowerCAmelCase ,__lowerCAmelCase ) )
self.assertEqual(" ".join(self.get_from_offsets(outputs["word_offsets"] ,"word" ) ) ,outputs.text )
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] ,"word" ) ,["<s>", "<s>", "</s>"] )
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] ,"start_offset" ) ,[0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] ,"end_offset" ) ,[1, 3, 5] )
def _lowercase ( self: int ):
'''simple docstring'''
_lowerCamelCase : Tuple = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" )
_lowerCamelCase : int = self._get_dummy_logits()
_lowerCamelCase : Union[str, Any] = processor.batch_decode(__lowerCAmelCase ,output_word_offsets=__lowerCAmelCase )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) ,4 )
self.assertTrue("text" in outputs )
self.assertTrue("word_offsets" in outputs )
self.assertTrue(isinstance(__lowerCAmelCase ,__lowerCAmelCase ) )
self.assertListEqual(
[" ".join(self.get_from_offsets(__lowerCAmelCase ,"word" ) ) for o in outputs["word_offsets"]] ,outputs.text )
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] ,"word" ) ,["<s>", "<s>", "</s>"] )
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] ,"start_offset" ) ,[0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] ,"end_offset" ) ,[1, 3, 5] )
@slow
@require_torch
@require_torchaudio
def _lowercase ( self: Tuple ):
'''simple docstring'''
import torch
_lowerCamelCase : str = load_dataset("common_voice" ,"en" ,split="train" ,streaming=__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = ds.cast_column("audio" ,datasets.Audio(sampling_rate=16_000 ) )
_lowerCamelCase : Optional[int] = iter(__lowerCAmelCase )
_lowerCamelCase : List[str] = next(__lowerCAmelCase )
_lowerCamelCase : int = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" )
_lowerCamelCase : Union[str, Any] = WavaVecaForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" )
# compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train
_lowerCamelCase : Any = processor(sample["audio"]["array"] ,return_tensors="pt" ).input_values
with torch.no_grad():
_lowerCamelCase : List[str] = model(__lowerCAmelCase ).logits.cpu().numpy()
_lowerCamelCase : int = processor.decode(logits[0] ,output_word_offsets=__lowerCAmelCase )
_lowerCamelCase : Any = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate
_lowerCamelCase : str = [
{
"start_time": d["start_offset"] * time_offset,
"end_time": d["end_offset"] * time_offset,
"word": d["word"],
}
for d in output["word_offsets"]
]
_lowerCamelCase : int = "WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL"
# output words
self.assertEqual(" ".join(self.get_from_offsets(__lowerCAmelCase ,"word" ) ) ,__lowerCAmelCase )
self.assertEqual(" ".join(self.get_from_offsets(__lowerCAmelCase ,"word" ) ) ,output.text )
# output times
_lowerCamelCase : int = torch.tensor(self.get_from_offsets(__lowerCAmelCase ,"start_time" ) )
_lowerCamelCase : List[Any] = torch.tensor(self.get_from_offsets(__lowerCAmelCase ,"end_time" ) )
# fmt: off
_lowerCamelCase : Dict = torch.tensor([1.41_99, 1.65_99, 2.25_99, 3.0, 3.24, 3.59_99, 3.79_99, 4.09_99, 4.26, 4.94, 5.28, 5.65_99, 5.78, 5.94, 6.32, 6.53_99, 6.65_99] )
_lowerCamelCase : Union[str, Any] = torch.tensor([1.53_99, 1.89_99, 2.9, 3.16, 3.53_99, 3.72, 4.01_99, 4.17_99, 4.76, 5.15_99, 5.55_99, 5.69_99, 5.86, 6.19_99, 6.38, 6.61_99, 6.94] )
# fmt: on
self.assertTrue(torch.allclose(__lowerCAmelCase ,__lowerCAmelCase ,atol=0.01 ) )
self.assertTrue(torch.allclose(__lowerCAmelCase ,__lowerCAmelCase ,atol=0.01 ) ) | 340 |
"""simple docstring"""
_lowerCAmelCase : dict[tuple[int, int, int], int] = {}
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
_lowerCamelCase : Optional[int] = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
_lowerCamelCase : int = _calculate(days - 1 , _lowerCamelCase , late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
_lowerCamelCase : Tuple = _calculate(days - 1 , absent + 1 , 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
_lowerCamelCase : str = _calculate(days - 1 , _lowerCamelCase , 0 )
_lowerCamelCase : List[Any] = state_late + state_absent + state_ontime
_lowerCamelCase : int = prizestrings
return prizestrings
def lowerCamelCase_( _lowerCamelCase = 30 ) -> int:
'''simple docstring'''
return _calculate(_lowerCamelCase , absent=0 , late=0 )
if __name__ == "__main__":
print(solution()) | 340 | 1 |
"""simple docstring"""
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .configuration_auto import CONFIG_MAPPING_NAMES
_lowerCAmelCase : Any = logging.get_logger(__name__)
_lowerCAmelCase : List[str] = OrderedDict(
[
# Base model mapping
('''albert''', '''FlaxAlbertModel'''),
('''bart''', '''FlaxBartModel'''),
('''beit''', '''FlaxBeitModel'''),
('''bert''', '''FlaxBertModel'''),
('''big_bird''', '''FlaxBigBirdModel'''),
('''blenderbot''', '''FlaxBlenderbotModel'''),
('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''),
('''clip''', '''FlaxCLIPModel'''),
('''distilbert''', '''FlaxDistilBertModel'''),
('''electra''', '''FlaxElectraModel'''),
('''gpt-sw3''', '''FlaxGPT2Model'''),
('''gpt2''', '''FlaxGPT2Model'''),
('''gpt_neo''', '''FlaxGPTNeoModel'''),
('''gptj''', '''FlaxGPTJModel'''),
('''longt5''', '''FlaxLongT5Model'''),
('''marian''', '''FlaxMarianModel'''),
('''mbart''', '''FlaxMBartModel'''),
('''mt5''', '''FlaxMT5Model'''),
('''opt''', '''FlaxOPTModel'''),
('''pegasus''', '''FlaxPegasusModel'''),
('''regnet''', '''FlaxRegNetModel'''),
('''resnet''', '''FlaxResNetModel'''),
('''roberta''', '''FlaxRobertaModel'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''),
('''roformer''', '''FlaxRoFormerModel'''),
('''t5''', '''FlaxT5Model'''),
('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''),
('''vit''', '''FlaxViTModel'''),
('''wav2vec2''', '''FlaxWav2Vec2Model'''),
('''whisper''', '''FlaxWhisperModel'''),
('''xglm''', '''FlaxXGLMModel'''),
('''xlm-roberta''', '''FlaxXLMRobertaModel'''),
]
)
_lowerCAmelCase : Optional[int] = OrderedDict(
[
# Model for pre-training mapping
('''albert''', '''FlaxAlbertForPreTraining'''),
('''bart''', '''FlaxBartForConditionalGeneration'''),
('''bert''', '''FlaxBertForPreTraining'''),
('''big_bird''', '''FlaxBigBirdForPreTraining'''),
('''electra''', '''FlaxElectraForPreTraining'''),
('''longt5''', '''FlaxLongT5ForConditionalGeneration'''),
('''mbart''', '''FlaxMBartForConditionalGeneration'''),
('''mt5''', '''FlaxMT5ForConditionalGeneration'''),
('''roberta''', '''FlaxRobertaForMaskedLM'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''),
('''roformer''', '''FlaxRoFormerForMaskedLM'''),
('''t5''', '''FlaxT5ForConditionalGeneration'''),
('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''),
('''whisper''', '''FlaxWhisperForConditionalGeneration'''),
('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''),
]
)
_lowerCAmelCase : List[str] = OrderedDict(
[
# Model for Masked LM mapping
('''albert''', '''FlaxAlbertForMaskedLM'''),
('''bart''', '''FlaxBartForConditionalGeneration'''),
('''bert''', '''FlaxBertForMaskedLM'''),
('''big_bird''', '''FlaxBigBirdForMaskedLM'''),
('''distilbert''', '''FlaxDistilBertForMaskedLM'''),
('''electra''', '''FlaxElectraForMaskedLM'''),
('''mbart''', '''FlaxMBartForConditionalGeneration'''),
('''roberta''', '''FlaxRobertaForMaskedLM'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''),
('''roformer''', '''FlaxRoFormerForMaskedLM'''),
('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''),
]
)
_lowerCAmelCase : int = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
('''bart''', '''FlaxBartForConditionalGeneration'''),
('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''),
('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''),
('''encoder-decoder''', '''FlaxEncoderDecoderModel'''),
('''longt5''', '''FlaxLongT5ForConditionalGeneration'''),
('''marian''', '''FlaxMarianMTModel'''),
('''mbart''', '''FlaxMBartForConditionalGeneration'''),
('''mt5''', '''FlaxMT5ForConditionalGeneration'''),
('''pegasus''', '''FlaxPegasusForConditionalGeneration'''),
('''t5''', '''FlaxT5ForConditionalGeneration'''),
]
)
_lowerCAmelCase : Tuple = OrderedDict(
[
# Model for Image-classsification
('''beit''', '''FlaxBeitForImageClassification'''),
('''regnet''', '''FlaxRegNetForImageClassification'''),
('''resnet''', '''FlaxResNetForImageClassification'''),
('''vit''', '''FlaxViTForImageClassification'''),
]
)
_lowerCAmelCase : Any = OrderedDict(
[
('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''),
]
)
_lowerCAmelCase : List[str] = OrderedDict(
[
# Model for Causal LM mapping
('''bart''', '''FlaxBartForCausalLM'''),
('''bert''', '''FlaxBertForCausalLM'''),
('''big_bird''', '''FlaxBigBirdForCausalLM'''),
('''electra''', '''FlaxElectraForCausalLM'''),
('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''),
('''gpt2''', '''FlaxGPT2LMHeadModel'''),
('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''),
('''gptj''', '''FlaxGPTJForCausalLM'''),
('''opt''', '''FlaxOPTForCausalLM'''),
('''roberta''', '''FlaxRobertaForCausalLM'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''),
('''xglm''', '''FlaxXGLMForCausalLM'''),
('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''),
]
)
_lowerCAmelCase : Optional[Any] = OrderedDict(
[
# Model for Sequence Classification mapping
('''albert''', '''FlaxAlbertForSequenceClassification'''),
('''bart''', '''FlaxBartForSequenceClassification'''),
('''bert''', '''FlaxBertForSequenceClassification'''),
('''big_bird''', '''FlaxBigBirdForSequenceClassification'''),
('''distilbert''', '''FlaxDistilBertForSequenceClassification'''),
('''electra''', '''FlaxElectraForSequenceClassification'''),
('''mbart''', '''FlaxMBartForSequenceClassification'''),
('''roberta''', '''FlaxRobertaForSequenceClassification'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''),
('''roformer''', '''FlaxRoFormerForSequenceClassification'''),
('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''),
]
)
_lowerCAmelCase : List[Any] = OrderedDict(
[
# Model for Question Answering mapping
('''albert''', '''FlaxAlbertForQuestionAnswering'''),
('''bart''', '''FlaxBartForQuestionAnswering'''),
('''bert''', '''FlaxBertForQuestionAnswering'''),
('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''),
('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''),
('''electra''', '''FlaxElectraForQuestionAnswering'''),
('''mbart''', '''FlaxMBartForQuestionAnswering'''),
('''roberta''', '''FlaxRobertaForQuestionAnswering'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''),
('''roformer''', '''FlaxRoFormerForQuestionAnswering'''),
('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''),
]
)
_lowerCAmelCase : List[Any] = OrderedDict(
[
# Model for Token Classification mapping
('''albert''', '''FlaxAlbertForTokenClassification'''),
('''bert''', '''FlaxBertForTokenClassification'''),
('''big_bird''', '''FlaxBigBirdForTokenClassification'''),
('''distilbert''', '''FlaxDistilBertForTokenClassification'''),
('''electra''', '''FlaxElectraForTokenClassification'''),
('''roberta''', '''FlaxRobertaForTokenClassification'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''),
('''roformer''', '''FlaxRoFormerForTokenClassification'''),
('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''),
]
)
_lowerCAmelCase : Optional[int] = OrderedDict(
[
# Model for Multiple Choice mapping
('''albert''', '''FlaxAlbertForMultipleChoice'''),
('''bert''', '''FlaxBertForMultipleChoice'''),
('''big_bird''', '''FlaxBigBirdForMultipleChoice'''),
('''distilbert''', '''FlaxDistilBertForMultipleChoice'''),
('''electra''', '''FlaxElectraForMultipleChoice'''),
('''roberta''', '''FlaxRobertaForMultipleChoice'''),
('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''),
('''roformer''', '''FlaxRoFormerForMultipleChoice'''),
('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''),
]
)
_lowerCAmelCase : List[str] = OrderedDict(
[
('''bert''', '''FlaxBertForNextSentencePrediction'''),
]
)
_lowerCAmelCase : int = OrderedDict(
[
('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''),
('''whisper''', '''FlaxWhisperForConditionalGeneration'''),
]
)
_lowerCAmelCase : Union[str, Any] = OrderedDict(
[
('''whisper''', '''FlaxWhisperForAudioClassification'''),
]
)
_lowerCAmelCase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES)
_lowerCAmelCase : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES)
_lowerCAmelCase : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES)
_lowerCAmelCase : List[str] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
_lowerCAmelCase : List[str] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
_lowerCAmelCase : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
_lowerCAmelCase : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
_lowerCAmelCase : int = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
_lowerCAmelCase : str = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
_lowerCAmelCase : int = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
_lowerCAmelCase : str = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
)
_lowerCAmelCase : Dict = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
_lowerCAmelCase : List[str] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
_lowerCAmelCase : Dict = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
class A_ ( _BaseAutoModelClass ):
lowerCAmelCase__ = FLAX_MODEL_MAPPING
_lowerCAmelCase : Optional[int] = auto_class_update(FlaxAutoModel)
class A_ ( _BaseAutoModelClass ):
lowerCAmelCase__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING
_lowerCAmelCase : str = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''')
class A_ ( _BaseAutoModelClass ):
lowerCAmelCase__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING
_lowerCAmelCase : Any = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''')
class A_ ( _BaseAutoModelClass ):
lowerCAmelCase__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING
_lowerCAmelCase : Optional[Any] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''')
class A_ ( _BaseAutoModelClass ):
lowerCAmelCase__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
_lowerCAmelCase : Optional[Any] = auto_class_update(
FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base'''
)
class A_ ( _BaseAutoModelClass ):
lowerCAmelCase__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
_lowerCAmelCase : str = auto_class_update(
FlaxAutoModelForSequenceClassification, head_doc='''sequence classification'''
)
class A_ ( _BaseAutoModelClass ):
lowerCAmelCase__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING
_lowerCAmelCase : Tuple = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''')
class A_ ( _BaseAutoModelClass ):
lowerCAmelCase__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
_lowerCAmelCase : Optional[int] = auto_class_update(
FlaxAutoModelForTokenClassification, head_doc='''token classification'''
)
class A_ ( _BaseAutoModelClass ):
lowerCAmelCase__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
_lowerCAmelCase : Dict = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''')
class A_ ( _BaseAutoModelClass ):
lowerCAmelCase__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
_lowerCAmelCase : Optional[int] = auto_class_update(
FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction'''
)
class A_ ( _BaseAutoModelClass ):
lowerCAmelCase__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
_lowerCAmelCase : Any = auto_class_update(
FlaxAutoModelForImageClassification, head_doc='''image classification'''
)
class A_ ( _BaseAutoModelClass ):
lowerCAmelCase__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING
_lowerCAmelCase : Tuple = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''')
class A_ ( _BaseAutoModelClass ):
lowerCAmelCase__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
_lowerCAmelCase : Dict = auto_class_update(
FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling'''
) | 340 |
"""simple docstring"""
from __future__ import annotations
def lowerCamelCase_( _lowerCamelCase ) -> bool:
'''simple docstring'''
_lowerCamelCase : int = str(_lowerCamelCase )
return len(_lowerCamelCase ) == 9 and set(_lowerCamelCase ) == set("123456789" )
def lowerCamelCase_( ) -> int | None:
'''simple docstring'''
for base_num in range(9999 , 4999 , -1 ):
_lowerCamelCase : Union[str, Any] = 100002 * base_num
if is_9_pandigital(_lowerCamelCase ):
return candidate
for base_num in range(333 , 99 , -1 ):
_lowerCamelCase : Tuple = 1002003 * base_num
if is_9_pandigital(_lowerCamelCase ):
return candidate
return None
if __name__ == "__main__":
print(f'''{solution() = }''') | 340 | 1 |
"""simple docstring"""
import inspect
from typing import Callable, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import DiffusionPipeline
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import logging
_lowerCAmelCase : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name
class A_ ( _a ):
def __init__( self: Tuple ,__lowerCAmelCase: AutoencoderKL ,__lowerCAmelCase: CLIPTextModel ,__lowerCAmelCase: CLIPTokenizer ,__lowerCAmelCase: UNetaDConditionModel ,__lowerCAmelCase: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] ,__lowerCAmelCase: StableDiffusionSafetyChecker ,__lowerCAmelCase: CLIPImageProcessor ,):
'''simple docstring'''
super().__init__()
self.register_modules(
vae=__lowerCAmelCase ,text_encoder=__lowerCAmelCase ,tokenizer=__lowerCAmelCase ,unet=__lowerCAmelCase ,scheduler=__lowerCAmelCase ,safety_checker=__lowerCAmelCase ,feature_extractor=__lowerCAmelCase ,)
def _lowercase ( self: Dict ,__lowerCAmelCase: Optional[Union[str, int]] = "auto" ):
'''simple docstring'''
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
_lowerCamelCase : Union[str, Any] = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(__lowerCAmelCase )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
self.enable_attention_slicing(__lowerCAmelCase )
@torch.no_grad()
def __call__( self: Optional[Any] ,__lowerCAmelCase: Union[str, List[str]] ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 50 ,__lowerCAmelCase: float = 7.5 ,__lowerCAmelCase: Optional[Union[str, List[str]]] = None ,__lowerCAmelCase: Optional[int] = 1 ,__lowerCAmelCase: float = 0.0 ,__lowerCAmelCase: Optional[torch.Generator] = None ,__lowerCAmelCase: Optional[torch.FloatTensor] = None ,__lowerCAmelCase: Optional[str] = "pil" ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[Callable[[int, int, torch.FloatTensor], None]] = None ,__lowerCAmelCase: int = 1 ,__lowerCAmelCase: Optional[torch.FloatTensor] = None ,**__lowerCAmelCase: Optional[int] ,):
'''simple docstring'''
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : str = 1
elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : List[Any] = len(__lowerCAmelCase )
else:
raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(__lowerCAmelCase )}""" )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(__lowerCAmelCase ,__lowerCAmelCase ) or callback_steps <= 0)
):
raise ValueError(
F"""`callback_steps` has to be a positive integer but is {callback_steps} of type"""
F""" {type(__lowerCAmelCase )}.""" )
# get prompt text embeddings
_lowerCamelCase : Any = self.tokenizer(
__lowerCAmelCase ,padding="max_length" ,max_length=self.tokenizer.model_max_length ,return_tensors="pt" ,)
_lowerCamelCase : List[str] = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
_lowerCamelCase : Optional[Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" )
_lowerCamelCase : List[str] = text_input_ids[:, : self.tokenizer.model_max_length]
if text_embeddings is None:
_lowerCamelCase : Dict = self.text_encoder(text_input_ids.to(self.device ) )[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = text_embeddings.shape
_lowerCamelCase : Optional[Any] = text_embeddings.repeat(1 ,__lowerCAmelCase ,1 )
_lowerCamelCase : List[str] = text_embeddings.view(bs_embed * num_images_per_prompt ,__lowerCAmelCase ,-1 )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
_lowerCamelCase : List[Any] = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
_lowerCamelCase : List[str]
if negative_prompt is None:
_lowerCamelCase : Optional[Any] = [""]
elif type(__lowerCAmelCase ) is not type(__lowerCAmelCase ):
raise TypeError(
F"""`negative_prompt` should be the same type to `prompt`, but got {type(__lowerCAmelCase )} !="""
F""" {type(__lowerCAmelCase )}.""" )
elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : List[str] = [negative_prompt]
elif batch_size != len(__lowerCAmelCase ):
raise ValueError(
F"""`negative_prompt`: {negative_prompt} has batch size {len(__lowerCAmelCase )}, but `prompt`:"""
F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"""
" the batch size of `prompt`." )
else:
_lowerCamelCase : int = negative_prompt
_lowerCamelCase : Tuple = text_input_ids.shape[-1]
_lowerCamelCase : Optional[int] = self.tokenizer(
__lowerCAmelCase ,padding="max_length" ,max_length=__lowerCAmelCase ,truncation=__lowerCAmelCase ,return_tensors="pt" ,)
_lowerCamelCase : int = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
_lowerCamelCase : Optional[Any] = uncond_embeddings.shape[1]
_lowerCamelCase : Any = uncond_embeddings.repeat(__lowerCAmelCase ,__lowerCAmelCase ,1 )
_lowerCamelCase : List[str] = uncond_embeddings.view(batch_size * num_images_per_prompt ,__lowerCAmelCase ,-1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
_lowerCamelCase : List[str] = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
_lowerCamelCase : str = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
_lowerCamelCase : List[str] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64)
_lowerCamelCase : Any = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
_lowerCamelCase : str = torch.randn(
__lowerCAmelCase ,generator=__lowerCAmelCase ,device="cpu" ,dtype=__lowerCAmelCase ).to(self.device )
_lowerCamelCase : str = torch.randn(__lowerCAmelCase ,generator=__lowerCAmelCase ,device="cpu" ,dtype=__lowerCAmelCase ).to(
self.device )
else:
_lowerCamelCase : Any = torch.randn(
__lowerCAmelCase ,generator=__lowerCAmelCase ,device=self.device ,dtype=__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = torch.randn(__lowerCAmelCase ,generator=__lowerCAmelCase ,device=self.device ,dtype=__lowerCAmelCase )
else:
if latents_reference.shape != latents_shape:
raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" )
_lowerCamelCase : List[str] = latents_reference.to(self.device )
_lowerCamelCase : Tuple = latents.to(self.device )
# This is the key part of the pipeline where we
# try to ensure that the generated images w/ the same seed
# but different sizes actually result in similar images
_lowerCamelCase : Tuple = (latents_shape[3] - latents_shape_reference[3]) // 2
_lowerCamelCase : Dict = (latents_shape[2] - latents_shape_reference[2]) // 2
_lowerCamelCase : Optional[int] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx
_lowerCamelCase : Dict = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy
_lowerCamelCase : int = 0 if dx < 0 else dx
_lowerCamelCase : Union[str, Any] = 0 if dy < 0 else dy
_lowerCamelCase : str = max(-dx ,0 )
_lowerCamelCase : Union[str, Any] = max(-dy ,0 )
# import pdb
# pdb.set_trace()
_lowerCamelCase : Union[str, Any] = latents_reference[:, :, dy : dy + h, dx : dx + w]
# set timesteps
self.scheduler.set_timesteps(__lowerCAmelCase )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
_lowerCamelCase : str = self.scheduler.timesteps.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
_lowerCamelCase : List[str] = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
_lowerCamelCase : Any = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
_lowerCamelCase : str = {}
if accepts_eta:
_lowerCamelCase : str = eta
for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ):
# expand the latents if we are doing classifier free guidance
_lowerCamelCase : List[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
_lowerCamelCase : Optional[Any] = self.scheduler.scale_model_input(__lowerCAmelCase ,__lowerCAmelCase )
# predict the noise residual
_lowerCamelCase : Optional[int] = self.unet(__lowerCAmelCase ,__lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ).sample
# perform guidance
if do_classifier_free_guidance:
_lowerCamelCase, _lowerCamelCase : Any = noise_pred.chunk(2 )
_lowerCamelCase : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
_lowerCamelCase : List[Any] = self.scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,**__lowerCAmelCase ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : List[str] = 1 / 0.1_82_15 * latents
_lowerCamelCase : List[str] = self.vae.decode(__lowerCAmelCase ).sample
_lowerCamelCase : Union[str, Any] = (image / 2 + 0.5).clamp(0 ,1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
_lowerCamelCase : Tuple = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy()
if self.safety_checker is not None:
_lowerCamelCase : List[Any] = self.feature_extractor(self.numpy_to_pil(__lowerCAmelCase ) ,return_tensors="pt" ).to(
self.device )
_lowerCamelCase, _lowerCamelCase : List[str] = self.safety_checker(
images=__lowerCAmelCase ,clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) )
else:
_lowerCamelCase : List[Any] = None
if output_type == "pil":
_lowerCamelCase : Optional[int] = self.numpy_to_pil(__lowerCAmelCase )
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=__lowerCAmelCase ,nsfw_content_detected=__lowerCAmelCase ) | 340 |
"""simple docstring"""
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class A_ ( _a ):
lowerCAmelCase__ = 'char'
lowerCAmelCase__ = 'bpe'
lowerCAmelCase__ = 'wp'
_lowerCAmelCase : List[str] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class A_ ( _a ):
lowerCAmelCase__ = ['image_processor', 'char_tokenizer']
lowerCAmelCase__ = 'ViTImageProcessor'
lowerCAmelCase__ = 'MgpstrTokenizer'
def __init__( self: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: Optional[int]=None ,**__lowerCAmelCase: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : Any = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." ,__lowerCAmelCase ,)
_lowerCamelCase : List[Any] = kwargs.pop("feature_extractor" )
_lowerCamelCase : str = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
_lowerCamelCase : List[str] = tokenizer
_lowerCamelCase : str = AutoTokenizer.from_pretrained("gpt2" )
_lowerCamelCase : List[str] = AutoTokenizer.from_pretrained("bert-base-uncased" )
super().__init__(__lowerCAmelCase ,__lowerCAmelCase )
def __call__( self: Optional[int] ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: Optional[Any]=None ,**__lowerCAmelCase: Tuple ):
'''simple docstring'''
if images is None and text is None:
raise ValueError("You need to specify either an `images` or `text` input to process." )
if images is not None:
_lowerCamelCase : Optional[int] = self.image_processor(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
if text is not None:
_lowerCamelCase : int = self.char_tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
_lowerCamelCase : Tuple = encodings["input_ids"]
return inputs
def _lowercase ( self: int ,__lowerCAmelCase: Dict ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = sequences
_lowerCamelCase : Dict = char_preds.size(0 )
_lowerCamelCase, _lowerCamelCase : Optional[Any] = self._decode_helper(__lowerCAmelCase ,"char" )
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = self._decode_helper(__lowerCAmelCase ,"bpe" )
_lowerCamelCase, _lowerCamelCase : Tuple = self._decode_helper(__lowerCAmelCase ,"wp" )
_lowerCamelCase : List[str] = []
_lowerCamelCase : str = []
for i in range(__lowerCAmelCase ):
_lowerCamelCase : str = [char_scores[i], bpe_scores[i], wp_scores[i]]
_lowerCamelCase : List[Any] = [char_strs[i], bpe_strs[i], wp_strs[i]]
_lowerCamelCase : Optional[Any] = scores.index(max(__lowerCAmelCase ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
_lowerCamelCase : Tuple = {}
_lowerCamelCase : Tuple = final_strs
_lowerCamelCase : int = final_scores
_lowerCamelCase : str = char_strs
_lowerCamelCase : Dict = bpe_strs
_lowerCamelCase : int = wp_strs
return out
def _lowercase ( self: List[str] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: List[Any] ):
'''simple docstring'''
if format == DecodeType.CHARACTER:
_lowerCamelCase : int = self.char_decode
_lowerCamelCase : List[str] = 1
_lowerCamelCase : Optional[int] = "[s]"
elif format == DecodeType.BPE:
_lowerCamelCase : Dict = self.bpe_decode
_lowerCamelCase : str = 2
_lowerCamelCase : Union[str, Any] = "#"
elif format == DecodeType.WORDPIECE:
_lowerCamelCase : int = self.wp_decode
_lowerCamelCase : List[str] = 102
_lowerCamelCase : List[Any] = "[SEP]"
else:
raise ValueError(F"""Format {format} is not supported.""" )
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = [], []
_lowerCamelCase : Any = pred_logits.size(0 )
_lowerCamelCase : int = pred_logits.size(1 )
_lowerCamelCase, _lowerCamelCase : List[Any] = pred_logits.topk(1 ,dim=-1 ,largest=__lowerCAmelCase ,sorted=__lowerCAmelCase )
_lowerCamelCase : Optional[int] = preds_index.view(-1 ,__lowerCAmelCase )[:, 1:]
_lowerCamelCase : List[str] = decoder(__lowerCAmelCase )
_lowerCamelCase, _lowerCamelCase : str = torch.nn.functional.softmax(__lowerCAmelCase ,dim=2 ).max(dim=2 )
_lowerCamelCase : Any = preds_max_prob[:, 1:]
for index in range(__lowerCAmelCase ):
_lowerCamelCase : List[Any] = preds_str[index].find(__lowerCAmelCase )
_lowerCamelCase : Optional[int] = preds_str[index][:pred_eos]
_lowerCamelCase : Optional[Any] = preds_index[index].cpu().tolist()
_lowerCamelCase : List[str] = pred_index.index(__lowerCAmelCase ) if eos_token in pred_index else -1
_lowerCamelCase : str = preds_max_prob[index][: pred_eos_index + 1]
_lowerCamelCase : Union[str, Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(__lowerCAmelCase )
conf_scores.append(__lowerCAmelCase )
return dec_strs, conf_scores
def _lowercase ( self: Tuple ,__lowerCAmelCase: Tuple ):
'''simple docstring'''
_lowerCamelCase : str = [seq.replace(" " ,"" ) for seq in self.char_tokenizer.batch_decode(__lowerCAmelCase )]
return decode_strs
def _lowercase ( self: List[str] ,__lowerCAmelCase: List[str] ):
'''simple docstring'''
return self.bpe_tokenizer.batch_decode(__lowerCAmelCase )
def _lowercase ( self: Tuple ,__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = [seq.replace(" " ,"" ) for seq in self.wp_tokenizer.batch_decode(__lowerCAmelCase )]
return decode_strs | 340 | 1 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SwiftFormerConfig,
SwiftFormerForImageClassification,
ViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCAmelCase : Tuple = logging.get_logger(__name__)
_lowerCAmelCase : List[Any] = torch.device('''cpu''')
def lowerCamelCase_( ) -> Union[str, Any]:
'''simple docstring'''
_lowerCamelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg"
_lowerCamelCase : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw )
return im
def lowerCamelCase_( _lowerCamelCase ) -> Tuple:
'''simple docstring'''
if swiftformer_name == "swiftformer_xs":
return torch.tensor([-2.17_03e00, 2.11_07e00, -2.08_11e00, 8.86_85e-01, 2.43_60e-01] )
elif swiftformer_name == "swiftformer_s":
return torch.tensor([3.96_36e-01, 2.34_78e-01, -1.69_63e00, -1.73_81e00, -8.63_37e-01] )
elif swiftformer_name == "swiftformer_l1":
return torch.tensor([-4.27_68e-01, -4.74_29e-01, -1.08_97e00, -1.02_48e00, 3.55_23e-02] )
elif swiftformer_name == "swiftformer_l3":
return torch.tensor([-2.53_30e-01, 2.42_11e-01, -6.01_85e-01, -8.27_89e-01, -6.04_46e-02] )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
_lowerCamelCase : Any = dct.pop(_lowerCamelCase )
_lowerCamelCase : Any = val
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : List[Any] = []
for k in state_dict.keys():
_lowerCamelCase : List[str] = k
if ".pwconv" in k:
_lowerCamelCase : int = k_new.replace(".pwconv" , ".point_wise_conv" )
if ".dwconv" in k:
_lowerCamelCase : Optional[int] = k_new.replace(".dwconv" , ".depth_wise_conv" )
if ".Proj." in k:
_lowerCamelCase : Tuple = k_new.replace(".Proj." , ".proj." )
if "patch_embed" in k_new:
_lowerCamelCase : Optional[Any] = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" )
if "network" in k_new:
_lowerCamelCase : List[str] = k_new.split("." )
if ls[2].isdigit():
_lowerCamelCase : str = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] )
else:
_lowerCamelCase : Any = k_new.replace("network" , "swiftformer.encoder.network" )
rename_keys.append((k, k_new) )
return rename_keys
@torch.no_grad()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : int = SwiftFormerConfig()
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
_lowerCamelCase : int = 1000
_lowerCamelCase : Optional[Any] = "huggingface/label-files"
_lowerCamelCase : Union[str, Any] = "imagenet-1k-id2label.json"
_lowerCamelCase : Union[str, Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) )
_lowerCamelCase : Union[str, Any] = {int(_lowerCamelCase ): v for k, v in idalabel.items()}
_lowerCamelCase : Optional[Any] = idalabel
_lowerCamelCase : str = {v: k for k, v in idalabel.items()}
# size of the architecture
if swiftformer_name == "swiftformer_xs":
_lowerCamelCase : Optional[Any] = [3, 3, 6, 4]
_lowerCamelCase : Union[str, Any] = [48, 56, 112, 220]
elif swiftformer_name == "swiftformer_s":
_lowerCamelCase : Optional[Any] = [3, 3, 9, 6]
_lowerCamelCase : Any = [48, 64, 168, 224]
elif swiftformer_name == "swiftformer_l1":
_lowerCamelCase : Optional[Any] = [4, 3, 10, 5]
_lowerCamelCase : Dict = [48, 96, 192, 384]
elif swiftformer_name == "swiftformer_l3":
_lowerCamelCase : int = [4, 4, 12, 6]
_lowerCamelCase : int = [64, 128, 320, 512]
# load state_dict of original model, remove and rename some keys
if original_ckpt:
if original_ckpt.startswith("https" ):
_lowerCamelCase : Union[str, Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" , check_hash=_lowerCamelCase )
else:
_lowerCamelCase : str = torch.load(_lowerCamelCase , map_location="cpu" )
_lowerCamelCase : Optional[int] = checkpoint
_lowerCamelCase : Optional[Any] = create_rename_keys(_lowerCamelCase )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# load HuggingFace model
_lowerCamelCase : Optional[int] = SwiftFormerForImageClassification(_lowerCamelCase ).eval()
hf_model.load_state_dict(_lowerCamelCase )
# prepare test inputs
_lowerCamelCase : Dict = prepare_img()
_lowerCamelCase : List[Any] = ViTImageProcessor.from_pretrained("preprocessor_config" )
_lowerCamelCase : Optional[int] = processor(images=_lowerCamelCase , return_tensors="pt" )
# compare outputs from both models
_lowerCamelCase : int = get_expected_output(_lowerCamelCase )
_lowerCamelCase : List[Any] = hf_model(inputs["pixel_values"] ).logits
assert hf_logits.shape == torch.Size([1, 1000] )
assert torch.allclose(hf_logits[0, 0:5] , _lowerCamelCase , atol=1e-3 )
Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase )
print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" )
hf_model.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--swiftformer_name''',
default='''swiftformer_xs''',
choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''],
type=str,
help='''Name of the SwiftFormer model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''./converted_outputs/''',
type=str,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''')
_lowerCAmelCase : str = parser.parse_args()
convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt) | 340 |
"""simple docstring"""
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
_lowerCAmelCase : List[Any] = get_logger(__name__)
class A_ :
lowerCAmelCase__ = 'dummy_data'
lowerCAmelCase__ = 'datasets'
lowerCAmelCase__ = False
def __init__( self: List[str] ,__lowerCAmelCase: str ,__lowerCAmelCase: str ,__lowerCAmelCase: Union[Version, str] ,__lowerCAmelCase: Optional[str] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[List[Callable]] = None ,):
'''simple docstring'''
_lowerCamelCase : str = 0
_lowerCamelCase : List[str] = dataset_name
_lowerCamelCase : Optional[int] = cache_dir
_lowerCamelCase : Optional[int] = use_local_dummy_data
_lowerCamelCase : int = config
# download_callbacks take a single url as input
_lowerCamelCase : List[Callable] = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
_lowerCamelCase : int = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
_lowerCamelCase : Tuple = str(__lowerCAmelCase )
# to be downloaded
_lowerCamelCase : Optional[Any] = None
_lowerCamelCase : Dict = None
@property
def _lowercase ( self: str ):
'''simple docstring'''
if self._dummy_file is None:
_lowerCamelCase : List[str] = self.download_dummy_data()
return self._dummy_file
@property
def _lowercase ( self: str ):
'''simple docstring'''
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join("dummy" ,self.config.name ,self.version_name )
# structure is dummy / version_name
return os.path.join("dummy" ,self.version_name )
@property
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
return os.path.join(self.dummy_data_folder ,"dummy_data.zip" )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : Dict = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
_lowerCamelCase : Optional[int] = cached_path(
__lowerCAmelCase ,cache_dir=self.cache_dir ,extract_compressed_file=__lowerCAmelCase ,force_extract=__lowerCAmelCase )
return os.path.join(__lowerCAmelCase ,self.dummy_file_name )
@property
def _lowercase ( self: Tuple ):
'''simple docstring'''
return os.path.join(self.datasets_scripts_dir ,self.dataset_name ,self.dummy_zip_file )
@property
def _lowercase ( self: List[str] ):
'''simple docstring'''
if self._bucket_url is None:
_lowerCamelCase : List[str] = hf_github_url(self.dataset_name ,self.dummy_zip_file.replace(os.sep ,"/" ) )
return self._bucket_url
@property
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep ,"/" ).split("/" )[:-1] )
def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: str ,*__lowerCAmelCase: List[Any] ):
'''simple docstring'''
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
_lowerCamelCase : Tuple = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
_lowerCamelCase : Optional[Any] = self.dummy_file_name
# special case when data_url is a dict
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
return self.create_dummy_data_dict(__lowerCAmelCase ,__lowerCAmelCase )
elif isinstance(__lowerCAmelCase ,(list, tuple) ):
return self.create_dummy_data_list(__lowerCAmelCase ,__lowerCAmelCase )
else:
return self.create_dummy_data_single(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
return self.download_and_extract(__lowerCAmelCase )
def _lowercase ( self: List[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: int ):
'''simple docstring'''
return self.download_and_extract(__lowerCAmelCase )
def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
return path
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
return {}
def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: str ):
'''simple docstring'''
_lowerCamelCase : str = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
for single_url in single_urls:
download_callback(__lowerCAmelCase )
else:
_lowerCamelCase : Union[str, Any] = single_urls
download_callback(__lowerCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : Dict = [os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) ) for x in single_urls]
else:
_lowerCamelCase : Union[str, Any] = single_urls
_lowerCamelCase : List[str] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) )
_lowerCamelCase : List[Any] = value
# make sure that values are unique
if all(isinstance(__lowerCAmelCase ,__lowerCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
_lowerCamelCase : List[Any] = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Tuple ):
'''simple docstring'''
_lowerCamelCase : Dict = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
_lowerCamelCase : List[str] = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" ,__lowerCAmelCase ) ) for url in data_url )
_lowerCamelCase : Optional[Any] = all(
url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
_lowerCamelCase : Tuple = [data_url[0]] * len(__lowerCAmelCase )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(__lowerCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
_lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(single_url.split("/" )[-1] ) )
dummy_data_list.append(__lowerCAmelCase )
return dummy_data_list
def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: List[Any] ):
'''simple docstring'''
for download_callback in self.download_callbacks:
download_callback(__lowerCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
_lowerCamelCase : Optional[int] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(data_url.split("/" )[-1] ) )
if os.path.exists(__lowerCAmelCase ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
pass
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
pass
def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
def _iter_archive_members(__lowerCAmelCase: Any ):
# this preserves the order of the members inside the ZIP archive
_lowerCamelCase : Tuple = Path(self.dummy_file ).parent
_lowerCamelCase : str = path.relative_to(__lowerCAmelCase )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
_lowerCamelCase : Optional[int] = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = Path(__lowerCAmelCase )
_lowerCamelCase : int = _iter_archive_members(__lowerCAmelCase ) if self.use_local_dummy_data else path.rglob("*" )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith((".", "__") ):
yield file_path.relative_to(__lowerCAmelCase ).as_posix(), file_path.open("rb" )
def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : List[Any] = [paths]
for path in paths:
if os.path.isfile(__lowerCAmelCase ):
if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(__lowerCAmelCase ):
if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ):
continue
dirnames.sort()
for filename in sorted(__lowerCAmelCase ):
if filename.startswith((".", "__") ):
continue
yield os.path.join(__lowerCAmelCase ,__lowerCAmelCase ) | 340 | 1 |
"""simple docstring"""
import argparse
import json
import os
import pickle
import shutil
import numpy as np
import torch
from distiller import Distiller
from lm_seqs_dataset import LmSeqsDataset
from transformers import (
BertConfig,
BertForMaskedLM,
BertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPTaConfig,
GPTaLMHeadModel,
GPTaTokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
_lowerCAmelCase : Optional[Any] = {
'''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
'''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
'''bert''': (BertConfig, BertForMaskedLM, BertTokenizer),
'''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer),
}
def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
if args.mlm:
assert os.path.isfile(args.token_counts )
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
else:
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
assert args.teacher_type == args.student_type or (
args.student_type == "distilbert" and args.teacher_type == "bert"
)
assert os.path.isfile(args.student_config )
if args.student_pretrained_weights is not None:
assert os.path.isfile(args.student_pretrained_weights )
if args.freeze_token_type_embds:
assert args.student_type in ["roberta"]
assert args.alpha_ce >= 0.0
assert args.alpha_mlm >= 0.0
assert args.alpha_clm >= 0.0
assert args.alpha_mse >= 0.0
assert args.alpha_cos >= 0.0
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
if args.student_type == "roberta":
_lowerCamelCase : Tuple = False
elif args.student_type == "gpt2":
_lowerCamelCase : int = False
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
if args.student_type == "roberta":
_lowerCamelCase : int = False
def lowerCamelCase_( ) -> Optional[Any]:
'''simple docstring'''
_lowerCamelCase : Tuple = argparse.ArgumentParser(description="Training" )
parser.add_argument("--force" , action="store_true" , help="Overwrite dump_path if it already exists." )
parser.add_argument(
"--dump_path" , type=_lowerCamelCase , required=_lowerCamelCase , help="The output directory (log, checkpoints, parameters, etc.)" )
parser.add_argument(
"--data_file" , type=_lowerCamelCase , required=_lowerCamelCase , help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence." , )
parser.add_argument(
"--student_type" , type=_lowerCamelCase , choices=["distilbert", "roberta", "gpt2"] , required=_lowerCamelCase , help="The student type (DistilBERT, RoBERTa)." , )
parser.add_argument("--student_config" , type=_lowerCamelCase , required=_lowerCamelCase , help="Path to the student configuration." )
parser.add_argument(
"--student_pretrained_weights" , default=_lowerCamelCase , type=_lowerCamelCase , help="Load student initialization checkpoint." )
parser.add_argument(
"--teacher_type" , choices=["bert", "roberta", "gpt2"] , required=_lowerCamelCase , help="Teacher type (BERT, RoBERTa)." )
parser.add_argument("--teacher_name" , type=_lowerCamelCase , required=_lowerCamelCase , help="The teacher model." )
parser.add_argument("--temperature" , default=2.0 , type=_lowerCamelCase , help="Temperature for the softmax temperature." )
parser.add_argument(
"--alpha_ce" , default=0.5 , type=_lowerCamelCase , help="Linear weight for the distillation loss. Must be >=0." )
parser.add_argument(
"--alpha_mlm" , default=0.0 , type=_lowerCamelCase , help="Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag." , )
parser.add_argument("--alpha_clm" , default=0.5 , type=_lowerCamelCase , help="Linear weight for the CLM loss. Must be >=0." )
parser.add_argument("--alpha_mse" , default=0.0 , type=_lowerCamelCase , help="Linear weight of the MSE loss. Must be >=0." )
parser.add_argument(
"--alpha_cos" , default=0.0 , type=_lowerCamelCase , help="Linear weight of the cosine embedding loss. Must be >=0." )
parser.add_argument(
"--mlm" , action="store_true" , help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM." )
parser.add_argument(
"--mlm_mask_prop" , default=0.1_5 , type=_lowerCamelCase , help="Proportion of tokens for which we need to make a prediction." , )
parser.add_argument("--word_mask" , default=0.8 , type=_lowerCamelCase , help="Proportion of tokens to mask out." )
parser.add_argument("--word_keep" , default=0.1 , type=_lowerCamelCase , help="Proportion of tokens to keep." )
parser.add_argument("--word_rand" , default=0.1 , type=_lowerCamelCase , help="Proportion of tokens to randomly replace." )
parser.add_argument(
"--mlm_smoothing" , default=0.7 , type=_lowerCamelCase , help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec)." , )
parser.add_argument("--token_counts" , type=_lowerCamelCase , help="The token counts in the data_file for MLM." )
parser.add_argument(
"--restrict_ce_to_mask" , action="store_true" , help="If true, compute the distillation loss only the [MLM] prediction distribution." , )
parser.add_argument(
"--freeze_pos_embs" , action="store_true" , help="Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only." , )
parser.add_argument(
"--freeze_token_type_embds" , action="store_true" , help="Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only." , )
parser.add_argument("--n_epoch" , type=_lowerCamelCase , default=3 , help="Number of pass on the whole dataset." )
parser.add_argument("--batch_size" , type=_lowerCamelCase , default=5 , help="Batch size (for each process)." )
parser.add_argument(
"--group_by_size" , action="store_false" , help="If true, group sequences that have similar length into the same batch. Default is true." , )
parser.add_argument(
"--gradient_accumulation_steps" , type=_lowerCamelCase , default=50 , help="Gradient accumulation for larger training batches." , )
parser.add_argument("--warmup_prop" , default=0.0_5 , type=_lowerCamelCase , help="Linear warmup proportion." )
parser.add_argument("--weight_decay" , default=0.0 , type=_lowerCamelCase , help="Weight decay if we apply some." )
parser.add_argument("--learning_rate" , default=5e-4 , type=_lowerCamelCase , help="The initial learning rate for Adam." )
parser.add_argument("--adam_epsilon" , default=1e-6 , type=_lowerCamelCase , help="Epsilon for Adam optimizer." )
parser.add_argument("--max_grad_norm" , default=5.0 , type=_lowerCamelCase , help="Max gradient norm." )
parser.add_argument("--initializer_range" , default=0.0_2 , type=_lowerCamelCase , help="Random initialization range." )
parser.add_argument(
"--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , )
parser.add_argument(
"--fp16_opt_level" , type=_lowerCamelCase , default="O1" , help=(
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html"
) , )
parser.add_argument("--n_gpu" , type=_lowerCamelCase , default=1 , help="Number of GPUs in the node." )
parser.add_argument("--local_rank" , type=_lowerCamelCase , default=-1 , help="Distributed training - Local rank" )
parser.add_argument("--seed" , type=_lowerCamelCase , default=56 , help="Random seed" )
parser.add_argument("--log_interval" , type=_lowerCamelCase , default=500 , help="Tensorboard logging interval." )
parser.add_argument("--checkpoint_interval" , type=_lowerCamelCase , default=4000 , help="Checkpoint interval." )
_lowerCamelCase : str = parser.parse_args()
sanity_checks(_lowerCamelCase )
# ARGS #
init_gpu_params(_lowerCamelCase )
set_seed(_lowerCamelCase )
if args.is_master:
if os.path.exists(args.dump_path ):
if not args.force:
raise ValueError(
F"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite"""
" itUse `--force` if you want to overwrite it" )
else:
shutil.rmtree(args.dump_path )
if not os.path.exists(args.dump_path ):
os.makedirs(args.dump_path )
logger.info(F"""Experiment will be dumped and logged in {args.dump_path}""" )
# SAVE PARAMS #
logger.info(F"""Param: {args}""" )
with open(os.path.join(args.dump_path , "parameters.json" ) , "w" ) as f:
json.dump(vars(_lowerCamelCase ) , _lowerCamelCase , indent=4 )
git_log(args.dump_path )
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = MODEL_CLASSES[args.student_type]
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = MODEL_CLASSES[args.teacher_type]
# TOKENIZER #
_lowerCamelCase : int = teacher_tokenizer_class.from_pretrained(args.teacher_name )
_lowerCamelCase : List[str] = {}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
_lowerCamelCase : Tuple = tokenizer.all_special_tokens.index(_lowerCamelCase )
_lowerCamelCase : int = tokenizer.all_special_ids[idx]
logger.info(F"""Special tokens {special_tok_ids}""" )
_lowerCamelCase : Optional[Any] = special_tok_ids
_lowerCamelCase : List[str] = tokenizer.max_model_input_sizes[args.teacher_name]
# DATA LOADER #
logger.info(F"""Loading data from {args.data_file}""" )
with open(args.data_file , "rb" ) as fp:
_lowerCamelCase : str = pickle.load(_lowerCamelCase )
if args.mlm:
logger.info(F"""Loading token counts from {args.token_counts} (already pre-computed)""" )
with open(args.token_counts , "rb" ) as fp:
_lowerCamelCase : str = pickle.load(_lowerCamelCase )
_lowerCamelCase : List[str] = np.maximum(_lowerCamelCase , 1 ) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
_lowerCamelCase : Tuple = 0.0 # do not predict special tokens
_lowerCamelCase : Any = torch.from_numpy(_lowerCamelCase )
else:
_lowerCamelCase : str = None
_lowerCamelCase : int = LmSeqsDataset(params=_lowerCamelCase , data=_lowerCamelCase )
logger.info("Data loader created." )
# STUDENT #
logger.info(F"""Loading student config from {args.student_config}""" )
_lowerCamelCase : Dict = student_config_class.from_pretrained(args.student_config )
_lowerCamelCase : Optional[int] = True
if args.student_pretrained_weights is not None:
logger.info(F"""Loading pretrained weights from {args.student_pretrained_weights}""" )
_lowerCamelCase : Union[str, Any] = student_model_class.from_pretrained(args.student_pretrained_weights , config=_lowerCamelCase )
else:
_lowerCamelCase : Any = student_model_class(_lowerCamelCase )
if args.n_gpu > 0:
student.to(F"""cuda:{args.local_rank}""" )
logger.info("Student loaded." )
# TEACHER #
_lowerCamelCase : Any = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_lowerCamelCase )
if args.n_gpu > 0:
teacher.to(F"""cuda:{args.local_rank}""" )
logger.info(F"""Teacher loaded from {args.teacher_name}.""" )
# FREEZING #
if args.freeze_pos_embs:
freeze_pos_embeddings(_lowerCamelCase , _lowerCamelCase )
if args.freeze_token_type_embds:
freeze_token_type_embeddings(_lowerCamelCase , _lowerCamelCase )
# SANITY CHECKS #
assert student.config.vocab_size == teacher.config.vocab_size
assert student.config.hidden_size == teacher.config.hidden_size
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
if args.mlm:
assert token_probs.size(0 ) == stu_architecture_config.vocab_size
# DISTILLER #
torch.cuda.empty_cache()
_lowerCamelCase : Union[str, Any] = Distiller(
params=_lowerCamelCase , dataset=_lowerCamelCase , token_probs=_lowerCamelCase , student=_lowerCamelCase , teacher=_lowerCamelCase )
distiller.train()
logger.info("Let's go get some drinks." )
if __name__ == "__main__":
main() | 340 |
"""simple docstring"""
from decimal import Decimal, getcontext
from math import ceil, factorial
def lowerCamelCase_( _lowerCamelCase ) -> str:
'''simple docstring'''
if not isinstance(_lowerCamelCase , _lowerCamelCase ):
raise TypeError("Undefined for non-integers" )
elif precision < 1:
raise ValueError("Undefined for non-natural numbers" )
_lowerCamelCase : int = precision
_lowerCamelCase : Dict = ceil(precision / 14 )
_lowerCamelCase : Optional[Any] = 426880 * Decimal(10005 ).sqrt()
_lowerCamelCase : int = 1
_lowerCamelCase : Optional[int] = 13591409
_lowerCamelCase : int = Decimal(_lowerCamelCase )
for k in range(1 , _lowerCamelCase ):
_lowerCamelCase : Union[str, Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowerCamelCase ) ** 3)
linear_term += 545140134
exponential_term *= -262537412640768000
partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term
return str(constant_term / partial_sum )[:-1]
if __name__ == "__main__":
_lowerCAmelCase : Union[str, Any] = 50
print(f'''The first {n} digits of pi is: {pi(n)}''') | 340 | 1 |
"""simple docstring"""
def lowerCamelCase_( _lowerCamelCase ) -> bool:
'''simple docstring'''
if num < 0:
return False
_lowerCamelCase : int = num
_lowerCamelCase : int = 0
while num > 0:
_lowerCamelCase : List[Any] = rev_num * 10 + (num % 10)
num //= 10
return num_copy == rev_num
if __name__ == "__main__":
import doctest
doctest.testmod() | 340 |
"""simple docstring"""
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class A_ ( _a ):
lowerCAmelCase__ = 42
lowerCAmelCase__ = None
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=0.9_9_9 , _lowerCamelCase="cosine" , ) -> List[str]:
'''simple docstring'''
if alpha_transform_type == "cosine":
def alpha_bar_fn(_lowerCamelCase ):
return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(_lowerCamelCase ):
return math.exp(t * -1_2.0 )
else:
raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" )
_lowerCamelCase : str = []
for i in range(_lowerCamelCase ):
_lowerCamelCase : Any = i / num_diffusion_timesteps
_lowerCamelCase : Optional[Any] = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(_lowerCamelCase ) / alpha_bar_fn(_lowerCamelCase ) , _lowerCamelCase ) )
return torch.tensor(_lowerCamelCase , dtype=torch.floataa )
class A_ ( _a , _a ):
@register_to_config
def __init__( self: str ,__lowerCAmelCase: int = 1_000 ,__lowerCAmelCase: str = "fixed_small_log" ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[float] = 1.0 ,__lowerCAmelCase: str = "epsilon" ,__lowerCAmelCase: str = "squaredcos_cap_v2" ,):
'''simple docstring'''
if beta_schedule != "squaredcos_cap_v2":
raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" )
_lowerCamelCase : Union[str, Any] = betas_for_alpha_bar(__lowerCAmelCase )
_lowerCamelCase : Optional[int] = 1.0 - self.betas
_lowerCamelCase : Dict = torch.cumprod(self.alphas ,dim=0 )
_lowerCamelCase : int = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
_lowerCamelCase : Tuple = 1.0
# setable values
_lowerCamelCase : List[Any] = None
_lowerCamelCase : Union[str, Any] = torch.from_numpy(np.arange(0 ,__lowerCAmelCase )[::-1].copy() )
_lowerCamelCase : List[str] = variance_type
def _lowercase ( self: Any ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ):
'''simple docstring'''
return sample
def _lowercase ( self: Optional[int] ,__lowerCAmelCase: int ,__lowerCAmelCase: Union[str, torch.device] = None ):
'''simple docstring'''
_lowerCamelCase : str = num_inference_steps
_lowerCamelCase : str = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
_lowerCamelCase : Union[str, Any] = (np.arange(0 ,__lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa )
_lowerCamelCase : int = torch.from_numpy(__lowerCAmelCase ).to(__lowerCAmelCase )
def _lowercase ( self: List[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: List[str]=None ,__lowerCAmelCase: str=None ):
'''simple docstring'''
if prev_timestep is None:
_lowerCamelCase : List[str] = t - 1
_lowerCamelCase : Optional[int] = self.alphas_cumprod[t]
_lowerCamelCase : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
_lowerCamelCase : Dict = 1 - alpha_prod_t
_lowerCamelCase : str = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
_lowerCamelCase : List[Any] = self.betas[t]
else:
_lowerCamelCase : str = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
_lowerCamelCase : int = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
_lowerCamelCase : List[str] = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
_lowerCamelCase : Dict = torch.log(torch.clamp(__lowerCAmelCase ,min=1e-20 ) )
_lowerCamelCase : str = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
_lowerCamelCase : str = variance.log()
_lowerCamelCase : str = beta.log()
_lowerCamelCase : Optional[int] = (predicted_variance + 1) / 2
_lowerCamelCase : Union[str, Any] = frac * max_log + (1 - frac) * min_log
return variance
def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: int ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: bool = True ,):
'''simple docstring'''
_lowerCamelCase : str = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
_lowerCamelCase, _lowerCamelCase : int = torch.split(__lowerCAmelCase ,sample.shape[1] ,dim=1 )
else:
_lowerCamelCase : List[Any] = None
# 1. compute alphas, betas
if prev_timestep is None:
_lowerCamelCase : List[Any] = t - 1
_lowerCamelCase : Dict = self.alphas_cumprod[t]
_lowerCamelCase : int = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
_lowerCamelCase : Dict = 1 - alpha_prod_t
_lowerCamelCase : List[str] = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
_lowerCamelCase : Any = self.betas[t]
_lowerCamelCase : str = self.alphas[t]
else:
_lowerCamelCase : Any = 1 - alpha_prod_t / alpha_prod_t_prev
_lowerCamelCase : Optional[Any] = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
_lowerCamelCase : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
_lowerCamelCase : List[Any] = model_output
else:
raise ValueError(
F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`"""
" for the UnCLIPScheduler." )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
_lowerCamelCase : Any = torch.clamp(
__lowerCAmelCase ,-self.config.clip_sample_range ,self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_lowerCamelCase : List[str] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
_lowerCamelCase : Optional[int] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_lowerCamelCase : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
_lowerCamelCase : Union[str, Any] = 0
if t > 0:
_lowerCamelCase : Dict = randn_tensor(
model_output.shape ,dtype=model_output.dtype ,generator=__lowerCAmelCase ,device=model_output.device )
_lowerCamelCase : Any = self._get_variance(
__lowerCAmelCase ,predicted_variance=__lowerCAmelCase ,prev_timestep=__lowerCAmelCase ,)
if self.variance_type == "fixed_small_log":
_lowerCamelCase : Optional[Any] = variance
elif self.variance_type == "learned_range":
_lowerCamelCase : Optional[int] = (0.5 * variance).exp()
else:
raise ValueError(
F"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`"""
" for the UnCLIPScheduler." )
_lowerCamelCase : Dict = variance * variance_noise
_lowerCamelCase : List[Any] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=__lowerCAmelCase ,pred_original_sample=__lowerCAmelCase )
def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.IntTensor ,):
'''simple docstring'''
_lowerCamelCase : int = self.alphas_cumprod.to(device=original_samples.device ,dtype=original_samples.dtype )
_lowerCamelCase : Any = timesteps.to(original_samples.device )
_lowerCamelCase : List[Any] = alphas_cumprod[timesteps] ** 0.5
_lowerCamelCase : List[Any] = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
_lowerCamelCase : int = sqrt_alpha_prod.unsqueeze(-1 )
_lowerCamelCase : Union[str, Any] = (1 - alphas_cumprod[timesteps]) ** 0.5
_lowerCamelCase : str = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
_lowerCamelCase : Union[str, Any] = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
_lowerCamelCase : Dict = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples | 340 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_lowerCAmelCase : str = {
'''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''],
'''tokenization_electra''': ['''ElectraTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Optional[Any] = ['''ElectraTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Union[str, Any] = [
'''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ElectraForCausalLM''',
'''ElectraForMaskedLM''',
'''ElectraForMultipleChoice''',
'''ElectraForPreTraining''',
'''ElectraForQuestionAnswering''',
'''ElectraForSequenceClassification''',
'''ElectraForTokenClassification''',
'''ElectraModel''',
'''ElectraPreTrainedModel''',
'''load_tf_weights_in_electra''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : str = [
'''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFElectraForMaskedLM''',
'''TFElectraForMultipleChoice''',
'''TFElectraForPreTraining''',
'''TFElectraForQuestionAnswering''',
'''TFElectraForSequenceClassification''',
'''TFElectraForTokenClassification''',
'''TFElectraModel''',
'''TFElectraPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Optional[int] = [
'''FlaxElectraForCausalLM''',
'''FlaxElectraForMaskedLM''',
'''FlaxElectraForMultipleChoice''',
'''FlaxElectraForPreTraining''',
'''FlaxElectraForQuestionAnswering''',
'''FlaxElectraForSequenceClassification''',
'''FlaxElectraForTokenClassification''',
'''FlaxElectraModel''',
'''FlaxElectraPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig
from .tokenization_electra import ElectraTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_electra_fast import ElectraTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_electra import (
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
ElectraForCausalLM,
ElectraForMaskedLM,
ElectraForMultipleChoice,
ElectraForPreTraining,
ElectraForQuestionAnswering,
ElectraForSequenceClassification,
ElectraForTokenClassification,
ElectraModel,
ElectraPreTrainedModel,
load_tf_weights_in_electra,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_electra import (
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFElectraForMaskedLM,
TFElectraForMultipleChoice,
TFElectraForPreTraining,
TFElectraForQuestionAnswering,
TFElectraForSequenceClassification,
TFElectraForTokenClassification,
TFElectraModel,
TFElectraPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_electra import (
FlaxElectraForCausalLM,
FlaxElectraForMaskedLM,
FlaxElectraForMultipleChoice,
FlaxElectraForPreTraining,
FlaxElectraForQuestionAnswering,
FlaxElectraForSequenceClassification,
FlaxElectraForTokenClassification,
FlaxElectraModel,
FlaxElectraPreTrainedModel,
)
else:
import sys
_lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 340 |
"""simple docstring"""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConformerConfig,
WavaVecaConformerForCTC,
WavaVecaConformerForPreTraining,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
_lowerCAmelCase : List[str] = logging.get_logger(__name__)
_lowerCAmelCase : Dict = {
'''post_extract_proj''': '''feature_projection.projection''',
'''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''',
'''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''',
'''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''',
'''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''',
'''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''',
'''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''',
'''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''',
'''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''',
'''self_attn.rotary_emb''': '''encoder.embed_positions''',
'''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''',
'''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''',
'''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''',
'''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''',
'''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''',
'''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''',
'''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''',
'''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''',
'''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''',
'''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''',
'''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''',
'''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''',
'''final_layer_norm''': '''encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''encoder.layer_norm''',
'''w2v_model.layer_norm''': '''feature_projection.layer_norm''',
'''quantizer.weight_proj''': '''quantizer.weight_proj''',
'''quantizer.vars''': '''quantizer.codevectors''',
'''project_q''': '''project_q''',
'''final_proj''': '''project_hid''',
'''w2v_encoder.proj''': '''lm_head''',
'''mask_emb''': '''masked_spec_embed''',
}
_lowerCAmelCase : str = [
'''lm_head''',
'''quantizer.weight_proj''',
'''quantizer.codevectors''',
'''project_q''',
'''project_hid''',
]
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
'''simple docstring'''
for attribute in key.split("." ):
_lowerCamelCase : Tuple = getattr(_lowerCamelCase , _lowerCamelCase )
if weight_type is not None:
_lowerCamelCase : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ).shape
else:
_lowerCamelCase : Dict = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}""" )
if weight_type == "weight":
_lowerCamelCase : Tuple = value
elif weight_type == "weight_g":
_lowerCamelCase : List[str] = value
elif weight_type == "weight_v":
_lowerCamelCase : List[Any] = value
elif weight_type == "bias":
_lowerCamelCase : str = value
elif weight_type == "running_mean":
_lowerCamelCase : Optional[int] = value
elif weight_type == "running_var":
_lowerCamelCase : Optional[Any] = value
elif weight_type == "num_batches_tracked":
_lowerCamelCase : int = value
elif weight_type == "inv_freq":
_lowerCamelCase : List[str] = value
else:
_lowerCamelCase : Optional[Any] = value
logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]:
'''simple docstring'''
_lowerCamelCase : Dict = []
_lowerCamelCase : Optional[Any] = fairseq_model.state_dict()
_lowerCamelCase : List[Any] = hf_model.wavaveca_conformer.feature_extractor
for name, value in fairseq_dict.items():
_lowerCamelCase : Dict = False
if "conv_layers" in name:
load_conv_layer(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , )
_lowerCamelCase : List[Any] = True
else:
for key, mapped_key in MAPPING.items():
_lowerCamelCase : Dict = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
_lowerCamelCase : int = True
if "*" in mapped_key:
_lowerCamelCase : Tuple = name.split(_lowerCamelCase )[0].split("." )[-2]
_lowerCamelCase : int = mapped_key.replace("*" , _lowerCamelCase )
if "pos_bias_u" in name:
_lowerCamelCase : int = None
elif "pos_bias_v" in name:
_lowerCamelCase : Any = None
elif "weight_g" in name:
_lowerCamelCase : Any = "weight_g"
elif "weight_v" in name:
_lowerCamelCase : Any = "weight_v"
elif "bias" in name:
_lowerCamelCase : Optional[Any] = "bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
_lowerCamelCase : Dict = "weight"
elif "running_mean" in name:
_lowerCamelCase : str = "running_mean"
elif "inv_freq" in name:
_lowerCamelCase : List[Any] = "inv_freq"
elif "running_var" in name:
_lowerCamelCase : Tuple = "running_var"
elif "num_batches_tracked" in name:
_lowerCamelCase : str = "num_batches_tracked"
else:
_lowerCamelCase : Dict = None
set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
continue
if not is_used:
unused_weights.append(_lowerCamelCase )
logger.warning(F"""Unused weights: {unused_weights}""" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : int = full_name.split("conv_layers." )[-1]
_lowerCamelCase : List[Any] = name.split("." )
_lowerCamelCase : Union[str, Any] = int(items[0] )
_lowerCamelCase : List[Any] = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
_lowerCamelCase : str = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
_lowerCamelCase : int = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
_lowerCamelCase : Dict = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
_lowerCamelCase : Optional[Any] = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(_lowerCamelCase )
@torch.no_grad()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> Dict:
'''simple docstring'''
if config_path is not None:
_lowerCamelCase : Union[str, Any] = WavaVecaConformerConfig.from_pretrained(_lowerCamelCase , hidden_act="swish" )
else:
_lowerCamelCase : Dict = WavaVecaConformerConfig()
if "rope" in checkpoint_path:
_lowerCamelCase : List[Any] = "rotary"
if is_finetuned:
if dict_path:
_lowerCamelCase : Dict = Dictionary.load(_lowerCamelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
_lowerCamelCase : Optional[int] = target_dict.pad_index
_lowerCamelCase : Dict = target_dict.bos_index
_lowerCamelCase : Optional[Any] = target_dict.eos_index
_lowerCamelCase : str = len(target_dict.symbols )
_lowerCamelCase : int = os.path.join(_lowerCamelCase , "vocab.json" )
if not os.path.isdir(_lowerCamelCase ):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCamelCase ) )
return
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
_lowerCamelCase : Tuple = target_dict.indices
# fairseq has the <pad> and <s> switched
_lowerCamelCase : List[str] = 0
_lowerCamelCase : List[Any] = 1
with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_handle:
json.dump(_lowerCamelCase , _lowerCamelCase )
_lowerCamelCase : Optional[int] = WavaVecaCTCTokenizer(
_lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCamelCase , )
_lowerCamelCase : Tuple = True if config.feat_extract_norm == "layer" else False
_lowerCamelCase : Optional[Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , )
_lowerCamelCase : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase )
processor.save_pretrained(_lowerCamelCase )
_lowerCamelCase : List[Any] = WavaVecaConformerForCTC(_lowerCamelCase )
else:
_lowerCamelCase : Any = WavaVecaConformerForPreTraining(_lowerCamelCase )
if is_finetuned:
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} )
else:
_lowerCamelCase : List[Any] = argparse.Namespace(task="audio_pretraining" )
_lowerCamelCase : Optional[Any] = fairseq.tasks.setup_task(_lowerCamelCase )
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCamelCase )
_lowerCamelCase : Dict = model[0].eval()
recursively_load_weights(_lowerCamelCase , _lowerCamelCase , not is_finetuned )
hf_wavavec.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase : Tuple = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not'''
)
_lowerCAmelCase : str = parser.parse_args()
convert_wavaveca_conformer_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
) | 340 | 1 |
"""simple docstring"""
import warnings
from typing import Dict
import numpy as np
from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
def lowerCamelCase_( _lowerCamelCase ) -> Tuple:
'''simple docstring'''
return 1.0 / (1.0 + np.exp(-_outputs ))
def lowerCamelCase_( _lowerCamelCase ) -> Any:
'''simple docstring'''
_lowerCamelCase : Dict = np.max(_outputs , axis=-1 , keepdims=_lowerCamelCase )
_lowerCamelCase : List[str] = np.exp(_outputs - maxes )
return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCamelCase )
class A_ ( _a ):
lowerCAmelCase__ = 'sigmoid'
lowerCAmelCase__ = 'softmax'
lowerCAmelCase__ = 'none'
@add_end_docstrings(
_a , r'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' , )
class A_ ( _a ):
lowerCAmelCase__ = False
lowerCAmelCase__ = ClassificationFunction.NONE
def __init__( self: Tuple ,**__lowerCAmelCase: Any ):
'''simple docstring'''
super().__init__(**__lowerCAmelCase )
self.check_model_type(
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if self.framework == "tf"
else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING )
def _lowercase ( self: Optional[int] ,__lowerCAmelCase: str=None ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Tuple="" ,**__lowerCAmelCase: Dict ):
'''simple docstring'''
_lowerCamelCase : Optional[Any] = tokenizer_kwargs
_lowerCamelCase : Optional[int] = {}
if hasattr(self.model.config ,"return_all_scores" ) and return_all_scores is None:
_lowerCamelCase : List[Any] = self.model.config.return_all_scores
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) or top_k is None:
_lowerCamelCase : Tuple = top_k
_lowerCamelCase : Any = False
elif return_all_scores is not None:
warnings.warn(
"`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of"
" `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." ,__lowerCAmelCase ,)
if return_all_scores:
_lowerCamelCase : Optional[Any] = None
else:
_lowerCamelCase : Tuple = 1
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : List[str] = ClassificationFunction[function_to_apply.upper()]
if function_to_apply is not None:
_lowerCamelCase : Optional[Any] = function_to_apply
return preprocess_params, {}, postprocess_params
def __call__( self: int ,*__lowerCAmelCase: Dict ,**__lowerCAmelCase: str ):
'''simple docstring'''
_lowerCamelCase : Dict = super().__call__(*__lowerCAmelCase ,**__lowerCAmelCase )
