code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): lowerCAmelCase__ = LEDTokenizer lowerCAmelCase__ = LEDTokenizerFast lowerCAmelCase__ = True def _lowercase ( self: int ): '''simple docstring''' super().setUp() _lowerCamelCase : Tuple = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _lowerCamelCase : int = dict(zip(__lowerCAmelCase ,range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : str = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowerCamelCase : List[str] = {"""unk_token""": """<unk>"""} _lowerCamelCase : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : Optional[int] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(__lowerCAmelCase ) ) def _lowercase ( self: Tuple ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**__lowerCAmelCase ) def _lowercase ( self: int ,**__lowerCAmelCase: List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**__lowerCAmelCase ) def _lowercase ( self: Dict ,__lowerCAmelCase: Any ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def _lowercase ( self: Dict ): '''simple docstring''' return LEDTokenizer.from_pretrained("allenai/led-base-16384" ) @cached_property def _lowercase ( self: Optional[int] ): '''simple docstring''' return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" ) @require_torch def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _lowerCamelCase : List[Any] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCamelCase : List[str] = tokenizer(__lowerCAmelCase ,max_length=len(__lowerCAmelCase ) ,padding=__lowerCAmelCase ,return_tensors="pt" ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) _lowerCamelCase : Any = batch.input_ids.tolist()[0] self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase ) @require_torch def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCamelCase : Dict = tokenizer(__lowerCAmelCase ,padding=__lowerCAmelCase ,return_tensors="pt" ) self.assertIn("input_ids" ,__lowerCAmelCase ) self.assertIn("attention_mask" ,__lowerCAmelCase ) self.assertNotIn("labels" ,__lowerCAmelCase ) self.assertNotIn("decoder_attention_mask" ,__lowerCAmelCase ) @require_torch def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Optional[Any] = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCamelCase : Union[str, Any] = tokenizer(text_target=__lowerCAmelCase ,max_length=32 ,padding="max_length" ,return_tensors="pt" ) self.assertEqual(32 ,targets["input_ids"].shape[1] ) @require_torch def _lowercase ( self: Any ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCamelCase : List[Any] = tokenizer( ["I am a small frog" * 1_024, "I am a small frog"] ,padding=__lowerCAmelCase ,truncation=__lowerCAmelCase ,return_tensors="pt" ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(batch.input_ids.shape ,(2, 5_122) ) @require_torch def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : str = ["""A long paragraph for summarization."""] _lowerCamelCase : int = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCamelCase : Optional[Any] = tokenizer(__lowerCAmelCase ,return_tensors="pt" ) _lowerCamelCase : Any = tokenizer(text_target=__lowerCAmelCase ,return_tensors="pt" ) _lowerCamelCase : Tuple = inputs["""input_ids"""] _lowerCamelCase : List[Any] = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def _lowercase ( self: str ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCamelCase : Dict = ["""Summary of the text.""", """Another summary."""] _lowerCamelCase : List[Any] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _lowerCamelCase : List[Any] = tokenizer(__lowerCAmelCase ,padding=__lowerCAmelCase ) _lowerCamelCase : str = [[0] * len(__lowerCAmelCase ) for x in encoded_output["""input_ids"""]] _lowerCamelCase : List[str] = tokenizer.pad(__lowerCAmelCase ) self.assertSequenceEqual(outputs["global_attention_mask"] ,__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass def _lowercase ( self: List[str] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowerCamelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[Any] = self.tokenizer_class.from_pretrained(__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : Tuple = """A, <mask> AllenNLP sentence.""" _lowerCamelCase : int = tokenizer_r.encode_plus(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ,return_token_type_ids=__lowerCAmelCase ) _lowerCamelCase : int = tokenizer_p.encode_plus(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ,return_token_type_ids=__lowerCAmelCase ) self.assertEqual(sum(tokens_r["token_type_ids"] ) ,sum(tokens_p["token_type_ids"] ) ) self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) ,sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) ,) _lowerCamelCase : str = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) _lowerCamelCase : Dict = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) self.assertSequenceEqual(tokens_p["input_ids"] ,[0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] ,[0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( __lowerCAmelCase ,["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( __lowerCAmelCase ,["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
351
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _lowerCAmelCase : Optional[int] = '''__DUMMY_TRANSFORMERS_USER__''' _lowerCAmelCase : Dict = '''Dummy User''' _lowerCAmelCase : Optional[int] = '''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''' _lowerCAmelCase : Tuple = '''https://hub-ci.huggingface.co''' _lowerCAmelCase : Any = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}''' _lowerCAmelCase : Tuple = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}''' _lowerCAmelCase : Dict = Path('''~/.huggingface/hub_ci_token''').expanduser() @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_ENDPOINT" , _lowerCamelCase ) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' HfFolder.save_token(_lowerCamelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="session" ) def lowerCamelCase_( ) -> str: '''simple docstring''' return HfApi(endpoint=_lowerCamelCase ) @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Dict = HfFolder.get_token() HfFolder.save_token(_lowerCamelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(_lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' def _cleanup_repo(_lowerCamelCase ): hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) return _cleanup_repo @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> List[str]: '''simple docstring''' @contextmanager def _temporary_repo(_lowerCamelCase ): try: yield repo_id finally: cleanup_repo(_lowerCamelCase ) return _temporary_repo @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : Tuple = F"""repo_txt_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : List[str] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data/text_data.txt" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : List[Any] = F"""repo_zipped_txt_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : Dict = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Any = F"""repo_zipped_img_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : List[Any] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
340
0
"""simple docstring""" from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING _lowerCAmelCase : Any = logging.get_logger(__name__) @add_end_docstrings(__lowercase ) class A_ ( __lowercase ): def __init__( self: Optional[int] ,*__lowerCAmelCase: Dict ,**__lowerCAmelCase: Tuple ): '''simple docstring''' super().__init__(*snake_case_ ,**snake_case_ ) self.check_model_type(snake_case_ ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: str=None ,__lowerCAmelCase: Any=None ,__lowerCAmelCase: str=None ,**__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Tuple = {}, {} if padding is not None: _lowerCamelCase : List[Any] = padding if truncation is not None: _lowerCamelCase : int = truncation if top_k is not None: _lowerCamelCase : List[str] = top_k return preprocess_params, {}, postprocess_params def __call__( self: Union[str, Any] ,__lowerCAmelCase: Union["Image.Image", str] ,__lowerCAmelCase: str = None ,**__lowerCAmelCase: List[str] ): '''simple docstring''' if isinstance(snake_case_ ,(Image.Image, str) ) and isinstance(snake_case_ ,snake_case_ ): _lowerCamelCase : List[Any] = {'''image''': image, '''question''': question} else: _lowerCamelCase : Any = image _lowerCamelCase : str = super().__call__(snake_case_ ,**snake_case_ ) return results def _lowercase ( self: Tuple ,__lowerCAmelCase: str ,__lowerCAmelCase: List[Any]=False ,__lowerCAmelCase: Union[str, Any]=False ): '''simple docstring''' _lowerCamelCase : Dict = load_image(inputs["image"] ) _lowerCamelCase : Optional[Any] = self.tokenizer( inputs["question"] ,return_tensors=self.framework ,padding=snake_case_ ,truncation=snake_case_ ) _lowerCamelCase : Any = self.image_processor(images=snake_case_ ,return_tensors=self.framework ) model_inputs.update(snake_case_ ) return model_inputs def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Tuple = self.model(**snake_case_ ) return model_outputs def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Union[str, Any]=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: _lowerCamelCase : Union[str, Any] = self.model.config.num_labels if self.framework == "pt": _lowerCamelCase : Union[str, Any] = model_outputs.logits.sigmoid()[0] _lowerCamelCase : Tuple = probs.topk(snake_case_ ) else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) _lowerCamelCase : str = scores.tolist() _lowerCamelCase : List[Any] = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(snake_case_ ,snake_case_ )]
352
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) class A_ ( _a ): def __init__( self: List[Any] ,__lowerCAmelCase: Union[List[ControlNetModel], Tuple[ControlNetModel]] ): '''simple docstring''' super().__init__() _lowerCamelCase : Tuple = nn.ModuleList(__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Union[torch.Tensor, float, int] ,__lowerCAmelCase: torch.Tensor ,__lowerCAmelCase: List[torch.tensor] ,__lowerCAmelCase: List[float] ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[Dict[str, Any]] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(__lowerCAmelCase ,__lowerCAmelCase ,self.nets ) ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = controlnet( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,) # merge samples if i == 0: _lowerCamelCase, _lowerCamelCase : Optional[Any] = down_samples, mid_sample else: _lowerCamelCase : Optional[int] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(__lowerCAmelCase ,__lowerCAmelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Union[str, os.PathLike] ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Callable = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[str] = None ,): '''simple docstring''' _lowerCamelCase : List[Any] = 0 _lowerCamelCase : str = save_directory for controlnet in self.nets: controlnet.save_pretrained( __lowerCAmelCase ,is_main_process=__lowerCAmelCase ,save_function=__lowerCAmelCase ,safe_serialization=__lowerCAmelCase ,variant=__lowerCAmelCase ,) idx += 1 _lowerCamelCase : int = model_path_to_save + F"""_{idx}""" @classmethod def _lowercase ( cls: Any ,__lowerCAmelCase: Optional[Union[str, os.PathLike]] ,**__lowerCAmelCase: int ): '''simple docstring''' _lowerCamelCase : int = 0 _lowerCamelCase : str = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _lowerCamelCase : Dict = pretrained_model_path while os.path.isdir(__lowerCAmelCase ): _lowerCamelCase : List[Any] = ControlNetModel.from_pretrained(__lowerCAmelCase ,**__lowerCAmelCase ) controlnets.append(__lowerCAmelCase ) idx += 1 _lowerCamelCase : Tuple = pretrained_model_path + F"""_{idx}""" logger.info(F"""{len(__lowerCAmelCase )} controlnets loaded from {pretrained_model_path}.""" ) if len(__lowerCAmelCase ) == 0: raise ValueError( F"""No ControlNets found under {os.path.dirname(__lowerCAmelCase )}. Expected at least {pretrained_model_path + '_0'}.""" ) return cls(__lowerCAmelCase )
340
0
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class A_ ( unittest.TestCase ): def _lowercase ( self: List[str] ): '''simple docstring''' debug_launcher(test_script.main ) def _lowercase ( self: List[Any] ): '''simple docstring''' debug_launcher(test_ops.main )
353
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : int = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[str]: '''simple docstring''' _lowerCamelCase : Tuple = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head" ): _lowerCamelCase : Tuple = "segformer.encoder." + key if key.startswith("backbone" ): _lowerCamelCase : Any = key.replace("backbone" , "segformer.encoder" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _lowerCamelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )] _lowerCamelCase : int = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(_lowerCamelCase )-1}""" ) if "norm" in key: _lowerCamelCase : Optional[Any] = key.replace("norm" , "layer_norm" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _lowerCamelCase : Dict = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )] _lowerCamelCase : Tuple = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(_lowerCamelCase )-1}""" ) if "layer_norm1" in key: _lowerCamelCase : Union[str, Any] = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: _lowerCamelCase : int = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _lowerCamelCase : Union[str, Any] = key[key.find("block" ) + len("block" )] _lowerCamelCase : Optional[Any] = key.replace(F"""block{idx}""" , F"""block.{int(_lowerCamelCase )-1}""" ) if "attn.q" in key: _lowerCamelCase : Optional[int] = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: _lowerCamelCase : List[str] = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: _lowerCamelCase : Tuple = key.replace("attn" , "attention.self" ) if "fc1" in key: _lowerCamelCase : Optional[Any] = key.replace("fc1" , "dense1" ) if "fc2" in key: _lowerCamelCase : Dict = key.replace("fc2" , "dense2" ) if "linear_pred" in key: _lowerCamelCase : int = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: _lowerCamelCase : str = key.replace("linear_fuse.conv" , "linear_fuse" ) _lowerCamelCase : Optional[Any] = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _lowerCamelCase : Union[str, Any] = key[key.find("linear_c" ) + len("linear_c" )] _lowerCamelCase : Optional[int] = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(_lowerCamelCase )-1}""" ) if key.startswith("head" ): _lowerCamelCase : List[str] = key.replace("head" , "classifier" ) _lowerCamelCase : Union[str, Any] = value return new_state_dict def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _lowerCamelCase : Optional[Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _lowerCamelCase : Optional[Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _lowerCamelCase : int = kv_weight[ : config.hidden_sizes[i], : ] _lowerCamelCase : int = kv_bias[: config.hidden_sizes[i]] _lowerCamelCase : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] _lowerCamelCase : Optional[Any] = kv_bias[ config.hidden_sizes[i] : ] def lowerCamelCase_( ) -> Dict: '''simple docstring''' _lowerCamelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Union[str, Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return image @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : Any = SegformerConfig() _lowerCamelCase : int = False # set attributes based on model_name _lowerCamelCase : Any = "huggingface/label-files" if "segformer" in model_name: _lowerCamelCase : str = model_name[len("segformer." ) : len("segformer." ) + 2] if "ade" in model_name: _lowerCamelCase : str = 150 _lowerCamelCase : Dict = "ade20k-id2label.json" _lowerCamelCase : Dict = (1, 150, 128, 128) elif "city" in model_name: _lowerCamelCase : List[str] = 19 _lowerCamelCase : Tuple = "cityscapes-id2label.json" _lowerCamelCase : Tuple = (1, 19, 128, 128) else: raise ValueError(F"""Model {model_name} not supported""" ) elif "mit" in model_name: _lowerCamelCase : List[str] = True _lowerCamelCase : Tuple = model_name[4:6] _lowerCamelCase : Tuple = 1000 _lowerCamelCase : List[Any] = "imagenet-1k-id2label.json" _lowerCamelCase : List[Any] = (1, 1000) else: raise ValueError(F"""Model {model_name} not supported""" ) # set config attributes _lowerCamelCase : Optional[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": _lowerCamelCase : int = [64, 128, 320, 512] _lowerCamelCase : int = 256 elif size == "b2": _lowerCamelCase : Tuple = [64, 128, 320, 512] _lowerCamelCase : List[Any] = 768 _lowerCamelCase : Any = [3, 4, 6, 3] elif size == "b3": _lowerCamelCase : Tuple = [64, 128, 320, 512] _lowerCamelCase : Union[str, Any] = 768 _lowerCamelCase : Optional[Any] = [3, 4, 18, 3] elif size == "b4": _lowerCamelCase : str = [64, 128, 320, 512] _lowerCamelCase : Optional[Any] = 768 _lowerCamelCase : Dict = [3, 8, 27, 3] elif size == "b5": _lowerCamelCase : int = [64, 128, 320, 512] _lowerCamelCase : Tuple = 768 _lowerCamelCase : Tuple = [3, 6, 40, 3] else: raise ValueError(F"""Size {size} not supported""" ) # load image processor (only resize + normalize) _lowerCamelCase : Dict = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_lowerCamelCase , align=_lowerCamelCase , do_random_crop=_lowerCamelCase ) # prepare image _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Dict = image_processor(images=_lowerCamelCase , return_tensors="pt" ).pixel_values logger.info(F"""Converting model {model_name}...""" ) # load original state dict if encoder_only: _lowerCamelCase : Tuple = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) ) else: _lowerCamelCase : int = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) )["state_dict"] # rename keys _lowerCamelCase : str = rename_keys(_lowerCamelCase , encoder_only=_lowerCamelCase ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(_lowerCamelCase , _lowerCamelCase ) # create HuggingFace model and load state dict if encoder_only: _lowerCamelCase : Tuple = False _lowerCamelCase : Optional[int] = SegformerForImageClassification(_lowerCamelCase ) else: _lowerCamelCase : List[str] = SegformerForSemanticSegmentation(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() # forward pass _lowerCamelCase : Any = model(_lowerCamelCase ) _lowerCamelCase : Dict = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": _lowerCamelCase : str = torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]], [[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": _lowerCamelCase : Any = torch.tensor( [ [[-7.5_8_2_0, -8.7_2_3_1, -8.3_2_1_5], [-8.0_6_0_0, -1_0.3_5_2_9, -1_0.0_3_0_4], [-7.5_2_0_8, -9.4_1_0_3, -9.6_2_3_9]], [[-1_2.6_9_1_8, -1_3.8_9_9_4, -1_3.7_1_3_7], [-1_3.3_1_9_6, -1_5.7_5_2_3, -1_5.4_7_8_9], [-1_2.9_3_4_3, -1_4.8_7_5_7, -1_4.9_6_8_9]], [[-1_1.1_9_1_1, -1_1.9_4_2_1, -1_1.3_2_4_3], [-1_1.3_3_4_2, -1_3.6_8_3_9, -1_3.3_5_8_1], [-1_0.3_9_0_9, -1_2.1_8_3_2, -1_2.4_8_5_8]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": _lowerCamelCase : int = torch.tensor( [ [[-1_1.8_1_7_3, -1_4.3_8_5_0, -1_6.3_1_2_8], [-1_4.5_6_4_8, -1_6.5_8_0_4, -1_8.6_5_6_8], [-1_4.7_2_2_3, -1_5.7_3_8_7, -1_8.4_2_1_8]], [[-1_5.7_2_9_0, -1_7.9_1_7_1, -1_9.4_4_2_3], [-1_8.3_1_0_5, -1_9.9_4_4_8, -2_1.4_6_6_1], [-1_7.9_2_9_6, -1_8.6_4_9_7, -2_0.7_9_1_0]], [[-1_5.0_7_8_3, -1_7.0_3_3_6, -1_8.2_7_8_9], [-1_6.8_7_7_1, -1_8.6_8_7_0, -2_0.1_6_1_2], [-1_6.2_4_5_4, -1_7.1_4_2_6, -1_9.5_0_5_5]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": _lowerCamelCase : Optional[Any] = torch.tensor( [ [[-9.0_8_7_8, -1_0.2_0_8_1, -1_0.1_8_9_1], [-9.3_1_4_4, -1_0.7_9_4_1, -1_0.9_8_4_3], [-9.2_2_9_4, -1_0.3_8_5_5, -1_0.5_7_0_4]], [[-1_2.2_3_1_6, -1_3.9_0_6_8, -1_3.6_1_0_2], [-1_2.9_1_6_1, -1_4.3_7_0_2, -1_4.3_2_3_5], [-1_2.5_2_3_3, -1_3.7_1_7_4, -1_3.7_9_3_2]], [[-1_4.6_2_7_5, -1_5.2_4_9_0, -1_4.9_7_2_7], [-1_4.3_4_0_0, -1_5.9_6_8_7, -1_6.2_8_2_7], [-1_4.1_4_8_4, -1_5.4_0_3_3, -1_5.8_9_3_7]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": _lowerCamelCase : List[str] = torch.tensor( [ [[-1_2.3_1_4_4, -1_3.2_4_4_7, -1_4.0_8_0_2], [-1_3.3_6_1_4, -1_4.5_8_1_6, -1_5.6_1_1_7], [-1_3.3_3_4_0, -1_4.4_4_3_3, -1_6.2_2_1_9]], [[-1_9.2_7_8_1, -2_0.4_1_2_8, -2_0.7_5_0_6], [-2_0.6_1_5_3, -2_1.6_5_6_6, -2_2.0_9_9_8], [-1_9.9_8_0_0, -2_1.0_4_3_0, -2_2.1_4_9_4]], [[-1_8.8_7_3_9, -1_9.7_8_0_4, -2_1.1_8_3_4], [-2_0.1_2_3_3, -2_1.6_7_6_5, -2_3.2_9_4_4], [-2_0.0_3_1_5, -2_1.2_6_4_1, -2_3.6_9_4_4]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": _lowerCamelCase : Any = torch.tensor( [ [[-9.5_5_2_4, -1_2.0_8_3_5, -1_1.7_3_4_8], [-1_0.5_2_2_9, -1_3.6_4_4_6, -1_4.5_6_6_2], [-9.5_8_4_2, -1_2.8_8_5_1, -1_3.9_4_1_4]], [[-1_5.3_4_3_2, -1_7.5_3_2_3, -1_7.0_8_1_8], [-1_6.3_3_3_0, -1_8.9_2_5_5, -1_9.2_1_0_1], [-1_5.1_3_4_0, -1_7.7_8_4_8, -1_8.3_9_7_1]], [[-1_2.6_0_7_2, -1_4.9_4_8_6, -1_4.6_6_3_1], [-1_3.7_6_2_9, -1_7.0_9_0_7, -1_7.7_7_4_5], [-1_2.7_8_9_9, -1_6.1_6_9_5, -1_7.1_6_7_1]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": _lowerCamelCase : Dict = torch.tensor( [ [[-1_1.9_2_9_5, -1_3.4_0_5_7, -1_4.8_1_0_6], [-1_3.3_4_3_1, -1_4.8_1_7_9, -1_5.3_7_8_1], [-1_4.2_8_3_6, -1_5.5_9_4_2, -1_6.1_5_8_8]], [[-1_1.4_9_0_6, -1_2.8_0_6_7, -1_3.6_5_6_4], [-1_3.1_1_8_9, -1_4.0_5_0_0, -1_4.1_5_4_3], [-1_3.8_7_4_8, -1_4.5_1_3_6, -1_4.8_7_8_9]], [[0.5_3_7_4, 0.1_0_6_7, -0.4_7_4_2], [0.1_1_4_1, -0.2_2_5_5, -0.7_0_9_9], [-0.3_0_0_0, -0.5_9_2_4, -1.3_1_0_5]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": _lowerCamelCase : Optional[int] = torch.tensor( [ [[-7.8_2_1_7, -9.8_7_6_7, -1_0.1_7_1_7], [-9.4_4_3_8, -1_0.9_0_5_8, -1_1.4_0_4_7], [-9.7_9_3_9, -1_2.3_4_9_5, -1_2.1_0_7_9]], [[-7.1_5_1_4, -9.5_3_3_6, -1_0.0_8_6_0], [-9.7_7_7_6, -1_1.6_8_2_2, -1_1.8_4_3_9], [-1_0.1_4_1_1, -1_2.7_6_5_5, -1_2.8_9_7_2]], [[0.3_0_2_1, 0.0_8_0_5, -0.2_3_1_0], [-0.0_3_2_8, -0.1_6_0_5, -0.2_7_1_4], [-0.1_4_0_8, -0.5_4_7_7, -0.6_9_7_6]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": _lowerCamelCase : Tuple = torch.tensor( [ [ [-1.13_72e01, -1.27_87e01, -1.34_77e01], [-1.25_36e01, -1.41_94e01, -1.44_09e01], [-1.32_17e01, -1.48_88e01, -1.53_27e01], ], [ [-1.47_91e01, -1.71_22e01, -1.82_77e01], [-1.71_63e01, -1.91_92e01, -1.95_33e01], [-1.78_97e01, -1.99_91e01, -2.03_15e01], ], [ [7.67_23e-01, 4.19_21e-01, -7.78_78e-02], [4.77_72e-01, 9.55_57e-03, -2.80_82e-01], [3.60_32e-01, -2.48_26e-01, -5.11_68e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": _lowerCamelCase : Union[str, Any] = torch.tensor( [ [[-9.4_9_5_9, -1_1.3_0_8_7, -1_1.7_4_7_9], [-1_1.0_0_2_5, -1_2.6_5_4_0, -1_2.3_3_1_9], [-1_1.4_0_6_4, -1_3.0_4_8_7, -1_2.9_9_0_5]], [[-9.8_9_0_5, -1_1.3_0_8_4, -1_2.0_8_5_4], [-1_1.1_7_2_6, -1_2.7_6_9_8, -1_2.9_5_8_3], [-1_1.5_9_8_5, -1_3.3_2_7_8, -1_4.1_7_7_4]], [[0.2_2_1_3, 0.0_1_9_2, -0.2_4_6_6], [-0.1_7_3_1, -0.4_2_1_3, -0.4_8_7_4], [-0.3_1_2_6, -0.6_5_4_1, -1.1_3_8_9]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": _lowerCamelCase : List[Any] = torch.tensor( [ [[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]], [[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": _lowerCamelCase : Tuple = torch.tensor( [ [[-1_6.0_9_7_6, -1_6.4_8_5_6, -1_7.3_9_6_2], [-1_6.6_2_3_4, -1_9.0_3_4_2, -1_9.7_6_8_5], [-1_6.0_9_0_0, -1_8.0_6_6_1, -1_9.1_1_8_0]], [[-1_8.4_7_5_0, -1_8.8_4_8_8, -1_9.5_0_7_4], [-1_9.4_0_3_0, -2_2.1_5_7_0, -2_2.5_9_7_7], [-1_9.1_1_9_1, -2_0.8_4_8_6, -2_2.3_7_8_3]], [[-4.5_1_7_8, -5.5_0_3_7, -6.5_1_0_9], [-5.0_8_8_4, -7.2_1_7_4, -8.0_3_3_4], [-4.4_1_5_6, -5.8_1_1_7, -7.2_9_7_0]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": _lowerCamelCase : Any = torch.tensor( [ [[-1_4.2_0_8_1, -1_4.4_7_3_2, -1_4.1_9_7_7], [-1_4.5_8_6_7, -1_6.4_4_2_3, -1_6.6_3_5_6], [-1_3.4_4_4_1, -1_4.9_6_8_5, -1_6.8_6_9_6]], [[-1_4.4_5_7_6, -1_4.7_0_7_3, -1_5.0_4_5_1], [-1_5.0_8_1_6, -1_7.6_2_3_7, -1_7.9_8_7_3], [-1_4.4_2_1_3, -1_6.0_1_9_9, -1_8.5_9_9_2]], [[-4.7_3_4_9, -4.9_5_8_8, -5.0_9_6_6], [-4.3_2_1_0, -6.9_3_2_5, -7.2_5_9_1], [-3.4_3_1_2, -4.7_4_8_4, -7.1_9_1_7]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": _lowerCamelCase : List[str] = torch.tensor( [ [[-1_1.7_7_3_7, -1_1.9_5_2_6, -1_1.3_2_7_3], [-1_3.6_6_9_2, -1_4.4_5_7_4, -1_3.8_8_7_8], [-1_3.8_9_3_7, -1_4.6_9_2_4, -1_5.9_3_4_5]], [[-1_4.6_7_0_6, -1_4.5_3_3_0, -1_4.1_3_0_6], [-1_6.1_5_0_2, -1_6.8_1_8_0, -1_6.4_2_6_9], [-1_6.8_3_3_8, -1_7.8_9_3_9, -2_0.1_7_4_6]], [[1.0_4_9_1, 0.8_2_8_9, 1.0_3_1_0], [1.1_0_4_4, 0.5_2_1_9, 0.8_0_5_5], [1.0_8_9_9, 0.6_9_2_6, 0.5_5_9_0]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": _lowerCamelCase : str = torch.tensor( [ [[-1_2.5_6_4_1, -1_3.4_7_7_7, -1_3.0_6_8_4], [-1_3.9_5_8_7, -1_5.8_9_8_3, -1_6.6_5_5_7], [-1_3.3_1_0_9, -1_5.7_3_5_0, -1_6.3_1_4_1]], [[-1_4.7_0_7_4, -1_5.4_3_5_2, -1_4.5_9_4_4], [-1_6.6_3_5_3, -1_8.1_6_6_3, -1_8.6_1_2_0], [-1_5.1_7_0_2, -1_8.0_3_2_9, -1_8.1_5_4_7]], [[-1.7_9_9_0, -2.0_9_5_1, -1.7_7_8_4], [-2.6_3_9_7, -3.8_2_4_5, -3.9_6_8_6], [-1.5_2_6_4, -2.8_1_2_6, -2.9_3_1_6]], ] ) else: _lowerCamelCase : Dict = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1e-2 ) # finally, save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''segformer.b0.512x512.ade.160k''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _lowerCAmelCase : str = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
340
0
"""simple docstring""" from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' if isinstance(_lowerCamelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class A_ : def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' pass def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass def _lowercase ( self: int ): '''simple docstring''' pass def _lowercase ( self: int ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: List[Any]=None ,**__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Dict = VisionTextDualEncoderConfig.from_vision_text_configs(a__ ,a__ ) _lowerCamelCase : List[str] = TFVisionTextDualEncoderModel(a__ ) _lowerCamelCase : Union[str, Any] = model(input_ids=a__ ,pixel_values=a__ ,attention_mask=a__ ) self.assertEqual(output["text_embeds"].shape ,(input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape ,(pixel_values.shape[0], config.projection_dim) ) def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: List[Any]=None ,**__lowerCAmelCase: Any ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Any = self.get_vision_text_model(a__ ,a__ ) _lowerCamelCase : Union[str, Any] = TFVisionTextDualEncoderModel(vision_model=a__ ,text_model=a__ ) _lowerCamelCase : Any = model(input_ids=a__ ,pixel_values=a__ ,attention_mask=a__ ) self.assertEqual(output["text_embeds"].shape ,(input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape ,(pixel_values.shape[0], model.config.projection_dim) ) def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Union[str, Any]=None ,**__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Dict = self.get_vision_text_model(a__ ,a__ ) _lowerCamelCase : Optional[Any] = {"vision_model": vision_model, "text_model": text_model} _lowerCamelCase : Dict = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**a__ ) _lowerCamelCase : Union[str, Any] = model(input_ids=a__ ,pixel_values=a__ ,attention_mask=a__ ) self.assertEqual(output["text_embeds"].shape ,(input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape ,(pixel_values.shape[0], model.config.projection_dim) ) def _lowercase ( self: int ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Dict=None ,**__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[Any] = self.get_vision_text_model(a__ ,a__ ) _lowerCamelCase : List[Any] = TFVisionTextDualEncoderModel(vision_model=a__ ,text_model=a__ ) _lowerCamelCase : Any = model(input_ids=a__ ,pixel_values=a__ ,attention_mask=a__ ) _lowerCamelCase : Any = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a__ ) _lowerCamelCase : List[Any] = TFVisionTextDualEncoderModel.from_pretrained(a__ ) _lowerCamelCase : Any = model(input_ids=a__ ,pixel_values=a__ ,attention_mask=a__ ) _lowerCamelCase : Dict = after_output[0].numpy() _lowerCamelCase : Optional[int] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a__ ,1e-5 ) def _lowercase ( self: str ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Optional[Any]=None ,**__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Tuple = self.get_vision_text_model(a__ ,a__ ) _lowerCamelCase : List[str] = TFVisionTextDualEncoderModel(vision_model=a__ ,text_model=a__ ) _lowerCamelCase : Any = model( input_ids=a__ ,pixel_values=a__ ,attention_mask=a__ ,output_attentions=a__ ) _lowerCamelCase : Union[str, Any] = output.vision_model_output.attentions self.assertEqual(len(a__ ) ,vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCamelCase : Tuple = to_atuple(vision_model.config.image_size ) _lowerCamelCase : Dict = to_atuple(vision_model.config.patch_size ) _lowerCamelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCamelCase : Any = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] ,(vision_config.num_attention_heads, seq_len, seq_len) ) _lowerCamelCase : Dict = output.text_model_output.attentions self.assertEqual(len(a__ ) ,text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] ,(text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) ,) def _lowercase ( self: Dict ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Tuple = np.abs((a - b) ).max() self.assertLessEqual(a__ ,a__ ,F"""Difference between torch and flax is {diff} (>= {tol}).""" ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : int = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**a__ ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**a__ ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**a__ ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[Any] = self.prepare_config_and_inputs() self.check_save_load(**a__ ) def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : Any = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**a__ ) @slow def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.get_pretrained_model_and_inputs() _lowerCamelCase : Tuple = model_a(**a__ ) _lowerCamelCase : List[Any] = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(a__ ) _lowerCamelCase : Tuple = TFVisionTextDualEncoderModel.from_pretrained(a__ ) _lowerCamelCase : List[str] = model_a(**a__ ) _lowerCamelCase : Optional[Any] = after_outputs[0].numpy() _lowerCamelCase : Optional[int] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a__ ,1e-5 ) @require_tf class A_ ( lowercase_ , unittest.TestCase ): def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" ,"hf-internal-testing/tiny-random-bert" ) _lowerCamelCase : Any = 13 _lowerCamelCase : Union[str, Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCamelCase : List[str] = ids_tensor([batch_size, 4] ,model.text_model.config.vocab_size ) _lowerCamelCase : str = random_attention_mask([batch_size, 4] ) _lowerCamelCase : Any = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def _lowercase ( self: List[str] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: int ): '''simple docstring''' _lowerCamelCase : List[str] = TFViTModel(a__ ,name="vision_model" ) _lowerCamelCase : str = TFBertModel(a__ ,name="text_model" ) return vision_model, text_model def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : str = TFViTModelTester(self ) _lowerCamelCase : Tuple = TFBertModelTester(self ) _lowerCamelCase : List[Any] = vit_model_tester.prepare_config_and_inputs() _lowerCamelCase : List[Any] = bert_model_tester.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = vision_config_and_inputs ( ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ) : List[str] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A_ ( lowercase_ , unittest.TestCase ): def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-deit-tf" ,"hf-internal-testing/tiny-random-roberta" ) _lowerCamelCase : str = 13 _lowerCamelCase : Union[str, Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCamelCase : Any = ids_tensor([batch_size, 4] ,model.text_model.config.vocab_size ) _lowerCamelCase : Any = random_attention_mask([batch_size, 4] ) _lowerCamelCase : int = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def _lowercase ( self: Tuple ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Union[str, Any]=None ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[Any] = self.get_vision_text_model(a__ ,a__ ) _lowerCamelCase : int = TFVisionTextDualEncoderModel(vision_model=a__ ,text_model=a__ ) _lowerCamelCase : List[str] = model( input_ids=a__ ,pixel_values=a__ ,attention_mask=a__ ,output_attentions=a__ ) _lowerCamelCase : str = output.vision_model_output.attentions self.assertEqual(len(a__ ) ,vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _lowerCamelCase : str = to_atuple(vision_model.config.image_size ) _lowerCamelCase : Any = to_atuple(vision_model.config.patch_size ) _lowerCamelCase : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCamelCase : List[Any] = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] ,(vision_config.num_attention_heads, seq_len, seq_len) ) _lowerCamelCase : List[Any] = output.text_model_output.attentions self.assertEqual(len(a__ ) ,text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] ,(text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) ,) def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : Optional[int] = TFDeiTModel(a__ ,name="vision_model" ) _lowerCamelCase : Union[str, Any] = TFRobertaModel(a__ ,name="text_model" ) return vision_model, text_model def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : int = TFDeiTModelTester(self ) _lowerCamelCase : Optional[Any] = TFRobertaModelTester(self ) _lowerCamelCase : str = vit_model_tester.prepare_config_and_inputs() _lowerCamelCase : str = bert_model_tester.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = vision_config_and_inputs ( ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ) : List[Any] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A_ ( lowercase_ , unittest.TestCase ): def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-clip-tf" ,"hf-internal-testing/tiny-random-bert" ) _lowerCamelCase : str = 13 _lowerCamelCase : Any = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCamelCase : str = ids_tensor([batch_size, 4] ,model.text_model.config.vocab_size ) _lowerCamelCase : List[str] = random_attention_mask([batch_size, 4] ) _lowerCamelCase : Optional[int] = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : Any = TFCLIPVisionModel(a__ ,name="vision_model" ) _lowerCamelCase : List[Any] = TFBertModel(a__ ,name="text_model" ) return vision_model, text_model def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[Any] = TFCLIPVisionModelTester(self ) _lowerCamelCase : Optional[Any] = TFBertModelTester(self ) _lowerCamelCase : List[Any] = clip_model_tester.prepare_config_and_inputs() _lowerCamelCase : List[str] = bert_model_tester.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase : Optional[int] = vision_config_and_inputs ( ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ) : Dict = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class A_ ( unittest.TestCase ): @slow def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : Dict = TFVisionTextDualEncoderModel.from_pretrained( "clip-italian/clip-italian" ,logit_scale_init_value=1.0 ,from_pt=a__ ) _lowerCamelCase : int = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) _lowerCamelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _lowerCamelCase : Any = processor( text=["una foto di un gatto", "una foto di un cane"] ,images=a__ ,padding=a__ ,return_tensors="np" ) _lowerCamelCase : Tuple = model(**a__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape ,(inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape ,(inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) ,) _lowerCamelCase : Union[str, Any] = np.array([[1.2_28_47_27, 0.3_10_41_22]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() ,a__ ,atol=1e-3 ) )
354
"""simple docstring""" _lowerCAmelCase : dict[tuple[int, int, int], int] = {} def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on _lowerCamelCase : Optional[int] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one _lowerCamelCase : int = _calculate(days - 1 , _lowerCamelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 _lowerCamelCase : Tuple = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter _lowerCamelCase : str = _calculate(days - 1 , _lowerCamelCase , 0 ) _lowerCamelCase : List[Any] = state_late + state_absent + state_ontime _lowerCamelCase : int = prizestrings return prizestrings def lowerCamelCase_( _lowerCamelCase = 30 ) -> int: '''simple docstring''' return _calculate(_lowerCamelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
340
0
"""simple docstring""" import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _lowerCAmelCase : List[str] = False try: _lowerCAmelCase : Tuple = _is_package_available('''google.colab''') except ModuleNotFoundError: pass @input.register class A_ : def __init__( self: Optional[Any] ,__lowerCAmelCase: str = None ,__lowerCAmelCase: list = [] ): '''simple docstring''' _lowerCamelCase : Any = 0 _lowerCamelCase : Optional[int] = choices _lowerCamelCase : Optional[int] = prompt if sys.platform == "win32": _lowerCamelCase : int = "*" else: _lowerCamelCase : List[Any] = "➔ " def _lowercase ( self: List[str] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: str = "" ): '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index] ,32 ,UpperCamelCase_ ) else: forceWrite(self.choices[index] ,UpperCamelCase_ ) def _lowercase ( self: Any ,__lowerCAmelCase: int ): '''simple docstring''' if index == self.position: forceWrite(F""" {self.arrow_char} """ ) self.write_choice(UpperCamelCase_ ) else: forceWrite(F""" {self.choices[index]}""" ) reset_cursor() def _lowercase ( self: Tuple ,__lowerCAmelCase: Direction ,__lowerCAmelCase: int = 1 ): '''simple docstring''' _lowerCamelCase : int = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(UpperCamelCase_ ) move_cursor(UpperCamelCase_ ,direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["up"] ) def _lowercase ( self: Tuple ): '''simple docstring''' self.move_direction(Direction.UP ) @input.mark(KEYMAP["down"] ) def _lowercase ( self: Any ): '''simple docstring''' self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["newline"] ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' move_cursor(len(self.choices ) - self.position ,"DOWN" ) return self.position @input.mark(KEYMAP["interrupt"] ) def _lowercase ( self: List[str] ): '''simple docstring''' move_cursor(len(self.choices ) - self.position ,"DOWN" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(UpperCamelCase_ )] for number in range(10 )] ) def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : Tuple = int(chr(self.current_selection ) ) _lowerCamelCase : str = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP ,-movement ) elif self.position < index: self.move_direction(Direction.DOWN ,UpperCamelCase_ ) else: return else: return def _lowercase ( self: Any ,__lowerCAmelCase: int = 0 ): '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt ,"\n" ) if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter" ,"\n" ) else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter" ,"\n" ) _lowerCamelCase : str = default_choice for i in range(len(self.choices ) ): self.print_choice(UpperCamelCase_ ) forceWrite("\n" ) move_cursor(len(self.choices ) - self.position ,"UP" ) with cursor.hide(): while True: if in_colab: try: _lowerCamelCase : Optional[int] = int(builtins.input() ) except ValueError: _lowerCamelCase : int = default_choice else: _lowerCamelCase : Union[str, Any] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 ,"UP" ) clear_line() self.write_choice(UpperCamelCase_ ,"\n" ) return choice
355
"""simple docstring""" from __future__ import annotations def lowerCamelCase_( _lowerCamelCase ) -> bool: '''simple docstring''' _lowerCamelCase : int = str(_lowerCamelCase ) return len(_lowerCamelCase ) == 9 and set(_lowerCamelCase ) == set("123456789" ) def lowerCamelCase_( ) -> int | None: '''simple docstring''' for base_num in range(9999 , 4999 , -1 ): _lowerCamelCase : Union[str, Any] = 100002 * base_num if is_9_pandigital(_lowerCamelCase ): return candidate for base_num in range(333 , 99 , -1 ): _lowerCamelCase : Tuple = 1002003 * base_num if is_9_pandigital(_lowerCamelCase ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
340
0
"""simple docstring""" from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ) -> Tuple: '''simple docstring''' model.train() _lowerCamelCase : Union[str, Any] = model(lowerCamelCase_ ) _lowerCamelCase : Optional[Any] = F.mse_loss(lowerCamelCase_ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(lowerCamelCase_ ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[str]: '''simple docstring''' set_seed(42 ) _lowerCamelCase : Tuple = RegressionModel() _lowerCamelCase : Optional[int] = deepcopy(lowerCamelCase_ ) _lowerCamelCase : int = RegressionDataset(length=80 ) _lowerCamelCase : int = DataLoader(lowerCamelCase_ , batch_size=16 ) model.to(accelerator.device ) if sched: _lowerCamelCase : int = AdamW(params=model.parameters() , lr=1e-3 ) _lowerCamelCase : Dict = AdamW(params=ddp_model.parameters() , lr=1e-3 ) _lowerCamelCase : List[str] = LambdaLR(lowerCamelCase_ , lr_lambda=lambda _lowerCamelCase : epoch**0.6_5 ) _lowerCamelCase : Dict = LambdaLR(lowerCamelCase_ , lr_lambda=lambda _lowerCamelCase : epoch**0.6_5 ) # Make a copy of `model` if sched: _lowerCamelCase : List[str] = accelerator.prepare(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: _lowerCamelCase : int = accelerator.prepare(lowerCamelCase_ , lowerCamelCase_ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : str = get_training_setup(lowerCamelCase_ ) # Use a single batch _lowerCamelCase : List[Any] = next(iter(lowerCamelCase_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model _lowerCamelCase : List[Any] = accelerator.gather((ddp_input, ddp_target) ) _lowerCamelCase : str = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCamelCase_ ): step_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: # Sync grads step_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) _lowerCamelCase : List[str] = ddp_input[torch.randperm(len(lowerCamelCase_ ) )] def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : List[str] = get_training_setup(lowerCamelCase_ ) # Use a single batch _lowerCamelCase : int = next(iter(lowerCamelCase_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model _lowerCamelCase : List[str] = accelerator.gather((ddp_input, ddp_target) ) _lowerCamelCase : List[str] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCamelCase_ ): step_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: # Sync grads step_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) _lowerCamelCase : str = ddp_input[torch.randperm(len(lowerCamelCase_ ) )] def lowerCamelCase_( _lowerCamelCase=False , _lowerCamelCase=False ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : List[str] = Accelerator( split_batches=lowerCamelCase_ , dispatch_batches=lowerCamelCase_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly _lowerCamelCase : int = get_training_setup(lowerCamelCase_ ) for iteration, batch in enumerate(lowerCamelCase_ ): _lowerCamelCase : Optional[Any] = batch.values() # Gather the distributed inputs and targs for the base model _lowerCamelCase : str = accelerator.gather((ddp_input, ddp_target) ) _lowerCamelCase : Tuple = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(lowerCamelCase_ ): step_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(lowerCamelCase_ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) _lowerCamelCase : Dict = ddp_input[torch.randperm(len(lowerCamelCase_ ) )] GradientState._reset_state() def lowerCamelCase_( _lowerCamelCase=False , _lowerCamelCase=False ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : Optional[int] = Accelerator( split_batches=lowerCamelCase_ , dispatch_batches=lowerCamelCase_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly _lowerCamelCase : Optional[int] = get_training_setup(lowerCamelCase_ , lowerCamelCase_ ) for iteration, batch in enumerate(lowerCamelCase_ ): _lowerCamelCase : Optional[Any] = batch.values() # Gather the distributed inputs and targs for the base model _lowerCamelCase : Tuple = accelerator.gather((ddp_input, ddp_target) ) _lowerCamelCase : str = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(lowerCamelCase_ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(lowerCamelCase_ ): step_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n""" _lowerCamelCase : List[Any] = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(lowerCamelCase_ )) if accelerator.num_processes > 1: check_model_parameters(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def lowerCamelCase_( ) -> int: '''simple docstring''' _lowerCamelCase : int = Accelerator() _lowerCamelCase : Optional[int] = RegressionDataset(length=80 ) _lowerCamelCase : List[Any] = DataLoader(lowerCamelCase_ , batch_size=16 ) _lowerCamelCase : Union[str, Any] = RegressionDataset(length=96 ) _lowerCamelCase : Optional[Any] = DataLoader(lowerCamelCase_ , batch_size=16 ) _lowerCamelCase : Optional[Any] = accelerator.prepare(lowerCamelCase_ , lowerCamelCase_ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(lowerCamelCase_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCamelCase_ ) if iteration < len(lowerCamelCase_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(lowerCamelCase_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCamelCase_ ) if batch_num < len(lowerCamelCase_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowerCamelCase_( ) -> List[str]: '''simple docstring''' _lowerCamelCase : List[Any] = Accelerator() _lowerCamelCase : int = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(lowerCamelCase_ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(lowerCamelCase_ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(lowerCamelCase_ , lowerCamelCase_ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' main() if __name__ == "__main__": main()
356
"""simple docstring""" import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class A_ ( _a ): lowerCAmelCase__ = 'char' lowerCAmelCase__ = 'bpe' lowerCAmelCase__ = 'wp' _lowerCAmelCase : List[str] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class A_ ( _a ): lowerCAmelCase__ = ['image_processor', 'char_tokenizer'] lowerCAmelCase__ = 'ViTImageProcessor' lowerCAmelCase__ = 'MgpstrTokenizer' def __init__( self: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: Optional[int]=None ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Any = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." ,__lowerCAmelCase ,) _lowerCamelCase : List[Any] = kwargs.pop("feature_extractor" ) _lowerCamelCase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : str = AutoTokenizer.from_pretrained("gpt2" ) _lowerCamelCase : List[str] = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(__lowerCAmelCase ,__lowerCAmelCase ) def __call__( self: Optional[int] ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: Optional[Any]=None ,**__lowerCAmelCase: Tuple ): '''simple docstring''' if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: _lowerCamelCase : Optional[int] = self.image_processor(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) if text is not None: _lowerCamelCase : int = self.char_tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) if text is None: return inputs elif images is None: return encodings else: _lowerCamelCase : Tuple = encodings["input_ids"] return inputs def _lowercase ( self: int ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = sequences _lowerCamelCase : Dict = char_preds.size(0 ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._decode_helper(__lowerCAmelCase ,"char" ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self._decode_helper(__lowerCAmelCase ,"bpe" ) _lowerCamelCase, _lowerCamelCase : Tuple = self._decode_helper(__lowerCAmelCase ,"wp" ) _lowerCamelCase : List[str] = [] _lowerCamelCase : str = [] for i in range(__lowerCAmelCase ): _lowerCamelCase : str = [char_scores[i], bpe_scores[i], wp_scores[i]] _lowerCamelCase : List[Any] = [char_strs[i], bpe_strs[i], wp_strs[i]] _lowerCamelCase : Optional[Any] = scores.index(max(__lowerCAmelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _lowerCamelCase : Tuple = {} _lowerCamelCase : Tuple = final_strs _lowerCamelCase : int = final_scores _lowerCamelCase : str = char_strs _lowerCamelCase : Dict = bpe_strs _lowerCamelCase : int = wp_strs return out def _lowercase ( self: List[str] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: List[Any] ): '''simple docstring''' if format == DecodeType.CHARACTER: _lowerCamelCase : int = self.char_decode _lowerCamelCase : List[str] = 1 _lowerCamelCase : Optional[int] = "[s]" elif format == DecodeType.BPE: _lowerCamelCase : Dict = self.bpe_decode _lowerCamelCase : str = 2 _lowerCamelCase : Union[str, Any] = "#" elif format == DecodeType.WORDPIECE: _lowerCamelCase : int = self.wp_decode _lowerCamelCase : List[str] = 102 _lowerCamelCase : List[Any] = "[SEP]" else: raise ValueError(F"""Format {format} is not supported.""" ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = [], [] _lowerCamelCase : Any = pred_logits.size(0 ) _lowerCamelCase : int = pred_logits.size(1 ) _lowerCamelCase, _lowerCamelCase : List[Any] = pred_logits.topk(1 ,dim=-1 ,largest=__lowerCAmelCase ,sorted=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = preds_index.view(-1 ,__lowerCAmelCase )[:, 1:] _lowerCamelCase : List[str] = decoder(__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : str = torch.nn.functional.softmax(__lowerCAmelCase ,dim=2 ).max(dim=2 ) _lowerCamelCase : Any = preds_max_prob[:, 1:] for index in range(__lowerCAmelCase ): _lowerCamelCase : List[Any] = preds_str[index].find(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = preds_str[index][:pred_eos] _lowerCamelCase : Optional[Any] = preds_index[index].cpu().tolist() _lowerCamelCase : List[str] = pred_index.index(__lowerCAmelCase ) if eos_token in pred_index else -1 _lowerCamelCase : str = preds_max_prob[index][: pred_eos_index + 1] _lowerCamelCase : Union[str, Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__lowerCAmelCase ) conf_scores.append(__lowerCAmelCase ) return dec_strs, conf_scores def _lowercase ( self: Tuple ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : str = [seq.replace(" " ,"" ) for seq in self.char_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs def _lowercase ( self: List[str] ,__lowerCAmelCase: List[str] ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(__lowerCAmelCase ) def _lowercase ( self: Tuple ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [seq.replace(" " ,"" ) for seq in self.wp_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs
340
0
"""simple docstring""" import functools def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(UpperCAmelCase_ ) != 3 or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(UpperCAmelCase_ ) == 0: return 0 if min(UpperCAmelCase_ ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(UpperCAmelCase_ ) >= 366: raise ValueError("All days elements should be less than 366" ) _lowerCamelCase : Optional[Any] = set(UpperCAmelCase_ ) @functools.cache def dynamic_programming(_lowerCamelCase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
357
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version _lowerCAmelCase : List[Any] = get_logger(__name__) class A_ : lowerCAmelCase__ = 'dummy_data' lowerCAmelCase__ = 'datasets' lowerCAmelCase__ = False def __init__( self: List[str] ,__lowerCAmelCase: str ,__lowerCAmelCase: str ,__lowerCAmelCase: Union[Version, str] ,__lowerCAmelCase: Optional[str] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[List[Callable]] = None ,): '''simple docstring''' _lowerCamelCase : str = 0 _lowerCamelCase : List[str] = dataset_name _lowerCamelCase : Optional[int] = cache_dir _lowerCamelCase : Optional[int] = use_local_dummy_data _lowerCamelCase : int = config # download_callbacks take a single url as input _lowerCamelCase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _lowerCamelCase : int = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _lowerCamelCase : Tuple = str(__lowerCAmelCase ) # to be downloaded _lowerCamelCase : Optional[Any] = None _lowerCamelCase : Dict = None @property def _lowercase ( self: str ): '''simple docstring''' if self._dummy_file is None: _lowerCamelCase : List[str] = self.download_dummy_data() return self._dummy_file @property def _lowercase ( self: str ): '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" ,self.config.name ,self.version_name ) # structure is dummy / version_name return os.path.join("dummy" ,self.version_name ) @property def _lowercase ( self: Optional[Any] ): '''simple docstring''' return os.path.join(self.dummy_data_folder ,"dummy_data.zip" ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _lowerCamelCase : Optional[int] = cached_path( __lowerCAmelCase ,cache_dir=self.cache_dir ,extract_compressed_file=__lowerCAmelCase ,force_extract=__lowerCAmelCase ) return os.path.join(__lowerCAmelCase ,self.dummy_file_name ) @property def _lowercase ( self: Tuple ): '''simple docstring''' return os.path.join(self.datasets_scripts_dir ,self.dataset_name ,self.dummy_zip_file ) @property def _lowercase ( self: List[str] ): '''simple docstring''' if self._bucket_url is None: _lowerCamelCase : List[str] = hf_github_url(self.dataset_name ,self.dummy_zip_file.replace(os.sep ,"/" ) ) return self._bucket_url @property def _lowercase ( self: Union[str, Any] ): '''simple docstring''' if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep ,"/" ).split("/" )[:-1] ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: str ,*__lowerCAmelCase: List[Any] ): '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested _lowerCamelCase : Tuple = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _lowerCamelCase : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): return self.create_dummy_data_dict(__lowerCAmelCase ,__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,(list, tuple) ): return self.create_dummy_data_list(__lowerCAmelCase ,__lowerCAmelCase ) else: return self.create_dummy_data_single(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: Optional[int] ): '''simple docstring''' return self.download_and_extract(__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: int ): '''simple docstring''' return self.download_and_extract(__lowerCAmelCase ) def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' return path def _lowercase ( self: Optional[int] ): '''simple docstring''' return {} def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : str = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): for single_url in single_urls: download_callback(__lowerCAmelCase ) else: _lowerCamelCase : Union[str, Any] = single_urls download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Dict = [os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) ) for x in single_urls] else: _lowerCamelCase : Union[str, Any] = single_urls _lowerCamelCase : List[str] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) ) _lowerCamelCase : List[Any] = value # make sure that values are unique if all(isinstance(__lowerCAmelCase ,__lowerCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique _lowerCamelCase : List[Any] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Dict = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _lowerCamelCase : List[str] = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" ,__lowerCAmelCase ) ) for url in data_url ) _lowerCamelCase : Optional[Any] = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): _lowerCamelCase : Tuple = [data_url[0]] * len(__lowerCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(__lowerCAmelCase ) return dummy_data_list def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: List[Any] ): '''simple docstring''' for download_callback in self.download_callbacks: download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : Optional[int] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(__lowerCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass def _lowercase ( self: Optional[int] ): '''simple docstring''' pass def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' def _iter_archive_members(__lowerCAmelCase: Any ): # this preserves the order of the members inside the ZIP archive _lowerCamelCase : Tuple = Path(self.dummy_file ).parent _lowerCamelCase : str = path.relative_to(__lowerCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: _lowerCamelCase : Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = Path(__lowerCAmelCase ) _lowerCamelCase : int = _iter_archive_members(__lowerCAmelCase ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(__lowerCAmelCase ).as_posix(), file_path.open("rb" ) def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = [paths] for path in paths: if os.path.isfile(__lowerCAmelCase ): if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(__lowerCAmelCase ): if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(__lowerCAmelCase ): if filename.startswith((".", "__") ): continue yield os.path.join(__lowerCAmelCase ,__lowerCAmelCase )
340
0
"""simple docstring""" _lowerCAmelCase : Optional[int] = range(2, 20 + 1) _lowerCAmelCase : str = [10**k for k in range(ks[-1] + 1)] _lowerCAmelCase : dict[int, dict[int, list[list[int]]]] = {} def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Optional[Any] = sum(a_i[j] for j in range(_A , len(_A ) ) ) _lowerCamelCase : Any = sum(a_i[j] * base[j] for j in range(min(len(_A ) , _A ) ) ) _lowerCamelCase : Optional[int] = 0, 0 _lowerCamelCase : Dict = n - i _lowerCamelCase : List[Any] = memo.get(_A ) if sub_memo is not None: _lowerCamelCase : List[Any] = sub_memo.get(_A ) if jumps is not None and len(_A ) > 0: # find and make the largest jump without going over _lowerCamelCase : Optional[int] = -1 for _k in range(len(_A ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _lowerCamelCase : str = _k break if max_jump >= 0: _lowerCamelCase : str = jumps[max_jump] # since the difference between jumps is cached, add c _lowerCamelCase : Optional[Any] = diff + c for j in range(min(_A , len(_A ) ) ): _lowerCamelCase : str = divmod(_A , 10 ) if new_c > 0: add(_A , _A , _A ) else: _lowerCamelCase : Union[str, Any] = [] else: _lowerCamelCase : Dict = {c: []} _lowerCamelCase : Optional[Any] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _lowerCamelCase : Optional[Any] = next_term(_A , k - 1 , i + dn , _A ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _lowerCamelCase : Any = compute(_A , _A , i + dn , _A ) diff += _diff dn += terms_jumped _lowerCamelCase : Union[str, Any] = sub_memo[c] # keep jumps sorted by # of terms skipped _lowerCamelCase : Tuple = 0 while j < len(_A ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_A , (diff, dn, k) ) return (diff, dn) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' if i >= n: return 0, i if k > len(_A ): a_i.extend([0 for _ in range(k - len(_A ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _lowerCamelCase : int = i _lowerCamelCase : Tuple = 0, 0, 0 for j in range(len(_A ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _lowerCamelCase : List[str] = ds_c + ds_b diff += addend _lowerCamelCase : Dict = 0 for j in range(_A ): _lowerCamelCase : Dict = a_i[j] + addend _lowerCamelCase : Any = divmod(_A , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_A , _A , _A ) return diff, i - start_i def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' for j in range(_A , len(_A ) ): _lowerCamelCase : Union[str, Any] = digits[j] + addend if s >= 10: _lowerCamelCase : str = divmod(_A , 10 ) _lowerCamelCase : str = addend // 10 + quotient else: _lowerCamelCase : Union[str, Any] = s _lowerCamelCase : Optional[int] = addend // 10 if addend == 0: break while addend > 0: _lowerCamelCase : int = divmod(_A , 10 ) digits.append(_A ) def lowerCamelCase_( _lowerCamelCase = 10**15 ) -> Any: '''simple docstring''' _lowerCamelCase : Optional[Any] = [1] _lowerCamelCase : Any = 1 _lowerCamelCase : Dict = 0 while True: _lowerCamelCase : int = next_term(_A , 20 , i + dn , _A ) dn += terms_jumped if dn == n - i: break _lowerCamelCase : Dict = 0 for j in range(len(_A ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
358
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) _lowerCamelCase : int = precision _lowerCamelCase : Dict = ceil(precision / 14 ) _lowerCamelCase : Optional[Any] = 426880 * Decimal(10005 ).sqrt() _lowerCamelCase : int = 1 _lowerCamelCase : Optional[int] = 13591409 _lowerCamelCase : int = Decimal(_lowerCamelCase ) for k in range(1 , _lowerCamelCase ): _lowerCamelCase : Union[str, Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowerCamelCase ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = 50 print(f'''The first {n} digits of pi is: {pi(n)}''')
340
0
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class A_ ( SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = ['''vqvae'''] def __init__( self: Tuple ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Any ,__lowerCAmelCase: List[Any] ,): '''simple docstring''' super().__init__() self.register_modules(unet=A__ ,scheduler=A__ ,mel=A__ ,vqvae=A__ ) def _lowercase ( self: int ): '''simple docstring''' return 50 if isinstance(self.scheduler ,A__ ) else 1_000 @torch.no_grad() def __call__( self: str ,__lowerCAmelCase: Optional[Any] = 1 ,__lowerCAmelCase: Any = None ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: Tuple = 0 ,__lowerCAmelCase: int = 0 ,__lowerCAmelCase: List[str] = None ,__lowerCAmelCase: str = None ,__lowerCAmelCase: Optional[int] = 0 ,__lowerCAmelCase: Union[str, Any] = 0 ,__lowerCAmelCase: Union[str, Any] = None ,__lowerCAmelCase: Any = 0 ,__lowerCAmelCase: List[str] = None ,__lowerCAmelCase: Tuple = None ,__lowerCAmelCase: int=True ,): '''simple docstring''' _lowerCamelCase : Optional[int] = steps or self.get_default_steps() self.scheduler.set_timesteps(A__ ) _lowerCamelCase : Any = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCamelCase : Optional[int] = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCamelCase : Union[str, Any] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) ,generator=A__ ,device=self.device ,) _lowerCamelCase : Any = noise _lowerCamelCase : str = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(A__ ,A__ ) _lowerCamelCase : List[str] = self.mel.audio_slice_to_image(A__ ) _lowerCamelCase : Optional[Any] = np.frombuffer(input_image.tobytes() ,dtype="uint8" ).reshape( (input_image.height, input_image.width) ) _lowerCamelCase : Tuple = (input_image / 255) * 2 - 1 _lowerCamelCase : str = torch.tensor(input_image[np.newaxis, :, :] ,dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCamelCase : List[Any] = self.vqvae.encode(torch.unsqueeze(A__ ,0 ) ).latent_dist.sample( generator=A__ )[0] _lowerCamelCase : Union[str, Any] = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCamelCase : Any = self.scheduler.add_noise(A__ ,A__ ,self.scheduler.timesteps[start_step - 1] ) _lowerCamelCase : Tuple = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCamelCase : Union[str, Any] = int(mask_start_secs * pixels_per_second ) _lowerCamelCase : Union[str, Any] = int(mask_end_secs * pixels_per_second ) _lowerCamelCase : Union[str, Any] = self.scheduler.add_noise(A__ ,A__ ,torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet ,A__ ): _lowerCamelCase : List[Any] = self.unet(A__ ,A__ ,A__ )["sample"] else: _lowerCamelCase : Tuple = self.unet(A__ ,A__ )["sample"] if isinstance(self.scheduler ,A__ ): _lowerCamelCase : Dict = self.scheduler.step( model_output=A__ ,timestep=A__ ,sample=A__ ,eta=A__ ,generator=A__ ,)["prev_sample"] else: _lowerCamelCase : Optional[int] = self.scheduler.step( model_output=A__ ,timestep=A__ ,sample=A__ ,generator=A__ ,)["prev_sample"] if mask is not None: if mask_start > 0: _lowerCamelCase : int = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCamelCase : Union[str, Any] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCamelCase : Optional[Any] = 1 / self.vqvae.config.scaling_factor * images _lowerCamelCase : List[Any] = self.vqvae.decode(A__ )["sample"] _lowerCamelCase : Dict = (images / 2 + 0.5).clamp(0 ,1 ) _lowerCamelCase : Tuple = images.cpu().permute(0 ,2 ,3 ,1 ).numpy() _lowerCamelCase : Optional[int] = (images * 255).round().astype("uint8" ) _lowerCamelCase : List[Any] = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(A__ ,mode="RGB" ).convert("L" ) for _ in images) ) _lowerCamelCase : List[str] = [self.mel.image_to_audio(A__ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(A__ )[:, np.newaxis, :] ) ,**ImagePipelineOutput(A__ ) ) @torch.no_grad() def _lowercase ( self: Any ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Optional[int] = 50 ): '''simple docstring''' assert isinstance(self.scheduler ,A__ ) self.scheduler.set_timesteps(A__ ) _lowerCamelCase : Any = np.array( [np.frombuffer(image.tobytes() ,dtype="uint8" ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCamelCase : str = (sample / 255) * 2 - 1 _lowerCamelCase : List[str] = torch.Tensor(A__ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps ,(0,) ) ): _lowerCamelCase : Tuple = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCamelCase : int = self.scheduler.alphas_cumprod[t] _lowerCamelCase : int = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCamelCase : Optional[int] = 1 - alpha_prod_t _lowerCamelCase : Optional[Any] = self.unet(A__ ,A__ )["sample"] _lowerCamelCase : List[Any] = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCamelCase : Tuple = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCamelCase : Dict = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def _lowercase ( __lowerCAmelCase: Tuple ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : Optional[int] = acos(torch.dot(torch.flatten(A__ ) ,torch.flatten(A__ ) ) / torch.norm(A__ ) / torch.norm(A__ ) ) return sin((1 - alpha) * theta ) * xa / sin(A__ ) + sin(alpha * theta ) * xa / sin(A__ )
359
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class A_ ( _a ): lowerCAmelCase__ = 42 lowerCAmelCase__ = None def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=0.9_9_9 , _lowerCamelCase="cosine" , ) -> List[str]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_lowerCamelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowerCamelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _lowerCamelCase : str = [] for i in range(_lowerCamelCase ): _lowerCamelCase : Any = i / num_diffusion_timesteps _lowerCamelCase : Optional[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCamelCase ) / alpha_bar_fn(_lowerCamelCase ) , _lowerCamelCase ) ) return torch.tensor(_lowerCamelCase , dtype=torch.floataa ) class A_ ( _a , _a ): @register_to_config def __init__( self: str ,__lowerCAmelCase: int = 1_000 ,__lowerCAmelCase: str = "fixed_small_log" ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[float] = 1.0 ,__lowerCAmelCase: str = "epsilon" ,__lowerCAmelCase: str = "squaredcos_cap_v2" ,): '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) _lowerCamelCase : Union[str, Any] = betas_for_alpha_bar(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = 1.0 - self.betas _lowerCamelCase : Dict = torch.cumprod(self.alphas ,dim=0 ) _lowerCamelCase : int = torch.tensor(1.0 ) # standard deviation of the initial noise distribution _lowerCamelCase : Tuple = 1.0 # setable values _lowerCamelCase : List[Any] = None _lowerCamelCase : Union[str, Any] = torch.from_numpy(np.arange(0 ,__lowerCAmelCase )[::-1].copy() ) _lowerCamelCase : List[str] = variance_type def _lowercase ( self: Any ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ): '''simple docstring''' return sample def _lowercase ( self: Optional[int] ,__lowerCAmelCase: int ,__lowerCAmelCase: Union[str, torch.device] = None ): '''simple docstring''' _lowerCamelCase : str = num_inference_steps _lowerCamelCase : str = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) _lowerCamelCase : Union[str, Any] = (np.arange(0 ,__lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) _lowerCamelCase : int = torch.from_numpy(__lowerCAmelCase ).to(__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: List[str]=None ,__lowerCAmelCase: str=None ): '''simple docstring''' if prev_timestep is None: _lowerCamelCase : List[str] = t - 1 _lowerCamelCase : Optional[int] = self.alphas_cumprod[t] _lowerCamelCase : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _lowerCamelCase : Dict = 1 - alpha_prod_t _lowerCamelCase : str = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _lowerCamelCase : List[Any] = self.betas[t] else: _lowerCamelCase : str = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _lowerCamelCase : int = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: _lowerCamelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": _lowerCamelCase : Dict = torch.log(torch.clamp(__lowerCAmelCase ,min=1e-20 ) ) _lowerCamelCase : str = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler _lowerCamelCase : str = variance.log() _lowerCamelCase : str = beta.log() _lowerCamelCase : Optional[int] = (predicted_variance + 1) / 2 _lowerCamelCase : Union[str, Any] = frac * max_log + (1 - frac) * min_log return variance def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: int ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: bool = True ,): '''simple docstring''' _lowerCamelCase : str = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": _lowerCamelCase, _lowerCamelCase : int = torch.split(__lowerCAmelCase ,sample.shape[1] ,dim=1 ) else: _lowerCamelCase : List[Any] = None # 1. compute alphas, betas if prev_timestep is None: _lowerCamelCase : List[Any] = t - 1 _lowerCamelCase : Dict = self.alphas_cumprod[t] _lowerCamelCase : int = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _lowerCamelCase : Dict = 1 - alpha_prod_t _lowerCamelCase : List[str] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _lowerCamelCase : Any = self.betas[t] _lowerCamelCase : str = self.alphas[t] else: _lowerCamelCase : Any = 1 - alpha_prod_t / alpha_prod_t_prev _lowerCamelCase : Optional[Any] = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _lowerCamelCase : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _lowerCamelCase : List[Any] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: _lowerCamelCase : Any = torch.clamp( __lowerCAmelCase ,-self.config.clip_sample_range ,self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCamelCase : List[str] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t _lowerCamelCase : Optional[int] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCamelCase : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _lowerCamelCase : Union[str, Any] = 0 if t > 0: _lowerCamelCase : Dict = randn_tensor( model_output.shape ,dtype=model_output.dtype ,generator=__lowerCAmelCase ,device=model_output.device ) _lowerCamelCase : Any = self._get_variance( __lowerCAmelCase ,predicted_variance=__lowerCAmelCase ,prev_timestep=__lowerCAmelCase ,) if self.variance_type == "fixed_small_log": _lowerCamelCase : Optional[Any] = variance elif self.variance_type == "learned_range": _lowerCamelCase : Optional[int] = (0.5 * variance).exp() else: raise ValueError( F"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" " for the UnCLIPScheduler." ) _lowerCamelCase : Dict = variance * variance_noise _lowerCamelCase : List[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__lowerCAmelCase ,pred_original_sample=__lowerCAmelCase ) def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.IntTensor ,): '''simple docstring''' _lowerCamelCase : int = self.alphas_cumprod.to(device=original_samples.device ,dtype=original_samples.dtype ) _lowerCamelCase : Any = timesteps.to(original_samples.device ) _lowerCamelCase : List[Any] = alphas_cumprod[timesteps] ** 0.5 _lowerCamelCase : List[Any] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): _lowerCamelCase : int = sqrt_alpha_prod.unsqueeze(-1 ) _lowerCamelCase : Union[str, Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 _lowerCamelCase : str = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): _lowerCamelCase : Union[str, Any] = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) _lowerCamelCase : Dict = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
340
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCAmelCase : str = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _lowerCAmelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
360
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _lowerCAmelCase : str = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' for attribute in key.split("." ): _lowerCamelCase : Tuple = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: _lowerCamelCase : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: _lowerCamelCase : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowerCamelCase : Tuple = value elif weight_type == "weight_g": _lowerCamelCase : List[str] = value elif weight_type == "weight_v": _lowerCamelCase : List[Any] = value elif weight_type == "bias": _lowerCamelCase : str = value elif weight_type == "running_mean": _lowerCamelCase : Optional[int] = value elif weight_type == "running_var": _lowerCamelCase : Optional[Any] = value elif weight_type == "num_batches_tracked": _lowerCamelCase : int = value elif weight_type == "inv_freq": _lowerCamelCase : List[str] = value else: _lowerCamelCase : Optional[Any] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase : Dict = [] _lowerCamelCase : Optional[Any] = fairseq_model.state_dict() _lowerCamelCase : List[Any] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase : Dict = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) _lowerCamelCase : List[Any] = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase : Dict = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _lowerCamelCase : int = True if "*" in mapped_key: _lowerCamelCase : Tuple = name.split(_lowerCamelCase )[0].split("." )[-2] _lowerCamelCase : int = mapped_key.replace("*" , _lowerCamelCase ) if "pos_bias_u" in name: _lowerCamelCase : int = None elif "pos_bias_v" in name: _lowerCamelCase : Any = None elif "weight_g" in name: _lowerCamelCase : Any = "weight_g" elif "weight_v" in name: _lowerCamelCase : Any = "weight_v" elif "bias" in name: _lowerCamelCase : Optional[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase : Dict = "weight" elif "running_mean" in name: _lowerCamelCase : str = "running_mean" elif "inv_freq" in name: _lowerCamelCase : List[Any] = "inv_freq" elif "running_var" in name: _lowerCamelCase : Tuple = "running_var" elif "num_batches_tracked" in name: _lowerCamelCase : str = "num_batches_tracked" else: _lowerCamelCase : Dict = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : int = full_name.split("conv_layers." )[-1] _lowerCamelCase : List[Any] = name.split("." ) _lowerCamelCase : Union[str, Any] = int(items[0] ) _lowerCamelCase : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowerCamelCase : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowerCamelCase : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) _lowerCamelCase : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowerCamelCase : Optional[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> Dict: '''simple docstring''' if config_path is not None: _lowerCamelCase : Union[str, Any] = WavaVecaConformerConfig.from_pretrained(_lowerCamelCase , hidden_act="swish" ) else: _lowerCamelCase : Dict = WavaVecaConformerConfig() if "rope" in checkpoint_path: _lowerCamelCase : List[Any] = "rotary" if is_finetuned: if dict_path: _lowerCamelCase : Dict = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase : Optional[int] = target_dict.pad_index _lowerCamelCase : Dict = target_dict.bos_index _lowerCamelCase : Optional[Any] = target_dict.eos_index _lowerCamelCase : str = len(target_dict.symbols ) _lowerCamelCase : int = os.path.join(_lowerCamelCase , "vocab.json" ) if not os.path.isdir(_lowerCamelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) _lowerCamelCase : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase : List[str] = 0 _lowerCamelCase : List[Any] = 1 with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Optional[int] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCamelCase , ) _lowerCamelCase : Tuple = True if config.feat_extract_norm == "layer" else False _lowerCamelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) _lowerCamelCase : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) _lowerCamelCase : List[Any] = WavaVecaConformerForCTC(_lowerCamelCase ) else: _lowerCamelCase : Any = WavaVecaConformerForPreTraining(_lowerCamelCase ) if is_finetuned: _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _lowerCamelCase : List[Any] = argparse.Namespace(task="audio_pretraining" ) _lowerCamelCase : Optional[Any] = fairseq.tasks.setup_task(_lowerCamelCase ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCamelCase ) _lowerCamelCase : Dict = model[0].eval() recursively_load_weights(_lowerCamelCase , _lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) _lowerCAmelCase : str = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
340
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : Dict = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off _lowerCAmelCase : Optional[int] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 1_0563, 1_0786, 1_1420, 1_1709, 1_1907, 1_3163, 1_3697, 1_3700, 1_4808, 1_5306, 1_6410, 1_6791, 1_7992, 1_9203, 1_9510, 2_0724, 2_2305, 2_2935, 2_7007, 3_0109, 3_0420, 3_3409, 3_4949, 4_0283, 4_0493, 4_0549, 4_7282, 4_9146, 5_0257, 5_0359, 5_0360, 5_0361 ] _lowerCAmelCase : int = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 1_0428, 1_0929, 1_1938, 1_2033, 1_2331, 1_2562, 1_3793, 1_4157, 1_4635, 1_5265, 1_5618, 1_6553, 1_6604, 1_8362, 1_8956, 2_0075, 2_1675, 2_2520, 2_6130, 2_6161, 2_6435, 2_8279, 2_9464, 3_1650, 3_2302, 3_2470, 3_6865, 4_2863, 4_7425, 4_9870, 5_0254, 5_0258, 5_0360, 5_0361, 5_0362 ] class A_ ( lowerCamelCase__ ): lowerCAmelCase__ = 'whisper' lowerCAmelCase__ = ['past_key_values'] lowerCAmelCase__ = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self: Dict ,__lowerCAmelCase: str=51_865 ,__lowerCAmelCase: str=80 ,__lowerCAmelCase: Union[str, Any]=6 ,__lowerCAmelCase: Tuple=4 ,__lowerCAmelCase: int=6 ,__lowerCAmelCase: Dict=4 ,__lowerCAmelCase: str=1_536 ,__lowerCAmelCase: List[Any]=1_536 ,__lowerCAmelCase: str=0.0 ,__lowerCAmelCase: Tuple=0.0 ,__lowerCAmelCase: Optional[int]=50_257 ,__lowerCAmelCase: Dict=True ,__lowerCAmelCase: Any=True ,__lowerCAmelCase: Any="gelu" ,__lowerCAmelCase: List[Any]=256 ,__lowerCAmelCase: List[str]=0.0 ,__lowerCAmelCase: Optional[int]=0.0 ,__lowerCAmelCase: str=0.0 ,__lowerCAmelCase: Optional[int]=0.02 ,__lowerCAmelCase: Optional[int]=False ,__lowerCAmelCase: int=1_500 ,__lowerCAmelCase: Optional[Any]=448 ,__lowerCAmelCase: Optional[Any]=50_256 ,__lowerCAmelCase: List[Any]=50_256 ,__lowerCAmelCase: Optional[Any]=50_256 ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: List[str]=[220, 50_256] ,__lowerCAmelCase: Union[str, Any]=False ,__lowerCAmelCase: Union[str, Any]=256 ,__lowerCAmelCase: List[str]=False ,__lowerCAmelCase: Optional[Any]=0.05 ,__lowerCAmelCase: Any=10 ,__lowerCAmelCase: Union[str, Any]=2 ,__lowerCAmelCase: Tuple=0.0 ,__lowerCAmelCase: Tuple=10 ,__lowerCAmelCase: Optional[Any]=0 ,__lowerCAmelCase: List[str]=7 ,**__lowerCAmelCase: Dict ,): '''simple docstring''' _lowerCamelCase : Optional[Any] = vocab_size _lowerCamelCase : int = num_mel_bins _lowerCamelCase : Dict = d_model _lowerCamelCase : Dict = encoder_layers _lowerCamelCase : Union[str, Any] = encoder_attention_heads _lowerCamelCase : List[str] = decoder_layers _lowerCamelCase : Dict = decoder_attention_heads _lowerCamelCase : Dict = decoder_ffn_dim _lowerCamelCase : List[str] = encoder_ffn_dim _lowerCamelCase : Dict = dropout _lowerCamelCase : List[Any] = attention_dropout _lowerCamelCase : Tuple = activation_dropout _lowerCamelCase : Optional[int] = activation_function _lowerCamelCase : str = init_std _lowerCamelCase : List[str] = encoder_layerdrop _lowerCamelCase : str = decoder_layerdrop _lowerCamelCase : List[Any] = use_cache _lowerCamelCase : Tuple = encoder_layers _lowerCamelCase : str = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCamelCase : Dict = max_source_positions _lowerCamelCase : Dict = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. _lowerCamelCase : int = classifier_proj_size _lowerCamelCase : Tuple = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : str = apply_spec_augment _lowerCamelCase : str = mask_time_prob _lowerCamelCase : int = mask_time_length _lowerCamelCase : str = mask_time_min_masks _lowerCamelCase : Dict = mask_feature_prob _lowerCamelCase : Dict = mask_feature_length _lowerCamelCase : Union[str, Any] = mask_feature_min_masks _lowerCamelCase : Dict = median_filter_width super().__init__( pad_token_id=__A ,bos_token_id=__A ,eos_token_id=__A ,is_encoder_decoder=__A ,decoder_start_token_id=__A ,suppress_tokens=__A ,begin_suppress_tokens=__A ,**__A ,) class A_ ( lowerCamelCase__ ): @property def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Optional[Any] = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: _lowerCamelCase : Dict = {0: '''batch'''} else: _lowerCamelCase : Optional[Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__A ,direction="inputs" ) return common_inputs def _lowercase ( self: List[str] ,__lowerCAmelCase: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] ,__lowerCAmelCase: int = -1 ,__lowerCAmelCase: int = -1 ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional["TensorType"] = None ,__lowerCAmelCase: int = 22_050 ,__lowerCAmelCase: float = 5.0 ,__lowerCAmelCase: int = 220 ,): '''simple docstring''' _lowerCamelCase : Optional[Any] = OrderedDict() _lowerCamelCase : Optional[int] = OnnxConfig.generate_dummy_inputs( self ,preprocessor=preprocessor.feature_extractor ,batch_size=__A ,framework=__A ,sampling_rate=__A ,time_duration=__A ,frequency=__A ,) _lowerCamelCase : Dict = encoder_inputs['''input_features'''].shape[2] _lowerCamelCase : Tuple = encoder_sequence_length // 2 if self.use_past else seq_length _lowerCamelCase : Optional[Any] = super().generate_dummy_inputs( preprocessor.tokenizer ,__A ,__A ,__A ,__A ) _lowerCamelCase : Tuple = encoder_inputs.pop("input_features" ) _lowerCamelCase : List[str] = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: _lowerCamelCase : Optional[int] = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def _lowercase ( self: List[Any] ): '''simple docstring''' return 1e-3
361
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' _validate_point(_lowerCamelCase ) _validate_point(_lowerCamelCase ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(_lowerCamelCase , _lowerCamelCase ) ) ) def lowerCamelCase_( _lowerCamelCase ) -> None: '''simple docstring''' if point: if isinstance(_lowerCamelCase , _lowerCamelCase ): for item in point: if not isinstance(_lowerCamelCase , (int, float) ): _lowerCamelCase : Dict = ( "Expected a list of numbers as input, found " F"""{type(_lowerCamelCase ).__name__}""" ) raise TypeError(_lowerCamelCase ) else: _lowerCamelCase : Optional[int] = F"""Expected a list of numbers as input, found {type(_lowerCamelCase ).__name__}""" raise TypeError(_lowerCamelCase ) else: raise ValueError("Missing an input" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' _validate_point(_lowerCamelCase ) _validate_point(_lowerCamelCase ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(_lowerCamelCase , _lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
340
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : List[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _lowerCAmelCase : Any = 25_0004 _lowerCAmelCase : str = 25_0020 @require_sentencepiece @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = MBartaaTokenizer lowerCAmelCase__ = MBartaaTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True def _lowercase ( self: List[str] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : List[Any] = MBartaaTokenizer(__a ,src_lang="en_XX" ,tgt_lang="ro_RO" ,keep_accents=__a ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : List[str] = "<s>" _lowerCamelCase : Dict = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) ,__a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) ,__a ) def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"<s>" ) self.assertEqual(vocab_keys[1] ,"<pad>" ) self.assertEqual(vocab_keys[-1] ,"<mask>" ) self.assertEqual(len(__a ) ,1_054 ) def _lowercase ( self: str ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,1_054 ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : List[Any] = MBartaaTokenizer(__a ,src_lang="en_XX" ,tgt_lang="ro_RO" ,keep_accents=__a ) _lowerCamelCase : str = tokenizer.tokenize("This is a test" ) self.assertListEqual(__a ,["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,) _lowerCamelCase : List[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __a ,[SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] ,) _lowerCamelCase : Any = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] ,) _lowerCamelCase : List[Any] = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a ,[SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] ,) @slow def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : List[str] = {"input_ids": [[250_004, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [250_004, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250_004, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a ,model_name="facebook/mbart-large-50" ,revision="d3913889c59cd5c9e456b269c376325eabad57e2" ,) def _lowercase ( self: Optional[Any] ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _lowerCamelCase : Any = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart50", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowerCamelCase : List[str] = self.rust_tokenizer_class.from_pretrained(__a ,**__a ) _lowerCamelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(__a ,**__a ) _lowerCamelCase : List[Any] = tempfile.mkdtemp() _lowerCamelCase : Union[str, Any] = tokenizer_r.save_pretrained(__a ) _lowerCamelCase : List[Any] = tokenizer_p.save_pretrained(__a ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) _lowerCamelCase : Any = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(__a ,__a ) # Checks everything loads correctly in the same way _lowerCamelCase : List[Any] = tokenizer_r.from_pretrained(__a ) _lowerCamelCase : Tuple = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a ,__a ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__a ) # Save tokenizer rust, legacy_format=True _lowerCamelCase : Union[str, Any] = tempfile.mkdtemp() _lowerCamelCase : List[Any] = tokenizer_r.save_pretrained(__a ,legacy_format=__a ) _lowerCamelCase : Union[str, Any] = tokenizer_p.save_pretrained(__a ) # Checks it save with the same files self.assertSequenceEqual(__a ,__a ) # Checks everything loads correctly in the same way _lowerCamelCase : Any = tokenizer_r.from_pretrained(__a ) _lowerCamelCase : Union[str, Any] = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a ,__a ) ) shutil.rmtree(__a ) # Save tokenizer rust, legacy_format=False _lowerCamelCase : int = tempfile.mkdtemp() _lowerCamelCase : Any = tokenizer_r.save_pretrained(__a ,legacy_format=__a ) _lowerCamelCase : Tuple = tokenizer_p.save_pretrained(__a ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _lowerCamelCase : int = tokenizer_r.from_pretrained(__a ) _lowerCamelCase : List[Any] = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a ,__a ) ) shutil.rmtree(__a ) @require_torch @require_sentencepiece @require_tokenizers class A_ ( unittest.TestCase ): lowerCAmelCase__ = 'facebook/mbart-large-50-one-to-many-mmt' lowerCAmelCase__ = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] lowerCAmelCase__ = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] lowerCAmelCase__ = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def _lowercase ( cls: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = MBartaaTokenizer.from_pretrained( cls.checkpoint_name ,src_lang="en_XX" ,tgt_lang="ro_RO" ) _lowerCamelCase : List[str] = 1 return cls def _lowercase ( self: str ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] ,250_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] ,250_004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] ,250_020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["mr_IN"] ,250_038 ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens ,__a ) def _lowercase ( self: Optional[int] ): '''simple docstring''' self.assertIn(__a ,self.tokenizer.all_special_ids ) _lowerCamelCase : Optional[int] = [RO_CODE, 884, 9_019, 96, 9, 916, 86_792, 36, 18_743, 15_596, 5, 2] _lowerCamelCase : Tuple = self.tokenizer.decode(__a ,skip_special_tokens=__a ) _lowerCamelCase : List[str] = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=__a ) self.assertEqual(__a ,__a ) self.assertNotIn(self.tokenizer.eos_token ,__a ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] ,__a ) _lowerCamelCase : Any = 10 _lowerCamelCase : Optional[Any] = self.tokenizer(__a ,max_length=__a ,truncation=__a ).input_ids[0] self.assertEqual(ids[0] ,__a ) self.assertEqual(ids[-1] ,2 ) self.assertEqual(len(__a ) ,__a ) def _lowercase ( self: List[Any] ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) ,[250_053, 250_001] ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = tempfile.mkdtemp() _lowerCamelCase : Union[str, Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__a ) _lowerCamelCase : List[Any] = MBartaaTokenizer.from_pretrained(__a ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids ,__a ) @require_torch def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : Optional[int] = self.tokenizer(self.src_text ,text_target=self.tgt_text ,padding=__a ,return_tensors="pt" ) _lowerCamelCase : int = shift_tokens_right(batch["labels"] ,self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Dict = self.tokenizer( self.src_text ,text_target=self.tgt_text ,padding=__a ,truncation=__a ,max_length=len(self.expected_src_tokens ) ,return_tensors="pt" ,) _lowerCamelCase : Any = shift_tokens_right(batch["labels"] ,self.tokenizer.pad_token_id ) self.assertIsInstance(__a ,__a ) self.assertEqual((2, 14) ,batch.input_ids.shape ) self.assertEqual((2, 14) ,batch.attention_mask.shape ) _lowerCamelCase : int = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens ,__a ) self.assertEqual(2 ,batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens ,[EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : str = self.tokenizer(self.src_text ,padding=__a ,truncation=__a ,max_length=3 ,return_tensors="pt" ) _lowerCamelCase : Tuple = self.tokenizer( text_target=self.tgt_text ,padding=__a ,truncation=__a ,max_length=10 ,return_tensors="pt" ) _lowerCamelCase : Union[str, Any] = targets["input_ids"] _lowerCamelCase : Tuple = shift_tokens_right(__a ,self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.decoder_input_ids.shape[1] ,10 ) @require_torch def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : List[Any] = self.tokenizer._build_translation_inputs( "A test" ,return_tensors="pt" ,src_lang="en_XX" ,tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(__a ) ,{ # en_XX, A, test, EOS "input_ids": [[250_004, 62, 3_034, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 250_001, } ,)
362
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Optional[Any] = np.inf def set_batch_size(_lowerCamelCase ) -> None: nonlocal batch_size if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Optional[int] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_lowerCamelCase , _lowerCamelCase ) and feature.dtype == "binary": _lowerCamelCase : List[str] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_lowerCamelCase , _lowerCamelCase ) return None if batch_size is np.inf else batch_size class A_ ( _a ): def __init__( self: Optional[int] ,__lowerCAmelCase: NestedDataStructureLike[PathLike] ,__lowerCAmelCase: Optional[NamedSplit] = None ,__lowerCAmelCase: Optional[Features] = None ,__lowerCAmelCase: str = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: int ,): '''simple docstring''' super().__init__( __lowerCAmelCase ,split=__lowerCAmelCase ,features=__lowerCAmelCase ,cache_dir=__lowerCAmelCase ,keep_in_memory=__lowerCAmelCase ,streaming=__lowerCAmelCase ,num_proc=__lowerCAmelCase ,**__lowerCAmelCase ,) _lowerCamelCase : Tuple = path_or_paths if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) else {self.split: path_or_paths} _lowerCamelCase : Any = _PACKAGED_DATASETS_MODULES["parquet"][1] _lowerCamelCase : int = Parquet( cache_dir=__lowerCAmelCase ,data_files=__lowerCAmelCase ,features=__lowerCAmelCase ,hash=__lowerCAmelCase ,**__lowerCAmelCase ,) def _lowercase ( self: Optional[int] ): '''simple docstring''' if self.streaming: _lowerCamelCase : List[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _lowerCamelCase : Tuple = None _lowerCamelCase : Optional[int] = None _lowerCamelCase : List[str] = None _lowerCamelCase : str = None self.builder.download_and_prepare( download_config=__lowerCAmelCase ,download_mode=__lowerCAmelCase ,verification_mode=__lowerCAmelCase ,base_path=__lowerCAmelCase ,num_proc=self.num_proc ,) _lowerCamelCase : Any = self.builder.as_dataset( split=self.split ,verification_mode=__lowerCAmelCase ,in_memory=self.keep_in_memory ) return dataset class A_ : def __init__( self: str ,__lowerCAmelCase: Dataset ,__lowerCAmelCase: Union[PathLike, BinaryIO] ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: List[Any] ,): '''simple docstring''' _lowerCamelCase : Any = dataset _lowerCamelCase : Any = path_or_buf _lowerCamelCase : Any = batch_size or get_writer_batch_size(dataset.features ) _lowerCamelCase : List[str] = parquet_writer_kwargs def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Tuple = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf ,(str, bytes, os.PathLike) ): with open(self.path_or_buf ,"wb+" ) as buffer: _lowerCamelCase : str = self._write(file_obj=__lowerCAmelCase ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs ) else: _lowerCamelCase : Optional[int] = self._write(file_obj=self.path_or_buf ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs ) return written def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: BinaryIO ,__lowerCAmelCase: int ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[int] = parquet_writer_kwargs.pop("path_or_buf" ,__lowerCAmelCase ) _lowerCamelCase : List[str] = self.dataset.features.arrow_schema _lowerCamelCase : str = pq.ParquetWriter(__lowerCAmelCase ,schema=__lowerCAmelCase ,**__lowerCAmelCase ) for offset in logging.tqdm( range(0 ,len(self.dataset ) ,__lowerCAmelCase ) ,unit="ba" ,disable=not logging.is_progress_bar_enabled() ,desc="Creating parquet from Arrow format" ,): _lowerCamelCase : List[str] = query_table( table=self.dataset._data ,key=slice(__lowerCAmelCase ,offset + batch_size ) ,indices=self.dataset._indices if self.dataset._indices is not None else None ,) writer.write_table(__lowerCAmelCase ) written += batch.nbytes writer.close() return written
340
0
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": _lowerCAmelCase : int = pd.read_csv('''sample_data.csv''', header=None) _lowerCAmelCase : Dict = df.shape[:1][0] # If you're using some other dataset input the target column _lowerCAmelCase : Union[str, Any] = df.iloc[:, 1:2] _lowerCAmelCase : List[Any] = actual_data.values.reshape(len_data, 1) _lowerCAmelCase : Optional[int] = MinMaxScaler().fit_transform(actual_data) _lowerCAmelCase : List[Any] = 10 _lowerCAmelCase : Any = 5 _lowerCAmelCase : Dict = 20 _lowerCAmelCase : List[str] = len_data - periods * look_back _lowerCAmelCase : List[Any] = actual_data[:division] _lowerCAmelCase : str = actual_data[division - look_back :] _lowerCAmelCase , _lowerCAmelCase : int = [], [] _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) _lowerCAmelCase : List[Any] = np.array(train_x) _lowerCAmelCase : int = np.array(test_x) _lowerCAmelCase : Union[str, Any] = np.array([list(i.ravel()) for i in train_y]) _lowerCAmelCase : Optional[Any] = np.array([list(i.ravel()) for i in test_y]) _lowerCAmelCase : List[Any] = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') _lowerCAmelCase : Any = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) _lowerCAmelCase : Tuple = model.predict(x_test)
363
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Optional[int] = tokenizer(example["content"] , truncation=_lowerCamelCase )["input_ids"] _lowerCamelCase : Dict = len(example["content"] ) / len(output["input_ids"] ) return output _lowerCAmelCase : Tuple = HfArgumentParser(PretokenizationArguments) _lowerCAmelCase : Optional[int] = parser.parse_args() if args.num_workers is None: _lowerCAmelCase : Any = multiprocessing.cpu_count() _lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(args.tokenizer_dir) _lowerCAmelCase : Union[str, Any] = time.time() _lowerCAmelCase : Optional[int] = load_dataset(args.dataset_name, split='''train''') print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') _lowerCAmelCase : Any = time.time() _lowerCAmelCase : Dict = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') _lowerCAmelCase : str = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
340
0
"""simple docstring""" from timeit import timeit _lowerCAmelCase : List[Any] = { '''MALAYALAM''': True, '''String''': False, '''rotor''': True, '''level''': True, '''A''': True, '''BB''': True, '''ABC''': False, '''amanaplanacanalpanama''': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def lowerCamelCase_( _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Optional[int] = len(SCREAMING_SNAKE_CASE_ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : List[Any] = len(SCREAMING_SNAKE_CASE_ ) // 2 _lowerCamelCase : Dict = len(SCREAMING_SNAKE_CASE_ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(SCREAMING_SNAKE_CASE_ ) ) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' if len(SCREAMING_SNAKE_CASE_ ) <= 2: return True if s[0] == s[len(SCREAMING_SNAKE_CASE_ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' return s == s[::-1] def lowerCamelCase_( _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Optional[Any] = F"""all({name}(key) is value for key, value in test_data.items())""" _lowerCamelCase : Optional[Any] = F"""from __main__ import test_data, {name}""" _lowerCamelCase : Any = 500000 _lowerCamelCase : Dict = timeit(stmt=SCREAMING_SNAKE_CASE_ , setup=SCREAMING_SNAKE_CASE_ , number=SCREAMING_SNAKE_CASE_ ) print(F"""{name:<35} finished {number:,} runs in {result:.5f} seconds""" ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f'''{key:21} {value}''') print('''a man a plan a canal panama''') # finished 500,000 runs in 0.46793 seconds benchmark_function('''is_palindrome_slice''') # finished 500,000 runs in 0.85234 seconds benchmark_function('''is_palindrome''') # finished 500,000 runs in 1.32028 seconds benchmark_function('''is_palindrome_recursive''') # finished 500,000 runs in 2.08679 seconds benchmark_function('''is_palindrome_traversal''')
364
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Optional[Any] = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
0
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _lowerCAmelCase : int = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=None ) -> Dict: '''simple docstring''' require_version(deps[pkg] , snake_case__ )
365
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) class A_ ( _a ): lowerCAmelCase__ = 'masked_bert' def __init__( self: Union[str, Any] ,__lowerCAmelCase: Dict=30_522 ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Dict=12 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: List[Any]="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Tuple=512 ,__lowerCAmelCase: str=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Union[str, Any]=1e-12 ,__lowerCAmelCase: Union[str, Any]=0 ,__lowerCAmelCase: List[Any]="topK" ,__lowerCAmelCase: Optional[Any]="constant" ,__lowerCAmelCase: Optional[Any]=0.0 ,**__lowerCAmelCase: str ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : str = max_position_embeddings _lowerCamelCase : List[str] = type_vocab_size _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : int = pruning_method _lowerCamelCase : str = mask_init _lowerCamelCase : List[Any] = mask_scale
340
0
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class A_ ( unittest.TestCase ): def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Dict = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(__lowerCAmelCase ) ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Optional[int] = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(__lowerCAmelCase ) ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Dict = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__lowerCAmelCase ) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] self.assertTrue(is_safetensors_compatible(__lowerCAmelCase ) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : str = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", # Removed: 'text_encoder/model.safetensors', "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertFalse(is_safetensors_compatible(__lowerCAmelCase ) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] _lowerCamelCase : Tuple = "fp16" self.assertTrue(is_safetensors_compatible(__lowerCAmelCase ,variant=__lowerCAmelCase ) ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = [ "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] _lowerCamelCase : Any = "fp16" self.assertTrue(is_safetensors_compatible(__lowerCAmelCase ,variant=__lowerCAmelCase ) ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Optional[Any] = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] _lowerCamelCase : Optional[int] = "fp16" self.assertTrue(is_safetensors_compatible(__lowerCAmelCase ,variant=__lowerCAmelCase ) ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] _lowerCamelCase : Dict = "fp16" self.assertFalse(is_safetensors_compatible(__lowerCAmelCase ,variant=__lowerCAmelCase ) ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : str = [ "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", ] _lowerCamelCase : int = "fp16" self.assertTrue(is_safetensors_compatible(__lowerCAmelCase ,variant=__lowerCAmelCase ) ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] _lowerCamelCase : Optional[Any] = "fp16" self.assertTrue(is_safetensors_compatible(__lowerCAmelCase ,variant=__lowerCAmelCase ) ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : int = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", # 'text_encoder/model.fp16.safetensors', "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] _lowerCamelCase : Dict = "fp16" self.assertFalse(is_safetensors_compatible(__lowerCAmelCase ,variant=__lowerCAmelCase ) )
366
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _lowerCAmelCase : str = '''0.12''' # assumed parallelism: 8 if is_torch_available(): import torch def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) -> List[Any]: '''simple docstring''' if rng is None: _lowerCamelCase : Union[str, Any] = random.Random() _lowerCamelCase : Union[str, Any] = 1 for dim in shape: total_dims *= dim _lowerCamelCase : Optional[int] = [] for _ in range(_lowerCamelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) _lowerCamelCase : Union[str, Any] = np.array(_lowerCamelCase , dtype=jnp.intaa ).reshape(_lowerCamelCase ) return output def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : Optional[int] = ids_tensor(_lowerCamelCase , vocab_size=2 , rng=_lowerCamelCase ) # make sure that at least one token is attended to for each batch _lowerCamelCase : List[str] = 1 return attn_mask @require_flax class A_ : lowerCAmelCase__ = None lowerCAmelCase__ = () def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 _lowerCamelCase : List[str] = 2 _lowerCamelCase : str = inputs["input_ids"].shape[-1] // 2 _lowerCamelCase : Tuple = inputs["input_ids"][:max_batch_size, :sequence_length] _lowerCamelCase : Any = jnp.ones_like(__lowerCAmelCase ) _lowerCamelCase : List[Any] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens _lowerCamelCase : Optional[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` _lowerCamelCase : List[str] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = self._get_input_ids_and_config() _lowerCamelCase : List[Any] = False _lowerCamelCase : Dict = max_length _lowerCamelCase : Tuple = 0 for model_class in self.all_generative_model_classes: _lowerCamelCase : str = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning _lowerCamelCase : Any = getattr(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Dict = pt_model_class(__lowerCAmelCase ).eval() _lowerCamelCase : Optional[Any] = load_flax_weights_in_pytorch_model(__lowerCAmelCase ,flax_model.params ) _lowerCamelCase : int = flax_model.generate(__lowerCAmelCase ).sequences _lowerCamelCase : Optional[int] = pt_model.generate(torch.tensor(__lowerCAmelCase ,dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: _lowerCamelCase : List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() ,flax_generation_outputs.tolist() ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = self._get_input_ids_and_config() _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : Union[str, Any] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config() _lowerCamelCase : List[Any] = True _lowerCamelCase : Optional[int] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : List[Any] = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : int = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config() _lowerCamelCase : int = False _lowerCamelCase : Optional[Any] = max_length _lowerCamelCase : Dict = 2 for model_class in self.all_generative_model_classes: _lowerCamelCase : List[str] = model_class(__lowerCAmelCase ) _lowerCamelCase : Dict = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Tuple = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = self._get_input_ids_and_config() _lowerCamelCase : Tuple = False _lowerCamelCase : Union[str, Any] = max_length _lowerCamelCase : List[str] = 2 _lowerCamelCase : Optional[int] = 2 for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : str = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0] ,input_ids.shape[0] * config.num_return_sequences ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config() _lowerCamelCase : int = True _lowerCamelCase : List[Any] = max_length _lowerCamelCase : Optional[Any] = 0.8 _lowerCamelCase : Union[str, Any] = 10 _lowerCamelCase : List[str] = 0.3 _lowerCamelCase : Tuple = 1 _lowerCamelCase : Any = 8 _lowerCamelCase : str = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ) _lowerCamelCase : Any = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : int = jit(model.generate ) _lowerCamelCase : Optional[int] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = self._get_input_ids_and_config() _lowerCamelCase : List[str] = max_length _lowerCamelCase : Tuple = 1 _lowerCamelCase : Any = 8 _lowerCamelCase : Dict = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : Any = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : Any = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config() _lowerCamelCase : Dict = max_length _lowerCamelCase : List[Any] = 2 _lowerCamelCase : Tuple = 1 _lowerCamelCase : List[str] = 8 _lowerCamelCase : List[Any] = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : int = model_class(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Tuple = jit(model.generate ) _lowerCamelCase : Optional[Any] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : Tuple = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : Dict = False _lowerCamelCase : Any = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : Optional[Any] = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : List[str] = True _lowerCamelCase : Optional[Any] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : List[Any] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : List[str] = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : int = 2 _lowerCamelCase : int = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : int = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : Dict = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) @require_flax class A_ ( unittest.TestCase ): def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" ) _lowerCamelCase : Union[str, Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) _lowerCamelCase : Optional[Any] = "Hello world" _lowerCamelCase : str = tokenizer(__lowerCAmelCase ,return_tensors="np" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__lowerCAmelCase ,"do_samples" ): model.generate(__lowerCAmelCase ,do_samples=__lowerCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__lowerCAmelCase ,"foo" ): _lowerCamelCase : List[str] = {"foo": "bar"} model.generate(__lowerCAmelCase ,**__lowerCAmelCase )
340
0
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowerCamelCase_( ) -> Any: '''simple docstring''' _lowerCamelCase : List[str] = torch.nn.Linear(2 , 4 ) _lowerCamelCase : Any = torch.optim.AdamW(model.parameters() , lr=1.0 ) _lowerCamelCase : List[Any] = torch.optim.lr_scheduler.OneCycleLR(_lowerCamelCase , max_lr=0.0_1 , steps_per_epoch=2 , epochs=1 ) _lowerCamelCase : List[Any] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) _lowerCamelCase : Dict = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : Union[str, Any] = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(_lowerCamelCase ) class A_ ( UpperCAmelCase_ ): @require_cuda def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Dict = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(__lowercase ): _lowerCamelCase : Any = Accelerator(cpu=__lowercase ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[Any] = Accelerator() _lowerCamelCase : List[Any] = GradientState() assert state.num_steps == 1 _lowerCamelCase : Any = 4 assert state.num_steps == 4 assert state.sync_gradients is True _lowerCamelCase : int = False assert state.sync_gradients is False GradientState._reset_state() def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Tuple = Accelerator() _lowerCamelCase : Optional[Any] = create_components() ( _lowerCamelCase ) : int = accelerator.prepare(__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : str = Accelerator() _lowerCamelCase : Optional[Any] = create_components() accelerator.prepare(__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def _lowercase ( self: str ): '''simple docstring''' PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*__lowerCAmelCase: Union[str, Any] ,**__lowerCAmelCase: int ): pass with patch("torch.cuda.set_device" ,__lowercase ), patch_environment(ACCELERATE_TORCH_DEVICE="cuda:64" ): _lowerCamelCase : Optional[Any] = Accelerator() self.assertEqual(str(accelerator.state.device ) ,"cuda:64" ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : List[Any] = Accelerator() _lowerCamelCase : List[Any] = create_components() accelerator.prepare(__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) _lowerCamelCase : Tuple = get_signature(__lowercase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__lowercase ) # make sure random weights don't match load_random_weights(__lowercase ) self.assertTrue(abs(model_signature - get_signature(__lowercase ) ) > 1e-3 ) # make sure loaded weights match accelerator.load_state(__lowercase ) self.assertTrue(abs(model_signature - get_signature(__lowercase ) ) < 1e-3 ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : List[Any] = Accelerator() _lowerCamelCase : Any = create_components() accelerator.prepare(__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) _lowerCamelCase : Any = get_signature(__lowercase ) # saving hook def save_config(__lowerCAmelCase: str ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Union[str, Any] ): _lowerCamelCase : Union[str, Any] = {'''class_name''': models[0].__class__.__name__} with open(os.path.join(__lowercase ,"data.json" ) ,"w" ) as f: json.dump(__lowercase ,__lowercase ) # loading hook def load_config(__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Union[str, Any] ): with open(os.path.join(__lowercase ,"data.json" ) ,"r" ) as f: _lowerCamelCase : Dict = json.load(__lowercase ) _lowerCamelCase : Dict = config['''class_name'''] _lowerCamelCase : Union[str, Any] = accelerator.register_save_state_pre_hook(__lowercase ) _lowerCamelCase : Any = accelerator.register_load_state_pre_hook(__lowercase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__lowercase ) # make sure random weights don't match with hooks load_random_weights(__lowercase ) self.assertTrue(abs(model_signature - get_signature(__lowercase ) ) > 1e-3 ) # random class name to verify correct one is loaded _lowerCamelCase : int = '''random''' # make sure loaded weights match with hooks accelerator.load_state(__lowercase ) self.assertTrue(abs(model_signature - get_signature(__lowercase ) ) < 1e-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__lowercase ) # make sure random weights don't match with hooks removed load_random_weights(__lowercase ) self.assertTrue(abs(model_signature - get_signature(__lowercase ) ) > 1e-3 ) # random class name to verify correct one is loaded _lowerCamelCase : Dict = '''random''' # make sure loaded weights match with hooks removed accelerator.load_state(__lowercase ) self.assertTrue(abs(model_signature - get_signature(__lowercase ) ) < 1e-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Optional[Any] = Accelerator() _lowerCamelCase : Union[str, Any] = create_components() _lowerCamelCase : Optional[Any] = None # This should work _lowerCamelCase : List[Any] = accelerator.prepare( __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) self.assertTrue(dummy_obj is None ) def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : List[str] = Accelerator() _lowerCamelCase : Any = create_components() _lowerCamelCase : Dict = [1, 2, 3] # This should work _lowerCamelCase : Tuple = accelerator.prepare( __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) self.assertEqual( getattr(__lowercase ,"_is_accelerate_prepared" ,__lowercase ) ,__lowercase ,"Dummy object should have `_is_accelerate_prepared` set to `True`" ,) self.assertEqual( getattr(__lowercase ,"_is_accelerate_prepared" ,__lowercase ) ,__lowercase ,"Model is missing `_is_accelerator_prepared` or is set to `False`" ,) self.assertEqual( getattr(__lowercase ,"_is_accelerate_prepared" ,__lowercase ) ,__lowercase ,"Optimizer is missing `_is_accelerator_prepared` or is set to `False`" ,) self.assertEqual( getattr(__lowercase ,"_is_accelerate_prepared" ,__lowercase ) ,__lowercase ,"Scheduler is missing `_is_accelerator_prepared` or is set to `False`" ,) self.assertEqual( getattr(__lowercase ,"_is_accelerate_prepared" ,__lowercase ) ,__lowercase ,"Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`" ,) self.assertEqual( getattr(__lowercase ,"_is_accelerate_prepared" ,__lowercase ) ,__lowercase ,"Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`" ,) @slow @require_bnb def _lowercase ( self: Tuple ): '''simple docstring''' from transformers import AutoModelForCausalLM _lowerCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" ,load_in_abit=__lowercase ,device_map={"": 0} ,) _lowerCamelCase : Optional[Any] = Accelerator() # This should work _lowerCamelCase : int = accelerator.prepare(__lowercase ) @slow @require_bnb def _lowercase ( self: List[Any] ): '''simple docstring''' from transformers import AutoModelForCausalLM _lowerCamelCase : str = Accelerator() with init_empty_weights(): _lowerCamelCase : List[Any] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" ,) model.tie_weights() _lowerCamelCase : List[str] = infer_auto_device_map(__lowercase ) _lowerCamelCase : str = '''cpu''' _lowerCamelCase : List[Any] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" ,device_map=__lowercase ,load_in_abit=__lowercase ,llm_inta_enable_fpaa_cpu_offload=__lowercase ) # This should not work and get value error with self.assertRaises(__lowercase ): _lowerCamelCase : Union[str, Any] = accelerator.prepare(__lowercase ) @slow @require_bnb @require_multi_gpu def _lowercase ( self: List[str] ): '''simple docstring''' from transformers import AutoModelForCausalLM _lowerCamelCase : int = {'''distributed_type''': DistributedType.MULTI_GPU} with init_empty_weights(): _lowerCamelCase : Tuple = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" ,) model.tie_weights() _lowerCamelCase : int = infer_auto_device_map(__lowercase ) _lowerCamelCase : List[Any] = 1 _lowerCamelCase : int = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" ,load_in_abit=__lowercase ,device_map=__lowercase ,) _lowerCamelCase : Dict = Accelerator() # This should not work and get value error with self.assertRaises(__lowercase ): _lowerCamelCase : Any = accelerator.prepare(__lowercase ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def _lowercase ( self: Dict ): '''simple docstring''' from transformers import AutoModelForCausalLM with init_empty_weights(): _lowerCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" ,) _lowerCamelCase : List[str] = infer_auto_device_map(__lowercase ) _lowerCamelCase : Optional[int] = 1 _lowerCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" ,load_in_abit=__lowercase ,device_map=__lowercase ,) _lowerCamelCase : int = Accelerator() # This should work _lowerCamelCase : int = accelerator.prepare(__lowercase ) @require_cuda def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : Tuple = torch.nn.Linear(10 ,10 ) _lowerCamelCase : Optional[Any] = torch.optim.SGD(model.parameters() ,lr=0.01 ) _lowerCamelCase : Any = Accelerator(cpu=__lowercase ) _lowerCamelCase : Tuple = accelerator.prepare(__lowercase )
367
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : int = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class A_ ( _a ): lowerCAmelCase__ = 'mobilenet_v1' def __init__( self: Tuple ,__lowerCAmelCase: int=3 ,__lowerCAmelCase: Dict=224 ,__lowerCAmelCase: int=1.0 ,__lowerCAmelCase: Tuple=8 ,__lowerCAmelCase: List[str]="relu6" ,__lowerCAmelCase: int=True ,__lowerCAmelCase: List[Any]=0.9_99 ,__lowerCAmelCase: Optional[int]=0.02 ,__lowerCAmelCase: Optional[int]=0.0_01 ,**__lowerCAmelCase: str ,): '''simple docstring''' super().__init__(**__lowerCAmelCase ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) _lowerCamelCase : List[str] = num_channels _lowerCamelCase : Union[str, Any] = image_size _lowerCamelCase : List[Any] = depth_multiplier _lowerCamelCase : Any = min_depth _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Dict = tf_padding _lowerCamelCase : Union[str, Any] = classifier_dropout_prob _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : List[Any] = layer_norm_eps class A_ ( _a ): lowerCAmelCase__ = version.parse('1.11' ) @property def _lowercase ( self: Optional[int] ): '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def _lowercase ( self: Optional[Any] ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def _lowercase ( self: Any ): '''simple docstring''' return 1e-4
340
0
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class A_ ( UpperCamelCase__ ): lowerCAmelCase__ = ComputeEnvironment.AMAZON_SAGEMAKER lowerCAmelCase__ = True lowerCAmelCase__ = """ml.p3.2xlarge""" lowerCAmelCase__ = """accelerate_sagemaker_execution_role""" lowerCAmelCase__ = """hf-sm""" lowerCAmelCase__ = """us-east-1""" lowerCAmelCase__ = 1 lowerCAmelCase__ = """accelerate-sagemaker-1""" lowerCAmelCase__ = """1.6""" lowerCAmelCase__ = """4.4""" lowerCAmelCase__ = """train.py""" lowerCAmelCase__ = [ """--model_name_or_path""", """bert""", """--do_train""", """False""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] lowerCAmelCase__ = [ """--model_name_or_path""", """bert""", """--do_train""", """--do_test""", """False""", """--do_predict""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] class A_ ( unittest.TestCase ): def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : List[str] = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["model_name_or_path"] ,__a ) assert isinstance(converted_args["do_train"] ,__a ) assert isinstance(converted_args["epochs"] ,__a ) assert isinstance(converted_args["learning_rate"] ,__a ) assert isinstance(converted_args["max_steps"] ,__a ) with pytest.raises(__a ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
368
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' for param in module.parameters(): _lowerCamelCase : Optional[int] = False def lowerCamelCase_( ) -> List[str]: '''simple docstring''' _lowerCamelCase : Optional[Any] = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _lowerCamelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Dict = plt.imshow(_lowerCamelCase ) fig.axes.get_xaxis().set_visible(_lowerCamelCase ) fig.axes.get_yaxis().set_visible(_lowerCamelCase ) plt.show() def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Tuple = datetime.now() _lowerCamelCase : Tuple = current_time.strftime("%H:%M:%S" ) return timestamp
340
0
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer __snake_case : str = logging.get_logger(__name__) __snake_case : int = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case : Dict = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } __snake_case : int = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } __snake_case : Dict = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } __snake_case : List[Any] = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } __snake_case : Any = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } __snake_case : Optional[int] = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } __snake_case : int = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } __snake_case : Optional[int] = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } __snake_case : Tuple = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class A_ ( _UpperCamelCase ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = DPRContextEncoderTokenizer class A_ ( _UpperCamelCase ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = DPRQuestionEncoderTokenizer __snake_case : List[Any] = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) __snake_case : Optional[int] = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) __snake_case : str = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(_UpperCamelCase ) class A_ : def __call__( self: Any ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Optional[str] = None ,__lowerCAmelCase: Optional[str] = None ,__lowerCAmelCase: Union[bool, str] = False ,__lowerCAmelCase: Union[bool, str] = False ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: Optional[Union[str, TensorType]] = None ,__lowerCAmelCase: Optional[bool] = None ,**__lowerCAmelCase: List[Any] ,): '''simple docstring''' if titles is None and texts is None: return super().__call__( _UpperCAmelCase ,padding=_UpperCAmelCase ,truncation=_UpperCAmelCase ,max_length=_UpperCAmelCase ,return_tensors=_UpperCAmelCase ,return_attention_mask=_UpperCAmelCase ,**_UpperCAmelCase ,) elif titles is None or texts is None: _lowerCamelCase : int = titles if texts is None else texts return super().__call__( _UpperCAmelCase ,_UpperCAmelCase ,padding=_UpperCAmelCase ,truncation=_UpperCAmelCase ,max_length=_UpperCAmelCase ,return_tensors=_UpperCAmelCase ,return_attention_mask=_UpperCAmelCase ,**_UpperCAmelCase ,) _lowerCamelCase : int = titles if not isinstance(_UpperCAmelCase ,_UpperCAmelCase ) else [titles] _lowerCamelCase : Tuple = texts if not isinstance(_UpperCAmelCase ,_UpperCAmelCase ) else [texts] _lowerCamelCase : List[Any] = len(_UpperCAmelCase ) _lowerCamelCase : List[Any] = questions if not isinstance(_UpperCAmelCase ,_UpperCAmelCase ) else [questions] * n_passages assert len(_UpperCAmelCase ) == len( _UpperCAmelCase ), F"""There should be as many titles than texts but got {len(_UpperCAmelCase )} titles and {len(_UpperCAmelCase )} texts.""" _lowerCamelCase : int = super().__call__(_UpperCAmelCase ,_UpperCAmelCase ,padding=_UpperCAmelCase ,truncation=_UpperCAmelCase )['input_ids'] _lowerCamelCase : Tuple = super().__call__(_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ,padding=_UpperCAmelCase ,truncation=_UpperCAmelCase )['input_ids'] _lowerCamelCase : str = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_UpperCAmelCase ,_UpperCAmelCase ) ] } if return_attention_mask is not False: _lowerCamelCase : Optional[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _lowerCamelCase : int = attention_mask return self.pad(_UpperCAmelCase ,padding=_UpperCAmelCase ,max_length=_UpperCAmelCase ,return_tensors=_UpperCAmelCase ) def _lowercase ( self: Any ,__lowerCAmelCase: BatchEncoding ,__lowerCAmelCase: DPRReaderOutput ,__lowerCAmelCase: int = 16 ,__lowerCAmelCase: int = 64 ,__lowerCAmelCase: int = 4 ,): '''simple docstring''' _lowerCamelCase : Optional[Any] = reader_input['input_ids'] _lowerCamelCase : Optional[Any] = reader_output[:3] _lowerCamelCase : Any = len(_UpperCAmelCase ) _lowerCamelCase : Any = sorted(range(_UpperCAmelCase ) ,reverse=_UpperCAmelCase ,key=relevance_logits.__getitem__ ) _lowerCamelCase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowerCamelCase : List[str] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _lowerCamelCase : List[str] = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowerCamelCase : List[Any] = sequence_ids.index(self.pad_token_id ) else: _lowerCamelCase : List[str] = len(_UpperCAmelCase ) _lowerCamelCase : Optional[int] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_UpperCAmelCase ,top_spans=_UpperCAmelCase ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_UpperCAmelCase ,start_index=_UpperCAmelCase ,end_index=_UpperCAmelCase ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(_UpperCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _lowercase ( self: Any ,__lowerCAmelCase: List[int] ,__lowerCAmelCase: List[int] ,__lowerCAmelCase: int ,__lowerCAmelCase: int ,): '''simple docstring''' _lowerCamelCase : List[str] = [] for start_index, start_score in enumerate(_UpperCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _lowerCamelCase : str = sorted(_UpperCAmelCase ,key=lambda __lowerCAmelCase : x[1] ,reverse=_UpperCAmelCase ) _lowerCamelCase : Any = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"""Wrong span indices: [{start_index}:{end_index}]""" _lowerCamelCase : Optional[int] = end_index - start_index + 1 assert length <= max_answer_length, F"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_UpperCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCamelCase ) class A_ ( _UpperCamelCase , _UpperCamelCase ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = READER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = ['input_ids', 'attention_mask'] lowerCAmelCase__ = DPRReaderTokenizer
369
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : int = len(_lowerCamelCase ) _lowerCamelCase : int = len(_lowerCamelCase ) _lowerCamelCase : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) _lowerCamelCase : list = [] for char_count in range(_lowerCamelCase ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(_lowerCamelCase ) if __name__ == "__main__": print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''')
340
0
"""simple docstring""" from __future__ import annotations def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: # noqa: E741 '''simple docstring''' while r - l > 1: _lowerCamelCase : Tuple = (l + r) // 2 if v[m] >= key: _lowerCamelCase : Union[str, Any] = m else: _lowerCamelCase : Tuple = m # noqa: E741 return r def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' if len(__SCREAMING_SNAKE_CASE ) == 0: return 0 _lowerCamelCase : Optional[Any] = [0] * len(__SCREAMING_SNAKE_CASE ) _lowerCamelCase : int = 1 _lowerCamelCase : Optional[int] = v[0] for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): if v[i] < tail[0]: _lowerCamelCase : List[Any] = v[i] elif v[i] > tail[length - 1]: _lowerCamelCase : Optional[int] = v[i] length += 1 else: _lowerCamelCase : int = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
370
"""simple docstring""" _lowerCAmelCase : Tuple = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Any = [False] * len(_lowerCamelCase ) _lowerCamelCase : Union[str, Any] = [s] _lowerCamelCase : str = True while queue: _lowerCamelCase : Optional[int] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_lowerCamelCase ) _lowerCamelCase : Any = True _lowerCamelCase : Any = u return visited[t] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : List[str] = [-1] * (len(_lowerCamelCase )) _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : List[str] = [i[:] for i in graph] # Record original cut, copy. while bfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Any = float("Inf" ) _lowerCamelCase : Dict = sink while s != source: # Find the minimum value in select path _lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , graph[parent[s]][s] ) _lowerCamelCase : Union[str, Any] = parent[s] max_flow += path_flow _lowerCamelCase : Optional[Any] = sink while v != source: _lowerCamelCase : Union[str, Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _lowerCamelCase : List[str] = parent[v] for i in range(len(_lowerCamelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
340
0
"""simple docstring""" from collections.abc import Callable import numpy as np def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : str = int(np.ceil((x_end - xa) / step_size ) ) _lowerCamelCase : Union[str, Any] = np.zeros((n + 1,) ) _lowerCamelCase : str = ya _lowerCamelCase : Any = xa for k in range(__lowerCAmelCase ): _lowerCamelCase : int = y[k] + step_size * ode_func(__lowerCAmelCase , y[k] ) _lowerCamelCase : Dict = y[k] + ( (step_size / 2) * (ode_func(__lowerCAmelCase , y[k] ) + ode_func(x + step_size , __lowerCAmelCase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
371
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''', '''umberto-commoncrawl-cased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json''' ), '''umberto-wikipedia-uncased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json''' ), } class A_ ( _a ): lowerCAmelCase__ = 'camembert' def __init__( self: Tuple ,__lowerCAmelCase: Union[str, Any]=30_522 ,__lowerCAmelCase: Optional[Any]=768 ,__lowerCAmelCase: Union[str, Any]=12 ,__lowerCAmelCase: int=12 ,__lowerCAmelCase: Optional[int]=3_072 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: Optional[Any]=0.1 ,__lowerCAmelCase: int=512 ,__lowerCAmelCase: Union[str, Any]=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Any=1 ,__lowerCAmelCase: Any=0 ,__lowerCAmelCase: Optional[int]=2 ,__lowerCAmelCase: Any="absolute" ,__lowerCAmelCase: Dict=True ,__lowerCAmelCase: Tuple=None ,**__lowerCAmelCase: Dict ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[str] = vocab_size _lowerCamelCase : Any = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : int = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : Dict = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps _lowerCamelCase : Tuple = position_embedding_type _lowerCamelCase : List[Any] = use_cache _lowerCamelCase : Dict = classifier_dropout class A_ ( _a ): @property def _lowercase ( self: Any ): '''simple docstring''' if self.task == "multiple-choice": _lowerCamelCase : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _lowerCamelCase : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
340
0
"""simple docstring""" from statistics import mean import numpy as np def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = 0 # Number of processes finished _lowerCamelCase : List[str] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. _lowerCamelCase : List[Any] = [0] * no_of_process # List to include calculation results _lowerCamelCase : Dict = [0] * no_of_process # Sort by arrival time. _lowerCamelCase : Union[str, Any] = [burst_time[i] for i in np.argsort(_lowerCamelCase )] _lowerCamelCase : Union[str, Any] = [process_name[i] for i in np.argsort(_lowerCamelCase )] arrival_time.sort() while no_of_process > finished_process_count: _lowerCamelCase : Union[str, Any] = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: _lowerCamelCase : Any = arrival_time[i] _lowerCamelCase : Optional[Any] = 0 # Index showing the location of the process being performed _lowerCamelCase : Union[str, Any] = 0 # Saves the current response ratio. _lowerCamelCase : List[str] = 0 for i in range(0 , _lowerCamelCase ): if finished_process[i] == 0 and arrival_time[i] <= current_time: _lowerCamelCase : List[Any] = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: _lowerCamelCase : Optional[Any] = temp _lowerCamelCase : Optional[Any] = i # Calculate the turn around time _lowerCamelCase : List[str] = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. _lowerCamelCase : Dict = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCamelCase : List[str] = [0] * no_of_process for i in range(0 , _lowerCamelCase ): _lowerCamelCase : Optional[int] = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": _lowerCAmelCase : Any = 5 _lowerCAmelCase : int = ['''A''', '''B''', '''C''', '''D''', '''E'''] _lowerCAmelCase : Union[str, Any] = [1, 2, 3, 4, 5] _lowerCAmelCase : Dict = [1, 2, 3, 4, 5] _lowerCAmelCase : Optional[Any] = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) _lowerCAmelCase : int = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( f'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' f'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(f'''average waiting time : {mean(waiting_time):.5f}''') print(f'''average turn around time : {mean(turn_around_time):.5f}''')
350
"""simple docstring""" from collections import defaultdict def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Optional[int] = 1 _lowerCamelCase : str = True for v in tree[start]: if v not in visited: ret += dfs(_lowerCamelCase ) if ret % 2 == 0: cuts.append(_lowerCamelCase ) return ret def lowerCamelCase_( ) -> int: '''simple docstring''' dfs(1 ) if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = 10, 9 _lowerCAmelCase : str = defaultdict(list) _lowerCAmelCase : dict[int, bool] = {} _lowerCAmelCase : list[int] = [] _lowerCAmelCase : Any = 0 _lowerCAmelCase : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
340
0
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : Union[str, Any] = int(_lowerCamelCase ) assert noofclusters < len(_lowerCamelCase ) # Find out the dimensionality _lowerCamelCase : Tuple = len(vectors[0] ) # Will help select random centroids from among the available vectors _lowerCamelCase : str = list(range(len(_lowerCamelCase ) ) ) shuffle(_lowerCamelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. _lowerCamelCase : List[Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION _lowerCamelCase : Any = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points _lowerCamelCase : List[Any] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_lowerCamelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values _lowerCamelCase : int = tf.placeholder("float64" , [dim] ) _lowerCamelCase : List[str] = [] for centroid in centroids: cent_assigns.append(tf.assign(_lowerCamelCase , _lowerCamelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) _lowerCamelCase : Optional[int] = [tf.Variable(0 ) for i in range(len(_lowerCamelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value _lowerCamelCase : Optional[Any] = tf.placeholder("int32" ) _lowerCamelCase : Tuple = [] for assignment in assignments: cluster_assigns.append(tf.assign(_lowerCamelCase , _lowerCamelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input _lowerCamelCase : Union[str, Any] = tf.placeholder("float" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors _lowerCamelCase : List[Any] = tf.reduce_mean(_lowerCamelCase , 0 ) ##Node for computing Euclidean distances # Placeholders for input _lowerCamelCase : Union[str, Any] = tf.placeholder("float" , [dim] ) _lowerCamelCase : List[Any] = tf.placeholder("float" , [dim] ) _lowerCamelCase : Dict = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_lowerCamelCase , _lowerCamelCase ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input _lowerCamelCase : str = tf.placeholder("float" , [noofclusters] ) _lowerCamelCase : List[str] = tf.argmin(_lowerCamelCase , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. _lowerCamelCase : str = tf.initialize_all_variables() # Initialize all variables sess.run(_lowerCamelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. _lowerCamelCase : Optional[Any] = 100 for _ in range(_lowerCamelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_lowerCamelCase ) ): _lowerCamelCase : List[Any] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. _lowerCamelCase : List[str] = [ sess.run(_lowerCamelCase , feed_dict={va: vect, va: sess.run(_lowerCamelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input _lowerCamelCase : List[str] = sess.run( _lowerCamelCase , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_lowerCamelCase ): # Collect all the vectors assigned to this cluster _lowerCamelCase : Optional[int] = [ vectors[i] for i in range(len(_lowerCamelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location _lowerCamelCase : Union[str, Any] = sess.run( _lowerCamelCase , feed_dict={mean_input: array(_lowerCamelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments _lowerCamelCase : Any = sess.run(_lowerCamelCase ) _lowerCamelCase : Optional[int] = sess.run(_lowerCamelCase ) return centroids, assignments