# TODO try and retrieve it in a nicer way from _sanitize_parameters.
_lowerCamelCase : Optional[int] = "top_k" not in kwargs
if isinstance(args[0] ,__lowerCAmelCase ) and _legacy:
# This pipeline is odd, and return a list when single item is run
return [result]
else:
return result
def _lowercase ( self: int ,__lowerCAmelCase: List[Any] ,**__lowerCAmelCase: str ):
'''simple docstring'''
_lowerCamelCase : Dict = self.framework
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
return self.tokenizer(**__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) == 1 and isinstance(inputs[0] ,__lowerCAmelCase ) and len(inputs[0] ) == 2:
# It used to be valid to use a list of list of list for text pairs, keeping this path for BC
return self.tokenizer(
text=inputs[0][0] ,text_pair=inputs[0][1] ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
# This is likely an invalid usage of the pipeline attempting to pass text pairs.
raise ValueError(
"The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a"
" dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." )
return self.tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
def _lowercase ( self: Any ,__lowerCAmelCase: Dict ):
'''simple docstring'''
return self.model(**__lowerCAmelCase )
def _lowercase ( self: Any ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Any=1 ,__lowerCAmelCase: Optional[int]=True ):
'''simple docstring'''
if function_to_apply is None:
if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1:
_lowerCamelCase : Dict = ClassificationFunction.SIGMOID
elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1:
_lowerCamelCase : Union[str, Any] = ClassificationFunction.SOFTMAX
elif hasattr(self.model.config ,"function_to_apply" ) and function_to_apply is None:
_lowerCamelCase : List[Any] = self.model.config.function_to_apply
else:
_lowerCamelCase : List[str] = ClassificationFunction.NONE
_lowerCamelCase : Optional[Any] = model_outputs["logits"][0]
_lowerCamelCase : Tuple = outputs.numpy()
if function_to_apply == ClassificationFunction.SIGMOID:
_lowerCamelCase : Optional[int] = sigmoid(__lowerCAmelCase )
elif function_to_apply == ClassificationFunction.SOFTMAX:
_lowerCamelCase : List[Any] = softmax(__lowerCAmelCase )
elif function_to_apply == ClassificationFunction.NONE:
_lowerCamelCase : List[Any] = outputs
else:
raise ValueError(F"""Unrecognized `function_to_apply` argument: {function_to_apply}""" )
if top_k == 1 and _legacy:
return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()}
_lowerCamelCase : Optional[int] = [
{"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(__lowerCAmelCase )
]
if not _legacy:
dict_scores.sort(key=lambda __lowerCAmelCase : x["score"] ,reverse=__lowerCAmelCase )
if top_k is not None:
_lowerCamelCase : Optional[int] = dict_scores[:top_k]
return dict_scores | 340 |
"""simple docstring"""
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float:
'''simple docstring'''
_validate_point(_lowerCamelCase )
_validate_point(_lowerCamelCase )
if len(_lowerCamelCase ) != len(_lowerCamelCase ):
raise ValueError("Both points must be in the same n-dimensional space" )
return float(sum(abs(a - b ) for a, b in zip(_lowerCamelCase , _lowerCamelCase ) ) )
def lowerCamelCase_( _lowerCamelCase ) -> None:
'''simple docstring'''
if point:
if isinstance(_lowerCamelCase , _lowerCamelCase ):
for item in point:
if not isinstance(_lowerCamelCase , (int, float) ):
_lowerCamelCase : Dict = (
"Expected a list of numbers as input, found "
F"""{type(_lowerCamelCase ).__name__}"""
)
raise TypeError(_lowerCamelCase )
else:
_lowerCamelCase : Optional[int] = F"""Expected a list of numbers as input, found {type(_lowerCamelCase ).__name__}"""
raise TypeError(_lowerCamelCase )
else:
raise ValueError("Missing an input" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float:
'''simple docstring'''
_validate_point(_lowerCamelCase )
_validate_point(_lowerCamelCase )
if len(_lowerCamelCase ) != len(_lowerCamelCase ):
raise ValueError("Both points must be in the same n-dimensional space" )
return float(sum(abs(x - y ) for x, y in zip(_lowerCamelCase , _lowerCamelCase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 340 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowerCAmelCase : Optional[Any] = {
'''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''],
'''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''],
'''processing_mctct''': ['''MCTCTProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Dict = [
'''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MCTCTForCTC''',
'''MCTCTModel''',
'''MCTCTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
_lowerCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 340 |
"""simple docstring"""
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Optional[Any] = np.inf
def set_batch_size(_lowerCamelCase ) -> None:
nonlocal batch_size
if isinstance(_lowerCamelCase , _lowerCamelCase ):
_lowerCamelCase : Optional[int] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(_lowerCamelCase , _lowerCamelCase ):
_lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(_lowerCamelCase , _lowerCamelCase ) and feature.dtype == "binary":
_lowerCamelCase : List[str] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(_lowerCamelCase , _lowerCamelCase )
return None if batch_size is np.inf else batch_size
class A_ ( _a ):
def __init__( self: Optional[int] ,__lowerCAmelCase: NestedDataStructureLike[PathLike] ,__lowerCAmelCase: Optional[NamedSplit] = None ,__lowerCAmelCase: Optional[Features] = None ,__lowerCAmelCase: str = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: int ,):
'''simple docstring'''
super().__init__(
__lowerCAmelCase ,split=__lowerCAmelCase ,features=__lowerCAmelCase ,cache_dir=__lowerCAmelCase ,keep_in_memory=__lowerCAmelCase ,streaming=__lowerCAmelCase ,num_proc=__lowerCAmelCase ,**__lowerCAmelCase ,)
_lowerCamelCase : Tuple = path_or_paths if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) else {self.split: path_or_paths}
_lowerCamelCase : Any = _PACKAGED_DATASETS_MODULES["parquet"][1]
_lowerCamelCase : int = Parquet(
cache_dir=__lowerCAmelCase ,data_files=__lowerCAmelCase ,features=__lowerCAmelCase ,hash=__lowerCAmelCase ,**__lowerCAmelCase ,)
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
if self.streaming:
_lowerCamelCase : List[Any] = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
_lowerCamelCase : Tuple = None
_lowerCamelCase : Optional[int] = None
_lowerCamelCase : List[str] = None
_lowerCamelCase : str = None
self.builder.download_and_prepare(
download_config=__lowerCAmelCase ,download_mode=__lowerCAmelCase ,verification_mode=__lowerCAmelCase ,base_path=__lowerCAmelCase ,num_proc=self.num_proc ,)
_lowerCamelCase : Any = self.builder.as_dataset(
split=self.split ,verification_mode=__lowerCAmelCase ,in_memory=self.keep_in_memory )
return dataset
class A_ :
def __init__( self: str ,__lowerCAmelCase: Dataset ,__lowerCAmelCase: Union[PathLike, BinaryIO] ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: List[Any] ,):
'''simple docstring'''
_lowerCamelCase : Any = dataset
_lowerCamelCase : Any = path_or_buf
_lowerCamelCase : Any = batch_size or get_writer_batch_size(dataset.features )
_lowerCamelCase : List[str] = parquet_writer_kwargs
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase : Tuple = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf ,(str, bytes, os.PathLike) ):
with open(self.path_or_buf ,"wb+" ) as buffer:
_lowerCamelCase : str = self._write(file_obj=__lowerCAmelCase ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs )
else:
_lowerCamelCase : Optional[int] = self._write(file_obj=self.path_or_buf ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs )
return written
def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: BinaryIO ,__lowerCAmelCase: int ,**__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : List[str] = 0
_lowerCamelCase : Optional[int] = parquet_writer_kwargs.pop("path_or_buf" ,__lowerCAmelCase )
_lowerCamelCase : List[str] = self.dataset.features.arrow_schema
_lowerCamelCase : str = pq.ParquetWriter(__lowerCAmelCase ,schema=__lowerCAmelCase ,**__lowerCAmelCase )
for offset in logging.tqdm(
range(0 ,len(self.dataset ) ,__lowerCAmelCase ) ,unit="ba" ,disable=not logging.is_progress_bar_enabled() ,desc="Creating parquet from Arrow format" ,):
_lowerCamelCase : List[str] = query_table(
table=self.dataset._data ,key=slice(__lowerCAmelCase ,offset + batch_size ) ,indices=self.dataset._indices if self.dataset._indices is not None else None ,)
writer.write_table(__lowerCAmelCase )
written += batch.nbytes
writer.close()
return written | 340 | 1 |
"""simple docstring"""
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class A_ ( _a ):
lowerCAmelCase__ = 'char'
lowerCAmelCase__ = 'bpe'
lowerCAmelCase__ = 'wp'
_lowerCAmelCase : List[str] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class A_ ( _a ):
lowerCAmelCase__ = ['image_processor', 'char_tokenizer']
lowerCAmelCase__ = 'ViTImageProcessor'
lowerCAmelCase__ = 'MgpstrTokenizer'
def __init__( self: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: Optional[int]=None ,**__lowerCAmelCase: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : Any = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." ,__lowerCAmelCase ,)
_lowerCamelCase : List[Any] = kwargs.pop("feature_extractor" )
_lowerCamelCase : str = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
_lowerCamelCase : List[str] = tokenizer
_lowerCamelCase : str = AutoTokenizer.from_pretrained("gpt2" )
_lowerCamelCase : List[str] = AutoTokenizer.from_pretrained("bert-base-uncased" )
super().__init__(__lowerCAmelCase ,__lowerCAmelCase )
def __call__( self: Optional[int] ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: Optional[Any]=None ,**__lowerCAmelCase: Tuple ):
'''simple docstring'''
if images is None and text is None:
raise ValueError("You need to specify either an `images` or `text` input to process." )
if images is not None:
_lowerCamelCase : Optional[int] = self.image_processor(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
if text is not None:
_lowerCamelCase : int = self.char_tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
_lowerCamelCase : Tuple = encodings["input_ids"]
return inputs
def _lowercase ( self: int ,__lowerCAmelCase: Dict ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = sequences
_lowerCamelCase : Dict = char_preds.size(0 )
_lowerCamelCase, _lowerCamelCase : Optional[Any] = self._decode_helper(__lowerCAmelCase ,"char" )
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = self._decode_helper(__lowerCAmelCase ,"bpe" )
_lowerCamelCase, _lowerCamelCase : Tuple = self._decode_helper(__lowerCAmelCase ,"wp" )
_lowerCamelCase : List[str] = []
_lowerCamelCase : str = []
for i in range(__lowerCAmelCase ):
_lowerCamelCase : str = [char_scores[i], bpe_scores[i], wp_scores[i]]
_lowerCamelCase : List[Any] = [char_strs[i], bpe_strs[i], wp_strs[i]]
_lowerCamelCase : Optional[Any] = scores.index(max(__lowerCAmelCase ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
_lowerCamelCase : Tuple = {}
_lowerCamelCase : Tuple = final_strs
_lowerCamelCase : int = final_scores
_lowerCamelCase : str = char_strs
_lowerCamelCase : Dict = bpe_strs
_lowerCamelCase : int = wp_strs
return out
def _lowercase ( self: List[str] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: List[Any] ):
'''simple docstring'''
if format == DecodeType.CHARACTER:
_lowerCamelCase : int = self.char_decode
_lowerCamelCase : List[str] = 1
_lowerCamelCase : Optional[int] = "[s]"
elif format == DecodeType.BPE:
_lowerCamelCase : Dict = self.bpe_decode
_lowerCamelCase : str = 2
_lowerCamelCase : Union[str, Any] = "#"
elif format == DecodeType.WORDPIECE:
_lowerCamelCase : int = self.wp_decode
_lowerCamelCase : List[str] = 102
_lowerCamelCase : List[Any] = "[SEP]"
else:
raise ValueError(F"""Format {format} is not supported.""" )
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = [], []
_lowerCamelCase : Any = pred_logits.size(0 )
_lowerCamelCase : int = pred_logits.size(1 )
_lowerCamelCase, _lowerCamelCase : List[Any] = pred_logits.topk(1 ,dim=-1 ,largest=__lowerCAmelCase ,sorted=__lowerCAmelCase )
_lowerCamelCase : Optional[int] = preds_index.view(-1 ,__lowerCAmelCase )[:, 1:]
_lowerCamelCase : List[str] = decoder(__lowerCAmelCase )
_lowerCamelCase, _lowerCamelCase : str = torch.nn.functional.softmax(__lowerCAmelCase ,dim=2 ).max(dim=2 )
_lowerCamelCase : Any = preds_max_prob[:, 1:]
for index in range(__lowerCAmelCase ):
_lowerCamelCase : List[Any] = preds_str[index].find(__lowerCAmelCase )
_lowerCamelCase : Optional[int] = preds_str[index][:pred_eos]
_lowerCamelCase : Optional[Any] = preds_index[index].cpu().tolist()
_lowerCamelCase : List[str] = pred_index.index(__lowerCAmelCase ) if eos_token in pred_index else -1
_lowerCamelCase : str = preds_max_prob[index][: pred_eos_index + 1]
_lowerCamelCase : Union[str, Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(__lowerCAmelCase )
conf_scores.append(__lowerCAmelCase )
return dec_strs, conf_scores
def _lowercase ( self: Tuple ,__lowerCAmelCase: Tuple ):
'''simple docstring'''
_lowerCamelCase : str = [seq.replace(" " ,"" ) for seq in self.char_tokenizer.batch_decode(__lowerCAmelCase )]
return decode_strs
def _lowercase ( self: List[str] ,__lowerCAmelCase: List[str] ):
'''simple docstring'''
return self.bpe_tokenizer.batch_decode(__lowerCAmelCase )
def _lowercase ( self: Tuple ,__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = [seq.replace(" " ,"" ) for seq in self.wp_tokenizer.batch_decode(__lowerCAmelCase )]
return decode_strs | 340 |
"""simple docstring"""
import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def lowerCamelCase_( _lowerCamelCase ) -> Tuple:
'''simple docstring'''
_lowerCamelCase : Optional[int] = {}
_lowerCamelCase : Optional[int] = tokenizer(example["content"] , truncation=_lowerCamelCase )["input_ids"]
_lowerCamelCase : Dict = len(example["content"] ) / len(output["input_ids"] )
return output
_lowerCAmelCase : Tuple = HfArgumentParser(PretokenizationArguments)
_lowerCAmelCase : Optional[int] = parser.parse_args()
if args.num_workers is None:
_lowerCAmelCase : Any = multiprocessing.cpu_count()
_lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(args.tokenizer_dir)
_lowerCAmelCase : Union[str, Any] = time.time()
_lowerCAmelCase : Optional[int] = load_dataset(args.dataset_name, split='''train''')
print(f'''Dataset loaded in {time.time()-t_start:.2f}s''')
_lowerCAmelCase : Any = time.time()
_lowerCAmelCase : Dict = ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
'''repo_name''',
'''path''',
'''copies''',
'''size''',
'''content''',
'''license''',
'''hash''',
'''line_mean''',
'''line_max''',
'''alpha_frac''',
'''autogenerated''',
],
)
print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''')
_lowerCAmelCase : str = time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''') | 340 | 1 |
"""simple docstring"""
# Lint as: python3
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
_lowerCAmelCase : Tuple = re.compile(R'''^(?P<major>\d+)''' R'''\.(?P<minor>\d+)''' R'''\.(?P<patch>\d+)$''')
@total_ordering
@dataclass
class A_ :
lowerCAmelCase__ = 42
lowerCAmelCase__ = None
lowerCAmelCase__ = None
lowerCAmelCase__ = None
lowerCAmelCase__ = None
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = _str_to_version_tuple(self.version_str )
def __repr__( self: List[str] ):
'''simple docstring'''
return F"""{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}"""
@property
def _lowercase ( self: Dict ):
'''simple docstring'''
return self.major, self.minor, self.patch
def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
return Version(__lowerCAmelCase )
elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
return other
raise TypeError(F"""{other} (type {type(__lowerCAmelCase )}) cannot be compared to version.""" )
def __eq__( self: int ,__lowerCAmelCase: str ):
'''simple docstring'''
try:
_lowerCamelCase : int = self._validate_operand(__lowerCAmelCase )
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__( self: List[Any] ,__lowerCAmelCase: Tuple ):
'''simple docstring'''
_lowerCamelCase : int = self._validate_operand(__lowerCAmelCase )
return self.tuple < other.tuple
def __hash__( self: Optional[int] ):
'''simple docstring'''
return hash(_version_tuple_to_str(self.tuple ) )
@classmethod
def _lowercase ( cls: Optional[Any] ,__lowerCAmelCase: Dict ):
'''simple docstring'''
_lowerCamelCase : Any = {f.name for f in dataclasses.fields(cls )}
return cls(**{k: v for k, v in dic.items() if k in field_names} )
def _lowercase ( self: int ):
'''simple docstring'''
return self.version_str
def lowerCamelCase_( _lowerCamelCase ) -> List[str]:
'''simple docstring'''
_lowerCamelCase : List[str] = _VERSION_REG.match(_lowerCamelCase )
if not res:
raise ValueError(F"""Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits.""" )
return tuple(int(_lowerCamelCase ) for v in [res.group("major" ), res.group("minor" ), res.group("patch" )] )
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
return ".".join(str(_lowerCamelCase ) for v in version_tuple ) | 340 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowerCAmelCase : Optional[Any] = {
'''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''],
'''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''],
'''processing_mctct''': ['''MCTCTProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Dict = [
'''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MCTCTForCTC''',
'''MCTCTModel''',
'''MCTCTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
_lowerCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 340 | 1 |
"""simple docstring"""
import math
from datetime import datetime, timedelta
def lowerCamelCase_( _lowerCamelCase ) -> datetime:
'''simple docstring'''
_lowerCamelCase : List[Any] = year % 19
_lowerCamelCase : Any = year % 4
_lowerCamelCase : Tuple = year % 7
_lowerCamelCase : int = math.floor(year / 100 )
_lowerCamelCase : str = math.floor((13 + 8 * leap_day_inhibits) / 25 )
_lowerCamelCase : str = leap_day_inhibits / 4
_lowerCamelCase : str = (
15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number
) % 30
_lowerCamelCase : Any = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7
# days to be added to March 21
_lowerCamelCase : Any = (19 * metonic_cycle + secular_moon_shift) % 30
# PHM -> Paschal Full Moon
_lowerCamelCase : Dict = (
2 * julian_leap_year
+ 4 * non_leap_year
+ 6 * days_to_add
+ century_starting_point
) % 7
if days_to_add == 29 and days_from_phm_to_sunday == 6:
return datetime(_lowerCamelCase , 4 , 19 )
elif days_to_add == 28 and days_from_phm_to_sunday == 6:
return datetime(_lowerCamelCase , 4 , 18 )
else:
return datetime(_lowerCamelCase , 3 , 22 ) + timedelta(
days=int(days_to_add + days_from_phm_to_sunday ) )
if __name__ == "__main__":
for year in (1994, 2000, 2010, 2021, 2023):
_lowerCAmelCase : Union[str, Any] = '''will be''' if year > datetime.now().year else '''was'''
print(f'''Easter in {year} {tense} {gauss_easter(year)}''') | 340 |
"""simple docstring"""
import logging
from transformers.configuration_utils import PretrainedConfig
_lowerCAmelCase : Optional[Any] = logging.getLogger(__name__)
class A_ ( _a ):
lowerCAmelCase__ = 'masked_bert'
def __init__( self: Union[str, Any] ,__lowerCAmelCase: Dict=30_522 ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Dict=12 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: List[Any]="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Tuple=512 ,__lowerCAmelCase: str=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Union[str, Any]=1e-12 ,__lowerCAmelCase: Union[str, Any]=0 ,__lowerCAmelCase: List[Any]="topK" ,__lowerCAmelCase: Optional[Any]="constant" ,__lowerCAmelCase: Optional[Any]=0.0 ,**__lowerCAmelCase: str ,):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCAmelCase ,**__lowerCAmelCase )
_lowerCamelCase : List[Any] = vocab_size
_lowerCamelCase : Optional[Any] = hidden_size
_lowerCamelCase : Tuple = num_hidden_layers
_lowerCamelCase : Tuple = num_attention_heads
_lowerCamelCase : Optional[Any] = hidden_act
_lowerCamelCase : Optional[Any] = intermediate_size
_lowerCamelCase : str = hidden_dropout_prob
_lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob
_lowerCamelCase : str = max_position_embeddings
_lowerCamelCase : List[str] = type_vocab_size
_lowerCamelCase : Optional[int] = initializer_range
_lowerCamelCase : List[Any] = layer_norm_eps
_lowerCamelCase : int = pruning_method
_lowerCamelCase : str = mask_init
_lowerCamelCase : List[Any] = mask_scale | 340 | 1 |
"""simple docstring"""
from __future__ import annotations
_lowerCAmelCase : List[Any] = 10
def lowerCamelCase_( _lowerCamelCase ) -> list[int]:
'''simple docstring'''
_lowerCamelCase : Tuple = 1
_lowerCamelCase : int = max(_lowerCamelCase )
while placement <= max_digit:
# declare and initialize empty buckets
_lowerCamelCase : list[list] = [[] for _ in range(_lowerCamelCase )]
# split list_of_ints between the buckets
for i in list_of_ints:
_lowerCamelCase : Union[str, Any] = int((i / placement) % RADIX )
buckets[tmp].append(_lowerCamelCase )
# put each buckets' contents into list_of_ints
_lowerCamelCase : Optional[Any] = 0
for b in range(_lowerCamelCase ):
for i in buckets[b]:
_lowerCamelCase : List[Any] = i
a += 1
# move to next
placement *= RADIX
return list_of_ints
if __name__ == "__main__":
import doctest
doctest.testmod() | 340 |
"""simple docstring"""
import random
import unittest
import numpy as np
import transformers
from transformers import is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax
if is_flax_available():
import os
import jax.numpy as jnp
from jax import jit
from transformers import AutoTokenizer, FlaxAutoModelForCausalLM
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
_lowerCAmelCase : str = '''0.12''' # assumed parallelism: 8
if is_torch_available():
import torch
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) -> List[Any]:
'''simple docstring'''
if rng is None:
_lowerCamelCase : Union[str, Any] = random.Random()
_lowerCamelCase : Union[str, Any] = 1
for dim in shape:
total_dims *= dim
_lowerCamelCase : Optional[int] = []
for _ in range(_lowerCamelCase ):
values.append(rng.randint(0 , vocab_size - 1 ) )
_lowerCamelCase : Union[str, Any] = np.array(_lowerCamelCase , dtype=jnp.intaa ).reshape(_lowerCamelCase )
return output
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]:
'''simple docstring'''
_lowerCamelCase : Optional[int] = ids_tensor(_lowerCamelCase , vocab_size=2 , rng=_lowerCamelCase )
# make sure that at least one token is attended to for each batch
_lowerCamelCase : List[str] = 1
return attn_mask
@require_flax
class A_ :
lowerCAmelCase__ = None
lowerCAmelCase__ = ()
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
# cut to half length & take max batch_size 3
_lowerCamelCase : List[str] = 2
_lowerCamelCase : str = inputs["input_ids"].shape[-1] // 2
_lowerCamelCase : Tuple = inputs["input_ids"][:max_batch_size, :sequence_length]
_lowerCamelCase : Any = jnp.ones_like(__lowerCAmelCase )
_lowerCamelCase : List[Any] = attention_mask[:max_batch_size, :sequence_length]
# generate max 5 tokens
_lowerCamelCase : Optional[Any] = input_ids.shape[-1] + 5
if config.eos_token_id is not None and config.pad_token_id is None:
# hack to allow generate for models such as GPT2 as is done in `generate()`
_lowerCamelCase : List[str] = config.eos_token_id
return config, input_ids, attention_mask, max_length
@is_pt_flax_cross_test
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = self._get_input_ids_and_config()
_lowerCamelCase : List[Any] = False
_lowerCamelCase : Dict = max_length
_lowerCamelCase : Tuple = 0
for model_class in self.all_generative_model_classes:
_lowerCamelCase : str = model_class(__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning
_lowerCamelCase : Any = getattr(__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : Dict = pt_model_class(__lowerCAmelCase ).eval()
_lowerCamelCase : Optional[Any] = load_flax_weights_in_pytorch_model(__lowerCAmelCase ,flax_model.params )
_lowerCamelCase : int = flax_model.generate(__lowerCAmelCase ).sequences
_lowerCamelCase : Optional[int] = pt_model.generate(torch.tensor(__lowerCAmelCase ,dtype=torch.long ) )
if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]:
_lowerCamelCase : List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]]
self.assertListEqual(pt_generation_outputs.numpy().tolist() ,flax_generation_outputs.tolist() )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = self._get_input_ids_and_config()
_lowerCamelCase : Union[str, Any] = False
_lowerCamelCase : Union[str, Any] = max_length
for model_class in self.all_generative_model_classes:
_lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase )
_lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Dict = jit(model.generate )
_lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config()
_lowerCamelCase : List[Any] = True
_lowerCamelCase : Optional[int] = max_length
for model_class in self.all_generative_model_classes:
_lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase )
_lowerCamelCase : List[Any] = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Dict = jit(model.generate )
_lowerCamelCase : int = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config()
_lowerCamelCase : int = False
_lowerCamelCase : Optional[Any] = max_length
_lowerCamelCase : Dict = 2
for model_class in self.all_generative_model_classes:
_lowerCamelCase : List[str] = model_class(__lowerCAmelCase )
_lowerCamelCase : Dict = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Tuple = jit(model.generate )
_lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = self._get_input_ids_and_config()
_lowerCamelCase : Tuple = False
_lowerCamelCase : Union[str, Any] = max_length
_lowerCamelCase : List[str] = 2
_lowerCamelCase : Optional[int] = 2
for model_class in self.all_generative_model_classes:
_lowerCamelCase : List[Any] = model_class(__lowerCAmelCase )
_lowerCamelCase : str = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[0] ,input_ids.shape[0] * config.num_return_sequences )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config()
_lowerCamelCase : int = True
_lowerCamelCase : List[Any] = max_length
_lowerCamelCase : Optional[Any] = 0.8
_lowerCamelCase : Union[str, Any] = 10
_lowerCamelCase : List[str] = 0.3
_lowerCamelCase : Tuple = 1
_lowerCamelCase : Any = 8
_lowerCamelCase : str = 9
for model_class in self.all_generative_model_classes:
_lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase )
_lowerCamelCase : Any = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : int = jit(model.generate )
_lowerCamelCase : Optional[int] = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = self._get_input_ids_and_config()
_lowerCamelCase : List[str] = max_length
_lowerCamelCase : Tuple = 1
_lowerCamelCase : Any = 8
_lowerCamelCase : Dict = 9
for model_class in self.all_generative_model_classes:
_lowerCamelCase : Any = model_class(__lowerCAmelCase )
_lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Any = jit(model.generate )
_lowerCamelCase : Any = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: List[str] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config()
_lowerCamelCase : Dict = max_length
_lowerCamelCase : List[Any] = 2
_lowerCamelCase : Tuple = 1
_lowerCamelCase : List[str] = 8
_lowerCamelCase : List[Any] = 9
for model_class in self.all_generative_model_classes:
_lowerCamelCase : int = model_class(__lowerCAmelCase )
_lowerCamelCase : Optional[int] = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Tuple = jit(model.generate )
_lowerCamelCase : Optional[Any] = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config()
# pad attention mask on the left
_lowerCamelCase : Tuple = attention_mask.at[(0, 0)].set(0 )
_lowerCamelCase : Dict = False
_lowerCamelCase : Any = max_length
for model_class in self.all_generative_model_classes:
_lowerCamelCase : List[Any] = model_class(__lowerCAmelCase )
_lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Any = jit(model.generate )
_lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = self._get_input_ids_and_config()
# pad attention mask on the left
_lowerCamelCase : Optional[Any] = attention_mask.at[(0, 0)].set(0 )
_lowerCamelCase : List[str] = True
_lowerCamelCase : Optional[Any] = max_length
for model_class in self.all_generative_model_classes:
_lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Any = jit(model.generate )
_lowerCamelCase : List[Any] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config()
# pad attention mask on the left
_lowerCamelCase : List[str] = attention_mask.at[(0, 0)].set(0 )
_lowerCamelCase : int = 2
_lowerCamelCase : int = max_length
for model_class in self.all_generative_model_classes:
_lowerCamelCase : List[Any] = model_class(__lowerCAmelCase )
_lowerCamelCase : int = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Dict = jit(model.generate )
_lowerCamelCase : Dict = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
@require_flax
class A_ ( unittest.TestCase ):
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" )
_lowerCamelCase : Union[str, Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" )
_lowerCamelCase : Optional[Any] = "Hello world"
_lowerCamelCase : str = tokenizer(__lowerCAmelCase ,return_tensors="np" ).input_ids
# typos are quickly detected (the correct argument is `do_sample`)
with self.assertRaisesRegex(__lowerCAmelCase ,"do_samples" ):
model.generate(__lowerCAmelCase ,do_samples=__lowerCAmelCase )
# arbitrary arguments that will not be used anywhere are also not accepted
with self.assertRaisesRegex(__lowerCAmelCase ,"foo" ):
_lowerCamelCase : List[str] = {"foo": "bar"}
model.generate(__lowerCAmelCase ,**__lowerCAmelCase ) | 340 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_lowerCAmelCase : str = {
'''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''],
'''tokenization_convbert''': ['''ConvBertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : str = ['''ConvBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Any = [
'''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ConvBertForMaskedLM''',
'''ConvBertForMultipleChoice''',
'''ConvBertForQuestionAnswering''',
'''ConvBertForSequenceClassification''',
'''ConvBertForTokenClassification''',
'''ConvBertLayer''',
'''ConvBertModel''',
'''ConvBertPreTrainedModel''',
'''load_tf_weights_in_convbert''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : List[Any] = [
'''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFConvBertForMaskedLM''',
'''TFConvBertForMultipleChoice''',
'''TFConvBertForQuestionAnswering''',
'''TFConvBertForSequenceClassification''',
'''TFConvBertForTokenClassification''',
'''TFConvBertLayer''',
'''TFConvBertModel''',
'''TFConvBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig
from .tokenization_convbert import ConvBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_convbert_fast import ConvBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convbert import (
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertLayer,
ConvBertModel,
ConvBertPreTrainedModel,
load_tf_weights_in_convbert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convbert import (
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertLayer,
TFConvBertModel,
TFConvBertPreTrainedModel,
)
else:
import sys
_lowerCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 340 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowerCAmelCase : List[str] = logging.get_logger(__name__)
_lowerCAmelCase : int = {
'''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''',
'''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''',
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
}
class A_ ( _a ):
lowerCAmelCase__ = 'mobilenet_v1'
def __init__( self: Tuple ,__lowerCAmelCase: int=3 ,__lowerCAmelCase: Dict=224 ,__lowerCAmelCase: int=1.0 ,__lowerCAmelCase: Tuple=8 ,__lowerCAmelCase: List[str]="relu6" ,__lowerCAmelCase: int=True ,__lowerCAmelCase: List[Any]=0.9_99 ,__lowerCAmelCase: Optional[int]=0.02 ,__lowerCAmelCase: Optional[int]=0.0_01 ,**__lowerCAmelCase: str ,):
'''simple docstring'''
super().__init__(**__lowerCAmelCase )
if depth_multiplier <= 0:
raise ValueError("depth_multiplier must be greater than zero." )
_lowerCamelCase : List[str] = num_channels
_lowerCamelCase : Union[str, Any] = image_size
_lowerCamelCase : List[Any] = depth_multiplier
_lowerCamelCase : Any = min_depth
_lowerCamelCase : Tuple = hidden_act
_lowerCamelCase : Dict = tf_padding
_lowerCamelCase : Union[str, Any] = classifier_dropout_prob
_lowerCamelCase : Tuple = initializer_range
_lowerCamelCase : List[Any] = layer_norm_eps
class A_ ( _a ):
lowerCAmelCase__ = version.parse('1.11' )
@property
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
return OrderedDict([("pixel_values", {0: "batch"})] )
@property
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
if self.task == "image-classification":
return OrderedDict([("logits", {0: "batch"})] )
else:
return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] )
@property
def _lowercase ( self: Any ):
'''simple docstring'''
return 1e-4 | 340 | 1 |
"""simple docstring"""
import flax.linen as nn
import jax
import jax.numpy as jnp
class A_ ( nn.Module ):
lowerCAmelCase__ = 42
lowerCAmelCase__ = jnp.floataa
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = nn.Conv(
self.out_channels ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
def __call__( self: str ,__lowerCAmelCase: List[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = hidden_states.shape
_lowerCamelCase : str = jax.image.resize(
__lowerCAmelCase ,shape=(batch, height * 2, width * 2, channels) ,method="nearest" ,)
_lowerCamelCase : Optional[int] = self.conv(__lowerCAmelCase )
return hidden_states
class A_ ( nn.Module ):
lowerCAmelCase__ = 42
lowerCAmelCase__ = jnp.floataa
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : int = nn.Conv(
self.out_channels ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
def __call__( self: Union[str, Any] ,__lowerCAmelCase: Any ):
'''simple docstring'''
_lowerCamelCase : List[str] = self.conv(__lowerCAmelCase )
return hidden_states
class A_ ( nn.Module ):
lowerCAmelCase__ = 42
lowerCAmelCase__ = None
lowerCAmelCase__ = 0.0
lowerCAmelCase__ = None
lowerCAmelCase__ = jnp.floataa
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : List[Any] = self.in_channels if self.out_channels is None else self.out_channels
_lowerCamelCase : str = nn.GroupNorm(num_groups=32 ,epsilon=1e-5 )
_lowerCamelCase : int = nn.Conv(
__lowerCAmelCase ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
_lowerCamelCase : List[str] = nn.Dense(__lowerCAmelCase ,dtype=self.dtype )
_lowerCamelCase : Union[str, Any] = nn.GroupNorm(num_groups=32 ,epsilon=1e-5 )
_lowerCamelCase : str = nn.Dropout(self.dropout_prob )
_lowerCamelCase : List[str] = nn.Conv(
__lowerCAmelCase ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
_lowerCamelCase : List[str] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
_lowerCamelCase : Any = None
if use_nin_shortcut:
_lowerCamelCase : List[str] = nn.Conv(
__lowerCAmelCase ,kernel_size=(1, 1) ,strides=(1, 1) ,padding="VALID" ,dtype=self.dtype ,)
def __call__( self: int ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Optional[int]=True ):
'''simple docstring'''
_lowerCamelCase : Optional[Any] = hidden_states
_lowerCamelCase : Optional[Any] = self.norma(__lowerCAmelCase )
_lowerCamelCase : Any = nn.swish(__lowerCAmelCase )
_lowerCamelCase : List[Any] = self.conva(__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = self.time_emb_proj(nn.swish(__lowerCAmelCase ) )
_lowerCamelCase : Any = jnp.expand_dims(jnp.expand_dims(__lowerCAmelCase ,1 ) ,1 )
_lowerCamelCase : Tuple = hidden_states + temb
_lowerCamelCase : Union[str, Any] = self.norma(__lowerCAmelCase )
_lowerCamelCase : Dict = nn.swish(__lowerCAmelCase )
_lowerCamelCase : List[Any] = self.dropout(__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : List[Any] = self.conva(__lowerCAmelCase )
if self.conv_shortcut is not None:
_lowerCamelCase : Union[str, Any] = self.conv_shortcut(__lowerCAmelCase )
return hidden_states + residual | 340 |
"""simple docstring"""
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def lowerCamelCase_( _lowerCamelCase ) -> Any:
'''simple docstring'''
for param in module.parameters():
_lowerCamelCase : Optional[int] = False
def lowerCamelCase_( ) -> List[str]:
'''simple docstring'''
_lowerCamelCase : Optional[Any] = "cuda" if torch.cuda.is_available() else "cpu"
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
_lowerCamelCase : int = "mps"
if device == "mps":
print(
"WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"
" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"
" with generations." )
return device
def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Dict = plt.imshow(_lowerCamelCase )
fig.axes.get_xaxis().set_visible(_lowerCamelCase )
fig.axes.get_yaxis().set_visible(_lowerCamelCase )
plt.show()
def lowerCamelCase_( ) -> str:
'''simple docstring'''
_lowerCamelCase : Tuple = datetime.now()
_lowerCamelCase : Tuple = current_time.strftime("%H:%M:%S" )
return timestamp | 340 | 1 |
"""simple docstring"""
_lowerCAmelCase : dict[tuple[int, int, int], int] = {}
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
_lowerCamelCase : Optional[int] = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
_lowerCamelCase : int = _calculate(days - 1 , _lowerCamelCase , late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
_lowerCamelCase : Tuple = _calculate(days - 1 , absent + 1 , 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
_lowerCamelCase : str = _calculate(days - 1 , _lowerCamelCase , 0 )
_lowerCamelCase : List[Any] = state_late + state_absent + state_ontime
_lowerCamelCase : int = prizestrings
return prizestrings
def lowerCamelCase_( _lowerCamelCase = 30 ) -> int:
'''simple docstring'''
return _calculate(_lowerCamelCase , absent=0 , late=0 )
if __name__ == "__main__":
print(solution()) | 340 |
"""simple docstring"""
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str:
'''simple docstring'''
_lowerCamelCase : int = len(_lowerCamelCase )
_lowerCamelCase : int = len(_lowerCamelCase )
_lowerCamelCase : int = (
first_str_length if first_str_length > second_str_length else second_str_length
)
_lowerCamelCase : list = []
for char_count in range(_lowerCamelCase ):
if char_count < first_str_length:
output_list.append(first_str[char_count] )
if char_count < second_str_length:
output_list.append(second_str[char_count] )
return "".join(_lowerCamelCase )
if __name__ == "__main__":
print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''') | 340 | 1 |
"""simple docstring"""
import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def lowerCamelCase_( _lowerCamelCase ) -> Tuple:
'''simple docstring'''
_lowerCamelCase : Optional[int] = {}
_lowerCamelCase : Optional[int] = tokenizer(example["content"] , truncation=_lowerCamelCase )["input_ids"]
_lowerCamelCase : Dict = len(example["content"] ) / len(output["input_ids"] )
return output
_lowerCAmelCase : Tuple = HfArgumentParser(PretokenizationArguments)
_lowerCAmelCase : Optional[int] = parser.parse_args()
if args.num_workers is None:
_lowerCAmelCase : Any = multiprocessing.cpu_count()
_lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(args.tokenizer_dir)
_lowerCAmelCase : Union[str, Any] = time.time()
_lowerCAmelCase : Optional[int] = load_dataset(args.dataset_name, split='''train''')
print(f'''Dataset loaded in {time.time()-t_start:.2f}s''')
_lowerCAmelCase : Any = time.time()
_lowerCAmelCase : Dict = ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
'''repo_name''',
'''path''',
'''copies''',
'''size''',
'''content''',
'''license''',
'''hash''',
'''line_mean''',
'''line_max''',
'''alpha_frac''',
'''autogenerated''',
],
)
print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''')
_lowerCAmelCase : str = time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''') | 340 |
"""simple docstring"""
_lowerCAmelCase : Tuple = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple:
'''simple docstring'''
_lowerCamelCase : Any = [False] * len(_lowerCamelCase )
_lowerCamelCase : Union[str, Any] = [s]
_lowerCamelCase : str = True
while queue:
_lowerCamelCase : Optional[int] = queue.pop(0 )
for ind in range(len(graph[u] ) ):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(_lowerCamelCase )
_lowerCamelCase : Any = True
_lowerCamelCase : Any = u
return visited[t]
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
_lowerCamelCase : List[str] = [-1] * (len(_lowerCamelCase ))
_lowerCamelCase : Union[str, Any] = 0
_lowerCamelCase : Union[str, Any] = []
_lowerCamelCase : List[str] = [i[:] for i in graph] # Record original cut, copy.
while bfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
_lowerCamelCase : Any = float("Inf" )
_lowerCamelCase : Dict = sink
while s != source:
# Find the minimum value in select path
_lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , graph[parent[s]][s] )
_lowerCamelCase : Union[str, Any] = parent[s]
max_flow += path_flow
_lowerCamelCase : Optional[Any] = sink
while v != source:
_lowerCamelCase : Union[str, Any] = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
_lowerCamelCase : List[str] = parent[v]
for i in range(len(_lowerCamelCase ) ):
for j in range(len(graph[0] ) ):
if graph[i][j] == 0 and temp[i][j] > 0:
res.append((i, j) )
return res
if __name__ == "__main__":
print(mincut(test_graph, source=0, sink=5)) | 340 | 1 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class A_ :
lowerCAmelCase__ = XGLMConfig
lowerCAmelCase__ = {}
lowerCAmelCase__ = 'gelu'
def __init__( self: int ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[Any]=14 ,__lowerCAmelCase: Any=7 ,__lowerCAmelCase: Optional[Any]=True ,__lowerCAmelCase: Optional[Any]=True ,__lowerCAmelCase: Optional[int]=True ,__lowerCAmelCase: Optional[Any]=99 ,__lowerCAmelCase: int=32 ,__lowerCAmelCase: str=2 ,__lowerCAmelCase: str=4 ,__lowerCAmelCase: Optional[int]=37 ,__lowerCAmelCase: str="gelu" ,__lowerCAmelCase: Tuple=0.1 ,__lowerCAmelCase: List[Any]=0.1 ,__lowerCAmelCase: str=512 ,__lowerCAmelCase: List[str]=0.02 ,):
'''simple docstring'''
_lowerCamelCase : Dict = parent
_lowerCamelCase : Tuple = batch_size
_lowerCamelCase : Optional[int] = seq_length
_lowerCamelCase : Optional[int] = is_training
_lowerCamelCase : Any = use_input_mask
_lowerCamelCase : Tuple = use_labels
_lowerCamelCase : str = vocab_size
_lowerCamelCase : int = d_model
_lowerCamelCase : Optional[int] = num_hidden_layers
_lowerCamelCase : List[str] = num_attention_heads
_lowerCamelCase : Dict = ffn_dim
_lowerCamelCase : List[str] = activation_function
_lowerCamelCase : Dict = activation_dropout
_lowerCamelCase : Optional[int] = attention_dropout
_lowerCamelCase : Union[str, Any] = max_position_embeddings
_lowerCamelCase : List[str] = initializer_range
_lowerCamelCase : Any = None
_lowerCamelCase : Tuple = 0
_lowerCamelCase : Union[str, Any] = 2
_lowerCamelCase : Optional[Any] = 1
def _lowercase ( self: List[Any] ):
'''simple docstring'''
return XGLMConfig.from_pretrained("facebook/xglm-564M" )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase : Optional[Any] = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) ,clip_value_min=0 ,clip_value_max=3 )
_lowerCamelCase : Union[str, Any] = None
if self.use_input_mask:
_lowerCamelCase : str = random_attention_mask([self.batch_size, self.seq_length] )
_lowerCamelCase : Dict = self.get_config()
_lowerCamelCase : List[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
return XGLMConfig(
vocab_size=self.vocab_size ,d_model=self.hidden_size ,num_layers=self.num_hidden_layers ,attention_heads=self.num_attention_heads ,ffn_dim=self.ffn_dim ,activation_function=self.activation_function ,activation_dropout=self.activation_dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,use_cache=__lowerCAmelCase ,bos_token_id=self.bos_token_id ,eos_token_id=self.eos_token_id ,pad_token_id=self.pad_token_id ,return_dict=__lowerCAmelCase ,)
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : Tuple = self.prepare_config_and_inputs()
(
(
_lowerCamelCase
), (
_lowerCamelCase
), (
_lowerCamelCase
), (
_lowerCamelCase
),
) : Union[str, Any] = config_and_inputs
_lowerCamelCase : Optional[int] = {
"input_ids": input_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_tf
class A_ ( _a , _a , unittest.TestCase ):
lowerCAmelCase__ = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
lowerCAmelCase__ = (TFXGLMForCausalLM,) if is_tf_available() else ()
lowerCAmelCase__ = (
{'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {}
)
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = False
def _lowercase ( self: List[str] ):
'''simple docstring'''
_lowerCamelCase : Dict = TFXGLMModelTester(self )
_lowerCamelCase : List[str] = ConfigTester(self ,config_class=__lowerCAmelCase ,n_embd=37 )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
@slow
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCamelCase : Tuple = TFXGLMModel.from_pretrained(__lowerCAmelCase )
self.assertIsNotNone(__lowerCAmelCase )
@unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." )
def _lowercase ( self: Dict ):
'''simple docstring'''
super().test_resize_token_embeddings()
@require_tf
class A_ ( unittest.TestCase ):
@slow
def _lowercase ( self: List[str] ,__lowerCAmelCase: Dict=True ):
'''simple docstring'''
_lowerCamelCase : List[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
_lowerCamelCase : int = tf.convert_to_tensor([[2, 268, 9_865]] ,dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
_lowerCamelCase : Dict = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581]
# fmt: on
_lowerCamelCase : int = model.generate(__lowerCAmelCase ,do_sample=__lowerCAmelCase ,num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() ,__lowerCAmelCase )
@slow
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase : Tuple = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
_lowerCamelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
tf.random.set_seed(0 )
_lowerCamelCase : Dict = tokenizer("Today is a nice day and" ,return_tensors="tf" )
_lowerCamelCase : Dict = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(":/CPU:0" ):
_lowerCamelCase : Union[str, Any] = model.generate(__lowerCAmelCase ,do_sample=__lowerCAmelCase ,seed=[7, 0] )
_lowerCamelCase : int = tokenizer.decode(output_ids[0] ,skip_special_tokens=__lowerCAmelCase )
_lowerCamelCase : List[str] = (
"Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"
)
self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase )
@slow
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
_lowerCamelCase : Optional[int] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
_lowerCamelCase : Optional[int] = "left"
# use different length sentences to test batching
_lowerCamelCase : Optional[Any] = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When",
"Hello, my dog is a little",
]
_lowerCamelCase : Tuple = tokenizer(__lowerCAmelCase ,return_tensors="tf" ,padding=__lowerCAmelCase )
_lowerCamelCase : int = inputs["input_ids"]
_lowerCamelCase : List[Any] = model.generate(input_ids=__lowerCAmelCase ,attention_mask=inputs["attention_mask"] ,max_new_tokens=12 )
_lowerCamelCase : Optional[int] = tokenizer(sentences[0] ,return_tensors="tf" ).input_ids
_lowerCamelCase : Dict = model.generate(input_ids=__lowerCAmelCase ,max_new_tokens=12 )
_lowerCamelCase : Optional[Any] = tokenizer(sentences[1] ,return_tensors="tf" ).input_ids
_lowerCamelCase : Optional[int] = model.generate(input_ids=__lowerCAmelCase ,max_new_tokens=12 )
_lowerCamelCase : Dict = tokenizer.batch_decode(__lowerCAmelCase ,skip_special_tokens=__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = tokenizer.decode(output_non_padded[0] ,skip_special_tokens=__lowerCAmelCase )
_lowerCamelCase : str = tokenizer.decode(output_padded[0] ,skip_special_tokens=__lowerCAmelCase )
_lowerCamelCase : Optional[int] = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When left padding is applied, the sequence will be "
"a single",
"Hello, my dog is a little bit of a shy one, but he is very friendly",
]
self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase ,[non_padded_sentence, padded_sentence] ) | 340 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
_lowerCAmelCase : List[str] = {
'''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''',
'''umberto-commoncrawl-cased-v1''': (
'''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json'''
),
'''umberto-wikipedia-uncased-v1''': (
'''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json'''
),
}
class A_ ( _a ):
lowerCAmelCase__ = 'camembert'
def __init__( self: Tuple ,__lowerCAmelCase: Union[str, Any]=30_522 ,__lowerCAmelCase: Optional[Any]=768 ,__lowerCAmelCase: Union[str, Any]=12 ,__lowerCAmelCase: int=12 ,__lowerCAmelCase: Optional[int]=3_072 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: Optional[Any]=0.1 ,__lowerCAmelCase: int=512 ,__lowerCAmelCase: Union[str, Any]=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Any=1 ,__lowerCAmelCase: Any=0 ,__lowerCAmelCase: Optional[int]=2 ,__lowerCAmelCase: Any="absolute" ,__lowerCAmelCase: Dict=True ,__lowerCAmelCase: Tuple=None ,**__lowerCAmelCase: Dict ,):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCAmelCase ,bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ,**__lowerCAmelCase )
_lowerCamelCase : List[str] = vocab_size
_lowerCamelCase : Any = hidden_size
_lowerCamelCase : Union[str, Any] = num_hidden_layers
_lowerCamelCase : str = num_attention_heads
_lowerCamelCase : List[Any] = hidden_act
_lowerCamelCase : int = intermediate_size
_lowerCamelCase : str = hidden_dropout_prob
_lowerCamelCase : List[str] = attention_probs_dropout_prob
_lowerCamelCase : Optional[Any] = max_position_embeddings
_lowerCamelCase : str = type_vocab_size
_lowerCamelCase : Dict = initializer_range
_lowerCamelCase : Union[str, Any] = layer_norm_eps
_lowerCamelCase : Tuple = position_embedding_type
_lowerCamelCase : List[Any] = use_cache
_lowerCamelCase : Dict = classifier_dropout
class A_ ( _a ):
@property
def _lowercase ( self: Any ):
'''simple docstring'''
if self.task == "multiple-choice":
_lowerCamelCase : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"}
else:
_lowerCamelCase : int = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] ) | 340 | 1 |
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
_lowerCAmelCase : List[str] = logging.get_logger(__name__)
class A_ ( _a ):
lowerCAmelCase__ = ['input_values', 'padding_mask']
def __init__( self: Tuple ,__lowerCAmelCase: int = 1 ,__lowerCAmelCase: int = 24_000 ,__lowerCAmelCase: float = 0.0 ,__lowerCAmelCase: float = None ,__lowerCAmelCase: float = None ,**__lowerCAmelCase: Union[str, Any] ,):
'''simple docstring'''
super().__init__(feature_size=__lowerCAmelCase ,sampling_rate=__lowerCAmelCase ,padding_value=__lowerCAmelCase ,**__lowerCAmelCase )
_lowerCamelCase : Any = chunk_length_s
_lowerCamelCase : int = overlap
@property
def _lowercase ( self: Dict ):
'''simple docstring'''
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def _lowercase ( self: Tuple ):
'''simple docstring'''
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) )
def __call__( self: Tuple ,__lowerCAmelCase: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,__lowerCAmelCase: Optional[Union[bool, str, PaddingStrategy]] = None ,__lowerCAmelCase: Optional[bool] = False ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: Optional[Union[str, TensorType]] = None ,__lowerCAmelCase: Optional[int] = None ,):
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of"""
F""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with"""
F""" {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug." )
if padding and truncation:
raise ValueError("Both padding and truncation were set. Make sure you only set one." )
elif padding is None:
# by default let's pad the inputs
_lowerCamelCase : Optional[Any] = True
_lowerCamelCase : Union[str, Any] = bool(
isinstance(__lowerCAmelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) )
if is_batched:
_lowerCamelCase : List[str] = [np.asarray(__lowerCAmelCase ,dtype=np.floataa ).T for audio in raw_audio]
elif not is_batched and not isinstance(__lowerCAmelCase ,np.ndarray ):
_lowerCamelCase : Dict = np.asarray(__lowerCAmelCase ,dtype=np.floataa )
elif isinstance(__lowerCAmelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ):
_lowerCamelCase : Tuple = raw_audio.astype(np.floataa )
# always return batch
if not is_batched:
_lowerCamelCase : Optional[int] = [np.asarray(__lowerCAmelCase ).T]
# verify inputs are valid
for idx, example in enumerate(__lowerCAmelCase ):
if example.ndim > 2:
raise ValueError(F"""Expected input shape (channels, length) but got shape {example.shape}""" )
if self.feature_size == 1 and example.ndim != 1:
raise ValueError(F"""Expected mono audio but example has {example.shape[-1]} channels""" )
if self.feature_size == 2 and example.shape[-1] != 2:
raise ValueError(F"""Expected stereo audio but example has {example.shape[-1]} channels""" )
_lowerCamelCase : Tuple = None
_lowerCamelCase : int = BatchFeature({"input_values": raw_audio} )
if self.chunk_stride is not None and self.chunk_length is not None and max_length is None:
if truncation:
_lowerCamelCase : Tuple = min(array.shape[0] for array in raw_audio )
_lowerCamelCase : Optional[int] = int(np.floor(max_length / self.chunk_stride ) )
_lowerCamelCase : Dict = (nb_step - 1) * self.chunk_stride + self.chunk_length
elif padding:
_lowerCamelCase : Any = max(array.shape[0] for array in raw_audio )
_lowerCamelCase : Dict = int(np.ceil(max_length / self.chunk_stride ) )
_lowerCamelCase : Optional[int] = (nb_step - 1) * self.chunk_stride + self.chunk_length
_lowerCamelCase : int = "max_length"
else:
_lowerCamelCase : Dict = input_values
# normal padding on batch
if padded_inputs is None:
_lowerCamelCase : Any = self.pad(
__lowerCAmelCase ,max_length=__lowerCAmelCase ,truncation=__lowerCAmelCase ,padding=__lowerCAmelCase ,return_attention_mask=__lowerCAmelCase ,)
if padding:
_lowerCamelCase : Tuple = padded_inputs.pop("attention_mask" )
_lowerCamelCase : str = []
for example in padded_inputs.pop("input_values" ):
if self.feature_size == 1:
_lowerCamelCase : int = example[..., None]
input_values.append(example.T )
_lowerCamelCase : int = input_values
if return_tensors is not None:
_lowerCamelCase : Optional[Any] = padded_inputs.convert_to_tensors(__lowerCAmelCase )
return padded_inputs | 340 |
"""simple docstring"""
from collections import defaultdict
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : Optional[int] = 1
_lowerCamelCase : str = True
for v in tree[start]:
if v not in visited:
ret += dfs(_lowerCamelCase )
if ret % 2 == 0:
cuts.append(_lowerCamelCase )
return ret
def lowerCamelCase_( ) -> int:
'''simple docstring'''
dfs(1 )
if __name__ == "__main__":
_lowerCAmelCase , _lowerCAmelCase : Optional[Any] = 10, 9
_lowerCAmelCase : str = defaultdict(list)
_lowerCAmelCase : dict[int, bool] = {}
_lowerCAmelCase : list[int] = []
_lowerCAmelCase : Any = 0
_lowerCAmelCase : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)]
for u, v in edges:
tree[u].append(v)
tree[v].append(u)
even_tree()
print(len(cuts) - 1) | 340 | 1 |
"""simple docstring"""
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=7 ) -> Any:
'''simple docstring'''
_lowerCamelCase : Optional[Any] = None
if token is not None:
_lowerCamelCase : Optional[int] = {"Accept": "application/vnd.github+json", "Authorization": F"""Bearer {token}"""}
# The id of a workflow (not of a workflow run)
_lowerCamelCase : List[Any] = "636036"
_lowerCamelCase : Tuple = F"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs"""
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += F"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}"""
_lowerCamelCase : Optional[int] = requests.get(_lowerCamelCase , headers=_lowerCamelCase ).json()
return result["workflow_runs"]
def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
_lowerCamelCase : Tuple = get_daily_ci_runs(_lowerCamelCase )
_lowerCamelCase : Any = None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
_lowerCamelCase : Optional[int] = workflow_run["id"]
break
return workflow_run_id
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : Tuple = get_last_daily_ci_runs(_lowerCamelCase )
if workflow_run_id is not None:
_lowerCamelCase : Union[str, Any] = get_artifacts_links(worflow_run_id=_lowerCamelCase , token=_lowerCamelCase )
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
_lowerCamelCase : Any = artifacts_links[artifact_name]
download_artifact(
artifact_name=_lowerCamelCase , artifact_url=_lowerCamelCase , output_dir=_lowerCamelCase , token=_lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]:
'''simple docstring'''
get_last_daily_ci_artifacts(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
_lowerCamelCase : Optional[Any] = {}
for artifact_name in artifact_names:
_lowerCamelCase : List[str] = os.path.join(_lowerCamelCase , F"""{artifact_name}.zip""" )
if os.path.isfile(_lowerCamelCase ):
_lowerCamelCase : Tuple = {}
with zipfile.ZipFile(_lowerCamelCase ) as z:
for filename in z.namelist():
if not os.path.isdir(_lowerCamelCase ):
# read the file
with z.open(_lowerCamelCase ) as f:
_lowerCamelCase : int = f.read().decode("UTF-8" )
return results | 340 |
"""simple docstring"""
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
_lowerCAmelCase : Optional[int] = '''__DUMMY_TRANSFORMERS_USER__'''
_lowerCAmelCase : Dict = '''Dummy User'''
_lowerCAmelCase : Optional[int] = '''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'''
_lowerCAmelCase : Tuple = '''https://hub-ci.huggingface.co'''
_lowerCAmelCase : Any = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}'''
_lowerCAmelCase : Tuple = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}'''
_lowerCAmelCase : Dict = Path('''~/.huggingface/hub_ci_token''').expanduser()
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
monkeypatch.setattr(
"huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , _lowerCamelCase )
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> Tuple:
'''simple docstring'''
monkeypatch.setattr("datasets.config.HF_ENDPOINT" , _lowerCamelCase )
monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , _lowerCamelCase )
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , _lowerCamelCase )
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Dict:
'''simple docstring'''
HfFolder.save_token(_lowerCamelCase )
yield
HfFolder.delete_token()
@pytest.fixture(scope="session" )
def lowerCamelCase_( ) -> str:
'''simple docstring'''
return HfApi(endpoint=_lowerCamelCase )
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : Dict = HfFolder.get_token()
HfFolder.save_token(_lowerCamelCase )
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(_lowerCamelCase )
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
def _cleanup_repo(_lowerCamelCase ):
hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" )
return _cleanup_repo
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> List[str]:
'''simple docstring'''
@contextmanager
def _temporary_repo(_lowerCamelCase ):
try:
yield repo_id
finally:
cleanup_repo(_lowerCamelCase )
return _temporary_repo
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
_lowerCamelCase : Tuple = F"""repo_txt_data-{int(time.time() * 10e3 )}"""
_lowerCamelCase : List[str] = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase )
hf_api.upload_file(
token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data/text_data.txt" , repo_id=_lowerCamelCase , repo_type="dataset" , )
yield repo_id
try:
hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
'''simple docstring'''
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
'''simple docstring'''
_lowerCamelCase : List[Any] = F"""repo_zipped_txt_data-{int(time.time() * 10e3 )}"""
_lowerCamelCase : Dict = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase )
hf_api.upload_file(
token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , )
yield repo_id
try:
hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict:
'''simple docstring'''
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
'''simple docstring'''
_lowerCamelCase : Any = F"""repo_zipped_img_data-{int(time.time() * 10e3 )}"""
_lowerCamelCase : List[Any] = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase )
hf_api.upload_file(
token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , )
yield repo_id
try:
hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
return hf_private_dataset_repo_zipped_img_data_ | 340 | 1 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTConfig,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCAmelCase : List[str] = logging.get_logger(__name__)
def lowerCamelCase_( _lowerCamelCase ) -> str:
'''simple docstring'''
_lowerCamelCase : List[Any] = MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
_lowerCamelCase : Dict = [144, 192, 240]
_lowerCamelCase : Optional[int] = [16, 32, 64, 96, 128, 160, 640]
elif "mobilevit_xs" in mobilevit_name:
_lowerCamelCase : Optional[int] = [96, 120, 144]
_lowerCamelCase : Dict = [16, 32, 48, 64, 80, 96, 384]
elif "mobilevit_xxs" in mobilevit_name:
_lowerCamelCase : Any = [64, 80, 96]
_lowerCamelCase : List[str] = [16, 16, 24, 48, 64, 80, 320]
_lowerCamelCase : Union[str, Any] = 0.0_5
_lowerCamelCase : Optional[Any] = 2.0
if mobilevit_name.startswith("deeplabv3_" ):
_lowerCamelCase : List[str] = 512
_lowerCamelCase : str = 16
_lowerCamelCase : Tuple = 21
_lowerCamelCase : Union[str, Any] = "pascal-voc-id2label.json"
else:
_lowerCamelCase : Any = 1000
_lowerCamelCase : Optional[int] = "imagenet-1k-id2label.json"
_lowerCamelCase : List[Any] = "huggingface/label-files"
_lowerCamelCase : Tuple = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) )
_lowerCamelCase : Any = {int(_lowerCamelCase ): v for k, v in idalabel.items()}
_lowerCamelCase : List[str] = idalabel
_lowerCamelCase : int = {v: k for k, v in idalabel.items()}
return config
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> str:
'''simple docstring'''
for i in range(1 , 6 ):
if F"""layer_{i}.""" in name:
_lowerCamelCase : Optional[int] = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" )
if "conv_1." in name:
_lowerCamelCase : str = name.replace("conv_1." , "conv_stem." )
if ".block." in name:
_lowerCamelCase : str = name.replace(".block." , "." )
if "exp_1x1" in name:
_lowerCamelCase : Tuple = name.replace("exp_1x1" , "expand_1x1" )
if "red_1x1" in name:
_lowerCamelCase : List[Any] = name.replace("red_1x1" , "reduce_1x1" )
if ".local_rep.conv_3x3." in name:
_lowerCamelCase : Union[str, Any] = name.replace(".local_rep.conv_3x3." , ".conv_kxk." )
if ".local_rep.conv_1x1." in name:
_lowerCamelCase : Dict = name.replace(".local_rep.conv_1x1." , ".conv_1x1." )
if ".norm." in name:
_lowerCamelCase : Union[str, Any] = name.replace(".norm." , ".normalization." )
if ".conv." in name:
_lowerCamelCase : Optional[int] = name.replace(".conv." , ".convolution." )
if ".conv_proj." in name:
_lowerCamelCase : Union[str, Any] = name.replace(".conv_proj." , ".conv_projection." )
for i in range(0 , 2 ):
for j in range(0 , 4 ):
if F""".{i}.{j}.""" in name:
_lowerCamelCase : List[str] = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" )
for i in range(2 , 6 ):
for j in range(0 , 4 ):
if F""".{i}.{j}.""" in name:
_lowerCamelCase : Optional[int] = name.replace(F""".{i}.{j}.""" , F""".{i}.""" )
if "expand_1x1" in name:
_lowerCamelCase : Union[str, Any] = name.replace("expand_1x1" , "downsampling_layer.expand_1x1" )
if "conv_3x3" in name:
_lowerCamelCase : Any = name.replace("conv_3x3" , "downsampling_layer.conv_3x3" )
if "reduce_1x1" in name:
_lowerCamelCase : List[str] = name.replace("reduce_1x1" , "downsampling_layer.reduce_1x1" )
for i in range(2 , 5 ):
if F""".global_rep.{i}.weight""" in name:
_lowerCamelCase : Tuple = name.replace(F""".global_rep.{i}.weight""" , ".layernorm.weight" )
if F""".global_rep.{i}.bias""" in name:
_lowerCamelCase : str = name.replace(F""".global_rep.{i}.bias""" , ".layernorm.bias" )
if ".global_rep." in name:
_lowerCamelCase : List[Any] = name.replace(".global_rep." , ".transformer." )
if ".pre_norm_mha.0." in name:
_lowerCamelCase : Tuple = name.replace(".pre_norm_mha.0." , ".layernorm_before." )
if ".pre_norm_mha.1.out_proj." in name:
_lowerCamelCase : Tuple = name.replace(".pre_norm_mha.1.out_proj." , ".attention.output.dense." )
if ".pre_norm_ffn.0." in name:
_lowerCamelCase : Any = name.replace(".pre_norm_ffn.0." , ".layernorm_after." )
if ".pre_norm_ffn.1." in name:
_lowerCamelCase : Dict = name.replace(".pre_norm_ffn.1." , ".intermediate.dense." )
if ".pre_norm_ffn.4." in name:
_lowerCamelCase : List[str] = name.replace(".pre_norm_ffn.4." , ".output.dense." )
if ".transformer." in name:
_lowerCamelCase : Dict = name.replace(".transformer." , ".transformer.layer." )
if ".aspp_layer." in name:
_lowerCamelCase : Dict = name.replace(".aspp_layer." , "." )
if ".aspp_pool." in name:
_lowerCamelCase : int = name.replace(".aspp_pool." , "." )
if "seg_head." in name:
_lowerCamelCase : List[Any] = name.replace("seg_head." , "segmentation_head." )
if "segmentation_head.classifier.classifier." in name:
_lowerCamelCase : List[str] = name.replace("segmentation_head.classifier.classifier." , "segmentation_head.classifier." )
if "classifier.fc." in name:
_lowerCamelCase : Dict = name.replace("classifier.fc." , "classifier." )
elif (not base_model) and ("segmentation_head." not in name):
_lowerCamelCase : Any = "mobilevit." + name
return name
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> int:
'''simple docstring'''
if base_model:
_lowerCamelCase : List[str] = ""
else:
_lowerCamelCase : Tuple = "mobilevit."
for key in orig_state_dict.copy().keys():
_lowerCamelCase : Tuple = orig_state_dict.pop(_lowerCamelCase )
if key[:8] == "encoder.":
_lowerCamelCase : str = key[8:]
if "qkv" in key:
_lowerCamelCase : Dict = key.split("." )
_lowerCamelCase : List[str] = int(key_split[0][6:] ) - 1
_lowerCamelCase : Optional[Any] = int(key_split[3] )
_lowerCamelCase : List[str] = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" )
_lowerCamelCase : int = layer.transformer.layer[transformer_num].attention.attention.all_head_size
_lowerCamelCase : List[Any] = (
F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention."""
)
if "weight" in key:
_lowerCamelCase : int = val[:dim, :]
_lowerCamelCase : Any = val[dim : dim * 2, :]
_lowerCamelCase : Optional[Any] = val[-dim:, :]
else:
_lowerCamelCase : Tuple = val[:dim]
_lowerCamelCase : Dict = val[dim : dim * 2]
_lowerCamelCase : int = val[-dim:]
else:
_lowerCamelCase : Any = val
return orig_state_dict
def lowerCamelCase_( ) -> Tuple:
'''simple docstring'''
_lowerCamelCase : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg"
_lowerCamelCase : List[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw )
return im
@torch.no_grad()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> str:
'''simple docstring'''
_lowerCamelCase : List[Any] = get_mobilevit_config(_lowerCamelCase )
# load original state_dict
_lowerCamelCase : List[Any] = torch.load(_lowerCamelCase , map_location="cpu" )
# load 🤗 model
if mobilevit_name.startswith("deeplabv3_" ):
_lowerCamelCase : Tuple = MobileViTForSemanticSegmentation(_lowerCamelCase ).eval()
else:
_lowerCamelCase : List[Any] = MobileViTForImageClassification(_lowerCamelCase ).eval()
_lowerCamelCase : int = convert_state_dict(_lowerCamelCase , _lowerCamelCase )
model.load_state_dict(_lowerCamelCase )
# Check outputs on an image, prepared by MobileViTImageProcessor
_lowerCamelCase : Any = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
_lowerCamelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" )
_lowerCamelCase : Union[str, Any] = model(**_lowerCamelCase )
_lowerCamelCase : int = outputs.logits
if mobilevit_name.startswith("deeplabv3_" ):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
_lowerCamelCase : List[Any] = torch.tensor(
[
[[6.2_0_6_5, 6.1_2_9_2, 6.2_0_7_0], [6.1_0_7_9, 6.1_2_5_4, 6.1_7_4_7], [6.0_0_4_2, 6.1_0_7_1, 6.1_0_3_4]],
[[-6.9_2_5_3, -6.8_6_5_3, -7.0_3_9_8], [-7.3_2_1_8, -7.3_9_8_3, -7.3_6_7_0], [-7.1_9_6_1, -7.2_4_8_2, -7.1_5_6_9]],
[[-4.4_7_2_3, -4.4_3_4_8, -4.3_7_6_9], [-5.3_6_2_9, -5.4_6_3_2, -5.4_5_9_8], [-5.1_5_8_7, -5.3_4_0_2, -5.5_0_5_9]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xs":
_lowerCamelCase : Union[str, Any] = torch.tensor(
[
[[5.4_4_4_9, 5.5_7_3_3, 5.6_3_1_4], [5.1_8_1_5, 5.3_9_3_0, 5.5_9_6_3], [5.1_6_5_6, 5.4_3_3_3, 5.4_8_5_3]],
[[-9.4_4_2_3, -9.7_7_6_6, -9.6_7_1_4], [-9.1_5_8_1, -9.5_7_2_0, -9.5_5_1_9], [-9.1_0_0_6, -9.6_4_5_8, -9.5_7_0_3]],
[[-7.7_7_2_1, -7.3_7_1_6, -7.1_5_8_3], [-8.4_5_9_9, -8.0_6_2_4, -7.7_9_4_4], [-8.4_1_7_2, -7.8_3_6_6, -7.5_0_2_5]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
_lowerCamelCase : List[Any] = torch.tensor(
[
[[6.9_8_1_1, 6.9_7_4_3, 7.3_1_2_3], [7.1_7_7_7, 7.1_9_3_1, 7.3_9_3_8], [7.5_6_3_3, 7.8_0_5_0, 7.8_9_0_1]],
[[-1_0.5_5_3_6, -1_0.2_3_3_2, -1_0.2_9_2_4], [-1_0.2_3_3_6, -9.8_6_2_4, -9.5_9_6_4], [-1_0.8_8_4_0, -1_0.8_1_5_8, -1_0.6_6_5_9]],
[[-3.4_9_3_8, -3.0_6_3_1, -2.8_6_2_0], [-3.4_2_0_5, -2.8_1_3_5, -2.6_8_7_5], [-3.4_1_7_9, -2.7_9_4_5, -2.8_7_5_0]],
] )
else:
raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" )
assert torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1e-4 )
else:
assert logits.shape == (1, 1000)
if mobilevit_name == "mobilevit_s":
_lowerCamelCase : List[Any] = torch.tensor([-0.9_8_6_6, 0.2_3_9_2, -1.1_2_4_1] )
elif mobilevit_name == "mobilevit_xs":
_lowerCamelCase : Union[str, Any] = torch.tensor([-2.4_7_6_1, -0.9_3_9_9, -1.9_5_8_7] )
elif mobilevit_name == "mobilevit_xxs":
_lowerCamelCase : Optional[int] = torch.tensor([-1.9_3_6_4, -1.2_3_2_7, -0.4_6_5_3] )
else:
raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" )
assert torch.allclose(logits[0, :3] , _lowerCamelCase , atol=1e-4 )
Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase )
print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowerCamelCase )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_lowerCamelCase )
if push_to_hub:
_lowerCamelCase : List[Any] = {
"mobilevit_s": "mobilevit-small",
"mobilevit_xs": "mobilevit-x-small",
"mobilevit_xxs": "mobilevit-xx-small",
"deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small",
"deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small",
"deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small",
}
print("Pushing to the hub..." )
_lowerCamelCase : Union[str, Any] = model_mapping[mobilevit_name]
image_processor.push_to_hub(_lowerCamelCase , organization="apple" )
model.push_to_hub(_lowerCamelCase , organization="apple" )
if __name__ == "__main__":
_lowerCAmelCase : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--mobilevit_name''',
default='''mobilevit_s''',
type=str,
help=(
'''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\','''
''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.'''