351
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _lowerCAmelCase : Optional[int] = '''__DUMMY_TRANSFORMERS_USER__''' _lowerCAmelCase : Dict = '''Dummy User''' _lowerCAmelCase : Optional[int] = '''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''' _lowerCAmelCase : Tuple = '''https://hub-ci.huggingface.co''' _lowerCAmelCase : Any = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}''' _lowerCAmelCase : Tuple = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}''' _lowerCAmelCase : Dict = Path('''~/.huggingface/hub_ci_token''').expanduser() @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_ENDPOINT" , _lowerCamelCase ) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' HfFolder.save_token(_lowerCamelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="session" ) def lowerCamelCase_( ) -> str: '''simple docstring''' return HfApi(endpoint=_lowerCamelCase ) @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Dict = HfFolder.get_token() HfFolder.save_token(_lowerCamelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(_lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' def _cleanup_repo(_lowerCamelCase ): hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) return _cleanup_repo @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> List[str]: '''simple docstring''' @contextmanager def _temporary_repo(_lowerCamelCase ): try: yield repo_id finally: cleanup_repo(_lowerCamelCase ) return _temporary_repo @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : Tuple = F"""repo_txt_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : List[str] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data/text_data.txt" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : List[Any] = F"""repo_zipped_txt_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : Dict = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Any = F"""repo_zipped_img_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : List[Any] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
340
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Optional[Any] = { '''configuration_blip_2''': [ '''BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Blip2Config''', '''Blip2QFormerConfig''', '''Blip2VisionConfig''', ], '''processing_blip_2''': ['''Blip2Processor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ '''BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Blip2Model''', '''Blip2QFormerModel''', '''Blip2PreTrainedModel''', '''Blip2ForConditionalGeneration''', '''Blip2VisionModel''', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
352
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) class A_ ( _a ): def __init__( self: List[Any] ,__lowerCAmelCase: Union[List[ControlNetModel], Tuple[ControlNetModel]] ): '''simple docstring''' super().__init__() _lowerCamelCase : Tuple = nn.ModuleList(__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Union[torch.Tensor, float, int] ,__lowerCAmelCase: torch.Tensor ,__lowerCAmelCase: List[torch.tensor] ,__lowerCAmelCase: List[float] ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[Dict[str, Any]] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(__lowerCAmelCase ,__lowerCAmelCase ,self.nets ) ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = controlnet( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,) # merge samples if i == 0: _lowerCamelCase, _lowerCamelCase : Optional[Any] = down_samples, mid_sample else: _lowerCamelCase : Optional[int] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(__lowerCAmelCase ,__lowerCAmelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Union[str, os.PathLike] ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Callable = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[str] = None ,): '''simple docstring''' _lowerCamelCase : List[Any] = 0 _lowerCamelCase : str = save_directory for controlnet in self.nets: controlnet.save_pretrained( __lowerCAmelCase ,is_main_process=__lowerCAmelCase ,save_function=__lowerCAmelCase ,safe_serialization=__lowerCAmelCase ,variant=__lowerCAmelCase ,) idx += 1 _lowerCamelCase : int = model_path_to_save + F"""_{idx}""" @classmethod def _lowercase ( cls: Any ,__lowerCAmelCase: Optional[Union[str, os.PathLike]] ,**__lowerCAmelCase: int ): '''simple docstring''' _lowerCamelCase : int = 0 _lowerCamelCase : str = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _lowerCamelCase : Dict = pretrained_model_path while os.path.isdir(__lowerCAmelCase ): _lowerCamelCase : List[Any] = ControlNetModel.from_pretrained(__lowerCAmelCase ,**__lowerCAmelCase ) controlnets.append(__lowerCAmelCase ) idx += 1 _lowerCamelCase : Tuple = pretrained_model_path + F"""_{idx}""" logger.info(F"""{len(__lowerCAmelCase )} controlnets loaded from {pretrained_model_path}.""" ) if len(__lowerCAmelCase ) == 0: raise ValueError( F"""No ControlNets found under {os.path.dirname(__lowerCAmelCase )}. Expected at least {pretrained_model_path + '_0'}.""" ) return cls(__lowerCAmelCase )
340
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase = { '''configuration_mobilebert''': [ '''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileBertConfig''', '''MobileBertOnnxConfig''', ], '''tokenization_mobilebert''': ['''MobileBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ['''MobileBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileBertForMaskedLM''', '''MobileBertForMultipleChoice''', '''MobileBertForNextSentencePrediction''', '''MobileBertForPreTraining''', '''MobileBertForQuestionAnswering''', '''MobileBertForSequenceClassification''', '''MobileBertForTokenClassification''', '''MobileBertLayer''', '''MobileBertModel''', '''MobileBertPreTrainedModel''', '''load_tf_weights_in_mobilebert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileBertForMaskedLM''', '''TFMobileBertForMultipleChoice''', '''TFMobileBertForNextSentencePrediction''', '''TFMobileBertForPreTraining''', '''TFMobileBertForQuestionAnswering''', '''TFMobileBertForSequenceClassification''', '''TFMobileBertForTokenClassification''', '''TFMobileBertMainLayer''', '''TFMobileBertModel''', '''TFMobileBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
353
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : int = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[str]: '''simple docstring''' _lowerCamelCase : Tuple = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head" ): _lowerCamelCase : Tuple = "segformer.encoder." + key if key.startswith("backbone" ): _lowerCamelCase : Any = key.replace("backbone" , "segformer.encoder" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _lowerCamelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )] _lowerCamelCase : int = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(_lowerCamelCase )-1}""" ) if "norm" in key: _lowerCamelCase : Optional[Any] = key.replace("norm" , "layer_norm" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _lowerCamelCase : Dict = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )] _lowerCamelCase : Tuple = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(_lowerCamelCase )-1}""" ) if "layer_norm1" in key: _lowerCamelCase : Union[str, Any] = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: _lowerCamelCase : int = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _lowerCamelCase : Union[str, Any] = key[key.find("block" ) + len("block" )] _lowerCamelCase : Optional[Any] = key.replace(F"""block{idx}""" , F"""block.{int(_lowerCamelCase )-1}""" ) if "attn.q" in key: _lowerCamelCase : Optional[int] = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: _lowerCamelCase : List[str] = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: _lowerCamelCase : Tuple = key.replace("attn" , "attention.self" ) if "fc1" in key: _lowerCamelCase : Optional[Any] = key.replace("fc1" , "dense1" ) if "fc2" in key: _lowerCamelCase : Dict = key.replace("fc2" , "dense2" ) if "linear_pred" in key: _lowerCamelCase : int = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: _lowerCamelCase : str = key.replace("linear_fuse.conv" , "linear_fuse" ) _lowerCamelCase : Optional[Any] = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _lowerCamelCase : Union[str, Any] = key[key.find("linear_c" ) + len("linear_c" )] _lowerCamelCase : Optional[int] = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(_lowerCamelCase )-1}""" ) if key.startswith("head" ): _lowerCamelCase : List[str] = key.replace("head" , "classifier" ) _lowerCamelCase : Union[str, Any] = value return new_state_dict def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _lowerCamelCase : Optional[Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _lowerCamelCase : Optional[Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _lowerCamelCase : int = kv_weight[ : config.hidden_sizes[i], : ] _lowerCamelCase : int = kv_bias[: config.hidden_sizes[i]] _lowerCamelCase : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] _lowerCamelCase : Optional[Any] = kv_bias[ config.hidden_sizes[i] : ] def lowerCamelCase_( ) -> Dict: '''simple docstring''' _lowerCamelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Union[str, Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return image @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : Any = SegformerConfig() _lowerCamelCase : int = False # set attributes based on model_name _lowerCamelCase : Any = "huggingface/label-files" if "segformer" in model_name: _lowerCamelCase : str = model_name[len("segformer." ) : len("segformer." ) + 2] if "ade" in model_name: _lowerCamelCase : str = 150 _lowerCamelCase : Dict = "ade20k-id2label.json" _lowerCamelCase : Dict = (1, 150, 128, 128) elif "city" in model_name: _lowerCamelCase : List[str] = 19 _lowerCamelCase : Tuple = "cityscapes-id2label.json" _lowerCamelCase : Tuple = (1, 19, 128, 128) else: raise ValueError(F"""Model {model_name} not supported""" ) elif "mit" in model_name: _lowerCamelCase : List[str] = True _lowerCamelCase : Tuple = model_name[4:6] _lowerCamelCase : Tuple = 1000 _lowerCamelCase : List[Any] = "imagenet-1k-id2label.json" _lowerCamelCase : List[Any] = (1, 1000) else: raise ValueError(F"""Model {model_name} not supported""" ) # set config attributes _lowerCamelCase : Optional[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": _lowerCamelCase : int = [64, 128, 320, 512] _lowerCamelCase : int = 256 elif size == "b2": _lowerCamelCase : Tuple = [64, 128, 320, 512] _lowerCamelCase : List[Any] = 768 _lowerCamelCase : Any = [3, 4, 6, 3] elif size == "b3": _lowerCamelCase : Tuple = [64, 128, 320, 512] _lowerCamelCase : Union[str, Any] = 768 _lowerCamelCase : Optional[Any] = [3, 4, 18, 3] elif size == "b4": _lowerCamelCase : str = [64, 128, 320, 512] _lowerCamelCase : Optional[Any] = 768 _lowerCamelCase : Dict = [3, 8, 27, 3] elif size == "b5": _lowerCamelCase : int = [64, 128, 320, 512] _lowerCamelCase : Tuple = 768 _lowerCamelCase : Tuple = [3, 6, 40, 3] else: raise ValueError(F"""Size {size} not supported""" ) # load image processor (only resize + normalize) _lowerCamelCase : Dict = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_lowerCamelCase , align=_lowerCamelCase , do_random_crop=_lowerCamelCase ) # prepare image _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Dict = image_processor(images=_lowerCamelCase , return_tensors="pt" ).pixel_values logger.info(F"""Converting model {model_name}...""" ) # load original state dict if encoder_only: _lowerCamelCase : Tuple = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) ) else: _lowerCamelCase : int = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) )["state_dict"] # rename keys _lowerCamelCase : str = rename_keys(_lowerCamelCase , encoder_only=_lowerCamelCase ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(_lowerCamelCase , _lowerCamelCase ) # create HuggingFace model and load state dict if encoder_only: _lowerCamelCase : Tuple = False _lowerCamelCase : Optional[int] = SegformerForImageClassification(_lowerCamelCase ) else: _lowerCamelCase : List[str] = SegformerForSemanticSegmentation(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() # forward pass _lowerCamelCase : Any = model(_lowerCamelCase ) _lowerCamelCase : Dict = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": _lowerCamelCase : str = torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]], [[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": _lowerCamelCase : Any = torch.tensor( [ [[-7.5_8_2_0, -8.7_2_3_1, -8.3_2_1_5], [-8.0_6_0_0, -1_0.3_5_2_9, -1_0.0_3_0_4], [-7.5_2_0_8, -9.4_1_0_3, -9.6_2_3_9]], [[-1_2.6_9_1_8, -1_3.8_9_9_4, -1_3.7_1_3_7], [-1_3.3_1_9_6, -1_5.7_5_2_3, -1_5.4_7_8_9], [-1_2.9_3_4_3, -1_4.8_7_5_7, -1_4.9_6_8_9]], [[-1_1.1_9_1_1, -1_1.9_4_2_1, -1_1.3_2_4_3], [-1_1.3_3_4_2, -1_3.6_8_3_9, -1_3.3_5_8_1], [-1_0.3_9_0_9, -1_2.1_8_3_2, -1_2.4_8_5_8]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": _lowerCamelCase : int = torch.tensor( [ [[-1_1.8_1_7_3, -1_4.3_8_5_0, -1_6.3_1_2_8], [-1_4.5_6_4_8, -1_6.5_8_0_4, -1_8.6_5_6_8], [-1_4.7_2_2_3, -1_5.7_3_8_7, -1_8.4_2_1_8]], [[-1_5.7_2_9_0, -1_7.9_1_7_1, -1_9.4_4_2_3], [-1_8.3_1_0_5, -1_9.9_4_4_8, -2_1.4_6_6_1], [-1_7.9_2_9_6, -1_8.6_4_9_7, -2_0.7_9_1_0]], [[-1_5.0_7_8_3, -1_7.0_3_3_6, -1_8.2_7_8_9], [-1_6.8_7_7_1, -1_8.6_8_7_0, -2_0.1_6_1_2], [-1_6.2_4_5_4, -1_7.1_4_2_6, -1_9.5_0_5_5]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": _lowerCamelCase : Optional[Any] = torch.tensor( [ [[-9.0_8_7_8, -1_0.2_0_8_1, -1_0.1_8_9_1], [-9.3_1_4_4, -1_0.7_9_4_1, -1_0.9_8_4_3], [-9.2_2_9_4, -1_0.3_8_5_5, -1_0.5_7_0_4]], [[-1_2.2_3_1_6, -1_3.9_0_6_8, -1_3.6_1_0_2], [-1_2.9_1_6_1, -1_4.3_7_0_2, -1_4.3_2_3_5], [-1_2.5_2_3_3, -1_3.7_1_7_4, -1_3.7_9_3_2]], [[-1_4.6_2_7_5, -1_5.2_4_9_0, -1_4.9_7_2_7], [-1_4.3_4_0_0, -1_5.9_6_8_7, -1_6.2_8_2_7], [-1_4.1_4_8_4, -1_5.4_0_3_3, -1_5.8_9_3_7]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": _lowerCamelCase : List[str] = torch.tensor( [ [[-1_2.3_1_4_4, -1_3.2_4_4_7, -1_4.0_8_0_2], [-1_3.3_6_1_4, -1_4.5_8_1_6, -1_5.6_1_1_7], [-1_3.3_3_4_0, -1_4.4_4_3_3, -1_6.2_2_1_9]], [[-1_9.2_7_8_1, -2_0.4_1_2_8, -2_0.7_5_0_6], [-2_0.6_1_5_3, -2_1.6_5_6_6, -2_2.0_9_9_8], [-1_9.9_8_0_0, -2_1.0_4_3_0, -2_2.1_4_9_4]], [[-1_8.8_7_3_9, -1_9.7_8_0_4, -2_1.1_8_3_4], [-2_0.1_2_3_3, -2_1.6_7_6_5, -2_3.2_9_4_4], [-2_0.0_3_1_5, -2_1.2_6_4_1, -2_3.6_9_4_4]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": _lowerCamelCase : Any = torch.tensor( [ [[-9.5_5_2_4, -1_2.0_8_3_5, -1_1.7_3_4_8], [-1_0.5_2_2_9, -1_3.6_4_4_6, -1_4.5_6_6_2], [-9.5_8_4_2, -1_2.8_8_5_1, -1_3.9_4_1_4]], [[-1_5.3_4_3_2, -1_7.5_3_2_3, -1_7.0_8_1_8], [-1_6.3_3_3_0, -1_8.9_2_5_5, -1_9.2_1_0_1], [-1_5.1_3_4_0, -1_7.7_8_4_8, -1_8.3_9_7_1]], [[-1_2.6_0_7_2, -1_4.9_4_8_6, -1_4.6_6_3_1], [-1_3.7_6_2_9, -1_7.0_9_0_7, -1_7.7_7_4_5], [-1_2.7_8_9_9, -1_6.1_6_9_5, -1_7.1_6_7_1]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": _lowerCamelCase : Dict = torch.tensor( [ [[-1_1.9_2_9_5, -1_3.4_0_5_7, -1_4.8_1_0_6], [-1_3.3_4_3_1, -1_4.8_1_7_9, -1_5.3_7_8_1], [-1_4.2_8_3_6, -1_5.5_9_4_2, -1_6.1_5_8_8]], [[-1_1.4_9_0_6, -1_2.8_0_6_7, -1_3.6_5_6_4], [-1_3.1_1_8_9, -1_4.0_5_0_0, -1_4.1_5_4_3], [-1_3.8_7_4_8, -1_4.5_1_3_6, -1_4.8_7_8_9]], [[0.5_3_7_4, 0.1_0_6_7, -0.4_7_4_2], [0.1_1_4_1, -0.2_2_5_5, -0.7_0_9_9], [-0.3_0_0_0, -0.5_9_2_4, -1.3_1_0_5]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": _lowerCamelCase : Optional[int] = torch.tensor( [ [[-7.8_2_1_7, -9.8_7_6_7, -1_0.1_7_1_7], [-9.4_4_3_8, -1_0.9_0_5_8, -1_1.4_0_4_7], [-9.7_9_3_9, -1_2.3_4_9_5, -1_2.1_0_7_9]], [[-7.1_5_1_4, -9.5_3_3_6, -1_0.0_8_6_0], [-9.7_7_7_6, -1_1.6_8_2_2, -1_1.8_4_3_9], [-1_0.1_4_1_1, -1_2.7_6_5_5, -1_2.8_9_7_2]], [[0.3_0_2_1, 0.0_8_0_5, -0.2_3_1_0], [-0.0_3_2_8, -0.1_6_0_5, -0.2_7_1_4], [-0.1_4_0_8, -0.5_4_7_7, -0.6_9_7_6]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": _lowerCamelCase : Tuple = torch.tensor( [ [ [-1.13_72e01, -1.27_87e01, -1.34_77e01], [-1.25_36e01, -1.41_94e01, -1.44_09e01], [-1.32_17e01, -1.48_88e01, -1.53_27e01], ], [ [-1.47_91e01, -1.71_22e01, -1.82_77e01], [-1.71_63e01, -1.91_92e01, -1.95_33e01], [-1.78_97e01, -1.99_91e01, -2.03_15e01], ], [ [7.67_23e-01, 4.19_21e-01, -7.78_78e-02], [4.77_72e-01, 9.55_57e-03, -2.80_82e-01], [3.60_32e-01, -2.48_26e-01, -5.11_68e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": _lowerCamelCase : Union[str, Any] = torch.tensor( [ [[-9.4_9_5_9, -1_1.3_0_8_7, -1_1.7_4_7_9], [-1_1.0_0_2_5, -1_2.6_5_4_0, -1_2.3_3_1_9], [-1_1.4_0_6_4, -1_3.0_4_8_7, -1_2.9_9_0_5]], [[-9.8_9_0_5, -1_1.3_0_8_4, -1_2.0_8_5_4], [-1_1.1_7_2_6, -1_2.7_6_9_8, -1_2.9_5_8_3], [-1_1.5_9_8_5, -1_3.3_2_7_8, -1_4.1_7_7_4]], [[0.2_2_1_3, 0.0_1_9_2, -0.2_4_6_6], [-0.1_7_3_1, -0.4_2_1_3, -0.4_8_7_4], [-0.3_1_2_6, -0.6_5_4_1, -1.1_3_8_9]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": _lowerCamelCase : List[Any] = torch.tensor( [ [[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]], [[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": _lowerCamelCase : Tuple = torch.tensor( [ [[-1_6.0_9_7_6, -1_6.4_8_5_6, -1_7.3_9_6_2], [-1_6.6_2_3_4, -1_9.0_3_4_2, -1_9.7_6_8_5], [-1_6.0_9_0_0, -1_8.0_6_6_1, -1_9.1_1_8_0]], [[-1_8.4_7_5_0, -1_8.8_4_8_8, -1_9.5_0_7_4], [-1_9.4_0_3_0, -2_2.1_5_7_0, -2_2.5_9_7_7], [-1_9.1_1_9_1, -2_0.8_4_8_6, -2_2.3_7_8_3]], [[-4.5_1_7_8, -5.5_0_3_7, -6.5_1_0_9], [-5.0_8_8_4, -7.2_1_7_4, -8.0_3_3_4], [-4.4_1_5_6, -5.8_1_1_7, -7.2_9_7_0]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": _lowerCamelCase : Any = torch.tensor( [ [[-1_4.2_0_8_1, -1_4.4_7_3_2, -1_4.1_9_7_7], [-1_4.5_8_6_7, -1_6.4_4_2_3, -1_6.6_3_5_6], [-1_3.4_4_4_1, -1_4.9_6_8_5, -1_6.8_6_9_6]], [[-1_4.4_5_7_6, -1_4.7_0_7_3, -1_5.0_4_5_1], [-1_5.0_8_1_6, -1_7.6_2_3_7, -1_7.9_8_7_3], [-1_4.4_2_1_3, -1_6.0_1_9_9, -1_8.5_9_9_2]], [[-4.7_3_4_9, -4.9_5_8_8, -5.0_9_6_6], [-4.3_2_1_0, -6.9_3_2_5, -7.2_5_9_1], [-3.4_3_1_2, -4.7_4_8_4, -7.1_9_1_7]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": _lowerCamelCase : List[str] = torch.tensor( [ [[-1_1.7_7_3_7, -1_1.9_5_2_6, -1_1.3_2_7_3], [-1_3.6_6_9_2, -1_4.4_5_7_4, -1_3.8_8_7_8], [-1_3.8_9_3_7, -1_4.6_9_2_4, -1_5.9_3_4_5]], [[-1_4.6_7_0_6, -1_4.5_3_3_0, -1_4.1_3_0_6], [-1_6.1_5_0_2, -1_6.8_1_8_0, -1_6.4_2_6_9], [-1_6.8_3_3_8, -1_7.8_9_3_9, -2_0.1_7_4_6]], [[1.0_4_9_1, 0.8_2_8_9, 1.0_3_1_0], [1.1_0_4_4, 0.5_2_1_9, 0.8_0_5_5], [1.0_8_9_9, 0.6_9_2_6, 0.5_5_9_0]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": _lowerCamelCase : str = torch.tensor( [ [[-1_2.5_6_4_1, -1_3.4_7_7_7, -1_3.0_6_8_4], [-1_3.9_5_8_7, -1_5.8_9_8_3, -1_6.6_5_5_7], [-1_3.3_1_0_9, -1_5.7_3_5_0, -1_6.3_1_4_1]], [[-1_4.7_0_7_4, -1_5.4_3_5_2, -1_4.5_9_4_4], [-1_6.6_3_5_3, -1_8.1_6_6_3, -1_8.6_1_2_0], [-1_5.1_7_0_2, -1_8.0_3_2_9, -1_8.1_5_4_7]], [[-1.7_9_9_0, -2.0_9_5_1, -1.7_7_8_4], [-2.6_3_9_7, -3.8_2_4_5, -3.9_6_8_6], [-1.5_2_6_4, -2.8_1_2_6, -2.9_3_1_6]], ] ) else: _lowerCamelCase : Dict = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1e-2 ) # finally, save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''segformer.b0.512x512.ade.160k''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _lowerCAmelCase : str = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
340
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : str = { '''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''], '''tokenization_electra''': ['''ElectraTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = ['''ElectraTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Union[str, Any] = [ '''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ElectraForCausalLM''', '''ElectraForMaskedLM''', '''ElectraForMultipleChoice''', '''ElectraForPreTraining''', '''ElectraForQuestionAnswering''', '''ElectraForSequenceClassification''', '''ElectraForTokenClassification''', '''ElectraModel''', '''ElectraPreTrainedModel''', '''load_tf_weights_in_electra''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ '''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFElectraForMaskedLM''', '''TFElectraForMultipleChoice''', '''TFElectraForPreTraining''', '''TFElectraForQuestionAnswering''', '''TFElectraForSequenceClassification''', '''TFElectraForTokenClassification''', '''TFElectraModel''', '''TFElectraPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = [ '''FlaxElectraForCausalLM''', '''FlaxElectraForMaskedLM''', '''FlaxElectraForMultipleChoice''', '''FlaxElectraForPreTraining''', '''FlaxElectraForQuestionAnswering''', '''FlaxElectraForSequenceClassification''', '''FlaxElectraForTokenClassification''', '''FlaxElectraModel''', '''FlaxElectraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
354
"""simple docstring""" _lowerCAmelCase : dict[tuple[int, int, int], int] = {} def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on _lowerCamelCase : Optional[int] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one _lowerCamelCase : int = _calculate(days - 1 , _lowerCamelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 _lowerCamelCase : Tuple = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter _lowerCamelCase : str = _calculate(days - 1 , _lowerCamelCase , 0 ) _lowerCamelCase : List[Any] = state_late + state_absent + state_ontime _lowerCamelCase : int = prizestrings return prizestrings def lowerCamelCase_( _lowerCamelCase = 30 ) -> int: '''simple docstring''' return _calculate(_lowerCamelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
340
0
"""simple docstring""" import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def lowerCamelCase_( ) -> Dict: '''simple docstring''' _lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( "-m" , "--pretrained_model_name_or_path" , type=_lowerCamelCase , default=_lowerCamelCase , required=_lowerCamelCase , help="Path to pretrained model or model identifier from huggingface.co/models." , ) parser.add_argument( "-c" , "--caption" , type=_lowerCamelCase , default="robotic cat with wings" , help="Text used to generate images." , ) parser.add_argument( "-n" , "--images_num" , type=_lowerCamelCase , default=4 , help="How much images to generate." , ) parser.add_argument( "-s" , "--seed" , type=_lowerCamelCase , default=42 , help="Seed for random process." , ) parser.add_argument( "-ci" , "--cuda_id" , type=_lowerCamelCase , default=0 , help="cuda_id." , ) _lowerCamelCase : Any = parser.parse_args() return args def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' if not len(_lowerCamelCase ) == rows * cols: raise ValueError("The specified number of rows and columns are not correct." ) _lowerCamelCase : Union[str, Any] = imgs[0].size _lowerCamelCase : Optional[int] = Image.new("RGB" , size=(cols * w, rows * h) ) _lowerCamelCase : Dict = grid.size for i, img in enumerate(_lowerCamelCase ): grid.paste(_lowerCamelCase , box=(i % cols * w, i // cols * h) ) return grid def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase="robotic cat with wings" , _lowerCamelCase=7.5 , _lowerCamelCase=50 , _lowerCamelCase=1 , _lowerCamelCase=42 , ) -> Any: '''simple docstring''' _lowerCamelCase : List[str] = torch.Generator(pipeline.device ).manual_seed(_lowerCamelCase ) _lowerCamelCase : int = pipeline( _lowerCamelCase , guidance_scale=_lowerCamelCase , num_inference_steps=_lowerCamelCase , generator=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , ).images _lowerCamelCase : str = int(math.sqrt(_lowerCamelCase ) ) _lowerCamelCase : int = image_grid(_lowerCamelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images _lowerCAmelCase : Tuple = parse_args() # Load models and create wrapper for stable diffusion _lowerCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') _lowerCAmelCase : Dict = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') _lowerCAmelCase : Dict = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') _lowerCAmelCase : List[Any] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') _lowerCAmelCase : str = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) _lowerCAmelCase : Tuple = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): _lowerCAmelCase : Optional[int] = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: _lowerCAmelCase : int = unet.to(torch.device('''cuda''', args.cuda_id)) _lowerCAmelCase : str = pipeline.to(unet.device) _lowerCAmelCase : Union[str, Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) _lowerCAmelCase : int = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
355
"""simple docstring""" from __future__ import annotations def lowerCamelCase_( _lowerCamelCase ) -> bool: '''simple docstring''' _lowerCamelCase : int = str(_lowerCamelCase ) return len(_lowerCamelCase ) == 9 and set(_lowerCamelCase ) == set("123456789" ) def lowerCamelCase_( ) -> int | None: '''simple docstring''' for base_num in range(9999 , 4999 , -1 ): _lowerCamelCase : Union[str, Any] = 100002 * base_num if is_9_pandigital(_lowerCamelCase ): return candidate for base_num in range(333 , 99 , -1 ): _lowerCamelCase : Tuple = 1002003 * base_num if is_9_pandigital(_lowerCamelCase ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
340
0
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : str = { '''EleutherAI/gpt-neo-1.3B''': '''https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json''', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class A_ ( _a ): lowerCAmelCase__ = 'gpt_neo' lowerCAmelCase__ = ['past_key_values'] lowerCAmelCase__ = {'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self: Union[str, Any] ,__lowerCAmelCase: List[str]=50_257 ,__lowerCAmelCase: str=2_048 ,__lowerCAmelCase: Optional[int]=2_048 ,__lowerCAmelCase: Any=24 ,__lowerCAmelCase: Union[str, Any]=[[["global", "local"], 12]] ,__lowerCAmelCase: Any=16 ,__lowerCAmelCase: Any=None ,__lowerCAmelCase: Union[str, Any]=256 ,__lowerCAmelCase: Optional[Any]="gelu_new" ,__lowerCAmelCase: Optional[Any]=0.0 ,__lowerCAmelCase: str=0.0 ,__lowerCAmelCase: Dict=0.0 ,__lowerCAmelCase: Dict=0.1 ,__lowerCAmelCase: int=1e-5 ,__lowerCAmelCase: Optional[int]=0.02 ,__lowerCAmelCase: int=True ,__lowerCAmelCase: Dict=50_256 ,__lowerCAmelCase: List[str]=50_256 ,**__lowerCAmelCase: Optional[int] ,): '''simple docstring''' _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : Tuple = max_position_embeddings _lowerCamelCase : Any = hidden_size _lowerCamelCase : List[Any] = num_layers _lowerCamelCase : str = num_heads _lowerCamelCase : Union[str, Any] = intermediate_size _lowerCamelCase : Any = window_size _lowerCamelCase : List[str] = activation_function _lowerCamelCase : Union[str, Any] = resid_dropout _lowerCamelCase : List[Any] = embed_dropout _lowerCamelCase : Dict = attention_dropout _lowerCamelCase : Optional[int] = classifier_dropout _lowerCamelCase : Optional[int] = layer_norm_epsilon _lowerCamelCase : str = initializer_range _lowerCamelCase : List[str] = use_cache _lowerCamelCase : Optional[int] = bos_token_id _lowerCamelCase : Tuple = eos_token_id _lowerCamelCase : List[Any] = attention_types _lowerCamelCase : Optional[int] = self.expand_attention_types_params(__lowerCAmelCase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " F"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """ F"""`config.num_layers = {self.num_layers}`. """ "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) @staticmethod def _lowercase ( __lowerCAmelCase: Any ): '''simple docstring''' _lowerCamelCase : int = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: '''simple docstring''' import torch _lowerCamelCase : Union[str, Any] = input.size() _lowerCamelCase : List[Any] = len(_lowerCamelCase ) _lowerCamelCase : Dict = shape[dimension] _lowerCamelCase : str = torch.arange(0 , _lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Optional[int] = torch.div(sizedim - size , _lowerCamelCase , rounding_mode="floor" ) + 1 _lowerCamelCase : Dict = torch.arange(_lowerCamelCase ) + low_indices[:min_length][:, None] _lowerCamelCase : Any = [slice(_lowerCamelCase )] * rank _lowerCamelCase : Dict = indices _lowerCamelCase : Optional[Any] = input[s] _lowerCamelCase : str = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' import torch _lowerCamelCase : int = torch.arange(1 , _lowerCamelCase ) _lowerCamelCase : List[Any] = torch.remainder(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Any = remainders == 0 _lowerCamelCase : Dict = candidates[divisor_indices] _lowerCamelCase : Any = torch.max(_lowerCamelCase ) return largest_divisor, torch.div(_lowerCamelCase , _lowerCamelCase , rounding_mode="floor" ) class A_ ( _a ): @property def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(__lowerCAmelCase ,direction="inputs" ) _lowerCamelCase : Tuple = {0: "batch", 1: "past_sequence + sequence"} else: _lowerCamelCase : Optional[Any] = {0: "batch", 1: "sequence"} return common_inputs @property def _lowercase ( self: Union[str, Any] ): '''simple docstring''' return self._config.num_heads def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: PreTrainedTokenizer ,__lowerCAmelCase: int = -1 ,__lowerCAmelCase: int = -1 ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[TensorType] = None ,): '''simple docstring''' _lowerCamelCase : Tuple = super(__lowerCAmelCase ,self ).generate_dummy_inputs( __lowerCAmelCase ,batch_size=__lowerCAmelCase ,seq_length=__lowerCAmelCase ,is_pair=__lowerCAmelCase ,framework=__lowerCAmelCase ) # We need to order the input in the way they appears in the forward() _lowerCamelCase : int = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _lowerCamelCase : List[Any] = common_inputs["input_ids"].shape # Not using the same length for past_key_values _lowerCamelCase : Any = seqlen + 2 _lowerCamelCase : int = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _lowerCamelCase : str = [ (torch.zeros(__lowerCAmelCase ), torch.zeros(__lowerCAmelCase )) for _ in range(self.num_layers ) ] _lowerCamelCase : Any = common_inputs["attention_mask"] if self.use_past: _lowerCamelCase : Optional[Any] = ordered_inputs["attention_mask"].dtype _lowerCamelCase : Optional[Any] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__lowerCAmelCase ,__lowerCAmelCase ,dtype=__lowerCAmelCase )] ,dim=1 ) return ordered_inputs @property def _lowercase ( self: Any ): '''simple docstring''' return 13
356
"""simple docstring""" import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class A_ ( _a ): lowerCAmelCase__ = 'char' lowerCAmelCase__ = 'bpe' lowerCAmelCase__ = 'wp' _lowerCAmelCase : List[str] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class A_ ( _a ): lowerCAmelCase__ = ['image_processor', 'char_tokenizer'] lowerCAmelCase__ = 'ViTImageProcessor' lowerCAmelCase__ = 'MgpstrTokenizer' def __init__( self: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: Optional[int]=None ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Any = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." ,__lowerCAmelCase ,) _lowerCamelCase : List[Any] = kwargs.pop("feature_extractor" ) _lowerCamelCase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : str = AutoTokenizer.from_pretrained("gpt2" ) _lowerCamelCase : List[str] = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(__lowerCAmelCase ,__lowerCAmelCase ) def __call__( self: Optional[int] ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: Optional[Any]=None ,**__lowerCAmelCase: Tuple ): '''simple docstring''' if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: _lowerCamelCase : Optional[int] = self.image_processor(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) if text is not None: _lowerCamelCase : int = self.char_tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) if text is None: return inputs elif images is None: return encodings else: _lowerCamelCase : Tuple = encodings["input_ids"] return inputs def _lowercase ( self: int ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = sequences _lowerCamelCase : Dict = char_preds.size(0 ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._decode_helper(__lowerCAmelCase ,"char" ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self._decode_helper(__lowerCAmelCase ,"bpe" ) _lowerCamelCase, _lowerCamelCase : Tuple = self._decode_helper(__lowerCAmelCase ,"wp" ) _lowerCamelCase : List[str] = [] _lowerCamelCase : str = [] for i in range(__lowerCAmelCase ): _lowerCamelCase : str = [char_scores[i], bpe_scores[i], wp_scores[i]] _lowerCamelCase : List[Any] = [char_strs[i], bpe_strs[i], wp_strs[i]] _lowerCamelCase : Optional[Any] = scores.index(max(__lowerCAmelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _lowerCamelCase : Tuple = {} _lowerCamelCase : Tuple = final_strs _lowerCamelCase : int = final_scores _lowerCamelCase : str = char_strs _lowerCamelCase : Dict = bpe_strs _lowerCamelCase : int = wp_strs return out def _lowercase ( self: List[str] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: List[Any] ): '''simple docstring''' if format == DecodeType.CHARACTER: _lowerCamelCase : int = self.char_decode _lowerCamelCase : List[str] = 1 _lowerCamelCase : Optional[int] = "[s]" elif format == DecodeType.BPE: _lowerCamelCase : Dict = self.bpe_decode _lowerCamelCase : str = 2 _lowerCamelCase : Union[str, Any] = "#" elif format == DecodeType.WORDPIECE: _lowerCamelCase : int = self.wp_decode _lowerCamelCase : List[str] = 102 _lowerCamelCase : List[Any] = "[SEP]" else: raise ValueError(F"""Format {format} is not supported.""" ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = [], [] _lowerCamelCase : Any = pred_logits.size(0 ) _lowerCamelCase : int = pred_logits.size(1 ) _lowerCamelCase, _lowerCamelCase : List[Any] = pred_logits.topk(1 ,dim=-1 ,largest=__lowerCAmelCase ,sorted=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = preds_index.view(-1 ,__lowerCAmelCase )[:, 1:] _lowerCamelCase : List[str] = decoder(__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : str = torch.nn.functional.softmax(__lowerCAmelCase ,dim=2 ).max(dim=2 ) _lowerCamelCase : Any = preds_max_prob[:, 1:] for index in range(__lowerCAmelCase ): _lowerCamelCase : List[Any] = preds_str[index].find(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = preds_str[index][:pred_eos] _lowerCamelCase : Optional[Any] = preds_index[index].cpu().tolist() _lowerCamelCase : List[str] = pred_index.index(__lowerCAmelCase ) if eos_token in pred_index else -1 _lowerCamelCase : str = preds_max_prob[index][: pred_eos_index + 1] _lowerCamelCase : Union[str, Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__lowerCAmelCase ) conf_scores.append(__lowerCAmelCase ) return dec_strs, conf_scores def _lowercase ( self: Tuple ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : str = [seq.replace(" " ,"" ) for seq in self.char_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs def _lowercase ( self: List[str] ,__lowerCAmelCase: List[str] ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(__lowerCAmelCase ) def _lowercase ( self: Tuple ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [seq.replace(" " ,"" ) for seq in self.wp_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs
340
0
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' return "".join(chr(ord(_lowerCamelCase ) - 32 ) if "a" <= char <= "z" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
357
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version _lowerCAmelCase : List[Any] = get_logger(__name__) class A_ : lowerCAmelCase__ = 'dummy_data' lowerCAmelCase__ = 'datasets' lowerCAmelCase__ = False def __init__( self: List[str] ,__lowerCAmelCase: str ,__lowerCAmelCase: str ,__lowerCAmelCase: Union[Version, str] ,__lowerCAmelCase: Optional[str] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[List[Callable]] = None ,): '''simple docstring''' _lowerCamelCase : str = 0 _lowerCamelCase : List[str] = dataset_name _lowerCamelCase : Optional[int] = cache_dir _lowerCamelCase : Optional[int] = use_local_dummy_data _lowerCamelCase : int = config # download_callbacks take a single url as input _lowerCamelCase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _lowerCamelCase : int = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _lowerCamelCase : Tuple = str(__lowerCAmelCase ) # to be downloaded _lowerCamelCase : Optional[Any] = None _lowerCamelCase : Dict = None @property def _lowercase ( self: str ): '''simple docstring''' if self._dummy_file is None: _lowerCamelCase : List[str] = self.download_dummy_data() return self._dummy_file @property def _lowercase ( self: str ): '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" ,self.config.name ,self.version_name ) # structure is dummy / version_name return os.path.join("dummy" ,self.version_name ) @property def _lowercase ( self: Optional[Any] ): '''simple docstring''' return os.path.join(self.dummy_data_folder ,"dummy_data.zip" ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _lowerCamelCase : Optional[int] = cached_path( __lowerCAmelCase ,cache_dir=self.cache_dir ,extract_compressed_file=__lowerCAmelCase ,force_extract=__lowerCAmelCase ) return os.path.join(__lowerCAmelCase ,self.dummy_file_name ) @property def _lowercase ( self: Tuple ): '''simple docstring''' return os.path.join(self.datasets_scripts_dir ,self.dataset_name ,self.dummy_zip_file ) @property def _lowercase ( self: List[str] ): '''simple docstring''' if self._bucket_url is None: _lowerCamelCase : List[str] = hf_github_url(self.dataset_name ,self.dummy_zip_file.replace(os.sep ,"/" ) ) return self._bucket_url @property def _lowercase ( self: Union[str, Any] ): '''simple docstring''' if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep ,"/" ).split("/" )[:-1] ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: str ,*__lowerCAmelCase: List[Any] ): '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested _lowerCamelCase : Tuple = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _lowerCamelCase : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): return self.create_dummy_data_dict(__lowerCAmelCase ,__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,(list, tuple) ): return self.create_dummy_data_list(__lowerCAmelCase ,__lowerCAmelCase ) else: return self.create_dummy_data_single(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: Optional[int] ): '''simple docstring''' return self.download_and_extract(__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: int ): '''simple docstring''' return self.download_and_extract(__lowerCAmelCase ) def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' return path def _lowercase ( self: Optional[int] ): '''simple docstring''' return {} def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : str = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): for single_url in single_urls: download_callback(__lowerCAmelCase ) else: _lowerCamelCase : Union[str, Any] = single_urls download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Dict = [os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) ) for x in single_urls] else: _lowerCamelCase : Union[str, Any] = single_urls _lowerCamelCase : List[str] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) ) _lowerCamelCase : List[Any] = value # make sure that values are unique if all(isinstance(__lowerCAmelCase ,__lowerCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique _lowerCamelCase : List[Any] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Dict = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _lowerCamelCase : List[str] = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" ,__lowerCAmelCase ) ) for url in data_url ) _lowerCamelCase : Optional[Any] = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): _lowerCamelCase : Tuple = [data_url[0]] * len(__lowerCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(__lowerCAmelCase ) return dummy_data_list def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: List[Any] ): '''simple docstring''' for download_callback in self.download_callbacks: download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : Optional[int] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(__lowerCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass def _lowercase ( self: Optional[int] ): '''simple docstring''' pass def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' def _iter_archive_members(__lowerCAmelCase: Any ): # this preserves the order of the members inside the ZIP archive _lowerCamelCase : Tuple = Path(self.dummy_file ).parent _lowerCamelCase : str = path.relative_to(__lowerCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: _lowerCamelCase : Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = Path(__lowerCAmelCase ) _lowerCamelCase : int = _iter_archive_members(__lowerCAmelCase ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(__lowerCAmelCase ).as_posix(), file_path.open("rb" ) def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = [paths] for path in paths: if os.path.isfile(__lowerCAmelCase ): if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(__lowerCAmelCase ): if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(__lowerCAmelCase ): if filename.startswith((".", "__") ): continue yield os.path.join(__lowerCAmelCase ,__lowerCAmelCase )
340
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A_ ( _a , _a , _a , unittest.TestCase ): lowerCAmelCase__ = StableDiffusionInpaintPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCAmelCase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase__ = frozenset([] ) def _lowercase ( self: Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) _lowerCamelCase : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=9 ,out_channels=4 ,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") ,up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") ,cross_attention_dim=32 ,attention_head_dim=(2, 4) ,use_linear_projection=__lowerCAmelCase ,) _lowerCamelCase : Optional[Any] = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) torch.manual_seed(0 ) _lowerCamelCase : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,sample_size=128 ,) torch.manual_seed(0 ) _lowerCamelCase : Tuple = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,hidden_act="gelu" ,projection_dim=512 ,) _lowerCamelCase : List[str] = CLIPTextModel(__lowerCAmelCase ) _lowerCamelCase : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _lowerCamelCase : Dict = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _lowercase ( self: List[str] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Tuple=0 ): '''simple docstring''' _lowerCamelCase : Optional[Any] = floats_tensor((1, 3, 32, 32) ,rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) _lowerCamelCase : Any = image.cpu().permute(0 ,2 ,3 ,1 )[0] _lowerCamelCase : Optional[Any] = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert("RGB" ).resize((64, 64) ) _lowerCamelCase : List[str] = Image.fromarray(np.uinta(image + 4 ) ).convert("RGB" ).resize((64, 64) ) if str(__lowerCAmelCase ).startswith("mps" ): _lowerCamelCase : str = torch.manual_seed(__lowerCAmelCase ) else: _lowerCamelCase : str = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = { "prompt": "A painting of a squirrel eating a burger", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCamelCase : str = self.get_dummy_components() _lowerCamelCase : List[Any] = StableDiffusionInpaintPipeline(**__lowerCAmelCase ) _lowerCamelCase : Optional[int] = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : int = self.get_dummy_inputs(__lowerCAmelCase ) _lowerCamelCase : Dict = sd_pipe(**__lowerCAmelCase ).images _lowerCamelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCamelCase : Optional[int] = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self: Optional[int] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): def _lowercase ( self: Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) _lowerCamelCase : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) _lowerCamelCase : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench.npy" ) _lowerCamelCase : Union[str, Any] = "stabilityai/stable-diffusion-2-inpainting" _lowerCamelCase : List[str] = StableDiffusionInpaintPipeline.from_pretrained(__lowerCAmelCase ,safety_checker=__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing() _lowerCamelCase : str = "Face of a yellow cat, high resolution, sitting on a park bench" _lowerCamelCase : Union[str, Any] = torch.manual_seed(0 ) _lowerCamelCase : int = pipe( prompt=__lowerCAmelCase ,image=__lowerCAmelCase ,mask_image=__lowerCAmelCase ,generator=__lowerCAmelCase ,output_type="np" ,) _lowerCamelCase : Tuple = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9e-3 def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) _lowerCamelCase : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) _lowerCamelCase : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench_fp16.npy" ) _lowerCamelCase : int = "stabilityai/stable-diffusion-2-inpainting" _lowerCamelCase : Any = StableDiffusionInpaintPipeline.from_pretrained( __lowerCAmelCase ,torch_dtype=torch.floataa ,safety_checker=__lowerCAmelCase ,) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing() _lowerCamelCase : Tuple = "Face of a yellow cat, high resolution, sitting on a park bench" _lowerCamelCase : Tuple = torch.manual_seed(0 ) _lowerCamelCase : Dict = pipe( prompt=__lowerCAmelCase ,image=__lowerCAmelCase ,mask_image=__lowerCAmelCase ,generator=__lowerCAmelCase ,output_type="np" ,) _lowerCamelCase : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _lowercase ( self: int ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCamelCase : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) _lowerCamelCase : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) _lowerCamelCase : Any = "stabilityai/stable-diffusion-2-inpainting" _lowerCamelCase : List[Any] = PNDMScheduler.from_pretrained(__lowerCAmelCase ,subfolder="scheduler" ) _lowerCamelCase : Dict = StableDiffusionInpaintPipeline.from_pretrained( __lowerCAmelCase ,safety_checker=__lowerCAmelCase ,scheduler=__lowerCAmelCase ,torch_dtype=torch.floataa ,) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _lowerCamelCase : Dict = "Face of a yellow cat, high resolution, sitting on a park bench" _lowerCamelCase : Optional[int] = torch.manual_seed(0 ) _lowerCamelCase : Dict = pipe( prompt=__lowerCAmelCase ,image=__lowerCAmelCase ,mask_image=__lowerCAmelCase ,generator=__lowerCAmelCase ,num_inference_steps=2 ,output_type="np" ,) _lowerCamelCase : str = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
358
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) _lowerCamelCase : int = precision _lowerCamelCase : Dict = ceil(precision / 14 ) _lowerCamelCase : Optional[Any] = 426880 * Decimal(10005 ).sqrt() _lowerCamelCase : int = 1 _lowerCamelCase : Optional[int] = 13591409 _lowerCamelCase : int = Decimal(_lowerCamelCase ) for k in range(1 , _lowerCamelCase ): _lowerCamelCase : Union[str, Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowerCamelCase ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = 50 print(f'''The first {n} digits of pi is: {pi(n)}''')
340
0
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : Dict = Mock() _lowerCamelCase : str = conn, Mock() _lowerCamelCase : int = iter([1, None] ) _lowerCamelCase : str = lambda _lowerCamelCase : next(_lowerCamelCase ) # ===== invoke ===== send_file(filename="mytext.txt" , testing=_lowerCamelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
359
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class A_ ( _a ): lowerCAmelCase__ = 42 lowerCAmelCase__ = None def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=0.9_9_9 , _lowerCamelCase="cosine" , ) -> List[str]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_lowerCamelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowerCamelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _lowerCamelCase : str = [] for i in range(_lowerCamelCase ): _lowerCamelCase : Any = i / num_diffusion_timesteps _lowerCamelCase : Optional[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCamelCase ) / alpha_bar_fn(_lowerCamelCase ) , _lowerCamelCase ) ) return torch.tensor(_lowerCamelCase , dtype=torch.floataa ) class A_ ( _a , _a ): @register_to_config def __init__( self: str ,__lowerCAmelCase: int = 1_000 ,__lowerCAmelCase: str = "fixed_small_log" ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[float] = 1.0 ,__lowerCAmelCase: str = "epsilon" ,__lowerCAmelCase: str = "squaredcos_cap_v2" ,): '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) _lowerCamelCase : Union[str, Any] = betas_for_alpha_bar(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = 1.0 - self.betas _lowerCamelCase : Dict = torch.cumprod(self.alphas ,dim=0 ) _lowerCamelCase : int = torch.tensor(1.0 ) # standard deviation of the initial noise distribution _lowerCamelCase : Tuple = 1.0 # setable values _lowerCamelCase : List[Any] = None _lowerCamelCase : Union[str, Any] = torch.from_numpy(np.arange(0 ,__lowerCAmelCase )[::-1].copy() ) _lowerCamelCase : List[str] = variance_type def _lowercase ( self: Any ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ): '''simple docstring''' return sample def _lowercase ( self: Optional[int] ,__lowerCAmelCase: int ,__lowerCAmelCase: Union[str, torch.device] = None ): '''simple docstring''' _lowerCamelCase : str = num_inference_steps _lowerCamelCase : str = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) _lowerCamelCase : Union[str, Any] = (np.arange(0 ,__lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) _lowerCamelCase : int = torch.from_numpy(__lowerCAmelCase ).to(__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: List[str]=None ,__lowerCAmelCase: str=None ): '''simple docstring''' if prev_timestep is None: _lowerCamelCase : List[str] = t - 1 _lowerCamelCase : Optional[int] = self.alphas_cumprod[t] _lowerCamelCase : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _lowerCamelCase : Dict = 1 - alpha_prod_t _lowerCamelCase : str = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _lowerCamelCase : List[Any] = self.betas[t] else: _lowerCamelCase : str = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _lowerCamelCase : int = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: _lowerCamelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": _lowerCamelCase : Dict = torch.log(torch.clamp(__lowerCAmelCase ,min=1e-20 ) ) _lowerCamelCase : str = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler _lowerCamelCase : str = variance.log() _lowerCamelCase : str = beta.log() _lowerCamelCase : Optional[int] = (predicted_variance + 1) / 2 _lowerCamelCase : Union[str, Any] = frac * max_log + (1 - frac) * min_log return variance def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: int ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: bool = True ,): '''simple docstring''' _lowerCamelCase : str = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": _lowerCamelCase, _lowerCamelCase : int = torch.split(__lowerCAmelCase ,sample.shape[1] ,dim=1 ) else: _lowerCamelCase : List[Any] = None # 1. compute alphas, betas if prev_timestep is None: _lowerCamelCase : List[Any] = t - 1 _lowerCamelCase : Dict = self.alphas_cumprod[t] _lowerCamelCase : int = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _lowerCamelCase : Dict = 1 - alpha_prod_t _lowerCamelCase : List[str] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _lowerCamelCase : Any = self.betas[t] _lowerCamelCase : str = self.alphas[t] else: _lowerCamelCase : Any = 1 - alpha_prod_t / alpha_prod_t_prev _lowerCamelCase : Optional[Any] = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _lowerCamelCase : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _lowerCamelCase : List[Any] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: _lowerCamelCase : Any = torch.clamp( __lowerCAmelCase ,-self.config.clip_sample_range ,self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCamelCase : List[str] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t _lowerCamelCase : Optional[int] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCamelCase : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _lowerCamelCase : Union[str, Any] = 0 if t > 0: _lowerCamelCase : Dict = randn_tensor( model_output.shape ,dtype=model_output.dtype ,generator=__lowerCAmelCase ,device=model_output.device ) _lowerCamelCase : Any = self._get_variance( __lowerCAmelCase ,predicted_variance=__lowerCAmelCase ,prev_timestep=__lowerCAmelCase ,) if self.variance_type == "fixed_small_log": _lowerCamelCase : Optional[Any] = variance elif self.variance_type == "learned_range": _lowerCamelCase : Optional[int] = (0.5 * variance).exp() else: raise ValueError( F"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" " for the UnCLIPScheduler." ) _lowerCamelCase : Dict = variance * variance_noise _lowerCamelCase : List[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__lowerCAmelCase ,pred_original_sample=__lowerCAmelCase ) def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.IntTensor ,): '''simple docstring''' _lowerCamelCase : int = self.alphas_cumprod.to(device=original_samples.device ,dtype=original_samples.dtype ) _lowerCamelCase : Any = timesteps.to(original_samples.device ) _lowerCamelCase : List[Any] = alphas_cumprod[timesteps] ** 0.5 _lowerCamelCase : List[Any] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): _lowerCamelCase : int = sqrt_alpha_prod.unsqueeze(-1 ) _lowerCamelCase : Union[str, Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 _lowerCamelCase : str = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): _lowerCamelCase : Union[str, Any] = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) _lowerCamelCase : Dict = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
340
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : List[Any] = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: _lowerCamelCase : Dict = [144, 192, 240] _lowerCamelCase : Optional[int] = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: _lowerCamelCase : Optional[int] = [96, 120, 144] _lowerCamelCase : Dict = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: _lowerCamelCase : Any = [64, 80, 96] _lowerCamelCase : List[str] = [16, 16, 24, 48, 64, 80, 320] _lowerCamelCase : Union[str, Any] = 0.0_5 _lowerCamelCase : Optional[Any] = 2.0 if mobilevit_name.startswith("deeplabv3_" ): _lowerCamelCase : List[str] = 512 _lowerCamelCase : str = 16 _lowerCamelCase : Tuple = 21 _lowerCamelCase : Union[str, Any] = "pascal-voc-id2label.json" else: _lowerCamelCase : Any = 1000 _lowerCamelCase : Optional[int] = "imagenet-1k-id2label.json" _lowerCamelCase : List[Any] = "huggingface/label-files" _lowerCamelCase : Tuple = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Any = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : List[str] = idalabel _lowerCamelCase : int = {v: k for k, v in idalabel.items()} return config def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> str: '''simple docstring''' for i in range(1 , 6 ): if F"""layer_{i}.""" in name: _lowerCamelCase : Optional[int] = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: _lowerCamelCase : str = name.replace("conv_1." , "conv_stem." ) if ".block." in name: _lowerCamelCase : str = name.replace(".block." , "." ) if "exp_1x1" in name: _lowerCamelCase : Tuple = name.replace("exp_1x1" , "expand_1x1" ) if "red_1x1" in name: _lowerCamelCase : List[Any] = name.replace("red_1x1" , "reduce_1x1" ) if ".local_rep.conv_3x3." in name: _lowerCamelCase : Union[str, Any] = name.replace(".local_rep.conv_3x3." , ".conv_kxk." ) if ".local_rep.conv_1x1." in name: _lowerCamelCase : Dict = name.replace(".local_rep.conv_1x1." , ".conv_1x1." ) if ".norm." in name: _lowerCamelCase : Union[str, Any] = name.replace(".norm." , ".normalization." ) if ".conv." in name: _lowerCamelCase : Optional[int] = name.replace(".conv." , ".convolution." ) if ".conv_proj." in name: _lowerCamelCase : Union[str, Any] = name.replace(".conv_proj." , ".conv_projection." ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: _lowerCamelCase : List[str] = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: _lowerCamelCase : Optional[int] = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: _lowerCamelCase : Union[str, Any] = name.replace("expand_1x1" , "downsampling_layer.expand_1x1" ) if "conv_3x3" in name: _lowerCamelCase : Any = name.replace("conv_3x3" , "downsampling_layer.conv_3x3" ) if "reduce_1x1" in name: _lowerCamelCase : List[str] = name.replace("reduce_1x1" , "downsampling_layer.reduce_1x1" ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: _lowerCamelCase : Tuple = name.replace(F""".global_rep.{i}.weight""" , ".layernorm.weight" ) if F""".global_rep.{i}.bias""" in name: _lowerCamelCase : str = name.replace(F""".global_rep.{i}.bias""" , ".layernorm.bias" ) if ".global_rep." in name: _lowerCamelCase : List[Any] = name.replace(".global_rep." , ".transformer." ) if ".pre_norm_mha.0." in name: _lowerCamelCase : Tuple = name.replace(".pre_norm_mha.0." , ".layernorm_before." ) if ".pre_norm_mha.1.out_proj." in name: _lowerCamelCase : Tuple = name.replace(".pre_norm_mha.1.out_proj." , ".attention.output.dense." ) if ".pre_norm_ffn.0." in name: _lowerCamelCase : Any = name.replace(".pre_norm_ffn.0." , ".layernorm_after." ) if ".pre_norm_ffn.1." in name: _lowerCamelCase : Dict = name.replace(".pre_norm_ffn.1." , ".intermediate.dense." ) if ".pre_norm_ffn.4." in name: _lowerCamelCase : List[str] = name.replace(".pre_norm_ffn.4." , ".output.dense." ) if ".transformer." in name: _lowerCamelCase : Dict = name.replace(".transformer." , ".transformer.layer." ) if ".aspp_layer." in name: _lowerCamelCase : Dict = name.replace(".aspp_layer." , "." ) if ".aspp_pool." in name: _lowerCamelCase : int = name.replace(".aspp_pool." , "." ) if "seg_head." in name: _lowerCamelCase : List[Any] = name.replace("seg_head." , "segmentation_head." ) if "segmentation_head.classifier.classifier." in name: _lowerCamelCase : List[str] = name.replace("segmentation_head.classifier.classifier." , "segmentation_head.classifier." ) if "classifier.fc." in name: _lowerCamelCase : Dict = name.replace("classifier.fc." , "classifier." ) elif (not base_model) and ("segmentation_head." not in name): _lowerCamelCase : Any = "mobilevit." + name return name def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> int: '''simple docstring''' if base_model: _lowerCamelCase : List[str] = "" else: _lowerCamelCase : Tuple = "mobilevit." for key in orig_state_dict.copy().keys(): _lowerCamelCase : Tuple = orig_state_dict.pop(_lowerCamelCase ) if key[:8] == "encoder.": _lowerCamelCase : str = key[8:] if "qkv" in key: _lowerCamelCase : Dict = key.split("." ) _lowerCamelCase : List[str] = int(key_split[0][6:] ) - 1 _lowerCamelCase : Optional[Any] = int(key_split[3] ) _lowerCamelCase : List[str] = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) _lowerCamelCase : int = layer.transformer.layer[transformer_num].attention.attention.all_head_size _lowerCamelCase : List[Any] = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: _lowerCamelCase : int = val[:dim, :] _lowerCamelCase : Any = val[dim : dim * 2, :] _lowerCamelCase : Optional[Any] = val[-dim:, :] else: _lowerCamelCase : Tuple = val[:dim] _lowerCamelCase : Dict = val[dim : dim * 2] _lowerCamelCase : int = val[-dim:] else: _lowerCamelCase : Any = val return orig_state_dict def lowerCamelCase_( ) -> Tuple: '''simple docstring''' _lowerCamelCase : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : List[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> str: '''simple docstring''' _lowerCamelCase : List[Any] = get_mobilevit_config(_lowerCamelCase ) # load original state_dict _lowerCamelCase : List[Any] = torch.load(_lowerCamelCase , map_location="cpu" ) # load 🤗 model if mobilevit_name.startswith("deeplabv3_" ): _lowerCamelCase : Tuple = MobileViTForSemanticSegmentation(_lowerCamelCase ).eval() else: _lowerCamelCase : List[Any] = MobileViTForImageClassification(_lowerCamelCase ).eval() _lowerCamelCase : int = convert_state_dict(_lowerCamelCase , _lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor _lowerCamelCase : Any = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _lowerCamelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCamelCase : Union[str, Any] = model(**_lowerCamelCase ) _lowerCamelCase : int = outputs.logits if mobilevit_name.startswith("deeplabv3_" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": _lowerCamelCase : List[Any] = torch.tensor( [ [[6.2_0_6_5, 6.1_2_9_2, 6.2_0_7_0], [6.1_0_7_9, 6.1_2_5_4, 6.1_7_4_7], [6.0_0_4_2, 6.1_0_7_1, 6.1_0_3_4]], [[-6.9_2_5_3, -6.8_6_5_3, -7.0_3_9_8], [-7.3_2_1_8, -7.3_9_8_3, -7.3_6_7_0], [-7.1_9_6_1, -7.2_4_8_2, -7.1_5_6_9]], [[-4.4_7_2_3, -4.4_3_4_8, -4.3_7_6_9], [-5.3_6_2_9, -5.4_6_3_2, -5.4_5_9_8], [-5.1_5_8_7, -5.3_4_0_2, -5.5_0_5_9]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": _lowerCamelCase : Union[str, Any] = torch.tensor( [ [[5.4_4_4_9, 5.5_7_3_3, 5.6_3_1_4], [5.1_8_1_5, 5.3_9_3_0, 5.5_9_6_3], [5.1_6_5_6, 5.4_3_3_3, 5.4_8_5_3]], [[-9.4_4_2_3, -9.7_7_6_6, -9.6_7_1_4], [-9.1_5_8_1, -9.5_7_2_0, -9.5_5_1_9], [-9.1_0_0_6, -9.6_4_5_8, -9.5_7_0_3]], [[-7.7_7_2_1, -7.3_7_1_6, -7.1_5_8_3], [-8.4_5_9_9, -8.0_6_2_4, -7.7_9_4_4], [-8.4_1_7_2, -7.8_3_6_6, -7.5_0_2_5]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": _lowerCamelCase : List[Any] = torch.tensor( [ [[6.9_8_1_1, 6.9_7_4_3, 7.3_1_2_3], [7.1_7_7_7, 7.1_9_3_1, 7.3_9_3_8], [7.5_6_3_3, 7.8_0_5_0, 7.8_9_0_1]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8_6_2_4, -9.5_9_6_4], [-10.8840, -10.8158, -10.6659]], [[-3.4_9_3_8, -3.0_6_3_1, -2.8_6_2_0], [-3.4_2_0_5, -2.8_1_3_5, -2.6_8_7_5], [-3.4_1_7_9, -2.7_9_4_5, -2.8_7_5_0]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": _lowerCamelCase : List[Any] = torch.tensor([-0.9_8_6_6, 0.2_3_9_2, -1.1_2_4_1] ) elif mobilevit_name == "mobilevit_xs": _lowerCamelCase : Union[str, Any] = torch.tensor([-2.4_7_6_1, -0.9_3_9_9, -1.9_5_8_7] ) elif mobilevit_name == "mobilevit_xxs": _lowerCamelCase : Optional[int] = torch.tensor([-1.9_3_6_4, -1.2_3_2_7, -0.4_6_5_3] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , _lowerCamelCase , atol=1e-4 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCamelCase ) if push_to_hub: _lowerCamelCase : List[Any] = { "mobilevit_s": "mobilevit-small", "mobilevit_xs": "mobilevit-x-small", "mobilevit_xxs": "mobilevit-xx-small", "deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small", "deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small", "deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small", } print("Pushing to the hub..." ) _lowerCamelCase : Union[str, Any] = model_mapping[mobilevit_name] image_processor.push_to_hub(_lowerCamelCase , organization="apple" ) model.push_to_hub(_lowerCamelCase , organization="apple" ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowerCAmelCase : Dict = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
360
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _lowerCAmelCase : str = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' for attribute in key.split("." ): _lowerCamelCase : Tuple = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: _lowerCamelCase : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: _lowerCamelCase : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowerCamelCase : Tuple = value elif weight_type == "weight_g": _lowerCamelCase : List[str] = value elif weight_type == "weight_v": _lowerCamelCase : List[Any] = value elif weight_type == "bias": _lowerCamelCase : str = value elif weight_type == "running_mean": _lowerCamelCase : Optional[int] = value elif weight_type == "running_var": _lowerCamelCase : Optional[Any] = value elif weight_type == "num_batches_tracked": _lowerCamelCase : int = value elif weight_type == "inv_freq": _lowerCamelCase : List[str] = value else: _lowerCamelCase : Optional[Any] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase : Dict = [] _lowerCamelCase : Optional[Any] = fairseq_model.state_dict() _lowerCamelCase : List[Any] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase : Dict = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) _lowerCamelCase : List[Any] = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase : Dict = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _lowerCamelCase : int = True if "*" in mapped_key: _lowerCamelCase : Tuple = name.split(_lowerCamelCase )[0].split("." )[-2] _lowerCamelCase : int = mapped_key.replace("*" , _lowerCamelCase ) if "pos_bias_u" in name: _lowerCamelCase : int = None elif "pos_bias_v" in name: _lowerCamelCase : Any = None elif "weight_g" in name: _lowerCamelCase : Any = "weight_g" elif "weight_v" in name: _lowerCamelCase : Any = "weight_v" elif "bias" in name: _lowerCamelCase : Optional[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase : Dict = "weight" elif "running_mean" in name: _lowerCamelCase : str = "running_mean" elif "inv_freq" in name: _lowerCamelCase : List[Any] = "inv_freq" elif "running_var" in name: _lowerCamelCase : Tuple = "running_var" elif "num_batches_tracked" in name: _lowerCamelCase : str = "num_batches_tracked" else: _lowerCamelCase : Dict = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : int = full_name.split("conv_layers." )[-1] _lowerCamelCase : List[Any] = name.split("." ) _lowerCamelCase : Union[str, Any] = int(items[0] ) _lowerCamelCase : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowerCamelCase : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowerCamelCase : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) _lowerCamelCase : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowerCamelCase : Optional[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> Dict: '''simple docstring''' if config_path is not None: _lowerCamelCase : Union[str, Any] = WavaVecaConformerConfig.from_pretrained(_lowerCamelCase , hidden_act="swish" ) else: _lowerCamelCase : Dict = WavaVecaConformerConfig() if "rope" in checkpoint_path: _lowerCamelCase : List[Any] = "rotary" if is_finetuned: if dict_path: _lowerCamelCase : Dict = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase : Optional[int] = target_dict.pad_index _lowerCamelCase : Dict = target_dict.bos_index _lowerCamelCase : Optional[Any] = target_dict.eos_index _lowerCamelCase : str = len(target_dict.symbols ) _lowerCamelCase : int = os.path.join(_lowerCamelCase , "vocab.json" ) if not os.path.isdir(_lowerCamelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) _lowerCamelCase : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase : List[str] = 0 _lowerCamelCase : List[Any] = 1 with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Optional[int] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCamelCase , ) _lowerCamelCase : Tuple = True if config.feat_extract_norm == "layer" else False _lowerCamelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) _lowerCamelCase : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) _lowerCamelCase : List[Any] = WavaVecaConformerForCTC(_lowerCamelCase ) else: _lowerCamelCase : Any = WavaVecaConformerForPreTraining(_lowerCamelCase ) if is_finetuned: _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _lowerCamelCase : List[Any] = argparse.Namespace(task="audio_pretraining" ) _lowerCamelCase : Optional[Any] = fairseq.tasks.setup_task(_lowerCamelCase ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCamelCase ) _lowerCamelCase : Dict = model[0].eval() recursively_load_weights(_lowerCamelCase , _lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) _lowerCAmelCase : str = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