),
)
parser.add_argument(
'''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
_lowerCAmelCase : Dict = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
) | 340 |
"""simple docstring"""
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from ...models.controlnet import ControlNetModel, ControlNetOutput
from ...models.modeling_utils import ModelMixin
from ...utils import logging
_lowerCAmelCase : Dict = logging.get_logger(__name__)
class A_ ( _a ):
def __init__( self: List[Any] ,__lowerCAmelCase: Union[List[ControlNetModel], Tuple[ControlNetModel]] ):
'''simple docstring'''
super().__init__()
_lowerCamelCase : Tuple = nn.ModuleList(__lowerCAmelCase )
def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Union[torch.Tensor, float, int] ,__lowerCAmelCase: torch.Tensor ,__lowerCAmelCase: List[torch.tensor] ,__lowerCAmelCase: List[float] ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[Dict[str, Any]] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,):
'''simple docstring'''
for i, (image, scale, controlnet) in enumerate(zip(__lowerCAmelCase ,__lowerCAmelCase ,self.nets ) ):
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = controlnet(
__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,)
# merge samples
if i == 0:
_lowerCamelCase, _lowerCamelCase : Optional[Any] = down_samples, mid_sample
else:
_lowerCamelCase : Optional[int] = [
samples_prev + samples_curr
for samples_prev, samples_curr in zip(__lowerCAmelCase ,__lowerCAmelCase )
]
mid_block_res_sample += mid_sample
return down_block_res_samples, mid_block_res_sample
def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Union[str, os.PathLike] ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Callable = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[str] = None ,):
'''simple docstring'''
_lowerCamelCase : List[Any] = 0
_lowerCamelCase : str = save_directory
for controlnet in self.nets:
controlnet.save_pretrained(
__lowerCAmelCase ,is_main_process=__lowerCAmelCase ,save_function=__lowerCAmelCase ,safe_serialization=__lowerCAmelCase ,variant=__lowerCAmelCase ,)
idx += 1
_lowerCamelCase : int = model_path_to_save + F"""_{idx}"""
@classmethod
def _lowercase ( cls: Any ,__lowerCAmelCase: Optional[Union[str, os.PathLike]] ,**__lowerCAmelCase: int ):
'''simple docstring'''
_lowerCamelCase : int = 0
_lowerCamelCase : str = []
# load controlnet and append to list until no controlnet directory exists anymore
# first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained`
# second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ...
_lowerCamelCase : Dict = pretrained_model_path
while os.path.isdir(__lowerCAmelCase ):
_lowerCamelCase : List[Any] = ControlNetModel.from_pretrained(__lowerCAmelCase ,**__lowerCAmelCase )
controlnets.append(__lowerCAmelCase )
idx += 1
_lowerCamelCase : Tuple = pretrained_model_path + F"""_{idx}"""
logger.info(F"""{len(__lowerCAmelCase )} controlnets loaded from {pretrained_model_path}.""" )
if len(__lowerCAmelCase ) == 0:
raise ValueError(
F"""No ControlNets found under {os.path.dirname(__lowerCAmelCase )}. Expected at least {pretrained_model_path + '_0'}.""" )
return cls(__lowerCAmelCase ) | 340 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase : str = logging.get_logger(__name__)
_lowerCAmelCase : Optional[int] = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class A_ ( _a ):
lowerCAmelCase__ = 'megatron-bert'
def __init__( self: Any ,__lowerCAmelCase: List[Any]=29_056 ,__lowerCAmelCase: Optional[Any]=1_024 ,__lowerCAmelCase: int=24 ,__lowerCAmelCase: Union[str, Any]=16 ,__lowerCAmelCase: Optional[int]=4_096 ,__lowerCAmelCase: str="gelu" ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: Tuple=0.1 ,__lowerCAmelCase: List[Any]=512 ,__lowerCAmelCase: Union[str, Any]=2 ,__lowerCAmelCase: str=0.02 ,__lowerCAmelCase: List[str]=1e-12 ,__lowerCAmelCase: List[str]=0 ,__lowerCAmelCase: str="absolute" ,__lowerCAmelCase: Union[str, Any]=True ,**__lowerCAmelCase: Dict ,):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCAmelCase ,**__lowerCAmelCase )
_lowerCamelCase : Dict = vocab_size
_lowerCamelCase : Union[str, Any] = hidden_size
_lowerCamelCase : Any = num_hidden_layers
_lowerCamelCase : Union[str, Any] = num_attention_heads
_lowerCamelCase : List[Any] = hidden_act
_lowerCamelCase : int = intermediate_size
_lowerCamelCase : Optional[int] = hidden_dropout_prob
_lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob
_lowerCamelCase : Any = max_position_embeddings
_lowerCamelCase : List[Any] = type_vocab_size
_lowerCamelCase : Dict = initializer_range
_lowerCamelCase : List[Any] = layer_norm_eps
_lowerCamelCase : int = position_embedding_type
_lowerCamelCase : Tuple = use_cache | 340 |
"""simple docstring"""
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SegformerConfig,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCAmelCase : int = logging.get_logger(__name__)
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[str]:
'''simple docstring'''
_lowerCamelCase : Tuple = OrderedDict()
for key, value in state_dict.items():
if encoder_only and not key.startswith("head" ):
_lowerCamelCase : Tuple = "segformer.encoder." + key
if key.startswith("backbone" ):
_lowerCamelCase : Any = key.replace("backbone" , "segformer.encoder" )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
_lowerCamelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )]
_lowerCamelCase : int = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(_lowerCamelCase )-1}""" )
if "norm" in key:
_lowerCamelCase : Optional[Any] = key.replace("norm" , "layer_norm" )
if "segformer.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
_lowerCamelCase : Dict = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )]
_lowerCamelCase : Tuple = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(_lowerCamelCase )-1}""" )
if "layer_norm1" in key:
_lowerCamelCase : Union[str, Any] = key.replace("layer_norm1" , "layer_norm_1" )
if "layer_norm2" in key:
_lowerCamelCase : int = key.replace("layer_norm2" , "layer_norm_2" )
if "block" in key:
# replace for example block1 by block.0
_lowerCamelCase : Union[str, Any] = key[key.find("block" ) + len("block" )]
_lowerCamelCase : Optional[Any] = key.replace(F"""block{idx}""" , F"""block.{int(_lowerCamelCase )-1}""" )
if "attn.q" in key:
_lowerCamelCase : Optional[int] = key.replace("attn.q" , "attention.self.query" )
if "attn.proj" in key:
_lowerCamelCase : List[str] = key.replace("attn.proj" , "attention.output.dense" )
if "attn" in key:
_lowerCamelCase : Tuple = key.replace("attn" , "attention.self" )
if "fc1" in key:
_lowerCamelCase : Optional[Any] = key.replace("fc1" , "dense1" )
if "fc2" in key:
_lowerCamelCase : Dict = key.replace("fc2" , "dense2" )
if "linear_pred" in key:
_lowerCamelCase : int = key.replace("linear_pred" , "classifier" )
if "linear_fuse" in key:
_lowerCamelCase : str = key.replace("linear_fuse.conv" , "linear_fuse" )
_lowerCamelCase : Optional[Any] = key.replace("linear_fuse.bn" , "batch_norm" )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
_lowerCamelCase : Union[str, Any] = key[key.find("linear_c" ) + len("linear_c" )]
_lowerCamelCase : Optional[int] = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(_lowerCamelCase )-1}""" )
if key.startswith("head" ):
_lowerCamelCase : List[str] = key.replace("head" , "classifier" )
_lowerCamelCase : Union[str, Any] = value
return new_state_dict
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
_lowerCamelCase : Optional[Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" )
_lowerCamelCase : Optional[Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" )
# next, add keys and values (in that order) to the state dict
_lowerCamelCase : int = kv_weight[
: config.hidden_sizes[i], :
]
_lowerCamelCase : int = kv_bias[: config.hidden_sizes[i]]
_lowerCamelCase : Optional[int] = kv_weight[
config.hidden_sizes[i] :, :
]
_lowerCamelCase : Optional[Any] = kv_bias[
config.hidden_sizes[i] :
]
def lowerCamelCase_( ) -> Dict:
'''simple docstring'''
_lowerCamelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg"
_lowerCamelCase : Union[str, Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw )
return image
@torch.no_grad()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict:
'''simple docstring'''
_lowerCamelCase : Any = SegformerConfig()
_lowerCamelCase : int = False
# set attributes based on model_name
_lowerCamelCase : Any = "huggingface/label-files"
if "segformer" in model_name:
_lowerCamelCase : str = model_name[len("segformer." ) : len("segformer." ) + 2]
if "ade" in model_name:
_lowerCamelCase : str = 150
_lowerCamelCase : Dict = "ade20k-id2label.json"
_lowerCamelCase : Dict = (1, 150, 128, 128)
elif "city" in model_name:
_lowerCamelCase : List[str] = 19
_lowerCamelCase : Tuple = "cityscapes-id2label.json"
_lowerCamelCase : Tuple = (1, 19, 128, 128)
else:
raise ValueError(F"""Model {model_name} not supported""" )
elif "mit" in model_name:
_lowerCamelCase : List[str] = True
_lowerCamelCase : Tuple = model_name[4:6]
_lowerCamelCase : Tuple = 1000
_lowerCamelCase : List[Any] = "imagenet-1k-id2label.json"
_lowerCamelCase : List[Any] = (1, 1000)
else:
raise ValueError(F"""Model {model_name} not supported""" )
# set config attributes
_lowerCamelCase : Optional[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) )
_lowerCamelCase : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()}
_lowerCamelCase : Optional[Any] = idalabel
_lowerCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()}
if size == "b0":
pass
elif size == "b1":
_lowerCamelCase : int = [64, 128, 320, 512]
_lowerCamelCase : int = 256
elif size == "b2":
_lowerCamelCase : Tuple = [64, 128, 320, 512]
_lowerCamelCase : List[Any] = 768
_lowerCamelCase : Any = [3, 4, 6, 3]
elif size == "b3":
_lowerCamelCase : Tuple = [64, 128, 320, 512]
_lowerCamelCase : Union[str, Any] = 768
_lowerCamelCase : Optional[Any] = [3, 4, 18, 3]
elif size == "b4":
_lowerCamelCase : str = [64, 128, 320, 512]
_lowerCamelCase : Optional[Any] = 768
_lowerCamelCase : Dict = [3, 8, 27, 3]
elif size == "b5":
_lowerCamelCase : int = [64, 128, 320, 512]
_lowerCamelCase : Tuple = 768
_lowerCamelCase : Tuple = [3, 6, 40, 3]
else:
raise ValueError(F"""Size {size} not supported""" )
# load image processor (only resize + normalize)
_lowerCamelCase : Dict = SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=_lowerCamelCase , align=_lowerCamelCase , do_random_crop=_lowerCamelCase )
# prepare image
_lowerCamelCase : List[str] = prepare_img()
_lowerCamelCase : Dict = image_processor(images=_lowerCamelCase , return_tensors="pt" ).pixel_values
logger.info(F"""Converting model {model_name}...""" )
# load original state dict
if encoder_only:
_lowerCamelCase : Tuple = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) )
else:
_lowerCamelCase : int = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) )["state_dict"]
# rename keys
_lowerCamelCase : str = rename_keys(_lowerCamelCase , encoder_only=_lowerCamelCase )
if not encoder_only:
del state_dict["decode_head.conv_seg.weight"]
del state_dict["decode_head.conv_seg.bias"]
# key and value matrices need special treatment
read_in_k_v(_lowerCamelCase , _lowerCamelCase )
# create HuggingFace model and load state dict
if encoder_only:
_lowerCamelCase : Tuple = False
_lowerCamelCase : Optional[int] = SegformerForImageClassification(_lowerCamelCase )
else:
_lowerCamelCase : List[str] = SegformerForSemanticSegmentation(_lowerCamelCase )
model.load_state_dict(_lowerCamelCase )
model.eval()
# forward pass
_lowerCamelCase : Any = model(_lowerCamelCase )
_lowerCamelCase : Dict = outputs.logits
# set expected_slice based on model name
# ADE20k checkpoints
if model_name == "segformer.b0.512x512.ade.160k":
_lowerCamelCase : str = torch.tensor(
[
[[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]],
[[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]],
[[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]],
] )
elif model_name == "segformer.b1.512x512.ade.160k":
_lowerCamelCase : Any = torch.tensor(
[
[[-7.5_8_2_0, -8.7_2_3_1, -8.3_2_1_5], [-8.0_6_0_0, -1_0.3_5_2_9, -1_0.0_3_0_4], [-7.5_2_0_8, -9.4_1_0_3, -9.6_2_3_9]],
[[-1_2.6_9_1_8, -1_3.8_9_9_4, -1_3.7_1_3_7], [-1_3.3_1_9_6, -1_5.7_5_2_3, -1_5.4_7_8_9], [-1_2.9_3_4_3, -1_4.8_7_5_7, -1_4.9_6_8_9]],
[[-1_1.1_9_1_1, -1_1.9_4_2_1, -1_1.3_2_4_3], [-1_1.3_3_4_2, -1_3.6_8_3_9, -1_3.3_5_8_1], [-1_0.3_9_0_9, -1_2.1_8_3_2, -1_2.4_8_5_8]],
] )
elif model_name == "segformer.b2.512x512.ade.160k":
_lowerCamelCase : int = torch.tensor(
[
[[-1_1.8_1_7_3, -1_4.3_8_5_0, -1_6.3_1_2_8], [-1_4.5_6_4_8, -1_6.5_8_0_4, -1_8.6_5_6_8], [-1_4.7_2_2_3, -1_5.7_3_8_7, -1_8.4_2_1_8]],
[[-1_5.7_2_9_0, -1_7.9_1_7_1, -1_9.4_4_2_3], [-1_8.3_1_0_5, -1_9.9_4_4_8, -2_1.4_6_6_1], [-1_7.9_2_9_6, -1_8.6_4_9_7, -2_0.7_9_1_0]],
[[-1_5.0_7_8_3, -1_7.0_3_3_6, -1_8.2_7_8_9], [-1_6.8_7_7_1, -1_8.6_8_7_0, -2_0.1_6_1_2], [-1_6.2_4_5_4, -1_7.1_4_2_6, -1_9.5_0_5_5]],
] )
elif model_name == "segformer.b3.512x512.ade.160k":
_lowerCamelCase : Optional[Any] = torch.tensor(
[
[[-9.0_8_7_8, -1_0.2_0_8_1, -1_0.1_8_9_1], [-9.3_1_4_4, -1_0.7_9_4_1, -1_0.9_8_4_3], [-9.2_2_9_4, -1_0.3_8_5_5, -1_0.5_7_0_4]],
[[-1_2.2_3_1_6, -1_3.9_0_6_8, -1_3.6_1_0_2], [-1_2.9_1_6_1, -1_4.3_7_0_2, -1_4.3_2_3_5], [-1_2.5_2_3_3, -1_3.7_1_7_4, -1_3.7_9_3_2]],
[[-1_4.6_2_7_5, -1_5.2_4_9_0, -1_4.9_7_2_7], [-1_4.3_4_0_0, -1_5.9_6_8_7, -1_6.2_8_2_7], [-1_4.1_4_8_4, -1_5.4_0_3_3, -1_5.8_9_3_7]],
] )
elif model_name == "segformer.b4.512x512.ade.160k":
_lowerCamelCase : List[str] = torch.tensor(
[
[[-1_2.3_1_4_4, -1_3.2_4_4_7, -1_4.0_8_0_2], [-1_3.3_6_1_4, -1_4.5_8_1_6, -1_5.6_1_1_7], [-1_3.3_3_4_0, -1_4.4_4_3_3, -1_6.2_2_1_9]],
[[-1_9.2_7_8_1, -2_0.4_1_2_8, -2_0.7_5_0_6], [-2_0.6_1_5_3, -2_1.6_5_6_6, -2_2.0_9_9_8], [-1_9.9_8_0_0, -2_1.0_4_3_0, -2_2.1_4_9_4]],
[[-1_8.8_7_3_9, -1_9.7_8_0_4, -2_1.1_8_3_4], [-2_0.1_2_3_3, -2_1.6_7_6_5, -2_3.2_9_4_4], [-2_0.0_3_1_5, -2_1.2_6_4_1, -2_3.6_9_4_4]],
] )
elif model_name == "segformer.b5.640x640.ade.160k":
_lowerCamelCase : Any = torch.tensor(
[
[[-9.5_5_2_4, -1_2.0_8_3_5, -1_1.7_3_4_8], [-1_0.5_2_2_9, -1_3.6_4_4_6, -1_4.5_6_6_2], [-9.5_8_4_2, -1_2.8_8_5_1, -1_3.9_4_1_4]],
[[-1_5.3_4_3_2, -1_7.5_3_2_3, -1_7.0_8_1_8], [-1_6.3_3_3_0, -1_8.9_2_5_5, -1_9.2_1_0_1], [-1_5.1_3_4_0, -1_7.7_8_4_8, -1_8.3_9_7_1]],
[[-1_2.6_0_7_2, -1_4.9_4_8_6, -1_4.6_6_3_1], [-1_3.7_6_2_9, -1_7.0_9_0_7, -1_7.7_7_4_5], [-1_2.7_8_9_9, -1_6.1_6_9_5, -1_7.1_6_7_1]],
] )
# Cityscapes checkpoints
elif model_name == "segformer.b0.1024x1024.city.160k":
_lowerCamelCase : Dict = torch.tensor(
[
[[-1_1.9_2_9_5, -1_3.4_0_5_7, -1_4.8_1_0_6], [-1_3.3_4_3_1, -1_4.8_1_7_9, -1_5.3_7_8_1], [-1_4.2_8_3_6, -1_5.5_9_4_2, -1_6.1_5_8_8]],
[[-1_1.4_9_0_6, -1_2.8_0_6_7, -1_3.6_5_6_4], [-1_3.1_1_8_9, -1_4.0_5_0_0, -1_4.1_5_4_3], [-1_3.8_7_4_8, -1_4.5_1_3_6, -1_4.8_7_8_9]],
[[0.5_3_7_4, 0.1_0_6_7, -0.4_7_4_2], [0.1_1_4_1, -0.2_2_5_5, -0.7_0_9_9], [-0.3_0_0_0, -0.5_9_2_4, -1.3_1_0_5]],
] )
elif model_name == "segformer.b0.512x1024.city.160k":
_lowerCamelCase : Optional[int] = torch.tensor(
[
[[-7.8_2_1_7, -9.8_7_6_7, -1_0.1_7_1_7], [-9.4_4_3_8, -1_0.9_0_5_8, -1_1.4_0_4_7], [-9.7_9_3_9, -1_2.3_4_9_5, -1_2.1_0_7_9]],
[[-7.1_5_1_4, -9.5_3_3_6, -1_0.0_8_6_0], [-9.7_7_7_6, -1_1.6_8_2_2, -1_1.8_4_3_9], [-1_0.1_4_1_1, -1_2.7_6_5_5, -1_2.8_9_7_2]],
[[0.3_0_2_1, 0.0_8_0_5, -0.2_3_1_0], [-0.0_3_2_8, -0.1_6_0_5, -0.2_7_1_4], [-0.1_4_0_8, -0.5_4_7_7, -0.6_9_7_6]],
] )
elif model_name == "segformer.b0.640x1280.city.160k":
_lowerCamelCase : Tuple = torch.tensor(
[
[
[-1.13_72e01, -1.27_87e01, -1.34_77e01],
[-1.25_36e01, -1.41_94e01, -1.44_09e01],
[-1.32_17e01, -1.48_88e01, -1.53_27e01],
],
[
[-1.47_91e01, -1.71_22e01, -1.82_77e01],
[-1.71_63e01, -1.91_92e01, -1.95_33e01],
[-1.78_97e01, -1.99_91e01, -2.03_15e01],
],
[
[7.67_23e-01, 4.19_21e-01, -7.78_78e-02],
[4.77_72e-01, 9.55_57e-03, -2.80_82e-01],
[3.60_32e-01, -2.48_26e-01, -5.11_68e-01],
],
] )
elif model_name == "segformer.b0.768x768.city.160k":
_lowerCamelCase : Union[str, Any] = torch.tensor(
[
[[-9.4_9_5_9, -1_1.3_0_8_7, -1_1.7_4_7_9], [-1_1.0_0_2_5, -1_2.6_5_4_0, -1_2.3_3_1_9], [-1_1.4_0_6_4, -1_3.0_4_8_7, -1_2.9_9_0_5]],
[[-9.8_9_0_5, -1_1.3_0_8_4, -1_2.0_8_5_4], [-1_1.1_7_2_6, -1_2.7_6_9_8, -1_2.9_5_8_3], [-1_1.5_9_8_5, -1_3.3_2_7_8, -1_4.1_7_7_4]],
[[0.2_2_1_3, 0.0_1_9_2, -0.2_4_6_6], [-0.1_7_3_1, -0.4_2_1_3, -0.4_8_7_4], [-0.3_1_2_6, -0.6_5_4_1, -1.1_3_8_9]],
] )
elif model_name == "segformer.b1.1024x1024.city.160k":
_lowerCamelCase : List[Any] = torch.tensor(
[
[[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]],
[[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]],
[[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]],
] )
elif model_name == "segformer.b2.1024x1024.city.160k":
_lowerCamelCase : Tuple = torch.tensor(
[
[[-1_6.0_9_7_6, -1_6.4_8_5_6, -1_7.3_9_6_2], [-1_6.6_2_3_4, -1_9.0_3_4_2, -1_9.7_6_8_5], [-1_6.0_9_0_0, -1_8.0_6_6_1, -1_9.1_1_8_0]],
[[-1_8.4_7_5_0, -1_8.8_4_8_8, -1_9.5_0_7_4], [-1_9.4_0_3_0, -2_2.1_5_7_0, -2_2.5_9_7_7], [-1_9.1_1_9_1, -2_0.8_4_8_6, -2_2.3_7_8_3]],
[[-4.5_1_7_8, -5.5_0_3_7, -6.5_1_0_9], [-5.0_8_8_4, -7.2_1_7_4, -8.0_3_3_4], [-4.4_1_5_6, -5.8_1_1_7, -7.2_9_7_0]],
] )
elif model_name == "segformer.b3.1024x1024.city.160k":
_lowerCamelCase : Any = torch.tensor(
[
[[-1_4.2_0_8_1, -1_4.4_7_3_2, -1_4.1_9_7_7], [-1_4.5_8_6_7, -1_6.4_4_2_3, -1_6.6_3_5_6], [-1_3.4_4_4_1, -1_4.9_6_8_5, -1_6.8_6_9_6]],
[[-1_4.4_5_7_6, -1_4.7_0_7_3, -1_5.0_4_5_1], [-1_5.0_8_1_6, -1_7.6_2_3_7, -1_7.9_8_7_3], [-1_4.4_2_1_3, -1_6.0_1_9_9, -1_8.5_9_9_2]],
[[-4.7_3_4_9, -4.9_5_8_8, -5.0_9_6_6], [-4.3_2_1_0, -6.9_3_2_5, -7.2_5_9_1], [-3.4_3_1_2, -4.7_4_8_4, -7.1_9_1_7]],
] )
elif model_name == "segformer.b4.1024x1024.city.160k":
_lowerCamelCase : List[str] = torch.tensor(
[
[[-1_1.7_7_3_7, -1_1.9_5_2_6, -1_1.3_2_7_3], [-1_3.6_6_9_2, -1_4.4_5_7_4, -1_3.8_8_7_8], [-1_3.8_9_3_7, -1_4.6_9_2_4, -1_5.9_3_4_5]],
[[-1_4.6_7_0_6, -1_4.5_3_3_0, -1_4.1_3_0_6], [-1_6.1_5_0_2, -1_6.8_1_8_0, -1_6.4_2_6_9], [-1_6.8_3_3_8, -1_7.8_9_3_9, -2_0.1_7_4_6]],
[[1.0_4_9_1, 0.8_2_8_9, 1.0_3_1_0], [1.1_0_4_4, 0.5_2_1_9, 0.8_0_5_5], [1.0_8_9_9, 0.6_9_2_6, 0.5_5_9_0]],
] )
elif model_name == "segformer.b5.1024x1024.city.160k":
_lowerCamelCase : str = torch.tensor(
[
[[-1_2.5_6_4_1, -1_3.4_7_7_7, -1_3.0_6_8_4], [-1_3.9_5_8_7, -1_5.8_9_8_3, -1_6.6_5_5_7], [-1_3.3_1_0_9, -1_5.7_3_5_0, -1_6.3_1_4_1]],
[[-1_4.7_0_7_4, -1_5.4_3_5_2, -1_4.5_9_4_4], [-1_6.6_3_5_3, -1_8.1_6_6_3, -1_8.6_1_2_0], [-1_5.1_7_0_2, -1_8.0_3_2_9, -1_8.1_5_4_7]],
[[-1.7_9_9_0, -2.0_9_5_1, -1.7_7_8_4], [-2.6_3_9_7, -3.8_2_4_5, -3.9_6_8_6], [-1.5_2_6_4, -2.8_1_2_6, -2.9_3_1_6]],
] )
else:
_lowerCamelCase : Dict = logits.argmax(-1 ).item()
print("Predicted class:" , model.config.idalabel[predicted_class_idx] )
# verify logits
if not encoder_only:
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1e-2 )
# finally, save model and image processor
logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" )
Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase )
model.save_pretrained(_lowerCamelCase )
image_processor.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase : str = argparse.ArgumentParser()
parser.add_argument(
'''--model_name''',
default='''segformer.b0.512x512.ade.160k''',
type=str,
help='''Name of the model you\'d like to convert.''',
)
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
_lowerCAmelCase : str = parser.parse_args()
convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path) | 340 | 1 |
"""simple docstring"""
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class A_ ( _a ):
lowerCAmelCase__ = 42
lowerCAmelCase__ = None
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=0.9_9_9 , _lowerCamelCase="cosine" , ) -> List[str]:
'''simple docstring'''
if alpha_transform_type == "cosine":
def alpha_bar_fn(_lowerCamelCase ):
return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(_lowerCamelCase ):
return math.exp(t * -1_2.0 )
else:
raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" )
_lowerCamelCase : str = []
for i in range(_lowerCamelCase ):
_lowerCamelCase : Any = i / num_diffusion_timesteps
_lowerCamelCase : Optional[Any] = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(_lowerCamelCase ) / alpha_bar_fn(_lowerCamelCase ) , _lowerCamelCase ) )
return torch.tensor(_lowerCamelCase , dtype=torch.floataa )
class A_ ( _a , _a ):
@register_to_config
def __init__( self: str ,__lowerCAmelCase: int = 1_000 ,__lowerCAmelCase: str = "fixed_small_log" ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[float] = 1.0 ,__lowerCAmelCase: str = "epsilon" ,__lowerCAmelCase: str = "squaredcos_cap_v2" ,):
'''simple docstring'''
if beta_schedule != "squaredcos_cap_v2":
raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" )
_lowerCamelCase : Union[str, Any] = betas_for_alpha_bar(__lowerCAmelCase )
_lowerCamelCase : Optional[int] = 1.0 - self.betas
_lowerCamelCase : Dict = torch.cumprod(self.alphas ,dim=0 )
_lowerCamelCase : int = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
_lowerCamelCase : Tuple = 1.0
# setable values
_lowerCamelCase : List[Any] = None
_lowerCamelCase : Union[str, Any] = torch.from_numpy(np.arange(0 ,__lowerCAmelCase )[::-1].copy() )
_lowerCamelCase : List[str] = variance_type
def _lowercase ( self: Any ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ):
'''simple docstring'''
return sample
def _lowercase ( self: Optional[int] ,__lowerCAmelCase: int ,__lowerCAmelCase: Union[str, torch.device] = None ):
'''simple docstring'''
_lowerCamelCase : str = num_inference_steps
_lowerCamelCase : str = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
_lowerCamelCase : Union[str, Any] = (np.arange(0 ,__lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa )
_lowerCamelCase : int = torch.from_numpy(__lowerCAmelCase ).to(__lowerCAmelCase )
def _lowercase ( self: List[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: List[str]=None ,__lowerCAmelCase: str=None ):
'''simple docstring'''
if prev_timestep is None:
_lowerCamelCase : List[str] = t - 1
_lowerCamelCase : Optional[int] = self.alphas_cumprod[t]
_lowerCamelCase : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
_lowerCamelCase : Dict = 1 - alpha_prod_t
_lowerCamelCase : str = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
_lowerCamelCase : List[Any] = self.betas[t]
else:
_lowerCamelCase : str = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
_lowerCamelCase : int = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
_lowerCamelCase : List[str] = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
_lowerCamelCase : Dict = torch.log(torch.clamp(__lowerCAmelCase ,min=1e-20 ) )
_lowerCamelCase : str = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
_lowerCamelCase : str = variance.log()
_lowerCamelCase : str = beta.log()
_lowerCamelCase : Optional[int] = (predicted_variance + 1) / 2
_lowerCamelCase : Union[str, Any] = frac * max_log + (1 - frac) * min_log
return variance
def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: int ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: bool = True ,):
'''simple docstring'''
_lowerCamelCase : str = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
_lowerCamelCase, _lowerCamelCase : int = torch.split(__lowerCAmelCase ,sample.shape[1] ,dim=1 )
else:
_lowerCamelCase : List[Any] = None
# 1. compute alphas, betas
if prev_timestep is None:
_lowerCamelCase : List[Any] = t - 1
_lowerCamelCase : Dict = self.alphas_cumprod[t]
_lowerCamelCase : int = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
_lowerCamelCase : Dict = 1 - alpha_prod_t
_lowerCamelCase : List[str] = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
_lowerCamelCase : Any = self.betas[t]
_lowerCamelCase : str = self.alphas[t]
else:
_lowerCamelCase : Any = 1 - alpha_prod_t / alpha_prod_t_prev
_lowerCamelCase : Optional[Any] = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
_lowerCamelCase : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
_lowerCamelCase : List[Any] = model_output
else:
raise ValueError(
F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`"""
" for the UnCLIPScheduler." )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
_lowerCamelCase : Any = torch.clamp(
__lowerCAmelCase ,-self.config.clip_sample_range ,self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_lowerCamelCase : List[str] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
_lowerCamelCase : Optional[int] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_lowerCamelCase : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
_lowerCamelCase : Union[str, Any] = 0
if t > 0:
_lowerCamelCase : Dict = randn_tensor(
model_output.shape ,dtype=model_output.dtype ,generator=__lowerCAmelCase ,device=model_output.device )
_lowerCamelCase : Any = self._get_variance(
__lowerCAmelCase ,predicted_variance=__lowerCAmelCase ,prev_timestep=__lowerCAmelCase ,)
if self.variance_type == "fixed_small_log":
_lowerCamelCase : Optional[Any] = variance
elif self.variance_type == "learned_range":
_lowerCamelCase : Optional[int] = (0.5 * variance).exp()
else:
raise ValueError(
F"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`"""
" for the UnCLIPScheduler." )
_lowerCamelCase : Dict = variance * variance_noise
_lowerCamelCase : List[Any] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=__lowerCAmelCase ,pred_original_sample=__lowerCAmelCase )
def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.IntTensor ,):
'''simple docstring'''
_lowerCamelCase : int = self.alphas_cumprod.to(device=original_samples.device ,dtype=original_samples.dtype )
_lowerCamelCase : Any = timesteps.to(original_samples.device )
_lowerCamelCase : List[Any] = alphas_cumprod[timesteps] ** 0.5
_lowerCamelCase : List[Any] = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
_lowerCamelCase : int = sqrt_alpha_prod.unsqueeze(-1 )
_lowerCamelCase : Union[str, Any] = (1 - alphas_cumprod[timesteps]) ** 0.5
_lowerCamelCase : str = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
_lowerCamelCase : Union[str, Any] = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
_lowerCamelCase : Dict = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples | 340 |
"""simple docstring"""
_lowerCAmelCase : dict[tuple[int, int, int], int] = {}
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
_lowerCamelCase : Optional[int] = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
_lowerCamelCase : int = _calculate(days - 1 , _lowerCamelCase , late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
_lowerCamelCase : Tuple = _calculate(days - 1 , absent + 1 , 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
_lowerCamelCase : str = _calculate(days - 1 , _lowerCamelCase , 0 )
_lowerCamelCase : List[Any] = state_late + state_absent + state_ontime
_lowerCamelCase : int = prizestrings
return prizestrings
def lowerCamelCase_( _lowerCamelCase = 30 ) -> int:
'''simple docstring'''
return _calculate(_lowerCamelCase , absent=0 , late=0 )
if __name__ == "__main__":
print(solution()) | 340 | 1 |
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import OwlViTImageProcessor, OwlViTProcessor
@require_vision
class A_ ( unittest.TestCase ):
def _lowercase ( self: List[str] ):
'''simple docstring'''
_lowerCamelCase : str = tempfile.mkdtemp()
# fmt: off
_lowerCamelCase : Optional[Any] = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"]
# fmt: on
_lowerCamelCase : List[Any] = dict(zip(__lowerCAmelCase ,range(len(__lowerCAmelCase ) ) ) )
_lowerCamelCase : Tuple = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""]
_lowerCamelCase : Dict = {"unk_token": "<unk>"}
_lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] )
_lowerCamelCase : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp:
fp.write(json.dumps(__lowerCAmelCase ) + "\n" )
with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp:
fp.write("\n".join(__lowerCAmelCase ) )
_lowerCamelCase : Optional[int] = {
"do_resize": True,
"size": 20,
"do_center_crop": True,
"crop_size": 18,
"do_normalize": True,
"image_mean": [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
"image_std": [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
}
_lowerCamelCase : str = os.path.join(self.tmpdirname ,__lowerCAmelCase )
with open(self.image_processor_file ,"w" ,encoding="utf-8" ) as fp:
json.dump(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: Optional[Any] ,**__lowerCAmelCase: Any ):
'''simple docstring'''
return CLIPTokenizer.from_pretrained(self.tmpdirname ,pad_token="!" ,**__lowerCAmelCase )
def _lowercase ( self: Optional[int] ,**__lowerCAmelCase: Tuple ):
'''simple docstring'''
return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,pad_token="!" ,**__lowerCAmelCase )
def _lowercase ( self: Any ,**__lowerCAmelCase: Dict ):
'''simple docstring'''
return OwlViTImageProcessor.from_pretrained(self.tmpdirname ,**__lowerCAmelCase )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : Optional[Any] = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )]
_lowerCamelCase : List[Any] = [Image.fromarray(np.moveaxis(__lowerCAmelCase ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : List[str] = self.get_tokenizer()
_lowerCamelCase : int = self.get_rust_tokenizer()
_lowerCamelCase : List[str] = self.get_image_processor()
_lowerCamelCase : str = OwlViTProcessor(tokenizer=__lowerCAmelCase ,image_processor=__lowerCAmelCase )
processor_slow.save_pretrained(self.tmpdirname )
_lowerCamelCase : Optional[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname ,use_fast=__lowerCAmelCase )
_lowerCamelCase : str = OwlViTProcessor(tokenizer=__lowerCAmelCase ,image_processor=__lowerCAmelCase )
processor_fast.save_pretrained(self.tmpdirname )
_lowerCamelCase : List[str] = OwlViTProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer ,__lowerCAmelCase )
self.assertIsInstance(processor_fast.tokenizer ,__lowerCAmelCase )
self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor ,__lowerCAmelCase )
self.assertIsInstance(processor_fast.image_processor ,__lowerCAmelCase )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : int = OwlViTProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
_lowerCamelCase : int = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" )
_lowerCamelCase : Tuple = self.get_image_processor(do_normalize=__lowerCAmelCase )
_lowerCamelCase : List[str] = OwlViTProcessor.from_pretrained(
self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=__lowerCAmelCase )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer ,__lowerCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,__lowerCAmelCase )
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = self.get_image_processor()
_lowerCamelCase : Any = self.get_tokenizer()
_lowerCamelCase : Any = OwlViTProcessor(tokenizer=__lowerCAmelCase ,image_processor=__lowerCAmelCase )
_lowerCamelCase : Tuple = self.prepare_image_inputs()
_lowerCamelCase : Optional[int] = image_processor(__lowerCAmelCase ,return_tensors="np" )
_lowerCamelCase : List[Any] = processor(images=__lowerCAmelCase ,return_tensors="np" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() ,input_processor[key].sum() ,delta=1e-2 )
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : List[Any] = self.get_image_processor()
_lowerCamelCase : Union[str, Any] = self.get_tokenizer()
_lowerCamelCase : List[str] = OwlViTProcessor(tokenizer=__lowerCAmelCase ,image_processor=__lowerCAmelCase )
_lowerCamelCase : List[Any] = "lower newer"
_lowerCamelCase : Tuple = processor(text=__lowerCAmelCase ,return_tensors="np" )
_lowerCamelCase : Tuple = tokenizer(__lowerCAmelCase ,return_tensors="np" )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key][0].tolist() ,encoded_processor[key][0].tolist() )
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = self.get_image_processor()
_lowerCamelCase : Union[str, Any] = self.get_tokenizer()
_lowerCamelCase : Optional[Any] = OwlViTProcessor(tokenizer=__lowerCAmelCase ,image_processor=__lowerCAmelCase )
_lowerCamelCase : List[Any] = "lower newer"
_lowerCamelCase : List[Any] = self.prepare_image_inputs()
_lowerCamelCase : str = processor(text=__lowerCAmelCase ,images=__lowerCAmelCase )
self.assertListEqual(list(inputs.keys() ) ,["input_ids", "attention_mask", "pixel_values"] )
# test if it raises when no input is passed
with pytest.raises(__lowerCAmelCase ):
processor()
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : Optional[Any] = "google/owlvit-base-patch32"
_lowerCamelCase : Dict = OwlViTProcessor.from_pretrained(__lowerCAmelCase )
_lowerCamelCase : str = ["cat", "nasa badge"]
_lowerCamelCase : str = processor(text=__lowerCAmelCase )
_lowerCamelCase : Optional[int] = 16
self.assertListEqual(list(inputs.keys() ) ,["input_ids", "attention_mask"] )
self.assertEqual(inputs["input_ids"].shape ,(2, seq_length) )
# test if it raises when no input is passed
with pytest.raises(__lowerCAmelCase ):
processor()
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = "google/owlvit-base-patch32"
_lowerCamelCase : Tuple = OwlViTProcessor.from_pretrained(__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = [["cat", "nasa badge"], ["person"]]
_lowerCamelCase : str = processor(text=__lowerCAmelCase )
_lowerCamelCase : List[str] = 16
_lowerCamelCase : List[Any] = len(__lowerCAmelCase )
_lowerCamelCase : Dict = max([len(__lowerCAmelCase ) for texts in input_texts] )
self.assertListEqual(list(inputs.keys() ) ,["input_ids", "attention_mask"] )
self.assertEqual(inputs["input_ids"].shape ,(batch_size * num_max_text_queries, seq_length) )
# test if it raises when no input is passed
with pytest.raises(__lowerCAmelCase ):
processor()
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = "google/owlvit-base-patch32"
_lowerCamelCase : List[Any] = OwlViTProcessor.from_pretrained(__lowerCAmelCase )
_lowerCamelCase : str = ["cat", "nasa badge"]
_lowerCamelCase : Any = processor(text=__lowerCAmelCase )
_lowerCamelCase : List[str] = 16
_lowerCamelCase : List[Any] = inputs["input_ids"]
_lowerCamelCase : Dict = [
[49_406, 2_368, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[49_406, 6_841, 11_301, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
self.assertListEqual(list(inputs.keys() ) ,["input_ids", "attention_mask"] )
self.assertEqual(inputs["input_ids"].shape ,(2, seq_length) )
self.assertListEqual(list(input_ids[0] ) ,predicted_ids[0] )
self.assertListEqual(list(input_ids[1] ) ,predicted_ids[1] )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : Dict = self.get_image_processor()
_lowerCamelCase : Dict = self.get_tokenizer()
_lowerCamelCase : Dict = OwlViTProcessor(tokenizer=__lowerCAmelCase ,image_processor=__lowerCAmelCase )
_lowerCamelCase : str = self.prepare_image_inputs()
_lowerCamelCase : Union[str, Any] = self.prepare_image_inputs()
_lowerCamelCase : int = processor(images=__lowerCAmelCase ,query_images=__lowerCAmelCase )
self.assertListEqual(list(inputs.keys() ) ,["query_pixel_values", "pixel_values"] )
# test if it raises when no input is passed
with pytest.raises(__lowerCAmelCase ):
processor()
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = self.get_image_processor()
_lowerCamelCase : Union[str, Any] = self.get_tokenizer()
_lowerCamelCase : Dict = OwlViTProcessor(tokenizer=__lowerCAmelCase ,image_processor=__lowerCAmelCase )
_lowerCamelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
_lowerCamelCase : Dict = processor.batch_decode(__lowerCAmelCase )
_lowerCamelCase : Optional[int] = tokenizer.batch_decode(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase ) | 340 |
"""simple docstring"""
from __future__ import annotations
def lowerCamelCase_( _lowerCamelCase ) -> bool:
'''simple docstring'''
_lowerCamelCase : int = str(_lowerCamelCase )
return len(_lowerCamelCase ) == 9 and set(_lowerCamelCase ) == set("123456789" )
def lowerCamelCase_( ) -> int | None:
'''simple docstring'''
for base_num in range(9999 , 4999 , -1 ):
_lowerCamelCase : Union[str, Any] = 100002 * base_num
if is_9_pandigital(_lowerCamelCase ):
return candidate
for base_num in range(333 , 99 , -1 ):
_lowerCamelCase : Tuple = 1002003 * base_num
if is_9_pandigital(_lowerCamelCase ):
return candidate
return None
if __name__ == "__main__":
print(f'''{solution() = }''') | 340 | 1 |
"""simple docstring"""
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class A_ :
def __init__( self: List[Any] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Any=13 ,__lowerCAmelCase: Union[str, Any]=32 ,__lowerCAmelCase: List[Any]=2 ,__lowerCAmelCase: Optional[Any]=3 ,__lowerCAmelCase: List[str]=16 ,__lowerCAmelCase: Dict=[1, 2, 1] ,__lowerCAmelCase: List[str]=[2, 2, 4] ,__lowerCAmelCase: Dict=2 ,__lowerCAmelCase: Dict=2.0 ,__lowerCAmelCase: Optional[Any]=True ,__lowerCAmelCase: List[Any]=0.0 ,__lowerCAmelCase: Union[str, Any]=0.0 ,__lowerCAmelCase: str=0.1 ,__lowerCAmelCase: Any="gelu" ,__lowerCAmelCase: int=False ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: Optional[int]=0.02 ,__lowerCAmelCase: List[Any]=1e-5 ,__lowerCAmelCase: str=True ,__lowerCAmelCase: List[str]=None ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: Tuple=10 ,__lowerCAmelCase: Any=8 ,__lowerCAmelCase: str=["stage1", "stage2", "stage3"] ,__lowerCAmelCase: int=[1, 2, 3] ,):
'''simple docstring'''
_lowerCamelCase : str = parent
_lowerCamelCase : Optional[int] = batch_size
_lowerCamelCase : int = image_size
_lowerCamelCase : List[str] = patch_size
_lowerCamelCase : List[Any] = num_channels
_lowerCamelCase : Any = embed_dim
_lowerCamelCase : Any = depths
_lowerCamelCase : List[Any] = num_heads
_lowerCamelCase : str = window_size
_lowerCamelCase : str = mlp_ratio
_lowerCamelCase : int = qkv_bias
_lowerCamelCase : Dict = hidden_dropout_prob
_lowerCamelCase : Optional[Any] = attention_probs_dropout_prob
_lowerCamelCase : int = drop_path_rate
_lowerCamelCase : Union[str, Any] = hidden_act
_lowerCamelCase : Union[str, Any] = use_absolute_embeddings
_lowerCamelCase : str = patch_norm
_lowerCamelCase : Tuple = layer_norm_eps
_lowerCamelCase : List[Any] = initializer_range
_lowerCamelCase : int = is_training
_lowerCamelCase : Optional[int] = scope
_lowerCamelCase : Optional[Any] = use_labels
_lowerCamelCase : Union[str, Any] = type_sequence_label_size
_lowerCamelCase : List[str] = encoder_stride
_lowerCamelCase : str = out_features
_lowerCamelCase : Any = out_indices
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCamelCase : Optional[Any] = None
if self.use_labels:
_lowerCamelCase : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
_lowerCamelCase : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
return MaskFormerSwinConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,out_features=self.out_features ,out_indices=self.out_indices ,)
def _lowercase ( self: int ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Tuple ):
'''simple docstring'''
_lowerCamelCase : Optional[Any] = MaskFormerSwinModel(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_lowerCamelCase : Any = model(__lowerCAmelCase )
_lowerCamelCase : str = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
_lowerCamelCase : List[str] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) )
def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Any ,__lowerCAmelCase: List[str] ):
'''simple docstring'''
_lowerCamelCase : List[Any] = MaskFormerSwinBackbone(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_lowerCamelCase : Optional[int] = model(__lowerCAmelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[13, 16, 16, 16] )
# verify channels
self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) )
self.parent.assertListEqual(model.channels ,[16, 32, 64] )
# verify ValueError
with self.parent.assertRaises(__lowerCAmelCase ):
_lowerCamelCase : Any = ["stem"]
_lowerCamelCase : str = MaskFormerSwinBackbone(config=__lowerCAmelCase )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase : Dict = self.prepare_config_and_inputs()
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = config_and_inputs
_lowerCamelCase : Optional[int] = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class A_ ( _a , _a , unittest.TestCase ):
lowerCAmelCase__ = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
lowerCAmelCase__ = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {}
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = False
def _lowercase ( self: List[str] ):
'''simple docstring'''
_lowerCamelCase : Tuple = MaskFormerSwinModelTester(self )
_lowerCamelCase : Any = ConfigTester(self ,config_class=__lowerCAmelCase ,embed_dim=37 )
@require_torch_multi_gpu
@unittest.skip(
reason=(
"`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with"
" `nn.DataParallel`"
) )
def _lowercase ( self: str ):
'''simple docstring'''
pass
def _lowercase ( self: str ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _lowercase ( self: List[Any] ):
'''simple docstring'''
return
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCAmelCase )
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*__lowerCAmelCase )
@unittest.skip("Swin does not use inputs_embeds" )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
pass
@unittest.skip("Swin does not support feedforward chunking" )
def _lowercase ( self: Any ):
'''simple docstring'''
pass
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase : List[Any] = model_class(__lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
_lowerCamelCase : Dict = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__lowerCAmelCase ,nn.Linear ) )
def _lowercase ( self: int ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase : int = model_class(__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCamelCase : Any = [*signature.parameters.keys()]
_lowerCamelCase : List[Any] = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,__lowerCAmelCase )
@unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions" )
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
pass
@unittest.skip(reason="MaskFormerSwin is only used as an internal backbone" )
def _lowercase ( self: Tuple ):
'''simple docstring'''
pass
def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Tuple ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
with torch.no_grad():
_lowerCamelCase : Optional[int] = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) )
_lowerCamelCase : Optional[Any] = outputs.hidden_states
_lowerCamelCase : List[str] = getattr(
self.model_tester ,"expected_num_hidden_layers" ,len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__lowerCAmelCase ) ,__lowerCAmelCase )
# Swin has a different seq_length
_lowerCamelCase : Optional[int] = (
config.patch_size
if isinstance(config.patch_size ,collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_lowerCamelCase : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,)
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCamelCase : int = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size ,collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
_lowerCamelCase : Any = True
self.check_hidden_states_output(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCamelCase : List[Any] = True
self.check_hidden_states_output(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: int ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCamelCase : List[Any] = 3
_lowerCamelCase : Union[str, Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size ,collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
_lowerCamelCase : Optional[Any] = (
config.patch_size
if isinstance(config.patch_size ,collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_lowerCamelCase : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
_lowerCamelCase : Optional[Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
_lowerCamelCase : List[Any] = True
self.check_hidden_states_output(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,(padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCamelCase : Tuple = True
self.check_hidden_states_output(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,(padded_height, padded_width) )
@unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints" )
def _lowercase ( self: str ):
'''simple docstring'''
pass
@unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" )
def _lowercase ( self: str ):
'''simple docstring'''
pass
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(__lowerCAmelCase: Tuple ):
_lowerCamelCase : Optional[Any] = 0
return t
def check_equivalence(__lowerCAmelCase: str ,__lowerCAmelCase: int ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Any={} ):
with torch.no_grad():
_lowerCamelCase : Any = model(**__lowerCAmelCase ,return_dict=__lowerCAmelCase ,**__lowerCAmelCase )
_lowerCamelCase : Any = model(**__lowerCAmelCase ,return_dict=__lowerCAmelCase ,**__lowerCAmelCase ).to_tuple()
def recursive_check(__lowerCAmelCase: int ,__lowerCAmelCase: Tuple ):
if isinstance(__lowerCAmelCase ,(List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(__lowerCAmelCase ,__lowerCAmelCase ):
recursive_check(__lowerCAmelCase ,__lowerCAmelCase )
elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values() ,dict_object.values() ):
recursive_check(__lowerCAmelCase ,__lowerCAmelCase )
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(__lowerCAmelCase ) ,set_nan_tensor_to_zero(__lowerCAmelCase ) ,atol=1e-5 ) ,msg=(
"Tuple and dict output are not equal. Difference:"
F""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:"""
F""" {torch.isnan(__lowerCAmelCase ).any()} and `inf`: {torch.isinf(__lowerCAmelCase )}. Dict has"""
F""" `nan`: {torch.isnan(__lowerCAmelCase ).any()} and `inf`: {torch.isinf(__lowerCAmelCase )}."""
) ,)
recursive_check(__lowerCAmelCase ,__lowerCAmelCase )
for model_class in self.all_model_classes:
_lowerCamelCase : List[Any] = model_class(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_lowerCamelCase : str = self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase )
check_equivalence(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ,return_labels=__lowerCAmelCase )
_lowerCamelCase : Dict = self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ,return_labels=__lowerCAmelCase )
check_equivalence(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : List[str] = self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase )
check_equivalence(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,{"output_hidden_states": True} )
_lowerCamelCase : Dict = self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ,return_labels=__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ,return_labels=__lowerCAmelCase )
check_equivalence(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,{"output_hidden_states": True} )
@require_torch
class A_ ( unittest.TestCase , _a ):
lowerCAmelCase__ = (MaskFormerSwinBackbone,) if is_torch_available() else ()
lowerCAmelCase__ = MaskFormerSwinConfig
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : str = MaskFormerSwinModelTester(self )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCamelCase : Union[str, Any] = inputs_dict["pixel_values"].shape[0]
for backbone_class in self.all_model_classes:
_lowerCamelCase : Union[str, Any] = backbone_class(__lowerCAmelCase )
backbone.to(__lowerCAmelCase )
backbone.eval()
_lowerCamelCase : Optional[Any] = backbone(**__lowerCAmelCase )
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps ,__lowerCAmelCase )
self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) )
for feature_map, n_channels in zip(outputs.feature_maps ,backbone.channels ):
self.assertTrue(feature_map.shape[:2] ,(batch_size, n_channels) )
self.assertIsNone(outputs.hidden_states )
self.assertIsNone(outputs.attentions )
# Test output_hidden_states=True
_lowerCamelCase : Optional[int] = backbone(**__lowerCAmelCase ,output_hidden_states=__lowerCAmelCase )
self.assertIsNotNone(outputs.hidden_states )
self.assertTrue(len(outputs.hidden_states ) ,len(backbone.stage_names ) )
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:] ,backbone.channels ):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels) ,(batch_size, n_channels) )
# Test output_attentions=True
if self.has_attentions:
_lowerCamelCase : List[Any] = backbone(**__lowerCAmelCase ,output_attentions=__lowerCAmelCase )
self.assertIsNotNone(outputs.attentions ) | 340 |
"""simple docstring"""
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class A_ ( _a ):
lowerCAmelCase__ = 'char'
lowerCAmelCase__ = 'bpe'
lowerCAmelCase__ = 'wp'
_lowerCAmelCase : List[str] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class A_ ( _a ):
lowerCAmelCase__ = ['image_processor', 'char_tokenizer']
lowerCAmelCase__ = 'ViTImageProcessor'
lowerCAmelCase__ = 'MgpstrTokenizer'
def __init__( self: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: Optional[int]=None ,**__lowerCAmelCase: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : Any = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." ,__lowerCAmelCase ,)
_lowerCamelCase : List[Any] = kwargs.pop("feature_extractor" )
_lowerCamelCase : str = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
_lowerCamelCase : List[str] = tokenizer
_lowerCamelCase : str = AutoTokenizer.from_pretrained("gpt2" )
_lowerCamelCase : List[str] = AutoTokenizer.from_pretrained("bert-base-uncased" )
super().__init__(__lowerCAmelCase ,__lowerCAmelCase )
def __call__( self: Optional[int] ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: Optional[Any]=None ,**__lowerCAmelCase: Tuple ):
'''simple docstring'''
if images is None and text is None:
raise ValueError("You need to specify either an `images` or `text` input to process." )
if images is not None:
_lowerCamelCase : Optional[int] = self.image_processor(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
if text is not None:
_lowerCamelCase : int = self.char_tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
_lowerCamelCase : Tuple = encodings["input_ids"]
return inputs
def _lowercase ( self: int ,__lowerCAmelCase: Dict ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = sequences
_lowerCamelCase : Dict = char_preds.size(0 )
_lowerCamelCase, _lowerCamelCase : Optional[Any] = self._decode_helper(__lowerCAmelCase ,"char" )
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = self._decode_helper(__lowerCAmelCase ,"bpe" )
_lowerCamelCase, _lowerCamelCase : Tuple = self._decode_helper(__lowerCAmelCase ,"wp" )
_lowerCamelCase : List[str] = []
_lowerCamelCase : str = []
for i in range(__lowerCAmelCase ):
_lowerCamelCase : str = [char_scores[i], bpe_scores[i], wp_scores[i]]
_lowerCamelCase : List[Any] = [char_strs[i], bpe_strs[i], wp_strs[i]]
_lowerCamelCase : Optional[Any] = scores.index(max(__lowerCAmelCase ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
_lowerCamelCase : Tuple = {}
_lowerCamelCase : Tuple = final_strs
_lowerCamelCase : int = final_scores
_lowerCamelCase : str = char_strs
_lowerCamelCase : Dict = bpe_strs
_lowerCamelCase : int = wp_strs
return out
def _lowercase ( self: List[str] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: List[Any] ):
'''simple docstring'''
if format == DecodeType.CHARACTER:
_lowerCamelCase : int = self.char_decode
_lowerCamelCase : List[str] = 1
_lowerCamelCase : Optional[int] = "[s]"
elif format == DecodeType.BPE:
_lowerCamelCase : Dict = self.bpe_decode
_lowerCamelCase : str = 2
_lowerCamelCase : Union[str, Any] = "#"
elif format == DecodeType.WORDPIECE:
_lowerCamelCase : int = self.wp_decode
_lowerCamelCase : List[str] = 102
_lowerCamelCase : List[Any] = "[SEP]"
else:
raise ValueError(F"""Format {format} is not supported.""" )
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = [], []
_lowerCamelCase : Any = pred_logits.size(0 )
_lowerCamelCase : int = pred_logits.size(1 )
_lowerCamelCase, _lowerCamelCase : List[Any] = pred_logits.topk(1 ,dim=-1 ,largest=__lowerCAmelCase ,sorted=__lowerCAmelCase )
_lowerCamelCase : Optional[int] = preds_index.view(-1 ,__lowerCAmelCase )[:, 1:]
_lowerCamelCase : List[str] = decoder(__lowerCAmelCase )
_lowerCamelCase, _lowerCamelCase : str = torch.nn.functional.softmax(__lowerCAmelCase ,dim=2 ).max(dim=2 )
_lowerCamelCase : Any = preds_max_prob[:, 1:]
for index in range(__lowerCAmelCase ):
_lowerCamelCase : List[Any] = preds_str[index].find(__lowerCAmelCase )
_lowerCamelCase : Optional[int] = preds_str[index][:pred_eos]
_lowerCamelCase : Optional[Any] = preds_index[index].cpu().tolist()
_lowerCamelCase : List[str] = pred_index.index(__lowerCAmelCase ) if eos_token in pred_index else -1
_lowerCamelCase : str = preds_max_prob[index][: pred_eos_index + 1]
_lowerCamelCase : Union[str, Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(__lowerCAmelCase )
conf_scores.append(__lowerCAmelCase )
return dec_strs, conf_scores
def _lowercase ( self: Tuple ,__lowerCAmelCase: Tuple ):
'''simple docstring'''
_lowerCamelCase : str = [seq.replace(" " ,"" ) for seq in self.char_tokenizer.batch_decode(__lowerCAmelCase )]
return decode_strs
def _lowercase ( self: List[str] ,__lowerCAmelCase: List[str] ):
'''simple docstring'''
return self.bpe_tokenizer.batch_decode(__lowerCAmelCase )
def _lowercase ( self: Tuple ,__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = [seq.replace(" " ,"" ) for seq in self.wp_tokenizer.batch_decode(__lowerCAmelCase )]
return decode_strs | 340 | 1 |
"""simple docstring"""
import argparse
import math
import os
import torch
from neural_compressor.utils.pytorch import load
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel
def lowerCamelCase_( ) -> Dict:
'''simple docstring'''
_lowerCamelCase : Dict = argparse.ArgumentParser()
parser.add_argument(
"-m" , "--pretrained_model_name_or_path" , type=_lowerCamelCase , default=_lowerCamelCase , required=_lowerCamelCase , help="Path to pretrained model or model identifier from huggingface.co/models." , )
parser.add_argument(
"-c" , "--caption" , type=_lowerCamelCase , default="robotic cat with wings" , help="Text used to generate images." , )
parser.add_argument(
"-n" , "--images_num" , type=_lowerCamelCase , default=4 , help="How much images to generate." , )
parser.add_argument(
"-s" , "--seed" , type=_lowerCamelCase , default=42 , help="Seed for random process." , )
parser.add_argument(
"-ci" , "--cuda_id" , type=_lowerCamelCase , default=0 , help="cuda_id." , )
_lowerCamelCase : Any = parser.parse_args()
return args
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]:
'''simple docstring'''
if not len(_lowerCamelCase ) == rows * cols:
raise ValueError("The specified number of rows and columns are not correct." )
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = imgs[0].size
_lowerCamelCase : Optional[int] = Image.new("RGB" , size=(cols * w, rows * h) )
_lowerCamelCase, _lowerCamelCase : Dict = grid.size
for i, img in enumerate(_lowerCamelCase ):
grid.paste(_lowerCamelCase , box=(i % cols * w, i // cols * h) )
return grid
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase="robotic cat with wings" , _lowerCamelCase=7.5 , _lowerCamelCase=50 , _lowerCamelCase=1 , _lowerCamelCase=42 , ) -> Any:
'''simple docstring'''
_lowerCamelCase : List[str] = torch.Generator(pipeline.device ).manual_seed(_lowerCamelCase )
_lowerCamelCase : int = pipeline(
_lowerCamelCase , guidance_scale=_lowerCamelCase , num_inference_steps=_lowerCamelCase , generator=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , ).images
_lowerCamelCase : str = int(math.sqrt(_lowerCamelCase ) )
_lowerCamelCase : int = image_grid(_lowerCamelCase , rows=_rows , cols=num_images_per_prompt // _rows )
return grid, images
_lowerCAmelCase : Tuple = parse_args()
# Load models and create wrapper for stable diffusion
_lowerCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''')
_lowerCAmelCase : Dict = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''')
_lowerCAmelCase : Dict = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''')
_lowerCAmelCase : List[Any] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''')
_lowerCAmelCase : str = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer
)
_lowerCAmelCase : Tuple = lambda images, clip_input: (images, False)
if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')):
_lowerCAmelCase : Optional[int] = load(args.pretrained_model_name_or_path, model=unet)
unet.eval()
setattr(pipeline, '''unet''', unet)
else:
_lowerCAmelCase : int = unet.to(torch.device('''cuda''', args.cuda_id))
_lowerCAmelCase : str = pipeline.to(unet.device)
_lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed)
grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split()))))
_lowerCAmelCase : int = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split()))
os.makedirs(dirname, exist_ok=True)
for idx, image in enumerate(images):
image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1))) | 340 |
"""simple docstring"""
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
_lowerCAmelCase : List[Any] = get_logger(__name__)
class A_ :
lowerCAmelCase__ = 'dummy_data'
lowerCAmelCase__ = 'datasets'
lowerCAmelCase__ = False
def __init__( self: List[str] ,__lowerCAmelCase: str ,__lowerCAmelCase: str ,__lowerCAmelCase: Union[Version, str] ,__lowerCAmelCase: Optional[str] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[List[Callable]] = None ,):
'''simple docstring'''
_lowerCamelCase : str = 0
_lowerCamelCase : List[str] = dataset_name
_lowerCamelCase : Optional[int] = cache_dir
_lowerCamelCase : Optional[int] = use_local_dummy_data
_lowerCamelCase : int = config
# download_callbacks take a single url as input
_lowerCamelCase : List[Callable] = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
_lowerCamelCase : int = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
_lowerCamelCase : Tuple = str(__lowerCAmelCase )
# to be downloaded
_lowerCamelCase : Optional[Any] = None
_lowerCamelCase : Dict = None
@property
def _lowercase ( self: str ):
'''simple docstring'''
if self._dummy_file is None:
_lowerCamelCase : List[str] = self.download_dummy_data()
return self._dummy_file
@property
def _lowercase ( self: str ):
'''simple docstring'''
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join("dummy" ,self.config.name ,self.version_name )
# structure is dummy / version_name
return os.path.join("dummy" ,self.version_name )
@property
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
return os.path.join(self.dummy_data_folder ,"dummy_data.zip" )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : Dict = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
_lowerCamelCase : Optional[int] = cached_path(
__lowerCAmelCase ,cache_dir=self.cache_dir ,extract_compressed_file=__lowerCAmelCase ,force_extract=__lowerCAmelCase )
return os.path.join(__lowerCAmelCase ,self.dummy_file_name )
@property
def _lowercase ( self: Tuple ):
'''simple docstring'''
return os.path.join(self.datasets_scripts_dir ,self.dataset_name ,self.dummy_zip_file )
@property
def _lowercase ( self: List[str] ):
'''simple docstring'''
if self._bucket_url is None:
_lowerCamelCase : List[str] = hf_github_url(self.dataset_name ,self.dummy_zip_file.replace(os.sep ,"/" ) )
return self._bucket_url
@property
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep ,"/" ).split("/" )[:-1] )
def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: str ,*__lowerCAmelCase: List[Any] ):
'''simple docstring'''
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
_lowerCamelCase : Tuple = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
_lowerCamelCase : Optional[Any] = self.dummy_file_name
# special case when data_url is a dict
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
return self.create_dummy_data_dict(__lowerCAmelCase ,__lowerCAmelCase )
elif isinstance(__lowerCAmelCase ,(list, tuple) ):
return self.create_dummy_data_list(__lowerCAmelCase ,__lowerCAmelCase )
else:
return self.create_dummy_data_single(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
return self.download_and_extract(__lowerCAmelCase )
def _lowercase ( self: List[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: int ):
'''simple docstring'''
return self.download_and_extract(__lowerCAmelCase )
def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
return path
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
return {}
def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: str ):
'''simple docstring'''
_lowerCamelCase : str = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
for single_url in single_urls:
download_callback(__lowerCAmelCase )
else:
_lowerCamelCase : Union[str, Any] = single_urls
download_callback(__lowerCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : Dict = [os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) ) for x in single_urls]
else:
_lowerCamelCase : Union[str, Any] = single_urls
_lowerCamelCase : List[str] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) )
_lowerCamelCase : List[Any] = value
# make sure that values are unique
if all(isinstance(__lowerCAmelCase ,__lowerCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
_lowerCamelCase : List[Any] = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Tuple ):
'''simple docstring'''
_lowerCamelCase : Dict = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
_lowerCamelCase : List[str] = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" ,__lowerCAmelCase ) ) for url in data_url )
_lowerCamelCase : Optional[Any] = all(
url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
_lowerCamelCase : Tuple = [data_url[0]] * len(__lowerCAmelCase )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(__lowerCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
_lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(single_url.split("/" )[-1] ) )
dummy_data_list.append(__lowerCAmelCase )
return dummy_data_list
def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: List[Any] ):
'''simple docstring'''
for download_callback in self.download_callbacks:
download_callback(__lowerCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
_lowerCamelCase : Optional[int] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(data_url.split("/" )[-1] ) )
if os.path.exists(__lowerCAmelCase ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
pass
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
pass
def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
def _iter_archive_members(__lowerCAmelCase: Any ):
# this preserves the order of the members inside the ZIP archive
_lowerCamelCase : Tuple = Path(self.dummy_file ).parent
_lowerCamelCase : str = path.relative_to(__lowerCAmelCase )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
_lowerCamelCase : Optional[int] = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = Path(__lowerCAmelCase )
_lowerCamelCase : int = _iter_archive_members(__lowerCAmelCase ) if self.use_local_dummy_data else path.rglob("*" )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith((".", "__") ):
yield file_path.relative_to(__lowerCAmelCase ).as_posix(), file_path.open("rb" )
def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : List[Any] = [paths]
for path in paths:
if os.path.isfile(__lowerCAmelCase ):
if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(__lowerCAmelCase ):
if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ):
continue
dirnames.sort()
for filename in sorted(__lowerCAmelCase ):
if filename.startswith((".", "__") ):
continue
yield os.path.join(__lowerCAmelCase ,__lowerCAmelCase ) | 340 | 1 |
"""simple docstring"""
from unittest.mock import Mock, patch
from file_transfer.send_file import send_file
@patch("socket.socket" )
@patch("builtins.open" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
_lowerCamelCase : Dict = Mock()
_lowerCamelCase : str = conn, Mock()
_lowerCamelCase : int = iter([1, None] )
_lowerCamelCase : str = lambda _lowerCamelCase : next(_lowerCamelCase )
# ===== invoke =====
send_file(filename="mytext.txt" , testing=_lowerCamelCase )
# ===== ensurance =====
sock.assert_called_once()
sock.return_value.bind.assert_called_once()
sock.return_value.listen.assert_called_once()
sock.return_value.accept.assert_called_once()
conn.recv.assert_called_once()
file.return_value.__enter__.assert_called_once()
file.return_value.__enter__.return_value.read.assert_called()
conn.send.assert_called_once()
conn.close.assert_called_once()
sock.return_value.shutdown.assert_called_once()
sock.return_value.close.assert_called_once() | 340 |
"""simple docstring"""
from decimal import Decimal, getcontext
from math import ceil, factorial
def lowerCamelCase_( _lowerCamelCase ) -> str:
'''simple docstring'''
if not isinstance(_lowerCamelCase , _lowerCamelCase ):
raise TypeError("Undefined for non-integers" )
elif precision < 1:
raise ValueError("Undefined for non-natural numbers" )
_lowerCamelCase : int = precision
_lowerCamelCase : Dict = ceil(precision / 14 )
_lowerCamelCase : Optional[Any] = 426880 * Decimal(10005 ).sqrt()
_lowerCamelCase : int = 1
_lowerCamelCase : Optional[int] = 13591409
_lowerCamelCase : int = Decimal(_lowerCamelCase )
for k in range(1 , _lowerCamelCase ):
_lowerCamelCase : Union[str, Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowerCamelCase ) ** 3)
linear_term += 545140134
exponential_term *= -262537412640768000
partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term
return str(constant_term / partial_sum )[:-1]
if __name__ == "__main__":
_lowerCAmelCase : Union[str, Any] = 50
print(f'''The first {n} digits of pi is: {pi(n)}''') | 340 | 1 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...utils import logging, randn_tensor
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
_lowerCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name
class A_ ( _a ):
def __init__( self: List[str] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Tuple ):
'''simple docstring'''
super().__init__()
self.register_modules(unet=__lowerCAmelCase ,scheduler=__lowerCAmelCase )
@torch.no_grad()
def __call__( self: List[Any] ,__lowerCAmelCase: int = 1 ,__lowerCAmelCase: int = 100 ,__lowerCAmelCase: Optional[Union[torch.Generator, List[torch.Generator]]] = None ,__lowerCAmelCase: Optional[float] = None ,__lowerCAmelCase: bool = True ,):
'''simple docstring'''
if audio_length_in_s is None:
_lowerCamelCase : List[str] = self.unet.config.sample_size / self.unet.config.sample_rate
_lowerCamelCase : Tuple = audio_length_in_s * self.unet.config.sample_rate
_lowerCamelCase : Optional[Any] = 2 ** len(self.unet.up_blocks )
if sample_size < 3 * down_scale_factor:
raise ValueError(
F"""{audio_length_in_s} is too small. Make sure it's bigger or equal to"""
F""" {3 * down_scale_factor / self.unet.config.sample_rate}.""" )
_lowerCamelCase : Dict = int(__lowerCAmelCase )
if sample_size % down_scale_factor != 0:
_lowerCamelCase : Optional[int] = (
(audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1
) * down_scale_factor
logger.info(
F"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled"""
F""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising"""
" process." )
_lowerCamelCase : Union[str, Any] = int(__lowerCAmelCase )
_lowerCamelCase : Dict = next(iter(self.unet.parameters() ) ).dtype
_lowerCamelCase : int = (batch_size, self.unet.config.in_channels, sample_size)
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) != batch_size:
raise ValueError(
F"""You have passed a list of generators of length {len(__lowerCAmelCase )}, but requested an effective batch"""
F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" )
_lowerCamelCase : str = randn_tensor(__lowerCAmelCase ,generator=__lowerCAmelCase ,device=self.device ,dtype=__lowerCAmelCase )
# set step values
self.scheduler.set_timesteps(__lowerCAmelCase ,device=audio.device )
_lowerCamelCase : str = self.scheduler.timesteps.to(__lowerCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
_lowerCamelCase : Optional[int] = self.unet(__lowerCAmelCase ,__lowerCAmelCase ).sample
# 2. compute previous image: x_t -> t_t-1
_lowerCamelCase : str = self.scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ).prev_sample
_lowerCamelCase : Any = audio.clamp(-1 ,1 ).float().cpu().numpy()
_lowerCamelCase : str = audio[:, :, :original_sample_size]
if not return_dict:
return (audio,)
return AudioPipelineOutput(audios=__lowerCAmelCase ) | 340 |
"""simple docstring"""
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class A_ ( _a ):
lowerCAmelCase__ = 42
lowerCAmelCase__ = None
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=0.9_9_9 , _lowerCamelCase="cosine" , ) -> List[str]:
'''simple docstring'''
if alpha_transform_type == "cosine":
def alpha_bar_fn(_lowerCamelCase ):
return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(_lowerCamelCase ):
return math.exp(t * -1_2.0 )
else:
raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" )
_lowerCamelCase : str = []
for i in range(_lowerCamelCase ):
_lowerCamelCase : Any = i / num_diffusion_timesteps
_lowerCamelCase : Optional[Any] = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(_lowerCamelCase ) / alpha_bar_fn(_lowerCamelCase ) , _lowerCamelCase ) )
return torch.tensor(_lowerCamelCase , dtype=torch.floataa )
class A_ ( _a , _a ):
@register_to_config
def __init__( self: str ,__lowerCAmelCase: int = 1_000 ,__lowerCAmelCase: str = "fixed_small_log" ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[float] = 1.0 ,__lowerCAmelCase: str = "epsilon" ,__lowerCAmelCase: str = "squaredcos_cap_v2" ,):
'''simple docstring'''
if beta_schedule != "squaredcos_cap_v2":
raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" )
_lowerCamelCase : Union[str, Any] = betas_for_alpha_bar(__lowerCAmelCase )
_lowerCamelCase : Optional[int] = 1.0 - self.betas
_lowerCamelCase : Dict = torch.cumprod(self.alphas ,dim=0 )
_lowerCamelCase : int = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
_lowerCamelCase : Tuple = 1.0
# setable values
_lowerCamelCase : List[Any] = None
_lowerCamelCase : Union[str, Any] = torch.from_numpy(np.arange(0 ,__lowerCAmelCase )[::-1].copy() )
_lowerCamelCase : List[str] = variance_type
def _lowercase ( self: Any ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ):
'''simple docstring'''
return sample
def _lowercase ( self: Optional[int] ,__lowerCAmelCase: int ,__lowerCAmelCase: Union[str, torch.device] = None ):
'''simple docstring'''
_lowerCamelCase : str = num_inference_steps
_lowerCamelCase : str = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
_lowerCamelCase : Union[str, Any] = (np.arange(0 ,__lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa )
_lowerCamelCase : int = torch.from_numpy(__lowerCAmelCase ).to(__lowerCAmelCase )
def _lowercase ( self: List[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: List[str]=None ,__lowerCAmelCase: str=None ):
'''simple docstring'''
if prev_timestep is None:
_lowerCamelCase : List[str] = t - 1
_lowerCamelCase : Optional[int] = self.alphas_cumprod[t]
_lowerCamelCase : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
_lowerCamelCase : Dict = 1 - alpha_prod_t
_lowerCamelCase : str = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
_lowerCamelCase : List[Any] = self.betas[t]
else:
_lowerCamelCase : str = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
_lowerCamelCase : int = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
_lowerCamelCase : List[str] = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
_lowerCamelCase : Dict = torch.log(torch.clamp(__lowerCAmelCase ,min=1e-20 ) )
_lowerCamelCase : str = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
_lowerCamelCase : str = variance.log()
_lowerCamelCase : str = beta.log()
_lowerCamelCase : Optional[int] = (predicted_variance + 1) / 2
_lowerCamelCase : Union[str, Any] = frac * max_log + (1 - frac) * min_log
return variance
def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: int ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: bool = True ,):
'''simple docstring'''
_lowerCamelCase : str = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
_lowerCamelCase, _lowerCamelCase : int = torch.split(__lowerCAmelCase ,sample.shape[1] ,dim=1 )
else:
_lowerCamelCase : List[Any] = None
# 1. compute alphas, betas
if prev_timestep is None:
_lowerCamelCase : List[Any] = t - 1
_lowerCamelCase : Dict = self.alphas_cumprod[t]
_lowerCamelCase : int = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
_lowerCamelCase : Dict = 1 - alpha_prod_t
_lowerCamelCase : List[str] = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
_lowerCamelCase : Any = self.betas[t]
_lowerCamelCase : str = self.alphas[t]
else:
_lowerCamelCase : Any = 1 - alpha_prod_t / alpha_prod_t_prev
_lowerCamelCase : Optional[Any] = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
_lowerCamelCase : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
_lowerCamelCase : List[Any] = model_output
else:
raise ValueError(
F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`"""
" for the UnCLIPScheduler." )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
_lowerCamelCase : Any = torch.clamp(
__lowerCAmelCase ,-self.config.clip_sample_range ,self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_lowerCamelCase : List[str] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
_lowerCamelCase : Optional[int] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_lowerCamelCase : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
_lowerCamelCase : Union[str, Any] = 0
if t > 0:
_lowerCamelCase : Dict = randn_tensor(
model_output.shape ,dtype=model_output.dtype ,generator=__lowerCAmelCase ,device=model_output.device )
_lowerCamelCase : Any = self._get_variance(
__lowerCAmelCase ,predicted_variance=__lowerCAmelCase ,prev_timestep=__lowerCAmelCase ,)
if self.variance_type == "fixed_small_log":
_lowerCamelCase : Optional[Any] = variance
elif self.variance_type == "learned_range":
_lowerCamelCase : Optional[int] = (0.5 * variance).exp()
else:
raise ValueError(
F"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`"""
" for the UnCLIPScheduler." )
_lowerCamelCase : Dict = variance * variance_noise
_lowerCamelCase : List[Any] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=__lowerCAmelCase ,pred_original_sample=__lowerCAmelCase )
def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.IntTensor ,):
'''simple docstring'''
_lowerCamelCase : int = self.alphas_cumprod.to(device=original_samples.device ,dtype=original_samples.dtype )
_lowerCamelCase : Any = timesteps.to(original_samples.device )
_lowerCamelCase : List[Any] = alphas_cumprod[timesteps] ** 0.5
_lowerCamelCase : List[Any] = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
_lowerCamelCase : int = sqrt_alpha_prod.unsqueeze(-1 )
_lowerCamelCase : Union[str, Any] = (1 - alphas_cumprod[timesteps]) ** 0.5
_lowerCamelCase : str = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
_lowerCamelCase : Union[str, Any] = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
_lowerCamelCase : Dict = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples | 340 | 1 |
"""simple docstring"""
import re
def lowerCamelCase_( _lowerCamelCase ) -> str:
'''simple docstring'''
if len(re.findall("[ATCG]" , _lowerCamelCase ) ) != len(_lowerCamelCase ):
raise ValueError("Invalid Strand" )
return dna.translate(dna.maketrans("ATCG" , "TAGC" ) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 340 |
"""simple docstring"""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConformerConfig,
WavaVecaConformerForCTC,
WavaVecaConformerForPreTraining,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
_lowerCAmelCase : List[str] = logging.get_logger(__name__)
_lowerCAmelCase : Dict = {
'''post_extract_proj''': '''feature_projection.projection''',
'''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''',
'''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''',
'''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''',
'''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''',
'''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''',
'''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''',
'''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''',
'''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''',
'''self_attn.rotary_emb''': '''encoder.embed_positions''',
'''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''',
'''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''',
'''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''',
'''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''',
'''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''',
'''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''',
'''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''',
'''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''',
'''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''',
'''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''',
'''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''',
'''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''',
'''final_layer_norm''': '''encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''encoder.layer_norm''',
'''w2v_model.layer_norm''': '''feature_projection.layer_norm''',
'''quantizer.weight_proj''': '''quantizer.weight_proj''',
'''quantizer.vars''': '''quantizer.codevectors''',
'''project_q''': '''project_q''',
'''final_proj''': '''project_hid''',
'''w2v_encoder.proj''': '''lm_head''',
'''mask_emb''': '''masked_spec_embed''',
}
_lowerCAmelCase : str = [
'''lm_head''',
'''quantizer.weight_proj''',
'''quantizer.codevectors''',
'''project_q''',
'''project_hid''',
]
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
'''simple docstring'''
for attribute in key.split("." ):
_lowerCamelCase : Tuple = getattr(_lowerCamelCase , _lowerCamelCase )
if weight_type is not None:
_lowerCamelCase : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ).shape
else:
_lowerCamelCase : Dict = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}""" )
if weight_type == "weight":
_lowerCamelCase : Tuple = value
elif weight_type == "weight_g":
_lowerCamelCase : List[str] = value
elif weight_type == "weight_v":
_lowerCamelCase : List[Any] = value
elif weight_type == "bias":
_lowerCamelCase : str = value
elif weight_type == "running_mean":
_lowerCamelCase : Optional[int] = value
elif weight_type == "running_var":
_lowerCamelCase : Optional[Any] = value
elif weight_type == "num_batches_tracked":
_lowerCamelCase : int = value
elif weight_type == "inv_freq":
_lowerCamelCase : List[str] = value
else:
_lowerCamelCase : Optional[Any] = value
logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]:
'''simple docstring'''
_lowerCamelCase : Dict = []
_lowerCamelCase : Optional[Any] = fairseq_model.state_dict()
_lowerCamelCase : List[Any] = hf_model.wavaveca_conformer.feature_extractor
for name, value in fairseq_dict.items():
_lowerCamelCase : Dict = False
if "conv_layers" in name:
load_conv_layer(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , )
_lowerCamelCase : List[Any] = True
else:
for key, mapped_key in MAPPING.items():
_lowerCamelCase : Dict = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
_lowerCamelCase : int = True
if "*" in mapped_key:
_lowerCamelCase : Tuple = name.split(_lowerCamelCase )[0].split("." )[-2]
_lowerCamelCase : int = mapped_key.replace("*" , _lowerCamelCase )
if "pos_bias_u" in name:
_lowerCamelCase : int = None
elif "pos_bias_v" in name:
_lowerCamelCase : Any = None
elif "weight_g" in name:
_lowerCamelCase : Any = "weight_g"
elif "weight_v" in name:
_lowerCamelCase : Any = "weight_v"
elif "bias" in name:
_lowerCamelCase : Optional[Any] = "bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
_lowerCamelCase : Dict = "weight"
elif "running_mean" in name:
_lowerCamelCase : str = "running_mean"
elif "inv_freq" in name:
_lowerCamelCase : List[Any] = "inv_freq"
elif "running_var" in name:
_lowerCamelCase : Tuple = "running_var"
elif "num_batches_tracked" in name:
_lowerCamelCase : str = "num_batches_tracked"
else:
_lowerCamelCase : Dict = None
set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
continue
if not is_used:
unused_weights.append(_lowerCamelCase )
logger.warning(F"""Unused weights: {unused_weights}""" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : int = full_name.split("conv_layers." )[-1]
_lowerCamelCase : List[Any] = name.split("." )
_lowerCamelCase : Union[str, Any] = int(items[0] )
_lowerCamelCase : List[Any] = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
_lowerCamelCase : str = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
_lowerCamelCase : int = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
_lowerCamelCase : Dict = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
_lowerCamelCase : Optional[Any] = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(_lowerCamelCase )
@torch.no_grad()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> Dict:
'''simple docstring'''
if config_path is not None:
_lowerCamelCase : Union[str, Any] = WavaVecaConformerConfig.from_pretrained(_lowerCamelCase , hidden_act="swish" )
else:
_lowerCamelCase : Dict = WavaVecaConformerConfig()
if "rope" in checkpoint_path:
_lowerCamelCase : List[Any] = "rotary"
if is_finetuned:
if dict_path:
_lowerCamelCase : Dict = Dictionary.load(_lowerCamelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
_lowerCamelCase : Optional[int] = target_dict.pad_index
_lowerCamelCase : Dict = target_dict.bos_index
_lowerCamelCase : Optional[Any] = target_dict.eos_index
_lowerCamelCase : str = len(target_dict.symbols )
_lowerCamelCase : int = os.path.join(_lowerCamelCase , "vocab.json" )
if not os.path.isdir(_lowerCamelCase ):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCamelCase ) )
return
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
_lowerCamelCase : Tuple = target_dict.indices
# fairseq has the <pad> and <s> switched
_lowerCamelCase : List[str] = 0
_lowerCamelCase : List[Any] = 1
with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_handle:
json.dump(_lowerCamelCase , _lowerCamelCase )
_lowerCamelCase : Optional[int] = WavaVecaCTCTokenizer(
_lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCamelCase , )
_lowerCamelCase : Tuple = True if config.feat_extract_norm == "layer" else False
_lowerCamelCase : Optional[Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , )
_lowerCamelCase : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase )
processor.save_pretrained(_lowerCamelCase )
_lowerCamelCase : List[Any] = WavaVecaConformerForCTC(_lowerCamelCase )
else:
_lowerCamelCase : Any = WavaVecaConformerForPreTraining(_lowerCamelCase )
if is_finetuned:
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} )
else:
_lowerCamelCase : List[Any] = argparse.Namespace(task="audio_pretraining" )
_lowerCamelCase : Optional[Any] = fairseq.tasks.setup_task(_lowerCamelCase )
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCamelCase )
_lowerCamelCase : Dict = model[0].eval()
recursively_load_weights(_lowerCamelCase , _lowerCamelCase , not is_finetuned )
hf_wavavec.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase : Tuple = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not'''
)
_lowerCAmelCase : str = parser.parse_args()
convert_wavaveca_conformer_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
) | 340 | 1 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class A_ ( metaclass=_a ):
lowerCAmelCase__ = ['torch', 'torchsde']
def __init__( self: List[str] ,*__lowerCAmelCase: Any ,**__lowerCAmelCase: Union[str, Any] ):
'''simple docstring'''
requires_backends(self ,["torch", "torchsde"] )
@classmethod
def _lowercase ( cls: List[Any] ,*__lowerCAmelCase: int ,**__lowerCAmelCase: Union[str, Any] ):
'''simple docstring'''
requires_backends(cls ,["torch", "torchsde"] )
@classmethod
def _lowercase ( cls: Optional[Any] ,*__lowerCAmelCase: Union[str, Any] ,**__lowerCAmelCase: Any ):
'''simple docstring'''
requires_backends(cls ,["torch", "torchsde"] ) | 340 |
"""simple docstring"""
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float:
'''simple docstring'''
_validate_point(_lowerCamelCase )
_validate_point(_lowerCamelCase )
if len(_lowerCamelCase ) != len(_lowerCamelCase ):
raise ValueError("Both points must be in the same n-dimensional space" )
return float(sum(abs(a - b ) for a, b in zip(_lowerCamelCase , _lowerCamelCase ) ) )
def lowerCamelCase_( _lowerCamelCase ) -> None:
'''simple docstring'''
if point:
if isinstance(_lowerCamelCase , _lowerCamelCase ):
for item in point:
if not isinstance(_lowerCamelCase , (int, float) ):
_lowerCamelCase : Dict = (
"Expected a list of numbers as input, found "
F"""{type(_lowerCamelCase ).__name__}"""
)
raise TypeError(_lowerCamelCase )
else:
_lowerCamelCase : Optional[int] = F"""Expected a list of numbers as input, found {type(_lowerCamelCase ).__name__}"""
raise TypeError(_lowerCamelCase )
else:
raise ValueError("Missing an input" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float:
'''simple docstring'''
_validate_point(_lowerCamelCase )
_validate_point(_lowerCamelCase )
if len(_lowerCamelCase ) != len(_lowerCamelCase ):
raise ValueError("Both points must be in the same n-dimensional space" )
return float(sum(abs(x - y ) for x, y in zip(_lowerCamelCase , _lowerCamelCase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 340 | 1 |
"""simple docstring"""
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , ) -> int:
'''simple docstring'''
_lowerCamelCase : List[str] = {}
if train_file is not None:
_lowerCamelCase : Tuple = [train_file]
if eval_file is not None:
_lowerCamelCase : int = [eval_file]
if test_file is not None:
_lowerCamelCase : List[str] = [test_file]
_lowerCamelCase : Union[str, Any] = datasets.load_dataset("csv" , data_files=_lowerCamelCase )
_lowerCamelCase : List[Any] = list(ds[list(files.keys() )[0]].features.keys() )
_lowerCamelCase : str = features_name.pop(_lowerCamelCase )
_lowerCamelCase : List[Any] = list(set(ds[list(files.keys() )[0]][label_name] ) )
_lowerCamelCase : Union[str, Any] = {label: i for i, label in enumerate(_lowerCamelCase )}
_lowerCamelCase : List[Any] = tokenizer.model_input_names
_lowerCamelCase : List[str] = {}
if len(_lowerCamelCase ) == 1:
for k in files.keys():
_lowerCamelCase : Optional[int] = ds[k].map(
lambda _lowerCamelCase : tokenizer.batch_encode_plus(
example[features_name[0]] , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="max_length" ) , batched=_lowerCamelCase , )
elif len(_lowerCamelCase ) == 2:
for k in files.keys():
_lowerCamelCase : Union[str, Any] = ds[k].map(
lambda _lowerCamelCase : tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]) , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="max_length" , ) , batched=_lowerCamelCase , )
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
_lowerCamelCase : List[Any] = {k: v for k, v in ex.items() if k in input_names}
_lowerCamelCase : Tuple = labelaid[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
_lowerCamelCase : List[Any] = {k: v for k, v in ex.items() if k in input_names}
_lowerCamelCase : str = labelaid[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
_lowerCamelCase : Tuple = {k: v for k, v in ex.items() if k in input_names}
_lowerCamelCase : int = labelaid[ex[label_name]]
yield (d, label)
_lowerCamelCase : Dict = (
tf.data.Dataset.from_generator(
_lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
_lowerCamelCase : List[str] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) )
_lowerCamelCase : int = (
tf.data.Dataset.from_generator(
_lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
_lowerCamelCase : str = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) )
_lowerCamelCase : Any = (
tf.data.Dataset.from_generator(
_lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
_lowerCamelCase : str = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) )
return train_ds, val_ds, test_ds, labelaid
_lowerCAmelCase : List[Any] = logging.getLogger(__name__)
@dataclass
class A_ :
lowerCAmelCase__ = field(metadata={'help': 'Which column contains the label'} )
lowerCAmelCase__ = field(default=_a , metadata={'help': 'The path of the training file'} )
lowerCAmelCase__ = field(default=_a , metadata={'help': 'The path of the development file'} )
lowerCAmelCase__ = field(default=_a , metadata={'help': 'The path of the test file'} )
lowerCAmelCase__ = field(
default=1_2_8 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
lowerCAmelCase__ = field(
default=_a , metadata={'help': 'Overwrite the cached training and evaluation sets'} )
@dataclass
class A_ :
lowerCAmelCase__ = field(
metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
lowerCAmelCase__ = field(
default=_a , metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
lowerCAmelCase__ = field(
default=_a , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
lowerCAmelCase__ = field(default=_a , metadata={'help': 'Set this flag to use fast tokenization.'} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
lowerCAmelCase__ = field(
default=_a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , )
def lowerCamelCase_( ) -> Any:
'''simple docstring'''
_lowerCamelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) )
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
" --overwrite_output_dir to overcome." )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , )
logger.info(
F"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """
F"""16-bits training: {training_args.fpaa}""" )
logger.info(F"""Training/evaluation parameters {training_args}""" )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_lowerCamelCase : str = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = get_tfds(
train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_lowerCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , )
_lowerCamelCase : int = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_lowerCamelCase ) , labelaid=_lowerCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , )
with training_args.strategy.scope():
_lowerCamelCase : str = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , )
def compute_metrics(_lowerCamelCase ) -> Dict:
_lowerCamelCase : Dict = np.argmax(p.predictions , axis=1 )
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
_lowerCamelCase : Any = TFTrainer(
model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=_lowerCamelCase , eval_dataset=_lowerCamelCase , compute_metrics=_lowerCamelCase , )
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
_lowerCamelCase : List[Any] = {}
if training_args.do_eval:
logger.info("*** Evaluate ***" )
_lowerCamelCase : int = trainer.evaluate()
_lowerCamelCase : List[Any] = os.path.join(training_args.output_dir , "eval_results.txt" )
with open(_lowerCamelCase , "w" ) as writer:
logger.info("***** Eval results *****" )
for key, value in result.items():
logger.info(F""" {key} = {value}""" )
writer.write(F"""{key} = {value}\n""" )
results.update(_lowerCamelCase )
return results
if __name__ == "__main__":
main() | 340 |
"""simple docstring"""
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Optional[Any] = np.inf
def set_batch_size(_lowerCamelCase ) -> None:
nonlocal batch_size
if isinstance(_lowerCamelCase , _lowerCamelCase ):
_lowerCamelCase : Optional[int] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(_lowerCamelCase , _lowerCamelCase ):
_lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(_lowerCamelCase , _lowerCamelCase ) and feature.dtype == "binary":
_lowerCamelCase : List[str] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(_lowerCamelCase , _lowerCamelCase )
return None if batch_size is np.inf else batch_size
class A_ ( _a ):
def __init__( self: Optional[int] ,__lowerCAmelCase: NestedDataStructureLike[PathLike] ,__lowerCAmelCase: Optional[NamedSplit] = None ,__lowerCAmelCase: Optional[Features] = None ,__lowerCAmelCase: str = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: int ,):
'''simple docstring'''
super().__init__(
__lowerCAmelCase ,split=__lowerCAmelCase ,features=__lowerCAmelCase ,cache_dir=__lowerCAmelCase ,keep_in_memory=__lowerCAmelCase ,streaming=__lowerCAmelCase ,num_proc=__lowerCAmelCase ,**__lowerCAmelCase ,)
_lowerCamelCase : Tuple = path_or_paths if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) else {self.split: path_or_paths}
_lowerCamelCase : Any = _PACKAGED_DATASETS_MODULES["parquet"][1]
_lowerCamelCase : int = Parquet(
cache_dir=__lowerCAmelCase ,data_files=__lowerCAmelCase ,features=__lowerCAmelCase ,hash=__lowerCAmelCase ,**__lowerCAmelCase ,)
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
if self.streaming:
_lowerCamelCase : List[Any] = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
_lowerCamelCase : Tuple = None
_lowerCamelCase : Optional[int] = None
_lowerCamelCase : List[str] = None
_lowerCamelCase : str = None
self.builder.download_and_prepare(
download_config=__lowerCAmelCase ,download_mode=__lowerCAmelCase ,verification_mode=__lowerCAmelCase ,base_path=__lowerCAmelCase ,num_proc=self.num_proc ,)
_lowerCamelCase : Any = self.builder.as_dataset(
split=self.split ,verification_mode=__lowerCAmelCase ,in_memory=self.keep_in_memory )
return dataset
class A_ :
def __init__( self: str ,__lowerCAmelCase: Dataset ,__lowerCAmelCase: Union[PathLike, BinaryIO] ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: List[Any] ,):
'''simple docstring'''
_lowerCamelCase : Any = dataset
_lowerCamelCase : Any = path_or_buf
_lowerCamelCase : Any = batch_size or get_writer_batch_size(dataset.features )
_lowerCamelCase : List[str] = parquet_writer_kwargs
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase : Tuple = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf ,(str, bytes, os.PathLike) ):
with open(self.path_or_buf ,"wb+" ) as buffer:
_lowerCamelCase : str = self._write(file_obj=__lowerCAmelCase ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs )
else:
_lowerCamelCase : Optional[int] = self._write(file_obj=self.path_or_buf ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs )
return written
def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: BinaryIO ,__lowerCAmelCase: int ,**__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : List[str] = 0
_lowerCamelCase : Optional[int] = parquet_writer_kwargs.pop("path_or_buf" ,__lowerCAmelCase )
_lowerCamelCase : List[str] = self.dataset.features.arrow_schema
_lowerCamelCase : str = pq.ParquetWriter(__lowerCAmelCase ,schema=__lowerCAmelCase ,**__lowerCAmelCase )
for offset in logging.tqdm(
range(0 ,len(self.dataset ) ,__lowerCAmelCase ) ,unit="ba" ,disable=not logging.is_progress_bar_enabled() ,desc="Creating parquet from Arrow format" ,):
_lowerCamelCase : List[str] = query_table(
table=self.dataset._data ,key=slice(__lowerCAmelCase ,offset + batch_size ) ,indices=self.dataset._indices if self.dataset._indices is not None else None ,)
writer.write_table(__lowerCAmelCase )
written += batch.nbytes
writer.close()
return written | 340 | 1 |
"""simple docstring"""
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
_lowerCAmelCase : Optional[int] = '''__DUMMY_TRANSFORMERS_USER__'''
_lowerCAmelCase : Dict = '''Dummy User'''
_lowerCAmelCase : Optional[int] = '''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'''
_lowerCAmelCase : Tuple = '''https://hub-ci.huggingface.co'''
_lowerCAmelCase : Any = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}'''
_lowerCAmelCase : Tuple = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}'''
_lowerCAmelCase : Dict = Path('''~/.huggingface/hub_ci_token''').expanduser()
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
monkeypatch.setattr(
"huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , _lowerCamelCase )
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> Tuple:
'''simple docstring'''
monkeypatch.setattr("datasets.config.HF_ENDPOINT" , _lowerCamelCase )
monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , _lowerCamelCase )
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , _lowerCamelCase )
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Dict:
'''simple docstring'''
HfFolder.save_token(_lowerCamelCase )
yield
HfFolder.delete_token()
@pytest.fixture(scope="session" )
def lowerCamelCase_( ) -> str:
'''simple docstring'''
return HfApi(endpoint=_lowerCamelCase )
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : Dict = HfFolder.get_token()
HfFolder.save_token(_lowerCamelCase )
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(_lowerCamelCase )
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
def _cleanup_repo(_lowerCamelCase ):
hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" )
return _cleanup_repo
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> List[str]:
'''simple docstring'''
@contextmanager
def _temporary_repo(_lowerCamelCase ):
try:
yield repo_id
finally:
cleanup_repo(_lowerCamelCase )
return _temporary_repo
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
_lowerCamelCase : Tuple = F"""repo_txt_data-{int(time.time() * 10e3 )}"""
_lowerCamelCase : List[str] = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase )
hf_api.upload_file(
token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data/text_data.txt" , repo_id=_lowerCamelCase , repo_type="dataset" , )
yield repo_id
try:
hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
'''simple docstring'''
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
'''simple docstring'''
_lowerCamelCase : List[Any] = F"""repo_zipped_txt_data-{int(time.time() * 10e3 )}"""
_lowerCamelCase : Dict = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase )
hf_api.upload_file(
token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , )
yield repo_id
try:
hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict:
'''simple docstring'''
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
'''simple docstring'''
_lowerCamelCase : Any = F"""repo_zipped_img_data-{int(time.time() * 10e3 )}"""
_lowerCamelCase : List[Any] = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase )
hf_api.upload_file(
token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , )
yield repo_id
try:
hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
return hf_private_dataset_repo_zipped_img_data_ | 340 |
"""simple docstring"""
import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def lowerCamelCase_( _lowerCamelCase ) -> Tuple:
'''simple docstring'''
_lowerCamelCase : Optional[int] = {}
_lowerCamelCase : Optional[int] = tokenizer(example["content"] , truncation=_lowerCamelCase )["input_ids"]
_lowerCamelCase : Dict = len(example["content"] ) / len(output["input_ids"] )
return output
_lowerCAmelCase : Tuple = HfArgumentParser(PretokenizationArguments)
_lowerCAmelCase : Optional[int] = parser.parse_args()
if args.num_workers is None:
_lowerCAmelCase : Any = multiprocessing.cpu_count()
_lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(args.tokenizer_dir)
_lowerCAmelCase : Union[str, Any] = time.time()
_lowerCAmelCase : Optional[int] = load_dataset(args.dataset_name, split='''train''')
print(f'''Dataset loaded in {time.time()-t_start:.2f}s''')
_lowerCAmelCase : Any = time.time()
_lowerCAmelCase : Dict = ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
'''repo_name''',
'''path''',
'''copies''',
'''size''',
'''content''',
'''license''',
'''hash''',
'''line_mean''',
'''line_max''',
'''alpha_frac''',
'''autogenerated''',
],
)
print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''')
_lowerCAmelCase : str = time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''') | 340 | 1 |
"""simple docstring"""
import unittest
from transformers import GPTSwaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
_lowerCAmelCase : Dict = get_tests_dir('''fixtures/test_sentencepiece_with_bytefallback.model''')
@require_sentencepiece
@require_tokenizers
class A_ ( _a , unittest.TestCase ):
lowerCAmelCase__ = GPTSwaTokenizer
lowerCAmelCase__ = False
lowerCAmelCase__ = True
lowerCAmelCase__ = False
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
_lowerCamelCase : Dict = GPTSwaTokenizer(__lowerCAmelCase ,eos_token="<unk>" ,bos_token="<unk>" ,pad_token="<unk>" )
tokenizer.save_pretrained(self.tmpdirname )
def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Tuple ):
'''simple docstring'''
_lowerCamelCase : Any = "This is a test"
_lowerCamelCase : List[str] = "This is a test"
return input_text, output_text
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase : Tuple = "<s>"
_lowerCamelCase : List[Any] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) ,__lowerCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) ,__lowerCAmelCase )
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] ,"<unk>" )
self.assertEqual(vocab_keys[1] ,"<s>" )
self.assertEqual(vocab_keys[-1] ,"j" )
self.assertEqual(len(__lowerCAmelCase ) ,2_000 )
def _lowercase ( self: Any ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size ,2_000 )
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : str = GPTSwaTokenizer(__lowerCAmelCase )
_lowerCamelCase : Tuple = tokenizer.tokenize("This is a test" )
self.assertListEqual(__lowerCAmelCase ,["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) ,[465, 287, 265, 631, 842] )
_lowerCamelCase : List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé." )
# fmt: off
self.assertListEqual(
__lowerCAmelCase ,["▁I", "▁was", "▁bor", "n", "▁in", "▁", "<0x39>", "2", "0", "0", "0", ",", "▁and", "▁this", "▁is", "▁f", "al", "s", "<0xC3>", "<0xA9>", "."] ,)
# fmt: on
_lowerCamelCase : List[Any] = tokenizer.convert_tokens_to_ids(__lowerCAmelCase )
self.assertListEqual(
__lowerCAmelCase ,[262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] ,)
_lowerCamelCase : List[Any] = tokenizer.convert_ids_to_tokens(__lowerCAmelCase )
# fmt: off
self.assertListEqual(
__lowerCAmelCase ,["▁I", "▁was", "▁bor", "n", "▁in", "▁", "<0x39>", "2", "0", "0", "0", ",", "▁and", "▁this", "▁is", "▁f", "al", "s", "<0xC3>", "<0xA9>", "."] )
# fmt: on
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : Any = GPTSwaTokenizer(__lowerCAmelCase )
_lowerCamelCase : str = ["This is a test", "I was born in 92000, and this is falsé."]
_lowerCamelCase : Dict = [
[465, 287, 265, 631, 842],
[262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260],
]
# Test that encode_fast returns the same as tokenize + convert_tokens_to_ids
for text, expected_ids in zip(__lowerCAmelCase ,__lowerCAmelCase ):
self.assertListEqual(tokenizer.encode_fast(__lowerCAmelCase ) ,__lowerCAmelCase )
# Test that decode_fast returns the input text
for text, token_ids in zip(__lowerCAmelCase ,__lowerCAmelCase ):
self.assertEqual(tokenizer.decode_fast(__lowerCAmelCase ) ,__lowerCAmelCase )
@slow
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : Dict = [
"<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')",
"Hey there, how are you doing this fine day?",
"This is a text with a trailing spaces followed by a dot .",
"Häj sväjs lillebrör! =)",
"Det är inget fel på Mr. Cool",
]
# fmt: off
_lowerCamelCase : List[str] = {"input_ids": [[63_423, 5, 6_811, 14_954, 282, 816, 3_821, 63_466, 63_425, 63_462, 18, 63_978, 678, 301, 1_320, 63_423, 63_455, 63_458, 18, 63_982, 4_246, 3_940, 1_901, 47_789, 5_547, 18_994], [19_630, 1_100, 63_446, 1_342, 633, 544, 4_488, 593, 5_102, 2_416, 63_495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_652, 428, 268, 1_936, 515, 268, 58_593, 22_413, 9_106, 546, 268, 33_213, 63_979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55_130, 63_450, 924, 63_449, 2_249, 4_062, 1_558, 318, 63_504, 21_498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2_827, 2_559, 332, 6_575, 63_443, 26_801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__lowerCAmelCase ,model_name="AI-Sweden/gpt-sw3-126m" ,sequences=__lowerCAmelCase ,) | 340 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowerCAmelCase : Optional[Any] = {
'''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''],
'''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''],
'''processing_mctct''': ['''MCTCTProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Dict = [
'''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MCTCTForCTC''',
'''MCTCTModel''',
'''MCTCTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
_lowerCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 340 | 1 |
"""simple docstring"""
import torch
def lowerCamelCase_( ) -> List[str]:
'''simple docstring'''
if torch.cuda.is_available():
_lowerCamelCase : Any = torch.cuda.device_count()
else:
_lowerCamelCase : List[str] = 0
print(F"""Successfully ran on {num_gpus} GPUs""" )
if __name__ == "__main__":
main() | 340 |
"""simple docstring"""
import logging
from transformers.configuration_utils import PretrainedConfig
_lowerCAmelCase : Optional[Any] = logging.getLogger(__name__)
class A_ ( _a ):
lowerCAmelCase__ = 'masked_bert'
def __init__( self: Union[str, Any] ,__lowerCAmelCase: Dict=30_522 ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Dict=12 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: List[Any]="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Tuple=512 ,__lowerCAmelCase: str=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Union[str, Any]=1e-12 ,__lowerCAmelCase: Union[str, Any]=0 ,__lowerCAmelCase: List[Any]="topK" ,__lowerCAmelCase: Optional[Any]="constant" ,__lowerCAmelCase: Optional[Any]=0.0 ,**__lowerCAmelCase: str ,):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCAmelCase ,**__lowerCAmelCase )
_lowerCamelCase : List[Any] = vocab_size
_lowerCamelCase : Optional[Any] = hidden_size
_lowerCamelCase : Tuple = num_hidden_layers
_lowerCamelCase : Tuple = num_attention_heads
_lowerCamelCase : Optional[Any] = hidden_act
_lowerCamelCase : Optional[Any] = intermediate_size
_lowerCamelCase : str = hidden_dropout_prob
_lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob
_lowerCamelCase : str = max_position_embeddings
_lowerCamelCase : List[str] = type_vocab_size
_lowerCamelCase : Optional[int] = initializer_range
_lowerCamelCase : List[Any] = layer_norm_eps
_lowerCamelCase : int = pruning_method
_lowerCamelCase : str = mask_init
_lowerCamelCase : List[Any] = mask_scale | 340 | 1 |
"""simple docstring"""
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : Optional[int] = 0
while num > 0:
digit_sum += num % 10
num //= 10
return digit_sum
def lowerCamelCase_( _lowerCamelCase = 100 ) -> int:
'''simple docstring'''
_lowerCamelCase : Dict = 1
_lowerCamelCase : List[Any] = 2
for i in range(2 , max_n + 1 ):
_lowerCamelCase : List[Any] = pre_numerator
_lowerCamelCase : Optional[Any] = 2 * i // 3 if i % 3 == 0 else 1
_lowerCamelCase : Optional[Any] = cur_numerator
_lowerCamelCase : Tuple = e_cont * pre_numerator + temp
return sum_digits(_lowerCamelCase )
if __name__ == "__main__":
print(f'''{solution() = }''') | 340 |
"""simple docstring"""
import random
import unittest
import numpy as np
import transformers
from transformers import is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax
if is_flax_available():
import os
import jax.numpy as jnp
from jax import jit
from transformers import AutoTokenizer, FlaxAutoModelForCausalLM
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
_lowerCAmelCase : str = '''0.12''' # assumed parallelism: 8
if is_torch_available():
import torch
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) -> List[Any]:
'''simple docstring'''
if rng is None:
_lowerCamelCase : Union[str, Any] = random.Random()
_lowerCamelCase : Union[str, Any] = 1
for dim in shape:
total_dims *= dim
_lowerCamelCase : Optional[int] = []
for _ in range(_lowerCamelCase ):
values.append(rng.randint(0 , vocab_size - 1 ) )
_lowerCamelCase : Union[str, Any] = np.array(_lowerCamelCase , dtype=jnp.intaa ).reshape(_lowerCamelCase )
return output
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]:
'''simple docstring'''
_lowerCamelCase : Optional[int] = ids_tensor(_lowerCamelCase , vocab_size=2 , rng=_lowerCamelCase )
# make sure that at least one token is attended to for each batch
_lowerCamelCase : List[str] = 1
return attn_mask
@require_flax
class A_ :
lowerCAmelCase__ = None
lowerCAmelCase__ = ()
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
# cut to half length & take max batch_size 3
_lowerCamelCase : List[str] = 2
_lowerCamelCase : str = inputs["input_ids"].shape[-1] // 2
_lowerCamelCase : Tuple = inputs["input_ids"][:max_batch_size, :sequence_length]
_lowerCamelCase : Any = jnp.ones_like(__lowerCAmelCase )
_lowerCamelCase : List[Any] = attention_mask[:max_batch_size, :sequence_length]
# generate max 5 tokens
_lowerCamelCase : Optional[Any] = input_ids.shape[-1] + 5
if config.eos_token_id is not None and config.pad_token_id is None:
# hack to allow generate for models such as GPT2 as is done in `generate()`
_lowerCamelCase : List[str] = config.eos_token_id
return config, input_ids, attention_mask, max_length
@is_pt_flax_cross_test
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = self._get_input_ids_and_config()
_lowerCamelCase : List[Any] = False
_lowerCamelCase : Dict = max_length
_lowerCamelCase : Tuple = 0
for model_class in self.all_generative_model_classes:
_lowerCamelCase : str = model_class(__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning
_lowerCamelCase : Any = getattr(__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : Dict = pt_model_class(__lowerCAmelCase ).eval()
_lowerCamelCase : Optional[Any] = load_flax_weights_in_pytorch_model(__lowerCAmelCase ,flax_model.params )
_lowerCamelCase : int = flax_model.generate(__lowerCAmelCase ).sequences
_lowerCamelCase : Optional[int] = pt_model.generate(torch.tensor(__lowerCAmelCase ,dtype=torch.long ) )
if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]:
_lowerCamelCase : List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]]
self.assertListEqual(pt_generation_outputs.numpy().tolist() ,flax_generation_outputs.tolist() )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = self._get_input_ids_and_config()
_lowerCamelCase : Union[str, Any] = False
_lowerCamelCase : Union[str, Any] = max_length
for model_class in self.all_generative_model_classes:
_lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase )
_lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Dict = jit(model.generate )
_lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config()
_lowerCamelCase : List[Any] = True
_lowerCamelCase : Optional[int] = max_length
for model_class in self.all_generative_model_classes:
_lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase )
_lowerCamelCase : List[Any] = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Dict = jit(model.generate )
_lowerCamelCase : int = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config()
_lowerCamelCase : int = False
_lowerCamelCase : Optional[Any] = max_length
_lowerCamelCase : Dict = 2
for model_class in self.all_generative_model_classes:
_lowerCamelCase : List[str] = model_class(__lowerCAmelCase )
_lowerCamelCase : Dict = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Tuple = jit(model.generate )
_lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = self._get_input_ids_and_config()
_lowerCamelCase : Tuple = False
_lowerCamelCase : Union[str, Any] = max_length
_lowerCamelCase : List[str] = 2
_lowerCamelCase : Optional[int] = 2
for model_class in self.all_generative_model_classes:
_lowerCamelCase : List[Any] = model_class(__lowerCAmelCase )
_lowerCamelCase : str = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[0] ,input_ids.shape[0] * config.num_return_sequences )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config()
_lowerCamelCase : int = True
_lowerCamelCase : List[Any] = max_length
_lowerCamelCase : Optional[Any] = 0.8
_lowerCamelCase : Union[str, Any] = 10
_lowerCamelCase : List[str] = 0.3
_lowerCamelCase : Tuple = 1
_lowerCamelCase : Any = 8
_lowerCamelCase : str = 9
for model_class in self.all_generative_model_classes:
_lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase )
_lowerCamelCase : Any = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : int = jit(model.generate )
_lowerCamelCase : Optional[int] = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = self._get_input_ids_and_config()
_lowerCamelCase : List[str] = max_length
_lowerCamelCase : Tuple = 1
_lowerCamelCase : Any = 8
_lowerCamelCase : Dict = 9
for model_class in self.all_generative_model_classes:
_lowerCamelCase : Any = model_class(__lowerCAmelCase )
_lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Any = jit(model.generate )
_lowerCamelCase : Any = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: List[str] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config()
_lowerCamelCase : Dict = max_length
_lowerCamelCase : List[Any] = 2
_lowerCamelCase : Tuple = 1
_lowerCamelCase : List[str] = 8
_lowerCamelCase : List[Any] = 9
for model_class in self.all_generative_model_classes:
_lowerCamelCase : int = model_class(__lowerCAmelCase )
_lowerCamelCase : Optional[int] = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Tuple = jit(model.generate )
_lowerCamelCase : Optional[Any] = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config()
# pad attention mask on the left
_lowerCamelCase : Tuple = attention_mask.at[(0, 0)].set(0 )
_lowerCamelCase : Dict = False
_lowerCamelCase : Any = max_length
for model_class in self.all_generative_model_classes:
_lowerCamelCase : List[Any] = model_class(__lowerCAmelCase )
_lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Any = jit(model.generate )
_lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = self._get_input_ids_and_config()
# pad attention mask on the left
_lowerCamelCase : Optional[Any] = attention_mask.at[(0, 0)].set(0 )
_lowerCamelCase : List[str] = True
_lowerCamelCase : Optional[Any] = max_length
for model_class in self.all_generative_model_classes:
_lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Any = jit(model.generate )
_lowerCamelCase : List[Any] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config()
# pad attention mask on the left
_lowerCamelCase : List[str] = attention_mask.at[(0, 0)].set(0 )
_lowerCamelCase : int = 2
_lowerCamelCase : int = max_length
for model_class in self.all_generative_model_classes:
_lowerCamelCase : List[Any] = model_class(__lowerCAmelCase )
_lowerCamelCase : int = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Dict = jit(model.generate )
_lowerCamelCase : Dict = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
@require_flax
class A_ ( unittest.TestCase ):
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" )
_lowerCamelCase : Union[str, Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" )
_lowerCamelCase : Optional[Any] = "Hello world"
_lowerCamelCase : str = tokenizer(__lowerCAmelCase ,return_tensors="np" ).input_ids
# typos are quickly detected (the correct argument is `do_sample`)
with self.assertRaisesRegex(__lowerCAmelCase ,"do_samples" ):
model.generate(__lowerCAmelCase ,do_samples=__lowerCAmelCase )
# arbitrary arguments that will not be used anywhere are also not accepted
with self.assertRaisesRegex(__lowerCAmelCase ,"foo" ):
_lowerCamelCase : List[str] = {"foo": "bar"}
model.generate(__lowerCAmelCase ,**__lowerCAmelCase ) | 340 | 1 |
"""simple docstring"""
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Optional[Any] = np.inf
def set_batch_size(_lowerCamelCase ) -> None:
nonlocal batch_size
if isinstance(_lowerCamelCase , _lowerCamelCase ):
_lowerCamelCase : Optional[int] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(_lowerCamelCase , _lowerCamelCase ):
_lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(_lowerCamelCase , _lowerCamelCase ) and feature.dtype == "binary":
_lowerCamelCase : List[str] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(_lowerCamelCase , _lowerCamelCase )
return None if batch_size is np.inf else batch_size
class A_ ( _a ):
def __init__( self: Optional[int] ,__lowerCAmelCase: NestedDataStructureLike[PathLike] ,__lowerCAmelCase: Optional[NamedSplit] = None ,__lowerCAmelCase: Optional[Features] = None ,__lowerCAmelCase: str = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: int ,):
'''simple docstring'''
super().__init__(
__lowerCAmelCase ,split=__lowerCAmelCase ,features=__lowerCAmelCase ,cache_dir=__lowerCAmelCase ,keep_in_memory=__lowerCAmelCase ,streaming=__lowerCAmelCase ,num_proc=__lowerCAmelCase ,**__lowerCAmelCase ,)
_lowerCamelCase : Tuple = path_or_paths if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) else {self.split: path_or_paths}
_lowerCamelCase : Any = _PACKAGED_DATASETS_MODULES["parquet"][1]
_lowerCamelCase : int = Parquet(
cache_dir=__lowerCAmelCase ,data_files=__lowerCAmelCase ,features=__lowerCAmelCase ,hash=__lowerCAmelCase ,**__lowerCAmelCase ,)
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
if self.streaming:
_lowerCamelCase : List[Any] = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
_lowerCamelCase : Tuple = None
_lowerCamelCase : Optional[int] = None
_lowerCamelCase : List[str] = None
_lowerCamelCase : str = None
self.builder.download_and_prepare(
download_config=__lowerCAmelCase ,download_mode=__lowerCAmelCase ,verification_mode=__lowerCAmelCase ,base_path=__lowerCAmelCase ,num_proc=self.num_proc ,)
_lowerCamelCase : Any = self.builder.as_dataset(
split=self.split ,verification_mode=__lowerCAmelCase ,in_memory=self.keep_in_memory )
return dataset
class A_ :
def __init__( self: str ,__lowerCAmelCase: Dataset ,__lowerCAmelCase: Union[PathLike, BinaryIO] ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: List[Any] ,):
'''simple docstring'''
_lowerCamelCase : Any = dataset
_lowerCamelCase : Any = path_or_buf
_lowerCamelCase : Any = batch_size or get_writer_batch_size(dataset.features )
_lowerCamelCase : List[str] = parquet_writer_kwargs
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase : Tuple = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf ,(str, bytes, os.PathLike) ):
with open(self.path_or_buf ,"wb+" ) as buffer:
_lowerCamelCase : str = self._write(file_obj=__lowerCAmelCase ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs )
else:
_lowerCamelCase : Optional[int] = self._write(file_obj=self.path_or_buf ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs )
return written
def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: BinaryIO ,__lowerCAmelCase: int ,**__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : List[str] = 0
_lowerCamelCase : Optional[int] = parquet_writer_kwargs.pop("path_or_buf" ,__lowerCAmelCase )
_lowerCamelCase : List[str] = self.dataset.features.arrow_schema
_lowerCamelCase : str = pq.ParquetWriter(__lowerCAmelCase ,schema=__lowerCAmelCase ,**__lowerCAmelCase )
for offset in logging.tqdm(
range(0 ,len(self.dataset ) ,__lowerCAmelCase ) ,unit="ba" ,disable=not logging.is_progress_bar_enabled() ,desc="Creating parquet from Arrow format" ,):
_lowerCamelCase : List[str] = query_table(
table=self.dataset._data ,key=slice(__lowerCAmelCase ,offset + batch_size ) ,indices=self.dataset._indices if self.dataset._indices is not None else None ,)
writer.write_table(__lowerCAmelCase )
written += batch.nbytes
writer.close()
return written | 340 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowerCAmelCase : List[str] = logging.get_logger(__name__)
_lowerCAmelCase : int = {
'''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''',
'''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''',
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
}
class A_ ( _a ):
lowerCAmelCase__ = 'mobilenet_v1'
def __init__( self: Tuple ,__lowerCAmelCase: int=3 ,__lowerCAmelCase: Dict=224 ,__lowerCAmelCase: int=1.0 ,__lowerCAmelCase: Tuple=8 ,__lowerCAmelCase: List[str]="relu6" ,__lowerCAmelCase: int=True ,__lowerCAmelCase: List[Any]=0.9_99 ,__lowerCAmelCase: Optional[int]=0.02 ,__lowerCAmelCase: Optional[int]=0.0_01 ,**__lowerCAmelCase: str ,):
'''simple docstring'''
super().__init__(**__lowerCAmelCase )
if depth_multiplier <= 0:
raise ValueError("depth_multiplier must be greater than zero." )
_lowerCamelCase : List[str] = num_channels
_lowerCamelCase : Union[str, Any] = image_size
_lowerCamelCase : List[Any] = depth_multiplier
_lowerCamelCase : Any = min_depth
_lowerCamelCase : Tuple = hidden_act
_lowerCamelCase : Dict = tf_padding
_lowerCamelCase : Union[str, Any] = classifier_dropout_prob
_lowerCamelCase : Tuple = initializer_range
_lowerCamelCase : List[Any] = layer_norm_eps
class A_ ( _a ):
lowerCAmelCase__ = version.parse('1.11' )
@property
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
return OrderedDict([("pixel_values", {0: "batch"})] )
@property
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
if self.task == "image-classification":
return OrderedDict([("logits", {0: "batch"})] )
else:
return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] )
@property
def _lowercase ( self: Any ):
'''simple docstring'''
return 1e-4 | 340 | 1 |
"""simple docstring"""
import math
def lowerCamelCase_( _lowerCamelCase ) -> bool:
'''simple docstring'''
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(_lowerCamelCase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowerCamelCase_( _lowerCamelCase = 10001 ) -> int:
'''simple docstring'''
try:
_lowerCamelCase : Dict = int(_lowerCamelCase )
except (TypeError, ValueError):
raise TypeError("Parameter nth must be int or castable to int." ) from None
if nth <= 0:
raise ValueError("Parameter nth must be greater than or equal to one." )
_lowerCamelCase : list[int] = []
_lowerCamelCase : int = 2
while len(_lowerCamelCase ) < nth:
if is_prime(_lowerCamelCase ):
primes.append(_lowerCamelCase )
num += 1
else:
num += 1
return primes[len(_lowerCamelCase ) - 1]
if __name__ == "__main__":
print(f'''{solution() = }''') | 340 |
"""simple docstring"""
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def lowerCamelCase_( _lowerCamelCase ) -> Any:
'''simple docstring'''
for param in module.parameters():
_lowerCamelCase : Optional[int] = False
def lowerCamelCase_( ) -> List[str]:
'''simple docstring'''
_lowerCamelCase : Optional[Any] = "cuda" if torch.cuda.is_available() else "cpu"
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
_lowerCamelCase : int = "mps"
if device == "mps":
print(
"WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"
" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"
" with generations." )
return device
def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Dict = plt.imshow(_lowerCamelCase )
fig.axes.get_xaxis().set_visible(_lowerCamelCase )
fig.axes.get_yaxis().set_visible(_lowerCamelCase )
plt.show()
def lowerCamelCase_( ) -> str:
'''simple docstring'''
_lowerCamelCase : Tuple = datetime.now()
_lowerCamelCase : Tuple = current_time.strftime("%H:%M:%S" )
return timestamp | 340 | 1 |
"""simple docstring"""
import argparse
_lowerCAmelCase : Tuple = '''docs/source/_static/js/custom.js'''
def lowerCamelCase_( _lowerCamelCase ) -> Tuple:
'''simple docstring'''
with open(_lowerCamelCase , encoding="utf-8" , newline="\n" ) as f:
_lowerCamelCase : Optional[int] = f.readlines()
_lowerCamelCase : Optional[Any] = 0
# First let's put the right version
while not lines[index].startswith("const stableVersion =" ):
index += 1
_lowerCamelCase : Optional[int] = F"""const stableVersion = \"v{version}\"\n"""
# Then update the dictionary
while not lines[index].startswith("const versionMapping = {" ):
index += 1
# We go until the end
while not lines[index].startswith("}" ):
index += 1
# We add the new version at the end
lines[index - 1] += F""" \"v{version}\": \"v{version}\",\n"""
with open(_lowerCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f:
f.writelines(_lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument('''--version''', help='''Release version.''')
_lowerCAmelCase : Dict = parser.parse_args()
update_custom_js(args.version) | 340 |
"""simple docstring"""
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str:
'''simple docstring'''
_lowerCamelCase : int = len(_lowerCamelCase )
_lowerCamelCase : int = len(_lowerCamelCase )
_lowerCamelCase : int = (
first_str_length if first_str_length > second_str_length else second_str_length
)
_lowerCamelCase : list = []
for char_count in range(_lowerCamelCase ):
if char_count < first_str_length:
output_list.append(first_str[char_count] )
if char_count < second_str_length:
output_list.append(second_str[char_count] )
return "".join(_lowerCamelCase )
if __name__ == "__main__":
print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''') | 340 | 1 |
"""simple docstring"""
def lowerCamelCase_( _lowerCamelCase = 1 , _lowerCamelCase = 1000 ) -> int:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = 1
_lowerCamelCase : Optional[int] = 0
for divide_by_number in range(_lowerCamelCase , digit + 1 ):
_lowerCamelCase : list[int] = []
_lowerCamelCase : Dict = numerator
for _ in range(1 , digit + 1 ):
if now_divide in has_been_divided:
if longest_list_length < len(_lowerCamelCase ):
_lowerCamelCase : int = len(_lowerCamelCase )
_lowerCamelCase : Tuple = divide_by_number
else:
has_been_divided.append(_lowerCamelCase )
_lowerCamelCase : Any = now_divide * 10 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod() | 340 |
"""simple docstring"""
_lowerCAmelCase : Tuple = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple:
'''simple docstring'''
_lowerCamelCase : Any = [False] * len(_lowerCamelCase )
_lowerCamelCase : Union[str, Any] = [s]
_lowerCamelCase : str = True
while queue:
_lowerCamelCase : Optional[int] = queue.pop(0 )
for ind in range(len(graph[u] ) ):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(_lowerCamelCase )
_lowerCamelCase : Any = True
_lowerCamelCase : Any = u
return visited[t]
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
_lowerCamelCase : List[str] = [-1] * (len(_lowerCamelCase ))
_lowerCamelCase : Union[str, Any] = 0
_lowerCamelCase : Union[str, Any] = []
_lowerCamelCase : List[str] = [i[:] for i in graph] # Record original cut, copy.
while bfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
_lowerCamelCase : Any = float("Inf" )
_lowerCamelCase : Dict = sink
while s != source:
# Find the minimum value in select path
_lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , graph[parent[s]][s] )
_lowerCamelCase : Union[str, Any] = parent[s]
max_flow += path_flow
_lowerCamelCase : Optional[Any] = sink
while v != source:
_lowerCamelCase : Union[str, Any] = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
_lowerCamelCase : List[str] = parent[v]
for i in range(len(_lowerCamelCase ) ):
for j in range(len(graph[0] ) ):
if graph[i][j] == 0 and temp[i][j] > 0:
res.append((i, j) )
return res
if __name__ == "__main__":
print(mincut(test_graph, source=0, sink=5)) | 340 | 1 |
"""simple docstring"""
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class A_ ( _a ):
@slow
@require_torch
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : List[Any] = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" ,"prajjwal1/bert-tiny" )
_lowerCamelCase : List[Any] = BertTokenizer.from_pretrained("bert-base-uncased" )
_lowerCamelCase : List[str] = bertabert.config.encoder.vocab_size
_lowerCamelCase : Any = tokenizer.sep_token_id
_lowerCamelCase : List[Any] = tokenizer.cls_token_id
_lowerCamelCase : List[str] = 128
_lowerCamelCase : int = datasets.load_dataset("cnn_dailymail" ,"3.0.0" ,split="train[:1%]" )
_lowerCamelCase : Optional[Any] = datasets.load_dataset("cnn_dailymail" ,"3.0.0" ,split="validation[:1%]" )
_lowerCamelCase : Any = train_dataset.select(range(32 ) )
_lowerCamelCase : int = val_dataset.select(range(16 ) )
_lowerCamelCase : Optional[Any] = 4
def _map_to_encoder_decoder_inputs(__lowerCAmelCase: List[str] ):
# Tokenizer will automatically set [BOS] <text> [EOS]
_lowerCamelCase : int = tokenizer(batch["article"] ,padding="max_length" ,truncation=__lowerCAmelCase ,max_length=512 )
_lowerCamelCase : Tuple = tokenizer(batch["highlights"] ,padding="max_length" ,truncation=__lowerCAmelCase ,max_length=128 )
_lowerCamelCase : List[Any] = inputs.input_ids
_lowerCamelCase : Dict = inputs.attention_mask
_lowerCamelCase : int = outputs.input_ids
_lowerCamelCase : Optional[Any] = outputs.input_ids.copy()
_lowerCamelCase : Tuple = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"]
]
_lowerCamelCase : Tuple = outputs.attention_mask
assert all(len(__lowerCAmelCase ) == 512 for x in inputs.input_ids )
assert all(len(__lowerCAmelCase ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(__lowerCAmelCase: Tuple ):
_lowerCamelCase : Tuple = pred.label_ids
_lowerCamelCase : str = pred.predictions
# all unnecessary tokens are removed
_lowerCamelCase : str = tokenizer.batch_decode(__lowerCAmelCase ,skip_special_tokens=__lowerCAmelCase )
_lowerCamelCase : Optional[int] = tokenizer.batch_decode(__lowerCAmelCase ,skip_special_tokens=__lowerCAmelCase )
_lowerCamelCase : Optional[int] = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__lowerCAmelCase ) )] ) / len(__lowerCAmelCase )
return {"accuracy": accuracy}
# map train dataset
_lowerCamelCase : Optional[int] = train_dataset.map(
_map_to_encoder_decoder_inputs ,batched=__lowerCAmelCase ,batch_size=__lowerCAmelCase ,remove_columns=["article", "highlights"] ,)
train_dataset.set_format(
type="torch" ,columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] ,)
# same for validation dataset
_lowerCamelCase : Dict = val_dataset.map(
_map_to_encoder_decoder_inputs ,batched=__lowerCAmelCase ,batch_size=__lowerCAmelCase ,remove_columns=["article", "highlights"] ,)
val_dataset.set_format(
type="torch" ,columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] ,)
_lowerCamelCase : Tuple = self.get_auto_remove_tmp_dir()
_lowerCamelCase : int = SeqaSeqTrainingArguments(
output_dir=__lowerCAmelCase ,per_device_train_batch_size=__lowerCAmelCase ,per_device_eval_batch_size=__lowerCAmelCase ,predict_with_generate=__lowerCAmelCase ,evaluation_strategy="steps" ,do_train=__lowerCAmelCase ,do_eval=__lowerCAmelCase ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,)
# instantiate trainer
_lowerCamelCase : Union[str, Any] = SeqaSeqTrainer(
model=__lowerCAmelCase ,args=__lowerCAmelCase ,compute_metrics=_compute_metrics ,train_dataset=__lowerCAmelCase ,eval_dataset=__lowerCAmelCase ,tokenizer=__lowerCAmelCase ,)
# start training
trainer.train() | 340 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
_lowerCAmelCase : List[str] = {
'''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''',
'''umberto-commoncrawl-cased-v1''': (
'''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json'''
),
'''umberto-wikipedia-uncased-v1''': (
'''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json'''
),
}
class A_ ( _a ):
lowerCAmelCase__ = 'camembert'
def __init__( self: Tuple ,__lowerCAmelCase: Union[str, Any]=30_522 ,__lowerCAmelCase: Optional[Any]=768 ,__lowerCAmelCase: Union[str, Any]=12 ,__lowerCAmelCase: int=12 ,__lowerCAmelCase: Optional[int]=3_072 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: Optional[Any]=0.1 ,__lowerCAmelCase: int=512 ,__lowerCAmelCase: Union[str, Any]=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Any=1 ,__lowerCAmelCase: Any=0 ,__lowerCAmelCase: Optional[int]=2 ,__lowerCAmelCase: Any="absolute" ,__lowerCAmelCase: Dict=True ,__lowerCAmelCase: Tuple=None ,**__lowerCAmelCase: Dict ,):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCAmelCase ,bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ,**__lowerCAmelCase )
_lowerCamelCase : List[str] = vocab_size
_lowerCamelCase : Any = hidden_size
_lowerCamelCase : Union[str, Any] = num_hidden_layers
_lowerCamelCase : str = num_attention_heads
_lowerCamelCase : List[Any] = hidden_act
_lowerCamelCase : int = intermediate_size
_lowerCamelCase : str = hidden_dropout_prob
_lowerCamelCase : List[str] = attention_probs_dropout_prob
_lowerCamelCase : Optional[Any] = max_position_embeddings
_lowerCamelCase : str = type_vocab_size
_lowerCamelCase : Dict = initializer_range
_lowerCamelCase : Union[str, Any] = layer_norm_eps
_lowerCamelCase : Tuple = position_embedding_type
_lowerCamelCase : List[Any] = use_cache
_lowerCamelCase : Dict = classifier_dropout
class A_ ( _a ):
@property
def _lowercase ( self: Any ):
'''simple docstring'''
if self.task == "multiple-choice":
_lowerCamelCase : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"}
else:
_lowerCamelCase : int = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] ) | 340 | 1 |
"""simple docstring"""
import os
import time
import pytest
from datasets.utils.filelock import FileLock, Timeout
def lowerCamelCase_( _lowerCamelCase ) -> List[str]:
'''simple docstring'''
_lowerCamelCase : Optional[int] = FileLock(str(tmpdir / "foo.lock" ) )
_lowerCamelCase : List[str] = FileLock(str(tmpdir / "foo.lock" ) )
_lowerCamelCase : List[str] = 0.0_1
with locka.acquire():
with pytest.raises(_lowerCamelCase ):
_lowerCamelCase : Dict = time.time()
locka.acquire(_lowerCamelCase )
assert time.time() - _start > timeout
def lowerCamelCase_( _lowerCamelCase ) -> str:
'''simple docstring'''
_lowerCamelCase : str = "a" * 1000 + ".lock"
_lowerCamelCase : Optional[Any] = FileLock(str(tmpdir / filename ) )
assert locka._lock_file.endswith(".lock" )
assert not locka._lock_file.endswith(_lowerCamelCase )
assert len(os.path.basename(locka._lock_file ) ) <= 255
_lowerCamelCase : Any = FileLock(tmpdir / filename )
with locka.acquire():
with pytest.raises(_lowerCamelCase ):
locka.acquire(0 ) | 340 |
"""simple docstring"""
from collections import defaultdict
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : Optional[int] = 1
_lowerCamelCase : str = True
for v in tree[start]:
if v not in visited:
ret += dfs(_lowerCamelCase )
if ret % 2 == 0:
cuts.append(_lowerCamelCase )
return ret
def lowerCamelCase_( ) -> int:
'''simple docstring'''
dfs(1 )
if __name__ == "__main__":
_lowerCAmelCase , _lowerCAmelCase : Optional[Any] = 10, 9
_lowerCAmelCase : str = defaultdict(list)
_lowerCAmelCase : dict[int, bool] = {}
_lowerCAmelCase : list[int] = []
_lowerCAmelCase : Any = 0
_lowerCAmelCase : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)]
for u, v in edges:
tree[u].append(v)
tree[v].append(u)
even_tree()
print(len(cuts) - 1) | 340 | 1 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class A_ ( metaclass=_a ):
lowerCAmelCase__ = ['note_seq']
def __init__( self: Tuple ,*__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[Any] ):
'''simple docstring'''
requires_backends(self ,["note_seq"] )
@classmethod
def _lowercase ( cls: Dict ,*__lowerCAmelCase: int ,**__lowerCAmelCase: Union[str, Any] ):
'''simple docstring'''
requires_backends(cls ,["note_seq"] )
@classmethod
def _lowercase ( cls: List[Any] ,*__lowerCAmelCase: List[str] ,**__lowerCAmelCase: List[str] ):
'''simple docstring'''
requires_backends(cls ,["note_seq"] ) | 340 |
"""simple docstring"""
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
_lowerCAmelCase : Optional[int] = '''__DUMMY_TRANSFORMERS_USER__'''
_lowerCAmelCase : Dict = '''Dummy User'''
_lowerCAmelCase : Optional[int] = '''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'''
_lowerCAmelCase : Tuple = '''https://hub-ci.huggingface.co'''
_lowerCAmelCase : Any = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}'''
_lowerCAmelCase : Tuple = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}'''
_lowerCAmelCase : Dict = Path('''~/.huggingface/hub_ci_token''').expanduser()
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
monkeypatch.setattr(
"huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , _lowerCamelCase )
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> Tuple:
'''simple docstring'''
monkeypatch.setattr("datasets.config.HF_ENDPOINT" , _lowerCamelCase )
monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , _lowerCamelCase )
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , _lowerCamelCase )
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Dict:
'''simple docstring'''
HfFolder.save_token(_lowerCamelCase )
yield
HfFolder.delete_token()
@pytest.fixture(scope="session" )
def lowerCamelCase_( ) -> str:
'''simple docstring'''
return HfApi(endpoint=_lowerCamelCase )
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : Dict = HfFolder.get_token()
HfFolder.save_token(_lowerCamelCase )
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(_lowerCamelCase )
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
def _cleanup_repo(_lowerCamelCase ):
hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" )
return _cleanup_repo
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> List[str]:
'''simple docstring'''
@contextmanager
def _temporary_repo(_lowerCamelCase ):
try:
yield repo_id
finally:
cleanup_repo(_lowerCamelCase )
return _temporary_repo
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
_lowerCamelCase : Tuple = F"""repo_txt_data-{int(time.time() * 10e3 )}"""
_lowerCamelCase : List[str] = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase )
hf_api.upload_file(
token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data/text_data.txt" , repo_id=_lowerCamelCase , repo_type="dataset" , )
yield repo_id
try:
hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
'''simple docstring'''
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
'''simple docstring'''
_lowerCamelCase : List[Any] = F"""repo_zipped_txt_data-{int(time.time() * 10e3 )}"""
_lowerCamelCase : Dict = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase )
hf_api.upload_file(
token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , )
yield repo_id
try:
hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict:
'''simple docstring'''
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
'''simple docstring'''
_lowerCamelCase : Any = F"""repo_zipped_img_data-{int(time.time() * 10e3 )}"""
_lowerCamelCase : List[Any] = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase )
hf_api.upload_file(
token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , )
yield repo_id
try:
hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
return hf_private_dataset_repo_zipped_img_data_ | 340 | 1 |
"""simple docstring"""
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import (
AutoProcessor,
BertTokenizerFast,
BlipImageProcessor,
GPTaTokenizer,
InstructBlipProcessor,
PreTrainedTokenizerFast,
)
@require_vision
class A_ ( unittest.TestCase ):
def _lowercase ( self: int ):
'''simple docstring'''
_lowerCamelCase : List[Any] = tempfile.mkdtemp()
_lowerCamelCase : List[Any] = BlipImageProcessor()
_lowerCamelCase : str = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" )
_lowerCamelCase : Tuple = BertTokenizerFast.from_pretrained("hf-internal-testing/tiny-random-bert" )
_lowerCamelCase : Any = InstructBlipProcessor(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase )
processor.save_pretrained(self.tmpdirname )
def _lowercase ( self: Tuple ,**__lowerCAmelCase: int ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname ,**__lowerCAmelCase ).tokenizer
def _lowercase ( self: str ,**__lowerCAmelCase: Any ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname ,**__lowerCAmelCase ).image_processor
def _lowercase ( self: List[Any] ,**__lowerCAmelCase: List[str] ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname ,**__lowerCAmelCase ).qformer_tokenizer
def _lowercase ( self: Dict ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase : List[Any] = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )]
_lowerCamelCase : List[str] = [Image.fromarray(np.moveaxis(__lowerCAmelCase ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : int = InstructBlipProcessor(
tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ,qformer_tokenizer=self.get_qformer_tokenizer() ,)
processor.save_pretrained(self.tmpdirname )
_lowerCamelCase : Any = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" )
_lowerCamelCase : int = self.get_image_processor(do_normalize=__lowerCAmelCase ,padding_value=1.0 )
_lowerCamelCase : Union[str, Any] = InstructBlipProcessor.from_pretrained(
self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=__lowerCAmelCase ,padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer ,__lowerCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,__lowerCAmelCase )
self.assertIsInstance(processor.qformer_tokenizer ,__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase : str = self.get_image_processor()
_lowerCamelCase : Optional[int] = self.get_tokenizer()
_lowerCamelCase : str = self.get_qformer_tokenizer()
_lowerCamelCase : Any = InstructBlipProcessor(
tokenizer=__lowerCAmelCase ,image_processor=__lowerCAmelCase ,qformer_tokenizer=__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = self.prepare_image_inputs()
_lowerCamelCase : str = image_processor(__lowerCAmelCase ,return_tensors="np" )
_lowerCamelCase : List[str] = processor(images=__lowerCAmelCase ,return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 )
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : List[Any] = self.get_image_processor()
_lowerCamelCase : Optional[int] = self.get_tokenizer()
_lowerCamelCase : Any = self.get_qformer_tokenizer()
_lowerCamelCase : Union[str, Any] = InstructBlipProcessor(
tokenizer=__lowerCAmelCase ,image_processor=__lowerCAmelCase ,qformer_tokenizer=__lowerCAmelCase )
_lowerCamelCase : Any = "lower newer"
_lowerCamelCase : Optional[int] = processor(text=__lowerCAmelCase )
_lowerCamelCase : Dict = tokenizer(__lowerCAmelCase ,return_token_type_ids=__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = qformer_tokenizer(__lowerCAmelCase ,return_token_type_ids=__lowerCAmelCase )
for key in encoded_tokens.keys():
self.assertListEqual(encoded_tokens[key] ,encoded_processor[key] )
for key in encoded_tokens_qformer.keys():
self.assertListEqual(encoded_tokens_qformer[key] ,encoded_processor["qformer_" + key] )
def _lowercase ( self: int ):
'''simple docstring'''
_lowerCamelCase : List[str] = self.get_image_processor()
_lowerCamelCase : str = self.get_tokenizer()
_lowerCamelCase : int = self.get_qformer_tokenizer()
_lowerCamelCase : Optional[int] = InstructBlipProcessor(
tokenizer=__lowerCAmelCase ,image_processor=__lowerCAmelCase ,qformer_tokenizer=__lowerCAmelCase )
_lowerCamelCase : Dict = "lower newer"
_lowerCamelCase : int = self.prepare_image_inputs()
_lowerCamelCase : List[str] = processor(text=__lowerCAmelCase ,images=__lowerCAmelCase )
self.assertListEqual(
list(inputs.keys() ) ,["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] ,)
# test if it raises when no input is passed
with pytest.raises(__lowerCAmelCase ):
processor()
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase : str = self.get_image_processor()
_lowerCamelCase : int = self.get_tokenizer()
_lowerCamelCase : int = self.get_qformer_tokenizer()
_lowerCamelCase : str = InstructBlipProcessor(
tokenizer=__lowerCAmelCase ,image_processor=__lowerCAmelCase ,qformer_tokenizer=__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
_lowerCamelCase : Dict = processor.batch_decode(__lowerCAmelCase )
_lowerCamelCase : Any = tokenizer.batch_decode(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : List[Any] = self.get_image_processor()
_lowerCamelCase : List[Any] = self.get_tokenizer()
_lowerCamelCase : Any = self.get_qformer_tokenizer()
_lowerCamelCase : Dict = InstructBlipProcessor(
tokenizer=__lowerCAmelCase ,image_processor=__lowerCAmelCase ,qformer_tokenizer=__lowerCAmelCase )
_lowerCamelCase : Tuple = "lower newer"
_lowerCamelCase : Any = self.prepare_image_inputs()
_lowerCamelCase : Optional[int] = processor(text=__lowerCAmelCase ,images=__lowerCAmelCase )
self.assertListEqual(
list(inputs.keys() ) ,["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] ,) | 340 |
"""simple docstring"""
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from ...models.controlnet import ControlNetModel, ControlNetOutput
from ...models.modeling_utils import ModelMixin
from ...utils import logging
_lowerCAmelCase : Dict = logging.get_logger(__name__)
class A_ ( _a ):
def __init__( self: List[Any] ,__lowerCAmelCase: Union[List[ControlNetModel], Tuple[ControlNetModel]] ):
'''simple docstring'''
super().__init__()
_lowerCamelCase : Tuple = nn.ModuleList(__lowerCAmelCase )
def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Union[torch.Tensor, float, int] ,__lowerCAmelCase: torch.Tensor ,__lowerCAmelCase: List[torch.tensor] ,__lowerCAmelCase: List[float] ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[Dict[str, Any]] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,):
'''simple docstring'''
for i, (image, scale, controlnet) in enumerate(zip(__lowerCAmelCase ,__lowerCAmelCase ,self.nets ) ):
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = controlnet(
__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,)
# merge samples
if i == 0:
_lowerCamelCase, _lowerCamelCase : Optional[Any] = down_samples, mid_sample
else:
_lowerCamelCase : Optional[int] = [
samples_prev + samples_curr
for samples_prev, samples_curr in zip(__lowerCAmelCase ,__lowerCAmelCase )
]
mid_block_res_sample += mid_sample
return down_block_res_samples, mid_block_res_sample
def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Union[str, os.PathLike] ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Callable = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[str] = None ,):
'''simple docstring'''
_lowerCamelCase : List[Any] = 0
_lowerCamelCase : str = save_directory
for controlnet in self.nets:
controlnet.save_pretrained(
__lowerCAmelCase ,is_main_process=__lowerCAmelCase ,save_function=__lowerCAmelCase ,safe_serialization=__lowerCAmelCase ,variant=__lowerCAmelCase ,)
idx += 1
_lowerCamelCase : int = model_path_to_save + F"""_{idx}"""
@classmethod
def _lowercase ( cls: Any ,__lowerCAmelCase: Optional[Union[str, os.PathLike]] ,**__lowerCAmelCase: int ):
'''simple docstring'''
_lowerCamelCase : int = 0
_lowerCamelCase : str = []