340
0
"""simple docstring""" _lowerCAmelCase : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.609_344, "knot": 1.852, } _lowerCAmelCase : dict[str, float] = { "km/h": 1.0, "m/s": 0.277_777_778, "mph": 0.621_371_192, "knot": 0.539_956_803, } def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' if unit_to not in speed_chart or unit_from not in speed_chart_inverse: _lowerCamelCase : Union[str, Any] = ( F"""Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n""" F"""Valid values are: {', '.join(_lowerCamelCase )}""" ) raise ValueError(_lowerCamelCase ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
361
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' _validate_point(_lowerCamelCase ) _validate_point(_lowerCamelCase ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(_lowerCamelCase , _lowerCamelCase ) ) ) def lowerCamelCase_( _lowerCamelCase ) -> None: '''simple docstring''' if point: if isinstance(_lowerCamelCase , _lowerCamelCase ): for item in point: if not isinstance(_lowerCamelCase , (int, float) ): _lowerCamelCase : Dict = ( "Expected a list of numbers as input, found " F"""{type(_lowerCamelCase ).__name__}""" ) raise TypeError(_lowerCamelCase ) else: _lowerCamelCase : Optional[int] = F"""Expected a list of numbers as input, found {type(_lowerCamelCase ).__name__}""" raise TypeError(_lowerCamelCase ) else: raise ValueError("Missing an input" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' _validate_point(_lowerCamelCase ) _validate_point(_lowerCamelCase ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(_lowerCamelCase , _lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
340
0
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator class A_ : def __init__( self: Union[str, Any] ,__lowerCAmelCase: int ): '''simple docstring''' _lowerCamelCase : List[Any] = value _lowerCamelCase : Node | None = None _lowerCamelCase : Node | None = None class A_ : def __init__( self: Tuple ,__lowerCAmelCase: Node ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = tree def _lowercase ( self: int ,__lowerCAmelCase: Node | None ): '''simple docstring''' if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self: Any ): '''simple docstring''' yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
362
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Optional[Any] = np.inf def set_batch_size(_lowerCamelCase ) -> None: nonlocal batch_size if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Optional[int] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_lowerCamelCase , _lowerCamelCase ) and feature.dtype == "binary": _lowerCamelCase : List[str] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_lowerCamelCase , _lowerCamelCase ) return None if batch_size is np.inf else batch_size class A_ ( _a ): def __init__( self: Optional[int] ,__lowerCAmelCase: NestedDataStructureLike[PathLike] ,__lowerCAmelCase: Optional[NamedSplit] = None ,__lowerCAmelCase: Optional[Features] = None ,__lowerCAmelCase: str = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: int ,): '''simple docstring''' super().__init__( __lowerCAmelCase ,split=__lowerCAmelCase ,features=__lowerCAmelCase ,cache_dir=__lowerCAmelCase ,keep_in_memory=__lowerCAmelCase ,streaming=__lowerCAmelCase ,num_proc=__lowerCAmelCase ,**__lowerCAmelCase ,) _lowerCamelCase : Tuple = path_or_paths if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) else {self.split: path_or_paths} _lowerCamelCase : Any = _PACKAGED_DATASETS_MODULES["parquet"][1] _lowerCamelCase : int = Parquet( cache_dir=__lowerCAmelCase ,data_files=__lowerCAmelCase ,features=__lowerCAmelCase ,hash=__lowerCAmelCase ,**__lowerCAmelCase ,) def _lowercase ( self: Optional[int] ): '''simple docstring''' if self.streaming: _lowerCamelCase : List[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _lowerCamelCase : Tuple = None _lowerCamelCase : Optional[int] = None _lowerCamelCase : List[str] = None _lowerCamelCase : str = None self.builder.download_and_prepare( download_config=__lowerCAmelCase ,download_mode=__lowerCAmelCase ,verification_mode=__lowerCAmelCase ,base_path=__lowerCAmelCase ,num_proc=self.num_proc ,) _lowerCamelCase : Any = self.builder.as_dataset( split=self.split ,verification_mode=__lowerCAmelCase ,in_memory=self.keep_in_memory ) return dataset class A_ : def __init__( self: str ,__lowerCAmelCase: Dataset ,__lowerCAmelCase: Union[PathLike, BinaryIO] ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: List[Any] ,): '''simple docstring''' _lowerCamelCase : Any = dataset _lowerCamelCase : Any = path_or_buf _lowerCamelCase : Any = batch_size or get_writer_batch_size(dataset.features ) _lowerCamelCase : List[str] = parquet_writer_kwargs def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Tuple = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf ,(str, bytes, os.PathLike) ): with open(self.path_or_buf ,"wb+" ) as buffer: _lowerCamelCase : str = self._write(file_obj=__lowerCAmelCase ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs ) else: _lowerCamelCase : Optional[int] = self._write(file_obj=self.path_or_buf ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs ) return written def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: BinaryIO ,__lowerCAmelCase: int ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[int] = parquet_writer_kwargs.pop("path_or_buf" ,__lowerCAmelCase ) _lowerCamelCase : List[str] = self.dataset.features.arrow_schema _lowerCamelCase : str = pq.ParquetWriter(__lowerCAmelCase ,schema=__lowerCAmelCase ,**__lowerCAmelCase ) for offset in logging.tqdm( range(0 ,len(self.dataset ) ,__lowerCAmelCase ) ,unit="ba" ,disable=not logging.is_progress_bar_enabled() ,desc="Creating parquet from Arrow format" ,): _lowerCamelCase : List[str] = query_table( table=self.dataset._data ,key=slice(__lowerCAmelCase ,offset + batch_size ) ,indices=self.dataset._indices if self.dataset._indices is not None else None ,) writer.write_table(__lowerCAmelCase ) written += batch.nbytes writer.close() return written
340
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = LDMTextToImagePipeline lowerCAmelCase__ = TEXT_TO_IMAGE_PARAMS - { 'negative_prompt', 'negative_prompt_embeds', 'cross_attention_kwargs', 'prompt_embeds', } lowerCAmelCase__ = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'callback', 'callback_steps', } lowerCAmelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase__ = False def _lowercase ( self: Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) _lowerCamelCase : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") ,up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") ,cross_attention_dim=32 ,) _lowerCamelCase : Any = DDIMScheduler( beta_start=0.0_00_85 ,beta_end=0.0_12 ,beta_schedule="scaled_linear" ,clip_sample=__lowerCAmelCase ,set_alpha_to_one=__lowerCAmelCase ,) torch.manual_seed(0 ) _lowerCamelCase : Dict = AutoencoderKL( block_out_channels=(32, 64) ,in_channels=3 ,out_channels=3 ,down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") ,up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") ,latent_channels=4 ,) torch.manual_seed(0 ) _lowerCamelCase : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) _lowerCamelCase : Union[str, Any] = CLIPTextModel(__lowerCAmelCase ) _lowerCamelCase : Dict = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _lowerCamelCase : str = { "unet": unet, "scheduler": scheduler, "vqvae": vae, "bert": text_encoder, "tokenizer": tokenizer, } return components def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Union[str, Any]=0 ): '''simple docstring''' if str(__lowerCAmelCase ).startswith("mps" ): _lowerCamelCase : Optional[Any] = torch.manual_seed(__lowerCAmelCase ) else: _lowerCamelCase : List[str] = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) _lowerCamelCase : Any = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCamelCase : str = self.get_dummy_components() _lowerCamelCase : Optional[int] = LDMTextToImagePipeline(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : str = self.get_dummy_inputs(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = pipe(**__lowerCAmelCase ).images _lowerCamelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) _lowerCamelCase : str = np.array([0.61_01, 0.61_56, 0.56_22, 0.48_95, 0.66_61, 0.38_04, 0.57_48, 0.61_36, 0.50_14] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class A_ ( unittest.TestCase ): def _lowercase ( self: Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self: Any ,__lowerCAmelCase: str ,__lowerCAmelCase: Any=torch.floataa ,__lowerCAmelCase: str=0 ): '''simple docstring''' _lowerCamelCase : str = torch.manual_seed(__lowerCAmelCase ) _lowerCamelCase : str = np.random.RandomState(__lowerCAmelCase ).standard_normal((1, 4, 32, 32) ) _lowerCamelCase : int = torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase ,dtype=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = { "prompt": "A painting of a squirrel eating a burger", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : str = self.get_inputs(__lowerCAmelCase ) _lowerCamelCase : Any = pipe(**__lowerCAmelCase ).images _lowerCamelCase : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) _lowerCamelCase : Union[str, Any] = np.array([0.5_18_25, 0.5_28_50, 0.5_25_43, 0.5_42_58, 0.5_23_04, 0.5_25_69, 0.5_43_63, 0.5_52_76, 0.5_68_78] ) _lowerCamelCase : Any = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class A_ ( unittest.TestCase ): def _lowercase ( self: int ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self: Dict ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Dict=torch.floataa ,__lowerCAmelCase: List[str]=0 ): '''simple docstring''' _lowerCamelCase : int = torch.manual_seed(__lowerCAmelCase ) _lowerCamelCase : Dict = np.random.RandomState(__lowerCAmelCase ).standard_normal((1, 4, 32, 32) ) _lowerCamelCase : Any = torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase ,dtype=__lowerCAmelCase ) _lowerCamelCase : Any = { "prompt": "A painting of a squirrel eating a burger", "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Dict = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Any = self.get_inputs(__lowerCAmelCase ) _lowerCamelCase : Dict = pipe(**__lowerCAmelCase ).images[0] _lowerCamelCase : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy" ) _lowerCamelCase : int = np.abs(expected_image - image ).max() assert max_diff < 1e-3
363
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Optional[int] = tokenizer(example["content"] , truncation=_lowerCamelCase )["input_ids"] _lowerCamelCase : Dict = len(example["content"] ) / len(output["input_ids"] ) return output _lowerCAmelCase : Tuple = HfArgumentParser(PretokenizationArguments) _lowerCAmelCase : Optional[int] = parser.parse_args() if args.num_workers is None: _lowerCAmelCase : Any = multiprocessing.cpu_count() _lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(args.tokenizer_dir) _lowerCAmelCase : Union[str, Any] = time.time() _lowerCAmelCase : Optional[int] = load_dataset(args.dataset_name, split='''train''') print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') _lowerCAmelCase : Any = time.time() _lowerCAmelCase : Dict = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') _lowerCAmelCase : str = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
340
0
"""simple docstring""" _lowerCAmelCase : Tuple = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Any = [False] * len(_lowerCamelCase ) _lowerCamelCase : Union[str, Any] = [s] _lowerCamelCase : str = True while queue: _lowerCamelCase : Optional[int] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_lowerCamelCase ) _lowerCamelCase : Any = True _lowerCamelCase : Any = u return visited[t] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : List[str] = [-1] * (len(_lowerCamelCase )) _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : List[str] = [i[:] for i in graph] # Record original cut, copy. while bfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Any = float("Inf" ) _lowerCamelCase : Dict = sink while s != source: # Find the minimum value in select path _lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , graph[parent[s]][s] ) _lowerCamelCase : Union[str, Any] = parent[s] max_flow += path_flow _lowerCamelCase : Optional[Any] = sink while v != source: _lowerCamelCase : Union[str, Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _lowerCamelCase : List[str] = parent[v] for i in range(len(_lowerCamelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
364
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Optional[Any] = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = torch.device('''cpu''') def lowerCamelCase_( ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.17_03e00, 2.11_07e00, -2.08_11e00, 8.86_85e-01, 2.43_60e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.96_36e-01, 2.34_78e-01, -1.69_63e00, -1.73_81e00, -8.63_37e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.27_68e-01, -4.74_29e-01, -1.08_97e00, -1.02_48e00, 3.55_23e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.53_30e-01, 2.42_11e-01, -6.01_85e-01, -8.27_89e-01, -6.04_46e-02] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : Any = dct.pop(_lowerCamelCase ) _lowerCamelCase : Any = val def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : List[Any] = [] for k in state_dict.keys(): _lowerCamelCase : List[str] = k if ".pwconv" in k: _lowerCamelCase : int = k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: _lowerCamelCase : Optional[int] = k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: _lowerCamelCase : Tuple = k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: _lowerCamelCase : Optional[Any] = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: _lowerCamelCase : List[str] = k_new.split("." ) if ls[2].isdigit(): _lowerCamelCase : str = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: _lowerCamelCase : Any = k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : int = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size _lowerCamelCase : int = 1000 _lowerCamelCase : Optional[Any] = "huggingface/label-files" _lowerCamelCase : Union[str, Any] = "imagenet-1k-id2label.json" _lowerCamelCase : Union[str, Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Union[str, Any] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : str = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": _lowerCamelCase : Optional[Any] = [3, 3, 6, 4] _lowerCamelCase : Union[str, Any] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": _lowerCamelCase : Optional[Any] = [3, 3, 9, 6] _lowerCamelCase : Any = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": _lowerCamelCase : Optional[Any] = [4, 3, 10, 5] _lowerCamelCase : Dict = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": _lowerCamelCase : int = [4, 4, 12, 6] _lowerCamelCase : int = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): _lowerCamelCase : Union[str, Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" , check_hash=_lowerCamelCase ) else: _lowerCamelCase : str = torch.load(_lowerCamelCase , map_location="cpu" ) _lowerCamelCase : Optional[int] = checkpoint _lowerCamelCase : Optional[Any] = create_rename_keys(_lowerCamelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model _lowerCamelCase : Optional[int] = SwiftFormerForImageClassification(_lowerCamelCase ).eval() hf_model.load_state_dict(_lowerCamelCase ) # prepare test inputs _lowerCamelCase : Dict = prepare_img() _lowerCamelCase : List[Any] = ViTImageProcessor.from_pretrained("preprocessor_config" ) _lowerCamelCase : Optional[int] = processor(images=_lowerCamelCase , return_tensors="pt" ) # compare outputs from both models _lowerCamelCase : int = get_expected_output(_lowerCamelCase ) _lowerCamelCase : List[Any] = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , _lowerCamelCase , atol=1e-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') _lowerCAmelCase : str = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
365
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) class A_ ( _a ): lowerCAmelCase__ = 'masked_bert' def __init__( self: Union[str, Any] ,__lowerCAmelCase: Dict=30_522 ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Dict=12 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: List[Any]="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Tuple=512 ,__lowerCAmelCase: str=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Union[str, Any]=1e-12 ,__lowerCAmelCase: Union[str, Any]=0 ,__lowerCAmelCase: List[Any]="topK" ,__lowerCAmelCase: Optional[Any]="constant" ,__lowerCAmelCase: Optional[Any]=0.0 ,**__lowerCAmelCase: str ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : str = max_position_embeddings _lowerCamelCase : List[str] = type_vocab_size _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : int = pruning_method _lowerCamelCase : str = mask_init _lowerCamelCase : List[Any] = mask_scale
340
0
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class A_ ( _a ): lowerCAmelCase__ = 'EncodecFeatureExtractor' lowerCAmelCase__ = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self: Optional[Any] ,__lowerCAmelCase: Any ,__lowerCAmelCase: str ): '''simple docstring''' super().__init__(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self.feature_extractor _lowerCamelCase : List[Any] = False def _lowercase ( self: Tuple ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: Optional[int]=True ): '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=__lowerCAmelCase ,language=__lowerCAmelCase ,no_timestamps=__lowerCAmelCase ) def __call__( self: Optional[int] ,*__lowerCAmelCase: Dict ,**__lowerCAmelCase: Any ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = kwargs.pop("audio" ,__lowerCAmelCase ) _lowerCamelCase : List[Any] = kwargs.pop("sampling_rate" ,__lowerCAmelCase ) _lowerCamelCase : List[str] = kwargs.pop("text" ,__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: _lowerCamelCase : List[str] = args[0] _lowerCamelCase : Dict = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if text is not None: _lowerCamelCase : List[Any] = self.tokenizer(__lowerCAmelCase ,**__lowerCAmelCase ) if audio is not None: _lowerCamelCase : Dict = self.feature_extractor(__lowerCAmelCase ,*__lowerCAmelCase ,sampling_rate=__lowerCAmelCase ,**__lowerCAmelCase ) if audio is None: return inputs elif text is None: return audio_inputs else: _lowerCamelCase : Optional[Any] = audio_inputs["input_values"] if "padding_mask" in audio_inputs: _lowerCamelCase : int = audio_inputs["padding_mask"] return inputs def _lowercase ( self: List[str] ,*__lowerCAmelCase: List[str] ,**__lowerCAmelCase: int ): '''simple docstring''' _lowerCamelCase : int = kwargs.pop("audio" ,__lowerCAmelCase ) _lowerCamelCase : str = kwargs.pop("padding_mask" ,__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: _lowerCamelCase : Tuple = args[0] _lowerCamelCase : Dict = args[1:] if audio_values is not None: return self._decode_audio(__lowerCAmelCase ,padding_mask=__lowerCAmelCase ) else: return self.tokenizer.batch_decode(*__lowerCAmelCase ,**__lowerCAmelCase ) def _lowercase ( self: Optional[int] ,*__lowerCAmelCase: int ,**__lowerCAmelCase: str ): '''simple docstring''' return self.tokenizer.decode(*__lowerCAmelCase ,**__lowerCAmelCase ) def _lowercase ( self: Tuple ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional = None ): '''simple docstring''' _lowerCamelCase : Tuple = to_numpy(__lowerCAmelCase ) _lowerCamelCase : List[str] = audio_values.shape if padding_mask is None: return list(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = to_numpy(__lowerCAmelCase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) _lowerCamelCase : Union[str, Any] = seq_len - padding_mask.shape[-1] _lowerCamelCase : Any = 1 - self.feature_extractor.padding_value _lowerCamelCase : List[Any] = np.pad(__lowerCAmelCase ,((0, 0), (0, difference)) ,"constant" ,constant_values=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = audio_values.tolist() for i in range(__lowerCAmelCase ): _lowerCamelCase : Tuple = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] _lowerCamelCase : Union[str, Any] = sliced_audio.reshape(__lowerCAmelCase ,-1 ) return audio_values
366
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _lowerCAmelCase : str = '''0.12''' # assumed parallelism: 8 if is_torch_available(): import torch def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) -> List[Any]: '''simple docstring''' if rng is None: _lowerCamelCase : Union[str, Any] = random.Random() _lowerCamelCase : Union[str, Any] = 1 for dim in shape: total_dims *= dim _lowerCamelCase : Optional[int] = [] for _ in range(_lowerCamelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) _lowerCamelCase : Union[str, Any] = np.array(_lowerCamelCase , dtype=jnp.intaa ).reshape(_lowerCamelCase ) return output def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : Optional[int] = ids_tensor(_lowerCamelCase , vocab_size=2 , rng=_lowerCamelCase ) # make sure that at least one token is attended to for each batch _lowerCamelCase : List[str] = 1 return attn_mask @require_flax class A_ : lowerCAmelCase__ = None lowerCAmelCase__ = () def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 _lowerCamelCase : List[str] = 2 _lowerCamelCase : str = inputs["input_ids"].shape[-1] // 2 _lowerCamelCase : Tuple = inputs["input_ids"][:max_batch_size, :sequence_length] _lowerCamelCase : Any = jnp.ones_like(__lowerCAmelCase ) _lowerCamelCase : List[Any] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens _lowerCamelCase : Optional[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` _lowerCamelCase : List[str] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = self._get_input_ids_and_config() _lowerCamelCase : List[Any] = False _lowerCamelCase : Dict = max_length _lowerCamelCase : Tuple = 0 for model_class in self.all_generative_model_classes: _lowerCamelCase : str = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning _lowerCamelCase : Any = getattr(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Dict = pt_model_class(__lowerCAmelCase ).eval() _lowerCamelCase : Optional[Any] = load_flax_weights_in_pytorch_model(__lowerCAmelCase ,flax_model.params ) _lowerCamelCase : int = flax_model.generate(__lowerCAmelCase ).sequences _lowerCamelCase : Optional[int] = pt_model.generate(torch.tensor(__lowerCAmelCase ,dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: _lowerCamelCase : List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() ,flax_generation_outputs.tolist() ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = self._get_input_ids_and_config() _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : Union[str, Any] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config() _lowerCamelCase : List[Any] = True _lowerCamelCase : Optional[int] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : List[Any] = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : int = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config() _lowerCamelCase : int = False _lowerCamelCase : Optional[Any] = max_length _lowerCamelCase : Dict = 2 for model_class in self.all_generative_model_classes: _lowerCamelCase : List[str] = model_class(__lowerCAmelCase ) _lowerCamelCase : Dict = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Tuple = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = self._get_input_ids_and_config() _lowerCamelCase : Tuple = False _lowerCamelCase : Union[str, Any] = max_length _lowerCamelCase : List[str] = 2 _lowerCamelCase : Optional[int] = 2 for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : str = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0] ,input_ids.shape[0] * config.num_return_sequences ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config() _lowerCamelCase : int = True _lowerCamelCase : List[Any] = max_length _lowerCamelCase : Optional[Any] = 0.8 _lowerCamelCase : Union[str, Any] = 10 _lowerCamelCase : List[str] = 0.3 _lowerCamelCase : Tuple = 1 _lowerCamelCase : Any = 8 _lowerCamelCase : str = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ) _lowerCamelCase : Any = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : int = jit(model.generate ) _lowerCamelCase : Optional[int] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = self._get_input_ids_and_config() _lowerCamelCase : List[str] = max_length _lowerCamelCase : Tuple = 1 _lowerCamelCase : Any = 8 _lowerCamelCase : Dict = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : Any = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : Any = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config() _lowerCamelCase : Dict = max_length _lowerCamelCase : List[Any] = 2 _lowerCamelCase : Tuple = 1 _lowerCamelCase : List[str] = 8 _lowerCamelCase : List[Any] = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : int = model_class(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Tuple = jit(model.generate ) _lowerCamelCase : Optional[Any] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : Tuple = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : Dict = False _lowerCamelCase : Any = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : Optional[Any] = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : List[str] = True _lowerCamelCase : Optional[Any] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : List[Any] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : List[str] = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : int = 2 _lowerCamelCase : int = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : int = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : Dict = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) @require_flax class A_ ( unittest.TestCase ): def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" ) _lowerCamelCase : Union[str, Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) _lowerCamelCase : Optional[Any] = "Hello world" _lowerCamelCase : str = tokenizer(__lowerCAmelCase ,return_tensors="np" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__lowerCAmelCase ,"do_samples" ): model.generate(__lowerCAmelCase ,do_samples=__lowerCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__lowerCAmelCase ,"foo" ): _lowerCamelCase : List[str] = {"foo": "bar"} model.generate(__lowerCAmelCase ,**__lowerCAmelCase )
340
0
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class A_ ( unittest.TestCase ): lowerCAmelCase__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def _lowercase ( self: Tuple ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : Tuple = hf_hub_download( repo_id="nateraw/video-demo" ,filename="archery.mp4" ,repo_type="dataset" ) _lowerCamelCase : List[Any] = VideoClassificationPipeline(model=__lowerCAmelCase ,image_processor=__lowerCAmelCase ,top_k=2 ) _lowerCamelCase : Tuple = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: List[str] ): '''simple docstring''' for example in examples: _lowerCamelCase : int = video_classifier(__lowerCAmelCase ) self.assertEqual( __lowerCAmelCase ,[ {"score": ANY(__lowerCAmelCase ), "label": ANY(__lowerCAmelCase )}, {"score": ANY(__lowerCAmelCase ), "label": ANY(__lowerCAmelCase )}, ] ,) @require_torch def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Dict = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" _lowerCamelCase : str = VideoMAEFeatureExtractor( size={"shortest_edge": 10} ,crop_size={"height": 10, "width": 10} ) _lowerCamelCase : Dict = pipeline( "video-classification" ,model=__lowerCAmelCase ,feature_extractor=__lowerCAmelCase ,frame_sampling_rate=4 ) _lowerCamelCase : int = hf_hub_download(repo_id="nateraw/video-demo" ,filename="archery.mp4" ,repo_type="dataset" ) _lowerCamelCase : List[Any] = video_classifier(__lowerCAmelCase ,top_k=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ,decimals=4 ) ,[{"score": 0.51_99, "label": "LABEL_0"}, {"score": 0.48_01, "label": "LABEL_1"}] ,) _lowerCamelCase : Tuple = video_classifier( [ video_file_path, video_file_path, ] ,top_k=2 ,) self.assertEqual( nested_simplify(__lowerCAmelCase ,decimals=4 ) ,[ [{"score": 0.51_99, "label": "LABEL_0"}, {"score": 0.48_01, "label": "LABEL_1"}], [{"score": 0.51_99, "label": "LABEL_0"}, {"score": 0.48_01, "label": "LABEL_1"}], ] ,) @require_tf def _lowercase ( self: Dict ): '''simple docstring''' pass
367
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : int = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class A_ ( _a ): lowerCAmelCase__ = 'mobilenet_v1' def __init__( self: Tuple ,__lowerCAmelCase: int=3 ,__lowerCAmelCase: Dict=224 ,__lowerCAmelCase: int=1.0 ,__lowerCAmelCase: Tuple=8 ,__lowerCAmelCase: List[str]="relu6" ,__lowerCAmelCase: int=True ,__lowerCAmelCase: List[Any]=0.9_99 ,__lowerCAmelCase: Optional[int]=0.02 ,__lowerCAmelCase: Optional[int]=0.0_01 ,**__lowerCAmelCase: str ,): '''simple docstring''' super().__init__(**__lowerCAmelCase ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) _lowerCamelCase : List[str] = num_channels _lowerCamelCase : Union[str, Any] = image_size _lowerCamelCase : List[Any] = depth_multiplier _lowerCamelCase : Any = min_depth _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Dict = tf_padding _lowerCamelCase : Union[str, Any] = classifier_dropout_prob _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : List[Any] = layer_norm_eps class A_ ( _a ): lowerCAmelCase__ = version.parse('1.11' ) @property def _lowercase ( self: Optional[int] ): '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def _lowercase ( self: Optional[Any] ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def _lowercase ( self: Any ): '''simple docstring''' return 1e-4
340
0
"""simple docstring""" import argparse import copy def lowerCamelCase_( _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Dict = {} with open(_lowerCamelCase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _lowerCamelCase : str = [] _list.append([line.split()[1], line.split()[2]] ) _lowerCamelCase : List[str] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _lowerCamelCase : Dict = [] _list.append([line.split()[0], line.split()[2]] ) _lowerCamelCase : Any = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' with open(_lowerCamelCase ) as f: _lowerCamelCase : Tuple = f.read(1 ) _lowerCamelCase : int = start_node _lowerCamelCase : Tuple = [] _lowerCamelCase : Optional[Any] = start_node _lowerCamelCase : Any = 0 while visiting not in first_solution: _lowerCamelCase : int = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(_lowerCamelCase ) and k[0] not in first_solution: _lowerCamelCase : Optional[Any] = k[1] _lowerCamelCase : Optional[int] = k[0] first_solution.append(_lowerCamelCase ) _lowerCamelCase : Dict = distance_of_first_solution + int(_lowerCamelCase ) _lowerCamelCase : List[str] = best_node first_solution.append(_lowerCamelCase ) _lowerCamelCase : Tuple = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _lowerCamelCase : List[str] = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = [] for n in solution[1:-1]: _lowerCamelCase : Dict = solution.index(_lowerCamelCase ) for kn in solution[1:-1]: _lowerCamelCase : str = solution.index(_lowerCamelCase ) if n == kn: continue _lowerCamelCase : int = copy.deepcopy(_lowerCamelCase ) _lowerCamelCase : Optional[int] = kn _lowerCamelCase : int = n _lowerCamelCase : Dict = 0 for k in _tmp[:-1]: _lowerCamelCase : Optional[int] = _tmp[_tmp.index(_lowerCamelCase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _lowerCamelCase : Union[str, Any] = distance + int(i[1] ) _tmp.append(_lowerCamelCase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _lowerCamelCase : str = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda _lowerCamelCase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Tuple = 1 _lowerCamelCase : int = first_solution _lowerCamelCase : str = [] _lowerCamelCase : Tuple = distance_of_first_solution _lowerCamelCase : List[Any] = solution while count <= iters: _lowerCamelCase : Optional[int] = find_neighborhood(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : str = 0 _lowerCamelCase : Dict = neighborhood[index_of_best_solution] _lowerCamelCase : Optional[Any] = len(_lowerCamelCase ) - 1 _lowerCamelCase : List[str] = False while not found: _lowerCamelCase : Dict = 0 while i < len(_lowerCamelCase ): if best_solution[i] != solution[i]: _lowerCamelCase : Any = best_solution[i] _lowerCamelCase : List[Any] = solution[i] break _lowerCamelCase : List[str] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _lowerCamelCase : List[Any] = True _lowerCamelCase : Optional[int] = best_solution[:-1] _lowerCamelCase : Optional[Any] = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _lowerCamelCase : Optional[Any] = cost _lowerCamelCase : List[str] = solution else: _lowerCamelCase : Tuple = index_of_best_solution + 1 _lowerCamelCase : List[str] = neighborhood[index_of_best_solution] if len(_lowerCamelCase ) >= size: tabu_list.pop(0 ) _lowerCamelCase : Optional[int] = count + 1 return best_solution_ever, best_cost def lowerCamelCase_( _lowerCamelCase=None ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Optional[int] = generate_neighbours(args.File ) _lowerCamelCase : int = generate_first_solution( args.File , _lowerCamelCase ) _lowerCamelCase : Optional[int] = tabu_search( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , args.Iterations , args.Size , ) print(F"""Best solution: {best_sol}, with total distance: {best_cost}.""" ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
368
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' for param in module.parameters(): _lowerCamelCase : Optional[int] = False def lowerCamelCase_( ) -> List[str]: '''simple docstring''' _lowerCamelCase : Optional[Any] = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _lowerCamelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Dict = plt.imshow(_lowerCamelCase ) fig.axes.get_xaxis().set_visible(_lowerCamelCase ) fig.axes.get_yaxis().set_visible(_lowerCamelCase ) plt.show() def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Tuple = datetime.now() _lowerCamelCase : Tuple = current_time.strftime("%H:%M:%S" ) return timestamp
340
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class A_ : lowerCAmelCase__ = LEDConfig lowerCAmelCase__ = {} lowerCAmelCase__ = 'gelu' def __init__( self: Union[str, Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Union[str, Any]=13 ,__lowerCAmelCase: Union[str, Any]=7 ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: Union[str, Any]=False ,__lowerCAmelCase: List[Any]=99 ,__lowerCAmelCase: Optional[Any]=32 ,__lowerCAmelCase: str=2 ,__lowerCAmelCase: Tuple=4 ,__lowerCAmelCase: List[Any]=37 ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: Dict=0.1 ,__lowerCAmelCase: Tuple=20 ,__lowerCAmelCase: Optional[Any]=2 ,__lowerCAmelCase: Optional[int]=1 ,__lowerCAmelCase: List[str]=0 ,__lowerCAmelCase: Dict=4 ,): '''simple docstring''' _lowerCamelCase : Union[str, Any] = parent _lowerCamelCase : List[Any] = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : Dict = use_labels _lowerCamelCase : Optional[Any] = vocab_size _lowerCamelCase : Tuple = hidden_size _lowerCamelCase : Dict = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[int] = attention_probs_dropout_prob _lowerCamelCase : int = max_position_embeddings _lowerCamelCase : Union[str, Any] = eos_token_id _lowerCamelCase : Optional[Any] = pad_token_id _lowerCamelCase : Optional[int] = bos_token_id _lowerCamelCase : Any = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _lowerCamelCase : str = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _lowerCamelCase : int = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) _lowerCamelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) _lowerCamelCase : Dict = tf.concat([input_ids, eos_tensor] ,axis=1 ) _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowerCamelCase : Optional[Any] = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,attention_window=self.attention_window ,**self.config_updates ,) _lowerCamelCase : List[Any] = prepare_led_inputs_dict(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = tf.concat( [tf.zeros_like(__lowerCAmelCase )[:, :-1], tf.ones_like(__lowerCAmelCase )[:, -1:]] ,axis=-1 ,) _lowerCamelCase : int = global_attention_mask return config, inputs_dict def _lowercase ( self: Dict ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase : str = TFLEDModel(config=__lowerCAmelCase ).get_decoder() _lowerCamelCase : Optional[int] = inputs_dict["input_ids"] _lowerCamelCase : List[Any] = input_ids[:1, :] _lowerCamelCase : Tuple = inputs_dict["attention_mask"][:1, :] _lowerCamelCase : Optional[int] = 1 # first forward pass _lowerCamelCase : Any = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,use_cache=__lowerCAmelCase ) _lowerCamelCase : int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCamelCase : Tuple = ids_tensor((self.batch_size, 3) ,config.vocab_size ) _lowerCamelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) ,2 ) ,tf.inta ) # append to next input_ids and _lowerCamelCase : int = tf.concat([input_ids, next_tokens] ,axis=-1 ) _lowerCamelCase : Dict = tf.concat([attention_mask, next_attn_mask] ,axis=-1 ) _lowerCamelCase : Any = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase )[0] _lowerCamelCase : Tuple = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,past_key_values=__lowerCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] ,output_from_past.shape[1] ) # select random slice _lowerCamelCase : Tuple = int(ids_tensor((1,) ,output_from_past.shape[-1] ) ) _lowerCamelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx] _lowerCamelCase : Any = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowerCAmelCase ,__lowerCAmelCase ,rtol=1e-3 ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , ) -> Union[str, Any]: '''simple docstring''' if attention_mask is None: _lowerCamelCase : List[str] = tf.cast(tf.math.not_equal(_lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _lowerCamelCase : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _lowerCamelCase : Union[str, Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowerCamelCase : str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class A_ ( _a , _a , unittest.TestCase ): lowerCAmelCase__ = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () lowerCAmelCase__ = (TFLEDForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase__ = ( { 'conversational': TFLEDForConditionalGeneration, 'feature-extraction': TFLEDModel, 'summarization': TFLEDForConditionalGeneration, 'text2text-generation': TFLEDForConditionalGeneration, 'translation': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Tuple = TFLEDModelTester(self ) _lowerCamelCase : str = ConfigTester(self ,config_class=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = tf.zeros_like(inputs_dict["attention_mask"] ) _lowerCamelCase : List[str] = 2 _lowerCamelCase : Optional[Any] = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices ,1 ,inputs_dict["global_attention_mask"] ,) _lowerCamelCase : Tuple = True _lowerCamelCase : List[str] = self.model_tester.seq_length _lowerCamelCase : Dict = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__lowerCAmelCase: Tuple ): _lowerCamelCase : Union[str, Any] = outputs.decoder_attentions self.assertEqual(len(__lowerCAmelCase ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_length, seq_length] ,) def check_encoder_attentions_output(__lowerCAmelCase: Union[str, Any] ): _lowerCamelCase : List[str] = [t.numpy() for t in outputs.encoder_attentions] _lowerCamelCase : Optional[Any] = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__lowerCAmelCase ) ,self.model_tester.num_hidden_layers ) self.assertEqual(len(__lowerCAmelCase ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_length, seq_length] ,) self.assertListEqual( list(global_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] ,) for model_class in self.all_model_classes: _lowerCamelCase : Any = True _lowerCamelCase : str = False _lowerCamelCase : List[str] = False _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ) _lowerCamelCase : Any = model(self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) _lowerCamelCase : List[str] = len(__lowerCAmelCase ) self.assertEqual(config.output_hidden_states ,__lowerCAmelCase ) check_encoder_attentions_output(__lowerCAmelCase ) if self.is_encoder_decoder: _lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : int = model(self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) self.assertEqual(config.output_hidden_states ,__lowerCAmelCase ) check_decoder_attentions_output(__lowerCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _lowerCamelCase : Tuple = True _lowerCamelCase : int = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model(self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) self.assertEqual(config.output_hidden_states ,__lowerCAmelCase ) check_encoder_attentions_output(__lowerCAmelCase ) # Check attention is always last and order is fine _lowerCamelCase : List[str] = True _lowerCamelCase : Union[str, Any] = True _lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : List[str] = model(self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) ,len(__lowerCAmelCase ) ) self.assertEqual(model.config.output_hidden_states ,__lowerCAmelCase ) check_encoder_attentions_output(__lowerCAmelCase ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' return tf.constant(_lowerCamelCase , dtype=tf.intaa ) __snake_case : str = 1e-4 @slow @require_tf class A_ ( unittest.TestCase ): def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : int = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here _lowerCamelCase : Optional[int] = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _lowerCamelCase : Optional[int] = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _lowerCamelCase : Tuple = prepare_led_inputs_dict(model.config ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Any = model(**__lowerCAmelCase )[0] _lowerCamelCase : Union[str, Any] = (1, 1_024, 768) self.assertEqual(output.shape ,__lowerCAmelCase ) # change to expected output here _lowerCamelCase : str = tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] ,) tf.debugging.assert_near(output[:, :3, :3] ,__lowerCAmelCase ,atol=1e-3 ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : List[str] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here _lowerCamelCase : int = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _lowerCamelCase : str = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _lowerCamelCase : Dict = prepare_led_inputs_dict(model.config ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Dict = model(**__lowerCAmelCase )[0] _lowerCamelCase : List[Any] = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape ,__lowerCAmelCase ) # change to expected output here _lowerCamelCase : Dict = tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] ,) tf.debugging.assert_near(output[:, :3, :3] ,__lowerCAmelCase ,atol=1e-3 ,rtol=1e-3 )
369
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : int = len(_lowerCamelCase ) _lowerCamelCase : int = len(_lowerCamelCase ) _lowerCamelCase : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) _lowerCamelCase : list = [] for char_count in range(_lowerCamelCase ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(_lowerCamelCase ) if __name__ == "__main__": print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''')
340
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class A_ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : List[str] = tempfile.mkdtemp() # fmt: off _lowerCamelCase : List[str] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on _lowerCamelCase : Any = dict(zip(__lowerCAmelCase ,range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : int = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] _lowerCamelCase : Tuple = {"unk_token": "<unk>"} _lowerCamelCase : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : Dict = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(__lowerCAmelCase ) ) _lowerCamelCase : str = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], "image_std": [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } _lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname ,__lowerCAmelCase ) with open(self.image_processor_file ,"w" ,encoding="utf-8" ) as fp: json.dump(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Dict ,**__lowerCAmelCase: str ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname ,**__lowerCAmelCase ) def _lowercase ( self: Tuple ,**__lowerCAmelCase: int ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**__lowerCAmelCase ) def _lowercase ( self: Optional[int] ,**__lowerCAmelCase: List[Any] ): '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname ,**__lowerCAmelCase ) def _lowercase ( self: str ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Tuple = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] _lowerCamelCase : Tuple = [Image.fromarray(np.moveaxis(__lowerCAmelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : str = self.get_rust_tokenizer() _lowerCamelCase : Any = self.get_image_processor() _lowerCamelCase : Optional[int] = CLIPProcessor(tokenizer=__lowerCAmelCase ,image_processor=__lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) _lowerCamelCase : Optional[Any] = CLIPProcessor.from_pretrained(self.tmpdirname ,use_fast=__lowerCAmelCase ) _lowerCamelCase : str = CLIPProcessor(tokenizer=__lowerCAmelCase ,image_processor=__lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) _lowerCamelCase : Union[str, Any] = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,__lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer ,__lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,__lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor ,__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Tuple = CLIPProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase : List[str] = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" ) _lowerCamelCase : List[str] = self.get_image_processor(do_normalize=__lowerCAmelCase ,padding_value=1.0 ) _lowerCamelCase : int = CLIPProcessor.from_pretrained( self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=__lowerCAmelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,__lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Tuple = self.get_image_processor() _lowerCamelCase : Dict = self.get_tokenizer() _lowerCamelCase : Optional[int] = CLIPProcessor(tokenizer=__lowerCAmelCase ,image_processor=__lowerCAmelCase ) _lowerCamelCase : Tuple = self.prepare_image_inputs() _lowerCamelCase : Optional[int] = image_processor(__lowerCAmelCase ,return_tensors="np" ) _lowerCamelCase : str = processor(images=__lowerCAmelCase ,return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : Any = self.get_tokenizer() _lowerCamelCase : Tuple = CLIPProcessor(tokenizer=__lowerCAmelCase ,image_processor=__lowerCAmelCase ) _lowerCamelCase : str = "lower newer" _lowerCamelCase : Any = processor(text=__lowerCAmelCase ) _lowerCamelCase : Dict = tokenizer(__lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : Dict = self.get_tokenizer() _lowerCamelCase : Optional[int] = CLIPProcessor(tokenizer=__lowerCAmelCase ,image_processor=__lowerCAmelCase ) _lowerCamelCase : List[Any] = "lower newer" _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : List[Any] = processor(text=__lowerCAmelCase ,images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) ,["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase ): processor() def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : List[str] = self.get_image_processor() _lowerCamelCase : Optional[int] = self.get_tokenizer() _lowerCamelCase : str = CLIPProcessor(tokenizer=__lowerCAmelCase ,image_processor=__lowerCAmelCase ) _lowerCamelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase : int = processor.batch_decode(__lowerCAmelCase ) _lowerCamelCase : Any = tokenizer.batch_decode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Tuple = self.get_image_processor() _lowerCamelCase : Optional[int] = self.get_tokenizer() _lowerCamelCase : List[str] = CLIPProcessor(tokenizer=__lowerCAmelCase ,image_processor=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = "lower newer" _lowerCamelCase : Optional[int] = self.prepare_image_inputs() _lowerCamelCase : Union[str, Any] = processor(text=__lowerCAmelCase ,images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
370
"""simple docstring""" _lowerCAmelCase : Tuple = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Any = [False] * len(_lowerCamelCase ) _lowerCamelCase : Union[str, Any] = [s] _lowerCamelCase : str = True while queue: _lowerCamelCase : Optional[int] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_lowerCamelCase ) _lowerCamelCase : Any = True _lowerCamelCase : Any = u return visited[t] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : List[str] = [-1] * (len(_lowerCamelCase )) _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : List[str] = [i[:] for i in graph] # Record original cut, copy. while bfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Any = float("Inf" ) _lowerCamelCase : Dict = sink while s != source: # Find the minimum value in select path _lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , graph[parent[s]][s] ) _lowerCamelCase : Union[str, Any] = parent[s] max_flow += path_flow _lowerCamelCase : Optional[Any] = sink while v != source: _lowerCamelCase : Union[str, Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _lowerCamelCase : List[str] = parent[v] for i in range(len(_lowerCamelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
340
0
"""simple docstring""" from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) _lowerCAmelCase : Optional[int] = ''' transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. ''' class A_ ( _a ): @staticmethod def _lowercase ( __lowerCAmelCase: ArgumentParser ): '''simple docstring''' _lowerCamelCase : List[str] = parser.add_parser( "convert" ,help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints." ,) train_parser.add_argument("--model_type" ,type=__lowerCAmelCase ,required=__lowerCAmelCase ,help="Model's type." ) train_parser.add_argument( "--tf_checkpoint" ,type=__lowerCAmelCase ,required=__lowerCAmelCase ,help="TensorFlow checkpoint path or folder." ) train_parser.add_argument( "--pytorch_dump_output" ,type=__lowerCAmelCase ,required=__lowerCAmelCase ,help="Path to the PyTorch saved model output." ) train_parser.add_argument("--config" ,type=__lowerCAmelCase ,default="" ,help="Configuration file path or folder." ) train_parser.add_argument( "--finetuning_task_name" ,type=__lowerCAmelCase ,default=__lowerCAmelCase ,help="Optional fine-tuning task name if the TF model was a finetuned model." ,) train_parser.set_defaults(func=__lowerCAmelCase ) def __init__( self: List[Any] ,__lowerCAmelCase: str ,__lowerCAmelCase: str ,__lowerCAmelCase: str ,__lowerCAmelCase: str ,__lowerCAmelCase: str ,*__lowerCAmelCase: int ,): '''simple docstring''' _lowerCamelCase : str = logging.get_logger("transformers-cli/converting" ) self._logger.info(F"""Loading model {model_type}""" ) _lowerCamelCase : Union[str, Any] = model_type _lowerCamelCase : Union[str, Any] = tf_checkpoint _lowerCamelCase : str = pytorch_dump_output _lowerCamelCase : Optional[Any] = config _lowerCamelCase : Tuple = finetuning_task_name def _lowercase ( self: List[Any] ): '''simple docstring''' if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowerCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowerCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowerCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(__lowerCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowerCAmelCase ) if "ckpt" in self._tf_checkpoint.lower(): _lowerCamelCase : Optional[int] = self._tf_checkpoint _lowerCamelCase : Tuple = "" else: _lowerCamelCase : Union[str, Any] = self._tf_checkpoint _lowerCamelCase : Dict = "" convert_transfo_xl_checkpoint_to_pytorch( __lowerCAmelCase ,self._config ,self._pytorch_dump_output ,__lowerCAmelCase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowerCAmelCase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowerCAmelCase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint ,self._config ,self._pytorch_dump_output ,self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint ,self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint ,self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) else: raise ValueError( "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]" )
371
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''', '''umberto-commoncrawl-cased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json''' ), '''umberto-wikipedia-uncased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json''' ), } class A_ ( _a ): lowerCAmelCase__ = 'camembert' def __init__( self: Tuple ,__lowerCAmelCase: Union[str, Any]=30_522 ,__lowerCAmelCase: Optional[Any]=768 ,__lowerCAmelCase: Union[str, Any]=12 ,__lowerCAmelCase: int=12 ,__lowerCAmelCase: Optional[int]=3_072 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: Optional[Any]=0.1 ,__lowerCAmelCase: int=512 ,__lowerCAmelCase: Union[str, Any]=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Any=1 ,__lowerCAmelCase: Any=0 ,__lowerCAmelCase: Optional[int]=2 ,__lowerCAmelCase: Any="absolute" ,__lowerCAmelCase: Dict=True ,__lowerCAmelCase: Tuple=None ,**__lowerCAmelCase: Dict ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[str] = vocab_size _lowerCamelCase : Any = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : int = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : Dict = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps _lowerCamelCase : Tuple = position_embedding_type _lowerCamelCase : List[Any] = use_cache _lowerCamelCase : Dict = classifier_dropout class A_ ( _a ): @property def _lowercase ( self: Any ): '''simple docstring''' if self.task == "multiple-choice": _lowerCamelCase : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _lowerCamelCase : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
340
0
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase ): '''simple docstring''' _lowerCamelCase : Optional[int] = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def lowerCamelCase_( _lowerCamelCase = 100 ): '''simple docstring''' _lowerCamelCase : Dict = 1 _lowerCamelCase : List[Any] = 2 for i in range(2 , max_n + 1 ): _lowerCamelCase : List[Any] = pre_numerator _lowerCamelCase : Optional[Any] = 2 * i // 3 if i % 3 == 0 else 1 _lowerCamelCase : Optional[Any] = cur_numerator _lowerCamelCase : Tuple = e_cont * pre_numerator + temp return sum_digits(_lowerCamelCase ) if __name__ == "__main__": print(f'''{solution() = }''')
350
"""simple docstring""" from collections import defaultdict def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Optional[int] = 1 _lowerCamelCase : str = True for v in tree[start]: if v not in visited: ret += dfs(_lowerCamelCase ) if ret % 2 == 0: cuts.append(_lowerCamelCase ) return ret def lowerCamelCase_( ) -> int: '''simple docstring''' dfs(1 ) if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = 10, 9 _lowerCAmelCase : str = defaultdict(list) _lowerCAmelCase : dict[int, bool] = {} _lowerCAmelCase : list[int] = [] _lowerCAmelCase : Any = 0 _lowerCAmelCase : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
340
0
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class A_ ( _a ): lowerCAmelCase__ = 'xlnet' lowerCAmelCase__ = ['mems'] lowerCAmelCase__ = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self: int ,__lowerCAmelCase: str=32_000 ,__lowerCAmelCase: str=1_024 ,__lowerCAmelCase: List[str]=24 ,__lowerCAmelCase: Dict=16 ,__lowerCAmelCase: Dict=4_096 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: List[Any]="bi" ,__lowerCAmelCase: Dict=0.02 ,__lowerCAmelCase: str=1e-12 ,__lowerCAmelCase: Tuple=0.1 ,__lowerCAmelCase: Union[str, Any]=512 ,__lowerCAmelCase: int=None ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: Any=False ,__lowerCAmelCase: Dict=False ,__lowerCAmelCase: Tuple=-1 ,__lowerCAmelCase: Dict=False ,__lowerCAmelCase: List[str]="last" ,__lowerCAmelCase: Optional[Any]=True ,__lowerCAmelCase: List[Any]="tanh" ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: Optional[Any]=5 ,__lowerCAmelCase: Dict=5 ,__lowerCAmelCase: Dict=5 ,__lowerCAmelCase: Optional[int]=1 ,__lowerCAmelCase: int=2 ,**__lowerCAmelCase: List[Any] ,): '''simple docstring''' _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Any = d_model _lowerCamelCase : Dict = n_layer _lowerCamelCase : str = n_head if d_model % n_head != 0: raise ValueError(F"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"""`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})""" ) _lowerCamelCase : List[Any] = d_model // n_head _lowerCamelCase : int = ff_activation _lowerCamelCase : str = d_inner _lowerCamelCase : Any = untie_r _lowerCamelCase : Dict = attn_type _lowerCamelCase : str = initializer_range _lowerCamelCase : Tuple = layer_norm_eps _lowerCamelCase : List[Any] = dropout _lowerCamelCase : Union[str, Any] = mem_len _lowerCamelCase : Dict = reuse_len _lowerCamelCase : Union[str, Any] = bi_data _lowerCamelCase : List[str] = clamp_len _lowerCamelCase : Any = same_length _lowerCamelCase : Union[str, Any] = summary_type _lowerCamelCase : List[Any] = summary_use_proj _lowerCamelCase : Tuple = summary_activation _lowerCamelCase : List[str] = summary_last_dropout _lowerCamelCase : Dict = start_n_top _lowerCamelCase : Dict = end_n_top _lowerCamelCase : Dict = bos_token_id _lowerCamelCase : int = pad_token_id _lowerCamelCase : Any = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead." ,__lowerCAmelCase ,) _lowerCamelCase : List[str] = kwargs["use_cache"] _lowerCamelCase : Any = use_mems_eval _lowerCamelCase : List[Any] = use_mems_train super().__init__(pad_token_id=__lowerCAmelCase ,bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) @property def _lowercase ( self: str ): '''simple docstring''' logger.info(F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _lowercase ( self: str ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' raise NotImplementedError( F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
351
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _lowerCAmelCase : Optional[int] = '''__DUMMY_TRANSFORMERS_USER__''' _lowerCAmelCase : Dict = '''Dummy User''' _lowerCAmelCase : Optional[int] = '''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''' _lowerCAmelCase : Tuple = '''https://hub-ci.huggingface.co''' _lowerCAmelCase : Any = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}''' _lowerCAmelCase : Tuple = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}''' _lowerCAmelCase : Dict = Path('''~/.huggingface/hub_ci_token''').expanduser() @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_ENDPOINT" , _lowerCamelCase ) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' HfFolder.save_token(_lowerCamelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="session" ) def lowerCamelCase_( ) -> str: '''simple docstring''' return HfApi(endpoint=_lowerCamelCase ) @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Dict = HfFolder.get_token() HfFolder.save_token(_lowerCamelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(_lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' def _cleanup_repo(_lowerCamelCase ): hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) return _cleanup_repo @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> List[str]: '''simple docstring''' @contextmanager def _temporary_repo(_lowerCamelCase ): try: yield repo_id finally: cleanup_repo(_lowerCamelCase ) return _temporary_repo @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : Tuple = F"""repo_txt_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : List[str] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data/text_data.txt" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : List[Any] = F"""repo_zipped_txt_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : Dict = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Any = F"""repo_zipped_img_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : List[Any] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
340
0
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class A_ ( _a ): def __init__( self: Tuple ,__lowerCAmelCase: AutoencoderKL ,__lowerCAmelCase: CLIPTextModel ,__lowerCAmelCase: CLIPTokenizer ,__lowerCAmelCase: UNetaDConditionModel ,__lowerCAmelCase: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] ,__lowerCAmelCase: StableDiffusionSafetyChecker ,__lowerCAmelCase: CLIPImageProcessor ,): '''simple docstring''' super().__init__() self.register_modules( vae=__lowerCAmelCase ,text_encoder=__lowerCAmelCase ,tokenizer=__lowerCAmelCase ,unet=__lowerCAmelCase ,scheduler=__lowerCAmelCase ,safety_checker=__lowerCAmelCase ,feature_extractor=__lowerCAmelCase ,) def _lowercase ( self: Dict ,__lowerCAmelCase: Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowerCamelCase : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' self.enable_attention_slicing(__lowerCAmelCase ) @torch.no_grad() def __call__( self: Optional[Any] ,__lowerCAmelCase: Union[str, List[str]] ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 50 ,__lowerCAmelCase: float = 7.5 ,__lowerCAmelCase: Optional[Union[str, List[str]]] = None ,__lowerCAmelCase: Optional[int] = 1 ,__lowerCAmelCase: float = 0.0 ,__lowerCAmelCase: Optional[torch.Generator] = None ,__lowerCAmelCase: Optional[torch.FloatTensor] = None ,__lowerCAmelCase: Optional[str] = "pil" ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[Callable[[int, int, torch.FloatTensor], None]] = None ,__lowerCAmelCase: int = 1 ,__lowerCAmelCase: Optional[torch.FloatTensor] = None ,**__lowerCAmelCase: Optional[int] ,): '''simple docstring''' if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : str = 1 elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = len(__lowerCAmelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(__lowerCAmelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__lowerCAmelCase ,__lowerCAmelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(__lowerCAmelCase )}.""" ) # get prompt text embeddings _lowerCamelCase : Any = self.tokenizer( __lowerCAmelCase ,padding="max_length" ,max_length=self.tokenizer.model_max_length ,return_tensors="pt" ,) _lowerCamelCase : List[str] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _lowerCamelCase : Optional[Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) _lowerCamelCase : List[str] = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: _lowerCamelCase : Dict = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method _lowerCamelCase : str = text_embeddings.shape _lowerCamelCase : Optional[Any] = text_embeddings.repeat(1 ,__lowerCAmelCase ,1 ) _lowerCamelCase : List[str] = text_embeddings.view(bs_embed * num_images_per_prompt ,__lowerCAmelCase ,-1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowerCamelCase : List[Any] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowerCamelCase : List[str] if negative_prompt is None: _lowerCamelCase : Optional[Any] = [""] elif type(__lowerCAmelCase ) is not type(__lowerCAmelCase ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(__lowerCAmelCase )} !=""" F""" {type(__lowerCAmelCase )}.""" ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[str] = [negative_prompt] elif batch_size != len(__lowerCAmelCase ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(__lowerCAmelCase )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" " the batch size of `prompt`." ) else: _lowerCamelCase : int = negative_prompt _lowerCamelCase : Tuple = text_input_ids.shape[-1] _lowerCamelCase : Optional[int] = self.tokenizer( __lowerCAmelCase ,padding="max_length" ,max_length=__lowerCAmelCase ,truncation=__lowerCAmelCase ,return_tensors="pt" ,) _lowerCamelCase : int = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _lowerCamelCase : Optional[Any] = uncond_embeddings.shape[1] _lowerCamelCase : Any = uncond_embeddings.repeat(__lowerCAmelCase ,__lowerCAmelCase ,1 ) _lowerCamelCase : List[str] = uncond_embeddings.view(batch_size * num_images_per_prompt ,__lowerCAmelCase ,-1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCamelCase : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowerCamelCase : str = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) _lowerCamelCase : List[str] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) _lowerCamelCase : Any = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps _lowerCamelCase : str = torch.randn( __lowerCAmelCase ,generator=__lowerCAmelCase ,device="cpu" ,dtype=__lowerCAmelCase ).to(self.device ) _lowerCamelCase : str = torch.randn(__lowerCAmelCase ,generator=__lowerCAmelCase ,device="cpu" ,dtype=__lowerCAmelCase ).to( self.device ) else: _lowerCamelCase : Any = torch.randn( __lowerCAmelCase ,generator=__lowerCAmelCase ,device=self.device ,dtype=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = torch.randn(__lowerCAmelCase ,generator=__lowerCAmelCase ,device=self.device ,dtype=__lowerCAmelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _lowerCamelCase : List[str] = latents_reference.to(self.device ) _lowerCamelCase : Tuple = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images _lowerCamelCase : Tuple = (latents_shape[3] - latents_shape_reference[3]) // 2 _lowerCamelCase : Dict = (latents_shape[2] - latents_shape_reference[2]) // 2 _lowerCamelCase : Optional[int] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx _lowerCamelCase : Dict = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy _lowerCamelCase : int = 0 if dx < 0 else dx _lowerCamelCase : Union[str, Any] = 0 if dy < 0 else dy _lowerCamelCase : str = max(-dx ,0 ) _lowerCamelCase : Union[str, Any] = max(-dy ,0 ) # import pdb # pdb.set_trace() _lowerCamelCase : Union[str, Any] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(__lowerCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand _lowerCamelCase : str = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _lowerCamelCase : List[str] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCamelCase : Any = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowerCamelCase : str = {} if accepts_eta: _lowerCamelCase : str = eta for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : List[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : Optional[Any] = self.scheduler.scale_model_input(__lowerCAmelCase ,__lowerCAmelCase ) # predict the noise residual _lowerCamelCase : Optional[int] = self.unet(__lowerCAmelCase ,__lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ).sample # perform guidance if do_classifier_free_guidance: _lowerCamelCase : Any = noise_pred.chunk(2 ) _lowerCamelCase : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 _lowerCamelCase : List[Any] = self.scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,**__lowerCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : List[str] = 1 / 0.1_82_15 * latents _lowerCamelCase : List[str] = self.vae.decode(__lowerCAmelCase ).sample _lowerCamelCase : Union[str, Any] = (image / 2 + 0.5).clamp(0 ,1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCamelCase : Tuple = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if self.safety_checker is not None: _lowerCamelCase : List[Any] = self.feature_extractor(self.numpy_to_pil(__lowerCAmelCase ) ,return_tensors="pt" ).to( self.device ) _lowerCamelCase : List[str] = self.safety_checker( images=__lowerCAmelCase ,clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: _lowerCamelCase : List[Any] = None if output_type == "pil": _lowerCamelCase : Optional[int] = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=__lowerCAmelCase ,nsfw_content_detected=__lowerCAmelCase )