# load controlnet and append to list until no controlnet directory exists anymore
# first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained`
# second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ...
_lowerCamelCase : Dict = pretrained_model_path
while os.path.isdir(__lowerCAmelCase ):
_lowerCamelCase : List[Any] = ControlNetModel.from_pretrained(__lowerCAmelCase ,**__lowerCAmelCase )
controlnets.append(__lowerCAmelCase )
idx += 1
_lowerCamelCase : Tuple = pretrained_model_path + F"""_{idx}"""
logger.info(F"""{len(__lowerCAmelCase )} controlnets loaded from {pretrained_model_path}.""" )
if len(__lowerCAmelCase ) == 0:
raise ValueError(
F"""No ControlNets found under {os.path.dirname(__lowerCAmelCase )}. Expected at least {pretrained_model_path + '_0'}.""" )
return cls(__lowerCAmelCase ) | 340 | 1 |
"""simple docstring"""
_lowerCAmelCase : dict[str, float] = {
"km/h": 1.0,
"m/s": 3.6,
"mph": 1.609_344,
"knot": 1.852,
}
_lowerCAmelCase : dict[str, float] = {
"km/h": 1.0,
"m/s": 0.277_777_778,
"mph": 0.621_371_192,
"knot": 0.539_956_803,
}
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> float:
'''simple docstring'''
if unit_to not in speed_chart or unit_from not in speed_chart_inverse:
_lowerCamelCase : Union[str, Any] = (
F"""Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n"""
F"""Valid values are: {', '.join(_lowerCamelCase )}"""
)
raise ValueError(_lowerCamelCase )
return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 )
if __name__ == "__main__":
import doctest
doctest.testmod() | 340 |
"""simple docstring"""
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SegformerConfig,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCAmelCase : int = logging.get_logger(__name__)
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[str]:
'''simple docstring'''
_lowerCamelCase : Tuple = OrderedDict()
for key, value in state_dict.items():
if encoder_only and not key.startswith("head" ):
_lowerCamelCase : Tuple = "segformer.encoder." + key
if key.startswith("backbone" ):
_lowerCamelCase : Any = key.replace("backbone" , "segformer.encoder" )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
_lowerCamelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )]
_lowerCamelCase : int = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(_lowerCamelCase )-1}""" )
if "norm" in key:
_lowerCamelCase : Optional[Any] = key.replace("norm" , "layer_norm" )
if "segformer.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
_lowerCamelCase : Dict = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )]
_lowerCamelCase : Tuple = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(_lowerCamelCase )-1}""" )
if "layer_norm1" in key:
_lowerCamelCase : Union[str, Any] = key.replace("layer_norm1" , "layer_norm_1" )
if "layer_norm2" in key:
_lowerCamelCase : int = key.replace("layer_norm2" , "layer_norm_2" )
if "block" in key:
# replace for example block1 by block.0
_lowerCamelCase : Union[str, Any] = key[key.find("block" ) + len("block" )]
_lowerCamelCase : Optional[Any] = key.replace(F"""block{idx}""" , F"""block.{int(_lowerCamelCase )-1}""" )
if "attn.q" in key:
_lowerCamelCase : Optional[int] = key.replace("attn.q" , "attention.self.query" )
if "attn.proj" in key:
_lowerCamelCase : List[str] = key.replace("attn.proj" , "attention.output.dense" )
if "attn" in key:
_lowerCamelCase : Tuple = key.replace("attn" , "attention.self" )
if "fc1" in key:
_lowerCamelCase : Optional[Any] = key.replace("fc1" , "dense1" )
if "fc2" in key:
_lowerCamelCase : Dict = key.replace("fc2" , "dense2" )
if "linear_pred" in key:
_lowerCamelCase : int = key.replace("linear_pred" , "classifier" )
if "linear_fuse" in key:
_lowerCamelCase : str = key.replace("linear_fuse.conv" , "linear_fuse" )
_lowerCamelCase : Optional[Any] = key.replace("linear_fuse.bn" , "batch_norm" )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
_lowerCamelCase : Union[str, Any] = key[key.find("linear_c" ) + len("linear_c" )]
_lowerCamelCase : Optional[int] = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(_lowerCamelCase )-1}""" )
if key.startswith("head" ):
_lowerCamelCase : List[str] = key.replace("head" , "classifier" )
_lowerCamelCase : Union[str, Any] = value
return new_state_dict
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
_lowerCamelCase : Optional[Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" )
_lowerCamelCase : Optional[Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" )
# next, add keys and values (in that order) to the state dict
_lowerCamelCase : int = kv_weight[
: config.hidden_sizes[i], :
]
_lowerCamelCase : int = kv_bias[: config.hidden_sizes[i]]
_lowerCamelCase : Optional[int] = kv_weight[
config.hidden_sizes[i] :, :
]
_lowerCamelCase : Optional[Any] = kv_bias[
config.hidden_sizes[i] :
]
def lowerCamelCase_( ) -> Dict:
'''simple docstring'''
_lowerCamelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg"
_lowerCamelCase : Union[str, Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw )
return image
@torch.no_grad()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict:
'''simple docstring'''
_lowerCamelCase : Any = SegformerConfig()
_lowerCamelCase : int = False
# set attributes based on model_name
_lowerCamelCase : Any = "huggingface/label-files"
if "segformer" in model_name:
_lowerCamelCase : str = model_name[len("segformer." ) : len("segformer." ) + 2]
if "ade" in model_name:
_lowerCamelCase : str = 150
_lowerCamelCase : Dict = "ade20k-id2label.json"
_lowerCamelCase : Dict = (1, 150, 128, 128)
elif "city" in model_name:
_lowerCamelCase : List[str] = 19
_lowerCamelCase : Tuple = "cityscapes-id2label.json"
_lowerCamelCase : Tuple = (1, 19, 128, 128)
else:
raise ValueError(F"""Model {model_name} not supported""" )
elif "mit" in model_name:
_lowerCamelCase : List[str] = True
_lowerCamelCase : Tuple = model_name[4:6]
_lowerCamelCase : Tuple = 1000
_lowerCamelCase : List[Any] = "imagenet-1k-id2label.json"
_lowerCamelCase : List[Any] = (1, 1000)
else:
raise ValueError(F"""Model {model_name} not supported""" )
# set config attributes
_lowerCamelCase : Optional[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) )
_lowerCamelCase : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()}
_lowerCamelCase : Optional[Any] = idalabel
_lowerCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()}
if size == "b0":
pass
elif size == "b1":
_lowerCamelCase : int = [64, 128, 320, 512]
_lowerCamelCase : int = 256
elif size == "b2":
_lowerCamelCase : Tuple = [64, 128, 320, 512]
_lowerCamelCase : List[Any] = 768
_lowerCamelCase : Any = [3, 4, 6, 3]
elif size == "b3":
_lowerCamelCase : Tuple = [64, 128, 320, 512]
_lowerCamelCase : Union[str, Any] = 768
_lowerCamelCase : Optional[Any] = [3, 4, 18, 3]
elif size == "b4":
_lowerCamelCase : str = [64, 128, 320, 512]
_lowerCamelCase : Optional[Any] = 768
_lowerCamelCase : Dict = [3, 8, 27, 3]
elif size == "b5":
_lowerCamelCase : int = [64, 128, 320, 512]
_lowerCamelCase : Tuple = 768
_lowerCamelCase : Tuple = [3, 6, 40, 3]
else:
raise ValueError(F"""Size {size} not supported""" )
# load image processor (only resize + normalize)
_lowerCamelCase : Dict = SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=_lowerCamelCase , align=_lowerCamelCase , do_random_crop=_lowerCamelCase )
# prepare image
_lowerCamelCase : List[str] = prepare_img()
_lowerCamelCase : Dict = image_processor(images=_lowerCamelCase , return_tensors="pt" ).pixel_values
logger.info(F"""Converting model {model_name}...""" )
# load original state dict
if encoder_only:
_lowerCamelCase : Tuple = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) )
else:
_lowerCamelCase : int = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) )["state_dict"]
# rename keys
_lowerCamelCase : str = rename_keys(_lowerCamelCase , encoder_only=_lowerCamelCase )
if not encoder_only:
del state_dict["decode_head.conv_seg.weight"]
del state_dict["decode_head.conv_seg.bias"]
# key and value matrices need special treatment
read_in_k_v(_lowerCamelCase , _lowerCamelCase )
# create HuggingFace model and load state dict
if encoder_only:
_lowerCamelCase : Tuple = False
_lowerCamelCase : Optional[int] = SegformerForImageClassification(_lowerCamelCase )
else:
_lowerCamelCase : List[str] = SegformerForSemanticSegmentation(_lowerCamelCase )
model.load_state_dict(_lowerCamelCase )
model.eval()
# forward pass
_lowerCamelCase : Any = model(_lowerCamelCase )
_lowerCamelCase : Dict = outputs.logits
# set expected_slice based on model name
# ADE20k checkpoints
if model_name == "segformer.b0.512x512.ade.160k":
_lowerCamelCase : str = torch.tensor(
[
[[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]],
[[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]],
[[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]],
] )
elif model_name == "segformer.b1.512x512.ade.160k":
_lowerCamelCase : Any = torch.tensor(
[
[[-7.5_8_2_0, -8.7_2_3_1, -8.3_2_1_5], [-8.0_6_0_0, -1_0.3_5_2_9, -1_0.0_3_0_4], [-7.5_2_0_8, -9.4_1_0_3, -9.6_2_3_9]],
[[-1_2.6_9_1_8, -1_3.8_9_9_4, -1_3.7_1_3_7], [-1_3.3_1_9_6, -1_5.7_5_2_3, -1_5.4_7_8_9], [-1_2.9_3_4_3, -1_4.8_7_5_7, -1_4.9_6_8_9]],
[[-1_1.1_9_1_1, -1_1.9_4_2_1, -1_1.3_2_4_3], [-1_1.3_3_4_2, -1_3.6_8_3_9, -1_3.3_5_8_1], [-1_0.3_9_0_9, -1_2.1_8_3_2, -1_2.4_8_5_8]],
] )
elif model_name == "segformer.b2.512x512.ade.160k":
_lowerCamelCase : int = torch.tensor(
[
[[-1_1.8_1_7_3, -1_4.3_8_5_0, -1_6.3_1_2_8], [-1_4.5_6_4_8, -1_6.5_8_0_4, -1_8.6_5_6_8], [-1_4.7_2_2_3, -1_5.7_3_8_7, -1_8.4_2_1_8]],
[[-1_5.7_2_9_0, -1_7.9_1_7_1, -1_9.4_4_2_3], [-1_8.3_1_0_5, -1_9.9_4_4_8, -2_1.4_6_6_1], [-1_7.9_2_9_6, -1_8.6_4_9_7, -2_0.7_9_1_0]],
[[-1_5.0_7_8_3, -1_7.0_3_3_6, -1_8.2_7_8_9], [-1_6.8_7_7_1, -1_8.6_8_7_0, -2_0.1_6_1_2], [-1_6.2_4_5_4, -1_7.1_4_2_6, -1_9.5_0_5_5]],
] )
elif model_name == "segformer.b3.512x512.ade.160k":
_lowerCamelCase : Optional[Any] = torch.tensor(
[
[[-9.0_8_7_8, -1_0.2_0_8_1, -1_0.1_8_9_1], [-9.3_1_4_4, -1_0.7_9_4_1, -1_0.9_8_4_3], [-9.2_2_9_4, -1_0.3_8_5_5, -1_0.5_7_0_4]],
[[-1_2.2_3_1_6, -1_3.9_0_6_8, -1_3.6_1_0_2], [-1_2.9_1_6_1, -1_4.3_7_0_2, -1_4.3_2_3_5], [-1_2.5_2_3_3, -1_3.7_1_7_4, -1_3.7_9_3_2]],
[[-1_4.6_2_7_5, -1_5.2_4_9_0, -1_4.9_7_2_7], [-1_4.3_4_0_0, -1_5.9_6_8_7, -1_6.2_8_2_7], [-1_4.1_4_8_4, -1_5.4_0_3_3, -1_5.8_9_3_7]],
] )
elif model_name == "segformer.b4.512x512.ade.160k":
_lowerCamelCase : List[str] = torch.tensor(
[
[[-1_2.3_1_4_4, -1_3.2_4_4_7, -1_4.0_8_0_2], [-1_3.3_6_1_4, -1_4.5_8_1_6, -1_5.6_1_1_7], [-1_3.3_3_4_0, -1_4.4_4_3_3, -1_6.2_2_1_9]],
[[-1_9.2_7_8_1, -2_0.4_1_2_8, -2_0.7_5_0_6], [-2_0.6_1_5_3, -2_1.6_5_6_6, -2_2.0_9_9_8], [-1_9.9_8_0_0, -2_1.0_4_3_0, -2_2.1_4_9_4]],
[[-1_8.8_7_3_9, -1_9.7_8_0_4, -2_1.1_8_3_4], [-2_0.1_2_3_3, -2_1.6_7_6_5, -2_3.2_9_4_4], [-2_0.0_3_1_5, -2_1.2_6_4_1, -2_3.6_9_4_4]],
] )
elif model_name == "segformer.b5.640x640.ade.160k":
_lowerCamelCase : Any = torch.tensor(
[
[[-9.5_5_2_4, -1_2.0_8_3_5, -1_1.7_3_4_8], [-1_0.5_2_2_9, -1_3.6_4_4_6, -1_4.5_6_6_2], [-9.5_8_4_2, -1_2.8_8_5_1, -1_3.9_4_1_4]],
[[-1_5.3_4_3_2, -1_7.5_3_2_3, -1_7.0_8_1_8], [-1_6.3_3_3_0, -1_8.9_2_5_5, -1_9.2_1_0_1], [-1_5.1_3_4_0, -1_7.7_8_4_8, -1_8.3_9_7_1]],
[[-1_2.6_0_7_2, -1_4.9_4_8_6, -1_4.6_6_3_1], [-1_3.7_6_2_9, -1_7.0_9_0_7, -1_7.7_7_4_5], [-1_2.7_8_9_9, -1_6.1_6_9_5, -1_7.1_6_7_1]],
] )
# Cityscapes checkpoints
elif model_name == "segformer.b0.1024x1024.city.160k":
_lowerCamelCase : Dict = torch.tensor(
[
[[-1_1.9_2_9_5, -1_3.4_0_5_7, -1_4.8_1_0_6], [-1_3.3_4_3_1, -1_4.8_1_7_9, -1_5.3_7_8_1], [-1_4.2_8_3_6, -1_5.5_9_4_2, -1_6.1_5_8_8]],
[[-1_1.4_9_0_6, -1_2.8_0_6_7, -1_3.6_5_6_4], [-1_3.1_1_8_9, -1_4.0_5_0_0, -1_4.1_5_4_3], [-1_3.8_7_4_8, -1_4.5_1_3_6, -1_4.8_7_8_9]],
[[0.5_3_7_4, 0.1_0_6_7, -0.4_7_4_2], [0.1_1_4_1, -0.2_2_5_5, -0.7_0_9_9], [-0.3_0_0_0, -0.5_9_2_4, -1.3_1_0_5]],
] )
elif model_name == "segformer.b0.512x1024.city.160k":
_lowerCamelCase : Optional[int] = torch.tensor(
[
[[-7.8_2_1_7, -9.8_7_6_7, -1_0.1_7_1_7], [-9.4_4_3_8, -1_0.9_0_5_8, -1_1.4_0_4_7], [-9.7_9_3_9, -1_2.3_4_9_5, -1_2.1_0_7_9]],
[[-7.1_5_1_4, -9.5_3_3_6, -1_0.0_8_6_0], [-9.7_7_7_6, -1_1.6_8_2_2, -1_1.8_4_3_9], [-1_0.1_4_1_1, -1_2.7_6_5_5, -1_2.8_9_7_2]],
[[0.3_0_2_1, 0.0_8_0_5, -0.2_3_1_0], [-0.0_3_2_8, -0.1_6_0_5, -0.2_7_1_4], [-0.1_4_0_8, -0.5_4_7_7, -0.6_9_7_6]],
] )
elif model_name == "segformer.b0.640x1280.city.160k":
_lowerCamelCase : Tuple = torch.tensor(
[
[
[-1.13_72e01, -1.27_87e01, -1.34_77e01],
[-1.25_36e01, -1.41_94e01, -1.44_09e01],
[-1.32_17e01, -1.48_88e01, -1.53_27e01],
],
[
[-1.47_91e01, -1.71_22e01, -1.82_77e01],
[-1.71_63e01, -1.91_92e01, -1.95_33e01],
[-1.78_97e01, -1.99_91e01, -2.03_15e01],
],
[
[7.67_23e-01, 4.19_21e-01, -7.78_78e-02],
[4.77_72e-01, 9.55_57e-03, -2.80_82e-01],
[3.60_32e-01, -2.48_26e-01, -5.11_68e-01],
],
] )
elif model_name == "segformer.b0.768x768.city.160k":
_lowerCamelCase : Union[str, Any] = torch.tensor(
[
[[-9.4_9_5_9, -1_1.3_0_8_7, -1_1.7_4_7_9], [-1_1.0_0_2_5, -1_2.6_5_4_0, -1_2.3_3_1_9], [-1_1.4_0_6_4, -1_3.0_4_8_7, -1_2.9_9_0_5]],
[[-9.8_9_0_5, -1_1.3_0_8_4, -1_2.0_8_5_4], [-1_1.1_7_2_6, -1_2.7_6_9_8, -1_2.9_5_8_3], [-1_1.5_9_8_5, -1_3.3_2_7_8, -1_4.1_7_7_4]],
[[0.2_2_1_3, 0.0_1_9_2, -0.2_4_6_6], [-0.1_7_3_1, -0.4_2_1_3, -0.4_8_7_4], [-0.3_1_2_6, -0.6_5_4_1, -1.1_3_8_9]],
] )
elif model_name == "segformer.b1.1024x1024.city.160k":
_lowerCamelCase : List[Any] = torch.tensor(
[
[[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]],
[[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]],
[[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]],
] )
elif model_name == "segformer.b2.1024x1024.city.160k":
_lowerCamelCase : Tuple = torch.tensor(
[
[[-1_6.0_9_7_6, -1_6.4_8_5_6, -1_7.3_9_6_2], [-1_6.6_2_3_4, -1_9.0_3_4_2, -1_9.7_6_8_5], [-1_6.0_9_0_0, -1_8.0_6_6_1, -1_9.1_1_8_0]],
[[-1_8.4_7_5_0, -1_8.8_4_8_8, -1_9.5_0_7_4], [-1_9.4_0_3_0, -2_2.1_5_7_0, -2_2.5_9_7_7], [-1_9.1_1_9_1, -2_0.8_4_8_6, -2_2.3_7_8_3]],
[[-4.5_1_7_8, -5.5_0_3_7, -6.5_1_0_9], [-5.0_8_8_4, -7.2_1_7_4, -8.0_3_3_4], [-4.4_1_5_6, -5.8_1_1_7, -7.2_9_7_0]],
] )
elif model_name == "segformer.b3.1024x1024.city.160k":
_lowerCamelCase : Any = torch.tensor(
[
[[-1_4.2_0_8_1, -1_4.4_7_3_2, -1_4.1_9_7_7], [-1_4.5_8_6_7, -1_6.4_4_2_3, -1_6.6_3_5_6], [-1_3.4_4_4_1, -1_4.9_6_8_5, -1_6.8_6_9_6]],
[[-1_4.4_5_7_6, -1_4.7_0_7_3, -1_5.0_4_5_1], [-1_5.0_8_1_6, -1_7.6_2_3_7, -1_7.9_8_7_3], [-1_4.4_2_1_3, -1_6.0_1_9_9, -1_8.5_9_9_2]],
[[-4.7_3_4_9, -4.9_5_8_8, -5.0_9_6_6], [-4.3_2_1_0, -6.9_3_2_5, -7.2_5_9_1], [-3.4_3_1_2, -4.7_4_8_4, -7.1_9_1_7]],
] )
elif model_name == "segformer.b4.1024x1024.city.160k":
_lowerCamelCase : List[str] = torch.tensor(
[
[[-1_1.7_7_3_7, -1_1.9_5_2_6, -1_1.3_2_7_3], [-1_3.6_6_9_2, -1_4.4_5_7_4, -1_3.8_8_7_8], [-1_3.8_9_3_7, -1_4.6_9_2_4, -1_5.9_3_4_5]],
[[-1_4.6_7_0_6, -1_4.5_3_3_0, -1_4.1_3_0_6], [-1_6.1_5_0_2, -1_6.8_1_8_0, -1_6.4_2_6_9], [-1_6.8_3_3_8, -1_7.8_9_3_9, -2_0.1_7_4_6]],
[[1.0_4_9_1, 0.8_2_8_9, 1.0_3_1_0], [1.1_0_4_4, 0.5_2_1_9, 0.8_0_5_5], [1.0_8_9_9, 0.6_9_2_6, 0.5_5_9_0]],
] )
elif model_name == "segformer.b5.1024x1024.city.160k":
_lowerCamelCase : str = torch.tensor(
[
[[-1_2.5_6_4_1, -1_3.4_7_7_7, -1_3.0_6_8_4], [-1_3.9_5_8_7, -1_5.8_9_8_3, -1_6.6_5_5_7], [-1_3.3_1_0_9, -1_5.7_3_5_0, -1_6.3_1_4_1]],
[[-1_4.7_0_7_4, -1_5.4_3_5_2, -1_4.5_9_4_4], [-1_6.6_3_5_3, -1_8.1_6_6_3, -1_8.6_1_2_0], [-1_5.1_7_0_2, -1_8.0_3_2_9, -1_8.1_5_4_7]],
[[-1.7_9_9_0, -2.0_9_5_1, -1.7_7_8_4], [-2.6_3_9_7, -3.8_2_4_5, -3.9_6_8_6], [-1.5_2_6_4, -2.8_1_2_6, -2.9_3_1_6]],
] )
else:
_lowerCamelCase : Dict = logits.argmax(-1 ).item()
print("Predicted class:" , model.config.idalabel[predicted_class_idx] )
# verify logits
if not encoder_only:
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1e-2 )
# finally, save model and image processor
logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" )
Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase )
model.save_pretrained(_lowerCamelCase )
image_processor.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase : str = argparse.ArgumentParser()
parser.add_argument(
'''--model_name''',
default='''segformer.b0.512x512.ade.160k''',
type=str,
help='''Name of the model you\'d like to convert.''',
)
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
_lowerCAmelCase : str = parser.parse_args()
convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path) | 340 | 1 |
"""simple docstring"""
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
_lowerCAmelCase : Union[str, Any] = logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class A_ ( _a ):
lowerCAmelCase__ = field(default=_a , metadata={'help': 'Whether to use SortishSampler or not.'} )
lowerCAmelCase__ = field(
default=_a , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} )
lowerCAmelCase__ = field(
default=_a , metadata={
'help': (
'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default '
'to the `max_length` value of the model configuration.'
)
} , )
lowerCAmelCase__ = field(
default=_a , metadata={
'help': (
'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default '
'to the `num_beams` value of the model configuration.'
)
} , )
lowerCAmelCase__ = field(
default=_a , metadata={
'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.'
} , )
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : List[Any] = super().to_dict()
for k, v in d.items():
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : Optional[int] = v.to_dict()
return d | 340 |
"""simple docstring"""
_lowerCAmelCase : dict[tuple[int, int, int], int] = {}
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
_lowerCamelCase : Optional[int] = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
_lowerCamelCase : int = _calculate(days - 1 , _lowerCamelCase , late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
_lowerCamelCase : Tuple = _calculate(days - 1 , absent + 1 , 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
_lowerCamelCase : str = _calculate(days - 1 , _lowerCamelCase , 0 )
_lowerCamelCase : List[Any] = state_late + state_absent + state_ontime
_lowerCamelCase : int = prizestrings
return prizestrings
def lowerCamelCase_( _lowerCamelCase = 30 ) -> int:
'''simple docstring'''
return _calculate(_lowerCamelCase , absent=0 , late=0 )
if __name__ == "__main__":
print(solution()) | 340 | 1 |
"""simple docstring"""
import shutil
import tempfile
import unittest
from transformers import (
SPIECE_UNDERLINE,
AddedToken,
BatchEncoding,
NllbTokenizer,
NllbTokenizerFast,
is_torch_available,
)
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
_lowerCAmelCase : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''')
if is_torch_available():
from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right
_lowerCAmelCase : List[Any] = 25_6047
_lowerCAmelCase : Optional[Any] = 25_6145
@require_sentencepiece
@require_tokenizers
class A_ ( _a , unittest.TestCase ):
lowerCAmelCase__ = NllbTokenizer
lowerCAmelCase__ = NllbTokenizerFast
lowerCAmelCase__ = True
lowerCAmelCase__ = True
lowerCAmelCase__ = {}
def _lowercase ( self: List[Any] ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
_lowerCamelCase : str = NllbTokenizer(__lowerCAmelCase ,keep_accents=__lowerCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase : Optional[Any] = NllbTokenizer(__lowerCAmelCase ,keep_accents=__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = tokenizer.tokenize("This is a test" )
self.assertListEqual(__lowerCAmelCase ,["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,)
_lowerCamelCase : int = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
__lowerCAmelCase ,[
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] ,)
_lowerCamelCase : Tuple = tokenizer.convert_tokens_to_ids(__lowerCAmelCase )
self.assertListEqual(
__lowerCAmelCase ,[
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] ,)
_lowerCamelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(__lowerCAmelCase )
self.assertListEqual(
__lowerCAmelCase ,[
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] ,)
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase : List[str] = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-nllb", {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
_lowerCamelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase ,**__lowerCAmelCase )
_lowerCamelCase : List[str] = self.tokenizer_class.from_pretrained(__lowerCAmelCase ,**__lowerCAmelCase )
_lowerCamelCase : int = tempfile.mkdtemp()
_lowerCamelCase : int = tokenizer_r.save_pretrained(__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = tokenizer_p.save_pretrained(__lowerCAmelCase )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) )
_lowerCamelCase : Optional[Any] = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f )
self.assertSequenceEqual(__lowerCAmelCase ,__lowerCAmelCase )
# Checks everything loads correctly in the same way
_lowerCamelCase : Union[str, Any] = tokenizer_r.from_pretrained(__lowerCAmelCase )
_lowerCamelCase : List[Any] = tokenizer_p.from_pretrained(__lowerCAmelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__lowerCAmelCase ,__lowerCAmelCase ) )
shutil.rmtree(__lowerCAmelCase )
# Save tokenizer rust, legacy_format=True
_lowerCamelCase : Optional[Any] = tempfile.mkdtemp()
_lowerCamelCase : Union[str, Any] = tokenizer_r.save_pretrained(__lowerCAmelCase ,legacy_format=__lowerCAmelCase )
_lowerCamelCase : List[str] = tokenizer_p.save_pretrained(__lowerCAmelCase )
# Checks it save with the same files
self.assertSequenceEqual(__lowerCAmelCase ,__lowerCAmelCase )
# Checks everything loads correctly in the same way
_lowerCamelCase : List[Any] = tokenizer_r.from_pretrained(__lowerCAmelCase )
_lowerCamelCase : str = tokenizer_p.from_pretrained(__lowerCAmelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__lowerCAmelCase ,__lowerCAmelCase ) )
shutil.rmtree(__lowerCAmelCase )
# Save tokenizer rust, legacy_format=False
_lowerCamelCase : List[str] = tempfile.mkdtemp()
_lowerCamelCase : Optional[Any] = tokenizer_r.save_pretrained(__lowerCAmelCase ,legacy_format=__lowerCAmelCase )
_lowerCamelCase : int = tokenizer_p.save_pretrained(__lowerCAmelCase )
# Checks it saved the tokenizer.json file
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
_lowerCamelCase : Any = tokenizer_r.from_pretrained(__lowerCAmelCase )
_lowerCamelCase : str = tokenizer_p.from_pretrained(__lowerCAmelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__lowerCAmelCase ,__lowerCAmelCase ) )
shutil.rmtree(__lowerCAmelCase )
@require_torch
def _lowercase ( self: Any ):
'''simple docstring'''
if not self.test_seqaseq:
return
_lowerCamelCase : List[str] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
# Longer text that will definitely require truncation.
_lowerCamelCase : Tuple = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for"
" Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons"
" will only worsen the violence and misery for millions of people.",
]
_lowerCamelCase : Tuple = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al"
" Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi"
" că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
try:
_lowerCamelCase : int = tokenizer.prepare_seqaseq_batch(
src_texts=__lowerCAmelCase ,tgt_texts=__lowerCAmelCase ,max_length=3 ,max_target_length=10 ,return_tensors="pt" ,src_lang="eng_Latn" ,tgt_lang="ron_Latn" ,)
except NotImplementedError:
return
self.assertEqual(batch.input_ids.shape[1] ,3 )
self.assertEqual(batch.labels.shape[1] ,10 )
# max_target_length will default to max_length if not specified
_lowerCamelCase : int = tokenizer.prepare_seqaseq_batch(
__lowerCAmelCase ,tgt_texts=__lowerCAmelCase ,max_length=3 ,return_tensors="pt" )
self.assertEqual(batch.input_ids.shape[1] ,3 )
self.assertEqual(batch.labels.shape[1] ,3 )
_lowerCamelCase : List[Any] = tokenizer.prepare_seqaseq_batch(
src_texts=__lowerCAmelCase ,max_length=3 ,max_target_length=10 ,return_tensors="pt" )
self.assertEqual(batch_encoder_only.input_ids.shape[1] ,3 )
self.assertEqual(batch_encoder_only.attention_mask.shape[1] ,3 )
self.assertNotIn("decoder_input_ids" ,__lowerCAmelCase )
@unittest.skip("Unfortunately way too slow to build a BPE with SentencePiece." )
def _lowercase ( self: int ):
'''simple docstring'''
pass
def _lowercase ( self: Dict ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
_lowerCamelCase : str = [AddedToken("<special>" ,lstrip=__lowerCAmelCase )]
_lowerCamelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
__lowerCAmelCase ,additional_special_tokens=__lowerCAmelCase ,**__lowerCAmelCase )
_lowerCamelCase : Tuple = tokenizer_r.encode("Hey this is a <special> token" )
_lowerCamelCase : Any = tokenizer_r.encode("<special>" ,add_special_tokens=__lowerCAmelCase )[0]
self.assertTrue(special_token_id in r_output )
if self.test_slow_tokenizer:
_lowerCamelCase : Any = self.rust_tokenizer_class.from_pretrained(
__lowerCAmelCase ,additional_special_tokens=__lowerCAmelCase ,**__lowerCAmelCase ,)
_lowerCamelCase : Dict = self.tokenizer_class.from_pretrained(
__lowerCAmelCase ,additional_special_tokens=__lowerCAmelCase ,**__lowerCAmelCase )
_lowerCamelCase : Dict = tokenizer_p.encode("Hey this is a <special> token" )
_lowerCamelCase : List[str] = tokenizer_cr.encode("Hey this is a <special> token" )
self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase )
self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase )
self.assertTrue(special_token_id in p_output )
self.assertTrue(special_token_id in cr_output )
@require_torch
@require_sentencepiece
@require_tokenizers
class A_ ( unittest.TestCase ):
lowerCAmelCase__ = 'facebook/nllb-200-distilled-600M'
lowerCAmelCase__ = [
' UN Chief Says There Is No Military Solution in Syria',
' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.',
]
lowerCAmelCase__ = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'
' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'
' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.',
]
lowerCAmelCase__ = [
2_5_6_0_4_7,
1_6_2_9_7,
1_3_4_4_0_8,
8_1_6_5,
2_4_8_0_6_6,
1_4_7_3_4,
9_5_0,
1_1_3_5,
1_0_5_7_2_1,
3_5_7_3,
8_3,
2_7_3_5_2,
1_0_8,
4_9_4_8_6,
2,
]
@classmethod
def _lowercase ( cls: int ):
'''simple docstring'''
_lowerCamelCase : NllbTokenizer = NllbTokenizer.from_pretrained(
cls.checkpoint_name ,src_lang="eng_Latn" ,tgt_lang="ron_Latn" )
_lowerCamelCase : str = 1
return cls
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Arab"] ,256_001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Latn"] ,256_002 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["fra_Latn"] ,256_057 )
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens ,__lowerCAmelCase )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
self.assertIn(__lowerCAmelCase ,self.tokenizer.all_special_ids )
# fmt: off
_lowerCamelCase : Union[str, Any] = [RO_CODE, 4_254, 98_068, 112_923, 39_072, 3_909, 713, 102_767, 26, 17_314, 35_642, 14_683, 33_118, 2_022, 66_987, 2, 256_047]
# fmt: on
_lowerCamelCase : List[Any] = self.tokenizer.decode(__lowerCAmelCase ,skip_special_tokens=__lowerCAmelCase )
_lowerCamelCase : Tuple = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=__lowerCAmelCase )
self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase )
self.assertNotIn(self.tokenizer.eos_token ,__lowerCAmelCase )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : List[Any] = ["this is gunna be a long sentence " * 20]
assert isinstance(src_text[0] ,__lowerCAmelCase )
_lowerCamelCase : List[str] = 10
_lowerCamelCase : Dict = self.tokenizer(__lowerCAmelCase ,max_length=__lowerCAmelCase ,truncation=__lowerCAmelCase ).input_ids[0]
self.assertEqual(ids[-1] ,2 )
self.assertEqual(ids[0] ,__lowerCAmelCase )
self.assertEqual(len(__lowerCAmelCase ) ,__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) ,[256_203, 3] )
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase : int = tempfile.mkdtemp()
_lowerCamelCase : Optional[int] = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(__lowerCAmelCase )
_lowerCamelCase : Any = NllbTokenizer.from_pretrained(__lowerCAmelCase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids ,__lowerCAmelCase )
@require_torch
def _lowercase ( self: List[str] ):
'''simple docstring'''
_lowerCamelCase : str = self.tokenizer(
self.src_text ,text_target=self.tgt_text ,padding=__lowerCAmelCase ,truncation=__lowerCAmelCase ,max_length=len(self.expected_src_tokens ) ,return_tensors="pt" ,)
_lowerCamelCase : List[Any] = shift_tokens_right(
batch["labels"] ,self.tokenizer.pad_token_id ,self.tokenizer.lang_code_to_id["ron_Latn"] )
self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase )
self.assertEqual((2, 15) ,batch.input_ids.shape )
self.assertEqual((2, 15) ,batch.attention_mask.shape )
_lowerCamelCase : Any = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens ,__lowerCAmelCase )
self.assertEqual(__lowerCAmelCase ,batch.decoder_input_ids[0, 0] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens ,[EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase : Dict = self.tokenizer(self.src_text ,padding=__lowerCAmelCase ,truncation=__lowerCAmelCase ,max_length=3 ,return_tensors="pt" )
_lowerCamelCase : Union[str, Any] = self.tokenizer(
text_target=self.tgt_text ,padding=__lowerCAmelCase ,truncation=__lowerCAmelCase ,max_length=10 ,return_tensors="pt" )
_lowerCamelCase : Union[str, Any] = targets["input_ids"]
_lowerCamelCase : Tuple = shift_tokens_right(
__lowerCAmelCase ,self.tokenizer.pad_token_id ,decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] ,)
self.assertEqual(batch.input_ids.shape[1] ,3 )
self.assertEqual(batch.decoder_input_ids.shape[1] ,10 )
@require_torch
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase : List[str] = self.tokenizer._build_translation_inputs(
"A test" ,return_tensors="pt" ,src_lang="eng_Latn" ,tgt_lang="fra_Latn" )
self.assertEqual(
nested_simplify(__lowerCAmelCase ) ,{
# A, test, EOS, en_XX
"input_ids": [[256_047, 70, 7_356, 2]],
"attention_mask": [[1, 1, 1, 1]],
# ar_AR
"forced_bos_token_id": 256_057,
} ,)
@require_torch
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase : Tuple = True
_lowerCamelCase : Optional[Any] = self.tokenizer(
"UN Chief says there is no military solution in Syria" ,src_lang="eng_Latn" ,tgt_lang="fra_Latn" )
self.assertEqual(
inputs.input_ids ,[16_297, 134_408, 25_653, 6_370, 248, 254, 103_929, 94_995, 108, 49_486, 2, 256_047] )
_lowerCamelCase : Any = False
_lowerCamelCase : Any = self.tokenizer(
"UN Chief says there is no military solution in Syria" ,src_lang="eng_Latn" ,tgt_lang="fra_Latn" )
self.assertEqual(
inputs.input_ids ,[256_047, 16_297, 134_408, 25_653, 6_370, 248, 254, 103_929, 94_995, 108, 49_486, 2] ) | 340 |
"""simple docstring"""
from __future__ import annotations
def lowerCamelCase_( _lowerCamelCase ) -> bool:
'''simple docstring'''
_lowerCamelCase : int = str(_lowerCamelCase )
return len(_lowerCamelCase ) == 9 and set(_lowerCamelCase ) == set("123456789" )
def lowerCamelCase_( ) -> int | None:
'''simple docstring'''
for base_num in range(9999 , 4999 , -1 ):
_lowerCamelCase : Union[str, Any] = 100002 * base_num
if is_9_pandigital(_lowerCamelCase ):
return candidate
for base_num in range(333 , 99 , -1 ):
_lowerCamelCase : Tuple = 1002003 * base_num
if is_9_pandigital(_lowerCamelCase ):
return candidate
return None
if __name__ == "__main__":
print(f'''{solution() = }''') | 340 | 1 |
"""simple docstring"""
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
torch.set_grad_enabled(False)
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> Union[str, Any]:
'''simple docstring'''
_lowerCamelCase : str = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append(
(F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") )
# projection layer + position embeddings
rename_keys.extend(
[
("module.cls_token", "vit.embeddings.cls_token"),
("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
("module.pos_embed", "vit.embeddings.position_embeddings"),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("module.norm.weight", "layernorm.weight"),
("module.norm.bias", "layernorm.bias"),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
_lowerCamelCase : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("norm.weight", "vit.layernorm.weight"),
("norm.bias", "vit.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
] )
return rename_keys
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> int:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
_lowerCamelCase : List[str] = ""
else:
_lowerCamelCase : Optional[int] = "vit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_lowerCamelCase : int = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" )
_lowerCamelCase : Any = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
_lowerCamelCase : List[Any] = in_proj_weight[
: config.hidden_size, :
]
_lowerCamelCase : List[str] = in_proj_bias[: config.hidden_size]
_lowerCamelCase : Optional[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_lowerCamelCase : Any = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_lowerCamelCase : List[Any] = in_proj_weight[
-config.hidden_size :, :
]
_lowerCamelCase : Dict = in_proj_bias[-config.hidden_size :]
def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(_lowerCamelCase , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> Dict:
'''simple docstring'''
_lowerCamelCase : List[str] = [
"module.fc.fc1.weight",
"module.fc.fc1.bias",
"module.fc.bn1.weight",
"module.fc.bn1.bias",
"module.fc.bn1.running_mean",
"module.fc.bn1.running_var",
"module.fc.bn1.num_batches_tracked",
"module.fc.fc2.weight",
"module.fc.fc2.bias",
"module.fc.bn2.weight",
"module.fc.bn2.bias",
"module.fc.bn2.running_mean",
"module.fc.bn2.running_var",
"module.fc.bn2.num_batches_tracked",
"module.fc.fc3.weight",
"module.fc.fc3.bias",
]
for k in ignore_keys:
state_dict.pop(_lowerCamelCase , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
_lowerCamelCase : str = dct.pop(_lowerCamelCase )
_lowerCamelCase : Tuple = val
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Tuple:
'''simple docstring'''
_lowerCamelCase : str = ViTMSNConfig()
_lowerCamelCase : List[Any] = 1000
_lowerCamelCase : List[str] = "datasets/huggingface/label-files"
_lowerCamelCase : Union[str, Any] = "imagenet-1k-id2label.json"
_lowerCamelCase : List[str] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase ) , "r" ) )
_lowerCamelCase : List[Any] = {int(_lowerCamelCase ): v for k, v in idalabel.items()}
_lowerCamelCase : Optional[int] = idalabel
_lowerCamelCase : Dict = {v: k for k, v in idalabel.items()}
if "s16" in checkpoint_url:
_lowerCamelCase : Union[str, Any] = 384
_lowerCamelCase : Tuple = 1536
_lowerCamelCase : Tuple = 6
elif "l16" in checkpoint_url:
_lowerCamelCase : Dict = 1024
_lowerCamelCase : Dict = 4096
_lowerCamelCase : List[str] = 24
_lowerCamelCase : Any = 16
_lowerCamelCase : Optional[int] = 0.1
elif "b4" in checkpoint_url:
_lowerCamelCase : List[str] = 4
elif "l7" in checkpoint_url:
_lowerCamelCase : Optional[int] = 7
_lowerCamelCase : Tuple = 1024
_lowerCamelCase : Dict = 4096
_lowerCamelCase : Dict = 24
_lowerCamelCase : Dict = 16
_lowerCamelCase : List[Any] = 0.1
_lowerCamelCase : Union[str, Any] = ViTMSNModel(_lowerCamelCase )
_lowerCamelCase : str = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" )["target_encoder"]
_lowerCamelCase : Optional[int] = ViTImageProcessor(size=config.image_size )
remove_projection_head(_lowerCamelCase )
_lowerCamelCase : str = create_rename_keys(_lowerCamelCase , base_model=_lowerCamelCase )
for src, dest in rename_keys:
rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , base_model=_lowerCamelCase )
model.load_state_dict(_lowerCamelCase )
model.eval()
_lowerCamelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg"
_lowerCamelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw )
_lowerCamelCase : Optional[Any] = ViTImageProcessor(
size=config.image_size , image_mean=_lowerCamelCase , image_std=_lowerCamelCase )
_lowerCamelCase : Dict = image_processor(images=_lowerCamelCase , return_tensors="pt" )
# forward pass
torch.manual_seed(2 )
_lowerCamelCase : str = model(**_lowerCamelCase )
_lowerCamelCase : List[Any] = outputs.last_hidden_state
# The following Colab Notebook was used to generate these outputs:
# https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb
if "s16" in checkpoint_url:
_lowerCamelCase : List[Any] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] )
elif "b16" in checkpoint_url:
_lowerCamelCase : List[Any] = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] )
elif "l16" in checkpoint_url:
_lowerCamelCase : Optional[int] = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] )
elif "b4" in checkpoint_url:
_lowerCamelCase : int = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] )
else:
_lowerCamelCase : int = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] )
# verify logits
assert torch.allclose(last_hidden_state[:, 0, :3] , _lowerCamelCase , atol=1e-4 )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowerCamelCase )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''',
type=str,
help='''URL of the checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
_lowerCAmelCase : Union[str, Any] = parser.parse_args()
convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path) | 340 |
"""simple docstring"""
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class A_ ( _a ):
lowerCAmelCase__ = 'char'
lowerCAmelCase__ = 'bpe'
lowerCAmelCase__ = 'wp'
_lowerCAmelCase : List[str] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class A_ ( _a ):
lowerCAmelCase__ = ['image_processor', 'char_tokenizer']
lowerCAmelCase__ = 'ViTImageProcessor'
lowerCAmelCase__ = 'MgpstrTokenizer'
def __init__( self: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: Optional[int]=None ,**__lowerCAmelCase: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : Any = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." ,__lowerCAmelCase ,)
_lowerCamelCase : List[Any] = kwargs.pop("feature_extractor" )
_lowerCamelCase : str = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
_lowerCamelCase : List[str] = tokenizer
_lowerCamelCase : str = AutoTokenizer.from_pretrained("gpt2" )
_lowerCamelCase : List[str] = AutoTokenizer.from_pretrained("bert-base-uncased" )
super().__init__(__lowerCAmelCase ,__lowerCAmelCase )
def __call__( self: Optional[int] ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: Optional[Any]=None ,**__lowerCAmelCase: Tuple ):
'''simple docstring'''
if images is None and text is None:
raise ValueError("You need to specify either an `images` or `text` input to process." )
if images is not None:
_lowerCamelCase : Optional[int] = self.image_processor(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
if text is not None:
_lowerCamelCase : int = self.char_tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
_lowerCamelCase : Tuple = encodings["input_ids"]
return inputs
def _lowercase ( self: int ,__lowerCAmelCase: Dict ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = sequences
_lowerCamelCase : Dict = char_preds.size(0 )
_lowerCamelCase, _lowerCamelCase : Optional[Any] = self._decode_helper(__lowerCAmelCase ,"char" )
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = self._decode_helper(__lowerCAmelCase ,"bpe" )
_lowerCamelCase, _lowerCamelCase : Tuple = self._decode_helper(__lowerCAmelCase ,"wp" )
_lowerCamelCase : List[str] = []
_lowerCamelCase : str = []
for i in range(__lowerCAmelCase ):
_lowerCamelCase : str = [char_scores[i], bpe_scores[i], wp_scores[i]]
_lowerCamelCase : List[Any] = [char_strs[i], bpe_strs[i], wp_strs[i]]
_lowerCamelCase : Optional[Any] = scores.index(max(__lowerCAmelCase ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
_lowerCamelCase : Tuple = {}
_lowerCamelCase : Tuple = final_strs
_lowerCamelCase : int = final_scores
_lowerCamelCase : str = char_strs
_lowerCamelCase : Dict = bpe_strs
_lowerCamelCase : int = wp_strs
return out
def _lowercase ( self: List[str] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: List[Any] ):
'''simple docstring'''
if format == DecodeType.CHARACTER:
_lowerCamelCase : int = self.char_decode
_lowerCamelCase : List[str] = 1
_lowerCamelCase : Optional[int] = "[s]"
elif format == DecodeType.BPE:
_lowerCamelCase : Dict = self.bpe_decode
_lowerCamelCase : str = 2
_lowerCamelCase : Union[str, Any] = "#"
elif format == DecodeType.WORDPIECE:
_lowerCamelCase : int = self.wp_decode
_lowerCamelCase : List[str] = 102
_lowerCamelCase : List[Any] = "[SEP]"
else:
raise ValueError(F"""Format {format} is not supported.""" )
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = [], []
_lowerCamelCase : Any = pred_logits.size(0 )
_lowerCamelCase : int = pred_logits.size(1 )
_lowerCamelCase, _lowerCamelCase : List[Any] = pred_logits.topk(1 ,dim=-1 ,largest=__lowerCAmelCase ,sorted=__lowerCAmelCase )
_lowerCamelCase : Optional[int] = preds_index.view(-1 ,__lowerCAmelCase )[:, 1:]
_lowerCamelCase : List[str] = decoder(__lowerCAmelCase )
_lowerCamelCase, _lowerCamelCase : str = torch.nn.functional.softmax(__lowerCAmelCase ,dim=2 ).max(dim=2 )
_lowerCamelCase : Any = preds_max_prob[:, 1:]
for index in range(__lowerCAmelCase ):
_lowerCamelCase : List[Any] = preds_str[index].find(__lowerCAmelCase )
_lowerCamelCase : Optional[int] = preds_str[index][:pred_eos]
_lowerCamelCase : Optional[Any] = preds_index[index].cpu().tolist()
_lowerCamelCase : List[str] = pred_index.index(__lowerCAmelCase ) if eos_token in pred_index else -1
_lowerCamelCase : str = preds_max_prob[index][: pred_eos_index + 1]
_lowerCamelCase : Union[str, Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(__lowerCAmelCase )
conf_scores.append(__lowerCAmelCase )
return dec_strs, conf_scores
def _lowercase ( self: Tuple ,__lowerCAmelCase: Tuple ):
'''simple docstring'''
_lowerCamelCase : str = [seq.replace(" " ,"" ) for seq in self.char_tokenizer.batch_decode(__lowerCAmelCase )]
return decode_strs
def _lowercase ( self: List[str] ,__lowerCAmelCase: List[str] ):
'''simple docstring'''
return self.bpe_tokenizer.batch_decode(__lowerCAmelCase )
def _lowercase ( self: Tuple ,__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = [seq.replace(" " ,"" ) for seq in self.wp_tokenizer.batch_decode(__lowerCAmelCase )]
return decode_strs | 340 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
_lowerCAmelCase : List[Any] = {'''configuration_speech_encoder_decoder''': ['''SpeechEncoderDecoderConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Dict = ['''SpeechEncoderDecoderModel''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Tuple = ['''FlaxSpeechEncoderDecoderModel''']
if TYPE_CHECKING:
from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel
else:
import sys
_lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 340 |
"""simple docstring"""
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
_lowerCAmelCase : List[Any] = get_logger(__name__)
class A_ :
lowerCAmelCase__ = 'dummy_data'
lowerCAmelCase__ = 'datasets'
lowerCAmelCase__ = False
def __init__( self: List[str] ,__lowerCAmelCase: str ,__lowerCAmelCase: str ,__lowerCAmelCase: Union[Version, str] ,__lowerCAmelCase: Optional[str] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[List[Callable]] = None ,):
'''simple docstring'''
_lowerCamelCase : str = 0
_lowerCamelCase : List[str] = dataset_name
_lowerCamelCase : Optional[int] = cache_dir
_lowerCamelCase : Optional[int] = use_local_dummy_data
_lowerCamelCase : int = config
# download_callbacks take a single url as input
_lowerCamelCase : List[Callable] = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
_lowerCamelCase : int = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
_lowerCamelCase : Tuple = str(__lowerCAmelCase )
# to be downloaded
_lowerCamelCase : Optional[Any] = None
_lowerCamelCase : Dict = None
@property
def _lowercase ( self: str ):
'''simple docstring'''
if self._dummy_file is None:
_lowerCamelCase : List[str] = self.download_dummy_data()
return self._dummy_file
@property
def _lowercase ( self: str ):
'''simple docstring'''
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join("dummy" ,self.config.name ,self.version_name )
# structure is dummy / version_name
return os.path.join("dummy" ,self.version_name )
@property
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
return os.path.join(self.dummy_data_folder ,"dummy_data.zip" )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : Dict = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
_lowerCamelCase : Optional[int] = cached_path(
__lowerCAmelCase ,cache_dir=self.cache_dir ,extract_compressed_file=__lowerCAmelCase ,force_extract=__lowerCAmelCase )
return os.path.join(__lowerCAmelCase ,self.dummy_file_name )
@property
def _lowercase ( self: Tuple ):
'''simple docstring'''
return os.path.join(self.datasets_scripts_dir ,self.dataset_name ,self.dummy_zip_file )
@property
def _lowercase ( self: List[str] ):
'''simple docstring'''
if self._bucket_url is None:
_lowerCamelCase : List[str] = hf_github_url(self.dataset_name ,self.dummy_zip_file.replace(os.sep ,"/" ) )
return self._bucket_url
@property
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep ,"/" ).split("/" )[:-1] )
def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: str ,*__lowerCAmelCase: List[Any] ):
'''simple docstring'''
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
_lowerCamelCase : Tuple = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
_lowerCamelCase : Optional[Any] = self.dummy_file_name
# special case when data_url is a dict
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
return self.create_dummy_data_dict(__lowerCAmelCase ,__lowerCAmelCase )
elif isinstance(__lowerCAmelCase ,(list, tuple) ):
return self.create_dummy_data_list(__lowerCAmelCase ,__lowerCAmelCase )
else:
return self.create_dummy_data_single(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
return self.download_and_extract(__lowerCAmelCase )
def _lowercase ( self: List[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: int ):
'''simple docstring'''
return self.download_and_extract(__lowerCAmelCase )
def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
return path
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
return {}
def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: str ):
'''simple docstring'''
_lowerCamelCase : str = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
for single_url in single_urls:
download_callback(__lowerCAmelCase )
else:
_lowerCamelCase : Union[str, Any] = single_urls
download_callback(__lowerCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : Dict = [os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) ) for x in single_urls]
else:
_lowerCamelCase : Union[str, Any] = single_urls
_lowerCamelCase : List[str] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) )
_lowerCamelCase : List[Any] = value
# make sure that values are unique
if all(isinstance(__lowerCAmelCase ,__lowerCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
_lowerCamelCase : List[Any] = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Tuple ):
'''simple docstring'''
_lowerCamelCase : Dict = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
_lowerCamelCase : List[str] = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" ,__lowerCAmelCase ) ) for url in data_url )
_lowerCamelCase : Optional[Any] = all(
url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
_lowerCamelCase : Tuple = [data_url[0]] * len(__lowerCAmelCase )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(__lowerCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
_lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(single_url.split("/" )[-1] ) )
dummy_data_list.append(__lowerCAmelCase )
return dummy_data_list
def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: List[Any] ):
'''simple docstring'''
for download_callback in self.download_callbacks:
download_callback(__lowerCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
_lowerCamelCase : Optional[int] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(data_url.split("/" )[-1] ) )
if os.path.exists(__lowerCAmelCase ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
pass
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
pass
def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
def _iter_archive_members(__lowerCAmelCase: Any ):
# this preserves the order of the members inside the ZIP archive
_lowerCamelCase : Tuple = Path(self.dummy_file ).parent
_lowerCamelCase : str = path.relative_to(__lowerCAmelCase )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
_lowerCamelCase : Optional[int] = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = Path(__lowerCAmelCase )
_lowerCamelCase : int = _iter_archive_members(__lowerCAmelCase ) if self.use_local_dummy_data else path.rglob("*" )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith((".", "__") ):
yield file_path.relative_to(__lowerCAmelCase ).as_posix(), file_path.open("rb" )
def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : List[Any] = [paths]
for path in paths:
if os.path.isfile(__lowerCAmelCase ):
if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(__lowerCAmelCase ):
if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ):
continue
dirnames.sort()
for filename in sorted(__lowerCAmelCase ):
if filename.startswith((".", "__") ):
continue
yield os.path.join(__lowerCAmelCase ,__lowerCAmelCase ) | 340 | 1 |
"""simple docstring"""
import os
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers.models.realm.configuration_realm import RealmConfig
from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever
from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer
class A_ ( _a ):
def _lowercase ( self: int ):
'''simple docstring'''
_lowerCamelCase : List[Any] = tempfile.mkdtemp()
_lowerCamelCase : List[str] = 5
# Realm tok
_lowerCamelCase : List[str] = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"test",
"question",
"this",
"is",
"the",
"first",
"second",
"third",
"fourth",
"fifth",
"record",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
_lowerCamelCase : int = os.path.join(self.tmpdirname ,"realm_tokenizer" )
os.makedirs(__lowerCAmelCase ,exist_ok=__lowerCAmelCase )
_lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
_lowerCamelCase : Any = os.path.join(self.tmpdirname ,"realm_block_records" )
os.makedirs(__lowerCAmelCase ,exist_ok=__lowerCAmelCase )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"realm_tokenizer" ) )
def _lowercase ( self: Dict ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : Optional[Any] = RealmConfig(num_block_records=self.num_block_records )
return config
def _lowercase ( self: int ):
'''simple docstring'''
_lowerCamelCase : Dict = Dataset.from_dict(
{
"id": ["0", "1"],
"question": ["foo", "bar"],
"answers": [["Foo", "Bar"], ["Bar"]],
} )
return dataset
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : Any = np.array(
[
b"This is the first record",
b"This is the second record",
b"This is the third record",
b"This is the fourth record",
b"This is the fifth record",
b"This is a longer longer longer record",
] ,dtype=__lowerCAmelCase ,)
return block_records
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : Tuple = RealmRetriever(
block_records=self.get_dummy_block_records() ,tokenizer=self.get_tokenizer() ,)
return retriever
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : Dict = self.get_config()
_lowerCamelCase : str = self.get_dummy_retriever()
_lowerCamelCase : Union[str, Any] = retriever.tokenizer
_lowerCamelCase : Dict = np.array([0, 3] ,dtype="long" )
_lowerCamelCase : List[Any] = tokenizer(["Test question"] ).input_ids
_lowerCamelCase : Optional[int] = tokenizer(
["the fourth"] ,add_special_tokens=__lowerCAmelCase ,return_token_type_ids=__lowerCAmelCase ,return_attention_mask=__lowerCAmelCase ,).input_ids
_lowerCamelCase : int = config.reader_seq_len
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = retriever(
__lowerCAmelCase ,__lowerCAmelCase ,answer_ids=__lowerCAmelCase ,max_length=__lowerCAmelCase ,return_tensors="np" )
self.assertEqual(len(__lowerCAmelCase ) ,2 )
self.assertEqual(len(__lowerCAmelCase ) ,2 )
self.assertEqual(len(__lowerCAmelCase ) ,2 )
self.assertEqual(concat_inputs.input_ids.shape ,(2, 10) )
self.assertEqual(concat_inputs.attention_mask.shape ,(2, 10) )
self.assertEqual(concat_inputs.token_type_ids.shape ,(2, 10) )
self.assertEqual(concat_inputs.special_tokens_mask.shape ,(2, 10) )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) ,["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] ,)
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) ,["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] ,)
def _lowercase ( self: int ):
'''simple docstring'''
_lowerCamelCase : List[str] = self.get_config()
_lowerCamelCase : Dict = self.get_dummy_retriever()
_lowerCamelCase : Optional[Any] = retriever.tokenizer
_lowerCamelCase : Tuple = np.array([0, 3, 5] ,dtype="long" )
_lowerCamelCase : Any = tokenizer(["Test question"] ).input_ids
_lowerCamelCase : int = tokenizer(
["the fourth", "longer longer"] ,add_special_tokens=__lowerCAmelCase ,return_token_type_ids=__lowerCAmelCase ,return_attention_mask=__lowerCAmelCase ,).input_ids
_lowerCamelCase : List[str] = config.reader_seq_len
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = retriever(
__lowerCAmelCase ,__lowerCAmelCase ,answer_ids=__lowerCAmelCase ,max_length=__lowerCAmelCase ,return_tensors="np" )
self.assertEqual([False, True, True] ,__lowerCAmelCase )
self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] ,__lowerCAmelCase )
self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] ,__lowerCAmelCase )
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : List[Any] = self.get_dummy_retriever()
retriever.save_pretrained(os.path.join(self.tmpdirname ,"realm_block_records" ) )
# Test local path
_lowerCamelCase : Union[str, Any] = retriever.from_pretrained(os.path.join(self.tmpdirname ,"realm_block_records" ) )
self.assertEqual(retriever.block_records[0] ,b"This is the first record" )
# Test mocked remote path
with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download:
_lowerCamelCase : Any = os.path.join(
os.path.join(self.tmpdirname ,"realm_block_records" ) ,_REALM_BLOCK_RECORDS_FILENAME )
_lowerCamelCase : Tuple = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" )
self.assertEqual(retriever.block_records[0] ,b"This is the first record" ) | 340 |
"""simple docstring"""
from decimal import Decimal, getcontext
from math import ceil, factorial
def lowerCamelCase_( _lowerCamelCase ) -> str:
'''simple docstring'''
if not isinstance(_lowerCamelCase , _lowerCamelCase ):
raise TypeError("Undefined for non-integers" )
elif precision < 1:
raise ValueError("Undefined for non-natural numbers" )
_lowerCamelCase : int = precision
_lowerCamelCase : Dict = ceil(precision / 14 )
_lowerCamelCase : Optional[Any] = 426880 * Decimal(10005 ).sqrt()
_lowerCamelCase : int = 1
_lowerCamelCase : Optional[int] = 13591409
_lowerCamelCase : int = Decimal(_lowerCamelCase )
for k in range(1 , _lowerCamelCase ):
_lowerCamelCase : Union[str, Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowerCamelCase ) ** 3)
linear_term += 545140134
exponential_term *= -262537412640768000
partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term
return str(constant_term / partial_sum )[:-1]
if __name__ == "__main__":
_lowerCAmelCase : Union[str, Any] = 50
print(f'''The first {n} digits of pi is: {pi(n)}''') | 340 | 1 |
"""simple docstring"""
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class A_ :
def __init__( self: int ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: List[str]=13 ,__lowerCAmelCase: Union[str, Any]=30 ,__lowerCAmelCase: Optional[Any]=2 ,__lowerCAmelCase: str=3 ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: Optional[Any]=2 ,__lowerCAmelCase: Union[str, Any]=4 ,__lowerCAmelCase: Union[str, Any]=37 ,__lowerCAmelCase: List[Any]="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: Dict=0.1 ,__lowerCAmelCase: Tuple=10 ,__lowerCAmelCase: str=0.02 ,__lowerCAmelCase: Any=3 ,__lowerCAmelCase: str=None ,__lowerCAmelCase: Tuple=2 ,):
'''simple docstring'''
_lowerCamelCase : Dict = parent
_lowerCamelCase : int = batch_size
_lowerCamelCase : Union[str, Any] = image_size
_lowerCamelCase : List[str] = patch_size
_lowerCamelCase : str = num_channels
_lowerCamelCase : int = is_training
_lowerCamelCase : List[str] = use_labels
_lowerCamelCase : str = hidden_size
_lowerCamelCase : Tuple = num_hidden_layers
_lowerCamelCase : Optional[int] = num_attention_heads
_lowerCamelCase : Dict = intermediate_size
_lowerCamelCase : Union[str, Any] = hidden_act
_lowerCamelCase : Tuple = hidden_dropout_prob
_lowerCamelCase : Dict = attention_probs_dropout_prob
_lowerCamelCase : str = type_sequence_label_size
_lowerCamelCase : int = initializer_range
_lowerCamelCase : Dict = scope
_lowerCamelCase : Dict = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
_lowerCamelCase : Tuple = (image_size // patch_size) ** 2
_lowerCamelCase : str = num_patches + 2
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCamelCase : int = None
if self.use_labels:
_lowerCamelCase : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
_lowerCamelCase : str = self.get_config()
return config, pixel_values, labels
def _lowercase ( self: str ):
'''simple docstring'''
return DeiTConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,)
def _lowercase ( self: List[str] ,__lowerCAmelCase: int ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : int = TFDeiTModel(config=__lowerCAmelCase )
_lowerCamelCase : Tuple = model(__lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase ( self: List[str] ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Tuple ):
'''simple docstring'''
_lowerCamelCase : int = TFDeiTForMaskedImageModeling(config=__lowerCAmelCase )
_lowerCamelCase : str = model(__lowerCAmelCase )
self.parent.assertEqual(
result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
_lowerCamelCase : Any = 1
_lowerCamelCase : List[Any] = TFDeiTForMaskedImageModeling(__lowerCAmelCase )
_lowerCamelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_lowerCamelCase : List[str] = model(__lowerCAmelCase )
self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) )
def _lowercase ( self: Dict ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : Optional[Any] = self.type_sequence_label_size
_lowerCamelCase : List[str] = TFDeiTForImageClassification(__lowerCAmelCase )
_lowerCamelCase : Tuple = model(__lowerCAmelCase ,labels=__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_lowerCamelCase : Any = 1
_lowerCamelCase : List[Any] = TFDeiTForImageClassification(__lowerCAmelCase )
_lowerCamelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_lowerCamelCase : int = model(__lowerCAmelCase ,labels=__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : List[Any] = self.prepare_config_and_inputs()
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = config_and_inputs
_lowerCamelCase : Union[str, Any] = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class A_ ( _a , _a , unittest.TestCase ):
lowerCAmelCase__ = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
lowerCAmelCase__ = (
{
'feature-extraction': TFDeiTModel,
'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = False
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase : str = TFDeiTModelTester(self )
_lowerCamelCase : Union[str, Any] = ConfigTester(self ,config_class=__lowerCAmelCase ,has_text_modality=__lowerCAmelCase ,hidden_size=37 )
def _lowercase ( self: List[str] ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="DeiT does not use inputs_embeds" )
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
pass
def _lowercase ( self: int ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase : List[Any] = model_class(__lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) )
_lowerCamelCase : str = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__lowerCAmelCase ,tf.keras.layers.Dense ) )
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase )
_lowerCamelCase : List[Any] = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCamelCase : Optional[Any] = [*signature.parameters.keys()]
_lowerCamelCase : List[str] = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,__lowerCAmelCase )
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCAmelCase )
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__lowerCAmelCase )
def _lowercase ( self: List[str] ):
'''simple docstring'''
_lowerCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase )
def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: str ,__lowerCAmelCase: str=False ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = super()._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ,return_labels=__lowerCAmelCase )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCamelCase : Dict = TFDeiTModel.from_pretrained(__lowerCAmelCase )
self.assertIsNotNone(__lowerCAmelCase )
def lowerCamelCase_( ) -> Union[str, Any]:
'''simple docstring'''
_lowerCamelCase : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class A_ ( unittest.TestCase ):
@cached_property
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
return (
DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" )
if is_vision_available()
else None
)
@slow
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase : int = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" )
_lowerCamelCase : Any = self.default_image_processor
_lowerCamelCase : str = prepare_img()
_lowerCamelCase : List[Any] = image_processor(images=__lowerCAmelCase ,return_tensors="tf" )
# forward pass
_lowerCamelCase : List[str] = model(**__lowerCAmelCase )
# verify the logits
_lowerCamelCase : Any = tf.TensorShape((1, 1_000) )
self.assertEqual(outputs.logits.shape ,__lowerCAmelCase )
_lowerCamelCase : Any = tf.constant([-1.02_66, 0.19_12, -1.28_61] )
self.assertTrue(np.allclose(outputs.logits[0, :3] ,__lowerCAmelCase ,atol=1e-4 ) ) | 340 |
"""simple docstring"""
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class A_ ( _a ):
lowerCAmelCase__ = 42
lowerCAmelCase__ = None
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=0.9_9_9 , _lowerCamelCase="cosine" , ) -> List[str]:
'''simple docstring'''
if alpha_transform_type == "cosine":
def alpha_bar_fn(_lowerCamelCase ):
return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(_lowerCamelCase ):
return math.exp(t * -1_2.0 )
else:
raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" )
_lowerCamelCase : str = []
for i in range(_lowerCamelCase ):
_lowerCamelCase : Any = i / num_diffusion_timesteps
_lowerCamelCase : Optional[Any] = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(_lowerCamelCase ) / alpha_bar_fn(_lowerCamelCase ) , _lowerCamelCase ) )
return torch.tensor(_lowerCamelCase , dtype=torch.floataa )
class A_ ( _a , _a ):
@register_to_config
def __init__( self: str ,__lowerCAmelCase: int = 1_000 ,__lowerCAmelCase: str = "fixed_small_log" ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[float] = 1.0 ,__lowerCAmelCase: str = "epsilon" ,__lowerCAmelCase: str = "squaredcos_cap_v2" ,):
'''simple docstring'''
if beta_schedule != "squaredcos_cap_v2":
raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" )
_lowerCamelCase : Union[str, Any] = betas_for_alpha_bar(__lowerCAmelCase )
_lowerCamelCase : Optional[int] = 1.0 - self.betas
_lowerCamelCase : Dict = torch.cumprod(self.alphas ,dim=0 )
_lowerCamelCase : int = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
_lowerCamelCase : Tuple = 1.0
# setable values
_lowerCamelCase : List[Any] = None
_lowerCamelCase : Union[str, Any] = torch.from_numpy(np.arange(0 ,__lowerCAmelCase )[::-1].copy() )
_lowerCamelCase : List[str] = variance_type
def _lowercase ( self: Any ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ):
'''simple docstring'''
return sample
def _lowercase ( self: Optional[int] ,__lowerCAmelCase: int ,__lowerCAmelCase: Union[str, torch.device] = None ):
'''simple docstring'''
_lowerCamelCase : str = num_inference_steps
_lowerCamelCase : str = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
_lowerCamelCase : Union[str, Any] = (np.arange(0 ,__lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa )
_lowerCamelCase : int = torch.from_numpy(__lowerCAmelCase ).to(__lowerCAmelCase )
def _lowercase ( self: List[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: List[str]=None ,__lowerCAmelCase: str=None ):
'''simple docstring'''
if prev_timestep is None:
_lowerCamelCase : List[str] = t - 1
_lowerCamelCase : Optional[int] = self.alphas_cumprod[t]
_lowerCamelCase : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
_lowerCamelCase : Dict = 1 - alpha_prod_t
_lowerCamelCase : str = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
_lowerCamelCase : List[Any] = self.betas[t]
else:
_lowerCamelCase : str = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
_lowerCamelCase : int = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
_lowerCamelCase : List[str] = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
_lowerCamelCase : Dict = torch.log(torch.clamp(__lowerCAmelCase ,min=1e-20 ) )
_lowerCamelCase : str = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
_lowerCamelCase : str = variance.log()
_lowerCamelCase : str = beta.log()
_lowerCamelCase : Optional[int] = (predicted_variance + 1) / 2
_lowerCamelCase : Union[str, Any] = frac * max_log + (1 - frac) * min_log
return variance
def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: int ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: bool = True ,):
'''simple docstring'''
_lowerCamelCase : str = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
_lowerCamelCase, _lowerCamelCase : int = torch.split(__lowerCAmelCase ,sample.shape[1] ,dim=1 )
else:
_lowerCamelCase : List[Any] = None
# 1. compute alphas, betas
if prev_timestep is None:
_lowerCamelCase : List[Any] = t - 1
_lowerCamelCase : Dict = self.alphas_cumprod[t]
_lowerCamelCase : int = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
_lowerCamelCase : Dict = 1 - alpha_prod_t
_lowerCamelCase : List[str] = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
_lowerCamelCase : Any = self.betas[t]
_lowerCamelCase : str = self.alphas[t]
else:
_lowerCamelCase : Any = 1 - alpha_prod_t / alpha_prod_t_prev
_lowerCamelCase : Optional[Any] = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
_lowerCamelCase : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
_lowerCamelCase : List[Any] = model_output
else:
raise ValueError(
F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`"""
" for the UnCLIPScheduler." )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
_lowerCamelCase : Any = torch.clamp(
__lowerCAmelCase ,-self.config.clip_sample_range ,self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_lowerCamelCase : List[str] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
_lowerCamelCase : Optional[int] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_lowerCamelCase : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
_lowerCamelCase : Union[str, Any] = 0
if t > 0:
_lowerCamelCase : Dict = randn_tensor(
model_output.shape ,dtype=model_output.dtype ,generator=__lowerCAmelCase ,device=model_output.device )
_lowerCamelCase : Any = self._get_variance(
__lowerCAmelCase ,predicted_variance=__lowerCAmelCase ,prev_timestep=__lowerCAmelCase ,)
if self.variance_type == "fixed_small_log":
_lowerCamelCase : Optional[Any] = variance
elif self.variance_type == "learned_range":
_lowerCamelCase : Optional[int] = (0.5 * variance).exp()
else:
raise ValueError(
F"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`"""
" for the UnCLIPScheduler." )
_lowerCamelCase : Dict = variance * variance_noise
_lowerCamelCase : List[Any] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=__lowerCAmelCase ,pred_original_sample=__lowerCAmelCase )
def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.IntTensor ,):
'''simple docstring'''
_lowerCamelCase : int = self.alphas_cumprod.to(device=original_samples.device ,dtype=original_samples.dtype )
_lowerCamelCase : Any = timesteps.to(original_samples.device )
_lowerCamelCase : List[Any] = alphas_cumprod[timesteps] ** 0.5
_lowerCamelCase : List[Any] = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
_lowerCamelCase : int = sqrt_alpha_prod.unsqueeze(-1 )
_lowerCamelCase : Union[str, Any] = (1 - alphas_cumprod[timesteps]) ** 0.5
_lowerCamelCase : str = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
_lowerCamelCase : Union[str, Any] = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
_lowerCamelCase : Dict = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples | 340 | 1 |
"""simple docstring"""
import argparse
import json
import os
import re
import torch
from transformers import BloomConfig, BloomModel
from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCAmelCase : List[Any] = [
'''word_embeddings_layernorm.weight''',
'''word_embeddings_layernorm.bias''',
'''input_layernorm.weight''',
'''input_layernorm.bias''',
'''post_attention_layernorm.weight''',
'''post_attention_layernorm.bias''',
'''self_attention.dense.bias''',
'''mlp.dense_4h_to_h.bias''',
'''ln_f.weight''',
'''ln_f.bias''',
]
_lowerCAmelCase : str = [
'''mlp.dense_4h_to_h.weight''',
'''self_attention.dense.weight''',
]
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : Any = {
"word_embeddings.weight": "word_embeddings.weight",
"word_embeddings.norm.weight": "word_embeddings_layernorm.weight",
"word_embeddings.norm.bias": "word_embeddings_layernorm.bias",
"weight": "ln_f.weight",
"bias": "ln_f.bias",
}
if key in layer_rename_map:
return layer_rename_map[key]
# Handle transformer blocks
_lowerCamelCase : Optional[Any] = int(re.match(R".*layer_(\d*).*" , _lowerCamelCase )[1] )
layer_number -= 3
return F"""h.{layer_number}.""" + key
def lowerCamelCase_( _lowerCamelCase ) -> Any:
'''simple docstring'''
if dtype == torch.bool:
return 1 / 8
_lowerCamelCase : Dict = re.search(R"[^\d](\d+)$" , str(_lowerCamelCase ) )
if bit_search is None:
raise ValueError(F"""`dtype` is not a valid dtype: {dtype}.""" )
_lowerCamelCase : Dict = int(bit_search.groups()[0] )
return bit_size // 8
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]:
'''simple docstring'''
if bloom_config_file == "":
_lowerCamelCase : Tuple = BloomConfig()
else:
_lowerCamelCase : Optional[Any] = BloomConfig.from_json_file(_lowerCamelCase )
if shard_model:
_lowerCamelCase : str = os.listdir(_lowerCamelCase )
_lowerCamelCase : Dict = sorted(filter(lambda _lowerCamelCase : s.startswith("layer" ) and "model_00" in s , _lowerCamelCase ) )
_lowerCamelCase : Optional[Any] = {"weight_map": {}, "metadata": {}}
_lowerCamelCase : Dict = 0
_lowerCamelCase : int = None
_lowerCamelCase : List[str] = BloomConfig()
for j, file in enumerate(_lowerCamelCase ):
print("Processing file: {}".format(_lowerCamelCase ) )
_lowerCamelCase : Union[str, Any] = None
for i in range(_lowerCamelCase ):
# load all TP files
_lowerCamelCase : Optional[Any] = file.replace("model_00" , F"""model_0{i}""" )
_lowerCamelCase : Any = torch.load(os.path.join(_lowerCamelCase , _lowerCamelCase ) , map_location="cpu" )
# Rename keys in the transformers names
_lowerCamelCase : List[str] = list(temp.keys() )
for key in keys:
_lowerCamelCase : Dict = temp.pop(_lowerCamelCase )
if tensors is None:
_lowerCamelCase : List[Any] = temp
else:
for key in tensors.keys():
if any(key.endswith(_lowerCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
# We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425)
tensors[key] += temp[key]
else:
# Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel
_lowerCamelCase : Dict = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0
# We concatenate these weights accross TP ranks
_lowerCamelCase : Any = torch.cat([tensors[key], temp[key]] , dim=_lowerCamelCase )
# Divide by the number of TP the weights we want to average
for key in tensors.keys():
if any(key.endswith(_lowerCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
_lowerCamelCase : Optional[Any] = tensors[key] / pretraining_tp
torch.save(
_lowerCamelCase , os.path.join(
_lowerCamelCase , "pytorch_model_{}-of-{}.bin".format(str(j + 1 ).zfill(5 ) , str(len(_lowerCamelCase ) ).zfill(5 ) ) , ) , )
for key in tensors.keys():
_lowerCamelCase : int = tensors[key]
total_size += value.numel() * get_dtype_size(value.dtype )
if key not in index_dict["weight_map"]:
_lowerCamelCase : Union[str, Any] = "pytorch_model_{}-of-{}.bin".format(
str(j + 1 ).zfill(5 ) , str(len(_lowerCamelCase ) ).zfill(5 ) )
_lowerCamelCase : str = BloomConfig()
_lowerCamelCase : Any = pytorch_dump_folder_path + "/" + CONFIG_NAME
_lowerCamelCase : str = total_size
with open(_lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(config.to_json_string() )
with open(os.path.join(_lowerCamelCase , WEIGHTS_NAME + ".index.json" ) , "w" , encoding="utf-8" ) as f:
_lowerCamelCase : Optional[Any] = json.dumps(_lowerCamelCase , indent=2 , sort_keys=_lowerCamelCase ) + "\n"
f.write(_lowerCamelCase )
else:
_lowerCamelCase : List[Any] = BloomModel(_lowerCamelCase )
_lowerCamelCase : List[str] = os.listdir(_lowerCamelCase )
_lowerCamelCase : List[Any] = sorted(filter(lambda _lowerCamelCase : s.startswith("layer" ) and "model_00" in s , _lowerCamelCase ) )
_lowerCamelCase : Optional[Any] = None
for i, file in enumerate(_lowerCamelCase ):
_lowerCamelCase : Tuple = None
for i in range(_lowerCamelCase ):
# load all TP files
_lowerCamelCase : str = file.replace("model_00" , F"""model_0{i}""" )
_lowerCamelCase : str = torch.load(os.path.join(_lowerCamelCase , _lowerCamelCase ) , map_location="cpu" )
# Rename keys in the transformers names
_lowerCamelCase : int = list(temp.keys() )
for key in keys:
_lowerCamelCase : Union[str, Any] = temp.pop(_lowerCamelCase )
if tensors is None:
_lowerCamelCase : Optional[int] = temp
else:
for key in tensors.keys():
# We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425)
if any(key.endswith(_lowerCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
tensors[key] += temp[key]
else:
# Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel
_lowerCamelCase : List[str] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0
# We concatenate these weights accross TP ranks
_lowerCamelCase : Union[str, Any] = torch.cat([tensors[key], temp[key]] , dim=_lowerCamelCase )
# Divide by the number of TP the weights we want to average
for key in tensors.keys():
if any(key.endswith(_lowerCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
_lowerCamelCase : Dict = tensors[key] / pretraining_tp
_lowerCamelCase : List[Any] = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase )
assert not other_keys.unexpected_keys, F"""The keys {other_keys.unexpected_keys} are unexpected"""
if missing_keys is None:
_lowerCamelCase : List[str] = set(other_keys.missing_keys )
else:
_lowerCamelCase : Any = missing_keys.intersection(set(other_keys.missing_keys ) )
assert not missing_keys, F"""The keys {missing_keys} are missing"""
# Save pytorch-model
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
_lowerCamelCase : Optional[Any] = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
_lowerCamelCase : str = pytorch_dump_folder_path + "/" + CONFIG_NAME
print(F"""Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}""" )
if config.torch_dtype is not None:
_lowerCamelCase : Any = model.to(config.torch_dtype )
torch.save(model.state_dict() , _lowerCamelCase )
print(F"""Save configuration file to {pytorch_config_dump_path}""" )
with open(_lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
_lowerCAmelCase : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--bloom_checkpoint_path''',
default=None,
type=str,
required=True,
help='''Path to the Megatron-LM checkpoint path.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--bloom_config_file''',
default='''''',
type=str,
help=(
'''An optional config json file corresponding to the pre-trained model. \n'''
'''This specifies the model architecture.'''