352
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) class A_ ( _a ): def __init__( self: List[Any] ,__lowerCAmelCase: Union[List[ControlNetModel], Tuple[ControlNetModel]] ): '''simple docstring''' super().__init__() _lowerCamelCase : Tuple = nn.ModuleList(__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Union[torch.Tensor, float, int] ,__lowerCAmelCase: torch.Tensor ,__lowerCAmelCase: List[torch.tensor] ,__lowerCAmelCase: List[float] ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[Dict[str, Any]] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(__lowerCAmelCase ,__lowerCAmelCase ,self.nets ) ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = controlnet( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,) # merge samples if i == 0: _lowerCamelCase, _lowerCamelCase : Optional[Any] = down_samples, mid_sample else: _lowerCamelCase : Optional[int] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(__lowerCAmelCase ,__lowerCAmelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Union[str, os.PathLike] ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Callable = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[str] = None ,): '''simple docstring''' _lowerCamelCase : List[Any] = 0 _lowerCamelCase : str = save_directory for controlnet in self.nets: controlnet.save_pretrained( __lowerCAmelCase ,is_main_process=__lowerCAmelCase ,save_function=__lowerCAmelCase ,safe_serialization=__lowerCAmelCase ,variant=__lowerCAmelCase ,) idx += 1 _lowerCamelCase : int = model_path_to_save + F"""_{idx}""" @classmethod def _lowercase ( cls: Any ,__lowerCAmelCase: Optional[Union[str, os.PathLike]] ,**__lowerCAmelCase: int ): '''simple docstring''' _lowerCamelCase : int = 0 _lowerCamelCase : str = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _lowerCamelCase : Dict = pretrained_model_path while os.path.isdir(__lowerCAmelCase ): _lowerCamelCase : List[Any] = ControlNetModel.from_pretrained(__lowerCAmelCase ,**__lowerCAmelCase ) controlnets.append(__lowerCAmelCase ) idx += 1 _lowerCamelCase : Tuple = pretrained_model_path + F"""_{idx}""" logger.info(F"""{len(__lowerCAmelCase )} controlnets loaded from {pretrained_model_path}.""" ) if len(__lowerCAmelCase ) == 0: raise ValueError( F"""No ControlNets found under {os.path.dirname(__lowerCAmelCase )}. Expected at least {pretrained_model_path + '_0'}.""" ) return cls(__lowerCAmelCase )
340
0
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Optional[int] = tokenizer(example["content"] , truncation=_lowerCamelCase )["input_ids"] _lowerCamelCase : Dict = len(example["content"] ) / len(output["input_ids"] ) return output _lowerCAmelCase = HfArgumentParser(PretokenizationArguments) _lowerCAmelCase = parser.parse_args() if args.num_workers is None: _lowerCAmelCase = multiprocessing.cpu_count() _lowerCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) _lowerCAmelCase = time.time() _lowerCAmelCase = load_dataset(args.dataset_name, split='''train''') print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') _lowerCAmelCase = time.time() _lowerCAmelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') _lowerCAmelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
353
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : int = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[str]: '''simple docstring''' _lowerCamelCase : Tuple = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head" ): _lowerCamelCase : Tuple = "segformer.encoder." + key if key.startswith("backbone" ): _lowerCamelCase : Any = key.replace("backbone" , "segformer.encoder" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _lowerCamelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )] _lowerCamelCase : int = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(_lowerCamelCase )-1}""" ) if "norm" in key: _lowerCamelCase : Optional[Any] = key.replace("norm" , "layer_norm" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _lowerCamelCase : Dict = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )] _lowerCamelCase : Tuple = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(_lowerCamelCase )-1}""" ) if "layer_norm1" in key: _lowerCamelCase : Union[str, Any] = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: _lowerCamelCase : int = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _lowerCamelCase : Union[str, Any] = key[key.find("block" ) + len("block" )] _lowerCamelCase : Optional[Any] = key.replace(F"""block{idx}""" , F"""block.{int(_lowerCamelCase )-1}""" ) if "attn.q" in key: _lowerCamelCase : Optional[int] = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: _lowerCamelCase : List[str] = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: _lowerCamelCase : Tuple = key.replace("attn" , "attention.self" ) if "fc1" in key: _lowerCamelCase : Optional[Any] = key.replace("fc1" , "dense1" ) if "fc2" in key: _lowerCamelCase : Dict = key.replace("fc2" , "dense2" ) if "linear_pred" in key: _lowerCamelCase : int = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: _lowerCamelCase : str = key.replace("linear_fuse.conv" , "linear_fuse" ) _lowerCamelCase : Optional[Any] = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _lowerCamelCase : Union[str, Any] = key[key.find("linear_c" ) + len("linear_c" )] _lowerCamelCase : Optional[int] = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(_lowerCamelCase )-1}""" ) if key.startswith("head" ): _lowerCamelCase : List[str] = key.replace("head" , "classifier" ) _lowerCamelCase : Union[str, Any] = value return new_state_dict def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _lowerCamelCase : Optional[Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _lowerCamelCase : Optional[Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _lowerCamelCase : int = kv_weight[ : config.hidden_sizes[i], : ] _lowerCamelCase : int = kv_bias[: config.hidden_sizes[i]] _lowerCamelCase : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] _lowerCamelCase : Optional[Any] = kv_bias[ config.hidden_sizes[i] : ] def lowerCamelCase_( ) -> Dict: '''simple docstring''' _lowerCamelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Union[str, Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return image @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : Any = SegformerConfig() _lowerCamelCase : int = False # set attributes based on model_name _lowerCamelCase : Any = "huggingface/label-files" if "segformer" in model_name: _lowerCamelCase : str = model_name[len("segformer." ) : len("segformer." ) + 2] if "ade" in model_name: _lowerCamelCase : str = 150 _lowerCamelCase : Dict = "ade20k-id2label.json" _lowerCamelCase : Dict = (1, 150, 128, 128) elif "city" in model_name: _lowerCamelCase : List[str] = 19 _lowerCamelCase : Tuple = "cityscapes-id2label.json" _lowerCamelCase : Tuple = (1, 19, 128, 128) else: raise ValueError(F"""Model {model_name} not supported""" ) elif "mit" in model_name: _lowerCamelCase : List[str] = True _lowerCamelCase : Tuple = model_name[4:6] _lowerCamelCase : Tuple = 1000 _lowerCamelCase : List[Any] = "imagenet-1k-id2label.json" _lowerCamelCase : List[Any] = (1, 1000) else: raise ValueError(F"""Model {model_name} not supported""" ) # set config attributes _lowerCamelCase : Optional[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": _lowerCamelCase : int = [64, 128, 320, 512] _lowerCamelCase : int = 256 elif size == "b2": _lowerCamelCase : Tuple = [64, 128, 320, 512] _lowerCamelCase : List[Any] = 768 _lowerCamelCase : Any = [3, 4, 6, 3] elif size == "b3": _lowerCamelCase : Tuple = [64, 128, 320, 512] _lowerCamelCase : Union[str, Any] = 768 _lowerCamelCase : Optional[Any] = [3, 4, 18, 3] elif size == "b4": _lowerCamelCase : str = [64, 128, 320, 512] _lowerCamelCase : Optional[Any] = 768 _lowerCamelCase : Dict = [3, 8, 27, 3] elif size == "b5": _lowerCamelCase : int = [64, 128, 320, 512] _lowerCamelCase : Tuple = 768 _lowerCamelCase : Tuple = [3, 6, 40, 3] else: raise ValueError(F"""Size {size} not supported""" ) # load image processor (only resize + normalize) _lowerCamelCase : Dict = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_lowerCamelCase , align=_lowerCamelCase , do_random_crop=_lowerCamelCase ) # prepare image _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Dict = image_processor(images=_lowerCamelCase , return_tensors="pt" ).pixel_values logger.info(F"""Converting model {model_name}...""" ) # load original state dict if encoder_only: _lowerCamelCase : Tuple = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) ) else: _lowerCamelCase : int = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) )["state_dict"] # rename keys _lowerCamelCase : str = rename_keys(_lowerCamelCase , encoder_only=_lowerCamelCase ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(_lowerCamelCase , _lowerCamelCase ) # create HuggingFace model and load state dict if encoder_only: _lowerCamelCase : Tuple = False _lowerCamelCase : Optional[int] = SegformerForImageClassification(_lowerCamelCase ) else: _lowerCamelCase : List[str] = SegformerForSemanticSegmentation(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() # forward pass _lowerCamelCase : Any = model(_lowerCamelCase ) _lowerCamelCase : Dict = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": _lowerCamelCase : str = torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]], [[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": _lowerCamelCase : Any = torch.tensor( [ [[-7.5_8_2_0, -8.7_2_3_1, -8.3_2_1_5], [-8.0_6_0_0, -1_0.3_5_2_9, -1_0.0_3_0_4], [-7.5_2_0_8, -9.4_1_0_3, -9.6_2_3_9]], [[-1_2.6_9_1_8, -1_3.8_9_9_4, -1_3.7_1_3_7], [-1_3.3_1_9_6, -1_5.7_5_2_3, -1_5.4_7_8_9], [-1_2.9_3_4_3, -1_4.8_7_5_7, -1_4.9_6_8_9]], [[-1_1.1_9_1_1, -1_1.9_4_2_1, -1_1.3_2_4_3], [-1_1.3_3_4_2, -1_3.6_8_3_9, -1_3.3_5_8_1], [-1_0.3_9_0_9, -1_2.1_8_3_2, -1_2.4_8_5_8]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": _lowerCamelCase : int = torch.tensor( [ [[-1_1.8_1_7_3, -1_4.3_8_5_0, -1_6.3_1_2_8], [-1_4.5_6_4_8, -1_6.5_8_0_4, -1_8.6_5_6_8], [-1_4.7_2_2_3, -1_5.7_3_8_7, -1_8.4_2_1_8]], [[-1_5.7_2_9_0, -1_7.9_1_7_1, -1_9.4_4_2_3], [-1_8.3_1_0_5, -1_9.9_4_4_8, -2_1.4_6_6_1], [-1_7.9_2_9_6, -1_8.6_4_9_7, -2_0.7_9_1_0]], [[-1_5.0_7_8_3, -1_7.0_3_3_6, -1_8.2_7_8_9], [-1_6.8_7_7_1, -1_8.6_8_7_0, -2_0.1_6_1_2], [-1_6.2_4_5_4, -1_7.1_4_2_6, -1_9.5_0_5_5]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": _lowerCamelCase : Optional[Any] = torch.tensor( [ [[-9.0_8_7_8, -1_0.2_0_8_1, -1_0.1_8_9_1], [-9.3_1_4_4, -1_0.7_9_4_1, -1_0.9_8_4_3], [-9.2_2_9_4, -1_0.3_8_5_5, -1_0.5_7_0_4]], [[-1_2.2_3_1_6, -1_3.9_0_6_8, -1_3.6_1_0_2], [-1_2.9_1_6_1, -1_4.3_7_0_2, -1_4.3_2_3_5], [-1_2.5_2_3_3, -1_3.7_1_7_4, -1_3.7_9_3_2]], [[-1_4.6_2_7_5, -1_5.2_4_9_0, -1_4.9_7_2_7], [-1_4.3_4_0_0, -1_5.9_6_8_7, -1_6.2_8_2_7], [-1_4.1_4_8_4, -1_5.4_0_3_3, -1_5.8_9_3_7]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": _lowerCamelCase : List[str] = torch.tensor( [ [[-1_2.3_1_4_4, -1_3.2_4_4_7, -1_4.0_8_0_2], [-1_3.3_6_1_4, -1_4.5_8_1_6, -1_5.6_1_1_7], [-1_3.3_3_4_0, -1_4.4_4_3_3, -1_6.2_2_1_9]], [[-1_9.2_7_8_1, -2_0.4_1_2_8, -2_0.7_5_0_6], [-2_0.6_1_5_3, -2_1.6_5_6_6, -2_2.0_9_9_8], [-1_9.9_8_0_0, -2_1.0_4_3_0, -2_2.1_4_9_4]], [[-1_8.8_7_3_9, -1_9.7_8_0_4, -2_1.1_8_3_4], [-2_0.1_2_3_3, -2_1.6_7_6_5, -2_3.2_9_4_4], [-2_0.0_3_1_5, -2_1.2_6_4_1, -2_3.6_9_4_4]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": _lowerCamelCase : Any = torch.tensor( [ [[-9.5_5_2_4, -1_2.0_8_3_5, -1_1.7_3_4_8], [-1_0.5_2_2_9, -1_3.6_4_4_6, -1_4.5_6_6_2], [-9.5_8_4_2, -1_2.8_8_5_1, -1_3.9_4_1_4]], [[-1_5.3_4_3_2, -1_7.5_3_2_3, -1_7.0_8_1_8], [-1_6.3_3_3_0, -1_8.9_2_5_5, -1_9.2_1_0_1], [-1_5.1_3_4_0, -1_7.7_8_4_8, -1_8.3_9_7_1]], [[-1_2.6_0_7_2, -1_4.9_4_8_6, -1_4.6_6_3_1], [-1_3.7_6_2_9, -1_7.0_9_0_7, -1_7.7_7_4_5], [-1_2.7_8_9_9, -1_6.1_6_9_5, -1_7.1_6_7_1]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": _lowerCamelCase : Dict = torch.tensor( [ [[-1_1.9_2_9_5, -1_3.4_0_5_7, -1_4.8_1_0_6], [-1_3.3_4_3_1, -1_4.8_1_7_9, -1_5.3_7_8_1], [-1_4.2_8_3_6, -1_5.5_9_4_2, -1_6.1_5_8_8]], [[-1_1.4_9_0_6, -1_2.8_0_6_7, -1_3.6_5_6_4], [-1_3.1_1_8_9, -1_4.0_5_0_0, -1_4.1_5_4_3], [-1_3.8_7_4_8, -1_4.5_1_3_6, -1_4.8_7_8_9]], [[0.5_3_7_4, 0.1_0_6_7, -0.4_7_4_2], [0.1_1_4_1, -0.2_2_5_5, -0.7_0_9_9], [-0.3_0_0_0, -0.5_9_2_4, -1.3_1_0_5]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": _lowerCamelCase : Optional[int] = torch.tensor( [ [[-7.8_2_1_7, -9.8_7_6_7, -1_0.1_7_1_7], [-9.4_4_3_8, -1_0.9_0_5_8, -1_1.4_0_4_7], [-9.7_9_3_9, -1_2.3_4_9_5, -1_2.1_0_7_9]], [[-7.1_5_1_4, -9.5_3_3_6, -1_0.0_8_6_0], [-9.7_7_7_6, -1_1.6_8_2_2, -1_1.8_4_3_9], [-1_0.1_4_1_1, -1_2.7_6_5_5, -1_2.8_9_7_2]], [[0.3_0_2_1, 0.0_8_0_5, -0.2_3_1_0], [-0.0_3_2_8, -0.1_6_0_5, -0.2_7_1_4], [-0.1_4_0_8, -0.5_4_7_7, -0.6_9_7_6]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": _lowerCamelCase : Tuple = torch.tensor( [ [ [-1.13_72e01, -1.27_87e01, -1.34_77e01], [-1.25_36e01, -1.41_94e01, -1.44_09e01], [-1.32_17e01, -1.48_88e01, -1.53_27e01], ], [ [-1.47_91e01, -1.71_22e01, -1.82_77e01], [-1.71_63e01, -1.91_92e01, -1.95_33e01], [-1.78_97e01, -1.99_91e01, -2.03_15e01], ], [ [7.67_23e-01, 4.19_21e-01, -7.78_78e-02], [4.77_72e-01, 9.55_57e-03, -2.80_82e-01], [3.60_32e-01, -2.48_26e-01, -5.11_68e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": _lowerCamelCase : Union[str, Any] = torch.tensor( [ [[-9.4_9_5_9, -1_1.3_0_8_7, -1_1.7_4_7_9], [-1_1.0_0_2_5, -1_2.6_5_4_0, -1_2.3_3_1_9], [-1_1.4_0_6_4, -1_3.0_4_8_7, -1_2.9_9_0_5]], [[-9.8_9_0_5, -1_1.3_0_8_4, -1_2.0_8_5_4], [-1_1.1_7_2_6, -1_2.7_6_9_8, -1_2.9_5_8_3], [-1_1.5_9_8_5, -1_3.3_2_7_8, -1_4.1_7_7_4]], [[0.2_2_1_3, 0.0_1_9_2, -0.2_4_6_6], [-0.1_7_3_1, -0.4_2_1_3, -0.4_8_7_4], [-0.3_1_2_6, -0.6_5_4_1, -1.1_3_8_9]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": _lowerCamelCase : List[Any] = torch.tensor( [ [[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]], [[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": _lowerCamelCase : Tuple = torch.tensor( [ [[-1_6.0_9_7_6, -1_6.4_8_5_6, -1_7.3_9_6_2], [-1_6.6_2_3_4, -1_9.0_3_4_2, -1_9.7_6_8_5], [-1_6.0_9_0_0, -1_8.0_6_6_1, -1_9.1_1_8_0]], [[-1_8.4_7_5_0, -1_8.8_4_8_8, -1_9.5_0_7_4], [-1_9.4_0_3_0, -2_2.1_5_7_0, -2_2.5_9_7_7], [-1_9.1_1_9_1, -2_0.8_4_8_6, -2_2.3_7_8_3]], [[-4.5_1_7_8, -5.5_0_3_7, -6.5_1_0_9], [-5.0_8_8_4, -7.2_1_7_4, -8.0_3_3_4], [-4.4_1_5_6, -5.8_1_1_7, -7.2_9_7_0]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": _lowerCamelCase : Any = torch.tensor( [ [[-1_4.2_0_8_1, -1_4.4_7_3_2, -1_4.1_9_7_7], [-1_4.5_8_6_7, -1_6.4_4_2_3, -1_6.6_3_5_6], [-1_3.4_4_4_1, -1_4.9_6_8_5, -1_6.8_6_9_6]], [[-1_4.4_5_7_6, -1_4.7_0_7_3, -1_5.0_4_5_1], [-1_5.0_8_1_6, -1_7.6_2_3_7, -1_7.9_8_7_3], [-1_4.4_2_1_3, -1_6.0_1_9_9, -1_8.5_9_9_2]], [[-4.7_3_4_9, -4.9_5_8_8, -5.0_9_6_6], [-4.3_2_1_0, -6.9_3_2_5, -7.2_5_9_1], [-3.4_3_1_2, -4.7_4_8_4, -7.1_9_1_7]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": _lowerCamelCase : List[str] = torch.tensor( [ [[-1_1.7_7_3_7, -1_1.9_5_2_6, -1_1.3_2_7_3], [-1_3.6_6_9_2, -1_4.4_5_7_4, -1_3.8_8_7_8], [-1_3.8_9_3_7, -1_4.6_9_2_4, -1_5.9_3_4_5]], [[-1_4.6_7_0_6, -1_4.5_3_3_0, -1_4.1_3_0_6], [-1_6.1_5_0_2, -1_6.8_1_8_0, -1_6.4_2_6_9], [-1_6.8_3_3_8, -1_7.8_9_3_9, -2_0.1_7_4_6]], [[1.0_4_9_1, 0.8_2_8_9, 1.0_3_1_0], [1.1_0_4_4, 0.5_2_1_9, 0.8_0_5_5], [1.0_8_9_9, 0.6_9_2_6, 0.5_5_9_0]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": _lowerCamelCase : str = torch.tensor( [ [[-1_2.5_6_4_1, -1_3.4_7_7_7, -1_3.0_6_8_4], [-1_3.9_5_8_7, -1_5.8_9_8_3, -1_6.6_5_5_7], [-1_3.3_1_0_9, -1_5.7_3_5_0, -1_6.3_1_4_1]], [[-1_4.7_0_7_4, -1_5.4_3_5_2, -1_4.5_9_4_4], [-1_6.6_3_5_3, -1_8.1_6_6_3, -1_8.6_1_2_0], [-1_5.1_7_0_2, -1_8.0_3_2_9, -1_8.1_5_4_7]], [[-1.7_9_9_0, -2.0_9_5_1, -1.7_7_8_4], [-2.6_3_9_7, -3.8_2_4_5, -3.9_6_8_6], [-1.5_2_6_4, -2.8_1_2_6, -2.9_3_1_6]], ] ) else: _lowerCamelCase : Dict = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1e-2 ) # finally, save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''segformer.b0.512x512.ade.160k''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _lowerCAmelCase : str = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
340
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class A_ ( _a ): lowerCAmelCase__ = 'xlm-roberta' def __init__( self: List[Any] ,__lowerCAmelCase: int=30_522 ,__lowerCAmelCase: Optional[Any]=768 ,__lowerCAmelCase: Optional[Any]=12 ,__lowerCAmelCase: str=12 ,__lowerCAmelCase: Optional[Any]=3_072 ,__lowerCAmelCase: str="gelu" ,__lowerCAmelCase: Optional[Any]=0.1 ,__lowerCAmelCase: Tuple=0.1 ,__lowerCAmelCase: str=512 ,__lowerCAmelCase: Any=2 ,__lowerCAmelCase: Any=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: str=1 ,__lowerCAmelCase: Optional[Any]=0 ,__lowerCAmelCase: Dict=2 ,__lowerCAmelCase: int="absolute" ,__lowerCAmelCase: Optional[int]=True ,__lowerCAmelCase: List[str]=None ,**__lowerCAmelCase: Tuple ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = vocab_size _lowerCamelCase : Optional[int] = hidden_size _lowerCamelCase : Optional[int] = num_hidden_layers _lowerCamelCase : Any = num_attention_heads _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Optional[int] = intermediate_size _lowerCamelCase : Optional[int] = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : List[str] = max_position_embeddings _lowerCamelCase : Union[str, Any] = type_vocab_size _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : Optional[Any] = layer_norm_eps _lowerCamelCase : Optional[Any] = position_embedding_type _lowerCamelCase : Union[str, Any] = use_cache _lowerCamelCase : List[Any] = classifier_dropout class A_ ( _a ): @property def _lowercase ( self: Tuple ): '''simple docstring''' if self.task == "multiple-choice": _lowerCamelCase : List[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _lowerCamelCase : List[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
354
"""simple docstring""" _lowerCAmelCase : dict[tuple[int, int, int], int] = {} def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on _lowerCamelCase : Optional[int] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one _lowerCamelCase : int = _calculate(days - 1 , _lowerCamelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 _lowerCamelCase : Tuple = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter _lowerCamelCase : str = _calculate(days - 1 , _lowerCamelCase , 0 ) _lowerCamelCase : List[Any] = state_late + state_absent + state_ontime _lowerCamelCase : int = prizestrings return prizestrings def lowerCamelCase_( _lowerCamelCase = 30 ) -> int: '''simple docstring''' return _calculate(_lowerCamelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
340
0
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> int: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : List[str] = "" else: _lowerCamelCase : Optional[int] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : int = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase : Any = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : List[Any] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCamelCase : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : List[Any] = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Dict = in_proj_bias[-config.hidden_size :] def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : List[str] = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : str = dct.pop(_lowerCamelCase ) _lowerCamelCase : Tuple = val def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : str = ViTMSNConfig() _lowerCamelCase : List[Any] = 1000 _lowerCamelCase : List[str] = "datasets/huggingface/label-files" _lowerCamelCase : Union[str, Any] = "imagenet-1k-id2label.json" _lowerCamelCase : List[str] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase ) , "r" ) ) _lowerCamelCase : List[Any] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[int] = idalabel _lowerCamelCase : Dict = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: _lowerCamelCase : Union[str, Any] = 384 _lowerCamelCase : Tuple = 1536 _lowerCamelCase : Tuple = 6 elif "l16" in checkpoint_url: _lowerCamelCase : Dict = 1024 _lowerCamelCase : Dict = 4096 _lowerCamelCase : List[str] = 24 _lowerCamelCase : Any = 16 _lowerCamelCase : Optional[int] = 0.1 elif "b4" in checkpoint_url: _lowerCamelCase : List[str] = 4 elif "l7" in checkpoint_url: _lowerCamelCase : Optional[int] = 7 _lowerCamelCase : Tuple = 1024 _lowerCamelCase : Dict = 4096 _lowerCamelCase : Dict = 24 _lowerCamelCase : Dict = 16 _lowerCamelCase : List[Any] = 0.1 _lowerCamelCase : Union[str, Any] = ViTMSNModel(_lowerCamelCase ) _lowerCamelCase : str = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" )["target_encoder"] _lowerCamelCase : Optional[int] = ViTImageProcessor(size=config.image_size ) remove_projection_head(_lowerCamelCase ) _lowerCamelCase : str = create_rename_keys(_lowerCamelCase , base_model=_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , base_model=_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() _lowerCamelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) _lowerCamelCase : Optional[Any] = ViTImageProcessor( size=config.image_size , image_mean=_lowerCamelCase , image_std=_lowerCamelCase ) _lowerCamelCase : Dict = image_processor(images=_lowerCamelCase , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) _lowerCamelCase : str = model(**_lowerCamelCase ) _lowerCamelCase : List[Any] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: _lowerCamelCase : List[Any] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: _lowerCamelCase : List[Any] = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: _lowerCamelCase : Optional[int] = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: _lowerCamelCase : int = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: _lowerCamelCase : int = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , _lowerCamelCase , atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
355
"""simple docstring""" from __future__ import annotations def lowerCamelCase_( _lowerCamelCase ) -> bool: '''simple docstring''' _lowerCamelCase : int = str(_lowerCamelCase ) return len(_lowerCamelCase ) == 9 and set(_lowerCamelCase ) == set("123456789" ) def lowerCamelCase_( ) -> int | None: '''simple docstring''' for base_num in range(9999 , 4999 , -1 ): _lowerCamelCase : Union[str, Any] = 100002 * base_num if is_9_pandigital(_lowerCamelCase ): return candidate for base_num in range(333 , 99 , -1 ): _lowerCamelCase : Tuple = 1002003 * base_num if is_9_pandigital(_lowerCamelCase ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
340
0
"""simple docstring""" from __future__ import annotations import math def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' _lowerCamelCase : str = u for i in range(1 , _lowerCamelCase ): _lowerCamelCase : List[Any] = temp * (u - i) return temp def lowerCamelCase_( ) -> None: '''simple docstring''' _lowerCamelCase : List[Any] = int(input("enter the numbers of values: " ) ) _lowerCamelCase : list[list[float]] = [] for _ in range(_lowerCamelCase ): y.append([] ) for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): y[i].append(_lowerCamelCase ) _lowerCamelCase : List[str] = 0 print("enter the values of parameters in a list: " ) _lowerCamelCase : Union[str, Any] = list(map(_lowerCamelCase , input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(_lowerCamelCase ): _lowerCamelCase : Union[str, Any] = float(input() ) _lowerCamelCase : Optional[Any] = int(input("enter the value to interpolate: " ) ) _lowerCamelCase : Tuple = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , _lowerCamelCase ): for j in range(n - i ): _lowerCamelCase : Any = y[j + 1][i - 1] - y[j][i - 1] _lowerCamelCase : Optional[int] = y[0][0] for i in range(1 , _lowerCamelCase ): summ += (ucal(_lowerCamelCase , _lowerCamelCase ) * y[0][i]) / math.factorial(_lowerCamelCase ) print(F"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
356
"""simple docstring""" import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class A_ ( _a ): lowerCAmelCase__ = 'char' lowerCAmelCase__ = 'bpe' lowerCAmelCase__ = 'wp' _lowerCAmelCase : List[str] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class A_ ( _a ): lowerCAmelCase__ = ['image_processor', 'char_tokenizer'] lowerCAmelCase__ = 'ViTImageProcessor' lowerCAmelCase__ = 'MgpstrTokenizer' def __init__( self: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: Optional[int]=None ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Any = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." ,__lowerCAmelCase ,) _lowerCamelCase : List[Any] = kwargs.pop("feature_extractor" ) _lowerCamelCase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : str = AutoTokenizer.from_pretrained("gpt2" ) _lowerCamelCase : List[str] = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(__lowerCAmelCase ,__lowerCAmelCase ) def __call__( self: Optional[int] ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: Optional[Any]=None ,**__lowerCAmelCase: Tuple ): '''simple docstring''' if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: _lowerCamelCase : Optional[int] = self.image_processor(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) if text is not None: _lowerCamelCase : int = self.char_tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) if text is None: return inputs elif images is None: return encodings else: _lowerCamelCase : Tuple = encodings["input_ids"] return inputs def _lowercase ( self: int ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = sequences _lowerCamelCase : Dict = char_preds.size(0 ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._decode_helper(__lowerCAmelCase ,"char" ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self._decode_helper(__lowerCAmelCase ,"bpe" ) _lowerCamelCase, _lowerCamelCase : Tuple = self._decode_helper(__lowerCAmelCase ,"wp" ) _lowerCamelCase : List[str] = [] _lowerCamelCase : str = [] for i in range(__lowerCAmelCase ): _lowerCamelCase : str = [char_scores[i], bpe_scores[i], wp_scores[i]] _lowerCamelCase : List[Any] = [char_strs[i], bpe_strs[i], wp_strs[i]] _lowerCamelCase : Optional[Any] = scores.index(max(__lowerCAmelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _lowerCamelCase : Tuple = {} _lowerCamelCase : Tuple = final_strs _lowerCamelCase : int = final_scores _lowerCamelCase : str = char_strs _lowerCamelCase : Dict = bpe_strs _lowerCamelCase : int = wp_strs return out def _lowercase ( self: List[str] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: List[Any] ): '''simple docstring''' if format == DecodeType.CHARACTER: _lowerCamelCase : int = self.char_decode _lowerCamelCase : List[str] = 1 _lowerCamelCase : Optional[int] = "[s]" elif format == DecodeType.BPE: _lowerCamelCase : Dict = self.bpe_decode _lowerCamelCase : str = 2 _lowerCamelCase : Union[str, Any] = "#" elif format == DecodeType.WORDPIECE: _lowerCamelCase : int = self.wp_decode _lowerCamelCase : List[str] = 102 _lowerCamelCase : List[Any] = "[SEP]" else: raise ValueError(F"""Format {format} is not supported.""" ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = [], [] _lowerCamelCase : Any = pred_logits.size(0 ) _lowerCamelCase : int = pred_logits.size(1 ) _lowerCamelCase, _lowerCamelCase : List[Any] = pred_logits.topk(1 ,dim=-1 ,largest=__lowerCAmelCase ,sorted=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = preds_index.view(-1 ,__lowerCAmelCase )[:, 1:] _lowerCamelCase : List[str] = decoder(__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : str = torch.nn.functional.softmax(__lowerCAmelCase ,dim=2 ).max(dim=2 ) _lowerCamelCase : Any = preds_max_prob[:, 1:] for index in range(__lowerCAmelCase ): _lowerCamelCase : List[Any] = preds_str[index].find(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = preds_str[index][:pred_eos] _lowerCamelCase : Optional[Any] = preds_index[index].cpu().tolist() _lowerCamelCase : List[str] = pred_index.index(__lowerCAmelCase ) if eos_token in pred_index else -1 _lowerCamelCase : str = preds_max_prob[index][: pred_eos_index + 1] _lowerCamelCase : Union[str, Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__lowerCAmelCase ) conf_scores.append(__lowerCAmelCase ) return dec_strs, conf_scores def _lowercase ( self: Tuple ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : str = [seq.replace(" " ,"" ) for seq in self.char_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs def _lowercase ( self: List[str] ,__lowerCAmelCase: List[str] ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(__lowerCAmelCase ) def _lowercase ( self: Tuple ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [seq.replace(" " ,"" ) for seq in self.wp_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs
340
0
"""simple docstring""" import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class A_ ( _a ): lowerCAmelCase__ = 'char' lowerCAmelCase__ = 'bpe' lowerCAmelCase__ = 'wp' _lowerCAmelCase : List[str] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class A_ ( _a ): lowerCAmelCase__ = ['image_processor', 'char_tokenizer'] lowerCAmelCase__ = 'ViTImageProcessor' lowerCAmelCase__ = 'MgpstrTokenizer' def __init__( self: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: Optional[int]=None ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Any = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." ,__lowerCAmelCase ,) _lowerCamelCase : List[Any] = kwargs.pop("feature_extractor" ) _lowerCamelCase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : str = AutoTokenizer.from_pretrained("gpt2" ) _lowerCamelCase : List[str] = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(__lowerCAmelCase ,__lowerCAmelCase ) def __call__( self: Optional[int] ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: Optional[Any]=None ,**__lowerCAmelCase: Tuple ): '''simple docstring''' if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: _lowerCamelCase : Optional[int] = self.image_processor(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) if text is not None: _lowerCamelCase : int = self.char_tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) if text is None: return inputs elif images is None: return encodings else: _lowerCamelCase : Tuple = encodings["input_ids"] return inputs def _lowercase ( self: int ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : Optional[int] = sequences _lowerCamelCase : Dict = char_preds.size(0 ) _lowerCamelCase : Optional[Any] = self._decode_helper(__lowerCAmelCase ,"char" ) _lowerCamelCase : Union[str, Any] = self._decode_helper(__lowerCAmelCase ,"bpe" ) _lowerCamelCase : Tuple = self._decode_helper(__lowerCAmelCase ,"wp" ) _lowerCamelCase : List[str] = [] _lowerCamelCase : str = [] for i in range(__lowerCAmelCase ): _lowerCamelCase : str = [char_scores[i], bpe_scores[i], wp_scores[i]] _lowerCamelCase : List[Any] = [char_strs[i], bpe_strs[i], wp_strs[i]] _lowerCamelCase : Optional[Any] = scores.index(max(__lowerCAmelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _lowerCamelCase : Tuple = {} _lowerCamelCase : Tuple = final_strs _lowerCamelCase : int = final_scores _lowerCamelCase : str = char_strs _lowerCamelCase : Dict = bpe_strs _lowerCamelCase : int = wp_strs return out def _lowercase ( self: List[str] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: List[Any] ): '''simple docstring''' if format == DecodeType.CHARACTER: _lowerCamelCase : int = self.char_decode _lowerCamelCase : List[str] = 1 _lowerCamelCase : Optional[int] = "[s]" elif format == DecodeType.BPE: _lowerCamelCase : Dict = self.bpe_decode _lowerCamelCase : str = 2 _lowerCamelCase : Union[str, Any] = "#" elif format == DecodeType.WORDPIECE: _lowerCamelCase : int = self.wp_decode _lowerCamelCase : List[str] = 102 _lowerCamelCase : List[Any] = "[SEP]" else: raise ValueError(F"""Format {format} is not supported.""" ) _lowerCamelCase : Union[str, Any] = [], [] _lowerCamelCase : Any = pred_logits.size(0 ) _lowerCamelCase : int = pred_logits.size(1 ) _lowerCamelCase : List[Any] = pred_logits.topk(1 ,dim=-1 ,largest=__lowerCAmelCase ,sorted=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = preds_index.view(-1 ,__lowerCAmelCase )[:, 1:] _lowerCamelCase : List[str] = decoder(__lowerCAmelCase ) _lowerCamelCase : str = torch.nn.functional.softmax(__lowerCAmelCase ,dim=2 ).max(dim=2 ) _lowerCamelCase : Any = preds_max_prob[:, 1:] for index in range(__lowerCAmelCase ): _lowerCamelCase : List[Any] = preds_str[index].find(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = preds_str[index][:pred_eos] _lowerCamelCase : Optional[Any] = preds_index[index].cpu().tolist() _lowerCamelCase : List[str] = pred_index.index(__lowerCAmelCase ) if eos_token in pred_index else -1 _lowerCamelCase : str = preds_max_prob[index][: pred_eos_index + 1] _lowerCamelCase : Union[str, Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__lowerCAmelCase ) conf_scores.append(__lowerCAmelCase ) return dec_strs, conf_scores def _lowercase ( self: Tuple ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : str = [seq.replace(" " ,"" ) for seq in self.char_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs def _lowercase ( self: List[str] ,__lowerCAmelCase: List[str] ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(__lowerCAmelCase ) def _lowercase ( self: Tuple ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [seq.replace(" " ,"" ) for seq in self.wp_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs
357
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version _lowerCAmelCase : List[Any] = get_logger(__name__) class A_ : lowerCAmelCase__ = 'dummy_data' lowerCAmelCase__ = 'datasets' lowerCAmelCase__ = False def __init__( self: List[str] ,__lowerCAmelCase: str ,__lowerCAmelCase: str ,__lowerCAmelCase: Union[Version, str] ,__lowerCAmelCase: Optional[str] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[List[Callable]] = None ,): '''simple docstring''' _lowerCamelCase : str = 0 _lowerCamelCase : List[str] = dataset_name _lowerCamelCase : Optional[int] = cache_dir _lowerCamelCase : Optional[int] = use_local_dummy_data _lowerCamelCase : int = config # download_callbacks take a single url as input _lowerCamelCase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _lowerCamelCase : int = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _lowerCamelCase : Tuple = str(__lowerCAmelCase ) # to be downloaded _lowerCamelCase : Optional[Any] = None _lowerCamelCase : Dict = None @property def _lowercase ( self: str ): '''simple docstring''' if self._dummy_file is None: _lowerCamelCase : List[str] = self.download_dummy_data() return self._dummy_file @property def _lowercase ( self: str ): '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" ,self.config.name ,self.version_name ) # structure is dummy / version_name return os.path.join("dummy" ,self.version_name ) @property def _lowercase ( self: Optional[Any] ): '''simple docstring''' return os.path.join(self.dummy_data_folder ,"dummy_data.zip" ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _lowerCamelCase : Optional[int] = cached_path( __lowerCAmelCase ,cache_dir=self.cache_dir ,extract_compressed_file=__lowerCAmelCase ,force_extract=__lowerCAmelCase ) return os.path.join(__lowerCAmelCase ,self.dummy_file_name ) @property def _lowercase ( self: Tuple ): '''simple docstring''' return os.path.join(self.datasets_scripts_dir ,self.dataset_name ,self.dummy_zip_file ) @property def _lowercase ( self: List[str] ): '''simple docstring''' if self._bucket_url is None: _lowerCamelCase : List[str] = hf_github_url(self.dataset_name ,self.dummy_zip_file.replace(os.sep ,"/" ) ) return self._bucket_url @property def _lowercase ( self: Union[str, Any] ): '''simple docstring''' if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep ,"/" ).split("/" )[:-1] ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: str ,*__lowerCAmelCase: List[Any] ): '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested _lowerCamelCase : Tuple = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _lowerCamelCase : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): return self.create_dummy_data_dict(__lowerCAmelCase ,__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,(list, tuple) ): return self.create_dummy_data_list(__lowerCAmelCase ,__lowerCAmelCase ) else: return self.create_dummy_data_single(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: Optional[int] ): '''simple docstring''' return self.download_and_extract(__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: int ): '''simple docstring''' return self.download_and_extract(__lowerCAmelCase ) def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' return path def _lowercase ( self: Optional[int] ): '''simple docstring''' return {} def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : str = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): for single_url in single_urls: download_callback(__lowerCAmelCase ) else: _lowerCamelCase : Union[str, Any] = single_urls download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Dict = [os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) ) for x in single_urls] else: _lowerCamelCase : Union[str, Any] = single_urls _lowerCamelCase : List[str] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) ) _lowerCamelCase : List[Any] = value # make sure that values are unique if all(isinstance(__lowerCAmelCase ,__lowerCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique _lowerCamelCase : List[Any] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Dict = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _lowerCamelCase : List[str] = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" ,__lowerCAmelCase ) ) for url in data_url ) _lowerCamelCase : Optional[Any] = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): _lowerCamelCase : Tuple = [data_url[0]] * len(__lowerCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(__lowerCAmelCase ) return dummy_data_list def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: List[Any] ): '''simple docstring''' for download_callback in self.download_callbacks: download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : Optional[int] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(__lowerCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass def _lowercase ( self: Optional[int] ): '''simple docstring''' pass def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' def _iter_archive_members(__lowerCAmelCase: Any ): # this preserves the order of the members inside the ZIP archive _lowerCamelCase : Tuple = Path(self.dummy_file ).parent _lowerCamelCase : str = path.relative_to(__lowerCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: _lowerCamelCase : Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = Path(__lowerCAmelCase ) _lowerCamelCase : int = _iter_archive_members(__lowerCAmelCase ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(__lowerCAmelCase ).as_posix(), file_path.open("rb" ) def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = [paths] for path in paths: if os.path.isfile(__lowerCAmelCase ): if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(__lowerCAmelCase ): if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(__lowerCAmelCase ): if filename.startswith((".", "__") ): continue yield os.path.join(__lowerCAmelCase ,__lowerCAmelCase )
340
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : Any = {'''vocab_file''': '''vocab.txt'''} _lowerCAmelCase : Any = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } _lowerCAmelCase : Optional[int] = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } _lowerCAmelCase : Optional[Any] = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class A_ ( _a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ConvBertTokenizer def __init__( self: Optional[Any] ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: Optional[int]="[UNK]" ,__lowerCAmelCase: Optional[Any]="[SEP]" ,__lowerCAmelCase: Any="[PAD]" ,__lowerCAmelCase: str="[CLS]" ,__lowerCAmelCase: Optional[int]="[MASK]" ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: Union[str, Any]=None ,**__lowerCAmelCase: List[Any] ,): '''simple docstring''' super().__init__( __lowerCAmelCase ,tokenizer_file=__lowerCAmelCase ,do_lower_case=__lowerCAmelCase ,unk_token=__lowerCAmelCase ,sep_token=__lowerCAmelCase ,pad_token=__lowerCAmelCase ,cls_token=__lowerCAmelCase ,mask_token=__lowerCAmelCase ,tokenize_chinese_chars=__lowerCAmelCase ,strip_accents=__lowerCAmelCase ,**__lowerCAmelCase ,) _lowerCamelCase : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" ,__lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" ,__lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" ,__lowerCAmelCase ) != tokenize_chinese_chars ): _lowerCamelCase : Tuple = getattr(__lowerCAmelCase ,normalizer_state.pop("type" ) ) _lowerCamelCase : Any = do_lower_case _lowerCamelCase : List[str] = strip_accents _lowerCamelCase : Dict = tokenize_chinese_chars _lowerCamelCase : Union[str, Any] = normalizer_class(**__lowerCAmelCase ) _lowerCamelCase : List[str] = do_lower_case def _lowercase ( self: Tuple ,__lowerCAmelCase: Any ,__lowerCAmelCase: Optional[Any]=None ): '''simple docstring''' _lowerCamelCase : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[int] ,__lowerCAmelCase: Optional[List[int]] = None ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [self.sep_token_id] _lowerCamelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: str ,__lowerCAmelCase: Optional[str] = None ): '''simple docstring''' _lowerCamelCase : List[str] = self._tokenizer.model.save(__lowerCAmelCase ,name=__lowerCAmelCase ) return tuple(__lowerCAmelCase )
358
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) _lowerCamelCase : int = precision _lowerCamelCase : Dict = ceil(precision / 14 ) _lowerCamelCase : Optional[Any] = 426880 * Decimal(10005 ).sqrt() _lowerCamelCase : int = 1 _lowerCamelCase : Optional[int] = 13591409 _lowerCamelCase : int = Decimal(_lowerCamelCase ) for k in range(1 , _lowerCamelCase ): _lowerCamelCase : Union[str, Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowerCamelCase ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = 50 print(f'''The first {n} digits of pi is: {pi(n)}''')
340
0
"""simple docstring""" import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class A_ ( _a ): def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Dict = tempfile.mkdtemp() _lowerCamelCase : List[str] = 8 # DPR tok _lowerCamelCase : List[Any] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _lowerCamelCase : Any = os.path.join(self.tmpdirname ,"dpr_tokenizer" ) os.makedirs(__lowerCAmelCase ,exist_ok=__lowerCAmelCase ) _lowerCamelCase : Tuple = os.path.join(__lowerCAmelCase ,DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok _lowerCamelCase : Union[str, Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] _lowerCamelCase : Optional[Any] = dict(zip(__lowerCAmelCase ,range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : int = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _lowerCamelCase : List[str] = {"unk_token": "<unk>"} _lowerCamelCase : Optional[int] = os.path.join(self.tmpdirname ,"bart_tokenizer" ) os.makedirs(__lowerCAmelCase ,exist_ok=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = os.path.join(__lowerCAmelCase ,BART_VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : Dict = os.path.join(__lowerCAmelCase ,BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(__lowerCAmelCase ) ) def _lowercase ( self: List[str] ): '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"dpr_tokenizer" ) ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"dpr_tokenizer" ) ) def _lowercase ( self: List[Any] ): '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"bart_tokenizer" ) ) def _lowercase ( self: Any ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Any = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index("embeddings" ,string_factory="Flat" ,metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : int = self.get_dummy_dataset() _lowerCamelCase : str = RagConfig( retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,) with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: _lowerCamelCase : List[Any] = dataset _lowerCamelCase : Dict = RagRetriever( __lowerCAmelCase ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,) return retriever def _lowercase ( self: List[Any] ,__lowerCAmelCase: bool ): '''simple docstring''' _lowerCamelCase : List[Any] = self.get_dummy_dataset() _lowerCamelCase : Optional[int] = RagConfig( retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,index_name="custom" ,) if from_disk: _lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname ,"dataset" ) _lowerCamelCase : Optional[int] = os.path.join(self.tmpdirname ,"index.faiss" ) dataset.get_index("embeddings" ).save(os.path.join(self.tmpdirname ,"index.faiss" ) ) dataset.drop_index("embeddings" ) dataset.save_to_disk(os.path.join(self.tmpdirname ,"dataset" ) ) del dataset _lowerCamelCase : Optional[Any] = RagRetriever( __lowerCAmelCase ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,) else: _lowerCamelCase : Optional[Any] = RagRetriever( __lowerCAmelCase ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,index=CustomHFIndex(config.retrieval_vector_size ,__lowerCAmelCase ) ,) return retriever def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : int = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index("embeddings" ,string_factory="Flat" ,metric_type=faiss.METRIC_INNER_PRODUCT ) _lowerCamelCase : str = os.path.join(self.tmpdirname ,"hf_bert_base.hnswSQ8_correct_phi_128.c_index" ) dataset.save_faiss_index("embeddings" ,index_file_name + ".index.dpr" ) pickle.dump(dataset["id"] ,open(index_file_name + ".index_meta.dpr" ,"wb" ) ) _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname ,"psgs_w100.tsv.pkl" ) _lowerCamelCase : Optional[int] = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset} pickle.dump(__lowerCAmelCase ,open(__lowerCAmelCase ,"wb" ) ) _lowerCamelCase : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,index_name="legacy" ,index_path=self.tmpdirname ,) _lowerCamelCase : Optional[Any] = RagRetriever( __lowerCAmelCase ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ) return retriever def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : str = 1 _lowerCamelCase : Optional[Any] = self.get_dummy_canonical_hf_index_retriever() _lowerCamelCase : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) _lowerCamelCase : Optional[Any] = retriever.retrieve(__lowerCAmelCase ,n_docs=__lowerCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__lowerCAmelCase ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) ,__lowerCAmelCase ) self.assertEqual(doc_dicts[0]["id"][0] ,"1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] ,"0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: _lowerCamelCase : Union[str, Any] = self.get_dummy_dataset() retriever.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : List[Any] = RagRetriever.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) _lowerCamelCase : Any = retriever.retrieve(__lowerCAmelCase ,n_docs=1 ) self.assertTrue(out is not None ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Tuple = 1 _lowerCamelCase : Union[str, Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) _lowerCamelCase : List[Any] = retriever.retrieve(__lowerCAmelCase ,n_docs=__lowerCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__lowerCAmelCase ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) ,__lowerCAmelCase ) self.assertEqual(doc_dicts[0]["id"][0] ,"1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] ,"0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : str = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : int = RagRetriever.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) _lowerCamelCase : Optional[Any] = retriever.retrieve(__lowerCAmelCase ,n_docs=1 ) self.assertTrue(out is not None ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Optional[int] = 1 _lowerCamelCase : Union[str, Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) _lowerCamelCase : List[Any] = retriever.retrieve(__lowerCAmelCase ,n_docs=__lowerCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__lowerCAmelCase ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) ,__lowerCAmelCase ) self.assertEqual(doc_dicts[0]["id"][0] ,"1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] ,"0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : int = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = RagRetriever.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) _lowerCamelCase : int = retriever.retrieve(__lowerCAmelCase ,n_docs=1 ) self.assertTrue(out is not None ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Dict = 1 _lowerCamelCase : Union[str, Any] = self.get_dummy_legacy_index_retriever() _lowerCamelCase : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) _lowerCamelCase : str = retriever.retrieve(__lowerCAmelCase ,n_docs=__lowerCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__lowerCAmelCase ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,["text", "title"] ) self.assertEqual(len(doc_dicts[0]["text"] ) ,__lowerCAmelCase ) self.assertEqual(doc_dicts[0]["text"][0] ,"bar" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["text"][0] ,"foo" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : int = RagRetriever.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) _lowerCamelCase : List[Any] = retriever.retrieve(__lowerCAmelCase ,n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def _lowercase ( self: str ): '''simple docstring''' import torch _lowerCamelCase : List[Any] = 1 _lowerCamelCase : Tuple = self.get_dummy_canonical_hf_index_retriever() _lowerCamelCase : List[str] = [[5, 7], [10, 11]] _lowerCamelCase : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) _lowerCamelCase : List[str] = retriever(__lowerCAmelCase ,__lowerCAmelCase ,prefix=retriever.config.generator.prefix ,n_docs=__lowerCAmelCase ) _lowerCamelCase : Tuple = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,np.ndarray ) _lowerCamelCase : Union[str, Any] = retriever( __lowerCAmelCase ,__lowerCAmelCase ,prefix=retriever.config.generator.prefix ,n_docs=__lowerCAmelCase ,return_tensors="pt" ,) _lowerCamelCase : Dict = ( # noqa: F841 out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], out["doc_ids"], ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__lowerCAmelCase ,torch.Tensor ) self.assertIsInstance(__lowerCAmelCase ,torch.Tensor ) self.assertIsInstance(__lowerCAmelCase ,torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : List[str] = self.get_dpr_ctx_encoder_tokenizer() _lowerCamelCase : Tuple = 1 _lowerCamelCase : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCAmelCase ) retriever.set_ctx_encoder_tokenizer(__lowerCAmelCase ) _lowerCamelCase : Any = [[5, 7], [10, 11]] _lowerCamelCase : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) _lowerCamelCase : List[Any] = retriever(__lowerCAmelCase ,__lowerCAmelCase ,prefix=retriever.config.generator.prefix ,n_docs=__lowerCAmelCase ) self.assertEqual( len(__lowerCAmelCase ) ,6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask") ) ,__lowerCAmelCase ) # check for doc token related keys in dictionary.
359
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class A_ ( _a ): lowerCAmelCase__ = 42 lowerCAmelCase__ = None def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=0.9_9_9 , _lowerCamelCase="cosine" , ) -> List[str]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_lowerCamelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowerCamelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _lowerCamelCase : str = [] for i in range(_lowerCamelCase ): _lowerCamelCase : Any = i / num_diffusion_timesteps _lowerCamelCase : Optional[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCamelCase ) / alpha_bar_fn(_lowerCamelCase ) , _lowerCamelCase ) ) return torch.tensor(_lowerCamelCase , dtype=torch.floataa ) class A_ ( _a , _a ): @register_to_config def __init__( self: str ,__lowerCAmelCase: int = 1_000 ,__lowerCAmelCase: str = "fixed_small_log" ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[float] = 1.0 ,__lowerCAmelCase: str = "epsilon" ,__lowerCAmelCase: str = "squaredcos_cap_v2" ,): '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) _lowerCamelCase : Union[str, Any] = betas_for_alpha_bar(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = 1.0 - self.betas _lowerCamelCase : Dict = torch.cumprod(self.alphas ,dim=0 ) _lowerCamelCase : int = torch.tensor(1.0 ) # standard deviation of the initial noise distribution _lowerCamelCase : Tuple = 1.0 # setable values _lowerCamelCase : List[Any] = None _lowerCamelCase : Union[str, Any] = torch.from_numpy(np.arange(0 ,__lowerCAmelCase )[::-1].copy() ) _lowerCamelCase : List[str] = variance_type def _lowercase ( self: Any ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ): '''simple docstring''' return sample def _lowercase ( self: Optional[int] ,__lowerCAmelCase: int ,__lowerCAmelCase: Union[str, torch.device] = None ): '''simple docstring''' _lowerCamelCase : str = num_inference_steps _lowerCamelCase : str = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) _lowerCamelCase : Union[str, Any] = (np.arange(0 ,__lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) _lowerCamelCase : int = torch.from_numpy(__lowerCAmelCase ).to(__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: List[str]=None ,__lowerCAmelCase: str=None ): '''simple docstring''' if prev_timestep is None: _lowerCamelCase : List[str] = t - 1 _lowerCamelCase : Optional[int] = self.alphas_cumprod[t] _lowerCamelCase : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _lowerCamelCase : Dict = 1 - alpha_prod_t _lowerCamelCase : str = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _lowerCamelCase : List[Any] = self.betas[t] else: _lowerCamelCase : str = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _lowerCamelCase : int = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: _lowerCamelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": _lowerCamelCase : Dict = torch.log(torch.clamp(__lowerCAmelCase ,min=1e-20 ) ) _lowerCamelCase : str = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler _lowerCamelCase : str = variance.log() _lowerCamelCase : str = beta.log() _lowerCamelCase : Optional[int] = (predicted_variance + 1) / 2 _lowerCamelCase : Union[str, Any] = frac * max_log + (1 - frac) * min_log return variance def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: int ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: bool = True ,): '''simple docstring''' _lowerCamelCase : str = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": _lowerCamelCase, _lowerCamelCase : int = torch.split(__lowerCAmelCase ,sample.shape[1] ,dim=1 ) else: _lowerCamelCase : List[Any] = None # 1. compute alphas, betas if prev_timestep is None: _lowerCamelCase : List[Any] = t - 1 _lowerCamelCase : Dict = self.alphas_cumprod[t] _lowerCamelCase : int = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _lowerCamelCase : Dict = 1 - alpha_prod_t _lowerCamelCase : List[str] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _lowerCamelCase : Any = self.betas[t] _lowerCamelCase : str = self.alphas[t] else: _lowerCamelCase : Any = 1 - alpha_prod_t / alpha_prod_t_prev _lowerCamelCase : Optional[Any] = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _lowerCamelCase : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _lowerCamelCase : List[Any] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: _lowerCamelCase : Any = torch.clamp( __lowerCAmelCase ,-self.config.clip_sample_range ,self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCamelCase : List[str] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t _lowerCamelCase : Optional[int] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCamelCase : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _lowerCamelCase : Union[str, Any] = 0 if t > 0: _lowerCamelCase : Dict = randn_tensor( model_output.shape ,dtype=model_output.dtype ,generator=__lowerCAmelCase ,device=model_output.device ) _lowerCamelCase : Any = self._get_variance( __lowerCAmelCase ,predicted_variance=__lowerCAmelCase ,prev_timestep=__lowerCAmelCase ,) if self.variance_type == "fixed_small_log": _lowerCamelCase : Optional[Any] = variance elif self.variance_type == "learned_range": _lowerCamelCase : Optional[int] = (0.5 * variance).exp() else: raise ValueError( F"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" " for the UnCLIPScheduler." ) _lowerCamelCase : Dict = variance * variance_noise _lowerCamelCase : List[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__lowerCAmelCase ,pred_original_sample=__lowerCAmelCase ) def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.IntTensor ,): '''simple docstring''' _lowerCamelCase : int = self.alphas_cumprod.to(device=original_samples.device ,dtype=original_samples.dtype ) _lowerCamelCase : Any = timesteps.to(original_samples.device ) _lowerCamelCase : List[Any] = alphas_cumprod[timesteps] ** 0.5 _lowerCamelCase : List[Any] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): _lowerCamelCase : int = sqrt_alpha_prod.unsqueeze(-1 ) _lowerCamelCase : Union[str, Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 _lowerCamelCase : str = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): _lowerCamelCase : Union[str, Any] = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) _lowerCamelCase : Dict = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
340
0
"""simple docstring""" import math from datetime import datetime, timedelta def lowerCamelCase_( _lowerCamelCase ) -> datetime: '''simple docstring''' _lowerCamelCase : List[Any] = year % 19 _lowerCamelCase : Any = year % 4 _lowerCamelCase : Tuple = year % 7 _lowerCamelCase : int = math.floor(year / 100 ) _lowerCamelCase : str = math.floor((13 + 8 * leap_day_inhibits) / 25 ) _lowerCamelCase : str = leap_day_inhibits / 4 _lowerCamelCase : str = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 _lowerCamelCase : Any = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 _lowerCamelCase : Any = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon _lowerCamelCase : Dict = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(_lowerCamelCase , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(_lowerCamelCase , 4 , 18 ) else: return datetime(_lowerCamelCase , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): _lowerCAmelCase : Union[str, Any] = '''will be''' if year > datetime.now().year else '''was''' print(f'''Easter in {year} {tense} {gauss_easter(year)}''')
360
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _lowerCAmelCase : str = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' for attribute in key.split("." ): _lowerCamelCase : Tuple = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: _lowerCamelCase : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: _lowerCamelCase : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowerCamelCase : Tuple = value elif weight_type == "weight_g": _lowerCamelCase : List[str] = value elif weight_type == "weight_v": _lowerCamelCase : List[Any] = value elif weight_type == "bias": _lowerCamelCase : str = value elif weight_type == "running_mean": _lowerCamelCase : Optional[int] = value elif weight_type == "running_var": _lowerCamelCase : Optional[Any] = value elif weight_type == "num_batches_tracked": _lowerCamelCase : int = value elif weight_type == "inv_freq": _lowerCamelCase : List[str] = value else: _lowerCamelCase : Optional[Any] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase : Dict = [] _lowerCamelCase : Optional[Any] = fairseq_model.state_dict() _lowerCamelCase : List[Any] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase : Dict = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) _lowerCamelCase : List[Any] = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase : Dict = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _lowerCamelCase : int = True if "*" in mapped_key: _lowerCamelCase : Tuple = name.split(_lowerCamelCase )[0].split("." )[-2] _lowerCamelCase : int = mapped_key.replace("*" , _lowerCamelCase ) if "pos_bias_u" in name: _lowerCamelCase : int = None elif "pos_bias_v" in name: _lowerCamelCase : Any = None elif "weight_g" in name: _lowerCamelCase : Any = "weight_g" elif "weight_v" in name: _lowerCamelCase : Any = "weight_v" elif "bias" in name: _lowerCamelCase : Optional[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase : Dict = "weight" elif "running_mean" in name: _lowerCamelCase : str = "running_mean" elif "inv_freq" in name: _lowerCamelCase : List[Any] = "inv_freq" elif "running_var" in name: _lowerCamelCase : Tuple = "running_var" elif "num_batches_tracked" in name: _lowerCamelCase : str = "num_batches_tracked" else: _lowerCamelCase : Dict = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : int = full_name.split("conv_layers." )[-1] _lowerCamelCase : List[Any] = name.split("." ) _lowerCamelCase : Union[str, Any] = int(items[0] ) _lowerCamelCase : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowerCamelCase : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowerCamelCase : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) _lowerCamelCase : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowerCamelCase : Optional[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> Dict: '''simple docstring''' if config_path is not None: _lowerCamelCase : Union[str, Any] = WavaVecaConformerConfig.from_pretrained(_lowerCamelCase , hidden_act="swish" ) else: _lowerCamelCase : Dict = WavaVecaConformerConfig() if "rope" in checkpoint_path: _lowerCamelCase : List[Any] = "rotary" if is_finetuned: if dict_path: _lowerCamelCase : Dict = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase : Optional[int] = target_dict.pad_index _lowerCamelCase : Dict = target_dict.bos_index _lowerCamelCase : Optional[Any] = target_dict.eos_index _lowerCamelCase : str = len(target_dict.symbols ) _lowerCamelCase : int = os.path.join(_lowerCamelCase , "vocab.json" ) if not os.path.isdir(_lowerCamelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) _lowerCamelCase : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase : List[str] = 0 _lowerCamelCase : List[Any] = 1 with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Optional[int] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCamelCase , ) _lowerCamelCase : Tuple = True if config.feat_extract_norm == "layer" else False _lowerCamelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) _lowerCamelCase : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) _lowerCamelCase : List[Any] = WavaVecaConformerForCTC(_lowerCamelCase ) else: _lowerCamelCase : Any = WavaVecaConformerForPreTraining(_lowerCamelCase ) if is_finetuned: _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _lowerCamelCase : List[Any] = argparse.Namespace(task="audio_pretraining" ) _lowerCamelCase : Optional[Any] = fairseq.tasks.setup_task(_lowerCamelCase ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCamelCase ) _lowerCamelCase : Dict = model[0].eval() recursively_load_weights(_lowerCamelCase , _lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) _lowerCAmelCase : str = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
340
0
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Any = ArgumentParser( description=( "PyTorch TPU distributed training launch " "helper utility that will spawn up " "multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=_lowerCamelCase , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=_lowerCamelCase , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=_lowerCamelCase ) return parser.parse_args() def lowerCamelCase_( ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Any = parse_args() # Import training_script as a module. _lowerCamelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _lowerCamelCase : List[Any] = script_fpath.stem _lowerCamelCase : Union[str, Any] = importlib.import_module(_lowerCamelCase ) # Patch sys.argv _lowerCamelCase : Dict = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
361
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' _validate_point(_lowerCamelCase ) _validate_point(_lowerCamelCase ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(_lowerCamelCase , _lowerCamelCase ) ) ) def lowerCamelCase_( _lowerCamelCase ) -> None: '''simple docstring''' if point: if isinstance(_lowerCamelCase , _lowerCamelCase ): for item in point: if not isinstance(_lowerCamelCase , (int, float) ): _lowerCamelCase : Dict = ( "Expected a list of numbers as input, found " F"""{type(_lowerCamelCase ).__name__}""" ) raise TypeError(_lowerCamelCase ) else: _lowerCamelCase : Optional[int] = F"""Expected a list of numbers as input, found {type(_lowerCamelCase ).__name__}""" raise TypeError(_lowerCamelCase ) else: raise ValueError("Missing an input" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' _validate_point(_lowerCamelCase ) _validate_point(_lowerCamelCase ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(_lowerCamelCase , _lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
340
0
"""simple docstring""" from __future__ import annotations import bisect def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = -1 ) -> int: '''simple docstring''' if hi < 0: _lowerCamelCase : Dict = len(_lowerCamelCase ) while lo < hi: _lowerCamelCase : List[str] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: _lowerCamelCase : Union[str, Any] = mid + 1 else: _lowerCamelCase : int = mid return lo def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = -1 ) -> int: '''simple docstring''' if hi < 0: _lowerCamelCase : Union[str, Any] = len(_lowerCamelCase ) while lo < hi: _lowerCamelCase : int = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: _lowerCamelCase : Union[str, Any] = mid + 1 else: _lowerCamelCase : Optional[int] = mid return lo def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_left(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_right(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int | None: '''simple docstring''' _lowerCamelCase : Tuple = 0 _lowerCamelCase : Tuple = len(_lowerCamelCase ) - 1 while left <= right: _lowerCamelCase : Tuple = left + (right - left) // 2 _lowerCamelCase : Union[str, Any] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: _lowerCamelCase : List[str] = midpoint - 1 else: _lowerCamelCase : Any = midpoint + 1 return None def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int | None: '''simple docstring''' _lowerCamelCase : Tuple = bisect.bisect_left(_lowerCamelCase , _lowerCamelCase ) if index != len(_lowerCamelCase ) and sorted_collection[index] == item: return index return None def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int | None: '''simple docstring''' if right < left: return None _lowerCamelCase : int = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , midpoint - 1 ) else: return binary_search_by_recursion(_lowerCamelCase , _lowerCamelCase , midpoint + 1 , _lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : int = input('''Enter numbers separated by comma:\n''').strip() _lowerCAmelCase : Any = sorted(int(item) for item in user_input.split(''',''')) _lowerCAmelCase : Optional[Any] = int(input('''Enter a single number to be found in the list:\n''')) _lowerCAmelCase : Optional[Any] = binary_search(collection, target) if result is None: print(f'''{target} was not found in {collection}.''') else: print(f'''{target} was found at position {result} in {collection}.''')
362
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Optional[Any] = np.inf def set_batch_size(_lowerCamelCase ) -> None: nonlocal batch_size if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Optional[int] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_lowerCamelCase , _lowerCamelCase ) and feature.dtype == "binary": _lowerCamelCase : List[str] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_lowerCamelCase , _lowerCamelCase ) return None if batch_size is np.inf else batch_size class A_ ( _a ): def __init__( self: Optional[int] ,__lowerCAmelCase: NestedDataStructureLike[PathLike] ,__lowerCAmelCase: Optional[NamedSplit] = None ,__lowerCAmelCase: Optional[Features] = None ,__lowerCAmelCase: str = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: int ,): '''simple docstring''' super().__init__( __lowerCAmelCase ,split=__lowerCAmelCase ,features=__lowerCAmelCase ,cache_dir=__lowerCAmelCase ,keep_in_memory=__lowerCAmelCase ,streaming=__lowerCAmelCase ,num_proc=__lowerCAmelCase ,**__lowerCAmelCase ,) _lowerCamelCase : Tuple = path_or_paths if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) else {self.split: path_or_paths} _lowerCamelCase : Any = _PACKAGED_DATASETS_MODULES["parquet"][1] _lowerCamelCase : int = Parquet( cache_dir=__lowerCAmelCase ,data_files=__lowerCAmelCase ,features=__lowerCAmelCase ,hash=__lowerCAmelCase ,**__lowerCAmelCase ,) def _lowercase ( self: Optional[int] ): '''simple docstring''' if self.streaming: _lowerCamelCase : List[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _lowerCamelCase : Tuple = None _lowerCamelCase : Optional[int] = None _lowerCamelCase : List[str] = None _lowerCamelCase : str = None self.builder.download_and_prepare( download_config=__lowerCAmelCase ,download_mode=__lowerCAmelCase ,verification_mode=__lowerCAmelCase ,base_path=__lowerCAmelCase ,num_proc=self.num_proc ,) _lowerCamelCase : Any = self.builder.as_dataset( split=self.split ,verification_mode=__lowerCAmelCase ,in_memory=self.keep_in_memory ) return dataset class A_ : def __init__( self: str ,__lowerCAmelCase: Dataset ,__lowerCAmelCase: Union[PathLike, BinaryIO] ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: List[Any] ,): '''simple docstring''' _lowerCamelCase : Any = dataset _lowerCamelCase : Any = path_or_buf _lowerCamelCase : Any = batch_size or get_writer_batch_size(dataset.features ) _lowerCamelCase : List[str] = parquet_writer_kwargs def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Tuple = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf ,(str, bytes, os.PathLike) ): with open(self.path_or_buf ,"wb+" ) as buffer: _lowerCamelCase : str = self._write(file_obj=__lowerCAmelCase ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs ) else: _lowerCamelCase : Optional[int] = self._write(file_obj=self.path_or_buf ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs ) return written def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: BinaryIO ,__lowerCAmelCase: int ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[int] = parquet_writer_kwargs.pop("path_or_buf" ,__lowerCAmelCase ) _lowerCamelCase : List[str] = self.dataset.features.arrow_schema _lowerCamelCase : str = pq.ParquetWriter(__lowerCAmelCase ,schema=__lowerCAmelCase ,**__lowerCAmelCase ) for offset in logging.tqdm( range(0 ,len(self.dataset ) ,__lowerCAmelCase ) ,unit="ba" ,disable=not logging.is_progress_bar_enabled() ,desc="Creating parquet from Arrow format" ,): _lowerCamelCase : List[str] = query_table( table=self.dataset._data ,key=slice(__lowerCAmelCase ,offset + batch_size ) ,indices=self.dataset._indices if self.dataset._indices is not None else None ,) writer.write_table(__lowerCAmelCase ) written += batch.nbytes writer.close() return written
340
0
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Dict = len(_lowerCamelCase ) _lowerCamelCase : List[str] = len(matrix[0] ) _lowerCamelCase : Optional[Any] = min(_lowerCamelCase , _lowerCamelCase ) for row in range(_lowerCamelCase ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , _lowerCamelCase ): _lowerCamelCase : Dict = matrix[col][row] / matrix[row][row] for i in range(_lowerCamelCase , _lowerCamelCase ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows _lowerCamelCase : List[Any] = True for i in range(row + 1 , _lowerCamelCase ): if matrix[i][row] != 0: _lowerCamelCase : List[str] = matrix[i], matrix[row] _lowerCamelCase : Optional[Any] = False break if reduce: rank -= 1 for i in range(_lowerCamelCase ): _lowerCamelCase : Any = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
363
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Optional[int] = tokenizer(example["content"] , truncation=_lowerCamelCase )["input_ids"] _lowerCamelCase : Dict = len(example["content"] ) / len(output["input_ids"] ) return output _lowerCAmelCase : Tuple = HfArgumentParser(PretokenizationArguments) _lowerCAmelCase : Optional[int] = parser.parse_args() if args.num_workers is None: _lowerCAmelCase : Any = multiprocessing.cpu_count() _lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(args.tokenizer_dir) _lowerCAmelCase : Union[str, Any] = time.time() _lowerCAmelCase : Optional[int] = load_dataset(args.dataset_name, split='''train''') print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') _lowerCAmelCase : Any = time.time() _lowerCAmelCase : Dict = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') _lowerCAmelCase : str = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
340
0
"""simple docstring""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : List[Any] = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : List[str] = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) _lowerCamelCase : Union[str, Any] = MaskFormerConfig(backbone_config=_lowerCamelCase ) _lowerCamelCase : List[Any] = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok _lowerCamelCase : Union[str, Any] = 847 _lowerCamelCase : Union[str, Any] = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok _lowerCamelCase : List[Any] = 150 _lowerCamelCase : Dict = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok _lowerCamelCase : int = 171 _lowerCamelCase : List[Any] = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO _lowerCamelCase : Dict = 133 _lowerCamelCase : Any = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok _lowerCamelCase : Any = 19 _lowerCamelCase : Dict = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok _lowerCamelCase : int = 65 _lowerCamelCase : Optional[Any] = "mapillary-vistas-id2label.json" _lowerCamelCase : Optional[int] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Dict = {int(_lowerCamelCase ): v for k, v in idalabel.items()} return config def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : int = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase : Tuple = dct.pop(_lowerCamelCase ) _lowerCamelCase : Optional[int] = val def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : List[str] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _lowerCamelCase : Any = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _lowerCamelCase : str = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) _lowerCamelCase : Any = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[Any] = in_proj_weight[:dim, :] _lowerCamelCase : Union[str, Any] = in_proj_bias[: dim] _lowerCamelCase : List[str] = in_proj_weight[ dim : dim * 2, : ] _lowerCamelCase : Union[str, Any] = in_proj_bias[ dim : dim * 2 ] _lowerCamelCase : List[str] = in_proj_weight[ -dim :, : ] _lowerCamelCase : Union[str, Any] = in_proj_bias[-dim :] # fmt: on def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase : Optional[int] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : List[str] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) _lowerCamelCase : Dict = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Union[str, Any] = in_proj_weight[: hidden_size, :] _lowerCamelCase : Tuple = in_proj_bias[:config.hidden_size] _lowerCamelCase : str = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Any = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : str = in_proj_weight[-hidden_size :, :] _lowerCamelCase : List[str] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase : List[str] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) _lowerCamelCase : Union[str, Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Any = in_proj_weight[: hidden_size, :] _lowerCamelCase : str = in_proj_bias[:config.hidden_size] _lowerCamelCase : Union[str, Any] = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase : Union[str, Any] = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase : Any = in_proj_weight[-hidden_size :, :] _lowerCamelCase : str = in_proj_bias[-hidden_size :] # fmt: on def lowerCamelCase_( ) -> torch.Tensor: '''simple docstring''' _lowerCamelCase : Optional[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : int = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = False ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Tuple = get_maskformer_config(_lowerCamelCase ) # load original state_dict with open(_lowerCamelCase , "rb" ) as f: _lowerCamelCase : int = pickle.load(_lowerCamelCase ) _lowerCamelCase : Optional[Any] = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _lowerCamelCase : Optional[Any] = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_swin_q_k_v(_lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(_lowerCamelCase , _lowerCamelCase ) # update to torch tensors for key, value in state_dict.items(): _lowerCamelCase : int = torch.from_numpy(_lowerCamelCase ) # load 🤗 model _lowerCamelCase : List[str] = MaskFormerForInstanceSegmentation(_lowerCamelCase ) model.eval() for name, param in model.named_parameters(): print(_lowerCamelCase , param.shape ) _lowerCamelCase : Any = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(_lowerCamelCase ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results _lowerCamelCase : Dict = prepare_img() if "vistas" in model_name: _lowerCamelCase : str = 65 elif "cityscapes" in model_name: _lowerCamelCase : Tuple = 65535 else: _lowerCamelCase : Dict = 255 _lowerCamelCase : List[Any] = True if "ade" in model_name else False _lowerCamelCase : Any = MaskFormerImageProcessor(ignore_index=_lowerCamelCase , reduce_labels=_lowerCamelCase ) _lowerCamelCase : Optional[int] = image_processor(_lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Optional[Any] = model(**_lowerCamelCase ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _lowerCamelCase : Tuple = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCamelCase , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) image_processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''maskformer-swin-tiny-ade''', type=str, help=('''Name of the MaskFormer model you\'d like to convert''',), ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl''', type=str, help='''Path to the original state dict (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowerCAmelCase : int = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
364
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Optional[Any] = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
0
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCamelCase_( ) -> Any: '''simple docstring''' _lowerCamelCase : Tuple = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png" _lowerCamelCase : Dict = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert("RGB" ) return image def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : List[str] = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.layernorm.bias") ) # fmt: on return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : Optional[Any] = dct.pop(_lowerCamelCase ) _lowerCamelCase : Tuple = val def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _lowerCamelCase : int = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" ) _lowerCamelCase : List[str] = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict _lowerCamelCase : Tuple = torch.cat((q_bias, torch.zeros_like(_lowerCamelCase , requires_grad=_lowerCamelCase ), v_bias) ) _lowerCamelCase : str = qkv_bias def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Dict = 364 if "coco" in model_name else 224 _lowerCamelCase : Union[str, Any] = BlipaVisionConfig(image_size=_lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _lowerCamelCase : List[Any] = OPTConfig.from_pretrained("facebook/opt-2.7b" , eos_token_id=_lowerCamelCase ).to_dict() elif "opt-6.7b" in model_name: _lowerCamelCase : Optional[int] = OPTConfig.from_pretrained("facebook/opt-6.7b" , eos_token_id=_lowerCamelCase ).to_dict() elif "t5-xl" in model_name: _lowerCamelCase : Optional[Any] = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _lowerCamelCase : str = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() _lowerCamelCase : Dict = BlipaConfig(vision_config=_lowerCamelCase , text_config=_lowerCamelCase ) return config, image_size @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=False ) -> Tuple: '''simple docstring''' _lowerCamelCase : Tuple = ( AutoTokenizer.from_pretrained("facebook/opt-2.7b" ) if "opt" in model_name else AutoTokenizer.from_pretrained("google/flan-t5-xl" ) ) _lowerCamelCase : List[str] = tokenizer("\n" , add_special_tokens=_lowerCamelCase ).input_ids[0] _lowerCamelCase : Optional[int] = get_blipa_config(_lowerCamelCase , eos_token_id=_lowerCamelCase ) _lowerCamelCase : List[str] = BlipaForConditionalGeneration(_lowerCamelCase ).eval() _lowerCamelCase : Dict = { "blip2-opt-2.7b": ("blip2_opt", "pretrain_opt2.7b"), "blip2-opt-6.7b": ("blip2_opt", "pretrain_opt6.7b"), "blip2-opt-2.7b-coco": ("blip2_opt", "caption_coco_opt2.7b"), "blip2-opt-6.7b-coco": ("blip2_opt", "caption_coco_opt6.7b"), "blip2-flan-t5-xl": ("blip2_t5", "pretrain_flant5xl"), "blip2-flan-t5-xl-coco": ("blip2_t5", "caption_coco_flant5xl"), "blip2-flan-t5-xxl": ("blip2_t5", "pretrain_flant5xxl"), } _lowerCamelCase : Optional[Any] = model_name_to_original[model_name] # load original model print("Loading original model..." ) _lowerCamelCase : Optional[int] = "cuda" if torch.cuda.is_available() else "cpu" _lowerCamelCase : int = load_model_and_preprocess( name=_lowerCamelCase , model_type=_lowerCamelCase , is_eval=_lowerCamelCase , device=_lowerCamelCase ) original_model.eval() print("Done!" ) # update state dict keys _lowerCamelCase : Tuple = original_model.state_dict() _lowerCamelCase : str = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _lowerCamelCase : Optional[Any] = state_dict.pop(_lowerCamelCase ) if key.startswith("Qformer.bert" ): _lowerCamelCase : str = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: _lowerCamelCase : Tuple = key.replace("self" , "attention" ) if "opt_proj" in key: _lowerCamelCase : Dict = key.replace("opt_proj" , "language_projection" ) if "t5_proj" in key: _lowerCamelCase : List[str] = key.replace("t5_proj" , "language_projection" ) if key.startswith("opt" ): _lowerCamelCase : int = key.replace("opt" , "language" ) if key.startswith("t5" ): _lowerCamelCase : Any = key.replace("t5" , "language" ) _lowerCamelCase : int = val # read in qv biases read_in_q_v_bias(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : int = hf_model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert len(_lowerCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _lowerCamelCase : int = load_demo_image() _lowerCamelCase : List[Any] = vis_processors["eval"](_lowerCamelCase ).unsqueeze(0 ).to(_lowerCamelCase ) _lowerCamelCase : Optional[int] = tokenizer(["\n"] , return_tensors="pt" ).input_ids.to(_lowerCamelCase ) # create processor _lowerCamelCase : Any = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=_lowerCamelCase , image_std=_lowerCamelCase ) _lowerCamelCase : Dict = BlipaProcessor(image_processor=_lowerCamelCase , tokenizer=_lowerCamelCase ) _lowerCamelCase : str = processor(images=_lowerCamelCase , return_tensors="pt" ).pixel_values.to(_lowerCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) original_model.to(_lowerCamelCase ) hf_model.to(_lowerCamelCase ) with torch.no_grad(): if "opt" in model_name: _lowerCamelCase : Tuple = original_model({"image": original_pixel_values, "text_input": [""]} ).logits _lowerCamelCase : List[Any] = hf_model(_lowerCamelCase , _lowerCamelCase ).logits else: _lowerCamelCase : Optional[int] = original_model( {"image": original_pixel_values, "text_input": ["\n"], "text_output": ["\n"]} ).logits _lowerCamelCase : List[Any] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) _lowerCamelCase : Optional[Any] = hf_model(_lowerCamelCase , _lowerCamelCase , labels=_lowerCamelCase ).logits assert original_logits.shape == logits.shape print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _lowerCamelCase : str = torch.tensor( [[-41.5850, -4.4_4_4_0, -8.9_9_2_2], [-47.4322, -5.9_1_4_3, -1.7_3_4_0]] , device=_lowerCamelCase ) assert torch.allclose(logits[0, :3, :3] , _lowerCamelCase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": _lowerCamelCase : Optional[Any] = torch.tensor( [[-57.0109, -9.8_9_6_7, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=_lowerCamelCase ) else: # cast to same type _lowerCamelCase : str = logits.dtype assert torch.allclose(original_logits.to(_lowerCamelCase ) , _lowerCamelCase , atol=1e-2 ) print("Looks ok!" ) print("Generating a caption..." ) _lowerCamelCase : List[str] = "" _lowerCamelCase : Dict = tokenizer(_lowerCamelCase , return_tensors="pt" ).input_ids.to(_lowerCamelCase ) _lowerCamelCase : Optional[int] = original_model.generate({"image": original_pixel_values} ) _lowerCamelCase : Dict = hf_model.generate( _lowerCamelCase , _lowerCamelCase , do_sample=_lowerCamelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("Original generation:" , _lowerCamelCase ) _lowerCamelCase : List[Any] = input_ids.shape[1] _lowerCamelCase : Tuple = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowerCamelCase ) _lowerCamelCase : int = [text.strip() for text in output_text] print("HF generation:" , _lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if push_to_hub: processor.push_to_hub(F"""nielsr/{model_name}""" ) hf_model.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() _lowerCAmelCase : Dict = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) _lowerCAmelCase : Optional[Any] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
365
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) class A_ ( _a ): lowerCAmelCase__ = 'masked_bert' def __init__( self: Union[str, Any] ,__lowerCAmelCase: Dict=30_522 ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Dict=12 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: List[Any]="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Tuple=512 ,__lowerCAmelCase: str=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Union[str, Any]=1e-12 ,__lowerCAmelCase: Union[str, Any]=0 ,__lowerCAmelCase: List[Any]="topK" ,__lowerCAmelCase: Optional[Any]="constant" ,__lowerCAmelCase: Optional[Any]=0.0 ,**__lowerCAmelCase: str ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : str = max_position_embeddings _lowerCamelCase : List[str] = type_vocab_size _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : int = pruning_method _lowerCamelCase : str = mask_init _lowerCamelCase : List[Any] = mask_scale
340
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class A_ ( _a ): lowerCAmelCase__ = 'vit' def __init__( self: Tuple ,__lowerCAmelCase: Tuple=768 ,__lowerCAmelCase: Union[str, Any]=12 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: Optional[int]=3_072 ,__lowerCAmelCase: List[Any]="gelu" ,__lowerCAmelCase: Any=0.0 ,__lowerCAmelCase: int=0.0 ,__lowerCAmelCase: Optional[Any]=0.02 ,__lowerCAmelCase: Union[str, Any]=1e-12 ,__lowerCAmelCase: Dict=224 ,__lowerCAmelCase: Any=16 ,__lowerCAmelCase: Optional[int]=3 ,__lowerCAmelCase: Union[str, Any]=True ,__lowerCAmelCase: Dict=16 ,**__lowerCAmelCase: List[str] ,): '''simple docstring''' super().__init__(**__lowerCAmelCase ) _lowerCamelCase : int = hidden_size _lowerCamelCase : int = num_hidden_layers _lowerCamelCase : Dict = num_attention_heads _lowerCamelCase : Tuple = intermediate_size _lowerCamelCase : str = hidden_act _lowerCamelCase : Optional[int] = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps _lowerCamelCase : Optional[int] = image_size _lowerCamelCase : Optional[int] = patch_size _lowerCamelCase : int = num_channels _lowerCamelCase : str = qkv_bias _lowerCamelCase : str = encoder_stride class A_ ( _a ): lowerCAmelCase__ = version.parse('1.11' ) @property def _lowercase ( self: List[Any] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _lowercase ( self: Optional[int] ): '''simple docstring''' return 1e-4
366
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _lowerCAmelCase : str = '''0.12''' # assumed parallelism: 8 if is_torch_available(): import torch def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) -> List[Any]: '''simple docstring''' if rng is None: _lowerCamelCase : Union[str, Any] = random.Random() _lowerCamelCase : Union[str, Any] = 1 for dim in shape: total_dims *= dim _lowerCamelCase : Optional[int] = [] for _ in range(_lowerCamelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) _lowerCamelCase : Union[str, Any] = np.array(_lowerCamelCase , dtype=jnp.intaa ).reshape(_lowerCamelCase ) return output def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : Optional[int] = ids_tensor(_lowerCamelCase , vocab_size=2 , rng=_lowerCamelCase ) # make sure that at least one token is attended to for each batch _lowerCamelCase : List[str] = 1 return attn_mask @require_flax class A_ : lowerCAmelCase__ = None lowerCAmelCase__ = () def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 _lowerCamelCase : List[str] = 2 _lowerCamelCase : str = inputs["input_ids"].shape[-1] // 2 _lowerCamelCase : Tuple = inputs["input_ids"][:max_batch_size, :sequence_length] _lowerCamelCase : Any = jnp.ones_like(__lowerCAmelCase ) _lowerCamelCase : List[Any] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens _lowerCamelCase : Optional[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` _lowerCamelCase : List[str] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = self._get_input_ids_and_config() _lowerCamelCase : List[Any] = False _lowerCamelCase : Dict = max_length _lowerCamelCase : Tuple = 0 for model_class in self.all_generative_model_classes: _lowerCamelCase : str = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning _lowerCamelCase : Any = getattr(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Dict = pt_model_class(__lowerCAmelCase ).eval() _lowerCamelCase : Optional[Any] = load_flax_weights_in_pytorch_model(__lowerCAmelCase ,flax_model.params ) _lowerCamelCase : int = flax_model.generate(__lowerCAmelCase ).sequences _lowerCamelCase : Optional[int] = pt_model.generate(torch.tensor(__lowerCAmelCase ,dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: _lowerCamelCase : List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() ,flax_generation_outputs.tolist() ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = self._get_input_ids_and_config() _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : Union[str, Any] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config() _lowerCamelCase : List[Any] = True _lowerCamelCase : Optional[int] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : List[Any] = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : int = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config() _lowerCamelCase : int = False _lowerCamelCase : Optional[Any] = max_length _lowerCamelCase : Dict = 2 for model_class in self.all_generative_model_classes: _lowerCamelCase : List[str] = model_class(__lowerCAmelCase ) _lowerCamelCase : Dict = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Tuple = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = self._get_input_ids_and_config() _lowerCamelCase : Tuple = False _lowerCamelCase : Union[str, Any] = max_length _lowerCamelCase : List[str] = 2 _lowerCamelCase : Optional[int] = 2 for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : str = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0] ,input_ids.shape[0] * config.num_return_sequences ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config() _lowerCamelCase : int = True _lowerCamelCase : List[Any] = max_length _lowerCamelCase : Optional[Any] = 0.8 _lowerCamelCase : Union[str, Any] = 10 _lowerCamelCase : List[str] = 0.3 _lowerCamelCase : Tuple = 1 _lowerCamelCase : Any = 8 _lowerCamelCase : str = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ) _lowerCamelCase : Any = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : int = jit(model.generate ) _lowerCamelCase : Optional[int] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = self._get_input_ids_and_config() _lowerCamelCase : List[str] = max_length _lowerCamelCase : Tuple = 1 _lowerCamelCase : Any = 8 _lowerCamelCase : Dict = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : Any = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : Any = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config() _lowerCamelCase : Dict = max_length _lowerCamelCase : List[Any] = 2 _lowerCamelCase : Tuple = 1 _lowerCamelCase : List[str] = 8 _lowerCamelCase : List[Any] = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : int = model_class(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Tuple = jit(model.generate ) _lowerCamelCase : Optional[Any] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : Tuple = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : Dict = False _lowerCamelCase : Any = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : Optional[Any] = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : List[str] = True _lowerCamelCase : Optional[Any] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : List[Any] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : List[str] = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : int = 2 _lowerCamelCase : int = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : int = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : Dict = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) @require_flax class A_ ( unittest.TestCase ): def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" ) _lowerCamelCase : Union[str, Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) _lowerCamelCase : Optional[Any] = "Hello world" _lowerCamelCase : str = tokenizer(__lowerCAmelCase ,return_tensors="np" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__lowerCAmelCase ,"do_samples" ): model.generate(__lowerCAmelCase ,do_samples=__lowerCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__lowerCAmelCase ,"foo" ): _lowerCamelCase : List[str] = {"foo": "bar"} model.generate(__lowerCAmelCase ,**__lowerCAmelCase )
340
0
"""simple docstring""" import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py _lowerCAmelCase : List[str] = '''src/transformers''' _lowerCAmelCase : Tuple = '''docs/source/en/tasks''' def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' with open(_lowerCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: _lowerCamelCase : List[Any] = f.readlines() # Find the start prompt. _lowerCamelCase : Optional[Any] = 0 while not lines[start_index].startswith(_lowerCamelCase ): start_index += 1 start_index += 1 _lowerCamelCase : Optional[Any] = start_index while not lines[end_index].startswith(_lowerCamelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. _lowerCAmelCase : List[str] = direct_transformers_import(TRANSFORMERS_PATH) _lowerCAmelCase : int = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). _lowerCAmelCase : Union[str, Any] = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : int = TASK_GUIDE_TO_MODELS[task_guide] _lowerCamelCase : Tuple = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(_lowerCamelCase , set() ) _lowerCamelCase : str = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> Dict: '''simple docstring''' _lowerCamelCase : str = _find_text_in_file( filename=os.path.join(_lowerCamelCase , _lowerCamelCase ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) _lowerCamelCase : List[Any] = get_model_list_for_task(_lowerCamelCase ) if current_list != new_list: if overwrite: with open(os.path.join(_lowerCamelCase , _lowerCamelCase ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" " to fix this." ) if __name__ == "__main__": _lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _lowerCAmelCase : str = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
367
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : int = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class A_ ( _a ): lowerCAmelCase__ = 'mobilenet_v1' def __init__( self: Tuple ,__lowerCAmelCase: int=3 ,__lowerCAmelCase: Dict=224 ,__lowerCAmelCase: int=1.0 ,__lowerCAmelCase: Tuple=8 ,__lowerCAmelCase: List[str]="relu6" ,__lowerCAmelCase: int=True ,__lowerCAmelCase: List[Any]=0.9_99 ,__lowerCAmelCase: Optional[int]=0.02 ,__lowerCAmelCase: Optional[int]=0.0_01 ,**__lowerCAmelCase: str ,): '''simple docstring''' super().__init__(**__lowerCAmelCase ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) _lowerCamelCase : List[str] = num_channels _lowerCamelCase : Union[str, Any] = image_size _lowerCamelCase : List[Any] = depth_multiplier _lowerCamelCase : Any = min_depth _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Dict = tf_padding _lowerCamelCase : Union[str, Any] = classifier_dropout_prob _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : List[Any] = layer_norm_eps class A_ ( _a ): lowerCAmelCase__ = version.parse('1.11' ) @property def _lowercase ( self: Optional[int] ): '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def _lowercase ( self: Optional[Any] ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def _lowercase ( self: Any ): '''simple docstring''' return 1e-4
340
0
"""simple docstring""" import numpy as np import datasets _lowerCAmelCase : int = ''' Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] ''' _lowerCAmelCase : str = '''\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } ''' _lowerCAmelCase : int = ''' Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric("mahalanobis") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {\'mahalanobis\': array([0.5])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): def _lowercase ( self: List[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" ,id="sequence" ) ,id="X" ), } ) ,) def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Tuple = np.array(__lowerCAmelCase ) _lowerCamelCase : Tuple = np.array(__lowerCAmelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction _lowerCamelCase : Optional[Any] = X - np.mean(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = np.cov(reference_distribution.T ) try: _lowerCamelCase : str = np.linalg.inv(__lowerCAmelCase ) except np.linalg.LinAlgError: _lowerCamelCase : str = np.linalg.pinv(__lowerCAmelCase ) _lowerCamelCase : Dict = np.dot(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : str = np.dot(__lowerCAmelCase ,X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
368
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' for param in module.parameters(): _lowerCamelCase : Optional[int] = False def lowerCamelCase_( ) -> List[str]: '''simple docstring''' _lowerCamelCase : Optional[Any] = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _lowerCamelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Dict = plt.imshow(_lowerCamelCase ) fig.axes.get_xaxis().set_visible(_lowerCamelCase ) fig.axes.get_yaxis().set_visible(_lowerCamelCase ) plt.show() def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Tuple = datetime.now() _lowerCamelCase : Tuple = current_time.strftime("%H:%M:%S" ) return timestamp
340
0
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : str = abs(_lowerCamelCase ) _lowerCamelCase : List[Any] = 0 while n > 0: res += n % 10 n //= 10 return res def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Optional[int] = abs(_lowerCamelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' return sum(int(_lowerCamelCase ) for c in str(abs(_lowerCamelCase ) ) ) def lowerCamelCase_( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(_lowerCamelCase , _lowerCamelCase ) -> None: _lowerCamelCase : Union[str, Any] = F"""{func.__name__}({value})""" _lowerCamelCase : str = timeit(F"""__main__.{call}""" , setup="import __main__" ) print(F"""{call:56} = {func(_lowerCamelCase )} -- {timing:.4f} seconds""" ) for value in (262144, 1125899906842624, 1267650600228229401496703205376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(_lowerCamelCase , _lowerCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
369
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : int = len(_lowerCamelCase ) _lowerCamelCase : int = len(_lowerCamelCase ) _lowerCamelCase : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) _lowerCamelCase : list = [] for char_count in range(_lowerCamelCase ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(_lowerCamelCase ) if __name__ == "__main__": print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''')
340
0
"""simple docstring""" from collections.abc import Sequence def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = False ) -> float: '''simple docstring''' if not arr: return 0 _lowerCamelCase : str = 0 if allow_empty_subarrays else float("-inf" ) _lowerCamelCase : List[Any] = 0.0 for num in arr: _lowerCamelCase : Union[str, Any] = max(0 if allow_empty_subarrays else num , curr_sum + num ) _lowerCamelCase : Optional[Any] = max(_lowerCamelCase , _lowerCamelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() _lowerCAmelCase : List[Any] = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f'''{max_subarray_sum(nums) = }''')
370
"""simple docstring""" _lowerCAmelCase : Tuple = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Any = [False] * len(_lowerCamelCase ) _lowerCamelCase : Union[str, Any] = [s] _lowerCamelCase : str = True while queue: _lowerCamelCase : Optional[int] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_lowerCamelCase ) _lowerCamelCase : Any = True _lowerCamelCase : Any = u return visited[t] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : List[str] = [-1] * (len(_lowerCamelCase )) _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : List[str] = [i[:] for i in graph] # Record original cut, copy. while bfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Any = float("Inf" ) _lowerCamelCase : Dict = sink while s != source: # Find the minimum value in select path _lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , graph[parent[s]][s] ) _lowerCamelCase : Union[str, Any] = parent[s] max_flow += path_flow _lowerCamelCase : Optional[Any] = sink while v != source: _lowerCamelCase : Union[str, Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _lowerCamelCase : List[str] = parent[v] for i in range(len(_lowerCamelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
340
0
"""simple docstring""" import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class A_ ( _a ): def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : List[Any] = tempfile.mkdtemp() _lowerCamelCase : List[str] = 5 # Realm tok _lowerCamelCase : List[str] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _lowerCamelCase : int = os.path.join(self.tmpdirname ,"realm_tokenizer" ) os.makedirs(__lowerCAmelCase ,exist_ok=__lowerCAmelCase ) _lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) _lowerCamelCase : Any = os.path.join(self.tmpdirname ,"realm_block_records" ) os.makedirs(__lowerCAmelCase ,exist_ok=__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"realm_tokenizer" ) ) def _lowercase ( self: Dict ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = RealmConfig(num_block_records=self.num_block_records ) return config def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : Dict = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Any = np.array( [ b"This is the first record", b"This is the second record", b"This is the third record", b"This is the fourth record", b"This is the fifth record", b"This is a longer longer longer record", ] ,dtype=__lowerCAmelCase ,) return block_records def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = RealmRetriever( block_records=self.get_dummy_block_records() ,tokenizer=self.get_tokenizer() ,) return retriever def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Dict = self.get_config() _lowerCamelCase : str = self.get_dummy_retriever() _lowerCamelCase : Union[str, Any] = retriever.tokenizer _lowerCamelCase : Dict = np.array([0, 3] ,dtype="long" ) _lowerCamelCase : List[Any] = tokenizer(["Test question"] ).input_ids _lowerCamelCase : Optional[int] = tokenizer( ["the fourth"] ,add_special_tokens=__lowerCAmelCase ,return_token_type_ids=__lowerCAmelCase ,return_attention_mask=__lowerCAmelCase ,).input_ids _lowerCamelCase : int = config.reader_seq_len _lowerCamelCase : List[str] = retriever( __lowerCAmelCase ,__lowerCAmelCase ,answer_ids=__lowerCAmelCase ,max_length=__lowerCAmelCase ,return_tensors="np" ) self.assertEqual(len(__lowerCAmelCase ) ,2 ) self.assertEqual(len(__lowerCAmelCase ) ,2 ) self.assertEqual(len(__lowerCAmelCase ) ,2 ) self.assertEqual(concat_inputs.input_ids.shape ,(2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape ,(2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape ,(2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape ,(2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) ,["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] ,) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) ,["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] ,) def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : List[str] = self.get_config() _lowerCamelCase : Dict = self.get_dummy_retriever() _lowerCamelCase : Optional[Any] = retriever.tokenizer _lowerCamelCase : Tuple = np.array([0, 3, 5] ,dtype="long" ) _lowerCamelCase : Any = tokenizer(["Test question"] ).input_ids _lowerCamelCase : int = tokenizer( ["the fourth", "longer longer"] ,add_special_tokens=__lowerCAmelCase ,return_token_type_ids=__lowerCAmelCase ,return_attention_mask=__lowerCAmelCase ,).input_ids _lowerCamelCase : List[str] = config.reader_seq_len _lowerCamelCase : Tuple = retriever( __lowerCAmelCase ,__lowerCAmelCase ,answer_ids=__lowerCAmelCase ,max_length=__lowerCAmelCase ,return_tensors="np" ) self.assertEqual([False, True, True] ,__lowerCAmelCase ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] ,__lowerCAmelCase ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] ,__lowerCAmelCase ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[Any] = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname ,"realm_block_records" ) ) # Test local path _lowerCamelCase : Union[str, Any] = retriever.from_pretrained(os.path.join(self.tmpdirname ,"realm_block_records" ) ) self.assertEqual(retriever.block_records[0] ,b"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: _lowerCamelCase : Any = os.path.join( os.path.join(self.tmpdirname ,"realm_block_records" ) ,_REALM_BLOCK_RECORDS_FILENAME ) _lowerCamelCase : Tuple = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] ,b"This is the first record" )
371
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''', '''umberto-commoncrawl-cased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json''' ), '''umberto-wikipedia-uncased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json''' ), } class A_ ( _a ): lowerCAmelCase__ = 'camembert' def __init__( self: Tuple ,__lowerCAmelCase: Union[str, Any]=30_522 ,__lowerCAmelCase: Optional[Any]=768 ,__lowerCAmelCase: Union[str, Any]=12 ,__lowerCAmelCase: int=12 ,__lowerCAmelCase: Optional[int]=3_072 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: Optional[Any]=0.1 ,__lowerCAmelCase: int=512 ,__lowerCAmelCase: Union[str, Any]=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Any=1 ,__lowerCAmelCase: Any=0 ,__lowerCAmelCase: Optional[int]=2 ,__lowerCAmelCase: Any="absolute" ,__lowerCAmelCase: Dict=True ,__lowerCAmelCase: Tuple=None ,**__lowerCAmelCase: Dict ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[str] = vocab_size _lowerCamelCase : Any = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : int = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : Dict = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps _lowerCamelCase : Tuple = position_embedding_type _lowerCamelCase : List[Any] = use_cache _lowerCamelCase : Dict = classifier_dropout class A_ ( _a ): @property def _lowercase ( self: Any ): '''simple docstring''' if self.task == "multiple-choice": _lowerCamelCase : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _lowerCamelCase : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
340
0
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder _lowerCAmelCase : Tuple = '''base_with_context''' def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCamelCase : int = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"] ) ) _lowerCamelCase : Optional[Any] = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=_lowerCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): _lowerCamelCase : List[Any] = weights[F"""layers_{lyr_num}"""] _lowerCamelCase : Dict = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) _lowerCamelCase : Optional[int] = ly_weight["attention"] _lowerCamelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) _lowerCamelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) _lowerCamelCase : int = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) _lowerCamelCase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) _lowerCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) _lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) _lowerCamelCase : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) _lowerCamelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) _lowerCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCamelCase : int = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T ) ) _lowerCamelCase : Union[str, Any] = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=_lowerCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): _lowerCamelCase : Tuple = weights[F"""layers_{lyr_num}"""] _lowerCamelCase : Tuple = ly_weight["attention"] _lowerCamelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) _lowerCamelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) _lowerCamelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) _lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) _lowerCamelCase : Optional[Any] = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) _lowerCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) _lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) _lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) _lowerCamelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) _lowerCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCamelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T ) ) _lowerCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T ) ) _lowerCamelCase : Dict = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=_lowerCamelCase ) _lowerCamelCase : List[str] = nn.Parameter( torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T ) ) for lyr_num, lyr in enumerate(model.decoders ): _lowerCamelCase : Union[str, Any] = weights[F"""layers_{lyr_num}"""] _lowerCamelCase : Dict = nn.Parameter( torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"] ) ) _lowerCamelCase : Dict = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T ) ) _lowerCamelCase : Union[str, Any] = ly_weight["self_attention"] _lowerCamelCase : int = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) _lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) _lowerCamelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) _lowerCamelCase : int = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) _lowerCamelCase : Optional[int] = ly_weight["MultiHeadDotProductAttention_0"] _lowerCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) _lowerCamelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) _lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) _lowerCamelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) _lowerCamelCase : str = nn.Parameter( torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"] ) ) _lowerCamelCase : str = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) _lowerCamelCase : int = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T ) ) _lowerCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) _lowerCamelCase : int = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) _lowerCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) _lowerCamelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"] ) ) _lowerCamelCase : str = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T ) ) return model def lowerCamelCase_( _lowerCamelCase ): '''simple docstring''' _lowerCamelCase : Optional[Any] = checkpoints.load_tax_checkpoint(args.checkpoint_path ) _lowerCamelCase : Dict = jnp.tree_util.tree_map(onp.array , _lowerCamelCase ) _lowerCamelCase : int = [ "from __gin__ import dynamic_registration", "from music_spectrogram_diffusion.models.diffusion import diffusion_utils", "diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0", "diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()", ] _lowerCamelCase : Tuple = os.path.join(args.checkpoint_path , ".." , "config.gin" ) _lowerCamelCase : Any = inference.parse_training_gin_file(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : int = inference.InferenceModel(args.checkpoint_path , _lowerCamelCase ) _lowerCamelCase : str = DDPMScheduler(beta_schedule="squaredcos_cap_v2" , variance_type="fixed_large" ) _lowerCamelCase : Dict = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["inputs"] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) _lowerCamelCase : Dict = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["targets_context"] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) _lowerCamelCase : Optional[int] = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["targets_context"] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) _lowerCamelCase : Union[str, Any] = load_notes_encoder(ta_checkpoint["target"]["token_encoder"] , _lowerCamelCase ) _lowerCamelCase : Dict = load_continuous_encoder(ta_checkpoint["target"]["continuous_encoder"] , _lowerCamelCase ) _lowerCamelCase : List[Any] = load_decoder(ta_checkpoint["target"]["decoder"] , _lowerCamelCase ) _lowerCamelCase : List[Any] = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder" ) _lowerCamelCase : Dict = SpectrogramDiffusionPipeline( notes_encoder=_lowerCamelCase , continuous_encoder=_lowerCamelCase , decoder=_lowerCamelCase , scheduler=_lowerCamelCase , melgan=_lowerCamelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--output_path''', default=None, type=str, required=True, help='''Path to the converted model.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument( '''--checkpoint_path''', default=f'''{MODEL}/checkpoint_500000''', type=str, required=False, help='''Path to the original jax model checkpoint.''', ) _lowerCAmelCase : Dict = parser.parse_args() main(args)
350
"""simple docstring""" from collections import defaultdict def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Optional[int] = 1 _lowerCamelCase : str = True for v in tree[start]: if v not in visited: ret += dfs(_lowerCamelCase ) if ret % 2 == 0: cuts.append(_lowerCamelCase ) return ret def lowerCamelCase_( ) -> int: '''simple docstring''' dfs(1 ) if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = 10, 9 _lowerCAmelCase : str = defaultdict(list) _lowerCAmelCase : dict[int, bool] = {} _lowerCAmelCase : list[int] = [] _lowerCAmelCase : Any = 0 _lowerCAmelCase : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
340
0
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters _lowerCAmelCase : Optional[Any] = (720, 1280) # Height, Width _lowerCAmelCase : int = (0.4, 0.6) # if height or width lower than this scale, drop it. _lowerCAmelCase : Any = 1 / 100 _lowerCAmelCase : Optional[int] = '''''' _lowerCAmelCase : List[str] = '''''' _lowerCAmelCase : Optional[Any] = '''''' _lowerCAmelCase : Optional[Any] = 250 def lowerCamelCase_( ) -> None: '''simple docstring''' _lowerCamelCase : int = get_dataset(_lowerCamelCase , _lowerCamelCase ) for index in range(_lowerCamelCase ): _lowerCamelCase : Tuple = random.sample(range(len(_lowerCamelCase ) ) , 4 ) _lowerCamelCase : Optional[int] = update_image_and_anno( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , filter_scale=_lowerCamelCase , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCamelCase : Optional[int] = random_chars(32 ) _lowerCamelCase : str = path.split(os.sep )[-1].rsplit("." , 1 )[0] _lowerCamelCase : int = F"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(F"""{file_root}.jpg""" , _lowerCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) _lowerCamelCase : Optional[int] = [] for anno in new_annos: _lowerCamelCase : Dict = anno[3] - anno[1] _lowerCamelCase : List[str] = anno[4] - anno[2] _lowerCamelCase : List[Any] = anno[1] + width / 2 _lowerCamelCase : Any = anno[2] + height / 2 _lowerCamelCase : Dict = F"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(_lowerCamelCase ) with open(F"""{file_root}.txt""" , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> tuple[list, list]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Any = [] for label_file in glob.glob(os.path.join(_lowerCamelCase , "*.txt" ) ): _lowerCamelCase : Optional[Any] = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(_lowerCamelCase ) as in_file: _lowerCamelCase : List[str] = in_file.readlines() _lowerCamelCase : List[Any] = os.path.join(_lowerCamelCase , F"""{label_name}.jpg""" ) _lowerCamelCase : Optional[Any] = [] for obj_list in obj_lists: _lowerCamelCase : str = obj_list.rstrip("\n" ).split(" " ) _lowerCamelCase : Optional[Any] = float(obj[1] ) - float(obj[3] ) / 2 _lowerCamelCase : Any = float(obj[2] ) - float(obj[4] ) / 2 _lowerCamelCase : str = float(obj[1] ) + float(obj[3] ) / 2 _lowerCamelCase : List[str] = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(_lowerCamelCase ) labels.append(_lowerCamelCase ) return img_paths, labels def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0.0 , ) -> tuple[list, list, str]: '''simple docstring''' _lowerCamelCase : str = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) _lowerCamelCase : List[str] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCamelCase : List[Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCamelCase : Optional[int] = int(scale_x * output_size[1] ) _lowerCamelCase : Tuple = int(scale_y * output_size[0] ) _lowerCamelCase : List[Any] = [] _lowerCamelCase : Any = [] for i, index in enumerate(_lowerCamelCase ): _lowerCamelCase : Optional[int] = all_img_list[index] path_list.append(_lowerCamelCase ) _lowerCamelCase : Union[str, Any] = all_annos[index] _lowerCamelCase : Tuple = cva.imread(_lowerCamelCase ) if i == 0: # top-left _lowerCamelCase : Any = cva.resize(_lowerCamelCase , (divid_point_x, divid_point_y) ) _lowerCamelCase : Any = img for bbox in img_annos: _lowerCamelCase : List[Any] = bbox[1] * scale_x _lowerCamelCase : str = bbox[2] * scale_y _lowerCamelCase : Union[str, Any] = bbox[3] * scale_x _lowerCamelCase : List[Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right _lowerCamelCase : List[Any] = cva.resize(_lowerCamelCase , (output_size[1] - divid_point_x, divid_point_y) ) _lowerCamelCase : Optional[Any] = img for bbox in img_annos: _lowerCamelCase : Union[str, Any] = scale_x + bbox[1] * (1 - scale_x) _lowerCamelCase : List[Any] = bbox[2] * scale_y _lowerCamelCase : List[Any] = scale_x + bbox[3] * (1 - scale_x) _lowerCamelCase : Tuple = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left _lowerCamelCase : Optional[Any] = cva.resize(_lowerCamelCase , (divid_point_x, output_size[0] - divid_point_y) ) _lowerCamelCase : Optional[int] = img for bbox in img_annos: _lowerCamelCase : Any = bbox[1] * scale_x _lowerCamelCase : Optional[Any] = scale_y + bbox[2] * (1 - scale_y) _lowerCamelCase : Union[str, Any] = bbox[3] * scale_x _lowerCamelCase : Any = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right _lowerCamelCase : str = cva.resize( _lowerCamelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) _lowerCamelCase : Union[str, Any] = img for bbox in img_annos: _lowerCamelCase : Tuple = scale_x + bbox[1] * (1 - scale_x) _lowerCamelCase : List[Any] = scale_y + bbox[2] * (1 - scale_y) _lowerCamelCase : Any = scale_x + bbox[3] * (1 - scale_x) _lowerCamelCase : int = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: _lowerCamelCase : Any = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" _lowerCamelCase : Tuple = ascii_lowercase + digits return "".join(random.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) if __name__ == "__main__": main() print('''DONE ✅''')
351
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _lowerCAmelCase : Optional[int] = '''__DUMMY_TRANSFORMERS_USER__''' _lowerCAmelCase : Dict = '''Dummy User''' _lowerCAmelCase : Optional[int] = '''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''' _lowerCAmelCase : Tuple = '''https://hub-ci.huggingface.co''' _lowerCAmelCase : Any = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}''' _lowerCAmelCase : Tuple = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}''' _lowerCAmelCase : Dict = Path('''~/.huggingface/hub_ci_token''').expanduser() @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_ENDPOINT" , _lowerCamelCase ) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' HfFolder.save_token(_lowerCamelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="session" ) def lowerCamelCase_( ) -> str: '''simple docstring''' return HfApi(endpoint=_lowerCamelCase ) @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Dict = HfFolder.get_token() HfFolder.save_token(_lowerCamelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(_lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' def _cleanup_repo(_lowerCamelCase ): hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) return _cleanup_repo @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> List[str]: '''simple docstring''' @contextmanager def _temporary_repo(_lowerCamelCase ): try: yield repo_id finally: cleanup_repo(_lowerCamelCase ) return _temporary_repo @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : Tuple = F"""repo_txt_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : List[str] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data/text_data.txt" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : List[Any] = F"""repo_zipped_txt_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : Dict = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Any = F"""repo_zipped_img_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : List[Any] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
340
0
"""simple docstring""" _lowerCAmelCase : Optional[Any] = [ '''DownloadConfig''', '''DownloadManager''', '''DownloadMode''', '''StreamingDownloadManager''', ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
352
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) class A_ ( _a ): def __init__( self: List[Any] ,__lowerCAmelCase: Union[List[ControlNetModel], Tuple[ControlNetModel]] ): '''simple docstring''' super().__init__() _lowerCamelCase : Tuple = nn.ModuleList(__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Union[torch.Tensor, float, int] ,__lowerCAmelCase: torch.Tensor ,__lowerCAmelCase: List[torch.tensor] ,__lowerCAmelCase: List[float] ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[Dict[str, Any]] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(__lowerCAmelCase ,__lowerCAmelCase ,self.nets ) ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = controlnet( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,) # merge samples if i == 0: _lowerCamelCase, _lowerCamelCase : Optional[Any] = down_samples, mid_sample else: _lowerCamelCase : Optional[int] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(__lowerCAmelCase ,__lowerCAmelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Union[str, os.PathLike] ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Callable = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[str] = None ,): '''simple docstring''' _lowerCamelCase : List[Any] = 0 _lowerCamelCase : str = save_directory for controlnet in self.nets: controlnet.save_pretrained( __lowerCAmelCase ,is_main_process=__lowerCAmelCase ,save_function=__lowerCAmelCase ,safe_serialization=__lowerCAmelCase ,variant=__lowerCAmelCase ,) idx += 1 _lowerCamelCase : int = model_path_to_save + F"""_{idx}""" @classmethod def _lowercase ( cls: Any ,__lowerCAmelCase: Optional[Union[str, os.PathLike]] ,**__lowerCAmelCase: int ): '''simple docstring''' _lowerCamelCase : int = 0 _lowerCamelCase : str = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _lowerCamelCase : Dict = pretrained_model_path while os.path.isdir(__lowerCAmelCase ): _lowerCamelCase : List[Any] = ControlNetModel.from_pretrained(__lowerCAmelCase ,**__lowerCAmelCase ) controlnets.append(__lowerCAmelCase ) idx += 1 _lowerCamelCase : Tuple = pretrained_model_path + F"""_{idx}""" logger.info(F"""{len(__lowerCAmelCase )} controlnets loaded from {pretrained_model_path}.""" ) if len(__lowerCAmelCase ) == 0: raise ValueError( F"""No ControlNets found under {os.path.dirname(__lowerCAmelCase )}. Expected at least {pretrained_model_path + '_0'}.""" ) return cls(__lowerCAmelCase )
340
0
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''google/owlvit-base-patch32''': '''https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json''', '''google/owlvit-base-patch16''': '''https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json''', '''google/owlvit-large-patch14''': '''https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json''', } class A_ ( _a ): lowerCAmelCase__ = 'owlvit_text_model' def __init__( self: Any ,__lowerCAmelCase: List[Any]=49_408 ,__lowerCAmelCase: Any=512 ,__lowerCAmelCase: Tuple=2_048 ,__lowerCAmelCase: str=12 ,__lowerCAmelCase: Any=8 ,__lowerCAmelCase: List[str]=16 ,__lowerCAmelCase: int="quick_gelu" ,__lowerCAmelCase: List[Any]=1e-5 ,__lowerCAmelCase: Any=0.0 ,__lowerCAmelCase: List[Any]=0.02 ,__lowerCAmelCase: int=1.0 ,__lowerCAmelCase: Tuple=0 ,__lowerCAmelCase: Any=49_406 ,__lowerCAmelCase: List[str]=49_407 ,**__lowerCAmelCase: str ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : str = hidden_size _lowerCamelCase : int = intermediate_size _lowerCamelCase : Optional[int] = num_hidden_layers _lowerCamelCase : int = num_attention_heads _lowerCamelCase : List[str] = max_position_embeddings _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Any = layer_norm_eps _lowerCamelCase : List[str] = attention_dropout _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : List[Any] = initializer_factor @classmethod def _lowercase ( cls: Dict ,__lowerCAmelCase: Union[str, os.PathLike] ,**__lowerCAmelCase: Tuple ): '''simple docstring''' cls._set_token_in_kwargs(__lowerCAmelCase ) _lowerCamelCase : List[str] = cls.get_config_dict(__lowerCAmelCase ,**__lowerCAmelCase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": _lowerCamelCase : Any = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls ,"model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowerCAmelCase ,**__lowerCAmelCase ) class A_ ( _a ): lowerCAmelCase__ = 'owlvit_vision_model' def __init__( self: int ,__lowerCAmelCase: Union[str, Any]=768 ,__lowerCAmelCase: Tuple=3_072 ,__lowerCAmelCase: Optional[int]=12 ,__lowerCAmelCase: Dict=12 ,__lowerCAmelCase: Union[str, Any]=3 ,__lowerCAmelCase: List[Any]=768 ,__lowerCAmelCase: Optional[int]=32 ,__lowerCAmelCase: Optional[Any]="quick_gelu" ,__lowerCAmelCase: Union[str, Any]=1e-5 ,__lowerCAmelCase: List[Any]=0.0 ,__lowerCAmelCase: Optional[int]=0.02 ,__lowerCAmelCase: int=1.0 ,**__lowerCAmelCase: Tuple ,): '''simple docstring''' super().__init__(**__lowerCAmelCase ) _lowerCamelCase : int = hidden_size _lowerCamelCase : Tuple = intermediate_size _lowerCamelCase : List[Any] = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : Tuple = num_channels _lowerCamelCase : Optional[int] = image_size _lowerCamelCase : Any = patch_size _lowerCamelCase : str = hidden_act _lowerCamelCase : Dict = layer_norm_eps _lowerCamelCase : int = attention_dropout _lowerCamelCase : Dict = initializer_range _lowerCamelCase : Optional[int] = initializer_factor @classmethod def _lowercase ( cls: Dict ,__lowerCAmelCase: Union[str, os.PathLike] ,**__lowerCAmelCase: List[str] ): '''simple docstring''' cls._set_token_in_kwargs(__lowerCAmelCase ) _lowerCamelCase : List[str] = cls.get_config_dict(__lowerCAmelCase ,**__lowerCAmelCase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": _lowerCamelCase : List[Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls ,"model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowerCAmelCase ,**__lowerCAmelCase ) class A_ ( _a ): lowerCAmelCase__ = 'owlvit' lowerCAmelCase__ = True def __init__( self: str ,__lowerCAmelCase: List[str]=None ,__lowerCAmelCase: Dict=None ,__lowerCAmelCase: Tuple=512 ,__lowerCAmelCase: List[Any]=2.65_92 ,__lowerCAmelCase: Optional[int]=True ,**__lowerCAmelCase: List[str] ,): '''simple docstring''' super().__init__(**__lowerCAmelCase ) if text_config is None: _lowerCamelCase : Optional[int] = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: _lowerCamelCase : int = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) _lowerCamelCase : List[str] = OwlViTTextConfig(**__lowerCAmelCase ) _lowerCamelCase : List[str] = OwlViTVisionConfig(**__lowerCAmelCase ) _lowerCamelCase : Optional[int] = projection_dim _lowerCamelCase : Dict = logit_scale_init_value _lowerCamelCase : Optional[int] = return_dict _lowerCamelCase : Any = 1.0 @classmethod def _lowercase ( cls: Union[str, Any] ,__lowerCAmelCase: Union[str, os.PathLike] ,**__lowerCAmelCase: Any ): '''simple docstring''' cls._set_token_in_kwargs(__lowerCAmelCase ) _lowerCamelCase : Any = cls.get_config_dict(__lowerCAmelCase ,**__lowerCAmelCase ) if "model_type" in config_dict and hasattr(cls ,"model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowerCAmelCase ,**__lowerCAmelCase ) @classmethod def _lowercase ( cls: Dict ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Dict ,**__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase : Any = {} _lowerCamelCase : int = text_config _lowerCamelCase : Union[str, Any] = vision_config return cls.from_dict(__lowerCAmelCase ,**__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : int = copy.deepcopy(self.__dict__ ) _lowerCamelCase : Optional[Any] = self.text_config.to_dict() _lowerCamelCase : str = self.vision_config.to_dict() _lowerCamelCase : List[Any] = self.__class__.model_type return output class A_ ( _a ): @property def _lowercase ( self: Any ): '''simple docstring''' return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def _lowercase ( self: List[Any] ): '''simple docstring''' return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def _lowercase ( self: str ): '''simple docstring''' return 1e-4 def _lowercase ( self: Any ,__lowerCAmelCase: "ProcessorMixin" ,__lowerCAmelCase: int = -1 ,__lowerCAmelCase: int = -1 ,__lowerCAmelCase: Optional["TensorType"] = None ,): '''simple docstring''' _lowerCamelCase : int = super().generate_dummy_inputs( processor.tokenizer ,batch_size=__lowerCAmelCase ,seq_length=__lowerCAmelCase ,framework=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = super().generate_dummy_inputs( processor.image_processor ,batch_size=__lowerCAmelCase ,framework=__lowerCAmelCase ) return {**text_input_dict, **image_input_dict} @property def _lowercase ( self: Dict ): '''simple docstring''' return 14
353
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : int = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[str]: '''simple docstring''' _lowerCamelCase : Tuple = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head" ): _lowerCamelCase : Tuple = "segformer.encoder." + key if key.startswith("backbone" ): _lowerCamelCase : Any = key.replace("backbone" , "segformer.encoder" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _lowerCamelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )] _lowerCamelCase : int = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(_lowerCamelCase )-1}""" ) if "norm" in key: _lowerCamelCase : Optional[Any] = key.replace("norm" , "layer_norm" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _lowerCamelCase : Dict = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )] _lowerCamelCase : Tuple = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(_lowerCamelCase )-1}""" ) if "layer_norm1" in key: _lowerCamelCase : Union[str, Any] = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: _lowerCamelCase : int = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _lowerCamelCase : Union[str, Any] = key[key.find("block" ) + len("block" )] _lowerCamelCase : Optional[Any] = key.replace(F"""block{idx}""" , F"""block.{int(_lowerCamelCase )-1}""" ) if "attn.q" in key: _lowerCamelCase : Optional[int] = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: _lowerCamelCase : List[str] = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: _lowerCamelCase : Tuple = key.replace("attn" , "attention.self" ) if "fc1" in key: _lowerCamelCase : Optional[Any] = key.replace("fc1" , "dense1" ) if "fc2" in key: _lowerCamelCase : Dict = key.replace("fc2" , "dense2" ) if "linear_pred" in key: _lowerCamelCase : int = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: _lowerCamelCase : str = key.replace("linear_fuse.conv" , "linear_fuse" ) _lowerCamelCase : Optional[Any] = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _lowerCamelCase : Union[str, Any] = key[key.find("linear_c" ) + len("linear_c" )] _lowerCamelCase : Optional[int] = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(_lowerCamelCase )-1}""" ) if key.startswith("head" ): _lowerCamelCase : List[str] = key.replace("head" , "classifier" ) _lowerCamelCase : Union[str, Any] = value return new_state_dict def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _lowerCamelCase : Optional[Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _lowerCamelCase : Optional[Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _lowerCamelCase : int = kv_weight[ : config.hidden_sizes[i], : ] _lowerCamelCase : int = kv_bias[: config.hidden_sizes[i]] _lowerCamelCase : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] _lowerCamelCase : Optional[Any] = kv_bias[ config.hidden_sizes[i] : ] def lowerCamelCase_( ) -> Dict: '''simple docstring''' _lowerCamelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Union[str, Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return image @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : Any = SegformerConfig() _lowerCamelCase : int = False # set attributes based on model_name _lowerCamelCase : Any = "huggingface/label-files" if "segformer" in model_name: _lowerCamelCase : str = model_name[len("segformer." ) : len("segformer." ) + 2] if "ade" in model_name: _lowerCamelCase : str = 150 _lowerCamelCase : Dict = "ade20k-id2label.json" _lowerCamelCase : Dict = (1, 150, 128, 128) elif "city" in model_name: _lowerCamelCase : List[str] = 19 _lowerCamelCase : Tuple = "cityscapes-id2label.json" _lowerCamelCase : Tuple = (1, 19, 128, 128) else: raise ValueError(F"""Model {model_name} not supported""" ) elif "mit" in model_name: _lowerCamelCase : List[str] = True _lowerCamelCase : Tuple = model_name[4:6] _lowerCamelCase : Tuple = 1000 _lowerCamelCase : List[Any] = "imagenet-1k-id2label.json" _lowerCamelCase : List[Any] = (1, 1000) else: raise ValueError(F"""Model {model_name} not supported""" ) # set config attributes _lowerCamelCase : Optional[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": _lowerCamelCase : int = [64, 128, 320, 512] _lowerCamelCase : int = 256 elif size == "b2": _lowerCamelCase : Tuple = [64, 128, 320, 512] _lowerCamelCase : List[Any] = 768 _lowerCamelCase : Any = [3, 4, 6, 3] elif size == "b3": _lowerCamelCase : Tuple = [64, 128, 320, 512] _lowerCamelCase : Union[str, Any] = 768 _lowerCamelCase : Optional[Any] = [3, 4, 18, 3] elif size == "b4": _lowerCamelCase : str = [64, 128, 320, 512] _lowerCamelCase : Optional[Any] = 768 _lowerCamelCase : Dict = [3, 8, 27, 3] elif size == "b5": _lowerCamelCase : int = [64, 128, 320, 512] _lowerCamelCase : Tuple = 768 _lowerCamelCase : Tuple = [3, 6, 40, 3] else: raise ValueError(F"""Size {size} not supported""" ) # load image processor (only resize + normalize) _lowerCamelCase : Dict = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_lowerCamelCase , align=_lowerCamelCase , do_random_crop=_lowerCamelCase ) # prepare image _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Dict = image_processor(images=_lowerCamelCase , return_tensors="pt" ).pixel_values logger.info(F"""Converting model {model_name}...""" ) # load original state dict if encoder_only: _lowerCamelCase : Tuple = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) ) else: _lowerCamelCase : int = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) )["state_dict"] # rename keys _lowerCamelCase : str = rename_keys(_lowerCamelCase , encoder_only=_lowerCamelCase ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(_lowerCamelCase , _lowerCamelCase ) # create HuggingFace model and load state dict if encoder_only: _lowerCamelCase : Tuple = False _lowerCamelCase : Optional[int] = SegformerForImageClassification(_lowerCamelCase ) else: _lowerCamelCase : List[str] = SegformerForSemanticSegmentation(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() # forward pass _lowerCamelCase : Any = model(_lowerCamelCase ) _lowerCamelCase : Dict = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": _lowerCamelCase : str = torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]], [[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": _lowerCamelCase : Any = torch.tensor( [ [[-7.5_8_2_0, -8.7_2_3_1, -8.3_2_1_5], [-8.0_6_0_0, -1_0.3_5_2_9, -1_0.0_3_0_4], [-7.5_2_0_8, -9.4_1_0_3, -9.6_2_3_9]], [[-1_2.6_9_1_8, -1_3.8_9_9_4, -1_3.7_1_3_7], [-1_3.3_1_9_6, -1_5.7_5_2_3, -1_5.4_7_8_9], [-1_2.9_3_4_3, -1_4.8_7_5_7, -1_4.9_6_8_9]], [[-1_1.1_9_1_1, -1_1.9_4_2_1, -1_1.3_2_4_3], [-1_1.3_3_4_2, -1_3.6_8_3_9, -1_3.3_5_8_1], [-1_0.3_9_0_9, -1_2.1_8_3_2, -1_2.4_8_5_8]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": _lowerCamelCase : int = torch.tensor( [ [[-1_1.8_1_7_3, -1_4.3_8_5_0, -1_6.3_1_2_8], [-1_4.5_6_4_8, -1_6.5_8_0_4, -1_8.6_5_6_8], [-1_4.7_2_2_3, -1_5.7_3_8_7, -1_8.4_2_1_8]], [[-1_5.7_2_9_0, -1_7.9_1_7_1, -1_9.4_4_2_3], [-1_8.3_1_0_5, -1_9.9_4_4_8, -2_1.4_6_6_1], [-1_7.9_2_9_6, -1_8.6_4_9_7, -2_0.7_9_1_0]], [[-1_5.0_7_8_3, -1_7.0_3_3_6, -1_8.2_7_8_9], [-1_6.8_7_7_1, -1_8.6_8_7_0, -2_0.1_6_1_2], [-1_6.2_4_5_4, -1_7.1_4_2_6, -1_9.5_0_5_5]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": _lowerCamelCase : Optional[Any] = torch.tensor( [ [[-9.0_8_7_8, -1_0.2_0_8_1, -1_0.1_8_9_1], [-9.3_1_4_4, -1_0.7_9_4_1, -1_0.9_8_4_3], [-9.2_2_9_4, -1_0.3_8_5_5, -1_0.5_7_0_4]], [[-1_2.2_3_1_6, -1_3.9_0_6_8, -1_3.6_1_0_2], [-1_2.9_1_6_1, -1_4.3_7_0_2, -1_4.3_2_3_5], [-1_2.5_2_3_3, -1_3.7_1_7_4, -1_3.7_9_3_2]], [[-1_4.6_2_7_5, -1_5.2_4_9_0, -1_4.9_7_2_7], [-1_4.3_4_0_0, -1_5.9_6_8_7, -1_6.2_8_2_7], [-1_4.1_4_8_4, -1_5.4_0_3_3, -1_5.8_9_3_7]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": _lowerCamelCase : List[str] = torch.tensor( [ [[-1_2.3_1_4_4, -1_3.2_4_4_7, -1_4.0_8_0_2], [-1_3.3_6_1_4, -1_4.5_8_1_6, -1_5.6_1_1_7], [-1_3.3_3_4_0, -1_4.4_4_3_3, -1_6.2_2_1_9]], [[-1_9.2_7_8_1, -2_0.4_1_2_8, -2_0.7_5_0_6], [-2_0.6_1_5_3, -2_1.6_5_6_6, -2_2.0_9_9_8], [-1_9.9_8_0_0, -2_1.0_4_3_0, -2_2.1_4_9_4]], [[-1_8.8_7_3_9, -1_9.7_8_0_4, -2_1.1_8_3_4], [-2_0.1_2_3_3, -2_1.6_7_6_5, -2_3.2_9_4_4], [-2_0.0_3_1_5, -2_1.2_6_4_1, -2_3.6_9_4_4]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": _lowerCamelCase : Any = torch.tensor( [ [[-9.5_5_2_4, -1_2.0_8_3_5, -1_1.7_3_4_8], [-1_0.5_2_2_9, -1_3.6_4_4_6, -1_4.5_6_6_2], [-9.5_8_4_2, -1_2.8_8_5_1, -1_3.9_4_1_4]], [[-1_5.3_4_3_2, -1_7.5_3_2_3, -1_7.0_8_1_8], [-1_6.3_3_3_0, -1_8.9_2_5_5, -1_9.2_1_0_1], [-1_5.1_3_4_0, -1_7.7_8_4_8, -1_8.3_9_7_1]], [[-1_2.6_0_7_2, -1_4.9_4_8_6, -1_4.6_6_3_1], [-1_3.7_6_2_9, -1_7.0_9_0_7, -1_7.7_7_4_5], [-1_2.7_8_9_9, -1_6.1_6_9_5, -1_7.1_6_7_1]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": _lowerCamelCase : Dict = torch.tensor( [ [[-1_1.9_2_9_5, -1_3.4_0_5_7, -1_4.8_1_0_6], [-1_3.3_4_3_1, -1_4.8_1_7_9, -1_5.3_7_8_1], [-1_4.2_8_3_6, -1_5.5_9_4_2, -1_6.1_5_8_8]], [[-1_1.4_9_0_6, -1_2.8_0_6_7, -1_3.6_5_6_4], [-1_3.1_1_8_9, -1_4.0_5_0_0, -1_4.1_5_4_3], [-1_3.8_7_4_8, -1_4.5_1_3_6, -1_4.8_7_8_9]], [[0.5_3_7_4, 0.1_0_6_7, -0.4_7_4_2], [0.1_1_4_1, -0.2_2_5_5, -0.7_0_9_9], [-0.3_0_0_0, -0.5_9_2_4, -1.3_1_0_5]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": _lowerCamelCase : Optional[int] = torch.tensor( [ [[-7.8_2_1_7, -9.8_7_6_7, -1_0.1_7_1_7], [-9.4_4_3_8, -1_0.9_0_5_8, -1_1.4_0_4_7], [-9.7_9_3_9, -1_2.3_4_9_5, -1_2.1_0_7_9]], [[-7.1_5_1_4, -9.5_3_3_6, -1_0.0_8_6_0], [-9.7_7_7_6, -1_1.6_8_2_2, -1_1.8_4_3_9], [-1_0.1_4_1_1, -1_2.7_6_5_5, -1_2.8_9_7_2]], [[0.3_0_2_1, 0.0_8_0_5, -0.2_3_1_0], [-0.0_3_2_8, -0.1_6_0_5, -0.2_7_1_4], [-0.1_4_0_8, -0.5_4_7_7, -0.6_9_7_6]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": _lowerCamelCase : Tuple = torch.tensor( [ [ [-1.13_72e01, -1.27_87e01, -1.34_77e01], [-1.25_36e01, -1.41_94e01, -1.44_09e01], [-1.32_17e01, -1.48_88e01, -1.53_27e01], ], [ [-1.47_91e01, -1.71_22e01, -1.82_77e01], [-1.71_63e01, -1.91_92e01, -1.95_33e01], [-1.78_97e01, -1.99_91e01, -2.03_15e01], ], [ [7.67_23e-01, 4.19_21e-01, -7.78_78e-02], [4.77_72e-01, 9.55_57e-03, -2.80_82e-01], [3.60_32e-01, -2.48_26e-01, -5.11_68e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": _lowerCamelCase : Union[str, Any] = torch.tensor( [ [[-9.4_9_5_9, -1_1.3_0_8_7, -1_1.7_4_7_9], [-1_1.0_0_2_5, -1_2.6_5_4_0, -1_2.3_3_1_9], [-1_1.4_0_6_4, -1_3.0_4_8_7, -1_2.9_9_0_5]], [[-9.8_9_0_5, -1_1.3_0_8_4, -1_2.0_8_5_4], [-1_1.1_7_2_6, -1_2.7_6_9_8, -1_2.9_5_8_3], [-1_1.5_9_8_5, -1_3.3_2_7_8, -1_4.1_7_7_4]], [[0.2_2_1_3, 0.0_1_9_2, -0.2_4_6_6], [-0.1_7_3_1, -0.4_2_1_3, -0.4_8_7_4], [-0.3_1_2_6, -0.6_5_4_1, -1.1_3_8_9]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": _lowerCamelCase : List[Any] = torch.tensor( [ [[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]], [[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": _lowerCamelCase : Tuple = torch.tensor( [ [[-1_6.0_9_7_6, -1_6.4_8_5_6, -1_7.3_9_6_2], [-1_6.6_2_3_4, -1_9.0_3_4_2, -1_9.7_6_8_5], [-1_6.0_9_0_0, -1_8.0_6_6_1, -1_9.1_1_8_0]], [[-1_8.4_7_5_0, -1_8.8_4_8_8, -1_9.5_0_7_4], [-1_9.4_0_3_0, -2_2.1_5_7_0, -2_2.5_9_7_7], [-1_9.1_1_9_1, -2_0.8_4_8_6, -2_2.3_7_8_3]], [[-4.5_1_7_8, -5.5_0_3_7, -6.5_1_0_9], [-5.0_8_8_4, -7.2_1_7_4, -8.0_3_3_4], [-4.4_1_5_6, -5.8_1_1_7, -7.2_9_7_0]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": _lowerCamelCase : Any = torch.tensor( [ [[-1_4.2_0_8_1, -1_4.4_7_3_2, -1_4.1_9_7_7], [-1_4.5_8_6_7, -1_6.4_4_2_3, -1_6.6_3_5_6], [-1_3.4_4_4_1, -1_4.9_6_8_5, -1_6.8_6_9_6]], [[-1_4.4_5_7_6, -1_4.7_0_7_3, -1_5.0_4_5_1], [-1_5.0_8_1_6, -1_7.6_2_3_7, -1_7.9_8_7_3], [-1_4.4_2_1_3, -1_6.0_1_9_9, -1_8.5_9_9_2]], [[-4.7_3_4_9, -4.9_5_8_8, -5.0_9_6_6], [-4.3_2_1_0, -6.9_3_2_5, -7.2_5_9_1], [-3.4_3_1_2, -4.7_4_8_4, -7.1_9_1_7]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": _lowerCamelCase : List[str] = torch.tensor( [ [[-1_1.7_7_3_7, -1_1.9_5_2_6, -1_1.3_2_7_3], [-1_3.6_6_9_2, -1_4.4_5_7_4, -1_3.8_8_7_8], [-1_3.8_9_3_7, -1_4.6_9_2_4, -1_5.9_3_4_5]], [[-1_4.6_7_0_6, -1_4.5_3_3_0, -1_4.1_3_0_6], [-1_6.1_5_0_2, -1_6.8_1_8_0, -1_6.4_2_6_9], [-1_6.8_3_3_8, -1_7.8_9_3_9, -2_0.1_7_4_6]], [[1.0_4_9_1, 0.8_2_8_9, 1.0_3_1_0], [1.1_0_4_4, 0.5_2_1_9, 0.8_0_5_5], [1.0_8_9_9, 0.6_9_2_6, 0.5_5_9_0]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": _lowerCamelCase : str = torch.tensor( [ [[-1_2.5_6_4_1, -1_3.4_7_7_7, -1_3.0_6_8_4], [-1_3.9_5_8_7, -1_5.8_9_8_3, -1_6.6_5_5_7], [-1_3.3_1_0_9, -1_5.7_3_5_0, -1_6.3_1_4_1]], [[-1_4.7_0_7_4, -1_5.4_3_5_2, -1_4.5_9_4_4], [-1_6.6_3_5_3, -1_8.1_6_6_3, -1_8.6_1_2_0], [-1_5.1_7_0_2, -1_8.0_3_2_9, -1_8.1_5_4_7]], [[-1.7_9_9_0, -2.0_9_5_1, -1.7_7_8_4], [-2.6_3_9_7, -3.8_2_4_5, -3.9_6_8_6], [-1.5_2_6_4, -2.8_1_2_6, -2.9_3_1_6]], ] ) else: _lowerCamelCase : Dict = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1e-2 ) # finally, save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''segformer.b0.512x512.ade.160k''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _lowerCAmelCase : str = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