),
)
parser.add_argument(
'''--shard_model''',
action='''store_true''',
help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''',
)
parser.add_argument(
'''--pretraining_tp''',
default=4,
type=int,
help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''',
)
_lowerCAmelCase : Optional[int] = parser.parse_args()
convert_bloom_checkpoint_to_pytorch(
args.bloom_checkpoint_path,
args.bloom_config_file,
args.pytorch_dump_folder_path,
args.shard_model,
args.pretraining_tp,
) | 340 |
"""simple docstring"""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConformerConfig,
WavaVecaConformerForCTC,
WavaVecaConformerForPreTraining,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
_lowerCAmelCase : List[str] = logging.get_logger(__name__)
_lowerCAmelCase : Dict = {
'''post_extract_proj''': '''feature_projection.projection''',
'''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''',
'''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''',
'''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''',
'''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''',
'''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''',
'''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''',
'''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''',
'''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''',
'''self_attn.rotary_emb''': '''encoder.embed_positions''',
'''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''',
'''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''',
'''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''',
'''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''',
'''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''',
'''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''',
'''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''',
'''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''',
'''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''',
'''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''',
'''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''',
'''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''',
'''final_layer_norm''': '''encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''encoder.layer_norm''',
'''w2v_model.layer_norm''': '''feature_projection.layer_norm''',
'''quantizer.weight_proj''': '''quantizer.weight_proj''',
'''quantizer.vars''': '''quantizer.codevectors''',
'''project_q''': '''project_q''',
'''final_proj''': '''project_hid''',
'''w2v_encoder.proj''': '''lm_head''',
'''mask_emb''': '''masked_spec_embed''',
}
_lowerCAmelCase : str = [
'''lm_head''',
'''quantizer.weight_proj''',
'''quantizer.codevectors''',
'''project_q''',
'''project_hid''',
]
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
'''simple docstring'''
for attribute in key.split("." ):
_lowerCamelCase : Tuple = getattr(_lowerCamelCase , _lowerCamelCase )
if weight_type is not None:
_lowerCamelCase : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ).shape
else:
_lowerCamelCase : Dict = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}""" )
if weight_type == "weight":
_lowerCamelCase : Tuple = value
elif weight_type == "weight_g":
_lowerCamelCase : List[str] = value
elif weight_type == "weight_v":
_lowerCamelCase : List[Any] = value
elif weight_type == "bias":
_lowerCamelCase : str = value
elif weight_type == "running_mean":
_lowerCamelCase : Optional[int] = value
elif weight_type == "running_var":
_lowerCamelCase : Optional[Any] = value
elif weight_type == "num_batches_tracked":
_lowerCamelCase : int = value
elif weight_type == "inv_freq":
_lowerCamelCase : List[str] = value
else:
_lowerCamelCase : Optional[Any] = value
logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]:
'''simple docstring'''
_lowerCamelCase : Dict = []
_lowerCamelCase : Optional[Any] = fairseq_model.state_dict()
_lowerCamelCase : List[Any] = hf_model.wavaveca_conformer.feature_extractor
for name, value in fairseq_dict.items():
_lowerCamelCase : Dict = False
if "conv_layers" in name:
load_conv_layer(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , )
_lowerCamelCase : List[Any] = True
else:
for key, mapped_key in MAPPING.items():
_lowerCamelCase : Dict = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
_lowerCamelCase : int = True
if "*" in mapped_key:
_lowerCamelCase : Tuple = name.split(_lowerCamelCase )[0].split("." )[-2]
_lowerCamelCase : int = mapped_key.replace("*" , _lowerCamelCase )
if "pos_bias_u" in name:
_lowerCamelCase : int = None
elif "pos_bias_v" in name:
_lowerCamelCase : Any = None
elif "weight_g" in name:
_lowerCamelCase : Any = "weight_g"
elif "weight_v" in name:
_lowerCamelCase : Any = "weight_v"
elif "bias" in name:
_lowerCamelCase : Optional[Any] = "bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
_lowerCamelCase : Dict = "weight"
elif "running_mean" in name:
_lowerCamelCase : str = "running_mean"
elif "inv_freq" in name:
_lowerCamelCase : List[Any] = "inv_freq"
elif "running_var" in name:
_lowerCamelCase : Tuple = "running_var"
elif "num_batches_tracked" in name:
_lowerCamelCase : str = "num_batches_tracked"
else:
_lowerCamelCase : Dict = None
set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
continue
if not is_used:
unused_weights.append(_lowerCamelCase )
logger.warning(F"""Unused weights: {unused_weights}""" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : int = full_name.split("conv_layers." )[-1]
_lowerCamelCase : List[Any] = name.split("." )
_lowerCamelCase : Union[str, Any] = int(items[0] )
_lowerCamelCase : List[Any] = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
_lowerCamelCase : str = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
_lowerCamelCase : int = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
_lowerCamelCase : Dict = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
_lowerCamelCase : Optional[Any] = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(_lowerCamelCase )
@torch.no_grad()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> Dict:
'''simple docstring'''
if config_path is not None:
_lowerCamelCase : Union[str, Any] = WavaVecaConformerConfig.from_pretrained(_lowerCamelCase , hidden_act="swish" )
else:
_lowerCamelCase : Dict = WavaVecaConformerConfig()
if "rope" in checkpoint_path:
_lowerCamelCase : List[Any] = "rotary"
if is_finetuned:
if dict_path:
_lowerCamelCase : Dict = Dictionary.load(_lowerCamelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
_lowerCamelCase : Optional[int] = target_dict.pad_index
_lowerCamelCase : Dict = target_dict.bos_index
_lowerCamelCase : Optional[Any] = target_dict.eos_index
_lowerCamelCase : str = len(target_dict.symbols )
_lowerCamelCase : int = os.path.join(_lowerCamelCase , "vocab.json" )
if not os.path.isdir(_lowerCamelCase ):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCamelCase ) )
return
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
_lowerCamelCase : Tuple = target_dict.indices
# fairseq has the <pad> and <s> switched
_lowerCamelCase : List[str] = 0
_lowerCamelCase : List[Any] = 1
with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_handle:
json.dump(_lowerCamelCase , _lowerCamelCase )
_lowerCamelCase : Optional[int] = WavaVecaCTCTokenizer(
_lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCamelCase , )
_lowerCamelCase : Tuple = True if config.feat_extract_norm == "layer" else False
_lowerCamelCase : Optional[Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , )
_lowerCamelCase : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase )
processor.save_pretrained(_lowerCamelCase )
_lowerCamelCase : List[Any] = WavaVecaConformerForCTC(_lowerCamelCase )
else:
_lowerCamelCase : Any = WavaVecaConformerForPreTraining(_lowerCamelCase )
if is_finetuned:
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} )
else:
_lowerCamelCase : List[Any] = argparse.Namespace(task="audio_pretraining" )
_lowerCamelCase : Optional[Any] = fairseq.tasks.setup_task(_lowerCamelCase )
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCamelCase )
_lowerCamelCase : Dict = model[0].eval()
recursively_load_weights(_lowerCamelCase , _lowerCamelCase , not is_finetuned )
hf_wavavec.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase : Tuple = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not'''
)
_lowerCAmelCase : str = parser.parse_args()
convert_wavaveca_conformer_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
) | 340 | 1 |
"""simple docstring"""
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
if index == number_of_items:
return 0
_lowerCamelCase : str = 0
_lowerCamelCase : Optional[int] = 0
_lowerCamelCase : Tuple = knapsack(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , index + 1 )
if weights[index] <= max_weight:
_lowerCamelCase : int = values[index] + knapsack(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , max_weight - weights[index] , index + 1 )
return max(_lowerCamelCase , _lowerCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod() | 340 |
"""simple docstring"""
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float:
'''simple docstring'''
_validate_point(_lowerCamelCase )
_validate_point(_lowerCamelCase )
if len(_lowerCamelCase ) != len(_lowerCamelCase ):
raise ValueError("Both points must be in the same n-dimensional space" )
return float(sum(abs(a - b ) for a, b in zip(_lowerCamelCase , _lowerCamelCase ) ) )
def lowerCamelCase_( _lowerCamelCase ) -> None:
'''simple docstring'''
if point:
if isinstance(_lowerCamelCase , _lowerCamelCase ):
for item in point:
if not isinstance(_lowerCamelCase , (int, float) ):
_lowerCamelCase : Dict = (
"Expected a list of numbers as input, found "
F"""{type(_lowerCamelCase ).__name__}"""
)
raise TypeError(_lowerCamelCase )
else:
_lowerCamelCase : Optional[int] = F"""Expected a list of numbers as input, found {type(_lowerCamelCase ).__name__}"""
raise TypeError(_lowerCamelCase )
else:
raise ValueError("Missing an input" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float:
'''simple docstring'''
_validate_point(_lowerCamelCase )
_validate_point(_lowerCamelCase )
if len(_lowerCamelCase ) != len(_lowerCamelCase ):
raise ValueError("Both points must be in the same n-dimensional space" )
return float(sum(abs(x - y ) for x, y in zip(_lowerCamelCase , _lowerCamelCase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 340 | 1 |
"""simple docstring"""
# Imports
import numpy as np
class A_ :
def __init__( self: List[str] ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: Dict=None ,__lowerCAmelCase: int=None ,__lowerCAmelCase: Any=None ,__lowerCAmelCase: Dict=None ):
'''simple docstring'''
self.set_matricies(red=__lowerCAmelCase ,green=__lowerCAmelCase ,blue=__lowerCAmelCase ,red_edge=__lowerCAmelCase ,nir=__lowerCAmelCase )
def _lowercase ( self: List[str] ,__lowerCAmelCase: Dict=None ,__lowerCAmelCase: Optional[int]=None ,__lowerCAmelCase: Optional[int]=None ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: Optional[int]=None ):
'''simple docstring'''
if red is not None:
_lowerCamelCase : List[Any] = red
if green is not None:
_lowerCamelCase : str = green
if blue is not None:
_lowerCamelCase : Dict = blue
if red_edge is not None:
_lowerCamelCase : Union[str, Any] = red_edge
if nir is not None:
_lowerCamelCase : str = nir
return True
def _lowercase ( self: List[str] ,__lowerCAmelCase: int="" ,__lowerCAmelCase: Dict=None ,__lowerCAmelCase: Dict=None ,__lowerCAmelCase: Any=None ,__lowerCAmelCase: Optional[int]=None ,__lowerCAmelCase: List[str]=None ):
'''simple docstring'''
self.set_matricies(red=__lowerCAmelCase ,green=__lowerCAmelCase ,blue=__lowerCAmelCase ,red_edge=__lowerCAmelCase ,nir=__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = {
"ARVI2": self.arvaa,
"CCCI": self.ccci,
"CVI": self.cvi,
"GLI": self.gli,
"NDVI": self.ndvi,
"BNDVI": self.bndvi,
"redEdgeNDVI": self.red_edge_ndvi,
"GNDVI": self.gndvi,
"GBNDVI": self.gbndvi,
"GRNDVI": self.grndvi,
"RBNDVI": self.rbndvi,
"PNDVI": self.pndvi,
"ATSAVI": self.atsavi,
"BWDRVI": self.bwdrvi,
"CIgreen": self.ci_green,
"CIrededge": self.ci_rededge,
"CI": self.ci,
"CTVI": self.ctvi,
"GDVI": self.gdvi,
"EVI": self.evi,
"GEMI": self.gemi,
"GOSAVI": self.gosavi,
"GSAVI": self.gsavi,
"Hue": self.hue,
"IVI": self.ivi,
"IPVI": self.ipvi,
"I": self.i,
"RVI": self.rvi,
"MRVI": self.mrvi,
"MSAVI": self.m_savi,
"NormG": self.norm_g,
"NormNIR": self.norm_nir,
"NormR": self.norm_r,
"NGRDI": self.ngrdi,
"RI": self.ri,
"S": self.s,
"IF": self._if,
"DVI": self.dvi,
"TVI": self.tvi,
"NDRE": self.ndre,
}
try:
return funcs[index]()
except KeyError:
print("Index not in the list!" )
return False
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red)))
def _lowercase ( self: List[str] ):
'''simple docstring'''
return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / (
(self.nir - self.red) / (self.nir + self.red)
)
def _lowercase ( self: int ):
'''simple docstring'''
return self.nir * (self.red / (self.green**2))
def _lowercase ( self: List[str] ):
'''simple docstring'''
return (2 * self.green - self.red - self.blue) / (
2 * self.green + self.red + self.blue
)
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
return (self.nir - self.red) / (self.nir + self.red)
def _lowercase ( self: int ):
'''simple docstring'''
return (self.nir - self.blue) / (self.nir + self.blue)
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
return (self.redEdge - self.red) / (self.redEdge + self.red)
def _lowercase ( self: Dict ):
'''simple docstring'''
return (self.nir - self.green) / (self.nir + self.green)
def _lowercase ( self: List[str] ):
'''simple docstring'''
return (self.nir - (self.green + self.blue)) / (
self.nir + (self.green + self.blue)
)
def _lowercase ( self: Tuple ):
'''simple docstring'''
return (self.nir - (self.green + self.red)) / (
self.nir + (self.green + self.red)
)
def _lowercase ( self: Dict ):
'''simple docstring'''
return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red))
def _lowercase ( self: str ):
'''simple docstring'''
return (self.nir - (self.green + self.red + self.blue)) / (
self.nir + (self.green + self.red + self.blue)
)
def _lowercase ( self: List[Any] ,__lowerCAmelCase: int=0.08 ,__lowerCAmelCase: Tuple=1.22 ,__lowerCAmelCase: str=0.03 ):
'''simple docstring'''
return a * (
(self.nir - a * self.red - b)
/ (a * self.nir + self.red - a * b + x * (1 + a**2))
)
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue)
def _lowercase ( self: Dict ):
'''simple docstring'''
return (self.nir / self.green) - 1
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
return (self.nir / self.redEdge) - 1
def _lowercase ( self: Tuple ):
'''simple docstring'''
return (self.red - self.blue) / self.red
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase : Any = self.ndvi()
return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2))
def _lowercase ( self: List[str] ):
'''simple docstring'''
return self.nir - self.green
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
return 2.5 * (
(self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1)
)
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : List[str] = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / (
self.nir + self.red + 0.5
)
return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red)
def _lowercase ( self: Tuple ,__lowerCAmelCase: List[str]=0.16 ):
'''simple docstring'''
return (self.nir - self.green) / (self.nir + self.green + y)
def _lowercase ( self: List[str] ,__lowerCAmelCase: List[Any]=0.5 ):
'''simple docstring'''
return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n)
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
return np.arctan(
((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) )
def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ):
'''simple docstring'''
return (self.nir - b) / (a * self.red)
def _lowercase ( self: Dict ):
'''simple docstring'''
return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1)
def _lowercase ( self: Any ):
'''simple docstring'''
return (self.red + self.green + self.blue) / 30.5
def _lowercase ( self: List[Any] ):
'''simple docstring'''
return self.nir / self.red
def _lowercase ( self: Any ):
'''simple docstring'''
return (self.rvi() - 1) / (self.rvi() + 1)
def _lowercase ( self: Dict ):
'''simple docstring'''
return (
(2 * self.nir + 1)
- ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2)
) / 2
def _lowercase ( self: int ):
'''simple docstring'''
return self.green / (self.nir + self.red + self.green)
def _lowercase ( self: int ):
'''simple docstring'''
return self.nir / (self.nir + self.red + self.green)
def _lowercase ( self: str ):
'''simple docstring'''
return self.red / (self.nir + self.red + self.green)
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
return (self.green - self.red) / (self.green + self.red)
def _lowercase ( self: str ):
'''simple docstring'''
return (self.red - self.green) / (self.red + self.green)
def _lowercase ( self: int ):
'''simple docstring'''
_lowerCamelCase : str = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] )
_lowerCamelCase : str = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] )
return (max_value - min_value) / max_value
def _lowercase ( self: Any ):
'''simple docstring'''
return (2 * self.red - self.green - self.blue) / (self.green - self.blue)
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
return self.nir / self.red
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
return (self.ndvi() + 0.5) ** (1 / 2)
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
return (self.nir - self.redEdge) / (self.nir + self.redEdge) | 340 |
"""simple docstring"""
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Optional[Any] = np.inf
def set_batch_size(_lowerCamelCase ) -> None:
nonlocal batch_size
if isinstance(_lowerCamelCase , _lowerCamelCase ):
_lowerCamelCase : Optional[int] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(_lowerCamelCase , _lowerCamelCase ):
_lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(_lowerCamelCase , _lowerCamelCase ) and feature.dtype == "binary":
_lowerCamelCase : List[str] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(_lowerCamelCase , _lowerCamelCase )
return None if batch_size is np.inf else batch_size
class A_ ( _a ):
def __init__( self: Optional[int] ,__lowerCAmelCase: NestedDataStructureLike[PathLike] ,__lowerCAmelCase: Optional[NamedSplit] = None ,__lowerCAmelCase: Optional[Features] = None ,__lowerCAmelCase: str = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: int ,):
'''simple docstring'''
super().__init__(
__lowerCAmelCase ,split=__lowerCAmelCase ,features=__lowerCAmelCase ,cache_dir=__lowerCAmelCase ,keep_in_memory=__lowerCAmelCase ,streaming=__lowerCAmelCase ,num_proc=__lowerCAmelCase ,**__lowerCAmelCase ,)
_lowerCamelCase : Tuple = path_or_paths if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) else {self.split: path_or_paths}
_lowerCamelCase : Any = _PACKAGED_DATASETS_MODULES["parquet"][1]
_lowerCamelCase : int = Parquet(
cache_dir=__lowerCAmelCase ,data_files=__lowerCAmelCase ,features=__lowerCAmelCase ,hash=__lowerCAmelCase ,**__lowerCAmelCase ,)
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
if self.streaming:
_lowerCamelCase : List[Any] = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
_lowerCamelCase : Tuple = None
_lowerCamelCase : Optional[int] = None
_lowerCamelCase : List[str] = None
_lowerCamelCase : str = None
self.builder.download_and_prepare(
download_config=__lowerCAmelCase ,download_mode=__lowerCAmelCase ,verification_mode=__lowerCAmelCase ,base_path=__lowerCAmelCase ,num_proc=self.num_proc ,)
_lowerCamelCase : Any = self.builder.as_dataset(
split=self.split ,verification_mode=__lowerCAmelCase ,in_memory=self.keep_in_memory )
return dataset
class A_ :
def __init__( self: str ,__lowerCAmelCase: Dataset ,__lowerCAmelCase: Union[PathLike, BinaryIO] ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: List[Any] ,):
'''simple docstring'''
_lowerCamelCase : Any = dataset
_lowerCamelCase : Any = path_or_buf
_lowerCamelCase : Any = batch_size or get_writer_batch_size(dataset.features )
_lowerCamelCase : List[str] = parquet_writer_kwargs
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase : Tuple = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf ,(str, bytes, os.PathLike) ):
with open(self.path_or_buf ,"wb+" ) as buffer:
_lowerCamelCase : str = self._write(file_obj=__lowerCAmelCase ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs )
else:
_lowerCamelCase : Optional[int] = self._write(file_obj=self.path_or_buf ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs )
return written
def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: BinaryIO ,__lowerCAmelCase: int ,**__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : List[str] = 0
_lowerCamelCase : Optional[int] = parquet_writer_kwargs.pop("path_or_buf" ,__lowerCAmelCase )
_lowerCamelCase : List[str] = self.dataset.features.arrow_schema
_lowerCamelCase : str = pq.ParquetWriter(__lowerCAmelCase ,schema=__lowerCAmelCase ,**__lowerCAmelCase )
for offset in logging.tqdm(
range(0 ,len(self.dataset ) ,__lowerCAmelCase ) ,unit="ba" ,disable=not logging.is_progress_bar_enabled() ,desc="Creating parquet from Arrow format" ,):
_lowerCamelCase : List[str] = query_table(
table=self.dataset._data ,key=slice(__lowerCAmelCase ,offset + batch_size ) ,indices=self.dataset._indices if self.dataset._indices is not None else None ,)
writer.write_table(__lowerCAmelCase )
written += batch.nbytes
writer.close()
return written | 340 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowerCAmelCase : List[Any] = {'''configuration_sew''': ['''SEW_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SEWConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Tuple = [
'''SEW_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''SEWForCTC''',
'''SEWForSequenceClassification''',
'''SEWModel''',
'''SEWPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_sew import (
SEW_PRETRAINED_MODEL_ARCHIVE_LIST,
SEWForCTC,
SEWForSequenceClassification,
SEWModel,
SEWPreTrainedModel,
)
else:
import sys
_lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 340 |
"""simple docstring"""
import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def lowerCamelCase_( _lowerCamelCase ) -> Tuple:
'''simple docstring'''
_lowerCamelCase : Optional[int] = {}
_lowerCamelCase : Optional[int] = tokenizer(example["content"] , truncation=_lowerCamelCase )["input_ids"]
_lowerCamelCase : Dict = len(example["content"] ) / len(output["input_ids"] )
return output
_lowerCAmelCase : Tuple = HfArgumentParser(PretokenizationArguments)
_lowerCAmelCase : Optional[int] = parser.parse_args()
if args.num_workers is None:
_lowerCAmelCase : Any = multiprocessing.cpu_count()
_lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(args.tokenizer_dir)
_lowerCAmelCase : Union[str, Any] = time.time()
_lowerCAmelCase : Optional[int] = load_dataset(args.dataset_name, split='''train''')
print(f'''Dataset loaded in {time.time()-t_start:.2f}s''')
_lowerCAmelCase : Any = time.time()
_lowerCAmelCase : Dict = ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
'''repo_name''',
'''path''',
'''copies''',
'''size''',
'''content''',
'''license''',
'''hash''',
'''line_mean''',
'''line_max''',
'''alpha_frac''',
'''autogenerated''',
],
)
print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''')
_lowerCAmelCase : str = time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''') | 340 | 1 |
"""simple docstring"""
import argparse
import os
import transformers
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info()
_lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__)
_lowerCAmelCase : Union[str, Any] = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS}
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
'''simple docstring'''
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" )
if tokenizer_name is None:
_lowerCamelCase : Union[str, Any] = TOKENIZER_CLASSES
else:
_lowerCamelCase : str = {tokenizer_name: getattr(_lowerCamelCase , tokenizer_name + "Fast" )}
logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" )
for tokenizer_name in tokenizer_names:
_lowerCamelCase : Dict = TOKENIZER_CLASSES[tokenizer_name]
_lowerCamelCase : int = True
if checkpoint_name is None:
_lowerCamelCase : Any = list(tokenizer_class.max_model_input_sizes.keys() )
else:
_lowerCamelCase : Optional[Any] = [checkpoint_name]
logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" )
for checkpoint in checkpoint_names:
logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" )
# Load tokenizer
_lowerCamelCase : Dict = tokenizer_class.from_pretrained(_lowerCamelCase , force_download=_lowerCamelCase )
# Save fast tokenizer
logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" )
# For organization names we create sub-directories
if "/" in checkpoint:
_lowerCamelCase, _lowerCamelCase : Optional[int] = checkpoint.split("/" )
_lowerCamelCase : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase )
elif add_prefix:
_lowerCamelCase : Dict = checkpoint
_lowerCamelCase : Optional[Any] = dump_path
else:
_lowerCamelCase : Optional[Any] = None
_lowerCamelCase : Optional[int] = dump_path
logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" )
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]:
_lowerCamelCase : Any = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint]
_lowerCamelCase : Tuple = file_path.split(_lowerCamelCase )[-1][0]
if next_char == "/":
_lowerCamelCase : Any = os.path.join(_lowerCamelCase , _lowerCamelCase )
_lowerCamelCase : int = None
logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" )
_lowerCamelCase : int = tokenizer.save_pretrained(
_lowerCamelCase , legacy_format=_lowerCamelCase , filename_prefix=_lowerCamelCase )
logger.info(F"""=> File names {file_names}""" )
for file_name in file_names:
if not file_name.endswith("tokenizer.json" ):
os.remove(_lowerCamelCase )
logger.info(F"""=> removing {file_name}""" )
if __name__ == "__main__":
_lowerCAmelCase : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.'''
)
parser.add_argument(
'''--tokenizer_name''',
default=None,
type=str,
help=(
f'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will '''
'''download and convert all the checkpoints from AWS.'''
),
)
parser.add_argument(
'''--checkpoint_name''',
default=None,
type=str,
help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''',
)
parser.add_argument(
'''--force_download''',
action='''store_true''',
help='''Re-download checkpoints.''',
)
_lowerCAmelCase : Any = parser.parse_args()
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download) | 340 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowerCAmelCase : Optional[Any] = {
'''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''],
'''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''],
'''processing_mctct''': ['''MCTCTProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Dict = [
'''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MCTCTForCTC''',
'''MCTCTModel''',
'''MCTCTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
_lowerCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 340 | 1 |
"""simple docstring"""
import argparse
import os
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_task_guides.py
_lowerCAmelCase : List[str] = '''src/transformers'''
_lowerCAmelCase : Tuple = '''docs/source/en/tasks'''
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
with open(_lowerCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f:
_lowerCamelCase : List[Any] = f.readlines()
# Find the start prompt.
_lowerCamelCase : Optional[Any] = 0
while not lines[start_index].startswith(_lowerCamelCase ):
start_index += 1
start_index += 1
_lowerCamelCase : Optional[Any] = start_index
while not lines[end_index].startswith(_lowerCamelCase ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# This is to make sure the transformers module imported is the one in the repo.
_lowerCAmelCase : List[str] = direct_transformers_import(TRANSFORMERS_PATH)
_lowerCAmelCase : int = {
'''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES,
'''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
'''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
'''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
'''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES,
'''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
'''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
'''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
'''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
'''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
'''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
'''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
'''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
'''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES,
}
# This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any
# `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`).
_lowerCAmelCase : Union[str, Any] = {
'''summarization.md''': ('''nllb''',),
'''translation.md''': ('''nllb''',),
}
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : int = TASK_GUIDE_TO_MODELS[task_guide]
_lowerCamelCase : Tuple = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(_lowerCamelCase , set() )
_lowerCamelCase : str = {
code: name
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if (code in model_maping_names or code in special_model_types)
}
return ", ".join([F"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n"
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> Dict:
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = _find_text_in_file(
filename=os.path.join(_lowerCamelCase , _lowerCamelCase ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , )
_lowerCamelCase : List[Any] = get_model_list_for_task(_lowerCamelCase )
if current_list != new_list:
if overwrite:
with open(os.path.join(_lowerCamelCase , _lowerCamelCase ) , "w" , encoding="utf-8" , newline="\n" ) as f:
f.writelines(lines[:start_index] + [new_list] + lines[end_index:] )
else:
raise ValueError(
F"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`"""
" to fix this." )
if __name__ == "__main__":
_lowerCAmelCase : Dict = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
_lowerCAmelCase : str = parser.parse_args()
for task_guide in TASK_GUIDE_TO_MODELS.keys():
check_model_list_for_task(task_guide, args.fix_and_overwrite) | 340 |
"""simple docstring"""
import logging
from transformers.configuration_utils import PretrainedConfig
_lowerCAmelCase : Optional[Any] = logging.getLogger(__name__)
class A_ ( _a ):
lowerCAmelCase__ = 'masked_bert'
def __init__( self: Union[str, Any] ,__lowerCAmelCase: Dict=30_522 ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Dict=12 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: List[Any]="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Tuple=512 ,__lowerCAmelCase: str=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Union[str, Any]=1e-12 ,__lowerCAmelCase: Union[str, Any]=0 ,__lowerCAmelCase: List[Any]="topK" ,__lowerCAmelCase: Optional[Any]="constant" ,__lowerCAmelCase: Optional[Any]=0.0 ,**__lowerCAmelCase: str ,):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCAmelCase ,**__lowerCAmelCase )
_lowerCamelCase : List[Any] = vocab_size
_lowerCamelCase : Optional[Any] = hidden_size
_lowerCamelCase : Tuple = num_hidden_layers
_lowerCamelCase : Tuple = num_attention_heads
_lowerCamelCase : Optional[Any] = hidden_act
_lowerCamelCase : Optional[Any] = intermediate_size
_lowerCamelCase : str = hidden_dropout_prob
_lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob
_lowerCamelCase : str = max_position_embeddings
_lowerCamelCase : List[str] = type_vocab_size
_lowerCamelCase : Optional[int] = initializer_range
_lowerCamelCase : List[Any] = layer_norm_eps
_lowerCamelCase : int = pruning_method
_lowerCamelCase : str = mask_init
_lowerCamelCase : List[Any] = mask_scale | 340 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
_lowerCAmelCase : List[str] = {
'''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''',
'''umberto-commoncrawl-cased-v1''': (
'''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json'''
),
'''umberto-wikipedia-uncased-v1''': (
'''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json'''
),
}
class A_ ( _a ):
lowerCAmelCase__ = 'camembert'
def __init__( self: Tuple ,__lowerCAmelCase: Union[str, Any]=30_522 ,__lowerCAmelCase: Optional[Any]=768 ,__lowerCAmelCase: Union[str, Any]=12 ,__lowerCAmelCase: int=12 ,__lowerCAmelCase: Optional[int]=3_072 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: Optional[Any]=0.1 ,__lowerCAmelCase: int=512 ,__lowerCAmelCase: Union[str, Any]=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Any=1 ,__lowerCAmelCase: Any=0 ,__lowerCAmelCase: Optional[int]=2 ,__lowerCAmelCase: Any="absolute" ,__lowerCAmelCase: Dict=True ,__lowerCAmelCase: Tuple=None ,**__lowerCAmelCase: Dict ,):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCAmelCase ,bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ,**__lowerCAmelCase )
_lowerCamelCase : List[str] = vocab_size
_lowerCamelCase : Any = hidden_size
_lowerCamelCase : Union[str, Any] = num_hidden_layers
_lowerCamelCase : str = num_attention_heads
_lowerCamelCase : List[Any] = hidden_act
_lowerCamelCase : int = intermediate_size
_lowerCamelCase : str = hidden_dropout_prob
_lowerCamelCase : List[str] = attention_probs_dropout_prob
_lowerCamelCase : Optional[Any] = max_position_embeddings
_lowerCamelCase : str = type_vocab_size
_lowerCamelCase : Dict = initializer_range
_lowerCamelCase : Union[str, Any] = layer_norm_eps
_lowerCamelCase : Tuple = position_embedding_type
_lowerCamelCase : List[Any] = use_cache
_lowerCamelCase : Dict = classifier_dropout
class A_ ( _a ):
@property
def _lowercase ( self: Any ):
'''simple docstring'''
if self.task == "multiple-choice":
_lowerCamelCase : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"}
else:
_lowerCamelCase : int = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] ) | 340 |
"""simple docstring"""
import random
import unittest
import numpy as np
import transformers
from transformers import is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax
if is_flax_available():
import os
import jax.numpy as jnp
from jax import jit
from transformers import AutoTokenizer, FlaxAutoModelForCausalLM
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
_lowerCAmelCase : str = '''0.12''' # assumed parallelism: 8
if is_torch_available():
import torch
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) -> List[Any]:
'''simple docstring'''
if rng is None:
_lowerCamelCase : Union[str, Any] = random.Random()
_lowerCamelCase : Union[str, Any] = 1
for dim in shape:
total_dims *= dim
_lowerCamelCase : Optional[int] = []
for _ in range(_lowerCamelCase ):
values.append(rng.randint(0 , vocab_size - 1 ) )
_lowerCamelCase : Union[str, Any] = np.array(_lowerCamelCase , dtype=jnp.intaa ).reshape(_lowerCamelCase )
return output
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]:
'''simple docstring'''
_lowerCamelCase : Optional[int] = ids_tensor(_lowerCamelCase , vocab_size=2 , rng=_lowerCamelCase )
# make sure that at least one token is attended to for each batch
_lowerCamelCase : List[str] = 1
return attn_mask
@require_flax
class A_ :
lowerCAmelCase__ = None
lowerCAmelCase__ = ()
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
# cut to half length & take max batch_size 3
_lowerCamelCase : List[str] = 2
_lowerCamelCase : str = inputs["input_ids"].shape[-1] // 2
_lowerCamelCase : Tuple = inputs["input_ids"][:max_batch_size, :sequence_length]
_lowerCamelCase : Any = jnp.ones_like(__lowerCAmelCase )
_lowerCamelCase : List[Any] = attention_mask[:max_batch_size, :sequence_length]
# generate max 5 tokens
_lowerCamelCase : Optional[Any] = input_ids.shape[-1] + 5
if config.eos_token_id is not None and config.pad_token_id is None:
# hack to allow generate for models such as GPT2 as is done in `generate()`
_lowerCamelCase : List[str] = config.eos_token_id
return config, input_ids, attention_mask, max_length
@is_pt_flax_cross_test
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = self._get_input_ids_and_config()
_lowerCamelCase : List[Any] = False
_lowerCamelCase : Dict = max_length
_lowerCamelCase : Tuple = 0
for model_class in self.all_generative_model_classes:
_lowerCamelCase : str = model_class(__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning
_lowerCamelCase : Any = getattr(__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : Dict = pt_model_class(__lowerCAmelCase ).eval()
_lowerCamelCase : Optional[Any] = load_flax_weights_in_pytorch_model(__lowerCAmelCase ,flax_model.params )
_lowerCamelCase : int = flax_model.generate(__lowerCAmelCase ).sequences
_lowerCamelCase : Optional[int] = pt_model.generate(torch.tensor(__lowerCAmelCase ,dtype=torch.long ) )
if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]:
_lowerCamelCase : List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]]
self.assertListEqual(pt_generation_outputs.numpy().tolist() ,flax_generation_outputs.tolist() )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = self._get_input_ids_and_config()
_lowerCamelCase : Union[str, Any] = False
_lowerCamelCase : Union[str, Any] = max_length
for model_class in self.all_generative_model_classes:
_lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase )
_lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Dict = jit(model.generate )
_lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config()
_lowerCamelCase : List[Any] = True
_lowerCamelCase : Optional[int] = max_length
for model_class in self.all_generative_model_classes:
_lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase )
_lowerCamelCase : List[Any] = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Dict = jit(model.generate )
_lowerCamelCase : int = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config()
_lowerCamelCase : int = False
_lowerCamelCase : Optional[Any] = max_length
_lowerCamelCase : Dict = 2
for model_class in self.all_generative_model_classes:
_lowerCamelCase : List[str] = model_class(__lowerCAmelCase )
_lowerCamelCase : Dict = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Tuple = jit(model.generate )
_lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = self._get_input_ids_and_config()
_lowerCamelCase : Tuple = False
_lowerCamelCase : Union[str, Any] = max_length
_lowerCamelCase : List[str] = 2
_lowerCamelCase : Optional[int] = 2
for model_class in self.all_generative_model_classes:
_lowerCamelCase : List[Any] = model_class(__lowerCAmelCase )
_lowerCamelCase : str = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[0] ,input_ids.shape[0] * config.num_return_sequences )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config()
_lowerCamelCase : int = True
_lowerCamelCase : List[Any] = max_length
_lowerCamelCase : Optional[Any] = 0.8
_lowerCamelCase : Union[str, Any] = 10
_lowerCamelCase : List[str] = 0.3
_lowerCamelCase : Tuple = 1
_lowerCamelCase : Any = 8
_lowerCamelCase : str = 9
for model_class in self.all_generative_model_classes:
_lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase )
_lowerCamelCase : Any = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : int = jit(model.generate )
_lowerCamelCase : Optional[int] = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = self._get_input_ids_and_config()
_lowerCamelCase : List[str] = max_length
_lowerCamelCase : Tuple = 1
_lowerCamelCase : Any = 8
_lowerCamelCase : Dict = 9
for model_class in self.all_generative_model_classes:
_lowerCamelCase : Any = model_class(__lowerCAmelCase )
_lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Any = jit(model.generate )
_lowerCamelCase : Any = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: List[str] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config()
_lowerCamelCase : Dict = max_length
_lowerCamelCase : List[Any] = 2
_lowerCamelCase : Tuple = 1
_lowerCamelCase : List[str] = 8
_lowerCamelCase : List[Any] = 9
for model_class in self.all_generative_model_classes:
_lowerCamelCase : int = model_class(__lowerCAmelCase )
_lowerCamelCase : Optional[int] = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Tuple = jit(model.generate )
_lowerCamelCase : Optional[Any] = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config()
# pad attention mask on the left
_lowerCamelCase : Tuple = attention_mask.at[(0, 0)].set(0 )
_lowerCamelCase : Dict = False
_lowerCamelCase : Any = max_length
for model_class in self.all_generative_model_classes:
_lowerCamelCase : List[Any] = model_class(__lowerCAmelCase )
_lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Any = jit(model.generate )
_lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = self._get_input_ids_and_config()
# pad attention mask on the left
_lowerCamelCase : Optional[Any] = attention_mask.at[(0, 0)].set(0 )
_lowerCamelCase : List[str] = True
_lowerCamelCase : Optional[Any] = max_length
for model_class in self.all_generative_model_classes:
_lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Any = jit(model.generate )
_lowerCamelCase : List[Any] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config()
# pad attention mask on the left
_lowerCamelCase : List[str] = attention_mask.at[(0, 0)].set(0 )
_lowerCamelCase : int = 2
_lowerCamelCase : int = max_length
for model_class in self.all_generative_model_classes:
_lowerCamelCase : List[Any] = model_class(__lowerCAmelCase )
_lowerCamelCase : int = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Dict = jit(model.generate )
_lowerCamelCase : Dict = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
@require_flax
class A_ ( unittest.TestCase ):
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" )
_lowerCamelCase : Union[str, Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" )
_lowerCamelCase : Optional[Any] = "Hello world"
_lowerCamelCase : str = tokenizer(__lowerCAmelCase ,return_tensors="np" ).input_ids
# typos are quickly detected (the correct argument is `do_sample`)
with self.assertRaisesRegex(__lowerCAmelCase ,"do_samples" ):
model.generate(__lowerCAmelCase ,do_samples=__lowerCAmelCase )
# arbitrary arguments that will not be used anywhere are also not accepted
with self.assertRaisesRegex(__lowerCAmelCase ,"foo" ):
_lowerCamelCase : List[str] = {"foo": "bar"}
model.generate(__lowerCAmelCase ,**__lowerCAmelCase ) | 340 | 1 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class A_ ( unittest.TestCase ):
def _lowercase ( self: int ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : Dict = 1
_lowerCamelCase : Tuple = 3
_lowerCamelCase : Union[str, Any] = (32, 32)
_lowerCamelCase : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(__lowerCAmelCase )
return image
@property
def _lowercase ( self: Any ):
'''simple docstring'''
torch.manual_seed(0 )
_lowerCamelCase : Optional[int] = UNetaDConditionModel(
block_out_channels=(32, 32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=7 ,out_channels=4 ,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") ,up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") ,cross_attention_dim=32 ,attention_head_dim=8 ,use_linear_projection=__lowerCAmelCase ,only_cross_attention=(True, True, False) ,num_class_embeds=100 ,)
return model
@property
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
torch.manual_seed(0 )
_lowerCamelCase : Optional[int] = AutoencoderKL(
block_out_channels=[32, 32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,)
return model
@property
def _lowercase ( self: Tuple ):
'''simple docstring'''
torch.manual_seed(0 )
_lowerCamelCase : Optional[int] = CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,hidden_act="gelu" ,projection_dim=512 ,)
return CLIPTextModel(__lowerCAmelCase )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = "cpu" # ensure determinism for the device-dependent torch.Generator
_lowerCamelCase : List[str] = self.dummy_cond_unet_upscale
_lowerCamelCase : Dict = DDPMScheduler()
_lowerCamelCase : Optional[int] = DDIMScheduler(prediction_type="v_prediction" )
_lowerCamelCase : List[Any] = self.dummy_vae
_lowerCamelCase : List[Any] = self.dummy_text_encoder
_lowerCamelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
_lowerCamelCase : Tuple = self.dummy_image.cpu().permute(0 ,2 ,3 ,1 )[0]
_lowerCamelCase : Dict = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert("RGB" ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
_lowerCamelCase : Any = StableDiffusionUpscalePipeline(
unet=__lowerCAmelCase ,low_res_scheduler=__lowerCAmelCase ,scheduler=__lowerCAmelCase ,vae=__lowerCAmelCase ,text_encoder=__lowerCAmelCase ,tokenizer=__lowerCAmelCase ,max_noise_level=350 ,)
_lowerCamelCase : int = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
_lowerCamelCase : str = "A painting of a squirrel eating a burger"
_lowerCamelCase : Union[str, Any] = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 )
_lowerCamelCase : Union[str, Any] = sd_pipe(
[prompt] ,image=__lowerCAmelCase ,generator=__lowerCAmelCase ,guidance_scale=6.0 ,noise_level=20 ,num_inference_steps=2 ,output_type="np" ,)
_lowerCamelCase : Any = output.images
_lowerCamelCase : List[Any] = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 )
_lowerCamelCase : str = sd_pipe(
[prompt] ,image=__lowerCAmelCase ,generator=__lowerCAmelCase ,guidance_scale=6.0 ,noise_level=20 ,num_inference_steps=2 ,output_type="np" ,return_dict=__lowerCAmelCase ,)[0]
_lowerCamelCase : str = image[0, -3:, -3:, -1]
_lowerCamelCase : int = image_from_tuple[0, -3:, -3:, -1]
_lowerCamelCase : Dict = low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
_lowerCamelCase : Union[str, Any] = np.array([0.31_13, 0.39_10, 0.42_72, 0.48_59, 0.50_61, 0.46_52, 0.53_62, 0.57_15, 0.56_61] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : int = "cpu" # ensure determinism for the device-dependent torch.Generator
_lowerCamelCase : Union[str, Any] = self.dummy_cond_unet_upscale
_lowerCamelCase : Any = DDPMScheduler()
_lowerCamelCase : List[str] = DDIMScheduler(prediction_type="v_prediction" )
_lowerCamelCase : List[Any] = self.dummy_vae
_lowerCamelCase : int = self.dummy_text_encoder
_lowerCamelCase : str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
_lowerCamelCase : List[Any] = self.dummy_image.cpu().permute(0 ,2 ,3 ,1 )[0]
_lowerCamelCase : List[Any] = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert("RGB" ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
_lowerCamelCase : str = StableDiffusionUpscalePipeline(
unet=__lowerCAmelCase ,low_res_scheduler=__lowerCAmelCase ,scheduler=__lowerCAmelCase ,vae=__lowerCAmelCase ,text_encoder=__lowerCAmelCase ,tokenizer=__lowerCAmelCase ,max_noise_level=350 ,)
_lowerCamelCase : List[str] = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
_lowerCamelCase : Tuple = "A painting of a squirrel eating a burger"
_lowerCamelCase : str = sd_pipe(
2 * [prompt] ,image=2 * [low_res_image] ,guidance_scale=6.0 ,noise_level=20 ,num_inference_steps=2 ,output_type="np" ,)
_lowerCamelCase : Dict = output.images
assert image.shape[0] == 2
_lowerCamelCase : List[Any] = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 )
_lowerCamelCase : Any = sd_pipe(
[prompt] ,image=__lowerCAmelCase ,generator=__lowerCAmelCase ,num_images_per_prompt=2 ,guidance_scale=6.0 ,noise_level=20 ,num_inference_steps=2 ,output_type="np" ,)
_lowerCamelCase : List[Any] = output.images
assert image.shape[0] == 2
@unittest.skipIf(torch_device != "cuda" ,"This test requires a GPU" )
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = self.dummy_cond_unet_upscale
_lowerCamelCase : Tuple = DDPMScheduler()
_lowerCamelCase : Optional[Any] = DDIMScheduler(prediction_type="v_prediction" )
_lowerCamelCase : int = self.dummy_vae
_lowerCamelCase : Any = self.dummy_text_encoder
_lowerCamelCase : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
_lowerCamelCase : Union[str, Any] = self.dummy_image.cpu().permute(0 ,2 ,3 ,1 )[0]
_lowerCamelCase : List[Any] = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert("RGB" ).resize((64, 64) )
# put models in fp16, except vae as it overflows in fp16
_lowerCamelCase : Dict = unet.half()
_lowerCamelCase : Tuple = text_encoder.half()
# make sure here that pndm scheduler skips prk
_lowerCamelCase : Optional[Any] = StableDiffusionUpscalePipeline(
unet=__lowerCAmelCase ,low_res_scheduler=__lowerCAmelCase ,scheduler=__lowerCAmelCase ,vae=__lowerCAmelCase ,text_encoder=__lowerCAmelCase ,tokenizer=__lowerCAmelCase ,max_noise_level=350 ,)
_lowerCamelCase : str = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = "A painting of a squirrel eating a burger"
_lowerCamelCase : List[str] = torch.manual_seed(0 )
_lowerCamelCase : List[Any] = sd_pipe(
[prompt] ,image=__lowerCAmelCase ,generator=__lowerCAmelCase ,num_inference_steps=2 ,output_type="np" ,).images
_lowerCamelCase : str = low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
@slow
@require_torch_gpu
class A_ ( unittest.TestCase ):
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-upscale/low_res_cat.png" )
_lowerCamelCase : Union[str, Any] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"
"/upsampled_cat.npy" )
_lowerCamelCase : List[str] = "stabilityai/stable-diffusion-x4-upscaler"
_lowerCamelCase : Optional[int] = StableDiffusionUpscalePipeline.from_pretrained(__lowerCAmelCase )
pipe.to(__lowerCAmelCase )
pipe.set_progress_bar_config(disable=__lowerCAmelCase )
pipe.enable_attention_slicing()
_lowerCamelCase : Dict = "a cat sitting on a park bench"
_lowerCamelCase : Any = torch.manual_seed(0 )
_lowerCamelCase : Dict = pipe(
prompt=__lowerCAmelCase ,image=__lowerCAmelCase ,generator=__lowerCAmelCase ,output_type="np" ,)
_lowerCamelCase : List[Any] = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 1e-3
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : Tuple = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-upscale/low_res_cat.png" )
_lowerCamelCase : str = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"
"/upsampled_cat_fp16.npy" )
_lowerCamelCase : str = "stabilityai/stable-diffusion-x4-upscaler"
_lowerCamelCase : int = StableDiffusionUpscalePipeline.from_pretrained(
__lowerCAmelCase ,torch_dtype=torch.floataa ,)
pipe.to(__lowerCAmelCase )
pipe.set_progress_bar_config(disable=__lowerCAmelCase )
pipe.enable_attention_slicing()
_lowerCamelCase : List[Any] = "a cat sitting on a park bench"
_lowerCamelCase : Any = torch.manual_seed(0 )
_lowerCamelCase : Optional[Any] = pipe(
prompt=__lowerCAmelCase ,image=__lowerCAmelCase ,generator=__lowerCAmelCase ,output_type="np" ,)
_lowerCamelCase : Optional[int] = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 5e-1
def _lowercase ( self: Any ):
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_lowerCamelCase : List[Any] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-upscale/low_res_cat.png" )
_lowerCamelCase : List[str] = "stabilityai/stable-diffusion-x4-upscaler"
_lowerCamelCase : Optional[Any] = StableDiffusionUpscalePipeline.from_pretrained(
__lowerCAmelCase ,torch_dtype=torch.floataa ,)
pipe.to(__lowerCAmelCase )
pipe.set_progress_bar_config(disable=__lowerCAmelCase )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
_lowerCamelCase : List[str] = "a cat sitting on a park bench"
_lowerCamelCase : List[str] = torch.manual_seed(0 )
_lowerCamelCase : str = pipe(
prompt=__lowerCAmelCase ,image=__lowerCAmelCase ,generator=__lowerCAmelCase ,num_inference_steps=5 ,output_type="np" ,)
_lowerCamelCase : int = torch.cuda.max_memory_allocated()
# make sure that less than 2.9 GB is allocated
assert mem_bytes < 2.9 * 10**9 | 340 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowerCAmelCase : List[str] = logging.get_logger(__name__)
_lowerCAmelCase : int = {
'''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''',
'''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''',
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
}
class A_ ( _a ):
lowerCAmelCase__ = 'mobilenet_v1'
def __init__( self: Tuple ,__lowerCAmelCase: int=3 ,__lowerCAmelCase: Dict=224 ,__lowerCAmelCase: int=1.0 ,__lowerCAmelCase: Tuple=8 ,__lowerCAmelCase: List[str]="relu6" ,__lowerCAmelCase: int=True ,__lowerCAmelCase: List[Any]=0.9_99 ,__lowerCAmelCase: Optional[int]=0.02 ,__lowerCAmelCase: Optional[int]=0.0_01 ,**__lowerCAmelCase: str ,):
'''simple docstring'''
super().__init__(**__lowerCAmelCase )
if depth_multiplier <= 0:
raise ValueError("depth_multiplier must be greater than zero." )
_lowerCamelCase : List[str] = num_channels
_lowerCamelCase : Union[str, Any] = image_size
_lowerCamelCase : List[Any] = depth_multiplier
_lowerCamelCase : Any = min_depth
_lowerCamelCase : Tuple = hidden_act
_lowerCamelCase : Dict = tf_padding
_lowerCamelCase : Union[str, Any] = classifier_dropout_prob
_lowerCamelCase : Tuple = initializer_range
_lowerCamelCase : List[Any] = layer_norm_eps
class A_ ( _a ):
lowerCAmelCase__ = version.parse('1.11' )
@property
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
return OrderedDict([("pixel_values", {0: "batch"})] )
@property
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
if self.task == "image-classification":
return OrderedDict([("logits", {0: "batch"})] )
else:
return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] )
@property
def _lowercase ( self: Any ):
'''simple docstring'''
return 1e-4 | 340 | 1 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_xlnet import XLNetTokenizer
else:
_lowerCAmelCase : Any = None
_lowerCAmelCase : int = logging.get_logger(__name__)
_lowerCAmelCase : int = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
_lowerCAmelCase : int = {
'''vocab_file''': {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''',
},
'''tokenizer_file''': {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json''',
},
}
_lowerCAmelCase : Tuple = {
'''xlnet-base-cased''': None,
'''xlnet-large-cased''': None,
}
_lowerCAmelCase : Optional[int] = '''▁'''
# Segments (not really needed)
_lowerCAmelCase : Union[str, Any] = 0
_lowerCAmelCase : Tuple = 1
_lowerCAmelCase : List[str] = 2
_lowerCAmelCase : Union[str, Any] = 3
_lowerCAmelCase : Optional[int] = 4
class A_ ( _a ):
lowerCAmelCase__ = VOCAB_FILES_NAMES
lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase__ = 'left'
lowerCAmelCase__ = XLNetTokenizer
def __init__( self: Tuple ,__lowerCAmelCase: Dict=None ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: Optional[int]=False ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: List[str]=False ,__lowerCAmelCase: Optional[Any]="<s>" ,__lowerCAmelCase: Optional[Any]="</s>" ,__lowerCAmelCase: Union[str, Any]="<unk>" ,__lowerCAmelCase: Tuple="<sep>" ,__lowerCAmelCase: Dict="<pad>" ,__lowerCAmelCase: Union[str, Any]="<cls>" ,__lowerCAmelCase: Optional[int]="<mask>" ,__lowerCAmelCase: Tuple=["<eop>", "<eod>"] ,**__lowerCAmelCase: Optional[int] ,):
'''simple docstring'''
_lowerCamelCase : Dict = AddedToken(__lowerCAmelCase ,lstrip=__lowerCAmelCase ,rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) else mask_token
super().__init__(
vocab_file=__lowerCAmelCase ,tokenizer_file=__lowerCAmelCase ,do_lower_case=__lowerCAmelCase ,remove_space=__lowerCAmelCase ,keep_accents=__lowerCAmelCase ,bos_token=__lowerCAmelCase ,eos_token=__lowerCAmelCase ,unk_token=__lowerCAmelCase ,sep_token=__lowerCAmelCase ,pad_token=__lowerCAmelCase ,cls_token=__lowerCAmelCase ,mask_token=__lowerCAmelCase ,additional_special_tokens=__lowerCAmelCase ,**__lowerCAmelCase ,)
_lowerCamelCase : Dict = 3
_lowerCamelCase : int = do_lower_case
_lowerCamelCase : int = remove_space
_lowerCamelCase : List[Any] = keep_accents
_lowerCamelCase : Dict = vocab_file
_lowerCamelCase : Dict = False if not self.vocab_file else True
def _lowercase ( self: Dict ,__lowerCAmelCase: List[int] ,__lowerCAmelCase: Optional[List[int]] = None ):
'''simple docstring'''
_lowerCamelCase : Optional[Any] = [self.sep_token_id]
_lowerCamelCase : Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _lowercase ( self: int ,__lowerCAmelCase: List[int] ,__lowerCAmelCase: Optional[List[int]] = None ):
'''simple docstring'''
_lowerCamelCase : Tuple = [self.sep_token_id]
_lowerCamelCase : List[str] = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: str ,__lowerCAmelCase: Optional[str] = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer." )
if not os.path.isdir(__lowerCAmelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
_lowerCamelCase : Union[str, Any] = os.path.join(
__lowerCAmelCase ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ):
copyfile(self.vocab_file ,__lowerCAmelCase )
return (out_vocab_file,) | 340 |
"""simple docstring"""
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def lowerCamelCase_( _lowerCamelCase ) -> Any:
'''simple docstring'''
for param in module.parameters():
_lowerCamelCase : Optional[int] = False
def lowerCamelCase_( ) -> List[str]:
'''simple docstring'''
_lowerCamelCase : Optional[Any] = "cuda" if torch.cuda.is_available() else "cpu"
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
_lowerCamelCase : int = "mps"
if device == "mps":
print(
"WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"
" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"
" with generations." )
return device
def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Dict = plt.imshow(_lowerCamelCase )
fig.axes.get_xaxis().set_visible(_lowerCamelCase )
fig.axes.get_yaxis().set_visible(_lowerCamelCase )
plt.show()
def lowerCamelCase_( ) -> str:
'''simple docstring'''
_lowerCamelCase : Tuple = datetime.now()
_lowerCamelCase : Tuple = current_time.strftime("%H:%M:%S" )
return timestamp | 340 | 1 |
"""simple docstring"""
import fire
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer
from utils import SeqaSeqDataset, pickle_save
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=1024 , _lowerCamelCase=1024 , _lowerCamelCase=False , **_lowerCamelCase ) -> Tuple:
'''simple docstring'''
_lowerCamelCase : str = AutoTokenizer.from_pretrained(_lowerCamelCase )
_lowerCamelCase : Optional[int] = SeqaSeqDataset(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , type_path="train" , **_lowerCamelCase )
_lowerCamelCase : Tuple = tok.pad_token_id
def get_lens(_lowerCamelCase ):
_lowerCamelCase : Tuple = tqdm(
DataLoader(_lowerCamelCase , batch_size=512 , num_workers=8 , shuffle=_lowerCamelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , )
_lowerCamelCase : int = []
for batch in dl:
_lowerCamelCase : List[str] = batch["input_ids"].ne(_lowerCamelCase ).sum(1 ).tolist()
_lowerCamelCase : Tuple = batch["labels"].ne(_lowerCamelCase ).sum(1 ).tolist()
if consider_target:
for src, tgt in zip(_lowerCamelCase , _lowerCamelCase ):
max_lens.append(max(_lowerCamelCase , _lowerCamelCase ) )
else:
max_lens.extend(_lowerCamelCase )
return max_lens
_lowerCamelCase : Optional[Any] = get_lens(_lowerCamelCase )
_lowerCamelCase : Tuple = SeqaSeqDataset(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , type_path="val" , **_lowerCamelCase )
_lowerCamelCase : Optional[Any] = get_lens(_lowerCamelCase )
pickle_save(_lowerCamelCase , train_ds.len_file )
pickle_save(_lowerCamelCase , val_ds.len_file )
if __name__ == "__main__":
fire.Fire(save_len_file) | 340 |
"""simple docstring"""
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str:
'''simple docstring'''
_lowerCamelCase : int = len(_lowerCamelCase )
_lowerCamelCase : int = len(_lowerCamelCase )
_lowerCamelCase : int = (
first_str_length if first_str_length > second_str_length else second_str_length
)
_lowerCamelCase : list = []
for char_count in range(_lowerCamelCase ):
if char_count < first_str_length:
output_list.append(first_str[char_count] )
if char_count < second_str_length:
output_list.append(second_str[char_count] )
return "".join(_lowerCamelCase )
if __name__ == "__main__":
print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''') | 340 | 1 |
"""simple docstring"""
import importlib
import torch
import yaml
from omegaconf import OmegaConf
from taming.models.vqgan import VQModel
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[str]:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = OmegaConf.load(_lowerCamelCase )
if display:
print(yaml.dump(OmegaConf.to_container(_lowerCamelCase ) ) )
return config
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ) -> Union[str, Any]:
'''simple docstring'''
if conf_path is None:
_lowerCamelCase : int = "./model_checkpoints/vqgan_only.yaml"
_lowerCamelCase : Optional[Any] = load_config(_lowerCamelCase , display=_lowerCamelCase )
_lowerCamelCase : List[Any] = VQModel(**config.model.params )
if ckpt_path is None:
_lowerCamelCase : str = "./model_checkpoints/vqgan_only.pt"
_lowerCamelCase : Optional[Any] = torch.load(_lowerCamelCase , map_location=_lowerCamelCase )
if ".ckpt" in ckpt_path:
_lowerCamelCase : Optional[Any] = sd["state_dict"]
model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase )
model.to(_lowerCamelCase )
del sd
return model
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str:
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = model.encode(_lowerCamelCase )
print(F"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" )
_lowerCamelCase : List[str] = model.decode(_lowerCamelCase )
return xrec
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> str:
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : List[str] = string.rsplit("." , 1 )
if reload:
_lowerCamelCase : int = importlib.import_module(_lowerCamelCase )
importlib.reload(_lowerCamelCase )
return getattr(importlib.import_module(_lowerCamelCase , package=_lowerCamelCase ) , cls )
def lowerCamelCase_( _lowerCamelCase ) -> str:
'''simple docstring'''
if "target" not in config:
raise KeyError("Expected key `target` to instantiate." )
return get_obj_from_str(config["target"] )(**config.get("params" , {} ) )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True , _lowerCamelCase=True ) -> Dict:
'''simple docstring'''
_lowerCamelCase : Optional[Any] = instantiate_from_config(_lowerCamelCase )
if sd is not None:
model.load_state_dict(_lowerCamelCase )
if gpu:
model.cuda()
if eval_mode:
model.eval()
return {"model": model}
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any:
'''simple docstring'''
if ckpt:
_lowerCamelCase : Union[str, Any] = torch.load(_lowerCamelCase , map_location="cpu" )
_lowerCamelCase : Dict = pl_sd["global_step"]
print(F"""loaded model from global step {global_step}.""" )
else:
_lowerCamelCase : List[Any] = {"state_dict": None}
_lowerCamelCase : List[Any] = None
_lowerCamelCase : Optional[Any] = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=_lowerCamelCase , eval_mode=_lowerCamelCase )["model"]
return model, global_step | 340 |
"""simple docstring"""
_lowerCAmelCase : Tuple = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple:
'''simple docstring'''
_lowerCamelCase : Any = [False] * len(_lowerCamelCase )
_lowerCamelCase : Union[str, Any] = [s]
_lowerCamelCase : str = True
while queue:
_lowerCamelCase : Optional[int] = queue.pop(0 )
for ind in range(len(graph[u] ) ):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(_lowerCamelCase )
_lowerCamelCase : Any = True
_lowerCamelCase : Any = u
return visited[t]
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
_lowerCamelCase : List[str] = [-1] * (len(_lowerCamelCase ))
_lowerCamelCase : Union[str, Any] = 0
_lowerCamelCase : Union[str, Any] = []
_lowerCamelCase : List[str] = [i[:] for i in graph] # Record original cut, copy.
while bfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
_lowerCamelCase : Any = float("Inf" )
_lowerCamelCase : Dict = sink
while s != source:
# Find the minimum value in select path
_lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , graph[parent[s]][s] )
_lowerCamelCase : Union[str, Any] = parent[s]
max_flow += path_flow
_lowerCamelCase : Optional[Any] = sink
while v != source:
_lowerCamelCase : Union[str, Any] = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
_lowerCamelCase : List[str] = parent[v]
for i in range(len(_lowerCamelCase ) ):
for j in range(len(graph[0] ) ):
if graph[i][j] == 0 and temp[i][j] > 0:
res.append((i, j) )
return res
if __name__ == "__main__":
print(mincut(test_graph, source=0, sink=5)) | 340 | 1 |
"""simple docstring"""
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class A_ ( unittest.TestCase ):
lowerCAmelCase__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def _lowercase ( self: Tuple ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : Tuple = hf_hub_download(
repo_id="nateraw/video-demo" ,filename="archery.mp4" ,repo_type="dataset" )
_lowerCamelCase : List[Any] = VideoClassificationPipeline(model=__lowerCAmelCase ,image_processor=__lowerCAmelCase ,top_k=2 )
_lowerCamelCase : Tuple = [
example_video_filepath,
"https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4",
]
return video_classifier, examples
def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: List[str] ):
'''simple docstring'''
for example in examples:
_lowerCamelCase : int = video_classifier(__lowerCAmelCase )
self.assertEqual(
__lowerCAmelCase ,[
{"score": ANY(__lowerCAmelCase ), "label": ANY(__lowerCAmelCase )},
{"score": ANY(__lowerCAmelCase ), "label": ANY(__lowerCAmelCase )},
] ,)
@require_torch
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : Dict = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification"
_lowerCamelCase : str = VideoMAEFeatureExtractor(
size={"shortest_edge": 10} ,crop_size={"height": 10, "width": 10} )
_lowerCamelCase : Dict = pipeline(
"video-classification" ,model=__lowerCAmelCase ,feature_extractor=__lowerCAmelCase ,frame_sampling_rate=4 )
_lowerCamelCase : int = hf_hub_download(repo_id="nateraw/video-demo" ,filename="archery.mp4" ,repo_type="dataset" )
_lowerCamelCase : List[Any] = video_classifier(__lowerCAmelCase ,top_k=2 )
self.assertEqual(
nested_simplify(__lowerCAmelCase ,decimals=4 ) ,[{"score": 0.51_99, "label": "LABEL_0"}, {"score": 0.48_01, "label": "LABEL_1"}] ,)
_lowerCamelCase : Tuple = video_classifier(
[
video_file_path,
video_file_path,
] ,top_k=2 ,)
self.assertEqual(
nested_simplify(__lowerCAmelCase ,decimals=4 ) ,[
[{"score": 0.51_99, "label": "LABEL_0"}, {"score": 0.48_01, "label": "LABEL_1"}],
[{"score": 0.51_99, "label": "LABEL_0"}, {"score": 0.48_01, "label": "LABEL_1"}],
] ,)
@require_tf
def _lowercase ( self: Dict ):
'''simple docstring'''
pass | 340 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
_lowerCAmelCase : List[str] = {
'''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''',
'''umberto-commoncrawl-cased-v1''': (
'''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json'''
),
'''umberto-wikipedia-uncased-v1''': (
'''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json'''
),
}
class A_ ( _a ):
lowerCAmelCase__ = 'camembert'
def __init__( self: Tuple ,__lowerCAmelCase: Union[str, Any]=30_522 ,__lowerCAmelCase: Optional[Any]=768 ,__lowerCAmelCase: Union[str, Any]=12 ,__lowerCAmelCase: int=12 ,__lowerCAmelCase: Optional[int]=3_072 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: Optional[Any]=0.1 ,__lowerCAmelCase: int=512 ,__lowerCAmelCase: Union[str, Any]=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Any=1 ,__lowerCAmelCase: Any=0 ,__lowerCAmelCase: Optional[int]=2 ,__lowerCAmelCase: Any="absolute" ,__lowerCAmelCase: Dict=True ,__lowerCAmelCase: Tuple=None ,**__lowerCAmelCase: Dict ,):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCAmelCase ,bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ,**__lowerCAmelCase )
_lowerCamelCase : List[str] = vocab_size
_lowerCamelCase : Any = hidden_size
_lowerCamelCase : Union[str, Any] = num_hidden_layers
_lowerCamelCase : str = num_attention_heads
_lowerCamelCase : List[Any] = hidden_act
_lowerCamelCase : int = intermediate_size
_lowerCamelCase : str = hidden_dropout_prob
_lowerCamelCase : List[str] = attention_probs_dropout_prob
_lowerCamelCase : Optional[Any] = max_position_embeddings
_lowerCamelCase : str = type_vocab_size
_lowerCamelCase : Dict = initializer_range
_lowerCamelCase : Union[str, Any] = layer_norm_eps
_lowerCamelCase : Tuple = position_embedding_type
_lowerCamelCase : List[Any] = use_cache
_lowerCamelCase : Dict = classifier_dropout
class A_ ( _a ):
@property
def _lowercase ( self: Any ):
'''simple docstring'''
if self.task == "multiple-choice":
_lowerCamelCase : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"}
else:
_lowerCamelCase : int = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] ) | 340 | 1 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
_lowerCAmelCase : str = (3, 9, -11, 0, 7, 5, 1, -1)
_lowerCAmelCase : Union[str, Any] = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class A_ :
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
class A_ :
def __init__( self: int ,__lowerCAmelCase: Iterable[int] ):
'''simple docstring'''
_lowerCamelCase : Node | None = None
for i in sorted(__lowerCAmelCase ,reverse=__lowerCAmelCase ):
_lowerCamelCase : List[str] = Node(__lowerCAmelCase ,self.head )
def __iter__( self: List[str] ):
'''simple docstring'''
_lowerCamelCase : Optional[Any] = self.head
while node:
yield node.data
_lowerCamelCase : Tuple = node.next_node
def __len__( self: Optional[Any] ):
'''simple docstring'''
return sum(1 for _ in self )
def __str__( self: Dict ):
'''simple docstring'''
return " -> ".join([str(__lowerCAmelCase ) for node in self] )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> SortedLinkedList:
'''simple docstring'''
return SortedLinkedList(list(_lowerCamelCase ) + list(_lowerCamelCase ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowerCAmelCase : Any = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even))) | 340 |
"""simple docstring"""
from collections import defaultdict
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : Optional[int] = 1
_lowerCamelCase : str = True
for v in tree[start]:
if v not in visited:
ret += dfs(_lowerCamelCase )
if ret % 2 == 0:
cuts.append(_lowerCamelCase )
return ret
def lowerCamelCase_( ) -> int:
'''simple docstring'''
dfs(1 )
if __name__ == "__main__":
_lowerCAmelCase , _lowerCAmelCase : Optional[Any] = 10, 9
_lowerCAmelCase : str = defaultdict(list)
_lowerCAmelCase : dict[int, bool] = {}
_lowerCAmelCase : list[int] = []
_lowerCAmelCase : Any = 0
_lowerCAmelCase : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)]
for u, v in edges:
tree[u].append(v)
tree[v].append(u)
even_tree()
print(len(cuts) - 1) | 340 | 1 |
"""simple docstring"""
import math
from enum import Enum
from typing import Optional, Union
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
from .utils import logging
_lowerCAmelCase : Any = logging.get_logger(__name__)
class A_ ( _a ):
lowerCAmelCase__ = 'linear'
lowerCAmelCase__ = 'cosine'
lowerCAmelCase__ = 'cosine_with_restarts'
lowerCAmelCase__ = 'polynomial'
lowerCAmelCase__ = 'constant'
lowerCAmelCase__ = 'constant_with_warmup'
lowerCAmelCase__ = 'piecewise_constant'
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = -1 ) -> List[str]:
'''simple docstring'''
return LambdaLR(_lowerCamelCase , lambda _lowerCamelCase : 1 , last_epoch=_lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = -1 ) -> int:
'''simple docstring'''
def lr_lambda(_lowerCamelCase ):
if current_step < num_warmup_steps:
return float(_lowerCamelCase ) / float(max(1.0 , _lowerCamelCase ) )
return 1.0
return LambdaLR(_lowerCamelCase , _lowerCamelCase , last_epoch=_lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = -1 ) -> Union[str, Any]:
'''simple docstring'''
_lowerCamelCase : Optional[int] = {}
_lowerCamelCase : Optional[Any] = step_rules.split("," )
for rule_str in rule_list[:-1]:
_lowerCamelCase, _lowerCamelCase : Optional[Any] = rule_str.split(":" )
_lowerCamelCase : int = int(_lowerCamelCase )
_lowerCamelCase : Optional[Any] = float(_lowerCamelCase )
_lowerCamelCase : Optional[int] = value
_lowerCamelCase : str = float(rule_list[-1] )
def create_rules_function(_lowerCamelCase , _lowerCamelCase ):
def rule_func(_lowerCamelCase ) -> float:
_lowerCamelCase : List[Any] = sorted(rules_dict.keys() )
for i, sorted_step in enumerate(_lowerCamelCase ):
if steps < sorted_step:
return rules_dict[sorted_steps[i]]
return last_lr_multiple
return rule_func
_lowerCamelCase : List[str] = create_rules_function(_lowerCamelCase , _lowerCamelCase )
return LambdaLR(_lowerCamelCase , _lowerCamelCase , last_epoch=_lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=-1 ) -> Union[str, Any]:
'''simple docstring'''
def lr_lambda(_lowerCamelCase ):
if current_step < num_warmup_steps:
return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) )
return max(
0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) )
return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0.5 , _lowerCamelCase = -1 ) -> Union[str, Any]:
'''simple docstring'''
def lr_lambda(_lowerCamelCase ):
if current_step < num_warmup_steps:
return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) )
_lowerCamelCase : Union[str, Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) )
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_lowerCamelCase ) * 2.0 * progress )) )
return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = -1 ) -> Any:
'''simple docstring'''
def lr_lambda(_lowerCamelCase ):
if current_step < num_warmup_steps:
return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) )
_lowerCamelCase : Tuple = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) )
if progress >= 1.0:
return 0.0
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_lowerCamelCase ) * progress) % 1.0) )) )
return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=1e-7 , _lowerCamelCase=1.0 , _lowerCamelCase=-1 ) -> Optional[Any]:
'''simple docstring'''
_lowerCamelCase : int = optimizer.defaults["lr"]
if not (lr_init > lr_end):
raise ValueError(F"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" )
def lr_lambda(_lowerCamelCase ):
if current_step < num_warmup_steps:
return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) )
elif current_step > num_training_steps:
return lr_end / lr_init # as LambdaLR multiplies by lr_init
else:
_lowerCamelCase : Any = lr_init - lr_end
_lowerCamelCase : Union[str, Any] = num_training_steps - num_warmup_steps
_lowerCamelCase : List[Any] = 1 - (current_step - num_warmup_steps) / decay_steps
_lowerCamelCase : Optional[Any] = lr_range * pct_remaining**power + lr_end
return decay / lr_init # as LambdaLR multiplies by lr_init
return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
_lowerCAmelCase : Dict = {
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
SchedulerType.CONSTANT: get_constant_schedule,
SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule,
}
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 1.0 , _lowerCamelCase = -1 , ) -> List[Any]:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = SchedulerType(_lowerCamelCase )
_lowerCamelCase : Any = TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return schedule_func(_lowerCamelCase , last_epoch=_lowerCamelCase )
if name == SchedulerType.PIECEWISE_CONSTANT:
return schedule_func(_lowerCamelCase , step_rules=_lowerCamelCase , last_epoch=_lowerCamelCase )
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(F"""{name} requires `num_warmup_steps`, please provide that argument.""" )
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(_lowerCamelCase , num_warmup_steps=_lowerCamelCase , last_epoch=_lowerCamelCase )
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(F"""{name} requires `num_training_steps`, please provide that argument.""" )
if name == SchedulerType.COSINE_WITH_RESTARTS:
return schedule_func(
_lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , num_cycles=_lowerCamelCase , last_epoch=_lowerCamelCase , )
if name == SchedulerType.POLYNOMIAL:
return schedule_func(
_lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , power=_lowerCamelCase , last_epoch=_lowerCamelCase , )
return schedule_func(
_lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , last_epoch=_lowerCamelCase ) | 340 |
"""simple docstring"""
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
_lowerCAmelCase : Optional[int] = '''__DUMMY_TRANSFORMERS_USER__'''
_lowerCAmelCase : Dict = '''Dummy User'''
_lowerCAmelCase : Optional[int] = '''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'''
_lowerCAmelCase : Tuple = '''https://hub-ci.huggingface.co'''
_lowerCAmelCase : Any = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}'''
_lowerCAmelCase : Tuple = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}'''
_lowerCAmelCase : Dict = Path('''~/.huggingface/hub_ci_token''').expanduser()
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
monkeypatch.setattr(
"huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , _lowerCamelCase )
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> Tuple:
'''simple docstring'''
monkeypatch.setattr("datasets.config.HF_ENDPOINT" , _lowerCamelCase )
monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , _lowerCamelCase )
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , _lowerCamelCase )
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Dict:
'''simple docstring'''
HfFolder.save_token(_lowerCamelCase )
yield
HfFolder.delete_token()
@pytest.fixture(scope="session" )
def lowerCamelCase_( ) -> str:
'''simple docstring'''
return HfApi(endpoint=_lowerCamelCase )
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : Dict = HfFolder.get_token()
HfFolder.save_token(_lowerCamelCase )
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(_lowerCamelCase )
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
def _cleanup_repo(_lowerCamelCase ):
hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" )
return _cleanup_repo
@pytest.fixture
def lowerCamelCase_( _lowerCamelCase ) -> List[str]:
'''simple docstring'''
@contextmanager
def _temporary_repo(_lowerCamelCase ):
try:
yield repo_id
finally:
cleanup_repo(_lowerCamelCase )
return _temporary_repo
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
_lowerCamelCase : Tuple = F"""repo_txt_data-{int(time.time() * 10e3 )}"""
_lowerCamelCase : List[str] = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase )
hf_api.upload_file(
token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data/text_data.txt" , repo_id=_lowerCamelCase , repo_type="dataset" , )
yield repo_id
try:
hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
'''simple docstring'''
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
'''simple docstring'''
_lowerCamelCase : List[Any] = F"""repo_zipped_txt_data-{int(time.time() * 10e3 )}"""
_lowerCamelCase : Dict = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase )
hf_api.upload_file(
token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , )
yield repo_id
try:
hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict:
'''simple docstring'''
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope="session" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
'''simple docstring'''
_lowerCamelCase : Any = F"""repo_zipped_img_data-{int(time.time() * 10e3 )}"""
_lowerCamelCase : List[Any] = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase )
hf_api.upload_file(
token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , )
yield repo_id
try:
hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
return hf_private_dataset_repo_zipped_img_data_ | 340 | 1 |
"""simple docstring"""
import contextlib
import os
import sqlitea
import pytest
from datasets import Dataset, Features, Value
from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Dict:
'''simple docstring'''
assert isinstance(_lowerCamelCase , _lowerCamelCase )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@require_sqlalchemy
@pytest.mark.parametrize("keep_in_memory" , [False, True] )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]:
'''simple docstring'''
_lowerCamelCase : Dict = tmp_path / "cache"
_lowerCamelCase : List[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
_lowerCamelCase : Tuple = SqlDatasetReader(
"dataset" , "sqlite:///" + sqlite_path , cache_dir=_lowerCamelCase , keep_in_memory=_lowerCamelCase ).read()
_check_sql_dataset(_lowerCamelCase , _lowerCamelCase )
@require_sqlalchemy
@pytest.mark.parametrize(
"features" , [
None,
{"col_1": "string", "col_2": "int64", "col_3": "float64"},
{"col_1": "string", "col_2": "string", "col_3": "string"},
{"col_1": "int32", "col_2": "int32", "col_3": "int32"},
{"col_1": "float32", "col_2": "float32", "col_3": "float32"},
] , )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
'''simple docstring'''
_lowerCamelCase : Optional[int] = tmp_path / "cache"
_lowerCamelCase : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"}
_lowerCamelCase : Tuple = features.copy() if features else default_expected_features
_lowerCamelCase : Dict = (
Features({feature: Value(_lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
_lowerCamelCase : Optional[Any] = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , features=_lowerCamelCase , cache_dir=_lowerCamelCase ).read()
_check_sql_dataset(_lowerCamelCase , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> Dict:
'''simple docstring'''
with contextlib.closing(sqlitea.connect(_lowerCamelCase ) ) as con:
_lowerCamelCase : Any = con.cursor()
cur.execute("SELECT * FROM dataset" )
for row in cur:
yield row
@require_sqlalchemy
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]:
'''simple docstring'''
_lowerCamelCase : Optional[Any] = tmp_path / "cache"
_lowerCamelCase : Optional[int] = os.path.join(_lowerCamelCase , "tmp.sql" )
_lowerCamelCase : Optional[Any] = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=_lowerCamelCase ).read()
SqlDatasetWriter(_lowerCamelCase , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=1 ).write()
_lowerCamelCase : List[str] = iter_sql_file(_lowerCamelCase )
_lowerCamelCase : List[Any] = iter_sql_file(_lowerCamelCase )
for rowa, rowa in zip(_lowerCamelCase , _lowerCamelCase ):
assert rowa == rowa
@require_sqlalchemy
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
'''simple docstring'''
_lowerCamelCase : Optional[Any] = tmp_path / "cache"
_lowerCamelCase : Dict = os.path.join(_lowerCamelCase , "tmp.sql" )
_lowerCamelCase : List[Any] = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=_lowerCamelCase ).read()
SqlDatasetWriter(_lowerCamelCase , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=2 ).write()
_lowerCamelCase : Any = iter_sql_file(_lowerCamelCase )
_lowerCamelCase : Optional[Any] = iter_sql_file(_lowerCamelCase )
for rowa, rowa in zip(_lowerCamelCase , _lowerCamelCase ):
assert rowa == rowa
@require_sqlalchemy
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
'''simple docstring'''
_lowerCamelCase : Dict = tmp_path / "cache"
_lowerCamelCase : List[Any] = os.path.join(_lowerCamelCase , "tmp.sql" )
_lowerCamelCase : Dict = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=_lowerCamelCase ).read()
with pytest.raises(_lowerCamelCase ):
SqlDatasetWriter(_lowerCamelCase , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=0 ).write() | 340 |
"""simple docstring"""
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from ...models.controlnet import ControlNetModel, ControlNetOutput
from ...models.modeling_utils import ModelMixin
from ...utils import logging
_lowerCAmelCase : Dict = logging.get_logger(__name__)
class A_ ( _a ):
def __init__( self: List[Any] ,__lowerCAmelCase: Union[List[ControlNetModel], Tuple[ControlNetModel]] ):
'''simple docstring'''
super().__init__()
_lowerCamelCase : Tuple = nn.ModuleList(__lowerCAmelCase )
def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Union[torch.Tensor, float, int] ,__lowerCAmelCase: torch.Tensor ,__lowerCAmelCase: List[torch.tensor] ,__lowerCAmelCase: List[float] ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[Dict[str, Any]] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,):
'''simple docstring'''
for i, (image, scale, controlnet) in enumerate(zip(__lowerCAmelCase ,__lowerCAmelCase ,self.nets ) ):
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = controlnet(
__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,)
# merge samples
if i == 0:
_lowerCamelCase, _lowerCamelCase : Optional[Any] = down_samples, mid_sample
else:
_lowerCamelCase : Optional[int] = [
samples_prev + samples_curr
for samples_prev, samples_curr in zip(__lowerCAmelCase ,__lowerCAmelCase )
]
mid_block_res_sample += mid_sample
return down_block_res_samples, mid_block_res_sample
def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Union[str, os.PathLike] ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Callable = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[str] = None ,):
'''simple docstring'''
_lowerCamelCase : List[Any] = 0
_lowerCamelCase : str = save_directory
for controlnet in self.nets:
controlnet.save_pretrained(
__lowerCAmelCase ,is_main_process=__lowerCAmelCase ,save_function=__lowerCAmelCase ,safe_serialization=__lowerCAmelCase ,variant=__lowerCAmelCase ,)
idx += 1
_lowerCamelCase : int = model_path_to_save + F"""_{idx}"""
@classmethod
def _lowercase ( cls: Any ,__lowerCAmelCase: Optional[Union[str, os.PathLike]] ,**__lowerCAmelCase: int ):
'''simple docstring'''
_lowerCamelCase : int = 0
_lowerCamelCase : str = []
# load controlnet and append to list until no controlnet directory exists anymore
# first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained`
# second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ...
_lowerCamelCase : Dict = pretrained_model_path
while os.path.isdir(__lowerCAmelCase ):
_lowerCamelCase : List[Any] = ControlNetModel.from_pretrained(__lowerCAmelCase ,**__lowerCAmelCase )
controlnets.append(__lowerCAmelCase )
idx += 1
_lowerCamelCase : Tuple = pretrained_model_path + F"""_{idx}"""
logger.info(F"""{len(__lowerCAmelCase )} controlnets loaded from {pretrained_model_path}.""" )
if len(__lowerCAmelCase ) == 0:
raise ValueError(
F"""No ControlNets found under {os.path.dirname(__lowerCAmelCase )}. Expected at least {pretrained_model_path + '_0'}.""" )
return cls(__lowerCAmelCase ) | 340 | 1 |
"""simple docstring"""
from collections import defaultdict
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : Optional[int] = 1
_lowerCamelCase : str = True
for v in tree[start]:
if v not in visited:
ret += dfs(_lowerCamelCase )
if ret % 2 == 0:
cuts.append(_lowerCamelCase )
return ret
def lowerCamelCase_( ) -> int:
'''simple docstring'''
dfs(1 )
if __name__ == "__main__":
_lowerCAmelCase , _lowerCAmelCase : Optional[Any] = 10, 9
_lowerCAmelCase : str = defaultdict(list)
_lowerCAmelCase : dict[int, bool] = {}
_lowerCAmelCase : list[int] = []
_lowerCAmelCase : Any = 0
_lowerCAmelCase : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)]
for u, v in edges:
tree[u].append(v)
tree[v].append(u)
even_tree()
print(len(cuts) - 1) | 340 |
"""simple docstring"""
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SegformerConfig,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCAmelCase : int = logging.get_logger(__name__)
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[str]:
'''simple docstring'''
_lowerCamelCase : Tuple = OrderedDict()
for key, value in state_dict.items():
if encoder_only and not key.startswith("head" ):
_lowerCamelCase : Tuple = "segformer.encoder." + key
if key.startswith("backbone" ):
_lowerCamelCase : Any = key.replace("backbone" , "segformer.encoder" )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
_lowerCamelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )]
_lowerCamelCase : int = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(_lowerCamelCase )-1}""" )
if "norm" in key:
_lowerCamelCase : Optional[Any] = key.replace("norm" , "layer_norm" )
if "segformer.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
_lowerCamelCase : Dict = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )]
_lowerCamelCase : Tuple = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(_lowerCamelCase )-1}""" )
if "layer_norm1" in key:
_lowerCamelCase : Union[str, Any] = key.replace("layer_norm1" , "layer_norm_1" )
if "layer_norm2" in key:
_lowerCamelCase : int = key.replace("layer_norm2" , "layer_norm_2" )
if "block" in key:
# replace for example block1 by block.0
_lowerCamelCase : Union[str, Any] = key[key.find("block" ) + len("block" )]
_lowerCamelCase : Optional[Any] = key.replace(F"""block{idx}""" , F"""block.{int(_lowerCamelCase )-1}""" )
if "attn.q" in key:
_lowerCamelCase : Optional[int] = key.replace("attn.q" , "attention.self.query" )
if "attn.proj" in key:
_lowerCamelCase : List[str] = key.replace("attn.proj" , "attention.output.dense" )
if "attn" in key:
_lowerCamelCase : Tuple = key.replace("attn" , "attention.self" )
if "fc1" in key:
_lowerCamelCase : Optional[Any] = key.replace("fc1" , "dense1" )
if "fc2" in key:
_lowerCamelCase : Dict = key.replace("fc2" , "dense2" )
if "linear_pred" in key:
_lowerCamelCase : int = key.replace("linear_pred" , "classifier" )
if "linear_fuse" in key:
_lowerCamelCase : str = key.replace("linear_fuse.conv" , "linear_fuse" )
_lowerCamelCase : Optional[Any] = key.replace("linear_fuse.bn" , "batch_norm" )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
_lowerCamelCase : Union[str, Any] = key[key.find("linear_c" ) + len("linear_c" )]
_lowerCamelCase : Optional[int] = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(_lowerCamelCase )-1}""" )
if key.startswith("head" ):
_lowerCamelCase : List[str] = key.replace("head" , "classifier" )
_lowerCamelCase : Union[str, Any] = value
return new_state_dict
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
_lowerCamelCase : Optional[Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" )
_lowerCamelCase : Optional[Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" )
# next, add keys and values (in that order) to the state dict
_lowerCamelCase : int = kv_weight[
: config.hidden_sizes[i], :
]
_lowerCamelCase : int = kv_bias[: config.hidden_sizes[i]]
_lowerCamelCase : Optional[int] = kv_weight[
config.hidden_sizes[i] :, :
]
_lowerCamelCase : Optional[Any] = kv_bias[
config.hidden_sizes[i] :
]
def lowerCamelCase_( ) -> Dict:
'''simple docstring'''
_lowerCamelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg"
_lowerCamelCase : Union[str, Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw )
return image
@torch.no_grad()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict:
'''simple docstring'''
_lowerCamelCase : Any = SegformerConfig()
_lowerCamelCase : int = False
# set attributes based on model_name
_lowerCamelCase : Any = "huggingface/label-files"
if "segformer" in model_name:
_lowerCamelCase : str = model_name[len("segformer." ) : len("segformer." ) + 2]
if "ade" in model_name:
_lowerCamelCase : str = 150
_lowerCamelCase : Dict = "ade20k-id2label.json"
_lowerCamelCase : Dict = (1, 150, 128, 128)
elif "city" in model_name:
_lowerCamelCase : List[str] = 19
_lowerCamelCase : Tuple = "cityscapes-id2label.json"
_lowerCamelCase : Tuple = (1, 19, 128, 128)
else:
raise ValueError(F"""Model {model_name} not supported""" )
elif "mit" in model_name:
_lowerCamelCase : List[str] = True
_lowerCamelCase : Tuple = model_name[4:6]
_lowerCamelCase : Tuple = 1000
_lowerCamelCase : List[Any] = "imagenet-1k-id2label.json"
_lowerCamelCase : List[Any] = (1, 1000)
else:
raise ValueError(F"""Model {model_name} not supported""" )
# set config attributes
_lowerCamelCase : Optional[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) )
_lowerCamelCase : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()}
_lowerCamelCase : Optional[Any] = idalabel
_lowerCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()}
if size == "b0":
pass
elif size == "b1":
_lowerCamelCase : int = [64, 128, 320, 512]
_lowerCamelCase : int = 256
elif size == "b2":
_lowerCamelCase : Tuple = [64, 128, 320, 512]
_lowerCamelCase : List[Any] = 768
_lowerCamelCase : Any = [3, 4, 6, 3]
elif size == "b3":
_lowerCamelCase : Tuple = [64, 128, 320, 512]
_lowerCamelCase : Union[str, Any] = 768
_lowerCamelCase : Optional[Any] = [3, 4, 18, 3]
elif size == "b4":
_lowerCamelCase : str = [64, 128, 320, 512]
_lowerCamelCase : Optional[Any] = 768
_lowerCamelCase : Dict = [3, 8, 27, 3]
elif size == "b5":
_lowerCamelCase : int = [64, 128, 320, 512]
_lowerCamelCase : Tuple = 768
_lowerCamelCase : Tuple = [3, 6, 40, 3]
else:
raise ValueError(F"""Size {size} not supported""" )
# load image processor (only resize + normalize)
_lowerCamelCase : Dict = SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=_lowerCamelCase , align=_lowerCamelCase , do_random_crop=_lowerCamelCase )
# prepare image
_lowerCamelCase : List[str] = prepare_img()
_lowerCamelCase : Dict = image_processor(images=_lowerCamelCase , return_tensors="pt" ).pixel_values
logger.info(F"""Converting model {model_name}...""" )
# load original state dict
if encoder_only:
_lowerCamelCase : Tuple = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) )
else:
_lowerCamelCase : int = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) )["state_dict"]
# rename keys
_lowerCamelCase : str = rename_keys(_lowerCamelCase , encoder_only=_lowerCamelCase )
if not encoder_only:
del state_dict["decode_head.conv_seg.weight"]
del state_dict["decode_head.conv_seg.bias"]
# key and value matrices need special treatment
read_in_k_v(_lowerCamelCase , _lowerCamelCase )
# create HuggingFace model and load state dict
if encoder_only:
_lowerCamelCase : Tuple = False
_lowerCamelCase : Optional[int] = SegformerForImageClassification(_lowerCamelCase )
else:
_lowerCamelCase : List[str] = SegformerForSemanticSegmentation(_lowerCamelCase )
model.load_state_dict(_lowerCamelCase )
model.eval()
# forward pass
_lowerCamelCase : Any = model(_lowerCamelCase )
_lowerCamelCase : Dict = outputs.logits
# set expected_slice based on model name
# ADE20k checkpoints
if model_name == "segformer.b0.512x512.ade.160k":
_lowerCamelCase : str = torch.tensor(
[
[[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]],
[[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]],
[[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]],
] )
elif model_name == "segformer.b1.512x512.ade.160k":
_lowerCamelCase : Any = torch.tensor(
[
[[-7.5_8_2_0, -8.7_2_3_1, -8.3_2_1_5], [-8.0_6_0_0, -1_0.3_5_2_9, -1_0.0_3_0_4], [-7.5_2_0_8, -9.4_1_0_3, -9.6_2_3_9]],
[[-1_2.6_9_1_8, -1_3.8_9_9_4, -1_3.7_1_3_7], [-1_3.3_1_9_6, -1_5.7_5_2_3, -1_5.4_7_8_9], [-1_2.9_3_4_3, -1_4.8_7_5_7, -1_4.9_6_8_9]],
[[-1_1.1_9_1_1, -1_1.9_4_2_1, -1_1.3_2_4_3], [-1_1.3_3_4_2, -1_3.6_8_3_9, -1_3.3_5_8_1], [-1_0.3_9_0_9, -1_2.1_8_3_2, -1_2.4_8_5_8]],
] )
elif model_name == "segformer.b2.512x512.ade.160k":
_lowerCamelCase : int = torch.tensor(
[
[[-1_1.8_1_7_3, -1_4.3_8_5_0, -1_6.3_1_2_8], [-1_4.5_6_4_8, -1_6.5_8_0_4, -1_8.6_5_6_8], [-1_4.7_2_2_3, -1_5.7_3_8_7, -1_8.4_2_1_8]],
[[-1_5.7_2_9_0, -1_7.9_1_7_1, -1_9.4_4_2_3], [-1_8.3_1_0_5, -1_9.9_4_4_8, -2_1.4_6_6_1], [-1_7.9_2_9_6, -1_8.6_4_9_7, -2_0.7_9_1_0]],
[[-1_5.0_7_8_3, -1_7.0_3_3_6, -1_8.2_7_8_9], [-1_6.8_7_7_1, -1_8.6_8_7_0, -2_0.1_6_1_2], [-1_6.2_4_5_4, -1_7.1_4_2_6, -1_9.5_0_5_5]],
] )
elif model_name == "segformer.b3.512x512.ade.160k":
_lowerCamelCase : Optional[Any] = torch.tensor(
[
[[-9.0_8_7_8, -1_0.2_0_8_1, -1_0.1_8_9_1], [-9.3_1_4_4, -1_0.7_9_4_1, -1_0.9_8_4_3], [-9.2_2_9_4, -1_0.3_8_5_5, -1_0.5_7_0_4]],
[[-1_2.2_3_1_6, -1_3.9_0_6_8, -1_3.6_1_0_2], [-1_2.9_1_6_1, -1_4.3_7_0_2, -1_4.3_2_3_5], [-1_2.5_2_3_3, -1_3.7_1_7_4, -1_3.7_9_3_2]],
[[-1_4.6_2_7_5, -1_5.2_4_9_0, -1_4.9_7_2_7], [-1_4.3_4_0_0, -1_5.9_6_8_7, -1_6.2_8_2_7], [-1_4.1_4_8_4, -1_5.4_0_3_3, -1_5.8_9_3_7]],
] )
elif model_name == "segformer.b4.512x512.ade.160k":
_lowerCamelCase : List[str] = torch.tensor(
[
[[-1_2.3_1_4_4, -1_3.2_4_4_7, -1_4.0_8_0_2], [-1_3.3_6_1_4, -1_4.5_8_1_6, -1_5.6_1_1_7], [-1_3.3_3_4_0, -1_4.4_4_3_3, -1_6.2_2_1_9]],
[[-1_9.2_7_8_1, -2_0.4_1_2_8, -2_0.7_5_0_6], [-2_0.6_1_5_3, -2_1.6_5_6_6, -2_2.0_9_9_8], [-1_9.9_8_0_0, -2_1.0_4_3_0, -2_2.1_4_9_4]],
[[-1_8.8_7_3_9, -1_9.7_8_0_4, -2_1.1_8_3_4], [-2_0.1_2_3_3, -2_1.6_7_6_5, -2_3.2_9_4_4], [-2_0.0_3_1_5, -2_1.2_6_4_1, -2_3.6_9_4_4]],
] )
elif model_name == "segformer.b5.640x640.ade.160k":
_lowerCamelCase : Any = torch.tensor(
[
[[-9.5_5_2_4, -1_2.0_8_3_5, -1_1.7_3_4_8], [-1_0.5_2_2_9, -1_3.6_4_4_6, -1_4.5_6_6_2], [-9.5_8_4_2, -1_2.8_8_5_1, -1_3.9_4_1_4]],
[[-1_5.3_4_3_2, -1_7.5_3_2_3, -1_7.0_8_1_8], [-1_6.3_3_3_0, -1_8.9_2_5_5, -1_9.2_1_0_1], [-1_5.1_3_4_0, -1_7.7_8_4_8, -1_8.3_9_7_1]],
[[-1_2.6_0_7_2, -1_4.9_4_8_6, -1_4.6_6_3_1], [-1_3.7_6_2_9, -1_7.0_9_0_7, -1_7.7_7_4_5], [-1_2.7_8_9_9, -1_6.1_6_9_5, -1_7.1_6_7_1]],
] )
# Cityscapes checkpoints
elif model_name == "segformer.b0.1024x1024.city.160k":
_lowerCamelCase : Dict = torch.tensor(
[
[[-1_1.9_2_9_5, -1_3.4_0_5_7, -1_4.8_1_0_6], [-1_3.3_4_3_1, -1_4.8_1_7_9, -1_5.3_7_8_1], [-1_4.2_8_3_6, -1_5.5_9_4_2, -1_6.1_5_8_8]],
[[-1_1.4_9_0_6, -1_2.8_0_6_7, -1_3.6_5_6_4], [-1_3.1_1_8_9, -1_4.0_5_0_0, -1_4.1_5_4_3], [-1_3.8_7_4_8, -1_4.5_1_3_6, -1_4.8_7_8_9]],
[[0.5_3_7_4, 0.1_0_6_7, -0.4_7_4_2], [0.1_1_4_1, -0.2_2_5_5, -0.7_0_9_9], [-0.3_0_0_0, -0.5_9_2_4, -1.3_1_0_5]],
] )
elif model_name == "segformer.b0.512x1024.city.160k":
_lowerCamelCase : Optional[int] = torch.tensor(
[
[[-7.8_2_1_7, -9.8_7_6_7, -1_0.1_7_1_7], [-9.4_4_3_8, -1_0.9_0_5_8, -1_1.4_0_4_7], [-9.7_9_3_9, -1_2.3_4_9_5, -1_2.1_0_7_9]],
[[-7.1_5_1_4, -9.5_3_3_6, -1_0.0_8_6_0], [-9.7_7_7_6, -1_1.6_8_2_2, -1_1.8_4_3_9], [-1_0.1_4_1_1, -1_2.7_6_5_5, -1_2.8_9_7_2]],
[[0.3_0_2_1, 0.0_8_0_5, -0.2_3_1_0], [-0.0_3_2_8, -0.1_6_0_5, -0.2_7_1_4], [-0.1_4_0_8, -0.5_4_7_7, -0.6_9_7_6]],
] )
elif model_name == "segformer.b0.640x1280.city.160k":
_lowerCamelCase : Tuple = torch.tensor(
[
[
[-1.13_72e01, -1.27_87e01, -1.34_77e01],
[-1.25_36e01, -1.41_94e01, -1.44_09e01],
[-1.32_17e01, -1.48_88e01, -1.53_27e01],
],
[
[-1.47_91e01, -1.71_22e01, -1.82_77e01],
[-1.71_63e01, -1.91_92e01, -1.95_33e01],
[-1.78_97e01, -1.99_91e01, -2.03_15e01],
],
[
[7.67_23e-01, 4.19_21e-01, -7.78_78e-02],
[4.77_72e-01, 9.55_57e-03, -2.80_82e-01],
[3.60_32e-01, -2.48_26e-01, -5.11_68e-01],
],
] )
elif model_name == "segformer.b0.768x768.city.160k":
_lowerCamelCase : Union[str, Any] = torch.tensor(
[
[[-9.4_9_5_9, -1_1.3_0_8_7, -1_1.7_4_7_9], [-1_1.0_0_2_5, -1_2.6_5_4_0, -1_2.3_3_1_9], [-1_1.4_0_6_4, -1_3.0_4_8_7, -1_2.9_9_0_5]],
[[-9.8_9_0_5, -1_1.3_0_8_4, -1_2.0_8_5_4], [-1_1.1_7_2_6, -1_2.7_6_9_8, -1_2.9_5_8_3], [-1_1.5_9_8_5, -1_3.3_2_7_8, -1_4.1_7_7_4]],
[[0.2_2_1_3, 0.0_1_9_2, -0.2_4_6_6], [-0.1_7_3_1, -0.4_2_1_3, -0.4_8_7_4], [-0.3_1_2_6, -0.6_5_4_1, -1.1_3_8_9]],
] )
elif model_name == "segformer.b1.1024x1024.city.160k":
_lowerCamelCase : List[Any] = torch.tensor(
[
[[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]],
[[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]],
[[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]],
] )
elif model_name == "segformer.b2.1024x1024.city.160k":
_lowerCamelCase : Tuple = torch.tensor(
[
[[-1_6.0_9_7_6, -1_6.4_8_5_6, -1_7.3_9_6_2], [-1_6.6_2_3_4, -1_9.0_3_4_2, -1_9.7_6_8_5], [-1_6.0_9_0_0, -1_8.0_6_6_1, -1_9.1_1_8_0]],
[[-1_8.4_7_5_0, -1_8.8_4_8_8, -1_9.5_0_7_4], [-1_9.4_0_3_0, -2_2.1_5_7_0, -2_2.5_9_7_7], [-1_9.1_1_9_1, -2_0.8_4_8_6, -2_2.3_7_8_3]],
[[-4.5_1_7_8, -5.5_0_3_7, -6.5_1_0_9], [-5.0_8_8_4, -7.2_1_7_4, -8.0_3_3_4], [-4.4_1_5_6, -5.8_1_1_7, -7.2_9_7_0]],
] )
elif model_name == "segformer.b3.1024x1024.city.160k":
_lowerCamelCase : Any = torch.tensor(
[
[[-1_4.2_0_8_1, -1_4.4_7_3_2, -1_4.1_9_7_7], [-1_4.5_8_6_7, -1_6.4_4_2_3, -1_6.6_3_5_6], [-1_3.4_4_4_1, -1_4.9_6_8_5, -1_6.8_6_9_6]],
[[-1_4.4_5_7_6, -1_4.7_0_7_3, -1_5.0_4_5_1], [-1_5.0_8_1_6, -1_7.6_2_3_7, -1_7.9_8_7_3], [-1_4.4_2_1_3, -1_6.0_1_9_9, -1_8.5_9_9_2]],
[[-4.7_3_4_9, -4.9_5_8_8, -5.0_9_6_6], [-4.3_2_1_0, -6.9_3_2_5, -7.2_5_9_1], [-3.4_3_1_2, -4.7_4_8_4, -7.1_9_1_7]],
] )
elif model_name == "segformer.b4.1024x1024.city.160k":
_lowerCamelCase : List[str] = torch.tensor(
[
[[-1_1.7_7_3_7, -1_1.9_5_2_6, -1_1.3_2_7_3], [-1_3.6_6_9_2, -1_4.4_5_7_4, -1_3.8_8_7_8], [-1_3.8_9_3_7, -1_4.6_9_2_4, -1_5.9_3_4_5]],
[[-1_4.6_7_0_6, -1_4.5_3_3_0, -1_4.1_3_0_6], [-1_6.1_5_0_2, -1_6.8_1_8_0, -1_6.4_2_6_9], [-1_6.8_3_3_8, -1_7.8_9_3_9, -2_0.1_7_4_6]],
[[1.0_4_9_1, 0.8_2_8_9, 1.0_3_1_0], [1.1_0_4_4, 0.5_2_1_9, 0.8_0_5_5], [1.0_8_9_9, 0.6_9_2_6, 0.5_5_9_0]],
] )
elif model_name == "segformer.b5.1024x1024.city.160k":
_lowerCamelCase : str = torch.tensor(
[
[[-1_2.5_6_4_1, -1_3.4_7_7_7, -1_3.0_6_8_4], [-1_3.9_5_8_7, -1_5.8_9_8_3, -1_6.6_5_5_7], [-1_3.3_1_0_9, -1_5.7_3_5_0, -1_6.3_1_4_1]],
[[-1_4.7_0_7_4, -1_5.4_3_5_2, -1_4.5_9_4_4], [-1_6.6_3_5_3, -1_8.1_6_6_3, -1_8.6_1_2_0], [-1_5.1_7_0_2, -1_8.0_3_2_9, -1_8.1_5_4_7]],
[[-1.7_9_9_0, -2.0_9_5_1, -1.7_7_8_4], [-2.6_3_9_7, -3.8_2_4_5, -3.9_6_8_6], [-1.5_2_6_4, -2.8_1_2_6, -2.9_3_1_6]],
] )
else:
_lowerCamelCase : Dict = logits.argmax(-1 ).item()
print("Predicted class:" , model.config.idalabel[predicted_class_idx] )
# verify logits
if not encoder_only:
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1e-2 )
# finally, save model and image processor
logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" )
Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase )
model.save_pretrained(_lowerCamelCase )
image_processor.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase : str = argparse.ArgumentParser()
parser.add_argument(
'''--model_name''',
default='''segformer.b0.512x512.ade.160k''',
type=str,
help='''Name of the model you\'d like to convert.''',
)
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
_lowerCAmelCase : str = parser.parse_args()
convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path) | 340 | 1 |
"""simple docstring"""
def lowerCamelCase_( ) -> int:
'''simple docstring'''
return 1
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
return 0 if x < 0 else two_pence(x - 2 ) + one_pence()
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
return 0 if x < 0 else five_pence(x - 5 ) + two_pence(_lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(_lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(_lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(_lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(_lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
return 0 if x < 0 else two_pound(x - 200 ) + one_pound(_lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase = 200 ) -> int:
'''simple docstring'''
return two_pound(_lowerCamelCase )
if __name__ == "__main__":
print(solution(int(input().strip()))) | 340 |
"""simple docstring"""
_lowerCAmelCase : dict[tuple[int, int, int], int] = {}
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
_lowerCamelCase : Optional[int] = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
_lowerCamelCase : int = _calculate(days - 1 , _lowerCamelCase , late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
_lowerCamelCase : Tuple = _calculate(days - 1 , absent + 1 , 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
_lowerCamelCase : str = _calculate(days - 1 , _lowerCamelCase , 0 )
_lowerCamelCase : List[Any] = state_late + state_absent + state_ontime
_lowerCamelCase : int = prizestrings
return prizestrings
def lowerCamelCase_( _lowerCamelCase = 30 ) -> int:
'''simple docstring'''
return _calculate(_lowerCamelCase , absent=0 , late=0 )
if __name__ == "__main__":
print(solution()) | 340 | 1 |
"""simple docstring"""
import multiprocessing
import os
from typing import BinaryIO, Optional, Union
import fsspec
from .. import Dataset, Features, NamedSplit, config
from ..formatting import query_table
from ..packaged_modules.json.json import Json
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class A_ ( _a ):
def __init__( self: Tuple ,__lowerCAmelCase: NestedDataStructureLike[PathLike] ,__lowerCAmelCase: Optional[NamedSplit] = None ,__lowerCAmelCase: Optional[Features] = None ,__lowerCAmelCase: str = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[str] = None ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: Any ,):
'''simple docstring'''
super().__init__(
__lowerCAmelCase ,split=__lowerCAmelCase ,features=__lowerCAmelCase ,cache_dir=__lowerCAmelCase ,keep_in_memory=__lowerCAmelCase ,streaming=__lowerCAmelCase ,num_proc=__lowerCAmelCase ,**__lowerCAmelCase ,)
_lowerCamelCase : Optional[int] = field
_lowerCamelCase : Dict = path_or_paths if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) else {self.split: path_or_paths}
_lowerCamelCase : Dict = Json(
cache_dir=__lowerCAmelCase ,data_files=__lowerCAmelCase ,features=__lowerCAmelCase ,field=__lowerCAmelCase ,**__lowerCAmelCase ,)
def _lowercase ( self: List[str] ):
'''simple docstring'''
if self.streaming:
_lowerCamelCase : int = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
_lowerCamelCase : Any = None
_lowerCamelCase : Union[str, Any] = None
_lowerCamelCase : Tuple = None
_lowerCamelCase : int = None
self.builder.download_and_prepare(
download_config=__lowerCAmelCase ,download_mode=__lowerCAmelCase ,verification_mode=__lowerCAmelCase ,base_path=__lowerCAmelCase ,num_proc=self.num_proc ,)
_lowerCamelCase : Optional[Any] = self.builder.as_dataset(
split=self.split ,verification_mode=__lowerCAmelCase ,in_memory=self.keep_in_memory )
return dataset
class A_ :
def __init__( self: str ,__lowerCAmelCase: Dataset ,__lowerCAmelCase: Union[PathLike, BinaryIO] ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: str ,):
'''simple docstring'''
if num_proc is not None and num_proc <= 0:
raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" )
_lowerCamelCase : List[Any] = dataset
_lowerCamelCase : Optional[Any] = path_or_buf
_lowerCamelCase : str = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
_lowerCamelCase : Dict = num_proc
_lowerCamelCase : List[Any] = "utf-8"
_lowerCamelCase : Any = to_json_kwargs
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : Any = self.to_json_kwargs.pop("path_or_buf" ,__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = self.to_json_kwargs.pop("orient" ,"records" )
_lowerCamelCase : Optional[Any] = self.to_json_kwargs.pop("lines" ,True if orient == "records" else False )
_lowerCamelCase : Union[str, Any] = self.to_json_kwargs.pop("index" ,False if orient in ["split", "table"] else True )
_lowerCamelCase : int = self.to_json_kwargs.pop("compression" ,__lowerCAmelCase )
if compression not in [None, "infer", "gzip", "bz2", "xz"]:
raise NotImplementedError(F"""`datasets` currently does not support {compression} compression""" )
if isinstance(self.path_or_buf ,(str, bytes, os.PathLike) ):
with fsspec.open(self.path_or_buf ,"wb" ,compression=__lowerCAmelCase ) as buffer:
_lowerCamelCase : Union[str, Any] = self._write(file_obj=__lowerCAmelCase ,orient=__lowerCAmelCase ,lines=__lowerCAmelCase ,index=__lowerCAmelCase ,**self.to_json_kwargs )
else:
if compression:
raise NotImplementedError(
F"""The compression parameter is not supported when writing to a buffer, but compression={compression}"""
" was passed. Please provide a local path instead." )
_lowerCamelCase : List[str] = self._write(
file_obj=self.path_or_buf ,orient=__lowerCAmelCase ,lines=__lowerCAmelCase ,index=__lowerCAmelCase ,**self.to_json_kwargs )
return written
def _lowercase ( self: int ,__lowerCAmelCase: Any ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = args
_lowerCamelCase : Optional[Any] = query_table(
table=self.dataset.data ,key=slice(__lowerCAmelCase ,offset + self.batch_size ) ,indices=self.dataset._indices ,)
_lowerCamelCase : str = batch.to_pandas().to_json(
path_or_buf=__lowerCAmelCase ,orient=__lowerCAmelCase ,lines=__lowerCAmelCase ,index=__lowerCAmelCase ,**__lowerCAmelCase )
if not json_str.endswith("\n" ):
json_str += "\n"
return json_str.encode(self.encoding )
def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: BinaryIO ,__lowerCAmelCase: str ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Dict ,):
'''simple docstring'''
_lowerCamelCase : Dict = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 ,len(self.dataset ) ,self.batch_size ) ,unit="ba" ,disable=not logging.is_progress_bar_enabled() ,desc="Creating json from Arrow format" ,):
_lowerCamelCase : int = self._batch_json((offset, orient, lines, index, to_json_kwargs) )
written += file_obj.write(__lowerCAmelCase )
else:
_lowerCamelCase, _lowerCamelCase : List[str] = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for json_str in logging.tqdm(
pool.imap(
self._batch_json ,[(offset, orient, lines, index, to_json_kwargs) for offset in range(0 ,__lowerCAmelCase ,__lowerCAmelCase )] ,) ,total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size ,unit="ba" ,disable=not logging.is_progress_bar_enabled() ,desc="Creating json from Arrow format" ,):
written += file_obj.write(__lowerCAmelCase )
return written | 340 |
"""simple docstring"""
from __future__ import annotations
def lowerCamelCase_( _lowerCamelCase ) -> bool:
'''simple docstring'''
_lowerCamelCase : int = str(_lowerCamelCase )
return len(_lowerCamelCase ) == 9 and set(_lowerCamelCase ) == set("123456789" )
def lowerCamelCase_( ) -> int | None:
'''simple docstring'''
for base_num in range(9999 , 4999 , -1 ):
_lowerCamelCase : Union[str, Any] = 100002 * base_num
if is_9_pandigital(_lowerCamelCase ):
return candidate
for base_num in range(333 , 99 , -1 ):
_lowerCamelCase : Tuple = 1002003 * base_num
if is_9_pandigital(_lowerCamelCase ):
return candidate
return None
if __name__ == "__main__":
print(f'''{solution() = }''') | 340 | 1 |
"""simple docstring"""
from argparse import ArgumentParser
from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline
from ..utils import logging
from . import BaseTransformersCLICommand
_lowerCAmelCase : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]:
'''simple docstring'''
if not path:
return "pipe"
for ext in PipelineDataFormat.SUPPORTED_FORMATS:
if path.endswith(_lowerCamelCase ):
return ext
raise Exception(
F"""Unable to determine file format from file extension {path}. """
F"""Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}""" )
def lowerCamelCase_( _lowerCamelCase ) -> str:
'''simple docstring'''
_lowerCamelCase : str = pipeline(
task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , )
_lowerCamelCase : List[Any] = try_infer_format_from_ext(args.input ) if args.format == "infer" else args.format
_lowerCamelCase : Optional[Any] = PipelineDataFormat.from_str(
format=_lowerCamelCase , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , )
return RunCommand(_lowerCamelCase , _lowerCamelCase )
class A_ ( _a ):
def __init__( self: Any ,__lowerCAmelCase: Pipeline ,__lowerCAmelCase: PipelineDataFormat ):
'''simple docstring'''
_lowerCamelCase : List[str] = nlp
_lowerCamelCase : str = reader
@staticmethod
def _lowercase ( __lowerCAmelCase: ArgumentParser ):
'''simple docstring'''
_lowerCamelCase : List[str] = parser.add_parser("run" ,help="Run a pipeline through the CLI" )
run_parser.add_argument("--task" ,choices=get_supported_tasks() ,help="Task to run" )
run_parser.add_argument("--input" ,type=__lowerCAmelCase ,help="Path to the file to use for inference" )
run_parser.add_argument("--output" ,type=__lowerCAmelCase ,help="Path to the file that will be used post to write results." )
run_parser.add_argument("--model" ,type=__lowerCAmelCase ,help="Name or path to the model to instantiate." )
run_parser.add_argument("--config" ,type=__lowerCAmelCase ,help="Name or path to the model's config to instantiate." )
run_parser.add_argument(
"--tokenizer" ,type=__lowerCAmelCase ,help="Name of the tokenizer to use. (default: same as the model name)" )
run_parser.add_argument(
"--column" ,type=__lowerCAmelCase ,help="Name of the column to use as input. (For multi columns input as QA use column1,columns2)" ,)
run_parser.add_argument(
"--format" ,type=__lowerCAmelCase ,default="infer" ,choices=PipelineDataFormat.SUPPORTED_FORMATS ,help="Input format to read from" ,)
run_parser.add_argument(
"--device" ,type=__lowerCAmelCase ,default=-1 ,help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)" ,)
run_parser.add_argument("--overwrite" ,action="store_true" ,help="Allow overwriting the output file." )
run_parser.set_defaults(func=__lowerCAmelCase )
def _lowercase ( self: int ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : Dict = self._nlp, []
for entry in self._reader:
_lowerCamelCase : List[str] = nlp(**__lowerCAmelCase ) if self._reader.is_multi_columns else nlp(__lowerCAmelCase )
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
outputs.append(__lowerCAmelCase )
else:
outputs += output
# Saving data
if self._nlp.binary_output:
_lowerCamelCase : str = self._reader.save_binary(__lowerCAmelCase )
logger.warning(F"""Current pipeline requires output to be in binary format, saving at {binary_path}""" )
else:
self._reader.save(__lowerCAmelCase ) | 340 |
"""simple docstring"""
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class A_ ( _a ):
lowerCAmelCase__ = 'char'
lowerCAmelCase__ = 'bpe'
lowerCAmelCase__ = 'wp'
_lowerCAmelCase : List[str] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class A_ ( _a ):
lowerCAmelCase__ = ['image_processor', 'char_tokenizer']
lowerCAmelCase__ = 'ViTImageProcessor'
lowerCAmelCase__ = 'MgpstrTokenizer'
def __init__( self: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: Optional[int]=None ,**__lowerCAmelCase: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : Any = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." ,__lowerCAmelCase ,)
_lowerCamelCase : List[Any] = kwargs.pop("feature_extractor" )
_lowerCamelCase : str = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
_lowerCamelCase : List[str] = tokenizer
_lowerCamelCase : str = AutoTokenizer.from_pretrained("gpt2" )
_lowerCamelCase : List[str] = AutoTokenizer.from_pretrained("bert-base-uncased" )
super().__init__(__lowerCAmelCase ,__lowerCAmelCase )
def __call__( self: Optional[int] ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: Optional[Any]=None ,**__lowerCAmelCase: Tuple ):
'''simple docstring'''
if images is None and text is None:
raise ValueError("You need to specify either an `images` or `text` input to process." )
if images is not None:
_lowerCamelCase : Optional[int] = self.image_processor(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
if text is not None:
_lowerCamelCase : int = self.char_tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
_lowerCamelCase : Tuple = encodings["input_ids"]
return inputs
def _lowercase ( self: int ,__lowerCAmelCase: Dict ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = sequences
_lowerCamelCase : Dict = char_preds.size(0 )
_lowerCamelCase, _lowerCamelCase : Optional[Any] = self._decode_helper(__lowerCAmelCase ,"char" )
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = self._decode_helper(__lowerCAmelCase ,"bpe" )
_lowerCamelCase, _lowerCamelCase : Tuple = self._decode_helper(__lowerCAmelCase ,"wp" )
_lowerCamelCase : List[str] = []
_lowerCamelCase : str = []
for i in range(__lowerCAmelCase ):
_lowerCamelCase : str = [char_scores[i], bpe_scores[i], wp_scores[i]]
_lowerCamelCase : List[Any] = [char_strs[i], bpe_strs[i], wp_strs[i]]
_lowerCamelCase : Optional[Any] = scores.index(max(__lowerCAmelCase ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
_lowerCamelCase : Tuple = {}
_lowerCamelCase : Tuple = final_strs
_lowerCamelCase : int = final_scores
_lowerCamelCase : str = char_strs
_lowerCamelCase : Dict = bpe_strs
_lowerCamelCase : int = wp_strs
return out
def _lowercase ( self: List[str] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: List[Any] ):
'''simple docstring'''
if format == DecodeType.CHARACTER:
_lowerCamelCase : int = self.char_decode
_lowerCamelCase : List[str] = 1
_lowerCamelCase : Optional[int] = "[s]"
elif format == DecodeType.BPE:
_lowerCamelCase : Dict = self.bpe_decode
_lowerCamelCase : str = 2
_lowerCamelCase : Union[str, Any] = "#"
elif format == DecodeType.WORDPIECE:
_lowerCamelCase : int = self.wp_decode
_lowerCamelCase : List[str] = 102
_lowerCamelCase : List[Any] = "[SEP]"
else:
raise ValueError(F"""Format {format} is not supported.""" )
_lowerCamelCase, _lowerCamelCase : Union[str, Any] = [], []
_lowerCamelCase : Any = pred_logits.size(0 )
_lowerCamelCase : int = pred_logits.size(1 )
_lowerCamelCase, _lowerCamelCase : List[Any] = pred_logits.topk(1 ,dim=-1 ,largest=__lowerCAmelCase ,sorted=__lowerCAmelCase )
_lowerCamelCase : Optional[int] = preds_index.view(-1 ,__lowerCAmelCase )[:, 1:]
_lowerCamelCase : List[str] = decoder(__lowerCAmelCase )
_lowerCamelCase, _lowerCamelCase : str = torch.nn.functional.softmax(__lowerCAmelCase ,dim=2 ).max(dim=2 )
_lowerCamelCase : Any = preds_max_prob[:, 1:]
for index in range(__lowerCAmelCase ):
_lowerCamelCase : List[Any] = preds_str[index].find(__lowerCAmelCase )
_lowerCamelCase : Optional[int] = preds_str[index][:pred_eos]
_lowerCamelCase : Optional[Any] = preds_index[index].cpu().tolist()
_lowerCamelCase : List[str] = pred_index.index(__lowerCAmelCase ) if eos_token in pred_index else -1
_lowerCamelCase : str = preds_max_prob[index][: pred_eos_index + 1]
_lowerCamelCase : Union[str, Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(__lowerCAmelCase )
conf_scores.append(__lowerCAmelCase )
return dec_strs, conf_scores
def _lowercase ( self: Tuple ,__lowerCAmelCase: Tuple ):
'''simple docstring'''
_lowerCamelCase : str = [seq.replace(" " ,"" ) for seq in self.char_tokenizer.batch_decode(__lowerCAmelCase )]
return decode_strs
def _lowercase ( self: List[str] ,__lowerCAmelCase: List[str] ):
'''simple docstring'''
return self.bpe_tokenizer.batch_decode(__lowerCAmelCase )
def _lowercase ( self: Tuple ,__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = [seq.replace(" " ,"" ) for seq in self.wp_tokenizer.batch_decode(__lowerCAmelCase )]
return decode_strs | 340 | 1 |
"""simple docstring"""
_lowerCAmelCase : Optional[Any] = [
'''DownloadConfig''',
'''DownloadManager''',
'''DownloadMode''',
'''StreamingDownloadManager''',
]
from .download_config import DownloadConfig
from .download_manager import DownloadManager, DownloadMode
from .streaming_download_manager import StreamingDownloadManager | 340 |
"""simple docstring"""
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
_lowerCAmelCase : List[Any] = get_logger(__name__)
class A_ :
lowerCAmelCase__ = 'dummy_data'
lowerCAmelCase__ = 'datasets'
lowerCAmelCase__ = False
def __init__( self: List[str] ,__lowerCAmelCase: str ,__lowerCAmelCase: str ,__lowerCAmelCase: Union[Version, str] ,__lowerCAmelCase: Optional[str] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[List[Callable]] = None ,):
'''simple docstring'''
_lowerCamelCase : str = 0
_lowerCamelCase : List[str] = dataset_name
_lowerCamelCase : Optional[int] = cache_dir
_lowerCamelCase : Optional[int] = use_local_dummy_data
_lowerCamelCase : int = config
# download_callbacks take a single url as input
_lowerCamelCase : List[Callable] = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
_lowerCamelCase : int = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
_lowerCamelCase : Tuple = str(__lowerCAmelCase )
# to be downloaded
_lowerCamelCase : Optional[Any] = None
_lowerCamelCase : Dict = None
@property
def _lowercase ( self: str ):
'''simple docstring'''
if self._dummy_file is None:
_lowerCamelCase : List[str] = self.download_dummy_data()
return self._dummy_file
@property
def _lowercase ( self: str ):
'''simple docstring'''
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join("dummy" ,self.config.name ,self.version_name )
# structure is dummy / version_name
return os.path.join("dummy" ,self.version_name )
@property
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
return os.path.join(self.dummy_data_folder ,"dummy_data.zip" )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : Dict = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
_lowerCamelCase : Optional[int] = cached_path(
__lowerCAmelCase ,cache_dir=self.cache_dir ,extract_compressed_file=__lowerCAmelCase ,force_extract=__lowerCAmelCase )
return os.path.join(__lowerCAmelCase ,self.dummy_file_name )
@property
def _lowercase ( self: Tuple ):
'''simple docstring'''
return os.path.join(self.datasets_scripts_dir ,self.dataset_name ,self.dummy_zip_file )
@property
def _lowercase ( self: List[str] ):
'''simple docstring'''
if self._bucket_url is None:
_lowerCamelCase : List[str] = hf_github_url(self.dataset_name ,self.dummy_zip_file.replace(os.sep ,"/" ) )
return self._bucket_url
@property
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep ,"/" ).split("/" )[:-1] )
def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: str ,*__lowerCAmelCase: List[Any] ):
'''simple docstring'''
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
_lowerCamelCase : Tuple = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
_lowerCamelCase : Optional[Any] = self.dummy_file_name
# special case when data_url is a dict
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
return self.create_dummy_data_dict(__lowerCAmelCase ,__lowerCAmelCase )
elif isinstance(__lowerCAmelCase ,(list, tuple) ):
return self.create_dummy_data_list(__lowerCAmelCase ,__lowerCAmelCase )
else:
return self.create_dummy_data_single(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
return self.download_and_extract(__lowerCAmelCase )
def _lowercase ( self: List[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: int ):
'''simple docstring'''
return self.download_and_extract(__lowerCAmelCase )
def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
return path
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
return {}
def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: str ):
'''simple docstring'''
_lowerCamelCase : str = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
for single_url in single_urls:
download_callback(__lowerCAmelCase )
else:
_lowerCamelCase : Union[str, Any] = single_urls
download_callback(__lowerCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : Dict = [os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) ) for x in single_urls]
else:
_lowerCamelCase : Union[str, Any] = single_urls
_lowerCamelCase : List[str] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) )
_lowerCamelCase : List[Any] = value
# make sure that values are unique
if all(isinstance(__lowerCAmelCase ,__lowerCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
_lowerCamelCase : List[Any] = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Tuple ):
'''simple docstring'''
_lowerCamelCase : Dict = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
_lowerCamelCase : List[str] = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" ,__lowerCAmelCase ) ) for url in data_url )
_lowerCamelCase : Optional[Any] = all(
url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
_lowerCamelCase : Tuple = [data_url[0]] * len(__lowerCAmelCase )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(__lowerCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
_lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(single_url.split("/" )[-1] ) )
dummy_data_list.append(__lowerCAmelCase )
return dummy_data_list
def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: List[Any] ):
'''simple docstring'''
for download_callback in self.download_callbacks:
download_callback(__lowerCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
_lowerCamelCase : Optional[int] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(data_url.split("/" )[-1] ) )
if os.path.exists(__lowerCAmelCase ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
pass
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
pass
def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
def _iter_archive_members(__lowerCAmelCase: Any ):
# this preserves the order of the members inside the ZIP archive
_lowerCamelCase : Tuple = Path(self.dummy_file ).parent
_lowerCamelCase : str = path.relative_to(__lowerCAmelCase )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
_lowerCamelCase : Optional[int] = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = Path(__lowerCAmelCase )
_lowerCamelCase : int = _iter_archive_members(__lowerCAmelCase ) if self.use_local_dummy_data else path.rglob("*" )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith((".", "__") ):
yield file_path.relative_to(__lowerCAmelCase ).as_posix(), file_path.open("rb" )
def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ):
_lowerCamelCase : List[Any] = [paths]
for path in paths:
if os.path.isfile(__lowerCAmelCase ):
if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(__lowerCAmelCase ):
if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ):
continue
dirnames.sort()
for filename in sorted(__lowerCAmelCase ):
if filename.startswith((".", "__") ):
continue
yield os.path.join(__lowerCAmelCase ,__lowerCAmelCase ) | 340 | 1 |
"""simple docstring"""
import math
from numpy import inf
from scipy.integrate import quad
def lowerCamelCase_( _lowerCamelCase ) -> float:
'''simple docstring'''
if num <= 0:
raise ValueError("math domain error" )
return quad(_lowerCamelCase , 0 , _lowerCamelCase , args=(_lowerCamelCase) )[0]
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float:
'''simple docstring'''
return math.pow(_lowerCamelCase , z - 1 ) * math.exp(-x )
if __name__ == "__main__":
from doctest import testmod
testmod() | 340 |
"""simple docstring"""
from decimal import Decimal, getcontext
from math import ceil, factorial
def lowerCamelCase_( _lowerCamelCase ) -> str:
'''simple docstring'''
if not isinstance(_lowerCamelCase , _lowerCamelCase ):
raise TypeError("Undefined for non-integers" )
elif precision < 1:
raise ValueError("Undefined for non-natural numbers" )
_lowerCamelCase : int = precision
_lowerCamelCase : Dict = ceil(precision / 14 )
_lowerCamelCase : Optional[Any] = 426880 * Decimal(10005 ).sqrt()
_lowerCamelCase : int = 1
_lowerCamelCase : Optional[int] = 13591409
_lowerCamelCase : int = Decimal(_lowerCamelCase )
for k in range(1 , _lowerCamelCase ):
_lowerCamelCase : Union[str, Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowerCamelCase ) ** 3)
linear_term += 545140134
exponential_term *= -262537412640768000
partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term
return str(constant_term / partial_sum )[:-1]
if __name__ == "__main__":
_lowerCAmelCase : Union[str, Any] = 50
print(f'''The first {n} digits of pi is: {pi(n)}''') | 340 | 1 |
"""simple docstring"""
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str:
'''simple docstring'''
return "\n".join(
F"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) )
if __name__ == "__main__":
print(multiplication_table(number=5, number_of_terms=10)) | 340 |
"""simple docstring"""
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class A_ ( _a ):
lowerCAmelCase__ = 42
lowerCAmelCase__ = None
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=0.9_9_9 , _lowerCamelCase="cosine" , ) -> List[str]:
'''simple docstring'''
if alpha_transform_type == "cosine":
def alpha_bar_fn(_lowerCamelCase ):
return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(_lowerCamelCase ):
return math.exp(t * -1_2.0 )
else:
raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" )
_lowerCamelCase : str = []
for i in range(_lowerCamelCase ):
_lowerCamelCase : Any = i / num_diffusion_timesteps
_lowerCamelCase : Optional[Any] = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(_lowerCamelCase ) / alpha_bar_fn(_lowerCamelCase ) , _lowerCamelCase ) )
return torch.tensor(_lowerCamelCase , dtype=torch.floataa )
class A_ ( _a , _a ):
@register_to_config
def __init__( self: str ,__lowerCAmelCase: int = 1_000 ,__lowerCAmelCase: str = "fixed_small_log" ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[float] = 1.0 ,__lowerCAmelCase: str = "epsilon" ,__lowerCAmelCase: str = "squaredcos_cap_v2" ,):
'''simple docstring'''
if beta_schedule != "squaredcos_cap_v2":
raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" )
_lowerCamelCase : Union[str, Any] = betas_for_alpha_bar(__lowerCAmelCase )
_lowerCamelCase : Optional[int] = 1.0 - self.betas
_lowerCamelCase : Dict = torch.cumprod(self.alphas ,dim=0 )
_lowerCamelCase : int = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
_lowerCamelCase : Tuple = 1.0
# setable values
_lowerCamelCase : List[Any] = None
_lowerCamelCase : Union[str, Any] = torch.from_numpy(np.arange(0 ,__lowerCAmelCase )[::-1].copy() )
_lowerCamelCase : List[str] = variance_type
def _lowercase ( self: Any ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ):
'''simple docstring'''
return sample
def _lowercase ( self: Optional[int] ,__lowerCAmelCase: int ,__lowerCAmelCase: Union[str, torch.device] = None ):
'''simple docstring'''
_lowerCamelCase : str = num_inference_steps
_lowerCamelCase : str = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
_lowerCamelCase : Union[str, Any] = (np.arange(0 ,__lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa )
_lowerCamelCase : int = torch.from_numpy(__lowerCAmelCase ).to(__lowerCAmelCase )
def _lowercase ( self: List[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: List[str]=None ,__lowerCAmelCase: str=None ):
'''simple docstring'''
if prev_timestep is None:
_lowerCamelCase : List[str] = t - 1
_lowerCamelCase : Optional[int] = self.alphas_cumprod[t]
_lowerCamelCase : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
_lowerCamelCase : Dict = 1 - alpha_prod_t
_lowerCamelCase : str = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
_lowerCamelCase : List[Any] = self.betas[t]
else:
_lowerCamelCase : str = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
_lowerCamelCase : int = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
_lowerCamelCase : List[str] = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
_lowerCamelCase : Dict = torch.log(torch.clamp(__lowerCAmelCase ,min=1e-20 ) )
_lowerCamelCase : str = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
_lowerCamelCase : str = variance.log()
_lowerCamelCase : str = beta.log()
_lowerCamelCase : Optional[int] = (predicted_variance + 1) / 2
_lowerCamelCase : Union[str, Any] = frac * max_log + (1 - frac) * min_log
return variance
def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: int ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: bool = True ,):
'''simple docstring'''
_lowerCamelCase : str = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
_lowerCamelCase, _lowerCamelCase : int = torch.split(__lowerCAmelCase ,sample.shape[1] ,dim=1 )
else:
_lowerCamelCase : List[Any] = None
# 1. compute alphas, betas
if prev_timestep is None:
_lowerCamelCase : List[Any] = t - 1
_lowerCamelCase : Dict = self.alphas_cumprod[t]
_lowerCamelCase : int = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
_lowerCamelCase : Dict = 1 - alpha_prod_t
_lowerCamelCase : List[str] = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
_lowerCamelCase : Any = self.betas[t]
_lowerCamelCase : str = self.alphas[t]
else:
_lowerCamelCase : Any = 1 - alpha_prod_t / alpha_prod_t_prev
_lowerCamelCase : Optional[Any] = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
_lowerCamelCase : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
_lowerCamelCase : List[Any] = model_output
else:
raise ValueError(
F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`"""
" for the UnCLIPScheduler." )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
_lowerCamelCase : Any = torch.clamp(
__lowerCAmelCase ,-self.config.clip_sample_range ,self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_lowerCamelCase : List[str] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
_lowerCamelCase : Optional[int] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_lowerCamelCase : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
_lowerCamelCase : Union[str, Any] = 0
if t > 0:
_lowerCamelCase : Dict = randn_tensor(
model_output.shape ,dtype=model_output.dtype ,generator=__lowerCAmelCase ,device=model_output.device )
_lowerCamelCase : Any = self._get_variance(
__lowerCAmelCase ,predicted_variance=__lowerCAmelCase ,prev_timestep=__lowerCAmelCase ,)
if self.variance_type == "fixed_small_log":
_lowerCamelCase : Optional[Any] = variance
elif self.variance_type == "learned_range":
_lowerCamelCase : Optional[int] = (0.5 * variance).exp()
else:
raise ValueError(
F"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`"""
" for the UnCLIPScheduler." )
_lowerCamelCase : Dict = variance * variance_noise
_lowerCamelCase : List[Any] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=__lowerCAmelCase ,pred_original_sample=__lowerCAmelCase )
def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.IntTensor ,):
'''simple docstring'''
_lowerCamelCase : int = self.alphas_cumprod.to(device=original_samples.device ,dtype=original_samples.dtype )
_lowerCamelCase : Any = timesteps.to(original_samples.device )
_lowerCamelCase : List[Any] = alphas_cumprod[timesteps] ** 0.5
_lowerCamelCase : List[Any] = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
_lowerCamelCase : int = sqrt_alpha_prod.unsqueeze(-1 )
_lowerCamelCase : Union[str, Any] = (1 - alphas_cumprod[timesteps]) ** 0.5
_lowerCamelCase : str = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
_lowerCamelCase : Union[str, Any] = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
_lowerCamelCase : Dict = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples | 340 | 1 |
"""simple docstring"""
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipaConfig,
BlipaForConditionalGeneration,
BlipaProcessor,
BlipaVisionConfig,
BlipImageProcessor,
OPTConfig,
TaConfig,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def lowerCamelCase_( ) -> Any:
'''simple docstring'''
_lowerCamelCase : Tuple = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png"
_lowerCamelCase : Dict = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert("RGB" )
return image
def lowerCamelCase_( _lowerCamelCase ) -> Tuple:
'''simple docstring'''
_lowerCamelCase : List[str] = []
# fmt: off
# vision encoder
rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") )
rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") )
rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") )
rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") )
rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") )
rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) )
rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") )
# QFormer
rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.layernorm.weight") )
rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.layernorm.bias") )
# fmt: on
return rename_keys
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
_lowerCamelCase : Optional[Any] = dct.pop(_lowerCamelCase )
_lowerCamelCase : Tuple = val
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Any:
'''simple docstring'''
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
_lowerCamelCase : int = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" )
_lowerCamelCase : List[str] = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" )
# next, set bias in the state dict
_lowerCamelCase : Tuple = torch.cat((q_bias, torch.zeros_like(_lowerCamelCase , requires_grad=_lowerCamelCase ), v_bias) )
_lowerCamelCase : str = qkv_bias
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
'''simple docstring'''
_lowerCamelCase : Dict = 364 if "coco" in model_name else 224
_lowerCamelCase : Union[str, Any] = BlipaVisionConfig(image_size=_lowerCamelCase ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "opt-2.7b" in model_name:
_lowerCamelCase : List[Any] = OPTConfig.from_pretrained("facebook/opt-2.7b" , eos_token_id=_lowerCamelCase ).to_dict()
elif "opt-6.7b" in model_name:
_lowerCamelCase : Optional[int] = OPTConfig.from_pretrained("facebook/opt-6.7b" , eos_token_id=_lowerCamelCase ).to_dict()
elif "t5-xl" in model_name:
_lowerCamelCase : Optional[Any] = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
_lowerCamelCase : str = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict()
_lowerCamelCase : Dict = BlipaConfig(vision_config=_lowerCamelCase , text_config=_lowerCamelCase )
return config, image_size
@torch.no_grad()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=False ) -> Tuple:
'''simple docstring'''
_lowerCamelCase : Tuple = (
AutoTokenizer.from_pretrained("facebook/opt-2.7b" )
if "opt" in model_name
else AutoTokenizer.from_pretrained("google/flan-t5-xl" )
)
_lowerCamelCase : List[str] = tokenizer("\n" , add_special_tokens=_lowerCamelCase ).input_ids[0]
_lowerCamelCase, _lowerCamelCase : Optional[int] = get_blipa_config(_lowerCamelCase , eos_token_id=_lowerCamelCase )
_lowerCamelCase : List[str] = BlipaForConditionalGeneration(_lowerCamelCase ).eval()
_lowerCamelCase : Dict = {
"blip2-opt-2.7b": ("blip2_opt", "pretrain_opt2.7b"),
"blip2-opt-6.7b": ("blip2_opt", "pretrain_opt6.7b"),
"blip2-opt-2.7b-coco": ("blip2_opt", "caption_coco_opt2.7b"),
"blip2-opt-6.7b-coco": ("blip2_opt", "caption_coco_opt6.7b"),
"blip2-flan-t5-xl": ("blip2_t5", "pretrain_flant5xl"),
"blip2-flan-t5-xl-coco": ("blip2_t5", "caption_coco_flant5xl"),
"blip2-flan-t5-xxl": ("blip2_t5", "pretrain_flant5xxl"),
}
_lowerCamelCase, _lowerCamelCase : Optional[Any] = model_name_to_original[model_name]
# load original model
print("Loading original model..." )
_lowerCamelCase : Optional[int] = "cuda" if torch.cuda.is_available() else "cpu"
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = load_model_and_preprocess(
name=_lowerCamelCase , model_type=_lowerCamelCase , is_eval=_lowerCamelCase , device=_lowerCamelCase )
original_model.eval()
print("Done!" )
# update state dict keys
_lowerCamelCase : Tuple = original_model.state_dict()
_lowerCamelCase : str = create_rename_keys(_lowerCamelCase )
for src, dest in rename_keys:
rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
_lowerCamelCase : Optional[Any] = state_dict.pop(_lowerCamelCase )
if key.startswith("Qformer.bert" ):
_lowerCamelCase : str = key.replace("Qformer.bert" , "qformer" )
if "attention.self" in key:
_lowerCamelCase : Tuple = key.replace("self" , "attention" )
if "opt_proj" in key:
_lowerCamelCase : Dict = key.replace("opt_proj" , "language_projection" )
if "t5_proj" in key:
_lowerCamelCase : List[str] = key.replace("t5_proj" , "language_projection" )
if key.startswith("opt" ):
_lowerCamelCase : int = key.replace("opt" , "language" )
if key.startswith("t5" ):
_lowerCamelCase : Any = key.replace("t5" , "language" )
_lowerCamelCase : int = val
# read in qv biases
read_in_q_v_bias(_lowerCamelCase , _lowerCamelCase )
_lowerCamelCase, _lowerCamelCase : int = hf_model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase )
assert len(_lowerCamelCase ) == 0
assert unexpected_keys == ["qformer.embeddings.position_ids"]
_lowerCamelCase : int = load_demo_image()
_lowerCamelCase : List[Any] = vis_processors["eval"](_lowerCamelCase ).unsqueeze(0 ).to(_lowerCamelCase )
_lowerCamelCase : Optional[int] = tokenizer(["\n"] , return_tensors="pt" ).input_ids.to(_lowerCamelCase )
# create processor
_lowerCamelCase : Any = BlipImageProcessor(
size={"height": image_size, "width": image_size} , image_mean=_lowerCamelCase , image_std=_lowerCamelCase )
_lowerCamelCase : Dict = BlipaProcessor(image_processor=_lowerCamelCase , tokenizer=_lowerCamelCase )
_lowerCamelCase : str = processor(images=_lowerCamelCase , return_tensors="pt" ).pixel_values.to(_lowerCamelCase )
# make sure processor creates exact same pixel values
assert torch.allclose(_lowerCamelCase , _lowerCamelCase )
original_model.to(_lowerCamelCase )
hf_model.to(_lowerCamelCase )
with torch.no_grad():
if "opt" in model_name:
_lowerCamelCase : Tuple = original_model({"image": original_pixel_values, "text_input": [""]} ).logits
_lowerCamelCase : List[Any] = hf_model(_lowerCamelCase , _lowerCamelCase ).logits
else:
_lowerCamelCase : Optional[int] = original_model(
{"image": original_pixel_values, "text_input": ["\n"], "text_output": ["\n"]} ).logits
_lowerCamelCase : List[Any] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 )
_lowerCamelCase : Optional[Any] = hf_model(_lowerCamelCase , _lowerCamelCase , labels=_lowerCamelCase ).logits
assert original_logits.shape == logits.shape
print("First values of original logits:" , original_logits[0, :3, :3] )
print("First values of HF logits:" , logits[0, :3, :3] )
# assert values
if model_name == "blip2-flan-t5-xl":
_lowerCamelCase : str = torch.tensor(
[[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=_lowerCamelCase )
assert torch.allclose(logits[0, :3, :3] , _lowerCamelCase , atol=1e-4 )
elif model_name == "blip2-flan-t5-xl-coco":
_lowerCamelCase : Optional[Any] = torch.tensor(
[[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=_lowerCamelCase )
else:
# cast to same type
_lowerCamelCase : str = logits.dtype
assert torch.allclose(original_logits.to(_lowerCamelCase ) , _lowerCamelCase , atol=1e-2 )
print("Looks ok!" )
print("Generating a caption..." )
_lowerCamelCase : List[str] = ""
_lowerCamelCase : Dict = tokenizer(_lowerCamelCase , return_tensors="pt" ).input_ids.to(_lowerCamelCase )
_lowerCamelCase : Optional[int] = original_model.generate({"image": original_pixel_values} )
_lowerCamelCase : Dict = hf_model.generate(
_lowerCamelCase , _lowerCamelCase , do_sample=_lowerCamelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , )
print("Original generation:" , _lowerCamelCase )
_lowerCamelCase : List[Any] = input_ids.shape[1]
_lowerCamelCase : Tuple = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowerCamelCase )
_lowerCamelCase : int = [text.strip() for text in output_text]
print("HF generation:" , _lowerCamelCase )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(_lowerCamelCase )
hf_model.save_pretrained(_lowerCamelCase )
if push_to_hub:
processor.push_to_hub(F"""nielsr/{model_name}""" )
hf_model.push_to_hub(F"""nielsr/{model_name}""" )
if __name__ == "__main__":
_lowerCAmelCase : Tuple = argparse.ArgumentParser()
_lowerCAmelCase : Dict = [
'''blip2-opt-2.7b''',
'''blip2-opt-6.7b''',
'''blip2-opt-2.7b-coco''',
'''blip2-opt-6.7b-coco''',
'''blip2-flan-t5-xl''',
'''blip2-flan-t5-xl-coco''',
'''blip2-flan-t5-xxl''',
]
parser.add_argument(
'''--model_name''',
default='''blip2-opt-2.7b''',
choices=choices,
type=str,
help='''Path to hf config.json of model to convert''',
)
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Whether to push the model and processor to the hub after converting''',
)
_lowerCAmelCase : Optional[Any] = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub) | 340 |
"""simple docstring"""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConformerConfig,
WavaVecaConformerForCTC,
WavaVecaConformerForPreTraining,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
_lowerCAmelCase : List[str] = logging.get_logger(__name__)
_lowerCAmelCase : Dict = {
'''post_extract_proj''': '''feature_projection.projection''',
'''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''',
'''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''',
'''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''',
'''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''',
'''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''',
'''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''',
'''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''',
'''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''',
'''self_attn.rotary_emb''': '''encoder.embed_positions''',
'''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''',
'''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''',
'''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''',
'''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''',
'''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''',
'''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''',
'''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''',
'''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''',
'''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''',
'''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''',
'''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''',
'''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''',
'''final_layer_norm''': '''encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''encoder.layer_norm''',
'''w2v_model.layer_norm''': '''feature_projection.layer_norm''',
'''quantizer.weight_proj''': '''quantizer.weight_proj''',
'''quantizer.vars''': '''quantizer.codevectors''',
'''project_q''': '''project_q''',
'''final_proj''': '''project_hid''',
'''w2v_encoder.proj''': '''lm_head''',
'''mask_emb''': '''masked_spec_embed''',
}
_lowerCAmelCase : str = [
'''lm_head''',
'''quantizer.weight_proj''',
'''quantizer.codevectors''',
'''project_q''',
'''project_hid''',
]
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
'''simple docstring'''
for attribute in key.split("." ):
_lowerCamelCase : Tuple = getattr(_lowerCamelCase , _lowerCamelCase )
if weight_type is not None:
_lowerCamelCase : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ).shape
else:
_lowerCamelCase : Dict = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}""" )
if weight_type == "weight":
_lowerCamelCase : Tuple = value
elif weight_type == "weight_g":
_lowerCamelCase : List[str] = value
elif weight_type == "weight_v":
_lowerCamelCase : List[Any] = value
elif weight_type == "bias":
_lowerCamelCase : str = value
elif weight_type == "running_mean":
_lowerCamelCase : Optional[int] = value
elif weight_type == "running_var":
_lowerCamelCase : Optional[Any] = value
elif weight_type == "num_batches_tracked":
_lowerCamelCase : int = value
elif weight_type == "inv_freq":
_lowerCamelCase : List[str] = value
else:
_lowerCamelCase : Optional[Any] = value
logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]:
'''simple docstring'''
_lowerCamelCase : Dict = []
_lowerCamelCase : Optional[Any] = fairseq_model.state_dict()
_lowerCamelCase : List[Any] = hf_model.wavaveca_conformer.feature_extractor
for name, value in fairseq_dict.items():
_lowerCamelCase : Dict = False
if "conv_layers" in name:
load_conv_layer(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , )
_lowerCamelCase : List[Any] = True
else:
for key, mapped_key in MAPPING.items():
_lowerCamelCase : Dict = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
_lowerCamelCase : int = True
if "*" in mapped_key:
_lowerCamelCase : Tuple = name.split(_lowerCamelCase )[0].split("." )[-2]
_lowerCamelCase : int = mapped_key.replace("*" , _lowerCamelCase )
if "pos_bias_u" in name:
_lowerCamelCase : int = None
elif "pos_bias_v" in name:
_lowerCamelCase : Any = None
elif "weight_g" in name:
_lowerCamelCase : Any = "weight_g"
elif "weight_v" in name:
_lowerCamelCase : Any = "weight_v"
elif "bias" in name:
_lowerCamelCase : Optional[Any] = "bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
_lowerCamelCase : Dict = "weight"
elif "running_mean" in name:
_lowerCamelCase : str = "running_mean"
elif "inv_freq" in name:
_lowerCamelCase : List[Any] = "inv_freq"
elif "running_var" in name:
_lowerCamelCase : Tuple = "running_var"
elif "num_batches_tracked" in name:
_lowerCamelCase : str = "num_batches_tracked"
else:
_lowerCamelCase : Dict = None
set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
continue
if not is_used:
unused_weights.append(_lowerCamelCase )
logger.warning(F"""Unused weights: {unused_weights}""" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : int = full_name.split("conv_layers." )[-1]
_lowerCamelCase : List[Any] = name.split("." )
_lowerCamelCase : Union[str, Any] = int(items[0] )
_lowerCamelCase : List[Any] = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
_lowerCamelCase : str = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
_lowerCamelCase : int = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
_lowerCamelCase : Dict = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
_lowerCamelCase : Optional[Any] = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(_lowerCamelCase )
@torch.no_grad()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> Dict:
'''simple docstring'''
if config_path is not None:
_lowerCamelCase : Union[str, Any] = WavaVecaConformerConfig.from_pretrained(_lowerCamelCase , hidden_act="swish" )
else:
_lowerCamelCase : Dict = WavaVecaConformerConfig()
if "rope" in checkpoint_path:
_lowerCamelCase : List[Any] = "rotary"
if is_finetuned:
if dict_path:
_lowerCamelCase : Dict = Dictionary.load(_lowerCamelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
_lowerCamelCase : Optional[int] = target_dict.pad_index
_lowerCamelCase : Dict = target_dict.bos_index
_lowerCamelCase : Optional[Any] = target_dict.eos_index
_lowerCamelCase : str = len(target_dict.symbols )
_lowerCamelCase : int = os.path.join(_lowerCamelCase , "vocab.json" )
if not os.path.isdir(_lowerCamelCase ):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCamelCase ) )
return
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
_lowerCamelCase : Tuple = target_dict.indices
# fairseq has the <pad> and <s> switched
_lowerCamelCase : List[str] = 0
_lowerCamelCase : List[Any] = 1
with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_handle:
json.dump(_lowerCamelCase , _lowerCamelCase )
_lowerCamelCase : Optional[int] = WavaVecaCTCTokenizer(
_lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCamelCase , )
_lowerCamelCase : Tuple = True if config.feat_extract_norm == "layer" else False
_lowerCamelCase : Optional[Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , )
_lowerCamelCase : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase )
processor.save_pretrained(_lowerCamelCase )
_lowerCamelCase : List[Any] = WavaVecaConformerForCTC(_lowerCamelCase )
else:
_lowerCamelCase : Any = WavaVecaConformerForPreTraining(_lowerCamelCase )
if is_finetuned:
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} )
else:
_lowerCamelCase : List[Any] = argparse.Namespace(task="audio_pretraining" )
_lowerCamelCase : Optional[Any] = fairseq.tasks.setup_task(_lowerCamelCase )
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCamelCase )
_lowerCamelCase : Dict = model[0].eval()
recursively_load_weights(_lowerCamelCase , _lowerCamelCase , not is_finetuned )
hf_wavavec.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase : Tuple = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not'''
)
_lowerCAmelCase : str = parser.parse_args()
convert_wavaveca_conformer_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
) | 340 | 1 |
"""simple docstring"""
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_lowerCAmelCase : List[str] = logging.get_logger(__name__)
_lowerCAmelCase : Tuple = {
'''vocab_file''': '''vocab.json''',
'''merges_file''': '''merges.txt''',
'''tokenizer_config_file''': '''tokenizer_config.json''',
}
_lowerCAmelCase : List[str] = {
'''vocab_file''': {
'''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json'''
},
'''merges_file''': {
'''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt'''
},
'''tokenizer_config_file''': {
'''facebook/blenderbot_small-90M''': (
'''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json'''
)
},
}
_lowerCAmelCase : Any = {'''facebook/blenderbot_small-90M''': 512}
def lowerCamelCase_( _lowerCamelCase ) -> List[Any]:
'''simple docstring'''
_lowerCamelCase : Optional[int] = set()
_lowerCamelCase : List[str] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
_lowerCamelCase : List[Any] = char
_lowerCamelCase : List[str] = set(_lowerCamelCase )
return pairs
class A_ ( _a ):
lowerCAmelCase__ = VOCAB_FILES_NAMES
lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase__ = ['input_ids', 'attention_mask']
def __init__( self: Optional[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: str="__start__" ,__lowerCAmelCase: List[str]="__end__" ,__lowerCAmelCase: List[str]="__unk__" ,__lowerCAmelCase: str="__null__" ,**__lowerCAmelCase: Optional[Any] ,):