340
0
"""simple docstring""" _lowerCAmelCase : Dict = '''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
354
"""simple docstring""" _lowerCAmelCase : dict[tuple[int, int, int], int] = {} def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on _lowerCamelCase : Optional[int] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one _lowerCamelCase : int = _calculate(days - 1 , _lowerCamelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 _lowerCamelCase : Tuple = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter _lowerCamelCase : str = _calculate(days - 1 , _lowerCamelCase , 0 ) _lowerCamelCase : List[Any] = state_late + state_absent + state_ontime _lowerCamelCase : int = prizestrings return prizestrings def lowerCamelCase_( _lowerCamelCase = 30 ) -> int: '''simple docstring''' return _calculate(_lowerCamelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
340
0
"""simple docstring""" import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def lowerCamelCase_( _lowerCamelCase="" ) -> str: '''simple docstring''' _lowerCamelCase : List[Any] = tempfile.mkdtemp() return os.path.join(_lowerCamelCase , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class A_ ( unittest.TestCase ): def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : List[str] = torch.rand(12 ,dtype=torch.floataa ) - 0.5 _lowerCamelCase : Optional[int] = AgentAudio(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(__lowerCAmelCase ,agent_type.to_raw() ,atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(__lowerCAmelCase ) ) # Ensure that the file contains the same value as the original tensor _lowerCamelCase : int = sf.read(__lowerCAmelCase ) self.assertTrue(torch.allclose(__lowerCAmelCase ,torch.tensor(__lowerCAmelCase ) ,atol=1e-4 ) ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : int = torch.rand(12 ,dtype=torch.floataa ) - 0.5 _lowerCamelCase : Union[str, Any] = get_new_path(suffix=".wav" ) sf.write(__lowerCAmelCase ,__lowerCAmelCase ,16_000 ) _lowerCamelCase : int = AgentAudio(__lowerCAmelCase ) self.assertTrue(torch.allclose(__lowerCAmelCase ,agent_type.to_raw() ,atol=1e-4 ) ) self.assertEqual(agent_type.to_string() ,__lowerCAmelCase ) @require_vision @require_torch class A_ ( unittest.TestCase ): def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : str = torch.randint(0 ,256 ,(64, 64, 3) ) _lowerCamelCase : List[Any] = AgentImage(__lowerCAmelCase ) _lowerCamelCase : Tuple = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(__lowerCAmelCase ,agent_type._tensor ,atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw() ,Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(__lowerCAmelCase ) ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Any = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" _lowerCamelCase : str = Image.open(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = AgentImage(__lowerCAmelCase ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(__lowerCAmelCase ) ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[Any] = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" _lowerCamelCase : Tuple = Image.open(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = AgentImage(__lowerCAmelCase ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(__lowerCAmelCase ) ) class A_ ( unittest.TestCase ): def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Any = "Hey!" _lowerCamelCase : Optional[int] = AgentText(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase ,agent_type.to_string() ) self.assertEqual(__lowerCAmelCase ,agent_type.to_raw() ) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase )
355
"""simple docstring""" from __future__ import annotations def lowerCamelCase_( _lowerCamelCase ) -> bool: '''simple docstring''' _lowerCamelCase : int = str(_lowerCamelCase ) return len(_lowerCamelCase ) == 9 and set(_lowerCamelCase ) == set("123456789" ) def lowerCamelCase_( ) -> int | None: '''simple docstring''' for base_num in range(9999 , 4999 , -1 ): _lowerCamelCase : Union[str, Any] = 100002 * base_num if is_9_pandigital(_lowerCamelCase ): return candidate for base_num in range(333 , 99 , -1 ): _lowerCamelCase : Tuple = 1002003 * base_num if is_9_pandigital(_lowerCamelCase ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
340
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A_ : lowerCAmelCase__ = XGLMConfig lowerCAmelCase__ = {} lowerCAmelCase__ = 'gelu' def __init__( self: int ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[Any]=14 ,__lowerCAmelCase: Any=7 ,__lowerCAmelCase: Optional[Any]=True ,__lowerCAmelCase: Optional[Any]=True ,__lowerCAmelCase: Optional[int]=True ,__lowerCAmelCase: Optional[Any]=99 ,__lowerCAmelCase: int=32 ,__lowerCAmelCase: str=2 ,__lowerCAmelCase: str=4 ,__lowerCAmelCase: Optional[int]=37 ,__lowerCAmelCase: str="gelu" ,__lowerCAmelCase: Tuple=0.1 ,__lowerCAmelCase: List[Any]=0.1 ,__lowerCAmelCase: str=512 ,__lowerCAmelCase: List[str]=0.02 ,): '''simple docstring''' _lowerCamelCase : Dict = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : Optional[int] = seq_length _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : Any = use_input_mask _lowerCamelCase : Tuple = use_labels _lowerCamelCase : str = vocab_size _lowerCamelCase : int = d_model _lowerCamelCase : Optional[int] = num_hidden_layers _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : Dict = ffn_dim _lowerCamelCase : List[str] = activation_function _lowerCamelCase : Dict = activation_dropout _lowerCamelCase : Optional[int] = attention_dropout _lowerCamelCase : Union[str, Any] = max_position_embeddings _lowerCamelCase : List[str] = initializer_range _lowerCamelCase : Any = None _lowerCamelCase : Tuple = 0 _lowerCamelCase : Union[str, Any] = 2 _lowerCamelCase : Optional[Any] = 1 def _lowercase ( self: List[Any] ): '''simple docstring''' return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) ,clip_value_min=0 ,clip_value_max=3 ) _lowerCamelCase : Union[str, Any] = None if self.use_input_mask: _lowerCamelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Dict = self.get_config() _lowerCamelCase : List[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowercase ( self: Optional[int] ): '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size ,d_model=self.hidden_size ,num_layers=self.num_hidden_layers ,attention_heads=self.num_attention_heads ,ffn_dim=self.ffn_dim ,activation_function=self.activation_function ,activation_dropout=self.activation_dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,use_cache=__lowerCAmelCase ,bos_token_id=self.bos_token_id ,eos_token_id=self.eos_token_id ,pad_token_id=self.pad_token_id ,return_dict=__lowerCAmelCase ,) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.prepare_config_and_inputs() ( _lowerCamelCase ) : Union[str, Any] = config_and_inputs _lowerCamelCase : Optional[int] = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class A_ ( _a , _a , unittest.TestCase ): lowerCAmelCase__ = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowerCAmelCase__ = (TFXGLMForCausalLM,) if is_tf_available() else () lowerCAmelCase__ = ( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Dict = TFXGLMModelTester(self ) _lowerCamelCase : List[str] = ConfigTester(self ,config_class=__lowerCAmelCase ,n_embd=37 ) def _lowercase ( self: List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() @slow def _lowercase ( self: Optional[int] ): '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Tuple = TFXGLMModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowercase ( self: Dict ): '''simple docstring''' super().test_resize_token_embeddings() @require_tf class A_ ( unittest.TestCase ): @slow def _lowercase ( self: List[str] ,__lowerCAmelCase: Dict=True ): '''simple docstring''' _lowerCamelCase : List[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _lowerCamelCase : int = tf.convert_to_tensor([[2, 268, 9_865]] ,dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _lowerCamelCase : Dict = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on _lowerCamelCase : int = model.generate(__lowerCAmelCase ,do_sample=__lowerCAmelCase ,num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() ,__lowerCAmelCase ) @slow def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Tuple = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _lowerCamelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) _lowerCamelCase : Dict = tokenizer("Today is a nice day and" ,return_tensors="tf" ) _lowerCamelCase : Dict = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): _lowerCamelCase : Union[str, Any] = model.generate(__lowerCAmelCase ,do_sample=__lowerCAmelCase ,seed=[7, 0] ) _lowerCamelCase : int = tokenizer.decode(output_ids[0] ,skip_special_tokens=__lowerCAmelCase ) _lowerCamelCase : List[str] = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) @slow def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _lowerCamelCase : Optional[int] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _lowerCamelCase : Optional[int] = "left" # use different length sentences to test batching _lowerCamelCase : Optional[Any] = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] _lowerCamelCase : Tuple = tokenizer(__lowerCAmelCase ,return_tensors="tf" ,padding=__lowerCAmelCase ) _lowerCamelCase : int = inputs["input_ids"] _lowerCamelCase : List[Any] = model.generate(input_ids=__lowerCAmelCase ,attention_mask=inputs["attention_mask"] ,max_new_tokens=12 ) _lowerCamelCase : Optional[int] = tokenizer(sentences[0] ,return_tensors="tf" ).input_ids _lowerCamelCase : Dict = model.generate(input_ids=__lowerCAmelCase ,max_new_tokens=12 ) _lowerCamelCase : Optional[Any] = tokenizer(sentences[1] ,return_tensors="tf" ).input_ids _lowerCamelCase : Optional[int] = model.generate(input_ids=__lowerCAmelCase ,max_new_tokens=12 ) _lowerCamelCase : Dict = tokenizer.batch_decode(__lowerCAmelCase ,skip_special_tokens=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = tokenizer.decode(output_non_padded[0] ,skip_special_tokens=__lowerCAmelCase ) _lowerCamelCase : str = tokenizer.decode(output_padded[0] ,skip_special_tokens=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase ,[non_padded_sentence, padded_sentence] )
356
"""simple docstring""" import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class A_ ( _a ): lowerCAmelCase__ = 'char' lowerCAmelCase__ = 'bpe' lowerCAmelCase__ = 'wp' _lowerCAmelCase : List[str] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class A_ ( _a ): lowerCAmelCase__ = ['image_processor', 'char_tokenizer'] lowerCAmelCase__ = 'ViTImageProcessor' lowerCAmelCase__ = 'MgpstrTokenizer' def __init__( self: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: Optional[int]=None ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Any = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." ,__lowerCAmelCase ,) _lowerCamelCase : List[Any] = kwargs.pop("feature_extractor" ) _lowerCamelCase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : str = AutoTokenizer.from_pretrained("gpt2" ) _lowerCamelCase : List[str] = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(__lowerCAmelCase ,__lowerCAmelCase ) def __call__( self: Optional[int] ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: Optional[Any]=None ,**__lowerCAmelCase: Tuple ): '''simple docstring''' if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: _lowerCamelCase : Optional[int] = self.image_processor(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) if text is not None: _lowerCamelCase : int = self.char_tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) if text is None: return inputs elif images is None: return encodings else: _lowerCamelCase : Tuple = encodings["input_ids"] return inputs def _lowercase ( self: int ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = sequences _lowerCamelCase : Dict = char_preds.size(0 ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._decode_helper(__lowerCAmelCase ,"char" ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self._decode_helper(__lowerCAmelCase ,"bpe" ) _lowerCamelCase, _lowerCamelCase : Tuple = self._decode_helper(__lowerCAmelCase ,"wp" ) _lowerCamelCase : List[str] = [] _lowerCamelCase : str = [] for i in range(__lowerCAmelCase ): _lowerCamelCase : str = [char_scores[i], bpe_scores[i], wp_scores[i]] _lowerCamelCase : List[Any] = [char_strs[i], bpe_strs[i], wp_strs[i]] _lowerCamelCase : Optional[Any] = scores.index(max(__lowerCAmelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _lowerCamelCase : Tuple = {} _lowerCamelCase : Tuple = final_strs _lowerCamelCase : int = final_scores _lowerCamelCase : str = char_strs _lowerCamelCase : Dict = bpe_strs _lowerCamelCase : int = wp_strs return out def _lowercase ( self: List[str] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: List[Any] ): '''simple docstring''' if format == DecodeType.CHARACTER: _lowerCamelCase : int = self.char_decode _lowerCamelCase : List[str] = 1 _lowerCamelCase : Optional[int] = "[s]" elif format == DecodeType.BPE: _lowerCamelCase : Dict = self.bpe_decode _lowerCamelCase : str = 2 _lowerCamelCase : Union[str, Any] = "#" elif format == DecodeType.WORDPIECE: _lowerCamelCase : int = self.wp_decode _lowerCamelCase : List[str] = 102 _lowerCamelCase : List[Any] = "[SEP]" else: raise ValueError(F"""Format {format} is not supported.""" ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = [], [] _lowerCamelCase : Any = pred_logits.size(0 ) _lowerCamelCase : int = pred_logits.size(1 ) _lowerCamelCase, _lowerCamelCase : List[Any] = pred_logits.topk(1 ,dim=-1 ,largest=__lowerCAmelCase ,sorted=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = preds_index.view(-1 ,__lowerCAmelCase )[:, 1:] _lowerCamelCase : List[str] = decoder(__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : str = torch.nn.functional.softmax(__lowerCAmelCase ,dim=2 ).max(dim=2 ) _lowerCamelCase : Any = preds_max_prob[:, 1:] for index in range(__lowerCAmelCase ): _lowerCamelCase : List[Any] = preds_str[index].find(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = preds_str[index][:pred_eos] _lowerCamelCase : Optional[Any] = preds_index[index].cpu().tolist() _lowerCamelCase : List[str] = pred_index.index(__lowerCAmelCase ) if eos_token in pred_index else -1 _lowerCamelCase : str = preds_max_prob[index][: pred_eos_index + 1] _lowerCamelCase : Union[str, Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__lowerCAmelCase ) conf_scores.append(__lowerCAmelCase ) return dec_strs, conf_scores def _lowercase ( self: Tuple ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : str = [seq.replace(" " ,"" ) for seq in self.char_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs def _lowercase ( self: List[str] ,__lowerCAmelCase: List[str] ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(__lowerCAmelCase ) def _lowercase ( self: Tuple ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [seq.replace(" " ,"" ) for seq in self.wp_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs
340
0
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A_ ( _a ): lowerCAmelCase__ = (DPMSolverSinglestepScheduler,) lowerCAmelCase__ = (('num_inference_steps', 2_5),) def _lowercase ( self: Optional[Any] ,**__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = { "num_train_timesteps": 1_000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "prediction_type": "epsilon", "thresholding": False, "sample_max_value": 1.0, "algorithm_type": "dpmsolver++", "solver_type": "midpoint", "lambda_min_clipped": -float("inf" ), "variance_type": None, } config.update(**__lowerCAmelCase ) return config def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: int=0 ,**__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = dict(self.forward_default_kwargs ) _lowerCamelCase : List[Any] = kwargs.pop("num_inference_steps" ,__lowerCAmelCase ) _lowerCamelCase : Dict = self.dummy_sample _lowerCamelCase : Union[str, Any] = 0.1 * sample _lowerCamelCase : List[str] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCamelCase : str = self.get_scheduler_config(**__lowerCAmelCase ) _lowerCamelCase : int = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals _lowerCamelCase : Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCAmelCase ) _lowerCamelCase : List[Any] = scheduler_class.from_pretrained(__lowerCAmelCase ) new_scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals _lowerCamelCase : Tuple = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCamelCase : Any = sample, sample for t in range(__lowerCAmelCase ,time_step + scheduler.config.solver_order + 1 ): _lowerCamelCase : int = scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,**__lowerCAmelCase ).prev_sample _lowerCamelCase : str = new_scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,**__lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowercase ( self: str ): '''simple docstring''' pass def _lowercase ( self: int ,__lowerCAmelCase: Any=0 ,**__lowerCAmelCase: int ): '''simple docstring''' _lowerCamelCase : Any = dict(self.forward_default_kwargs ) _lowerCamelCase : Tuple = kwargs.pop("num_inference_steps" ,__lowerCAmelCase ) _lowerCamelCase : Optional[int] = self.dummy_sample _lowerCamelCase : str = 0.1 * sample _lowerCamelCase : List[str] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCamelCase : int = self.get_scheduler_config() _lowerCamelCase : List[str] = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) _lowerCamelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCAmelCase ) _lowerCamelCase : str = scheduler_class.from_pretrained(__lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) _lowerCamelCase : str = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCamelCase : str = scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,**__lowerCAmelCase ).prev_sample _lowerCamelCase : Tuple = new_scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,**__lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowercase ( self: List[Any] ,__lowerCAmelCase: int=None ,**__lowerCAmelCase: Any ): '''simple docstring''' if scheduler is None: _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : Dict = self.get_scheduler_config(**__lowerCAmelCase ) _lowerCamelCase : Optional[int] = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase : Tuple = self.scheduler_classes[0] _lowerCamelCase : Union[str, Any] = self.get_scheduler_config(**__lowerCAmelCase ) _lowerCamelCase : List[Any] = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = 10 _lowerCamelCase : List[Any] = self.dummy_model() _lowerCamelCase : Dict = self.dummy_sample_deter scheduler.set_timesteps(__lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _lowerCamelCase : Optional[int] = model(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Any = scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ).prev_sample return sample def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Any = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _lowerCamelCase : List[str] = 50 _lowerCamelCase : List[str] = self.dummy_model() _lowerCamelCase : Optional[int] = self.dummy_sample_deter scheduler.set_timesteps(__lowerCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): _lowerCamelCase : List[Any] = model(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : str = scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ).prev_sample _lowerCamelCase : Dict = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.25_74 ) < 1e-3 def _lowercase ( self: Tuple ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : str = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _lowerCamelCase : Tuple = self.full_loop(scheduler=__lowerCAmelCase ) _lowerCamelCase : str = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.27_91 ) < 1e-3 _lowerCamelCase : Dict = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCamelCase : Optional[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCamelCase : Dict = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCamelCase : Optional[int] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCamelCase : int = self.full_loop(scheduler=__lowerCAmelCase ) _lowerCamelCase : List[str] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.27_91 ) < 1e-3 def _lowercase ( self: int ): '''simple docstring''' self.check_over_configs(thresholding=__lowerCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__lowerCAmelCase ,prediction_type=__lowerCAmelCase ,sample_max_value=__lowerCAmelCase ,algorithm_type="dpmsolver++" ,solver_order=__lowerCAmelCase ,solver_type=__lowerCAmelCase ,) def _lowercase ( self: Optional[int] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def _lowercase ( self: Any ): '''simple docstring''' for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__lowerCAmelCase ,solver_type=__lowerCAmelCase ,prediction_type=__lowerCAmelCase ,algorithm_type=__lowerCAmelCase ,) _lowerCamelCase : Union[str, Any] = self.full_loop( solver_order=__lowerCAmelCase ,solver_type=__lowerCAmelCase ,prediction_type=__lowerCAmelCase ,algorithm_type=__lowerCAmelCase ,) assert not torch.isnan(__lowerCAmelCase ).any(), "Samples have nan numbers" def _lowercase ( self: str ): '''simple docstring''' self.check_over_configs(lower_order_final=__lowerCAmelCase ) self.check_over_configs(lower_order_final=__lowerCAmelCase ) def _lowercase ( self: int ): '''simple docstring''' self.check_over_configs(lambda_min_clipped=-float("inf" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def _lowercase ( self: Any ): '''simple docstring''' self.check_over_configs(variance_type=__lowerCAmelCase ) self.check_over_configs(variance_type="learned_range" ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=__lowerCAmelCase ,time_step=0 ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = self.full_loop() _lowerCamelCase : List[str] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.27_91 ) < 1e-3 def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.full_loop(use_karras_sigmas=__lowerCAmelCase ) _lowerCamelCase : str = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.22_48 ) < 1e-3 def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Dict = self.full_loop(prediction_type="v_prediction" ) _lowerCamelCase : Dict = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.14_53 ) < 1e-3 def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = self.full_loop(prediction_type="v_prediction" ,use_karras_sigmas=__lowerCAmelCase ) _lowerCamelCase : Tuple = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.06_49 ) < 1e-3 def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : List[str] = self.get_scheduler_config(thresholding=__lowerCAmelCase ,dynamic_thresholding_ratio=0 ) _lowerCamelCase : Union[str, Any] = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase : List[Any] = 10 _lowerCamelCase : Tuple = self.dummy_model() _lowerCamelCase : int = self.dummy_sample_deter.half() scheduler.set_timesteps(__lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _lowerCamelCase : int = model(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ).prev_sample assert sample.dtype == torch.floataa
357
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version _lowerCAmelCase : List[Any] = get_logger(__name__) class A_ : lowerCAmelCase__ = 'dummy_data' lowerCAmelCase__ = 'datasets' lowerCAmelCase__ = False def __init__( self: List[str] ,__lowerCAmelCase: str ,__lowerCAmelCase: str ,__lowerCAmelCase: Union[Version, str] ,__lowerCAmelCase: Optional[str] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[List[Callable]] = None ,): '''simple docstring''' _lowerCamelCase : str = 0 _lowerCamelCase : List[str] = dataset_name _lowerCamelCase : Optional[int] = cache_dir _lowerCamelCase : Optional[int] = use_local_dummy_data _lowerCamelCase : int = config # download_callbacks take a single url as input _lowerCamelCase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _lowerCamelCase : int = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _lowerCamelCase : Tuple = str(__lowerCAmelCase ) # to be downloaded _lowerCamelCase : Optional[Any] = None _lowerCamelCase : Dict = None @property def _lowercase ( self: str ): '''simple docstring''' if self._dummy_file is None: _lowerCamelCase : List[str] = self.download_dummy_data() return self._dummy_file @property def _lowercase ( self: str ): '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" ,self.config.name ,self.version_name ) # structure is dummy / version_name return os.path.join("dummy" ,self.version_name ) @property def _lowercase ( self: Optional[Any] ): '''simple docstring''' return os.path.join(self.dummy_data_folder ,"dummy_data.zip" ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _lowerCamelCase : Optional[int] = cached_path( __lowerCAmelCase ,cache_dir=self.cache_dir ,extract_compressed_file=__lowerCAmelCase ,force_extract=__lowerCAmelCase ) return os.path.join(__lowerCAmelCase ,self.dummy_file_name ) @property def _lowercase ( self: Tuple ): '''simple docstring''' return os.path.join(self.datasets_scripts_dir ,self.dataset_name ,self.dummy_zip_file ) @property def _lowercase ( self: List[str] ): '''simple docstring''' if self._bucket_url is None: _lowerCamelCase : List[str] = hf_github_url(self.dataset_name ,self.dummy_zip_file.replace(os.sep ,"/" ) ) return self._bucket_url @property def _lowercase ( self: Union[str, Any] ): '''simple docstring''' if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep ,"/" ).split("/" )[:-1] ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: str ,*__lowerCAmelCase: List[Any] ): '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested _lowerCamelCase : Tuple = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _lowerCamelCase : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): return self.create_dummy_data_dict(__lowerCAmelCase ,__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,(list, tuple) ): return self.create_dummy_data_list(__lowerCAmelCase ,__lowerCAmelCase ) else: return self.create_dummy_data_single(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: Optional[int] ): '''simple docstring''' return self.download_and_extract(__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: int ): '''simple docstring''' return self.download_and_extract(__lowerCAmelCase ) def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' return path def _lowercase ( self: Optional[int] ): '''simple docstring''' return {} def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : str = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): for single_url in single_urls: download_callback(__lowerCAmelCase ) else: _lowerCamelCase : Union[str, Any] = single_urls download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Dict = [os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) ) for x in single_urls] else: _lowerCamelCase : Union[str, Any] = single_urls _lowerCamelCase : List[str] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) ) _lowerCamelCase : List[Any] = value # make sure that values are unique if all(isinstance(__lowerCAmelCase ,__lowerCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique _lowerCamelCase : List[Any] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Dict = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _lowerCamelCase : List[str] = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" ,__lowerCAmelCase ) ) for url in data_url ) _lowerCamelCase : Optional[Any] = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): _lowerCamelCase : Tuple = [data_url[0]] * len(__lowerCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(__lowerCAmelCase ) return dummy_data_list def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: List[Any] ): '''simple docstring''' for download_callback in self.download_callbacks: download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : Optional[int] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(__lowerCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass def _lowercase ( self: Optional[int] ): '''simple docstring''' pass def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' def _iter_archive_members(__lowerCAmelCase: Any ): # this preserves the order of the members inside the ZIP archive _lowerCamelCase : Tuple = Path(self.dummy_file ).parent _lowerCamelCase : str = path.relative_to(__lowerCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: _lowerCamelCase : Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = Path(__lowerCAmelCase ) _lowerCamelCase : int = _iter_archive_members(__lowerCAmelCase ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(__lowerCAmelCase ).as_posix(), file_path.open("rb" ) def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = [paths] for path in paths: if os.path.isfile(__lowerCAmelCase ): if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(__lowerCAmelCase ): if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(__lowerCAmelCase ): if filename.startswith((".", "__") ): continue yield os.path.join(__lowerCAmelCase ,__lowerCAmelCase )
340
0
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase ) -> bool: '''simple docstring''' if num < 0: return False _lowerCamelCase : int = num _lowerCamelCase : int = 0 while num > 0: _lowerCamelCase : List[Any] = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
358
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) _lowerCamelCase : int = precision _lowerCamelCase : Dict = ceil(precision / 14 ) _lowerCamelCase : Optional[Any] = 426880 * Decimal(10005 ).sqrt() _lowerCamelCase : int = 1 _lowerCamelCase : Optional[int] = 13591409 _lowerCamelCase : int = Decimal(_lowerCamelCase ) for k in range(1 , _lowerCamelCase ): _lowerCamelCase : Union[str, Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowerCamelCase ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = 50 print(f'''The first {n} digits of pi is: {pi(n)}''')
340
0
"""simple docstring""" from __future__ import annotations def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> list: '''simple docstring''' _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Tuple = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) _lowerCamelCase : Dict = result + left + right return input_list def lowerCamelCase_( _lowerCamelCase ) -> list: '''simple docstring''' if len(_lowerCamelCase ) <= 1: return input_list _lowerCamelCase : Optional[Any] = list(_lowerCamelCase ) # iteration for two-way merging _lowerCamelCase : Tuple = 2 while p <= len(_lowerCamelCase ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(_lowerCamelCase ) , _lowerCamelCase ): _lowerCamelCase : Dict = i _lowerCamelCase : List[Any] = i + p - 1 _lowerCamelCase : Union[str, Any] = (low + high + 1) // 2 _lowerCamelCase : str = merge(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # final merge of last two parts if p * 2 >= len(_lowerCamelCase ): _lowerCamelCase : int = i _lowerCamelCase : int = merge(_lowerCamelCase , 0 , _lowerCamelCase , len(_lowerCamelCase ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _lowerCAmelCase : int = input('''Enter numbers separated by a comma:\n''').strip() if user_input == "": _lowerCAmelCase : List[Any] = [] else: _lowerCAmelCase : Optional[int] = [int(item.strip()) for item in user_input.split(''',''')] print(iter_merge_sort(unsorted))
359
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class A_ ( _a ): lowerCAmelCase__ = 42 lowerCAmelCase__ = None def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=0.9_9_9 , _lowerCamelCase="cosine" , ) -> List[str]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_lowerCamelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowerCamelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _lowerCamelCase : str = [] for i in range(_lowerCamelCase ): _lowerCamelCase : Any = i / num_diffusion_timesteps _lowerCamelCase : Optional[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCamelCase ) / alpha_bar_fn(_lowerCamelCase ) , _lowerCamelCase ) ) return torch.tensor(_lowerCamelCase , dtype=torch.floataa ) class A_ ( _a , _a ): @register_to_config def __init__( self: str ,__lowerCAmelCase: int = 1_000 ,__lowerCAmelCase: str = "fixed_small_log" ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[float] = 1.0 ,__lowerCAmelCase: str = "epsilon" ,__lowerCAmelCase: str = "squaredcos_cap_v2" ,): '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) _lowerCamelCase : Union[str, Any] = betas_for_alpha_bar(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = 1.0 - self.betas _lowerCamelCase : Dict = torch.cumprod(self.alphas ,dim=0 ) _lowerCamelCase : int = torch.tensor(1.0 ) # standard deviation of the initial noise distribution _lowerCamelCase : Tuple = 1.0 # setable values _lowerCamelCase : List[Any] = None _lowerCamelCase : Union[str, Any] = torch.from_numpy(np.arange(0 ,__lowerCAmelCase )[::-1].copy() ) _lowerCamelCase : List[str] = variance_type def _lowercase ( self: Any ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ): '''simple docstring''' return sample def _lowercase ( self: Optional[int] ,__lowerCAmelCase: int ,__lowerCAmelCase: Union[str, torch.device] = None ): '''simple docstring''' _lowerCamelCase : str = num_inference_steps _lowerCamelCase : str = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) _lowerCamelCase : Union[str, Any] = (np.arange(0 ,__lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) _lowerCamelCase : int = torch.from_numpy(__lowerCAmelCase ).to(__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: List[str]=None ,__lowerCAmelCase: str=None ): '''simple docstring''' if prev_timestep is None: _lowerCamelCase : List[str] = t - 1 _lowerCamelCase : Optional[int] = self.alphas_cumprod[t] _lowerCamelCase : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _lowerCamelCase : Dict = 1 - alpha_prod_t _lowerCamelCase : str = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _lowerCamelCase : List[Any] = self.betas[t] else: _lowerCamelCase : str = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _lowerCamelCase : int = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: _lowerCamelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": _lowerCamelCase : Dict = torch.log(torch.clamp(__lowerCAmelCase ,min=1e-20 ) ) _lowerCamelCase : str = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler _lowerCamelCase : str = variance.log() _lowerCamelCase : str = beta.log() _lowerCamelCase : Optional[int] = (predicted_variance + 1) / 2 _lowerCamelCase : Union[str, Any] = frac * max_log + (1 - frac) * min_log return variance def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: int ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: bool = True ,): '''simple docstring''' _lowerCamelCase : str = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": _lowerCamelCase, _lowerCamelCase : int = torch.split(__lowerCAmelCase ,sample.shape[1] ,dim=1 ) else: _lowerCamelCase : List[Any] = None # 1. compute alphas, betas if prev_timestep is None: _lowerCamelCase : List[Any] = t - 1 _lowerCamelCase : Dict = self.alphas_cumprod[t] _lowerCamelCase : int = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _lowerCamelCase : Dict = 1 - alpha_prod_t _lowerCamelCase : List[str] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _lowerCamelCase : Any = self.betas[t] _lowerCamelCase : str = self.alphas[t] else: _lowerCamelCase : Any = 1 - alpha_prod_t / alpha_prod_t_prev _lowerCamelCase : Optional[Any] = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _lowerCamelCase : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _lowerCamelCase : List[Any] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: _lowerCamelCase : Any = torch.clamp( __lowerCAmelCase ,-self.config.clip_sample_range ,self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCamelCase : List[str] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t _lowerCamelCase : Optional[int] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCamelCase : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _lowerCamelCase : Union[str, Any] = 0 if t > 0: _lowerCamelCase : Dict = randn_tensor( model_output.shape ,dtype=model_output.dtype ,generator=__lowerCAmelCase ,device=model_output.device ) _lowerCamelCase : Any = self._get_variance( __lowerCAmelCase ,predicted_variance=__lowerCAmelCase ,prev_timestep=__lowerCAmelCase ,) if self.variance_type == "fixed_small_log": _lowerCamelCase : Optional[Any] = variance elif self.variance_type == "learned_range": _lowerCamelCase : Optional[int] = (0.5 * variance).exp() else: raise ValueError( F"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" " for the UnCLIPScheduler." ) _lowerCamelCase : Dict = variance * variance_noise _lowerCamelCase : List[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__lowerCAmelCase ,pred_original_sample=__lowerCAmelCase ) def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.IntTensor ,): '''simple docstring''' _lowerCamelCase : int = self.alphas_cumprod.to(device=original_samples.device ,dtype=original_samples.dtype ) _lowerCamelCase : Any = timesteps.to(original_samples.device ) _lowerCamelCase : List[Any] = alphas_cumprod[timesteps] ** 0.5 _lowerCamelCase : List[Any] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): _lowerCamelCase : int = sqrt_alpha_prod.unsqueeze(-1 ) _lowerCamelCase : Union[str, Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 _lowerCamelCase : str = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): _lowerCamelCase : Union[str, Any] = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) _lowerCamelCase : Dict = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
340
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor _lowerCAmelCase : Any = logging.get_logger(__name__) class A_ ( _a ): def __init__( self: List[Any] ,*__lowerCAmelCase: Dict ,**__lowerCAmelCase: List[Any] ): '''simple docstring''' warnings.warn( "The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PoolFormerImageProcessor instead." ,__lowerCAmelCase ,) super().__init__(*__lowerCAmelCase ,**__lowerCAmelCase )
360
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _lowerCAmelCase : str = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' for attribute in key.split("." ): _lowerCamelCase : Tuple = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: _lowerCamelCase : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: _lowerCamelCase : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowerCamelCase : Tuple = value elif weight_type == "weight_g": _lowerCamelCase : List[str] = value elif weight_type == "weight_v": _lowerCamelCase : List[Any] = value elif weight_type == "bias": _lowerCamelCase : str = value elif weight_type == "running_mean": _lowerCamelCase : Optional[int] = value elif weight_type == "running_var": _lowerCamelCase : Optional[Any] = value elif weight_type == "num_batches_tracked": _lowerCamelCase : int = value elif weight_type == "inv_freq": _lowerCamelCase : List[str] = value else: _lowerCamelCase : Optional[Any] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase : Dict = [] _lowerCamelCase : Optional[Any] = fairseq_model.state_dict() _lowerCamelCase : List[Any] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase : Dict = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) _lowerCamelCase : List[Any] = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase : Dict = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _lowerCamelCase : int = True if "*" in mapped_key: _lowerCamelCase : Tuple = name.split(_lowerCamelCase )[0].split("." )[-2] _lowerCamelCase : int = mapped_key.replace("*" , _lowerCamelCase ) if "pos_bias_u" in name: _lowerCamelCase : int = None elif "pos_bias_v" in name: _lowerCamelCase : Any = None elif "weight_g" in name: _lowerCamelCase : Any = "weight_g" elif "weight_v" in name: _lowerCamelCase : Any = "weight_v" elif "bias" in name: _lowerCamelCase : Optional[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase : Dict = "weight" elif "running_mean" in name: _lowerCamelCase : str = "running_mean" elif "inv_freq" in name: _lowerCamelCase : List[Any] = "inv_freq" elif "running_var" in name: _lowerCamelCase : Tuple = "running_var" elif "num_batches_tracked" in name: _lowerCamelCase : str = "num_batches_tracked" else: _lowerCamelCase : Dict = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : int = full_name.split("conv_layers." )[-1] _lowerCamelCase : List[Any] = name.split("." ) _lowerCamelCase : Union[str, Any] = int(items[0] ) _lowerCamelCase : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowerCamelCase : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowerCamelCase : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) _lowerCamelCase : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowerCamelCase : Optional[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> Dict: '''simple docstring''' if config_path is not None: _lowerCamelCase : Union[str, Any] = WavaVecaConformerConfig.from_pretrained(_lowerCamelCase , hidden_act="swish" ) else: _lowerCamelCase : Dict = WavaVecaConformerConfig() if "rope" in checkpoint_path: _lowerCamelCase : List[Any] = "rotary" if is_finetuned: if dict_path: _lowerCamelCase : Dict = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase : Optional[int] = target_dict.pad_index _lowerCamelCase : Dict = target_dict.bos_index _lowerCamelCase : Optional[Any] = target_dict.eos_index _lowerCamelCase : str = len(target_dict.symbols ) _lowerCamelCase : int = os.path.join(_lowerCamelCase , "vocab.json" ) if not os.path.isdir(_lowerCamelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) _lowerCamelCase : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase : List[str] = 0 _lowerCamelCase : List[Any] = 1 with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Optional[int] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCamelCase , ) _lowerCamelCase : Tuple = True if config.feat_extract_norm == "layer" else False _lowerCamelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) _lowerCamelCase : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) _lowerCamelCase : List[Any] = WavaVecaConformerForCTC(_lowerCamelCase ) else: _lowerCamelCase : Any = WavaVecaConformerForPreTraining(_lowerCamelCase ) if is_finetuned: _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _lowerCamelCase : List[Any] = argparse.Namespace(task="audio_pretraining" ) _lowerCamelCase : Optional[Any] = fairseq.tasks.setup_task(_lowerCamelCase ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCamelCase ) _lowerCamelCase : Dict = model[0].eval() recursively_load_weights(_lowerCamelCase , _lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) _lowerCAmelCase : str = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
340
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : int = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[str]: '''simple docstring''' _lowerCamelCase : Tuple = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head" ): _lowerCamelCase : Tuple = "segformer.encoder." + key if key.startswith("backbone" ): _lowerCamelCase : Any = key.replace("backbone" , "segformer.encoder" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _lowerCamelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )] _lowerCamelCase : int = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(_lowerCamelCase )-1}""" ) if "norm" in key: _lowerCamelCase : Optional[Any] = key.replace("norm" , "layer_norm" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _lowerCamelCase : Dict = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )] _lowerCamelCase : Tuple = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(_lowerCamelCase )-1}""" ) if "layer_norm1" in key: _lowerCamelCase : Union[str, Any] = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: _lowerCamelCase : int = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _lowerCamelCase : Union[str, Any] = key[key.find("block" ) + len("block" )] _lowerCamelCase : Optional[Any] = key.replace(F"""block{idx}""" , F"""block.{int(_lowerCamelCase )-1}""" ) if "attn.q" in key: _lowerCamelCase : Optional[int] = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: _lowerCamelCase : List[str] = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: _lowerCamelCase : Tuple = key.replace("attn" , "attention.self" ) if "fc1" in key: _lowerCamelCase : Optional[Any] = key.replace("fc1" , "dense1" ) if "fc2" in key: _lowerCamelCase : Dict = key.replace("fc2" , "dense2" ) if "linear_pred" in key: _lowerCamelCase : int = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: _lowerCamelCase : str = key.replace("linear_fuse.conv" , "linear_fuse" ) _lowerCamelCase : Optional[Any] = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _lowerCamelCase : Union[str, Any] = key[key.find("linear_c" ) + len("linear_c" )] _lowerCamelCase : Optional[int] = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(_lowerCamelCase )-1}""" ) if key.startswith("head" ): _lowerCamelCase : List[str] = key.replace("head" , "classifier" ) _lowerCamelCase : Union[str, Any] = value return new_state_dict def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _lowerCamelCase : Optional[Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _lowerCamelCase : Optional[Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _lowerCamelCase : int = kv_weight[ : config.hidden_sizes[i], : ] _lowerCamelCase : int = kv_bias[: config.hidden_sizes[i]] _lowerCamelCase : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] _lowerCamelCase : Optional[Any] = kv_bias[ config.hidden_sizes[i] : ] def lowerCamelCase_( ) -> Dict: '''simple docstring''' _lowerCamelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Union[str, Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return image @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : Any = SegformerConfig() _lowerCamelCase : int = False # set attributes based on model_name _lowerCamelCase : Any = "huggingface/label-files" if "segformer" in model_name: _lowerCamelCase : str = model_name[len("segformer." ) : len("segformer." ) + 2] if "ade" in model_name: _lowerCamelCase : str = 150 _lowerCamelCase : Dict = "ade20k-id2label.json" _lowerCamelCase : Dict = (1, 150, 128, 128) elif "city" in model_name: _lowerCamelCase : List[str] = 19 _lowerCamelCase : Tuple = "cityscapes-id2label.json" _lowerCamelCase : Tuple = (1, 19, 128, 128) else: raise ValueError(F"""Model {model_name} not supported""" ) elif "mit" in model_name: _lowerCamelCase : List[str] = True _lowerCamelCase : Tuple = model_name[4:6] _lowerCamelCase : Tuple = 1000 _lowerCamelCase : List[Any] = "imagenet-1k-id2label.json" _lowerCamelCase : List[Any] = (1, 1000) else: raise ValueError(F"""Model {model_name} not supported""" ) # set config attributes _lowerCamelCase : Optional[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": _lowerCamelCase : int = [64, 128, 320, 512] _lowerCamelCase : int = 256 elif size == "b2": _lowerCamelCase : Tuple = [64, 128, 320, 512] _lowerCamelCase : List[Any] = 768 _lowerCamelCase : Any = [3, 4, 6, 3] elif size == "b3": _lowerCamelCase : Tuple = [64, 128, 320, 512] _lowerCamelCase : Union[str, Any] = 768 _lowerCamelCase : Optional[Any] = [3, 4, 18, 3] elif size == "b4": _lowerCamelCase : str = [64, 128, 320, 512] _lowerCamelCase : Optional[Any] = 768 _lowerCamelCase : Dict = [3, 8, 27, 3] elif size == "b5": _lowerCamelCase : int = [64, 128, 320, 512] _lowerCamelCase : Tuple = 768 _lowerCamelCase : Tuple = [3, 6, 40, 3] else: raise ValueError(F"""Size {size} not supported""" ) # load image processor (only resize + normalize) _lowerCamelCase : Dict = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_lowerCamelCase , align=_lowerCamelCase , do_random_crop=_lowerCamelCase ) # prepare image _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Dict = image_processor(images=_lowerCamelCase , return_tensors="pt" ).pixel_values logger.info(F"""Converting model {model_name}...""" ) # load original state dict if encoder_only: _lowerCamelCase : Tuple = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) ) else: _lowerCamelCase : int = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) )["state_dict"] # rename keys _lowerCamelCase : str = rename_keys(_lowerCamelCase , encoder_only=_lowerCamelCase ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(_lowerCamelCase , _lowerCamelCase ) # create HuggingFace model and load state dict if encoder_only: _lowerCamelCase : Tuple = False _lowerCamelCase : Optional[int] = SegformerForImageClassification(_lowerCamelCase ) else: _lowerCamelCase : List[str] = SegformerForSemanticSegmentation(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() # forward pass _lowerCamelCase : Any = model(_lowerCamelCase ) _lowerCamelCase : Dict = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": _lowerCamelCase : str = torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": _lowerCamelCase : Any = torch.tensor( [ [[-7.5_8_2_0, -8.7_2_3_1, -8.3_2_1_5], [-8.0_6_0_0, -10.3529, -10.0304], [-7.5_2_0_8, -9.4_1_0_3, -9.6_2_3_9]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": _lowerCamelCase : int = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": _lowerCamelCase : Optional[Any] = torch.tensor( [ [[-9.0_8_7_8, -10.2081, -10.1891], [-9.3_1_4_4, -10.7941, -10.9843], [-9.2_2_9_4, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": _lowerCamelCase : List[str] = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": _lowerCamelCase : Any = torch.tensor( [ [[-9.5_5_2_4, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5_8_4_2, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": _lowerCamelCase : Dict = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5_3_7_4, 0.1_0_6_7, -0.4_7_4_2], [0.1_1_4_1, -0.2_2_5_5, -0.7_0_9_9], [-0.3_0_0_0, -0.5_9_2_4, -1.3_1_0_5]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": _lowerCamelCase : Optional[int] = torch.tensor( [ [[-7.8_2_1_7, -9.8_7_6_7, -10.1717], [-9.4_4_3_8, -10.9058, -11.4047], [-9.7_9_3_9, -12.3495, -12.1079]], [[-7.1_5_1_4, -9.5_3_3_6, -10.0860], [-9.7_7_7_6, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3_0_2_1, 0.0_8_0_5, -0.2_3_1_0], [-0.0_3_2_8, -0.1_6_0_5, -0.2_7_1_4], [-0.1_4_0_8, -0.5_4_7_7, -0.6_9_7_6]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": _lowerCamelCase : Tuple = torch.tensor( [ [ [-1.13_72e01, -1.27_87e01, -1.34_77e01], [-1.25_36e01, -1.41_94e01, -1.44_09e01], [-1.32_17e01, -1.48_88e01, -1.53_27e01], ], [ [-1.47_91e01, -1.71_22e01, -1.82_77e01], [-1.71_63e01, -1.91_92e01, -1.95_33e01], [-1.78_97e01, -1.99_91e01, -2.03_15e01], ], [ [7.67_23e-01, 4.19_21e-01, -7.78_78e-02], [4.77_72e-01, 9.55_57e-03, -2.80_82e-01], [3.60_32e-01, -2.48_26e-01, -5.11_68e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": _lowerCamelCase : Union[str, Any] = torch.tensor( [ [[-9.4_9_5_9, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8_9_0_5, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2_2_1_3, 0.0_1_9_2, -0.2_4_6_6], [-0.1_7_3_1, -0.4_2_1_3, -0.4_8_7_4], [-0.3_1_2_6, -0.6_5_4_1, -1.1_3_8_9]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": _lowerCamelCase : List[Any] = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": _lowerCamelCase : Tuple = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5_1_7_8, -5.5_0_3_7, -6.5_1_0_9], [-5.0_8_8_4, -7.2_1_7_4, -8.0_3_3_4], [-4.4_1_5_6, -5.8_1_1_7, -7.2_9_7_0]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": _lowerCamelCase : Any = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7_3_4_9, -4.9_5_8_8, -5.0_9_6_6], [-4.3_2_1_0, -6.9_3_2_5, -7.2_5_9_1], [-3.4_3_1_2, -4.7_4_8_4, -7.1_9_1_7]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": _lowerCamelCase : List[str] = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0_4_9_1, 0.8_2_8_9, 1.0_3_1_0], [1.1_0_4_4, 0.5_2_1_9, 0.8_0_5_5], [1.0_8_9_9, 0.6_9_2_6, 0.5_5_9_0]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": _lowerCamelCase : str = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7_9_9_0, -2.0_9_5_1, -1.7_7_8_4], [-2.6_3_9_7, -3.8_2_4_5, -3.9_6_8_6], [-1.5_2_6_4, -2.8_1_2_6, -2.9_3_1_6]], ] ) else: _lowerCamelCase : Dict = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1e-2 ) # finally, save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''segformer.b0.512x512.ade.160k''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _lowerCAmelCase : str = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
361
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' _validate_point(_lowerCamelCase ) _validate_point(_lowerCamelCase ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(_lowerCamelCase , _lowerCamelCase ) ) ) def lowerCamelCase_( _lowerCamelCase ) -> None: '''simple docstring''' if point: if isinstance(_lowerCamelCase , _lowerCamelCase ): for item in point: if not isinstance(_lowerCamelCase , (int, float) ): _lowerCamelCase : Dict = ( "Expected a list of numbers as input, found " F"""{type(_lowerCamelCase ).__name__}""" ) raise TypeError(_lowerCamelCase ) else: _lowerCamelCase : Optional[int] = F"""Expected a list of numbers as input, found {type(_lowerCamelCase ).__name__}""" raise TypeError(_lowerCamelCase ) else: raise ValueError("Missing an input" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' _validate_point(_lowerCamelCase ) _validate_point(_lowerCamelCase ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(_lowerCamelCase , _lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
340
0
"""simple docstring""" import math def lowerCamelCase_( _lowerCamelCase ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase_( _lowerCamelCase = 10001 ) -> int: '''simple docstring''' try: _lowerCamelCase : Dict = int(_lowerCamelCase ) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int." ) from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one." ) _lowerCamelCase : list[int] = [] _lowerCamelCase : int = 2 while len(_lowerCamelCase ) < nth: if is_prime(_lowerCamelCase ): primes.append(_lowerCamelCase ) num += 1 else: num += 1 return primes[len(_lowerCamelCase ) - 1] if __name__ == "__main__": print(f'''{solution() = }''')
362
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Optional[Any] = np.inf def set_batch_size(_lowerCamelCase ) -> None: nonlocal batch_size if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Optional[int] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_lowerCamelCase , _lowerCamelCase ) and feature.dtype == "binary": _lowerCamelCase : List[str] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_lowerCamelCase , _lowerCamelCase ) return None if batch_size is np.inf else batch_size class A_ ( _a ): def __init__( self: Optional[int] ,__lowerCAmelCase: NestedDataStructureLike[PathLike] ,__lowerCAmelCase: Optional[NamedSplit] = None ,__lowerCAmelCase: Optional[Features] = None ,__lowerCAmelCase: str = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: int ,): '''simple docstring''' super().__init__( __lowerCAmelCase ,split=__lowerCAmelCase ,features=__lowerCAmelCase ,cache_dir=__lowerCAmelCase ,keep_in_memory=__lowerCAmelCase ,streaming=__lowerCAmelCase ,num_proc=__lowerCAmelCase ,**__lowerCAmelCase ,) _lowerCamelCase : Tuple = path_or_paths if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) else {self.split: path_or_paths} _lowerCamelCase : Any = _PACKAGED_DATASETS_MODULES["parquet"][1] _lowerCamelCase : int = Parquet( cache_dir=__lowerCAmelCase ,data_files=__lowerCAmelCase ,features=__lowerCAmelCase ,hash=__lowerCAmelCase ,**__lowerCAmelCase ,) def _lowercase ( self: Optional[int] ): '''simple docstring''' if self.streaming: _lowerCamelCase : List[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _lowerCamelCase : Tuple = None _lowerCamelCase : Optional[int] = None _lowerCamelCase : List[str] = None _lowerCamelCase : str = None self.builder.download_and_prepare( download_config=__lowerCAmelCase ,download_mode=__lowerCAmelCase ,verification_mode=__lowerCAmelCase ,base_path=__lowerCAmelCase ,num_proc=self.num_proc ,) _lowerCamelCase : Any = self.builder.as_dataset( split=self.split ,verification_mode=__lowerCAmelCase ,in_memory=self.keep_in_memory ) return dataset class A_ : def __init__( self: str ,__lowerCAmelCase: Dataset ,__lowerCAmelCase: Union[PathLike, BinaryIO] ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: List[Any] ,): '''simple docstring''' _lowerCamelCase : Any = dataset _lowerCamelCase : Any = path_or_buf _lowerCamelCase : Any = batch_size or get_writer_batch_size(dataset.features ) _lowerCamelCase : List[str] = parquet_writer_kwargs def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Tuple = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf ,(str, bytes, os.PathLike) ): with open(self.path_or_buf ,"wb+" ) as buffer: _lowerCamelCase : str = self._write(file_obj=__lowerCAmelCase ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs ) else: _lowerCamelCase : Optional[int] = self._write(file_obj=self.path_or_buf ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs ) return written def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: BinaryIO ,__lowerCAmelCase: int ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[int] = parquet_writer_kwargs.pop("path_or_buf" ,__lowerCAmelCase ) _lowerCamelCase : List[str] = self.dataset.features.arrow_schema _lowerCamelCase : str = pq.ParquetWriter(__lowerCAmelCase ,schema=__lowerCAmelCase ,**__lowerCAmelCase ) for offset in logging.tqdm( range(0 ,len(self.dataset ) ,__lowerCAmelCase ) ,unit="ba" ,disable=not logging.is_progress_bar_enabled() ,desc="Creating parquet from Arrow format" ,): _lowerCamelCase : List[str] = query_table( table=self.dataset._data ,key=slice(__lowerCAmelCase ,offset + batch_size ) ,indices=self.dataset._indices if self.dataset._indices is not None else None ,) writer.write_table(__lowerCAmelCase ) written += batch.nbytes writer.close() return written
340
0
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase = 1000 ) -> int: '''simple docstring''' _lowerCamelCase : Tuple = 3 _lowerCamelCase : List[Any] = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'''{solution() = }''')
363
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Optional[int] = tokenizer(example["content"] , truncation=_lowerCamelCase )["input_ids"] _lowerCamelCase : Dict = len(example["content"] ) / len(output["input_ids"] ) return output _lowerCAmelCase : Tuple = HfArgumentParser(PretokenizationArguments) _lowerCAmelCase : Optional[int] = parser.parse_args() if args.num_workers is None: _lowerCAmelCase : Any = multiprocessing.cpu_count() _lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(args.tokenizer_dir) _lowerCAmelCase : Union[str, Any] = time.time() _lowerCAmelCase : Optional[int] = load_dataset(args.dataset_name, split='''train''') print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') _lowerCAmelCase : Any = time.time() _lowerCAmelCase : Dict = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') _lowerCAmelCase : str = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
340
0
"""simple docstring""" from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass _lowerCAmelCase : str = (3, 9, -11, 0, 7, 5, 1, -1) _lowerCAmelCase : Union[str, Any] = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class A_ : lowerCAmelCase__ = 4_2 lowerCAmelCase__ = 4_2 class A_ : def __init__( self: int ,__lowerCAmelCase: Iterable[int] ): '''simple docstring''' _lowerCamelCase : Node | None = None for i in sorted(__lowerCAmelCase ,reverse=__lowerCAmelCase ): _lowerCamelCase : List[str] = Node(__lowerCAmelCase ,self.head ) def __iter__( self: List[str] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.head while node: yield node.data _lowerCamelCase : Tuple = node.next_node def __len__( self: Optional[Any] ): '''simple docstring''' return sum(1 for _ in self ) def __str__( self: Dict ): '''simple docstring''' return " -> ".join([str(__lowerCAmelCase ) for node in self] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> SortedLinkedList: '''simple docstring''' return SortedLinkedList(list(_lowerCamelCase ) + list(_lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Any = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
364
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Optional[Any] = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
0
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = FunnelTokenizer lowerCAmelCase__ = FunnelTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True def _lowercase ( self: Any ): '''simple docstring''' super().setUp() _lowerCamelCase : Optional[int] = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _lowercase ( self: str ,**__lowerCAmelCase: List[Any] ): '''simple docstring''' return FunnelTokenizer.from_pretrained(self.tmpdirname ,**__lowerCAmelCase ) def _lowercase ( self: int ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return FunnelTokenizerFast.from_pretrained(self.tmpdirname ,**__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = "UNwant\u00E9d,running" _lowerCamelCase : Tuple = "unwanted, running" return input_text, output_text def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.tokenizer_class(self.vocab_file ) _lowerCamelCase : Any = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(__lowerCAmelCase ,["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) ,[7, 4, 5, 10, 8, 9] ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: _lowerCamelCase : Union[str, Any] = tokenizer("UNwant\u00E9d,running" ) _lowerCamelCase : str = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"] ,[2] + [0] * sentence_len ) _lowerCamelCase : Tuple = tokenizer("UNwant\u00E9d,running" ,"UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"] ,[2] + [0] * sentence_len + [1] * sentence_len )
365
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) class A_ ( _a ): lowerCAmelCase__ = 'masked_bert' def __init__( self: Union[str, Any] ,__lowerCAmelCase: Dict=30_522 ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Dict=12 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: List[Any]="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Tuple=512 ,__lowerCAmelCase: str=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Union[str, Any]=1e-12 ,__lowerCAmelCase: Union[str, Any]=0 ,__lowerCAmelCase: List[Any]="topK" ,__lowerCAmelCase: Optional[Any]="constant" ,__lowerCAmelCase: Optional[Any]=0.0 ,**__lowerCAmelCase: str ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : str = max_position_embeddings _lowerCamelCase : List[str] = type_vocab_size _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : int = pruning_method _lowerCamelCase : str = mask_init _lowerCamelCase : List[Any] = mask_scale
340
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : int = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = { '''asapp/sew-tiny-100k''': '''https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json''', # See all SEW models at https://huggingface.co/models?filter=sew } class A_ ( _a ): lowerCAmelCase__ = 'sew' def __init__( self: Tuple ,__lowerCAmelCase: Optional[Any]=32 ,__lowerCAmelCase: int=768 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: Optional[int]=12 ,__lowerCAmelCase: int=3_072 ,__lowerCAmelCase: List[str]=2 ,__lowerCAmelCase: Tuple="gelu" ,__lowerCAmelCase: Optional[Any]=0.1 ,__lowerCAmelCase: Dict=0.1 ,__lowerCAmelCase: Any=0.1 ,__lowerCAmelCase: Tuple=0.0 ,__lowerCAmelCase: Any=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: int=0.02 ,__lowerCAmelCase: Union[str, Any]=1e-5 ,__lowerCAmelCase: str="group" ,__lowerCAmelCase: Union[str, Any]="gelu" ,__lowerCAmelCase: int=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) ,__lowerCAmelCase: List[str]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) ,__lowerCAmelCase: List[Any]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) ,__lowerCAmelCase: Union[str, Any]=False ,__lowerCAmelCase: List[Any]=128 ,__lowerCAmelCase: Optional[Any]=16 ,__lowerCAmelCase: int=True ,__lowerCAmelCase: List[str]=0.05 ,__lowerCAmelCase: Dict=10 ,__lowerCAmelCase: Union[str, Any]=2 ,__lowerCAmelCase: Tuple=0.0 ,__lowerCAmelCase: str=10 ,__lowerCAmelCase: Tuple=0 ,__lowerCAmelCase: int="mean" ,__lowerCAmelCase: Tuple=False ,__lowerCAmelCase: str=False ,__lowerCAmelCase: List[Any]=256 ,__lowerCAmelCase: Dict=0 ,__lowerCAmelCase: Tuple=1 ,__lowerCAmelCase: Union[str, Any]=2 ,**__lowerCAmelCase: Tuple ,): '''simple docstring''' super().__init__(**__lowerCAmelCase ,pad_token_id=__lowerCAmelCase ,bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ) _lowerCamelCase : Any = hidden_size _lowerCamelCase : Optional[int] = feat_extract_norm _lowerCamelCase : Optional[int] = feat_extract_activation _lowerCamelCase : str = list(__lowerCAmelCase ) _lowerCamelCase : List[str] = list(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = list(__lowerCAmelCase ) _lowerCamelCase : Dict = conv_bias _lowerCamelCase : Optional[Any] = num_conv_pos_embeddings _lowerCamelCase : str = num_conv_pos_embedding_groups _lowerCamelCase : str = len(self.conv_dim ) _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Dict = squeeze_factor _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Dict = num_attention_heads _lowerCamelCase : Any = hidden_dropout _lowerCamelCase : Dict = attention_dropout _lowerCamelCase : Union[str, Any] = activation_dropout _lowerCamelCase : int = feat_proj_dropout _lowerCamelCase : List[Any] = final_dropout _lowerCamelCase : Any = layerdrop _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : List[str] = initializer_range _lowerCamelCase : Tuple = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," F"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" F"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Union[str, Any] = apply_spec_augment _lowerCamelCase : Tuple = mask_time_prob _lowerCamelCase : List[str] = mask_time_length _lowerCamelCase : Dict = mask_time_min_masks _lowerCamelCase : int = mask_feature_prob _lowerCamelCase : str = mask_feature_length _lowerCamelCase : int = mask_feature_min_masks # ctc loss _lowerCamelCase : List[Any] = ctc_loss_reduction _lowerCamelCase : str = ctc_zero_infinity # sequence classification _lowerCamelCase : Dict = use_weighted_layer_sum _lowerCamelCase : Optional[Any] = classifier_proj_size @property def _lowercase ( self: List[Any] ): '''simple docstring''' return functools.reduce(operator.mul ,self.conv_stride ,1 )