'''simple docstring'''
super().__init__(unk_token=__lowerCAmelCase ,bos_token=__lowerCAmelCase ,eos_token=__lowerCAmelCase ,pad_token=__lowerCAmelCase ,**__lowerCAmelCase )
with open(__lowerCAmelCase ,encoding="utf-8" ) as vocab_handle:
_lowerCamelCase : Union[str, Any] = json.load(__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = {v: k for k, v in self.encoder.items()}
with open(__lowerCAmelCase ,encoding="utf-8" ) as merges_handle:
_lowerCamelCase : str = merges_handle.read().split("\n" )[1:-1]
_lowerCamelCase : int = [tuple(merge.split() ) for merge in merges]
_lowerCamelCase : List[Any] = dict(zip(__lowerCAmelCase ,range(len(__lowerCAmelCase ) ) ) )
_lowerCamelCase : int = {}
@property
def _lowercase ( self: List[str] ):
'''simple docstring'''
return len(self.encoder )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
return dict(self.encoder ,**self.added_tokens_encoder )
def _lowercase ( self: List[Any] ,__lowerCAmelCase: str ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
_lowerCamelCase : Union[str, Any] = re.sub("([.,!?()])" ,r" \1" ,__lowerCAmelCase )
_lowerCamelCase : Dict = re.sub("(')" ,r" \1 " ,__lowerCAmelCase )
_lowerCamelCase : List[Any] = re.sub(r"\s{2,}" ," " ,__lowerCAmelCase )
if "\n" in token:
_lowerCamelCase : int = token.replace("\n" ," __newln__" )
_lowerCamelCase : Optional[int] = token.split(" " )
_lowerCamelCase : Union[str, Any] = []
for token in tokens:
if not len(__lowerCAmelCase ):
continue
_lowerCamelCase : Tuple = token.lower()
_lowerCamelCase : Optional[Any] = tuple(__lowerCAmelCase )
_lowerCamelCase : Any = tuple(list(word[:-1] ) + [word[-1] + "</w>"] )
_lowerCamelCase : Dict = get_pairs(__lowerCAmelCase )
if not pairs:
words.append(__lowerCAmelCase )
continue
while True:
_lowerCamelCase : Optional[int] = min(__lowerCAmelCase ,key=lambda __lowerCAmelCase : self.bpe_ranks.get(__lowerCAmelCase ,float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
_lowerCamelCase, _lowerCamelCase : Optional[int] = bigram
_lowerCamelCase : Tuple = []
_lowerCamelCase : Tuple = 0
while i < len(__lowerCAmelCase ):
try:
_lowerCamelCase : List[str] = word.index(__lowerCAmelCase ,__lowerCAmelCase )
new_word.extend(word[i:j] )
_lowerCamelCase : int = j
except ValueError:
new_word.extend(word[i:] )
break
if word[i] == first and i < len(__lowerCAmelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
_lowerCamelCase : Dict = tuple(__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = new_word
if len(__lowerCAmelCase ) == 1:
break
else:
_lowerCamelCase : Dict = get_pairs(__lowerCAmelCase )
_lowerCamelCase : Dict = "@@ ".join(__lowerCAmelCase )
_lowerCamelCase : Tuple = word[:-4]
_lowerCamelCase : Optional[Any] = word
words.append(__lowerCAmelCase )
return " ".join(__lowerCAmelCase )
def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: str ):
'''simple docstring'''
_lowerCamelCase : int = []
_lowerCamelCase : Optional[Any] = re.findall(r"\S+\n?" ,__lowerCAmelCase )
for token in words:
split_tokens.extend(list(self.bpe(__lowerCAmelCase ).split(" " ) ) )
return split_tokens
def _lowercase ( self: Optional[int] ,__lowerCAmelCase: str ):
'''simple docstring'''
_lowerCamelCase : Any = token.lower()
return self.encoder.get(__lowerCAmelCase ,self.encoder.get(self.unk_token ) )
def _lowercase ( self: int ,__lowerCAmelCase: int ):
'''simple docstring'''
return self.decoder.get(__lowerCAmelCase ,self.unk_token )
def _lowercase ( self: int ,__lowerCAmelCase: List[str] ):
'''simple docstring'''
_lowerCamelCase : Dict = " ".join(__lowerCAmelCase ).replace("@@ " ,"" ).strip()
return out_string
def _lowercase ( self: Any ,__lowerCAmelCase: str ,__lowerCAmelCase: Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(__lowerCAmelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
_lowerCamelCase : Optional[int] = os.path.join(
__lowerCAmelCase ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
_lowerCamelCase : List[Any] = os.path.join(
__lowerCAmelCase ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__lowerCAmelCase ,"w" ,encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=__lowerCAmelCase ,ensure_ascii=__lowerCAmelCase ) + "\n" )
_lowerCamelCase : int = 0
with open(__lowerCAmelCase ,"w" ,encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda __lowerCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
" Please check that the tokenizer is not corrupted!" )
_lowerCamelCase : Optional[int] = token_index
writer.write(" ".join(__lowerCAmelCase ) + "\n" )
index += 1
return vocab_file, merge_file | 340 |
"""simple docstring"""
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float:
'''simple docstring'''
_validate_point(_lowerCamelCase )
_validate_point(_lowerCamelCase )
if len(_lowerCamelCase ) != len(_lowerCamelCase ):
raise ValueError("Both points must be in the same n-dimensional space" )
return float(sum(abs(a - b ) for a, b in zip(_lowerCamelCase , _lowerCamelCase ) ) )
def lowerCamelCase_( _lowerCamelCase ) -> None:
'''simple docstring'''
if point:
if isinstance(_lowerCamelCase , _lowerCamelCase ):
for item in point:
if not isinstance(_lowerCamelCase , (int, float) ):
_lowerCamelCase : Dict = (
"Expected a list of numbers as input, found "
F"""{type(_lowerCamelCase ).__name__}"""
)
raise TypeError(_lowerCamelCase )
else:
_lowerCamelCase : Optional[int] = F"""Expected a list of numbers as input, found {type(_lowerCamelCase ).__name__}"""
raise TypeError(_lowerCamelCase )
else:
raise ValueError("Missing an input" )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float:
'''simple docstring'''
_validate_point(_lowerCamelCase )
_validate_point(_lowerCamelCase )
if len(_lowerCamelCase ) != len(_lowerCamelCase ):
raise ValueError("Both points must be in the same n-dimensional space" )
return float(sum(abs(x - y ) for x, y in zip(_lowerCamelCase , _lowerCamelCase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 340 | 1 |
"""simple docstring"""
import random
import unittest
import numpy as np
import transformers
from transformers import is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax
if is_flax_available():
import os
import jax.numpy as jnp
from jax import jit
from transformers import AutoTokenizer, FlaxAutoModelForCausalLM
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
_lowerCAmelCase : str = '''0.12''' # assumed parallelism: 8
if is_torch_available():
import torch
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) -> List[Any]:
'''simple docstring'''
if rng is None:
_lowerCamelCase : Union[str, Any] = random.Random()
_lowerCamelCase : Union[str, Any] = 1
for dim in shape:
total_dims *= dim
_lowerCamelCase : Optional[int] = []
for _ in range(_lowerCamelCase ):
values.append(rng.randint(0 , vocab_size - 1 ) )
_lowerCamelCase : Union[str, Any] = np.array(_lowerCamelCase , dtype=jnp.intaa ).reshape(_lowerCamelCase )
return output
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]:
'''simple docstring'''
_lowerCamelCase : Optional[int] = ids_tensor(_lowerCamelCase , vocab_size=2 , rng=_lowerCamelCase )
# make sure that at least one token is attended to for each batch
_lowerCamelCase : List[str] = 1
return attn_mask
@require_flax
class A_ :
lowerCAmelCase__ = None
lowerCAmelCase__ = ()
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
# cut to half length & take max batch_size 3
_lowerCamelCase : List[str] = 2
_lowerCamelCase : str = inputs["input_ids"].shape[-1] // 2
_lowerCamelCase : Tuple = inputs["input_ids"][:max_batch_size, :sequence_length]
_lowerCamelCase : Any = jnp.ones_like(__lowerCAmelCase )
_lowerCamelCase : List[Any] = attention_mask[:max_batch_size, :sequence_length]
# generate max 5 tokens
_lowerCamelCase : Optional[Any] = input_ids.shape[-1] + 5
if config.eos_token_id is not None and config.pad_token_id is None:
# hack to allow generate for models such as GPT2 as is done in `generate()`
_lowerCamelCase : List[str] = config.eos_token_id
return config, input_ids, attention_mask, max_length
@is_pt_flax_cross_test
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = self._get_input_ids_and_config()
_lowerCamelCase : List[Any] = False
_lowerCamelCase : Dict = max_length
_lowerCamelCase : Tuple = 0
for model_class in self.all_generative_model_classes:
_lowerCamelCase : str = model_class(__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning
_lowerCamelCase : Any = getattr(__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : Dict = pt_model_class(__lowerCAmelCase ).eval()
_lowerCamelCase : Optional[Any] = load_flax_weights_in_pytorch_model(__lowerCAmelCase ,flax_model.params )
_lowerCamelCase : int = flax_model.generate(__lowerCAmelCase ).sequences
_lowerCamelCase : Optional[int] = pt_model.generate(torch.tensor(__lowerCAmelCase ,dtype=torch.long ) )
if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]:
_lowerCamelCase : List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]]
self.assertListEqual(pt_generation_outputs.numpy().tolist() ,flax_generation_outputs.tolist() )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = self._get_input_ids_and_config()
_lowerCamelCase : Union[str, Any] = False
_lowerCamelCase : Union[str, Any] = max_length
for model_class in self.all_generative_model_classes:
_lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase )
_lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Dict = jit(model.generate )
_lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config()
_lowerCamelCase : List[Any] = True
_lowerCamelCase : Optional[int] = max_length
for model_class in self.all_generative_model_classes:
_lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase )
_lowerCamelCase : List[Any] = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Dict = jit(model.generate )
_lowerCamelCase : int = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config()
_lowerCamelCase : int = False
_lowerCamelCase : Optional[Any] = max_length
_lowerCamelCase : Dict = 2
for model_class in self.all_generative_model_classes:
_lowerCamelCase : List[str] = model_class(__lowerCAmelCase )
_lowerCamelCase : Dict = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Tuple = jit(model.generate )
_lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = self._get_input_ids_and_config()
_lowerCamelCase : Tuple = False
_lowerCamelCase : Union[str, Any] = max_length
_lowerCamelCase : List[str] = 2
_lowerCamelCase : Optional[int] = 2
for model_class in self.all_generative_model_classes:
_lowerCamelCase : List[Any] = model_class(__lowerCAmelCase )
_lowerCamelCase : str = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[0] ,input_ids.shape[0] * config.num_return_sequences )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config()
_lowerCamelCase : int = True
_lowerCamelCase : List[Any] = max_length
_lowerCamelCase : Optional[Any] = 0.8
_lowerCamelCase : Union[str, Any] = 10
_lowerCamelCase : List[str] = 0.3
_lowerCamelCase : Tuple = 1
_lowerCamelCase : Any = 8
_lowerCamelCase : str = 9
for model_class in self.all_generative_model_classes:
_lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase )
_lowerCamelCase : Any = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : int = jit(model.generate )
_lowerCamelCase : Optional[int] = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = self._get_input_ids_and_config()
_lowerCamelCase : List[str] = max_length
_lowerCamelCase : Tuple = 1
_lowerCamelCase : Any = 8
_lowerCamelCase : Dict = 9
for model_class in self.all_generative_model_classes:
_lowerCamelCase : Any = model_class(__lowerCAmelCase )
_lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Any = jit(model.generate )
_lowerCamelCase : Any = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: List[str] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config()
_lowerCamelCase : Dict = max_length
_lowerCamelCase : List[Any] = 2
_lowerCamelCase : Tuple = 1
_lowerCamelCase : List[str] = 8
_lowerCamelCase : List[Any] = 9
for model_class in self.all_generative_model_classes:
_lowerCamelCase : int = model_class(__lowerCAmelCase )
_lowerCamelCase : Optional[int] = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Tuple = jit(model.generate )
_lowerCamelCase : Optional[Any] = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config()
# pad attention mask on the left
_lowerCamelCase : Tuple = attention_mask.at[(0, 0)].set(0 )
_lowerCamelCase : Dict = False
_lowerCamelCase : Any = max_length
for model_class in self.all_generative_model_classes:
_lowerCamelCase : List[Any] = model_class(__lowerCAmelCase )
_lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Any = jit(model.generate )
_lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = self._get_input_ids_and_config()
# pad attention mask on the left
_lowerCamelCase : Optional[Any] = attention_mask.at[(0, 0)].set(0 )
_lowerCamelCase : List[str] = True
_lowerCamelCase : Optional[Any] = max_length
for model_class in self.all_generative_model_classes:
_lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Any = jit(model.generate )
_lowerCamelCase : List[Any] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config()
# pad attention mask on the left
_lowerCamelCase : List[str] = attention_mask.at[(0, 0)].set(0 )
_lowerCamelCase : int = 2
_lowerCamelCase : int = max_length
for model_class in self.all_generative_model_classes:
_lowerCamelCase : List[Any] = model_class(__lowerCAmelCase )
_lowerCamelCase : int = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Dict = jit(model.generate )
_lowerCamelCase : Dict = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
@require_flax
class A_ ( unittest.TestCase ):
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" )
_lowerCamelCase : Union[str, Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" )
_lowerCamelCase : Optional[Any] = "Hello world"
_lowerCamelCase : str = tokenizer(__lowerCAmelCase ,return_tensors="np" ).input_ids
# typos are quickly detected (the correct argument is `do_sample`)
with self.assertRaisesRegex(__lowerCAmelCase ,"do_samples" ):
model.generate(__lowerCAmelCase ,do_samples=__lowerCAmelCase )
# arbitrary arguments that will not be used anywhere are also not accepted
with self.assertRaisesRegex(__lowerCAmelCase ,"foo" ):
_lowerCamelCase : List[str] = {"foo": "bar"}
model.generate(__lowerCAmelCase ,**__lowerCAmelCase ) | 340 |
"""simple docstring"""
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Optional[Any] = np.inf
def set_batch_size(_lowerCamelCase ) -> None:
nonlocal batch_size
if isinstance(_lowerCamelCase , _lowerCamelCase ):
_lowerCamelCase : Optional[int] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(_lowerCamelCase , _lowerCamelCase ):
_lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(_lowerCamelCase , _lowerCamelCase ) and feature.dtype == "binary":
_lowerCamelCase : List[str] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(_lowerCamelCase , _lowerCamelCase )
return None if batch_size is np.inf else batch_size
class A_ ( _a ):
def __init__( self: Optional[int] ,__lowerCAmelCase: NestedDataStructureLike[PathLike] ,__lowerCAmelCase: Optional[NamedSplit] = None ,__lowerCAmelCase: Optional[Features] = None ,__lowerCAmelCase: str = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: int ,):
'''simple docstring'''
super().__init__(
__lowerCAmelCase ,split=__lowerCAmelCase ,features=__lowerCAmelCase ,cache_dir=__lowerCAmelCase ,keep_in_memory=__lowerCAmelCase ,streaming=__lowerCAmelCase ,num_proc=__lowerCAmelCase ,**__lowerCAmelCase ,)
_lowerCamelCase : Tuple = path_or_paths if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) else {self.split: path_or_paths}
_lowerCamelCase : Any = _PACKAGED_DATASETS_MODULES["parquet"][1]
_lowerCamelCase : int = Parquet(
cache_dir=__lowerCAmelCase ,data_files=__lowerCAmelCase ,features=__lowerCAmelCase ,hash=__lowerCAmelCase ,**__lowerCAmelCase ,)
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
if self.streaming:
_lowerCamelCase : List[Any] = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
_lowerCamelCase : Tuple = None
_lowerCamelCase : Optional[int] = None
_lowerCamelCase : List[str] = None
_lowerCamelCase : str = None
self.builder.download_and_prepare(
download_config=__lowerCAmelCase ,download_mode=__lowerCAmelCase ,verification_mode=__lowerCAmelCase ,base_path=__lowerCAmelCase ,num_proc=self.num_proc ,)
_lowerCamelCase : Any = self.builder.as_dataset(
split=self.split ,verification_mode=__lowerCAmelCase ,in_memory=self.keep_in_memory )
return dataset
class A_ :
def __init__( self: str ,__lowerCAmelCase: Dataset ,__lowerCAmelCase: Union[PathLike, BinaryIO] ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: List[Any] ,):
'''simple docstring'''
_lowerCamelCase : Any = dataset
_lowerCamelCase : Any = path_or_buf
_lowerCamelCase : Any = batch_size or get_writer_batch_size(dataset.features )
_lowerCamelCase : List[str] = parquet_writer_kwargs
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase : Tuple = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf ,(str, bytes, os.PathLike) ):
with open(self.path_or_buf ,"wb+" ) as buffer:
_lowerCamelCase : str = self._write(file_obj=__lowerCAmelCase ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs )
else:
_lowerCamelCase : Optional[int] = self._write(file_obj=self.path_or_buf ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs )
return written
def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: BinaryIO ,__lowerCAmelCase: int ,**__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : List[str] = 0
_lowerCamelCase : Optional[int] = parquet_writer_kwargs.pop("path_or_buf" ,__lowerCAmelCase )
_lowerCamelCase : List[str] = self.dataset.features.arrow_schema
_lowerCamelCase : str = pq.ParquetWriter(__lowerCAmelCase ,schema=__lowerCAmelCase ,**__lowerCAmelCase )
for offset in logging.tqdm(
range(0 ,len(self.dataset ) ,__lowerCAmelCase ) ,unit="ba" ,disable=not logging.is_progress_bar_enabled() ,desc="Creating parquet from Arrow format" ,):
_lowerCamelCase : List[str] = query_table(
table=self.dataset._data ,key=slice(__lowerCAmelCase ,offset + batch_size ) ,indices=self.dataset._indices if self.dataset._indices is not None else None ,)
writer.write_table(__lowerCAmelCase )
written += batch.nbytes
writer.close()
return written | 340 | 1 |
"""simple docstring"""
import os
import string
import sys
_lowerCAmelCase : Dict = 1 << 8
_lowerCAmelCase : Union[str, Any] = {
'''tab''': ord('''\t'''),
'''newline''': ord('''\r'''),
'''esc''': 27,
'''up''': 65 + ARROW_KEY_FLAG,
'''down''': 66 + ARROW_KEY_FLAG,
'''right''': 67 + ARROW_KEY_FLAG,
'''left''': 68 + ARROW_KEY_FLAG,
'''mod_int''': 91,
'''undefined''': sys.maxsize,
'''interrupt''': 3,
'''insert''': 50,
'''delete''': 51,
'''pg_up''': 53,
'''pg_down''': 54,
}
_lowerCAmelCase : Optional[Any] = KEYMAP['''up''']
_lowerCAmelCase : Optional[Any] = KEYMAP['''left''']
if sys.platform == "win32":
_lowerCAmelCase : int = []
_lowerCAmelCase : Optional[Any] = {
B'''\xe0H''': KEYMAP['''up'''] - ARROW_KEY_FLAG,
B'''\x00H''': KEYMAP['''up'''] - ARROW_KEY_FLAG,
B'''\xe0P''': KEYMAP['''down'''] - ARROW_KEY_FLAG,
B'''\x00P''': KEYMAP['''down'''] - ARROW_KEY_FLAG,
B'''\xe0M''': KEYMAP['''right'''] - ARROW_KEY_FLAG,
B'''\x00M''': KEYMAP['''right'''] - ARROW_KEY_FLAG,
B'''\xe0K''': KEYMAP['''left'''] - ARROW_KEY_FLAG,
B'''\x00K''': KEYMAP['''left'''] - ARROW_KEY_FLAG,
}
for i in range(10):
_lowerCAmelCase : Tuple = ord(str(i))
def lowerCamelCase_( ) -> Any:
'''simple docstring'''
if os.name == "nt":
import msvcrt
_lowerCamelCase : Dict = "mbcs"
# Flush the keyboard buffer
while msvcrt.kbhit():
msvcrt.getch()
if len(_lowerCamelCase ) == 0:
# Read the keystroke
_lowerCamelCase : Dict = msvcrt.getch()
# If it is a prefix char, get second part
if ch in (b"\x00", b"\xe0"):
_lowerCamelCase : int = ch + msvcrt.getch()
# Translate actual Win chars to bullet char types
try:
_lowerCamelCase : Optional[Any] = chr(WIN_KEYMAP[cha] )
WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) )
WIN_CH_BUFFER.append(_lowerCamelCase )
if ord(_lowerCamelCase ) in (
KEYMAP["insert"] - 1 << 9,
KEYMAP["delete"] - 1 << 9,
KEYMAP["pg_up"] - 1 << 9,
KEYMAP["pg_down"] - 1 << 9,
):
WIN_CH_BUFFER.append(chr(126 ) )
_lowerCamelCase : Tuple = chr(KEYMAP["esc"] )
except KeyError:
_lowerCamelCase : str = cha[1]
else:
_lowerCamelCase : int = ch.decode(_lowerCamelCase )
else:
_lowerCamelCase : List[Any] = WIN_CH_BUFFER.pop(0 )
elif os.name == "posix":
import termios
import tty
_lowerCamelCase : Optional[int] = sys.stdin.fileno()
_lowerCamelCase : Tuple = termios.tcgetattr(_lowerCamelCase )
try:
tty.setraw(_lowerCamelCase )
_lowerCamelCase : Dict = sys.stdin.read(1 )
finally:
termios.tcsetattr(_lowerCamelCase , termios.TCSADRAIN , _lowerCamelCase )
return ch
def lowerCamelCase_( ) -> Optional[Any]:
'''simple docstring'''
_lowerCamelCase : Tuple = get_raw_chars()
if ord(_lowerCamelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
return char
elif ord(_lowerCamelCase ) == KEYMAP["esc"]:
_lowerCamelCase : Optional[Any] = get_raw_chars()
if ord(_lowerCamelCase ) == KEYMAP["mod_int"]:
_lowerCamelCase : Tuple = get_raw_chars()
if ord(_lowerCamelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_lowerCamelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
return chr(ord(_lowerCamelCase ) + ARROW_KEY_FLAG )
else:
return KEYMAP["undefined"]
else:
return get_raw_chars()
else:
if char in string.printable:
return char
else:
return KEYMAP["undefined"] | 340 |
"""simple docstring"""
import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def lowerCamelCase_( _lowerCamelCase ) -> Tuple:
'''simple docstring'''
_lowerCamelCase : Optional[int] = {}
_lowerCamelCase : Optional[int] = tokenizer(example["content"] , truncation=_lowerCamelCase )["input_ids"]
_lowerCamelCase : Dict = len(example["content"] ) / len(output["input_ids"] )
return output
_lowerCAmelCase : Tuple = HfArgumentParser(PretokenizationArguments)
_lowerCAmelCase : Optional[int] = parser.parse_args()
if args.num_workers is None:
_lowerCAmelCase : Any = multiprocessing.cpu_count()
_lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(args.tokenizer_dir)
_lowerCAmelCase : Union[str, Any] = time.time()
_lowerCAmelCase : Optional[int] = load_dataset(args.dataset_name, split='''train''')
print(f'''Dataset loaded in {time.time()-t_start:.2f}s''')
_lowerCAmelCase : Any = time.time()
_lowerCAmelCase : Dict = ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
'''repo_name''',
'''path''',
'''copies''',
'''size''',
'''content''',
'''license''',
'''hash''',
'''line_mean''',
'''line_max''',
'''alpha_frac''',
'''autogenerated''',
],
)
print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''')
_lowerCAmelCase : str = time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''') | 340 | 1 |
"""simple docstring"""
from ....utils import logging
_lowerCAmelCase : List[str] = logging.get_logger(__name__)
class A_ ( _a ):
def __init__( self: Union[str, Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: List[str]=None ,__lowerCAmelCase: Optional[Any]=2_048 ):
'''simple docstring'''
_lowerCamelCase : str = config.__dict__
_lowerCamelCase : Any = modal_hidden_size
if num_labels:
_lowerCamelCase : Optional[int] = num_labels | 340 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowerCAmelCase : Optional[Any] = {
'''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''],
'''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''],
'''processing_mctct''': ['''MCTCTProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Dict = [
'''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MCTCTForCTC''',
'''MCTCTModel''',
'''MCTCTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
_lowerCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 340 | 1 |
"""simple docstring"""
from __future__ import annotations
import bisect
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = -1 ) -> int:
'''simple docstring'''
if hi < 0:
_lowerCamelCase : Dict = len(_lowerCamelCase )
while lo < hi:
_lowerCamelCase : List[str] = lo + (hi - lo) // 2
if sorted_collection[mid] < item:
_lowerCamelCase : Union[str, Any] = mid + 1
else:
_lowerCamelCase : int = mid
return lo
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = -1 ) -> int:
'''simple docstring'''
if hi < 0:
_lowerCamelCase : Union[str, Any] = len(_lowerCamelCase )
while lo < hi:
_lowerCamelCase : int = lo + (hi - lo) // 2
if sorted_collection[mid] <= item:
_lowerCamelCase : Union[str, Any] = mid + 1
else:
_lowerCamelCase : Optional[int] = mid
return lo
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = -1 ) -> None:
'''simple docstring'''
sorted_collection.insert(bisect_left(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = -1 ) -> None:
'''simple docstring'''
sorted_collection.insert(bisect_right(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int | None:
'''simple docstring'''
_lowerCamelCase : Tuple = 0
_lowerCamelCase : Tuple = len(_lowerCamelCase ) - 1
while left <= right:
_lowerCamelCase : Tuple = left + (right - left) // 2
_lowerCamelCase : Union[str, Any] = sorted_collection[midpoint]
if current_item == item:
return midpoint
elif item < current_item:
_lowerCamelCase : List[str] = midpoint - 1
else:
_lowerCamelCase : Any = midpoint + 1
return None
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int | None:
'''simple docstring'''
_lowerCamelCase : Tuple = bisect.bisect_left(_lowerCamelCase , _lowerCamelCase )
if index != len(_lowerCamelCase ) and sorted_collection[index] == item:
return index
return None
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int | None:
'''simple docstring'''
if right < left:
return None
_lowerCamelCase : int = left + (right - left) // 2
if sorted_collection[midpoint] == item:
return midpoint
elif sorted_collection[midpoint] > item:
return binary_search_by_recursion(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , midpoint - 1 )
else:
return binary_search_by_recursion(_lowerCamelCase , _lowerCamelCase , midpoint + 1 , _lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase : int = input('''Enter numbers separated by comma:\n''').strip()
_lowerCAmelCase : Any = sorted(int(item) for item in user_input.split(''','''))
_lowerCAmelCase : Optional[Any] = int(input('''Enter a single number to be found in the list:\n'''))
_lowerCAmelCase : Optional[Any] = binary_search(collection, target)
if result is None:
print(f'''{target} was not found in {collection}.''')
else:
print(f'''{target} was found at position {result} in {collection}.''') | 340 |
"""simple docstring"""
import logging
from transformers.configuration_utils import PretrainedConfig
_lowerCAmelCase : Optional[Any] = logging.getLogger(__name__)
class A_ ( _a ):
lowerCAmelCase__ = 'masked_bert'
def __init__( self: Union[str, Any] ,__lowerCAmelCase: Dict=30_522 ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Dict=12 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: List[Any]="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Tuple=512 ,__lowerCAmelCase: str=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Union[str, Any]=1e-12 ,__lowerCAmelCase: Union[str, Any]=0 ,__lowerCAmelCase: List[Any]="topK" ,__lowerCAmelCase: Optional[Any]="constant" ,__lowerCAmelCase: Optional[Any]=0.0 ,**__lowerCAmelCase: str ,):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCAmelCase ,**__lowerCAmelCase )
_lowerCamelCase : List[Any] = vocab_size
_lowerCamelCase : Optional[Any] = hidden_size
_lowerCamelCase : Tuple = num_hidden_layers
_lowerCamelCase : Tuple = num_attention_heads
_lowerCamelCase : Optional[Any] = hidden_act
_lowerCamelCase : Optional[Any] = intermediate_size
_lowerCamelCase : str = hidden_dropout_prob
_lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob
_lowerCamelCase : str = max_position_embeddings
_lowerCamelCase : List[str] = type_vocab_size
_lowerCamelCase : Optional[int] = initializer_range
_lowerCamelCase : List[Any] = layer_norm_eps
_lowerCamelCase : int = pruning_method
_lowerCamelCase : str = mask_init
_lowerCamelCase : List[Any] = mask_scale | 340 | 1 |
"""simple docstring"""
import argparse
import os
import re
_lowerCAmelCase : int = '''src/diffusers'''
# Pattern that looks at the indentation in a line.
_lowerCAmelCase : Optional[int] = re.compile(R'''^(\s*)\S''')
# Pattern that matches `"key":" and puts `key` in group 0.
_lowerCAmelCase : Any = re.compile(R'''^\s*"([^"]+)":''')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
_lowerCAmelCase : str = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''')
# Pattern that matches `"key",` and puts `key` in group 0.
_lowerCAmelCase : str = re.compile(R'''^\s*"([^"]+)",\s*$''')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
_lowerCAmelCase : Dict = re.compile(R'''\[([^\]]+)\]''')
def lowerCamelCase_( _lowerCamelCase ) -> str:
'''simple docstring'''
_lowerCamelCase : Tuple = _re_indent.search(_lowerCamelCase )
return "" if search is None else search.groups()[0]
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase="" , _lowerCamelCase=None , _lowerCamelCase=None ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Tuple = 0
_lowerCamelCase : List[Any] = code.split("\n" )
if start_prompt is not None:
while not lines[index].startswith(_lowerCamelCase ):
index += 1
_lowerCamelCase : Union[str, Any] = ["\n".join(lines[:index] )]
else:
_lowerCamelCase : Optional[Any] = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
_lowerCamelCase : int = [lines[index]]
index += 1
while index < len(_lowerCamelCase ) and (end_prompt is None or not lines[index].startswith(_lowerCamelCase )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(_lowerCamelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ):
current_block.append(lines[index] )
blocks.append("\n".join(_lowerCamelCase ) )
if index < len(_lowerCamelCase ) - 1:
_lowerCamelCase : str = [lines[index + 1]]
index += 1
else:
_lowerCamelCase : Dict = []
else:
blocks.append("\n".join(_lowerCamelCase ) )
_lowerCamelCase : Tuple = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(_lowerCamelCase ) > 0:
blocks.append("\n".join(_lowerCamelCase ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(_lowerCamelCase ):
blocks.append("\n".join(lines[index:] ) )
return blocks
def lowerCamelCase_( _lowerCamelCase ) -> Dict:
'''simple docstring'''
def _inner(_lowerCamelCase ):
return key(_lowerCamelCase ).lower().replace("_" , "" )
return _inner
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=None ) -> List[str]:
'''simple docstring'''
def noop(_lowerCamelCase ):
return x
if key is None:
_lowerCamelCase : Tuple = noop
# Constants are all uppercase, they go first.
_lowerCamelCase : Union[str, Any] = [obj for obj in objects if key(_lowerCamelCase ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
_lowerCamelCase : Optional[int] = [obj for obj in objects if key(_lowerCamelCase )[0].isupper() and not key(_lowerCamelCase ).isupper()]
# Functions begin with a lowercase, they go last.
_lowerCamelCase : Any = [obj for obj in objects if not key(_lowerCamelCase )[0].isupper()]
_lowerCamelCase : Tuple = ignore_underscore(_lowerCamelCase )
return sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase )
def lowerCamelCase_( _lowerCamelCase ) -> str:
'''simple docstring'''
def _replace(_lowerCamelCase ):
_lowerCamelCase : Any = match.groups()[0]
if "," not in imports:
return F"""[{imports}]"""
_lowerCamelCase : Optional[Any] = [part.strip().replace("\"" , "" ) for part in imports.split("," )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
_lowerCamelCase : List[str] = keys[:-1]
return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(_lowerCamelCase )] ) + "]"
_lowerCamelCase : int = import_statement.split("\n" )
if len(_lowerCamelCase ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
_lowerCamelCase : int = 2 if lines[1].strip() == "[" else 1
_lowerCamelCase : Any = [(i, _re_strip_line.search(_lowerCamelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
_lowerCamelCase : Union[str, Any] = sort_objects(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] )
_lowerCamelCase : Dict = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(_lowerCamelCase ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
_lowerCamelCase : List[str] = _re_bracket_content.sub(_replace , lines[1] )
else:
_lowerCamelCase : Optional[Any] = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
_lowerCamelCase : Optional[Any] = keys[:-1]
_lowerCamelCase : Optional[Any] = get_indent(lines[1] ) + ", ".join([F"""\"{k}\"""" for k in sort_objects(_lowerCamelCase )] )
return "\n".join(_lowerCamelCase )
else:
# Finally we have to deal with imports fitting on one line
_lowerCamelCase : Any = _re_bracket_content.sub(_replace , _lowerCamelCase )
return import_statement
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=True ) -> int:
'''simple docstring'''
with open(_lowerCamelCase , "r" ) as f:
_lowerCamelCase : int = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
_lowerCamelCase : Optional[Any] = split_code_in_indented_blocks(
_lowerCamelCase , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(_lowerCamelCase ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
_lowerCamelCase : str = main_blocks[block_idx]
_lowerCamelCase : Optional[Any] = block.split("\n" )
# Get to the start of the imports.
_lowerCamelCase : Any = 0
while line_idx < len(_lowerCamelCase ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
_lowerCamelCase : Dict = len(_lowerCamelCase )
else:
line_idx += 1
if line_idx >= len(_lowerCamelCase ):
continue
# Ignore beginning and last line: they don't contain anything.
_lowerCamelCase : Optional[Any] = "\n".join(block_lines[line_idx:-1] )
_lowerCamelCase : str = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
_lowerCamelCase : Union[str, Any] = split_code_in_indented_blocks(_lowerCamelCase , indent_level=_lowerCamelCase )
# We have two categories of import key: list or _import_structure[key].append/extend
_lowerCamelCase : Optional[Any] = _re_direct_key if "_import_structure" in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
_lowerCamelCase : Dict = [(pattern.search(_lowerCamelCase ).groups()[0] if pattern.search(_lowerCamelCase ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
_lowerCamelCase : Any = [(i, key) for i, key in enumerate(_lowerCamelCase ) if key is not None]
_lowerCamelCase : Tuple = [x[0] for x in sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
_lowerCamelCase : Any = 0
_lowerCamelCase : str = []
for i in range(len(_lowerCamelCase ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
_lowerCamelCase : Optional[int] = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(_lowerCamelCase )
count += 1
# And we put our main block back together with its first and last line.
_lowerCamelCase : str = "\n".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(_lowerCamelCase ):
if check_only:
return True
else:
print(F"""Overwriting {file}.""" )
with open(_lowerCamelCase , "w" ) as f:
f.write("\n".join(_lowerCamelCase ) )
def lowerCamelCase_( _lowerCamelCase=True ) -> Union[str, Any]:
'''simple docstring'''
_lowerCamelCase : int = []
for root, _, files in os.walk(_lowerCamelCase ):
if "__init__.py" in files:
_lowerCamelCase : Tuple = sort_imports(os.path.join(_lowerCamelCase , "__init__.py" ) , check_only=_lowerCamelCase )
if result:
_lowerCamelCase : int = [os.path.join(_lowerCamelCase , "__init__.py" )]
if len(_lowerCamelCase ) > 0:
raise ValueError(F"""Would overwrite {len(_lowerCamelCase )} files, run `make style`.""" )
if __name__ == "__main__":
_lowerCAmelCase : int = argparse.ArgumentParser()
parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''')
_lowerCAmelCase : Dict = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only) | 340 |
"""simple docstring"""
import random
import unittest
import numpy as np
import transformers
from transformers import is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax
if is_flax_available():
import os
import jax.numpy as jnp
from jax import jit
from transformers import AutoTokenizer, FlaxAutoModelForCausalLM
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
_lowerCAmelCase : str = '''0.12''' # assumed parallelism: 8
if is_torch_available():
import torch
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) -> List[Any]:
'''simple docstring'''
if rng is None:
_lowerCamelCase : Union[str, Any] = random.Random()
_lowerCamelCase : Union[str, Any] = 1
for dim in shape:
total_dims *= dim
_lowerCamelCase : Optional[int] = []
for _ in range(_lowerCamelCase ):
values.append(rng.randint(0 , vocab_size - 1 ) )
_lowerCamelCase : Union[str, Any] = np.array(_lowerCamelCase , dtype=jnp.intaa ).reshape(_lowerCamelCase )
return output
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]:
'''simple docstring'''
_lowerCamelCase : Optional[int] = ids_tensor(_lowerCamelCase , vocab_size=2 , rng=_lowerCamelCase )
# make sure that at least one token is attended to for each batch
_lowerCamelCase : List[str] = 1
return attn_mask
@require_flax
class A_ :
lowerCAmelCase__ = None
lowerCAmelCase__ = ()
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
# cut to half length & take max batch_size 3
_lowerCamelCase : List[str] = 2
_lowerCamelCase : str = inputs["input_ids"].shape[-1] // 2
_lowerCamelCase : Tuple = inputs["input_ids"][:max_batch_size, :sequence_length]
_lowerCamelCase : Any = jnp.ones_like(__lowerCAmelCase )
_lowerCamelCase : List[Any] = attention_mask[:max_batch_size, :sequence_length]
# generate max 5 tokens
_lowerCamelCase : Optional[Any] = input_ids.shape[-1] + 5
if config.eos_token_id is not None and config.pad_token_id is None:
# hack to allow generate for models such as GPT2 as is done in `generate()`
_lowerCamelCase : List[str] = config.eos_token_id
return config, input_ids, attention_mask, max_length
@is_pt_flax_cross_test
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = self._get_input_ids_and_config()
_lowerCamelCase : List[Any] = False
_lowerCamelCase : Dict = max_length
_lowerCamelCase : Tuple = 0
for model_class in self.all_generative_model_classes:
_lowerCamelCase : str = model_class(__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning
_lowerCamelCase : Any = getattr(__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : Dict = pt_model_class(__lowerCAmelCase ).eval()
_lowerCamelCase : Optional[Any] = load_flax_weights_in_pytorch_model(__lowerCAmelCase ,flax_model.params )
_lowerCamelCase : int = flax_model.generate(__lowerCAmelCase ).sequences
_lowerCamelCase : Optional[int] = pt_model.generate(torch.tensor(__lowerCAmelCase ,dtype=torch.long ) )
if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]:
_lowerCamelCase : List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]]
self.assertListEqual(pt_generation_outputs.numpy().tolist() ,flax_generation_outputs.tolist() )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = self._get_input_ids_and_config()
_lowerCamelCase : Union[str, Any] = False
_lowerCamelCase : Union[str, Any] = max_length
for model_class in self.all_generative_model_classes:
_lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase )
_lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Dict = jit(model.generate )
_lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config()
_lowerCamelCase : List[Any] = True
_lowerCamelCase : Optional[int] = max_length
for model_class in self.all_generative_model_classes:
_lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase )
_lowerCamelCase : List[Any] = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Dict = jit(model.generate )
_lowerCamelCase : int = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config()
_lowerCamelCase : int = False
_lowerCamelCase : Optional[Any] = max_length
_lowerCamelCase : Dict = 2
for model_class in self.all_generative_model_classes:
_lowerCamelCase : List[str] = model_class(__lowerCAmelCase )
_lowerCamelCase : Dict = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Tuple = jit(model.generate )
_lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = self._get_input_ids_and_config()
_lowerCamelCase : Tuple = False
_lowerCamelCase : Union[str, Any] = max_length
_lowerCamelCase : List[str] = 2
_lowerCamelCase : Optional[int] = 2
for model_class in self.all_generative_model_classes:
_lowerCamelCase : List[Any] = model_class(__lowerCAmelCase )
_lowerCamelCase : str = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[0] ,input_ids.shape[0] * config.num_return_sequences )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config()
_lowerCamelCase : int = True
_lowerCamelCase : List[Any] = max_length
_lowerCamelCase : Optional[Any] = 0.8
_lowerCamelCase : Union[str, Any] = 10
_lowerCamelCase : List[str] = 0.3
_lowerCamelCase : Tuple = 1
_lowerCamelCase : Any = 8
_lowerCamelCase : str = 9
for model_class in self.all_generative_model_classes:
_lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase )
_lowerCamelCase : Any = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : int = jit(model.generate )
_lowerCamelCase : Optional[int] = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = self._get_input_ids_and_config()
_lowerCamelCase : List[str] = max_length
_lowerCamelCase : Tuple = 1
_lowerCamelCase : Any = 8
_lowerCamelCase : Dict = 9
for model_class in self.all_generative_model_classes:
_lowerCamelCase : Any = model_class(__lowerCAmelCase )
_lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Any = jit(model.generate )
_lowerCamelCase : Any = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: List[str] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config()
_lowerCamelCase : Dict = max_length
_lowerCamelCase : List[Any] = 2
_lowerCamelCase : Tuple = 1
_lowerCamelCase : List[str] = 8
_lowerCamelCase : List[Any] = 9
for model_class in self.all_generative_model_classes:
_lowerCamelCase : int = model_class(__lowerCAmelCase )
_lowerCamelCase : Optional[int] = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Tuple = jit(model.generate )
_lowerCamelCase : Optional[Any] = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config()
# pad attention mask on the left
_lowerCamelCase : Tuple = attention_mask.at[(0, 0)].set(0 )
_lowerCamelCase : Dict = False
_lowerCamelCase : Any = max_length
for model_class in self.all_generative_model_classes:
_lowerCamelCase : List[Any] = model_class(__lowerCAmelCase )
_lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Any = jit(model.generate )
_lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = self._get_input_ids_and_config()
# pad attention mask on the left
_lowerCamelCase : Optional[Any] = attention_mask.at[(0, 0)].set(0 )
_lowerCamelCase : List[str] = True
_lowerCamelCase : Optional[Any] = max_length
for model_class in self.all_generative_model_classes:
_lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Any = jit(model.generate )
_lowerCamelCase : List[Any] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config()
# pad attention mask on the left
_lowerCamelCase : List[str] = attention_mask.at[(0, 0)].set(0 )
_lowerCamelCase : int = 2
_lowerCamelCase : int = max_length
for model_class in self.all_generative_model_classes:
_lowerCamelCase : List[Any] = model_class(__lowerCAmelCase )
_lowerCamelCase : int = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase )
_lowerCamelCase : Dict = jit(model.generate )
_lowerCamelCase : Dict = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
@require_flax
class A_ ( unittest.TestCase ):
def _lowercase ( self: Any ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" )
_lowerCamelCase : Union[str, Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" )
_lowerCamelCase : Optional[Any] = "Hello world"
_lowerCamelCase : str = tokenizer(__lowerCAmelCase ,return_tensors="np" ).input_ids
# typos are quickly detected (the correct argument is `do_sample`)
with self.assertRaisesRegex(__lowerCAmelCase ,"do_samples" ):
model.generate(__lowerCAmelCase ,do_samples=__lowerCAmelCase )
# arbitrary arguments that will not be used anywhere are also not accepted
with self.assertRaisesRegex(__lowerCAmelCase ,"foo" ):
_lowerCamelCase : List[str] = {"foo": "bar"}
model.generate(__lowerCAmelCase ,**__lowerCAmelCase ) | 340 | 1 |
"""simple docstring"""
def lowerCamelCase_( _lowerCamelCase ) -> str:
'''simple docstring'''
return "".join(chr(ord(_lowerCamelCase ) - 32 ) if "a" <= char <= "z" else char for char in word )
if __name__ == "__main__":
from doctest import testmod
testmod() | 340 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowerCAmelCase : List[str] = logging.get_logger(__name__)
_lowerCAmelCase : int = {
'''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''',
'''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''',
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
}
class A_ ( _a ):
lowerCAmelCase__ = 'mobilenet_v1'
def __init__( self: Tuple ,__lowerCAmelCase: int=3 ,__lowerCAmelCase: Dict=224 ,__lowerCAmelCase: int=1.0 ,__lowerCAmelCase: Tuple=8 ,__lowerCAmelCase: List[str]="relu6" ,__lowerCAmelCase: int=True ,__lowerCAmelCase: List[Any]=0.9_99 ,__lowerCAmelCase: Optional[int]=0.02 ,__lowerCAmelCase: Optional[int]=0.0_01 ,**__lowerCAmelCase: str ,):
'''simple docstring'''
super().__init__(**__lowerCAmelCase )
if depth_multiplier <= 0:
raise ValueError("depth_multiplier must be greater than zero." )
_lowerCamelCase : List[str] = num_channels
_lowerCamelCase : Union[str, Any] = image_size
_lowerCamelCase : List[Any] = depth_multiplier
_lowerCamelCase : Any = min_depth
_lowerCamelCase : Tuple = hidden_act
_lowerCamelCase : Dict = tf_padding
_lowerCamelCase : Union[str, Any] = classifier_dropout_prob
_lowerCamelCase : Tuple = initializer_range
_lowerCamelCase : List[Any] = layer_norm_eps
class A_ ( _a ):
lowerCAmelCase__ = version.parse('1.11' )
@property
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
return OrderedDict([("pixel_values", {0: "batch"})] )
@property
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
if self.task == "image-classification":
return OrderedDict([("logits", {0: "batch"})] )
else:
return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] )
@property
def _lowercase ( self: Any ):
'''simple docstring'''
return 1e-4 | 340 | 1 |
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPImageProcessor, CLIPProcessor
@require_vision
class A_ ( unittest.TestCase ):
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : List[str] = tempfile.mkdtemp()
# fmt: off
_lowerCamelCase : List[str] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"]
# fmt: on
_lowerCamelCase : Any = dict(zip(__lowerCAmelCase ,range(len(__lowerCAmelCase ) ) ) )
_lowerCamelCase : int = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""]
_lowerCamelCase : Tuple = {"unk_token": "<unk>"}
_lowerCamelCase : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] )
_lowerCamelCase : Dict = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp:
fp.write(json.dumps(__lowerCAmelCase ) + "\n" )
with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp:
fp.write("\n".join(__lowerCAmelCase ) )
_lowerCamelCase : str = {
"do_resize": True,
"size": 20,
"do_center_crop": True,
"crop_size": 18,
"do_normalize": True,
"image_mean": [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
"image_std": [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
}
_lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname ,__lowerCAmelCase )
with open(self.image_processor_file ,"w" ,encoding="utf-8" ) as fp:
json.dump(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: Dict ,**__lowerCAmelCase: str ):
'''simple docstring'''
return CLIPTokenizer.from_pretrained(self.tmpdirname ,**__lowerCAmelCase )
def _lowercase ( self: Tuple ,**__lowerCAmelCase: int ):
'''simple docstring'''
return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**__lowerCAmelCase )
def _lowercase ( self: Optional[int] ,**__lowerCAmelCase: List[Any] ):
'''simple docstring'''
return CLIPImageProcessor.from_pretrained(self.tmpdirname ,**__lowerCAmelCase )
def _lowercase ( self: str ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase : Tuple = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )]
_lowerCamelCase : Tuple = [Image.fromarray(np.moveaxis(__lowerCAmelCase ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : str = self.get_tokenizer()
_lowerCamelCase : str = self.get_rust_tokenizer()
_lowerCamelCase : Any = self.get_image_processor()
_lowerCamelCase : Optional[int] = CLIPProcessor(tokenizer=__lowerCAmelCase ,image_processor=__lowerCAmelCase )
processor_slow.save_pretrained(self.tmpdirname )
_lowerCamelCase : Optional[Any] = CLIPProcessor.from_pretrained(self.tmpdirname ,use_fast=__lowerCAmelCase )
_lowerCamelCase : str = CLIPProcessor(tokenizer=__lowerCAmelCase ,image_processor=__lowerCAmelCase )
processor_fast.save_pretrained(self.tmpdirname )
_lowerCamelCase : Union[str, Any] = CLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer ,__lowerCAmelCase )
self.assertIsInstance(processor_fast.tokenizer ,__lowerCAmelCase )
self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor ,__lowerCAmelCase )
self.assertIsInstance(processor_fast.image_processor ,__lowerCAmelCase )
def _lowercase ( self: List[str] ):
'''simple docstring'''
_lowerCamelCase : Tuple = CLIPProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
_lowerCamelCase : List[str] = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" )
_lowerCamelCase : List[str] = self.get_image_processor(do_normalize=__lowerCAmelCase ,padding_value=1.0 )
_lowerCamelCase : int = CLIPProcessor.from_pretrained(
self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=__lowerCAmelCase ,padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer ,__lowerCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,__lowerCAmelCase )
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase : Tuple = self.get_image_processor()
_lowerCamelCase : Dict = self.get_tokenizer()
_lowerCamelCase : Optional[int] = CLIPProcessor(tokenizer=__lowerCAmelCase ,image_processor=__lowerCAmelCase )
_lowerCamelCase : Tuple = self.prepare_image_inputs()
_lowerCamelCase : Optional[int] = image_processor(__lowerCAmelCase ,return_tensors="np" )
_lowerCamelCase : str = processor(images=__lowerCAmelCase ,return_tensors="np" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() ,input_processor[key].sum() ,delta=1e-2 )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = self.get_image_processor()
_lowerCamelCase : Any = self.get_tokenizer()
_lowerCamelCase : Tuple = CLIPProcessor(tokenizer=__lowerCAmelCase ,image_processor=__lowerCAmelCase )
_lowerCamelCase : str = "lower newer"
_lowerCamelCase : Any = processor(text=__lowerCAmelCase )
_lowerCamelCase : Dict = tokenizer(__lowerCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] ,encoded_processor[key] )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = self.get_image_processor()
_lowerCamelCase : Dict = self.get_tokenizer()
_lowerCamelCase : Optional[int] = CLIPProcessor(tokenizer=__lowerCAmelCase ,image_processor=__lowerCAmelCase )
_lowerCamelCase : List[Any] = "lower newer"
_lowerCamelCase : List[str] = self.prepare_image_inputs()
_lowerCamelCase : List[Any] = processor(text=__lowerCAmelCase ,images=__lowerCAmelCase )
self.assertListEqual(list(inputs.keys() ) ,["input_ids", "attention_mask", "pixel_values"] )
# test if it raises when no input is passed
with pytest.raises(__lowerCAmelCase ):
processor()
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : List[str] = self.get_image_processor()
_lowerCamelCase : Optional[int] = self.get_tokenizer()
_lowerCamelCase : str = CLIPProcessor(tokenizer=__lowerCAmelCase ,image_processor=__lowerCAmelCase )
_lowerCamelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
_lowerCamelCase : int = processor.batch_decode(__lowerCAmelCase )
_lowerCamelCase : Any = tokenizer.batch_decode(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : Tuple = self.get_image_processor()
_lowerCamelCase : Optional[int] = self.get_tokenizer()
_lowerCamelCase : List[str] = CLIPProcessor(tokenizer=__lowerCAmelCase ,image_processor=__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = "lower newer"
_lowerCamelCase : Optional[int] = self.prepare_image_inputs()
_lowerCamelCase : Union[str, Any] = processor(text=__lowerCAmelCase ,images=__lowerCAmelCase )
self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names ) | 340 |
"""simple docstring"""
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def lowerCamelCase_( _lowerCamelCase ) -> Any:
'''simple docstring'''
for param in module.parameters():
_lowerCamelCase : Optional[int] = False
def lowerCamelCase_( ) -> List[str]:
'''simple docstring'''
_lowerCamelCase : Optional[Any] = "cuda" if torch.cuda.is_available() else "cpu"
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
_lowerCamelCase : int = "mps"
if device == "mps":
print(
"WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"
" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"
" with generations." )
return device
def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]:
'''simple docstring'''
_lowerCamelCase : Dict = plt.imshow(_lowerCamelCase )
fig.axes.get_xaxis().set_visible(_lowerCamelCase )
fig.axes.get_yaxis().set_visible(_lowerCamelCase )
plt.show()
def lowerCamelCase_( ) -> str:
'''simple docstring'''
_lowerCamelCase : Tuple = datetime.now()
_lowerCamelCase : Tuple = current_time.strftime("%H:%M:%S" )
return timestamp | 340 | 1 |
"""simple docstring"""
from __future__ import annotations
from random import random
from typing import Generic, TypeVar
_lowerCAmelCase : Union[str, Any] = TypeVar('''KT''')
_lowerCAmelCase : Union[str, Any] = TypeVar('''VT''')
class A_ ( Generic[KT, VT] ):
def __init__( self: int ,__lowerCAmelCase: KT | str = "root" ,__lowerCAmelCase: VT | None = None ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = key
_lowerCamelCase : int = value
_lowerCamelCase : list[Node[KT, VT]] = []
def __repr__( self: Dict ):
'''simple docstring'''
return F"""Node({self.key}: {self.value})"""
@property
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
return len(self.forward )
class A_ ( Generic[KT, VT] ):
def __init__( self: str ,__lowerCAmelCase: float = 0.5 ,__lowerCAmelCase: int = 16 ):
'''simple docstring'''
_lowerCamelCase : Node[KT, VT] = Node[KT, VT]()
_lowerCamelCase : List[str] = 0
_lowerCamelCase : Tuple = p
_lowerCamelCase : Optional[Any] = max_level
def __str__( self: str ):
'''simple docstring'''
_lowerCamelCase : Tuple = list(self )
if len(__lowerCAmelCase ) == 0:
return F"""SkipList(level={self.level})"""
_lowerCamelCase : Optional[int] = max((len(str(__lowerCAmelCase ) ) for item in items) ,default=4 )
_lowerCamelCase : Any = max(__lowerCAmelCase ,4 ) + 4
_lowerCamelCase : int = self.head
_lowerCamelCase : Any = []
_lowerCamelCase : str = node.forward.copy()
lines.append(F"""[{node.key}]""".ljust(__lowerCAmelCase ,"-" ) + "* " * len(__lowerCAmelCase ) )
lines.append(" " * label_size + "| " * len(__lowerCAmelCase ) )
while len(node.forward ) != 0:
_lowerCamelCase : List[Any] = node.forward[0]
lines.append(
F"""[{node.key}]""".ljust(__lowerCAmelCase ,"-" )
+ " ".join(str(n.key ) if n.key == node.key else "|" for n in forwards ) )
lines.append(" " * label_size + "| " * len(__lowerCAmelCase ) )
_lowerCamelCase : int = node.forward
lines.append("None".ljust(__lowerCAmelCase ) + "* " * len(__lowerCAmelCase ) )
return F"""SkipList(level={self.level})\n""" + "\n".join(__lowerCAmelCase )
def __iter__( self: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : List[str] = self.head
while len(node.forward ) != 0:
yield node.forward[0].key
_lowerCamelCase : Optional[int] = node.forward[0]
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = 1
while random() < self.p and level < self.max_level:
level += 1
return level
def _lowercase ( self: List[Any] ,__lowerCAmelCase: Dict ):
'''simple docstring'''
_lowerCamelCase : List[str] = []
_lowerCamelCase : int = self.head
for i in reversed(range(self.level ) ):
# i < node.level - When node level is lesser than `i` decrement `i`.
# node.forward[i].key < key - Jumping to node with key value higher
# or equal to searched key would result
# in skipping searched key.
while i < node.level and node.forward[i].key < key:
_lowerCamelCase : Optional[int] = node.forward[i]
# Each leftmost node (relative to searched node) will potentially have to
# be updated.
update_vector.append(__lowerCAmelCase )
update_vector.reverse() # Note that we were inserting values in reverse order.
# len(node.forward) != 0 - If current node doesn't contain any further
# references then searched key is not present.
# node.forward[0].key == key - Next node key should be equal to search key
# if key is present.
if len(node.forward ) != 0 and node.forward[0].key == key:
return node.forward[0], update_vector
else:
return None, update_vector
def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: KT ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : List[str] = self._locate_node(__lowerCAmelCase )
if node is not None:
for i, update_node in enumerate(__lowerCAmelCase ):
# Remove or replace all references to removed node.
if update_node.level > i and update_node.forward[i].key == key:
if node.level > i:
_lowerCamelCase : int = node.forward[i]
else:
_lowerCamelCase : Optional[int] = update_node.forward[:i]
def _lowercase ( self: Tuple ,__lowerCAmelCase: KT ,__lowerCAmelCase: VT ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : int = self._locate_node(__lowerCAmelCase )
if node is not None:
_lowerCamelCase : int = value
else:
_lowerCamelCase : Optional[int] = self.random_level()
if level > self.level:
# After level increase we have to add additional nodes to head.
for _ in range(self.level - 1 ,__lowerCAmelCase ):
update_vector.append(self.head )
_lowerCamelCase : Any = level
_lowerCamelCase : List[str] = Node(__lowerCAmelCase ,__lowerCAmelCase )
for i, update_node in enumerate(update_vector[:level] ):
# Change references to pass through new node.
if update_node.level > i:
new_node.forward.append(update_node.forward[i] )
if update_node.level < i + 1:
update_node.forward.append(__lowerCAmelCase )
else:
_lowerCamelCase : Optional[int] = new_node
def _lowercase ( self: Tuple ,__lowerCAmelCase: VT ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : Optional[Any] = self._locate_node(__lowerCAmelCase )
if node is not None:
return node.value
return None
def lowerCamelCase_( ) -> int:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = SkipList()
skip_list.insert("Key1" , 3 )
skip_list.insert("Key2" , 12 )
skip_list.insert("Key3" , 41 )
skip_list.insert("Key4" , -19 )
_lowerCamelCase : Union[str, Any] = skip_list.head
_lowerCamelCase : List[Any] = {}
while node.level != 0:
_lowerCamelCase : Tuple = node.forward[0]
_lowerCamelCase : Optional[Any] = node.value
assert len(_lowerCamelCase ) == 4
assert all_values["Key1"] == 3
assert all_values["Key2"] == 12
assert all_values["Key3"] == 41
assert all_values["Key4"] == -19
def lowerCamelCase_( ) -> List[str]:
'''simple docstring'''
_lowerCamelCase : Optional[int] = SkipList()
skip_list.insert("Key1" , 10 )
skip_list.insert("Key1" , 12 )
skip_list.insert("Key5" , 7 )
skip_list.insert("Key7" , 10 )
skip_list.insert("Key10" , 5 )
skip_list.insert("Key7" , 7 )
skip_list.insert("Key5" , 5 )
skip_list.insert("Key10" , 10 )
_lowerCamelCase : List[str] = skip_list.head
_lowerCamelCase : Dict = {}
while node.level != 0:
_lowerCamelCase : Union[str, Any] = node.forward[0]
_lowerCamelCase : Tuple = node.value
if len(_lowerCamelCase ) != 4:
print()
assert len(_lowerCamelCase ) == 4
assert all_values["Key1"] == 12
assert all_values["Key7"] == 7
assert all_values["Key5"] == 5
assert all_values["Key10"] == 10
def lowerCamelCase_( ) -> List[Any]:
'''simple docstring'''
_lowerCamelCase : Dict = SkipList()
assert skip_list.find("Some key" ) is None
def lowerCamelCase_( ) -> str:
'''simple docstring'''
_lowerCamelCase : List[str] = SkipList()
skip_list.insert("Key2" , 20 )
assert skip_list.find("Key2" ) == 20
skip_list.insert("Some Key" , 10 )
skip_list.insert("Key2" , 8 )
skip_list.insert("V" , 13 )
assert skip_list.find("Y" ) is None
assert skip_list.find("Key2" ) == 8
assert skip_list.find("Some Key" ) == 10
assert skip_list.find("V" ) == 13
def lowerCamelCase_( ) -> List[str]:
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = SkipList()
skip_list.delete("Some key" )
assert len(skip_list.head.forward ) == 0
def lowerCamelCase_( ) -> List[str]:
'''simple docstring'''
_lowerCamelCase : Any = SkipList()
skip_list.insert("Key1" , 12 )
skip_list.insert("V" , 13 )
skip_list.insert("X" , 14 )
skip_list.insert("Key2" , 15 )
skip_list.delete("V" )
skip_list.delete("Key2" )
assert skip_list.find("V" ) is None
assert skip_list.find("Key2" ) is None
def lowerCamelCase_( ) -> Optional[Any]:
'''simple docstring'''
_lowerCamelCase : Any = SkipList()
skip_list.insert("Key1" , 12 )
skip_list.insert("V" , 13 )
skip_list.insert("X" , 14 )
skip_list.insert("Key2" , 15 )
skip_list.delete("V" )
assert skip_list.find("V" ) is None
assert skip_list.find("X" ) == 14
assert skip_list.find("Key1" ) == 12
assert skip_list.find("Key2" ) == 15
skip_list.delete("X" )
assert skip_list.find("V" ) is None
assert skip_list.find("X" ) is None
assert skip_list.find("Key1" ) == 12
assert skip_list.find("Key2" ) == 15
skip_list.delete("Key1" )
assert skip_list.find("V" ) is None
assert skip_list.find("X" ) is None
assert skip_list.find("Key1" ) is None
assert skip_list.find("Key2" ) == 15
skip_list.delete("Key2" )
assert skip_list.find("V" ) is None
assert skip_list.find("X" ) is None
assert skip_list.find("Key1" ) is None
assert skip_list.find("Key2" ) is None
def lowerCamelCase_( ) -> Tuple:
'''simple docstring'''
_lowerCamelCase : Dict = SkipList()
skip_list.insert("Key1" , 12 )
skip_list.insert("V" , 13 )
skip_list.insert("X" , 142 )
skip_list.insert("Key2" , 15 )
skip_list.delete("X" )
def traverse_keys(_lowerCamelCase ):
yield node.key
for forward_node in node.forward:
yield from traverse_keys(_lowerCamelCase )
assert len(set(traverse_keys(skip_list.head ) ) ) == 4
def lowerCamelCase_( ) -> Any:
'''simple docstring'''
def is_sorted(_lowerCamelCase ):
return all(next_item >= item for item, next_item in zip(_lowerCamelCase , lst[1:] ) )
_lowerCamelCase : Tuple = SkipList()
for i in range(10 ):
skip_list.insert(_lowerCamelCase , _lowerCamelCase )
assert is_sorted(list(_lowerCamelCase ) )
skip_list.delete(5 )
skip_list.delete(8 )
skip_list.delete(2 )
assert is_sorted(list(_lowerCamelCase ) )
skip_list.insert(-12 , -12 )
skip_list.insert(77 , 77 )
assert is_sorted(list(_lowerCamelCase ) )
def lowerCamelCase_( ) -> List[Any]:
'''simple docstring'''
for _ in range(100 ):
# Repeat test 100 times due to the probabilistic nature of skip list
# random values == random bugs
test_insert()
test_insert_overrides_existing_value()
test_searching_empty_list_returns_none()
test_search()
test_deleting_item_from_empty_list_do_nothing()
test_deleted_items_are_not_founded_by_find_method()
test_delete_removes_only_given_key()
test_delete_doesnt_leave_dead_nodes()
test_iter_always_yields_sorted_values()
def lowerCamelCase_( ) -> Tuple:
'''simple docstring'''
_lowerCamelCase : Tuple = SkipList()
skip_list.insert(2 , "2" )
skip_list.insert(4 , "4" )
skip_list.insert(6 , "4" )
skip_list.insert(4 , "5" )
skip_list.insert(8 , "4" )
skip_list.insert(9 , "4" )
skip_list.delete(4 )
print(_lowerCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
main() | 340 |
"""simple docstring"""
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str:
'''simple docstring'''
_lowerCamelCase : int = len(_lowerCamelCase )
_lowerCamelCase : int = len(_lowerCamelCase )
_lowerCamelCase : int = (
first_str_length if first_str_length > second_str_length else second_str_length
)
_lowerCamelCase : list = []
for char_count in range(_lowerCamelCase ):
if char_count < first_str_length:
output_list.append(first_str[char_count] )
if char_count < second_str_length:
output_list.append(second_str[char_count] )
return "".join(_lowerCamelCase )
if __name__ == "__main__":
print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''') | 340 | 1 |
"""simple docstring"""
from collections.abc import Sequence
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = False ) -> float:
'''simple docstring'''
if not arr:
return 0
_lowerCamelCase : str = 0 if allow_empty_subarrays else float("-inf" )
_lowerCamelCase : List[Any] = 0.0
for num in arr:
_lowerCamelCase : Union[str, Any] = max(0 if allow_empty_subarrays else num , curr_sum + num )
_lowerCamelCase : Optional[Any] = max(_lowerCamelCase , _lowerCamelCase )
return max_sum
if __name__ == "__main__":
from doctest import testmod
testmod()
_lowerCAmelCase : List[Any] = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
print(f'''{max_subarray_sum(nums) = }''') | 340 |
"""simple docstring"""
_lowerCAmelCase : Tuple = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple:
'''simple docstring'''
_lowerCamelCase : Any = [False] * len(_lowerCamelCase )
_lowerCamelCase : Union[str, Any] = [s]
_lowerCamelCase : str = True
while queue:
_lowerCamelCase : Optional[int] = queue.pop(0 )
for ind in range(len(graph[u] ) ):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(_lowerCamelCase )
_lowerCamelCase : Any = True
_lowerCamelCase : Any = u
return visited[t]
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
_lowerCamelCase : List[str] = [-1] * (len(_lowerCamelCase ))
_lowerCamelCase : Union[str, Any] = 0
_lowerCamelCase : Union[str, Any] = []
_lowerCamelCase : List[str] = [i[:] for i in graph] # Record original cut, copy.
while bfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
_lowerCamelCase : Any = float("Inf" )
_lowerCamelCase : Dict = sink
while s != source:
# Find the minimum value in select path
_lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , graph[parent[s]][s] )
_lowerCamelCase : Union[str, Any] = parent[s]
max_flow += path_flow
_lowerCamelCase : Optional[Any] = sink
while v != source:
_lowerCamelCase : Union[str, Any] = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
_lowerCamelCase : List[str] = parent[v]
for i in range(len(_lowerCamelCase ) ):
for j in range(len(graph[0] ) ):
if graph[i][j] == 0 and temp[i][j] > 0:
res.append((i, j) )
return res
if __name__ == "__main__":
print(mincut(test_graph, source=0, sink=5)) | 340 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.