366
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _lowerCAmelCase : str = '''0.12''' # assumed parallelism: 8 if is_torch_available(): import torch def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) -> List[Any]: '''simple docstring''' if rng is None: _lowerCamelCase : Union[str, Any] = random.Random() _lowerCamelCase : Union[str, Any] = 1 for dim in shape: total_dims *= dim _lowerCamelCase : Optional[int] = [] for _ in range(_lowerCamelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) _lowerCamelCase : Union[str, Any] = np.array(_lowerCamelCase , dtype=jnp.intaa ).reshape(_lowerCamelCase ) return output def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : Optional[int] = ids_tensor(_lowerCamelCase , vocab_size=2 , rng=_lowerCamelCase ) # make sure that at least one token is attended to for each batch _lowerCamelCase : List[str] = 1 return attn_mask @require_flax class A_ : lowerCAmelCase__ = None lowerCAmelCase__ = () def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 _lowerCamelCase : List[str] = 2 _lowerCamelCase : str = inputs["input_ids"].shape[-1] // 2 _lowerCamelCase : Tuple = inputs["input_ids"][:max_batch_size, :sequence_length] _lowerCamelCase : Any = jnp.ones_like(__lowerCAmelCase ) _lowerCamelCase : List[Any] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens _lowerCamelCase : Optional[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` _lowerCamelCase : List[str] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = self._get_input_ids_and_config() _lowerCamelCase : List[Any] = False _lowerCamelCase : Dict = max_length _lowerCamelCase : Tuple = 0 for model_class in self.all_generative_model_classes: _lowerCamelCase : str = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning _lowerCamelCase : Any = getattr(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Dict = pt_model_class(__lowerCAmelCase ).eval() _lowerCamelCase : Optional[Any] = load_flax_weights_in_pytorch_model(__lowerCAmelCase ,flax_model.params ) _lowerCamelCase : int = flax_model.generate(__lowerCAmelCase ).sequences _lowerCamelCase : Optional[int] = pt_model.generate(torch.tensor(__lowerCAmelCase ,dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: _lowerCamelCase : List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() ,flax_generation_outputs.tolist() ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = self._get_input_ids_and_config() _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : Union[str, Any] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config() _lowerCamelCase : List[Any] = True _lowerCamelCase : Optional[int] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : List[Any] = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : int = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config() _lowerCamelCase : int = False _lowerCamelCase : Optional[Any] = max_length _lowerCamelCase : Dict = 2 for model_class in self.all_generative_model_classes: _lowerCamelCase : List[str] = model_class(__lowerCAmelCase ) _lowerCamelCase : Dict = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Tuple = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = self._get_input_ids_and_config() _lowerCamelCase : Tuple = False _lowerCamelCase : Union[str, Any] = max_length _lowerCamelCase : List[str] = 2 _lowerCamelCase : Optional[int] = 2 for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : str = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0] ,input_ids.shape[0] * config.num_return_sequences ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config() _lowerCamelCase : int = True _lowerCamelCase : List[Any] = max_length _lowerCamelCase : Optional[Any] = 0.8 _lowerCamelCase : Union[str, Any] = 10 _lowerCamelCase : List[str] = 0.3 _lowerCamelCase : Tuple = 1 _lowerCamelCase : Any = 8 _lowerCamelCase : str = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ) _lowerCamelCase : Any = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : int = jit(model.generate ) _lowerCamelCase : Optional[int] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = self._get_input_ids_and_config() _lowerCamelCase : List[str] = max_length _lowerCamelCase : Tuple = 1 _lowerCamelCase : Any = 8 _lowerCamelCase : Dict = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : Any = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : Any = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config() _lowerCamelCase : Dict = max_length _lowerCamelCase : List[Any] = 2 _lowerCamelCase : Tuple = 1 _lowerCamelCase : List[str] = 8 _lowerCamelCase : List[Any] = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : int = model_class(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Tuple = jit(model.generate ) _lowerCamelCase : Optional[Any] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : Tuple = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : Dict = False _lowerCamelCase : Any = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : Optional[Any] = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : List[str] = True _lowerCamelCase : Optional[Any] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : List[Any] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : List[str] = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : int = 2 _lowerCamelCase : int = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : int = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : Dict = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) @require_flax class A_ ( unittest.TestCase ): def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" ) _lowerCamelCase : Union[str, Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) _lowerCamelCase : Optional[Any] = "Hello world" _lowerCamelCase : str = tokenizer(__lowerCAmelCase ,return_tensors="np" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__lowerCAmelCase ,"do_samples" ): model.generate(__lowerCAmelCase ,do_samples=__lowerCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__lowerCAmelCase ,"foo" ): _lowerCamelCase : List[str] = {"foo": "bar"} model.generate(__lowerCAmelCase ,**__lowerCAmelCase )
340
0
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ ( _a ): lowerCAmelCase__ = ['image_processor', 'tokenizer'] lowerCAmelCase__ = 'LayoutLMv2ImageProcessor' lowerCAmelCase__ = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self: List[str] ,__lowerCAmelCase: List[str]=None ,__lowerCAmelCase: int=None ,**__lowerCAmelCase: int ): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." ,__lowerCAmelCase ,) _lowerCamelCase : Optional[Any] = kwargs.pop("feature_extractor" ) _lowerCamelCase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__lowerCAmelCase ,__lowerCAmelCase ) def __call__( self: int ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,__lowerCAmelCase: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None ,__lowerCAmelCase: Union[List[List[int]], List[List[List[int]]]] = None ,__lowerCAmelCase: Optional[Union[List[int], List[List[int]]]] = None ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Union[bool, str, PaddingStrategy] = False ,__lowerCAmelCase: Union[bool, str, TruncationStrategy] = None ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: int = 0 ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: Optional[bool] = None ,__lowerCAmelCase: Optional[bool] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[Union[str, TensorType]] = None ,**__lowerCAmelCase: List[Any] ,): '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." ) # first, apply the image processor _lowerCamelCase : List[Any] = self.image_processor(images=__lowerCAmelCase ,return_tensors=__lowerCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Tuple = [text] # add batch dimension (as the image processor always adds a batch dimension) _lowerCamelCase : Any = features["words"] _lowerCamelCase : List[str] = self.tokenizer( text=text if text is not None else features["words"] ,text_pair=text_pair if text_pair is not None else None ,boxes=boxes if boxes is not None else features["boxes"] ,word_labels=__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ,padding=__lowerCAmelCase ,truncation=__lowerCAmelCase ,max_length=__lowerCAmelCase ,stride=__lowerCAmelCase ,pad_to_multiple_of=__lowerCAmelCase ,return_token_type_ids=__lowerCAmelCase ,return_attention_mask=__lowerCAmelCase ,return_overflowing_tokens=__lowerCAmelCase ,return_special_tokens_mask=__lowerCAmelCase ,return_offsets_mapping=__lowerCAmelCase ,return_length=__lowerCAmelCase ,verbose=__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ,) # add pixel values _lowerCamelCase : Optional[int] = features.pop("pixel_values" ) if return_overflowing_tokens is True: _lowerCamelCase : int = self.get_overflowing_images(__lowerCAmelCase ,encoded_inputs["overflow_to_sample_mapping"] ) _lowerCamelCase : Optional[int] = images return encoded_inputs def _lowercase ( self: Optional[int] ,__lowerCAmelCase: int ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Tuple = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F""" {len(__lowerCAmelCase )} and {len(__lowerCAmelCase )}""" ) return images_with_overflow def _lowercase ( self: List[str] ,*__lowerCAmelCase: Optional[int] ,**__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*__lowerCAmelCase ,**__lowerCAmelCase ) def _lowercase ( self: List[str] ,*__lowerCAmelCase: int ,**__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*__lowerCAmelCase ,**__lowerCAmelCase ) @property def _lowercase ( self: Dict ): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def _lowercase ( self: Union[str, Any] ): '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." ,__lowerCAmelCase ,) return self.image_processor_class @property def _lowercase ( self: Optional[int] ): '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." ,__lowerCAmelCase ,) return self.image_processor
367
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : int = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class A_ ( _a ): lowerCAmelCase__ = 'mobilenet_v1' def __init__( self: Tuple ,__lowerCAmelCase: int=3 ,__lowerCAmelCase: Dict=224 ,__lowerCAmelCase: int=1.0 ,__lowerCAmelCase: Tuple=8 ,__lowerCAmelCase: List[str]="relu6" ,__lowerCAmelCase: int=True ,__lowerCAmelCase: List[Any]=0.9_99 ,__lowerCAmelCase: Optional[int]=0.02 ,__lowerCAmelCase: Optional[int]=0.0_01 ,**__lowerCAmelCase: str ,): '''simple docstring''' super().__init__(**__lowerCAmelCase ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) _lowerCamelCase : List[str] = num_channels _lowerCamelCase : Union[str, Any] = image_size _lowerCamelCase : List[Any] = depth_multiplier _lowerCamelCase : Any = min_depth _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Dict = tf_padding _lowerCamelCase : Union[str, Any] = classifier_dropout_prob _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : List[Any] = layer_norm_eps class A_ ( _a ): lowerCAmelCase__ = version.parse('1.11' ) @property def _lowercase ( self: Optional[int] ): '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def _lowercase ( self: Optional[Any] ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def _lowercase ( self: Any ): '''simple docstring''' return 1e-4
340
0
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' def wrapper(*_lowerCamelCase , **_lowerCamelCase ): _lowerCamelCase : List[str] = timeit.default_timer() _lowerCamelCase : Optional[int] = func(*_lowerCamelCase , **_lowerCamelCase ) _lowerCamelCase : str = timeit.default_timer() - starttime return delta _lowerCamelCase : List[Any] = func.__name__ return wrapper def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=100 , _lowerCamelCase=None ) -> str: '''simple docstring''' _lowerCamelCase : List[Any] = [] _lowerCamelCase : Any = seq_shapes or {} for i in range(_lowerCamelCase ): _lowerCamelCase : Any = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(_lowerCamelCase , _ArrayXD ): _lowerCamelCase : Optional[int] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(_lowerCamelCase , datasets.Value ): if v.dtype == "string": _lowerCamelCase : Dict = "The small grey turtle was surprisingly fast when challenged." else: _lowerCamelCase : List[Any] = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(_lowerCamelCase , datasets.Sequence ): while isinstance(_lowerCamelCase , datasets.Sequence ): _lowerCamelCase : Tuple = v.feature _lowerCamelCase : Optional[int] = seq_shapes[k] _lowerCamelCase : List[str] = np.random.rand(*_lowerCamelCase ).astype(v.dtype ) _lowerCamelCase : Union[str, Any] = data dummy_data.append((i, example) ) return dummy_data def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=100 , _lowerCamelCase=None ) -> str: '''simple docstring''' _lowerCamelCase : str = generate_examples(_lowerCamelCase , num_examples=_lowerCamelCase , seq_shapes=_lowerCamelCase ) with ArrowWriter(features=_lowerCamelCase , path=_lowerCamelCase ) as writer: for key, record in dummy_data: _lowerCamelCase : Union[str, Any] = features.encode_example(_lowerCamelCase ) writer.write(_lowerCamelCase ) _lowerCamelCase : Union[str, Any] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) _lowerCamelCase : Union[str, Any] = datasets.Dataset.from_file(filename=_lowerCamelCase , info=datasets.DatasetInfo(features=_lowerCamelCase ) ) return dataset
368
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' for param in module.parameters(): _lowerCamelCase : Optional[int] = False def lowerCamelCase_( ) -> List[str]: '''simple docstring''' _lowerCamelCase : Optional[Any] = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _lowerCamelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Dict = plt.imshow(_lowerCamelCase ) fig.axes.get_xaxis().set_visible(_lowerCamelCase ) fig.axes.get_yaxis().set_visible(_lowerCamelCase ) plt.show() def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Tuple = datetime.now() _lowerCamelCase : Tuple = current_time.strftime("%H:%M:%S" ) return timestamp
340
0
"""simple docstring""" import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) __snake_case : List[str] = '''bert-base-cased''' __snake_case : Any = '''fp16''' __snake_case : List[Any] = '''bf16''' __snake_case : Union[str, Any] = [FPaa, BFaa] @require_fsdp @require_cuda class A_ ( _a ): def _lowercase ( self: Union[str, Any] ): '''simple docstring''' super().setUp() _lowerCamelCase : Dict = dict( ACCELERATE_USE_FSDP="true" ,MASTER_ADDR="localhost" ,MASTER_PORT="10999" ,RANK="0" ,LOCAL_RANK="0" ,WORLD_SIZE="1" ,) def _lowercase ( self: int ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__lowerCAmelCase ): _lowerCamelCase : Optional[Any] = self.dist_env.copy() _lowerCamelCase : Any = F"""{i + 1}""" _lowerCamelCase : str = strategy with mockenv_context(**__lowerCAmelCase ): _lowerCamelCase : Tuple = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy ,ShardingStrategy(i + 1 ) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__lowerCAmelCase ): _lowerCamelCase : List[Any] = self.dist_env.copy() _lowerCamelCase : List[Any] = prefetch_policy with mockenv_context(**__lowerCAmelCase ): _lowerCamelCase : List[Any] = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch ,BackwardPrefetch(i + 1 ) ) def _lowercase ( self: List[str] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__lowerCAmelCase ): _lowerCamelCase : Tuple = self.dist_env.copy() _lowerCamelCase : int = state_dict_type with mockenv_context(**__lowerCAmelCase ): _lowerCamelCase : Dict = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type ,StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : List[Any] = AutoModel.from_pretrained(__lowerCAmelCase ) for policy in FSDP_AUTO_WRAP_POLICY: _lowerCamelCase : Optional[int] = self.dist_env.copy() _lowerCamelCase : Any = policy if policy == "TRANSFORMER_BASED_WRAP": _lowerCamelCase : List[str] = "BertLayer" elif policy == "SIZE_BASED_WRAP": _lowerCamelCase : Optional[int] = "2000" with mockenv_context(**__lowerCAmelCase ): _lowerCamelCase : str = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__lowerCAmelCase ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) _lowerCamelCase : Any = self.dist_env.copy() _lowerCamelCase : List[str] = "TRANSFORMER_BASED_WRAP" _lowerCamelCase : Optional[Any] = "T5Layer" with mockenv_context(**__lowerCAmelCase ): _lowerCamelCase : Tuple = FullyShardedDataParallelPlugin() with self.assertRaises(__lowerCAmelCase ) as cm: fsdp_plugin.set_auto_wrap_policy(__lowerCAmelCase ) self.assertTrue("Could not find the transformer layer class to wrap in the model." in str(cm.exception ) ) _lowerCamelCase : Any = self.dist_env.copy() _lowerCamelCase : Union[str, Any] = "SIZE_BASED_WRAP" _lowerCamelCase : Tuple = "0" with mockenv_context(**__lowerCAmelCase ): _lowerCamelCase : Any = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__lowerCAmelCase ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def _lowercase ( self: str ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: _lowerCamelCase : List[str] = self.dist_env.copy() _lowerCamelCase : List[Any] = mp_dtype with mockenv_context(**__lowerCAmelCase ): _lowerCamelCase : Dict = Accelerator() if mp_dtype == "fp16": _lowerCamelCase : List[str] = torch.floataa elif mp_dtype == "bf16": _lowerCamelCase : Union[str, Any] = torch.bfloataa _lowerCamelCase : int = MixedPrecision(param_dtype=__lowerCAmelCase ,reduce_dtype=__lowerCAmelCase ,buffer_dtype=__lowerCAmelCase ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy ,__lowerCAmelCase ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler ,__lowerCAmelCase ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: _lowerCamelCase : Dict = self.dist_env.copy() _lowerCamelCase : Union[str, Any] = str(__lowerCAmelCase ).lower() with mockenv_context(**__lowerCAmelCase ): _lowerCamelCase : List[str] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload ,CPUOffload(offload_params=__lowerCAmelCase ) ) @require_fsdp @require_multi_gpu @slow class A_ ( _a ): def _lowercase ( self: List[Any] ): '''simple docstring''' super().setUp() _lowerCamelCase : List[str] = 0.82 _lowerCamelCase : Union[str, Any] = [ "fsdp_shard_grad_op_transformer_based_wrap", "fsdp_full_shard_transformer_based_wrap", ] _lowerCamelCase : Optional[int] = { "multi_gpu_fp16": 3_200, "fsdp_shard_grad_op_transformer_based_wrap_fp16": 2_000, "fsdp_full_shard_transformer_based_wrap_fp16": 1_900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } _lowerCamelCase : Tuple = 160 _lowerCamelCase : Optional[int] = 160 _lowerCamelCase : Any = inspect.getfile(accelerate.test_utils ) _lowerCamelCase : int = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps"] ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : str = os.path.join(self.test_scripts_folder ,"test_performance.py" ) _lowerCamelCase : List[Any] = ["accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp"] for config in self.performance_configs: _lowerCamelCase : int = cmd.copy() for i, strategy in enumerate(__lowerCAmelCase ): if strategy.lower() in config: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) break if "fp32" in config: cmd_config.append("--mixed_precision=no" ) else: cmd_config.append("--mixed_precision=fp16" ) if "cpu_offload" in config: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--performance_lower_bound={self.performance_lower_bound}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCAmelCase ,env=os.environ.copy() ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = os.path.join(self.test_scripts_folder ,"test_checkpointing.py" ) _lowerCamelCase : Tuple = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp", "--mixed_precision=fp16", "--fsdp_transformer_layer_cls_to_wrap=BertLayer", ] for i, strategy in enumerate(__lowerCAmelCase ): _lowerCamelCase : Tuple = cmd.copy() cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) if strategy != "FULL_SHARD": continue _lowerCamelCase : Dict = len(__lowerCAmelCase ) for state_dict_type in FSDP_STATE_DICT_TYPE: _lowerCamelCase : List[Any] = cmd_config[:state_dict_config_index] cmd_config.append(F"""--fsdp_state_dict_type={state_dict_type}""" ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", "--partial_train_epoch=1", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCAmelCase ,env=os.environ.copy() ) _lowerCamelCase : int = cmd_config[:-1] _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdir ,"epoch_0" ) cmd_config.extend( [ F"""--resume_from_checkpoint={resume_from_checkpoint}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCAmelCase ,env=os.environ.copy() ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[Any] = os.path.join(self.test_scripts_folder ,"test_peak_memory_usage.py" ) _lowerCamelCase : Union[str, Any] = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): _lowerCamelCase : Tuple = cmd.copy() if "fp16" in spec: cmd_config.extend(["--mixed_precision=fp16"] ) else: cmd_config.extend(["--mixed_precision=no"] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["--use_fsdp"] ) for i, strategy in enumerate(__lowerCAmelCase ): if strategy.lower() in spec: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) break if "cpu_offload" in spec: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--peak_memory_upper_bound={peak_mem_upper_bound}""", F"""--n_train={self.n_train}""", F"""--n_val={self.n_val}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCAmelCase ,env=os.environ.copy() )
369
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : int = len(_lowerCamelCase ) _lowerCamelCase : int = len(_lowerCamelCase ) _lowerCamelCase : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) _lowerCamelCase : list = [] for char_count in range(_lowerCamelCase ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(_lowerCamelCase ) if __name__ == "__main__": print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''')
340
0
"""simple docstring""" import numpy # List of input, output pairs _lowerCAmelCase : Union[str, Any] = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) _lowerCAmelCase : str = (((515, 22, 13), 555), ((61, 35, 49), 150)) _lowerCAmelCase : int = [2, 4, 1, 5] _lowerCAmelCase : Dict = len(train_data) _lowerCAmelCase : int = 0.009 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase="train" ) -> int: '''simple docstring''' return calculate_hypothesis_value(_lowerCamelCase , _lowerCamelCase ) - output( _lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Union[str, Any] = 0 for i in range(len(_lowerCamelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=m ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Tuple = 0 for i in range(_lowerCamelCase ): if index == -1: summation_value += _error(_lowerCamelCase ) else: summation_value += _error(_lowerCamelCase ) * train_data[i][0][index] return summation_value def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : int = summation_of_cost_derivative(_lowerCamelCase , _lowerCamelCase ) / m return cost_derivative_value def lowerCamelCase_( ) -> str: '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output _lowerCamelCase : str = 0.0_0_0_0_0_2 _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[Any] = 0 while True: j += 1 _lowerCamelCase : int = [0, 0, 0, 0] for i in range(0 , len(_lowerCamelCase ) ): _lowerCamelCase : Any = get_cost_derivative(i - 1 ) _lowerCamelCase : Union[str, Any] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _lowerCamelCase , _lowerCamelCase , atol=_lowerCamelCase , rtol=_lowerCamelCase , ): break _lowerCamelCase : List[str] = temp_parameter_vector print(("Number of iterations:", j) ) def lowerCamelCase_( ) -> int: '''simple docstring''' for i in range(len(_lowerCamelCase ) ): print(("Actual output value:", output(_lowerCamelCase , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(_lowerCamelCase , "test" )) ) if __name__ == "__main__": run_gradient_descent() print('''\nTesting gradient descent for a linear hypothesis function.\n''') test_gradient_descent()
370
"""simple docstring""" _lowerCAmelCase : Tuple = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Any = [False] * len(_lowerCamelCase ) _lowerCamelCase : Union[str, Any] = [s] _lowerCamelCase : str = True while queue: _lowerCamelCase : Optional[int] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_lowerCamelCase ) _lowerCamelCase : Any = True _lowerCamelCase : Any = u return visited[t] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : List[str] = [-1] * (len(_lowerCamelCase )) _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : List[str] = [i[:] for i in graph] # Record original cut, copy. while bfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Any = float("Inf" ) _lowerCamelCase : Dict = sink while s != source: # Find the minimum value in select path _lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , graph[parent[s]][s] ) _lowerCamelCase : Union[str, Any] = parent[s] max_flow += path_flow _lowerCamelCase : Optional[Any] = sink while v != source: _lowerCamelCase : Union[str, Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _lowerCamelCase : List[str] = parent[v] for i in range(len(_lowerCamelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
340
0
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowerCAmelCase : Optional[Any] = { '''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), '''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), '''bert''': (BertConfig, BertForMaskedLM, BertTokenizer), '''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' if args.student_type == "roberta": _lowerCamelCase : Tuple = False elif args.student_type == "gpt2": _lowerCamelCase : int = False def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' if args.student_type == "roberta": _lowerCamelCase : int = False def lowerCamelCase_( ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : Tuple = argparse.ArgumentParser(description="Training" ) parser.add_argument("--force" , action="store_true" , help="Overwrite dump_path if it already exists." ) parser.add_argument( "--dump_path" , type=_lowerCamelCase , required=_lowerCamelCase , help="The output directory (log, checkpoints, parameters, etc.)" ) parser.add_argument( "--data_file" , type=_lowerCamelCase , required=_lowerCamelCase , help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence." , ) parser.add_argument( "--student_type" , type=_lowerCamelCase , choices=["distilbert", "roberta", "gpt2"] , required=_lowerCamelCase , help="The student type (DistilBERT, RoBERTa)." , ) parser.add_argument("--student_config" , type=_lowerCamelCase , required=_lowerCamelCase , help="Path to the student configuration." ) parser.add_argument( "--student_pretrained_weights" , default=_lowerCamelCase , type=_lowerCamelCase , help="Load student initialization checkpoint." ) parser.add_argument( "--teacher_type" , choices=["bert", "roberta", "gpt2"] , required=_lowerCamelCase , help="Teacher type (BERT, RoBERTa)." ) parser.add_argument("--teacher_name" , type=_lowerCamelCase , required=_lowerCamelCase , help="The teacher model." ) parser.add_argument("--temperature" , default=2.0 , type=_lowerCamelCase , help="Temperature for the softmax temperature." ) parser.add_argument( "--alpha_ce" , default=0.5 , type=_lowerCamelCase , help="Linear weight for the distillation loss. Must be >=0." ) parser.add_argument( "--alpha_mlm" , default=0.0 , type=_lowerCamelCase , help="Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag." , ) parser.add_argument("--alpha_clm" , default=0.5 , type=_lowerCamelCase , help="Linear weight for the CLM loss. Must be >=0." ) parser.add_argument("--alpha_mse" , default=0.0 , type=_lowerCamelCase , help="Linear weight of the MSE loss. Must be >=0." ) parser.add_argument( "--alpha_cos" , default=0.0 , type=_lowerCamelCase , help="Linear weight of the cosine embedding loss. Must be >=0." ) parser.add_argument( "--mlm" , action="store_true" , help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM." ) parser.add_argument( "--mlm_mask_prop" , default=0.1_5 , type=_lowerCamelCase , help="Proportion of tokens for which we need to make a prediction." , ) parser.add_argument("--word_mask" , default=0.8 , type=_lowerCamelCase , help="Proportion of tokens to mask out." ) parser.add_argument("--word_keep" , default=0.1 , type=_lowerCamelCase , help="Proportion of tokens to keep." ) parser.add_argument("--word_rand" , default=0.1 , type=_lowerCamelCase , help="Proportion of tokens to randomly replace." ) parser.add_argument( "--mlm_smoothing" , default=0.7 , type=_lowerCamelCase , help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec)." , ) parser.add_argument("--token_counts" , type=_lowerCamelCase , help="The token counts in the data_file for MLM." ) parser.add_argument( "--restrict_ce_to_mask" , action="store_true" , help="If true, compute the distillation loss only the [MLM] prediction distribution." , ) parser.add_argument( "--freeze_pos_embs" , action="store_true" , help="Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only." , ) parser.add_argument( "--freeze_token_type_embds" , action="store_true" , help="Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only." , ) parser.add_argument("--n_epoch" , type=_lowerCamelCase , default=3 , help="Number of pass on the whole dataset." ) parser.add_argument("--batch_size" , type=_lowerCamelCase , default=5 , help="Batch size (for each process)." ) parser.add_argument( "--group_by_size" , action="store_false" , help="If true, group sequences that have similar length into the same batch. Default is true." , ) parser.add_argument( "--gradient_accumulation_steps" , type=_lowerCamelCase , default=50 , help="Gradient accumulation for larger training batches." , ) parser.add_argument("--warmup_prop" , default=0.0_5 , type=_lowerCamelCase , help="Linear warmup proportion." ) parser.add_argument("--weight_decay" , default=0.0 , type=_lowerCamelCase , help="Weight decay if we apply some." ) parser.add_argument("--learning_rate" , default=5e-4 , type=_lowerCamelCase , help="The initial learning rate for Adam." ) parser.add_argument("--adam_epsilon" , default=1e-6 , type=_lowerCamelCase , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , default=5.0 , type=_lowerCamelCase , help="Max gradient norm." ) parser.add_argument("--initializer_range" , default=0.0_2 , type=_lowerCamelCase , help="Random initialization range." ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=_lowerCamelCase , default="O1" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_gpu" , type=_lowerCamelCase , default=1 , help="Number of GPUs in the node." ) parser.add_argument("--local_rank" , type=_lowerCamelCase , default=-1 , help="Distributed training - Local rank" ) parser.add_argument("--seed" , type=_lowerCamelCase , default=56 , help="Random seed" ) parser.add_argument("--log_interval" , type=_lowerCamelCase , default=500 , help="Tensorboard logging interval." ) parser.add_argument("--checkpoint_interval" , type=_lowerCamelCase , default=4000 , help="Checkpoint interval." ) _lowerCamelCase : str = parser.parse_args() sanity_checks(_lowerCamelCase ) # ARGS # init_gpu_params(_lowerCamelCase ) set_seed(_lowerCamelCase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" " itUse `--force` if you want to overwrite it" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(F"""Param: {args}""" ) with open(os.path.join(args.dump_path , "parameters.json" ) , "w" ) as f: json.dump(vars(_lowerCamelCase ) , _lowerCamelCase , indent=4 ) git_log(args.dump_path ) _lowerCamelCase : int = MODEL_CLASSES[args.student_type] _lowerCamelCase : Tuple = MODEL_CLASSES[args.teacher_type] # TOKENIZER # _lowerCamelCase : int = teacher_tokenizer_class.from_pretrained(args.teacher_name ) _lowerCamelCase : List[str] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): _lowerCamelCase : Tuple = tokenizer.all_special_tokens.index(_lowerCamelCase ) _lowerCamelCase : int = tokenizer.all_special_ids[idx] logger.info(F"""Special tokens {special_tok_ids}""" ) _lowerCamelCase : Optional[Any] = special_tok_ids _lowerCamelCase : List[str] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F"""Loading data from {args.data_file}""" ) with open(args.data_file , "rb" ) as fp: _lowerCamelCase : str = pickle.load(_lowerCamelCase ) if args.mlm: logger.info(F"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , "rb" ) as fp: _lowerCamelCase : str = pickle.load(_lowerCamelCase ) _lowerCamelCase : List[str] = np.maximum(_lowerCamelCase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): _lowerCamelCase : Tuple = 0.0 # do not predict special tokens _lowerCamelCase : Any = torch.from_numpy(_lowerCamelCase ) else: _lowerCamelCase : str = None _lowerCamelCase : int = LmSeqsDataset(params=_lowerCamelCase , data=_lowerCamelCase ) logger.info("Data loader created." ) # STUDENT # logger.info(F"""Loading student config from {args.student_config}""" ) _lowerCamelCase : Dict = student_config_class.from_pretrained(args.student_config ) _lowerCamelCase : Optional[int] = True if args.student_pretrained_weights is not None: logger.info(F"""Loading pretrained weights from {args.student_pretrained_weights}""" ) _lowerCamelCase : Union[str, Any] = student_model_class.from_pretrained(args.student_pretrained_weights , config=_lowerCamelCase ) else: _lowerCamelCase : Any = student_model_class(_lowerCamelCase ) if args.n_gpu > 0: student.to(F"""cuda:{args.local_rank}""" ) logger.info("Student loaded." ) # TEACHER # _lowerCamelCase : Any = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_lowerCamelCase ) if args.n_gpu > 0: teacher.to(F"""cuda:{args.local_rank}""" ) logger.info(F"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(_lowerCamelCase , _lowerCamelCase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(_lowerCamelCase , _lowerCamelCase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() _lowerCamelCase : Union[str, Any] = Distiller( params=_lowerCamelCase , dataset=_lowerCamelCase , token_probs=_lowerCamelCase , student=_lowerCamelCase , teacher=_lowerCamelCase ) distiller.train() logger.info("Let's go get some drinks." ) if __name__ == "__main__": main()
371
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''', '''umberto-commoncrawl-cased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json''' ), '''umberto-wikipedia-uncased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json''' ), } class A_ ( _a ): lowerCAmelCase__ = 'camembert' def __init__( self: Tuple ,__lowerCAmelCase: Union[str, Any]=30_522 ,__lowerCAmelCase: Optional[Any]=768 ,__lowerCAmelCase: Union[str, Any]=12 ,__lowerCAmelCase: int=12 ,__lowerCAmelCase: Optional[int]=3_072 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: Optional[Any]=0.1 ,__lowerCAmelCase: int=512 ,__lowerCAmelCase: Union[str, Any]=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Any=1 ,__lowerCAmelCase: Any=0 ,__lowerCAmelCase: Optional[int]=2 ,__lowerCAmelCase: Any="absolute" ,__lowerCAmelCase: Dict=True ,__lowerCAmelCase: Tuple=None ,**__lowerCAmelCase: Dict ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[str] = vocab_size _lowerCamelCase : Any = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : int = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : Dict = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps _lowerCamelCase : Tuple = position_embedding_type _lowerCamelCase : List[Any] = use_cache _lowerCamelCase : Dict = classifier_dropout class A_ ( _a ): @property def _lowercase ( self: Any ): '''simple docstring''' if self.task == "multiple-choice": _lowerCamelCase : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _lowerCamelCase : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
340
0
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase ): '''simple docstring''' _lowerCamelCase : List[str] = [int(_lowerCamelCase ) for i in ip_va_address.split("." ) if i.isdigit()] return len(_lowerCamelCase ) == 4 and all(0 <= int(_lowerCamelCase ) <= 254 for octet in octets ) if __name__ == "__main__": _lowerCAmelCase : List[str] = input().strip() _lowerCAmelCase : List[str] = '''valid''' if is_ip_va_address_valid(ip) else '''invalid''' print(f'''{ip} is a {valid_or_invalid} IP v4 address.''')
350
"""simple docstring""" from collections import defaultdict def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Optional[int] = 1 _lowerCamelCase : str = True for v in tree[start]: if v not in visited: ret += dfs(_lowerCamelCase ) if ret % 2 == 0: cuts.append(_lowerCamelCase ) return ret def lowerCamelCase_( ) -> int: '''simple docstring''' dfs(1 ) if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = 10, 9 _lowerCAmelCase : str = defaultdict(list) _lowerCAmelCase : dict[int, bool] = {} _lowerCAmelCase : list[int] = [] _lowerCAmelCase : Any = 0 _lowerCAmelCase : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
340
0
"""simple docstring""" from math import pi, sqrt, tan def lowerCamelCase_( _lowerCamelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values" ) return 6 * side_length**2 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase_( _lowerCamelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values" ) return 4 * pi * radius**2 def lowerCamelCase_( _lowerCamelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values" ) return 3 * pi * radius**2 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values" ) _lowerCamelCase : Optional[int] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values" ) return 2 * pi * radius * (height + radius) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values" ) if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori" ) return 4 * pow(_lowerCamelCase , 2 ) * torus_radius * tube_radius def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values" ) return length * width def lowerCamelCase_( _lowerCamelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError("area_square() only accepts non-negative values" ) return side_length**2 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values" ) return (base * height) / 2 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle" ) _lowerCamelCase : str = (sidea + sidea + sidea) / 2 _lowerCamelCase : List[Any] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values" ) return base * height def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values" ) return 1 / 2 * (basea + basea) * height def lowerCamelCase_( _lowerCamelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError("area_circle() only accepts non-negative values" ) return pi * radius**2 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values" ) return pi * radius_x * radius_y def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values" ) return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides" ) elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(f'''Rectangle: {area_rectangle(10, 20) = }''') print(f'''Square: {area_square(10) = }''') print(f'''Triangle: {area_triangle(10, 10) = }''') print(f'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(f'''Parallelogram: {area_parallelogram(10, 20) = }''') print(f'''Rhombus: {area_rhombus(10, 20) = }''') print(f'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(f'''Circle: {area_circle(20) = }''') print(f'''Ellipse: {area_ellipse(10, 20) = }''') print('''\nSurface Areas of various geometric shapes: \n''') print(f'''Cube: {surface_area_cube(20) = }''') print(f'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(f'''Sphere: {surface_area_sphere(20) = }''') print(f'''Hemisphere: {surface_area_hemisphere(20) = }''') print(f'''Cone: {surface_area_cone(10, 20) = }''') print(f'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(f'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(f'''Torus: {surface_area_torus(20, 10) = }''') print(f'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(f'''Square: {area_reg_polygon(4, 10) = }''') print(f'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
351
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _lowerCAmelCase : Optional[int] = '''__DUMMY_TRANSFORMERS_USER__''' _lowerCAmelCase : Dict = '''Dummy User''' _lowerCAmelCase : Optional[int] = '''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''' _lowerCAmelCase : Tuple = '''https://hub-ci.huggingface.co''' _lowerCAmelCase : Any = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}''' _lowerCAmelCase : Tuple = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}''' _lowerCAmelCase : Dict = Path('''~/.huggingface/hub_ci_token''').expanduser() @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_ENDPOINT" , _lowerCamelCase ) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' HfFolder.save_token(_lowerCamelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="session" ) def lowerCamelCase_( ) -> str: '''simple docstring''' return HfApi(endpoint=_lowerCamelCase ) @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Dict = HfFolder.get_token() HfFolder.save_token(_lowerCamelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(_lowerCamelCase ) @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' def _cleanup_repo(_lowerCamelCase ): hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) return _cleanup_repo @pytest.fixture def lowerCamelCase_( _lowerCamelCase ) -> List[str]: '''simple docstring''' @contextmanager def _temporary_repo(_lowerCamelCase ): try: yield repo_id finally: cleanup_repo(_lowerCamelCase ) return _temporary_repo @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : Tuple = F"""repo_txt_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : List[str] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data/text_data.txt" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : List[Any] = F"""repo_zipped_txt_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : Dict = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Any = F"""repo_zipped_img_data-{int(time.time() * 10e3 )}""" _lowerCamelCase : List[Any] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" , private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase , path_or_fileobj=str(_lowerCamelCase ) , path_in_repo="data.zip" , repo_id=_lowerCamelCase , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_lowerCamelCase , token=_lowerCamelCase , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
340
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _lowerCAmelCase : str = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' for attribute in key.split("." ): _lowerCamelCase : Tuple = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: _lowerCamelCase : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: _lowerCamelCase : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowerCamelCase : Tuple = value elif weight_type == "weight_g": _lowerCamelCase : List[str] = value elif weight_type == "weight_v": _lowerCamelCase : List[Any] = value elif weight_type == "bias": _lowerCamelCase : str = value elif weight_type == "running_mean": _lowerCamelCase : Optional[int] = value elif weight_type == "running_var": _lowerCamelCase : Optional[Any] = value elif weight_type == "num_batches_tracked": _lowerCamelCase : int = value elif weight_type == "inv_freq": _lowerCamelCase : List[str] = value else: _lowerCamelCase : Optional[Any] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase : Dict = [] _lowerCamelCase : Optional[Any] = fairseq_model.state_dict() _lowerCamelCase : List[Any] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase : Dict = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) _lowerCamelCase : List[Any] = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase : Dict = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _lowerCamelCase : int = True if "*" in mapped_key: _lowerCamelCase : Tuple = name.split(_lowerCamelCase )[0].split("." )[-2] _lowerCamelCase : int = mapped_key.replace("*" , _lowerCamelCase ) if "pos_bias_u" in name: _lowerCamelCase : int = None elif "pos_bias_v" in name: _lowerCamelCase : Any = None elif "weight_g" in name: _lowerCamelCase : Any = "weight_g" elif "weight_v" in name: _lowerCamelCase : Any = "weight_v" elif "bias" in name: _lowerCamelCase : Optional[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase : Dict = "weight" elif "running_mean" in name: _lowerCamelCase : str = "running_mean" elif "inv_freq" in name: _lowerCamelCase : List[Any] = "inv_freq" elif "running_var" in name: _lowerCamelCase : Tuple = "running_var" elif "num_batches_tracked" in name: _lowerCamelCase : str = "num_batches_tracked" else: _lowerCamelCase : Dict = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : int = full_name.split("conv_layers." )[-1] _lowerCamelCase : List[Any] = name.split("." ) _lowerCamelCase : Union[str, Any] = int(items[0] ) _lowerCamelCase : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowerCamelCase : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowerCamelCase : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) _lowerCamelCase : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowerCamelCase : Optional[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> Dict: '''simple docstring''' if config_path is not None: _lowerCamelCase : Union[str, Any] = WavaVecaConformerConfig.from_pretrained(_lowerCamelCase , hidden_act="swish" ) else: _lowerCamelCase : Dict = WavaVecaConformerConfig() if "rope" in checkpoint_path: _lowerCamelCase : List[Any] = "rotary" if is_finetuned: if dict_path: _lowerCamelCase : Dict = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase : Optional[int] = target_dict.pad_index _lowerCamelCase : Dict = target_dict.bos_index _lowerCamelCase : Optional[Any] = target_dict.eos_index _lowerCamelCase : str = len(target_dict.symbols ) _lowerCamelCase : int = os.path.join(_lowerCamelCase , "vocab.json" ) if not os.path.isdir(_lowerCamelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) _lowerCamelCase : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase : List[str] = 0 _lowerCamelCase : List[Any] = 1 with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Optional[int] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCamelCase , ) _lowerCamelCase : Tuple = True if config.feat_extract_norm == "layer" else False _lowerCamelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) _lowerCamelCase : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) _lowerCamelCase : List[Any] = WavaVecaConformerForCTC(_lowerCamelCase ) else: _lowerCamelCase : Any = WavaVecaConformerForPreTraining(_lowerCamelCase ) if is_finetuned: _lowerCamelCase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _lowerCamelCase : List[Any] = argparse.Namespace(task="audio_pretraining" ) _lowerCamelCase : Optional[Any] = fairseq.tasks.setup_task(_lowerCamelCase ) _lowerCamelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCamelCase ) _lowerCamelCase : Dict = model[0].eval() recursively_load_weights(_lowerCamelCase , _lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) _lowerCAmelCase : str = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
352
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) class A_ ( _a ): def __init__( self: List[Any] ,__lowerCAmelCase: Union[List[ControlNetModel], Tuple[ControlNetModel]] ): '''simple docstring''' super().__init__() _lowerCamelCase : Tuple = nn.ModuleList(__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Union[torch.Tensor, float, int] ,__lowerCAmelCase: torch.Tensor ,__lowerCAmelCase: List[torch.tensor] ,__lowerCAmelCase: List[float] ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[Dict[str, Any]] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(__lowerCAmelCase ,__lowerCAmelCase ,self.nets ) ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = controlnet( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,) # merge samples if i == 0: _lowerCamelCase, _lowerCamelCase : Optional[Any] = down_samples, mid_sample else: _lowerCamelCase : Optional[int] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(__lowerCAmelCase ,__lowerCAmelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Union[str, os.PathLike] ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Callable = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[str] = None ,): '''simple docstring''' _lowerCamelCase : List[Any] = 0 _lowerCamelCase : str = save_directory for controlnet in self.nets: controlnet.save_pretrained( __lowerCAmelCase ,is_main_process=__lowerCAmelCase ,save_function=__lowerCAmelCase ,safe_serialization=__lowerCAmelCase ,variant=__lowerCAmelCase ,) idx += 1 _lowerCamelCase : int = model_path_to_save + F"""_{idx}""" @classmethod def _lowercase ( cls: Any ,__lowerCAmelCase: Optional[Union[str, os.PathLike]] ,**__lowerCAmelCase: int ): '''simple docstring''' _lowerCamelCase : int = 0 _lowerCamelCase : str = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _lowerCamelCase : Dict = pretrained_model_path while os.path.isdir(__lowerCAmelCase ): _lowerCamelCase : List[Any] = ControlNetModel.from_pretrained(__lowerCAmelCase ,**__lowerCAmelCase ) controlnets.append(__lowerCAmelCase ) idx += 1 _lowerCamelCase : Tuple = pretrained_model_path + F"""_{idx}""" logger.info(F"""{len(__lowerCAmelCase )} controlnets loaded from {pretrained_model_path}.""" ) if len(__lowerCAmelCase ) == 0: raise ValueError( F"""No ControlNets found under {os.path.dirname(__lowerCAmelCase )}. Expected at least {pretrained_model_path + '_0'}.""" ) return cls(__lowerCAmelCase )
340
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCAmelCase = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } _lowerCAmelCase = { '''junnyu/roformer_chinese_small''': 1536, '''junnyu/roformer_chinese_base''': 1536, '''junnyu/roformer_chinese_char_small''': 512, '''junnyu/roformer_chinese_char_base''': 512, '''junnyu/roformer_small_discriminator''': 128, '''junnyu/roformer_small_generator''': 128, } _lowerCAmelCase = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class A_ ( _a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = RoFormerTokenizer def __init__( self: int ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: Dict=True ,__lowerCAmelCase: Optional[Any]="[UNK]" ,__lowerCAmelCase: Any="[SEP]" ,__lowerCAmelCase: Optional[int]="[PAD]" ,__lowerCAmelCase: List[Any]="[CLS]" ,__lowerCAmelCase: Any="[MASK]" ,__lowerCAmelCase: Optional[Any]=True ,__lowerCAmelCase: List[Any]=None ,**__lowerCAmelCase: Union[str, Any] ,): '''simple docstring''' super().__init__( __lowerCAmelCase ,tokenizer_file=__lowerCAmelCase ,do_lower_case=__lowerCAmelCase ,unk_token=__lowerCAmelCase ,sep_token=__lowerCAmelCase ,pad_token=__lowerCAmelCase ,cls_token=__lowerCAmelCase ,mask_token=__lowerCAmelCase ,tokenize_chinese_chars=__lowerCAmelCase ,strip_accents=__lowerCAmelCase ,**__lowerCAmelCase ,) _lowerCamelCase : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("lowercase" ,__lowerCAmelCase ) != do_lower_case or pre_tok_state.get("strip_accents" ,__lowerCAmelCase ) != strip_accents ): _lowerCamelCase : Any = getattr(__lowerCAmelCase ,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[str] = do_lower_case _lowerCamelCase : Dict = strip_accents _lowerCamelCase : int = pre_tok_class(**__lowerCAmelCase ) _lowerCamelCase : int = do_lower_case def __getstate__( self: Any ): '''simple docstring''' _lowerCamelCase : str = self.__dict__.copy() _lowerCamelCase : Optional[Any] = BertPreTokenizer() return state def __setstate__( self: Union[str, Any] ,__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Any = d _lowerCamelCase : List[str] = self.__dict__["_tokenizer"].get_vocab() _lowerCamelCase : int = PreTokenizer.custom(JiebaPreTokenizer(__lowerCAmelCase ) ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Optional[int]=None ): '''simple docstring''' _lowerCamelCase : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase ( self: Tuple ,__lowerCAmelCase: List[int] ,__lowerCAmelCase: Optional[List[int]] = None ): '''simple docstring''' _lowerCamelCase : Dict = [self.sep_token_id] _lowerCamelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self: str ,__lowerCAmelCase: str ,__lowerCAmelCase: Optional[str] = None ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self._tokenizer.model.save(__lowerCAmelCase ,name=__lowerCAmelCase ) return tuple(__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: List[str]=None ,__lowerCAmelCase: Tuple=False ,**__lowerCAmelCase: int ,): '''simple docstring''' _lowerCamelCase : int = BertPreTokenizer() return super().save_pretrained(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,**__lowerCAmelCase )
353
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : int = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[str]: '''simple docstring''' _lowerCamelCase : Tuple = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head" ): _lowerCamelCase : Tuple = "segformer.encoder." + key if key.startswith("backbone" ): _lowerCamelCase : Any = key.replace("backbone" , "segformer.encoder" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _lowerCamelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )] _lowerCamelCase : int = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(_lowerCamelCase )-1}""" ) if "norm" in key: _lowerCamelCase : Optional[Any] = key.replace("norm" , "layer_norm" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _lowerCamelCase : Dict = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )] _lowerCamelCase : Tuple = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(_lowerCamelCase )-1}""" ) if "layer_norm1" in key: _lowerCamelCase : Union[str, Any] = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: _lowerCamelCase : int = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _lowerCamelCase : Union[str, Any] = key[key.find("block" ) + len("block" )] _lowerCamelCase : Optional[Any] = key.replace(F"""block{idx}""" , F"""block.{int(_lowerCamelCase )-1}""" ) if "attn.q" in key: _lowerCamelCase : Optional[int] = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: _lowerCamelCase : List[str] = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: _lowerCamelCase : Tuple = key.replace("attn" , "attention.self" ) if "fc1" in key: _lowerCamelCase : Optional[Any] = key.replace("fc1" , "dense1" ) if "fc2" in key: _lowerCamelCase : Dict = key.replace("fc2" , "dense2" ) if "linear_pred" in key: _lowerCamelCase : int = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: _lowerCamelCase : str = key.replace("linear_fuse.conv" , "linear_fuse" ) _lowerCamelCase : Optional[Any] = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _lowerCamelCase : Union[str, Any] = key[key.find("linear_c" ) + len("linear_c" )] _lowerCamelCase : Optional[int] = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(_lowerCamelCase )-1}""" ) if key.startswith("head" ): _lowerCamelCase : List[str] = key.replace("head" , "classifier" ) _lowerCamelCase : Union[str, Any] = value return new_state_dict def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _lowerCamelCase : Optional[Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _lowerCamelCase : Optional[Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _lowerCamelCase : int = kv_weight[ : config.hidden_sizes[i], : ] _lowerCamelCase : int = kv_bias[: config.hidden_sizes[i]] _lowerCamelCase : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] _lowerCamelCase : Optional[Any] = kv_bias[ config.hidden_sizes[i] : ] def lowerCamelCase_( ) -> Dict: '''simple docstring''' _lowerCamelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Union[str, Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return image @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : Any = SegformerConfig() _lowerCamelCase : int = False # set attributes based on model_name _lowerCamelCase : Any = "huggingface/label-files" if "segformer" in model_name: _lowerCamelCase : str = model_name[len("segformer." ) : len("segformer." ) + 2] if "ade" in model_name: _lowerCamelCase : str = 150 _lowerCamelCase : Dict = "ade20k-id2label.json" _lowerCamelCase : Dict = (1, 150, 128, 128) elif "city" in model_name: _lowerCamelCase : List[str] = 19 _lowerCamelCase : Tuple = "cityscapes-id2label.json" _lowerCamelCase : Tuple = (1, 19, 128, 128) else: raise ValueError(F"""Model {model_name} not supported""" ) elif "mit" in model_name: _lowerCamelCase : List[str] = True _lowerCamelCase : Tuple = model_name[4:6] _lowerCamelCase : Tuple = 1000 _lowerCamelCase : List[Any] = "imagenet-1k-id2label.json" _lowerCamelCase : List[Any] = (1, 1000) else: raise ValueError(F"""Model {model_name} not supported""" ) # set config attributes _lowerCamelCase : Optional[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": _lowerCamelCase : int = [64, 128, 320, 512] _lowerCamelCase : int = 256 elif size == "b2": _lowerCamelCase : Tuple = [64, 128, 320, 512] _lowerCamelCase : List[Any] = 768 _lowerCamelCase : Any = [3, 4, 6, 3] elif size == "b3": _lowerCamelCase : Tuple = [64, 128, 320, 512] _lowerCamelCase : Union[str, Any] = 768 _lowerCamelCase : Optional[Any] = [3, 4, 18, 3] elif size == "b4": _lowerCamelCase : str = [64, 128, 320, 512] _lowerCamelCase : Optional[Any] = 768 _lowerCamelCase : Dict = [3, 8, 27, 3] elif size == "b5": _lowerCamelCase : int = [64, 128, 320, 512] _lowerCamelCase : Tuple = 768 _lowerCamelCase : Tuple = [3, 6, 40, 3] else: raise ValueError(F"""Size {size} not supported""" ) # load image processor (only resize + normalize) _lowerCamelCase : Dict = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_lowerCamelCase , align=_lowerCamelCase , do_random_crop=_lowerCamelCase ) # prepare image _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Dict = image_processor(images=_lowerCamelCase , return_tensors="pt" ).pixel_values logger.info(F"""Converting model {model_name}...""" ) # load original state dict if encoder_only: _lowerCamelCase : Tuple = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) ) else: _lowerCamelCase : int = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) )["state_dict"] # rename keys _lowerCamelCase : str = rename_keys(_lowerCamelCase , encoder_only=_lowerCamelCase ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(_lowerCamelCase , _lowerCamelCase ) # create HuggingFace model and load state dict if encoder_only: _lowerCamelCase : Tuple = False _lowerCamelCase : Optional[int] = SegformerForImageClassification(_lowerCamelCase ) else: _lowerCamelCase : List[str] = SegformerForSemanticSegmentation(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() # forward pass _lowerCamelCase : Any = model(_lowerCamelCase ) _lowerCamelCase : Dict = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": _lowerCamelCase : str = torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]], [[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": _lowerCamelCase : Any = torch.tensor( [ [[-7.5_8_2_0, -8.7_2_3_1, -8.3_2_1_5], [-8.0_6_0_0, -1_0.3_5_2_9, -1_0.0_3_0_4], [-7.5_2_0_8, -9.4_1_0_3, -9.6_2_3_9]], [[-1_2.6_9_1_8, -1_3.8_9_9_4, -1_3.7_1_3_7], [-1_3.3_1_9_6, -1_5.7_5_2_3, -1_5.4_7_8_9], [-1_2.9_3_4_3, -1_4.8_7_5_7, -1_4.9_6_8_9]], [[-1_1.1_9_1_1, -1_1.9_4_2_1, -1_1.3_2_4_3], [-1_1.3_3_4_2, -1_3.6_8_3_9, -1_3.3_5_8_1], [-1_0.3_9_0_9, -1_2.1_8_3_2, -1_2.4_8_5_8]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": _lowerCamelCase : int = torch.tensor( [ [[-1_1.8_1_7_3, -1_4.3_8_5_0, -1_6.3_1_2_8], [-1_4.5_6_4_8, -1_6.5_8_0_4, -1_8.6_5_6_8], [-1_4.7_2_2_3, -1_5.7_3_8_7, -1_8.4_2_1_8]], [[-1_5.7_2_9_0, -1_7.9_1_7_1, -1_9.4_4_2_3], [-1_8.3_1_0_5, -1_9.9_4_4_8, -2_1.4_6_6_1], [-1_7.9_2_9_6, -1_8.6_4_9_7, -2_0.7_9_1_0]], [[-1_5.0_7_8_3, -1_7.0_3_3_6, -1_8.2_7_8_9], [-1_6.8_7_7_1, -1_8.6_8_7_0, -2_0.1_6_1_2], [-1_6.2_4_5_4, -1_7.1_4_2_6, -1_9.5_0_5_5]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": _lowerCamelCase : Optional[Any] = torch.tensor( [ [[-9.0_8_7_8, -1_0.2_0_8_1, -1_0.1_8_9_1], [-9.3_1_4_4, -1_0.7_9_4_1, -1_0.9_8_4_3], [-9.2_2_9_4, -1_0.3_8_5_5, -1_0.5_7_0_4]], [[-1_2.2_3_1_6, -1_3.9_0_6_8, -1_3.6_1_0_2], [-1_2.9_1_6_1, -1_4.3_7_0_2, -1_4.3_2_3_5], [-1_2.5_2_3_3, -1_3.7_1_7_4, -1_3.7_9_3_2]], [[-1_4.6_2_7_5, -1_5.2_4_9_0, -1_4.9_7_2_7], [-1_4.3_4_0_0, -1_5.9_6_8_7, -1_6.2_8_2_7], [-1_4.1_4_8_4, -1_5.4_0_3_3, -1_5.8_9_3_7]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": _lowerCamelCase : List[str] = torch.tensor( [ [[-1_2.3_1_4_4, -1_3.2_4_4_7, -1_4.0_8_0_2], [-1_3.3_6_1_4, -1_4.5_8_1_6, -1_5.6_1_1_7], [-1_3.3_3_4_0, -1_4.4_4_3_3, -1_6.2_2_1_9]], [[-1_9.2_7_8_1, -2_0.4_1_2_8, -2_0.7_5_0_6], [-2_0.6_1_5_3, -2_1.6_5_6_6, -2_2.0_9_9_8], [-1_9.9_8_0_0, -2_1.0_4_3_0, -2_2.1_4_9_4]], [[-1_8.8_7_3_9, -1_9.7_8_0_4, -2_1.1_8_3_4], [-2_0.1_2_3_3, -2_1.6_7_6_5, -2_3.2_9_4_4], [-2_0.0_3_1_5, -2_1.2_6_4_1, -2_3.6_9_4_4]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": _lowerCamelCase : Any = torch.tensor( [ [[-9.5_5_2_4, -1_2.0_8_3_5, -1_1.7_3_4_8], [-1_0.5_2_2_9, -1_3.6_4_4_6, -1_4.5_6_6_2], [-9.5_8_4_2, -1_2.8_8_5_1, -1_3.9_4_1_4]], [[-1_5.3_4_3_2, -1_7.5_3_2_3, -1_7.0_8_1_8], [-1_6.3_3_3_0, -1_8.9_2_5_5, -1_9.2_1_0_1], [-1_5.1_3_4_0, -1_7.7_8_4_8, -1_8.3_9_7_1]], [[-1_2.6_0_7_2, -1_4.9_4_8_6, -1_4.6_6_3_1], [-1_3.7_6_2_9, -1_7.0_9_0_7, -1_7.7_7_4_5], [-1_2.7_8_9_9, -1_6.1_6_9_5, -1_7.1_6_7_1]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": _lowerCamelCase : Dict = torch.tensor( [ [[-1_1.9_2_9_5, -1_3.4_0_5_7, -1_4.8_1_0_6], [-1_3.3_4_3_1, -1_4.8_1_7_9, -1_5.3_7_8_1], [-1_4.2_8_3_6, -1_5.5_9_4_2, -1_6.1_5_8_8]], [[-1_1.4_9_0_6, -1_2.8_0_6_7, -1_3.6_5_6_4], [-1_3.1_1_8_9, -1_4.0_5_0_0, -1_4.1_5_4_3], [-1_3.8_7_4_8, -1_4.5_1_3_6, -1_4.8_7_8_9]], [[0.5_3_7_4, 0.1_0_6_7, -0.4_7_4_2], [0.1_1_4_1, -0.2_2_5_5, -0.7_0_9_9], [-0.3_0_0_0, -0.5_9_2_4, -1.3_1_0_5]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": _lowerCamelCase : Optional[int] = torch.tensor( [ [[-7.8_2_1_7, -9.8_7_6_7, -1_0.1_7_1_7], [-9.4_4_3_8, -1_0.9_0_5_8, -1_1.4_0_4_7], [-9.7_9_3_9, -1_2.3_4_9_5, -1_2.1_0_7_9]], [[-7.1_5_1_4, -9.5_3_3_6, -1_0.0_8_6_0], [-9.7_7_7_6, -1_1.6_8_2_2, -1_1.8_4_3_9], [-1_0.1_4_1_1, -1_2.7_6_5_5, -1_2.8_9_7_2]], [[0.3_0_2_1, 0.0_8_0_5, -0.2_3_1_0], [-0.0_3_2_8, -0.1_6_0_5, -0.2_7_1_4], [-0.1_4_0_8, -0.5_4_7_7, -0.6_9_7_6]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": _lowerCamelCase : Tuple = torch.tensor( [ [ [-1.13_72e01, -1.27_87e01, -1.34_77e01], [-1.25_36e01, -1.41_94e01, -1.44_09e01], [-1.32_17e01, -1.48_88e01, -1.53_27e01], ], [ [-1.47_91e01, -1.71_22e01, -1.82_77e01], [-1.71_63e01, -1.91_92e01, -1.95_33e01], [-1.78_97e01, -1.99_91e01, -2.03_15e01], ], [ [7.67_23e-01, 4.19_21e-01, -7.78_78e-02], [4.77_72e-01, 9.55_57e-03, -2.80_82e-01], [3.60_32e-01, -2.48_26e-01, -5.11_68e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": _lowerCamelCase : Union[str, Any] = torch.tensor( [ [[-9.4_9_5_9, -1_1.3_0_8_7, -1_1.7_4_7_9], [-1_1.0_0_2_5, -1_2.6_5_4_0, -1_2.3_3_1_9], [-1_1.4_0_6_4, -1_3.0_4_8_7, -1_2.9_9_0_5]], [[-9.8_9_0_5, -1_1.3_0_8_4, -1_2.0_8_5_4], [-1_1.1_7_2_6, -1_2.7_6_9_8, -1_2.9_5_8_3], [-1_1.5_9_8_5, -1_3.3_2_7_8, -1_4.1_7_7_4]], [[0.2_2_1_3, 0.0_1_9_2, -0.2_4_6_6], [-0.1_7_3_1, -0.4_2_1_3, -0.4_8_7_4], [-0.3_1_2_6, -0.6_5_4_1, -1.1_3_8_9]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": _lowerCamelCase : List[Any] = torch.tensor( [ [[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]], [[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": _lowerCamelCase : Tuple = torch.tensor( [ [[-1_6.0_9_7_6, -1_6.4_8_5_6, -1_7.3_9_6_2], [-1_6.6_2_3_4, -1_9.0_3_4_2, -1_9.7_6_8_5], [-1_6.0_9_0_0, -1_8.0_6_6_1, -1_9.1_1_8_0]], [[-1_8.4_7_5_0, -1_8.8_4_8_8, -1_9.5_0_7_4], [-1_9.4_0_3_0, -2_2.1_5_7_0, -2_2.5_9_7_7], [-1_9.1_1_9_1, -2_0.8_4_8_6, -2_2.3_7_8_3]], [[-4.5_1_7_8, -5.5_0_3_7, -6.5_1_0_9], [-5.0_8_8_4, -7.2_1_7_4, -8.0_3_3_4], [-4.4_1_5_6, -5.8_1_1_7, -7.2_9_7_0]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": _lowerCamelCase : Any = torch.tensor( [ [[-1_4.2_0_8_1, -1_4.4_7_3_2, -1_4.1_9_7_7], [-1_4.5_8_6_7, -1_6.4_4_2_3, -1_6.6_3_5_6], [-1_3.4_4_4_1, -1_4.9_6_8_5, -1_6.8_6_9_6]], [[-1_4.4_5_7_6, -1_4.7_0_7_3, -1_5.0_4_5_1], [-1_5.0_8_1_6, -1_7.6_2_3_7, -1_7.9_8_7_3], [-1_4.4_2_1_3, -1_6.0_1_9_9, -1_8.5_9_9_2]], [[-4.7_3_4_9, -4.9_5_8_8, -5.0_9_6_6], [-4.3_2_1_0, -6.9_3_2_5, -7.2_5_9_1], [-3.4_3_1_2, -4.7_4_8_4, -7.1_9_1_7]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": _lowerCamelCase : List[str] = torch.tensor( [ [[-1_1.7_7_3_7, -1_1.9_5_2_6, -1_1.3_2_7_3], [-1_3.6_6_9_2, -1_4.4_5_7_4, -1_3.8_8_7_8], [-1_3.8_9_3_7, -1_4.6_9_2_4, -1_5.9_3_4_5]], [[-1_4.6_7_0_6, -1_4.5_3_3_0, -1_4.1_3_0_6], [-1_6.1_5_0_2, -1_6.8_1_8_0, -1_6.4_2_6_9], [-1_6.8_3_3_8, -1_7.8_9_3_9, -2_0.1_7_4_6]], [[1.0_4_9_1, 0.8_2_8_9, 1.0_3_1_0], [1.1_0_4_4, 0.5_2_1_9, 0.8_0_5_5], [1.0_8_9_9, 0.6_9_2_6, 0.5_5_9_0]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": _lowerCamelCase : str = torch.tensor( [ [[-1_2.5_6_4_1, -1_3.4_7_7_7, -1_3.0_6_8_4], [-1_3.9_5_8_7, -1_5.8_9_8_3, -1_6.6_5_5_7], [-1_3.3_1_0_9, -1_5.7_3_5_0, -1_6.3_1_4_1]], [[-1_4.7_0_7_4, -1_5.4_3_5_2, -1_4.5_9_4_4], [-1_6.6_3_5_3, -1_8.1_6_6_3, -1_8.6_1_2_0], [-1_5.1_7_0_2, -1_8.0_3_2_9, -1_8.1_5_4_7]], [[-1.7_9_9_0, -2.0_9_5_1, -1.7_7_8_4], [-2.6_3_9_7, -3.8_2_4_5, -3.9_6_8_6], [-1.5_2_6_4, -2.8_1_2_6, -2.9_3_1_6]], ] ) else: _lowerCamelCase : Dict = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1e-2 ) # finally, save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''segformer.b0.512x512.ade.160k''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _lowerCAmelCase : str = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
340
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer _lowerCAmelCase : Any = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast _lowerCAmelCase : int = TaTokenizerFast _lowerCAmelCase : List[Any] = {'''configuration_mt5''': ['''MT5Config''', '''MT5OnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[Any] = [ '''MT5EncoderModel''', '''MT5ForConditionalGeneration''', '''MT5ForQuestionAnswering''', '''MT5Model''', '''MT5PreTrainedModel''', '''MT5Stack''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = ['''TFMT5EncoderModel''', '''TFMT5ForConditionalGeneration''', '''TFMT5Model'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = ['''FlaxMT5EncoderModel''', '''FlaxMT5ForConditionalGeneration''', '''FlaxMT5Model'''] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys _lowerCAmelCase : List[str] = _LazyModule( __name__, globals()['''__file__'''], _import_structure, extra_objects={'''MT5Tokenizer''': MTaTokenizer, '''MT5TokenizerFast''': MTaTokenizerFast}, module_spec=__spec__, )
354
"""simple docstring""" _lowerCAmelCase : dict[tuple[int, int, int], int] = {} def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on _lowerCamelCase : Optional[int] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one _lowerCamelCase : int = _calculate(days - 1 , _lowerCamelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 _lowerCamelCase : Tuple = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter _lowerCamelCase : str = _calculate(days - 1 , _lowerCamelCase , 0 ) _lowerCamelCase : List[Any] = state_late + state_absent + state_ontime _lowerCamelCase : int = prizestrings return prizestrings def lowerCamelCase_( _lowerCamelCase = 30 ) -> int: '''simple docstring''' return _calculate(_lowerCamelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
340
0
"""simple docstring""" import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' assert isinstance(_lowerCamelCase , _lowerCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase : Dict = tmp_path / "cache" _lowerCamelCase : List[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowerCamelCase : Tuple = SqlDatasetReader( "dataset" , "sqlite:///" + sqlite_path , cache_dir=_lowerCamelCase , keep_in_memory=_lowerCamelCase ).read() _check_sql_dataset(_lowerCamelCase , _lowerCamelCase ) @require_sqlalchemy @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : Optional[int] = tmp_path / "cache" _lowerCamelCase : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _lowerCamelCase : Tuple = features.copy() if features else default_expected_features _lowerCamelCase : Dict = ( Features({feature: Value(_lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) _lowerCamelCase : Optional[Any] = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , features=_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_sql_dataset(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' with contextlib.closing(sqlitea.connect(_lowerCamelCase ) ) as con: _lowerCamelCase : Any = con.cursor() cur.execute("SELECT * FROM dataset" ) for row in cur: yield row @require_sqlalchemy def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase : Optional[Any] = tmp_path / "cache" _lowerCamelCase : Optional[int] = os.path.join(_lowerCamelCase , "tmp.sql" ) _lowerCamelCase : Optional[Any] = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=_lowerCamelCase ).read() SqlDatasetWriter(_lowerCamelCase , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=1 ).write() _lowerCamelCase : List[str] = iter_sql_file(_lowerCamelCase ) _lowerCamelCase : List[Any] = iter_sql_file(_lowerCamelCase ) for rowa, rowa in zip(_lowerCamelCase , _lowerCamelCase ): assert rowa == rowa @require_sqlalchemy def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Optional[Any] = tmp_path / "cache" _lowerCamelCase : Dict = os.path.join(_lowerCamelCase , "tmp.sql" ) _lowerCamelCase : List[Any] = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=_lowerCamelCase ).read() SqlDatasetWriter(_lowerCamelCase , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=2 ).write() _lowerCamelCase : Any = iter_sql_file(_lowerCamelCase ) _lowerCamelCase : Optional[Any] = iter_sql_file(_lowerCamelCase ) for rowa, rowa in zip(_lowerCamelCase , _lowerCamelCase ): assert rowa == rowa @require_sqlalchemy def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Dict = tmp_path / "cache" _lowerCamelCase : List[Any] = os.path.join(_lowerCamelCase , "tmp.sql" ) _lowerCamelCase : Dict = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=_lowerCamelCase ).read() with pytest.raises(_lowerCamelCase ): SqlDatasetWriter(_lowerCamelCase , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=0 ).write()
355
"""simple docstring""" from __future__ import annotations def lowerCamelCase_( _lowerCamelCase ) -> bool: '''simple docstring''' _lowerCamelCase : int = str(_lowerCamelCase ) return len(_lowerCamelCase ) == 9 and set(_lowerCamelCase ) == set("123456789" ) def lowerCamelCase_( ) -> int | None: '''simple docstring''' for base_num in range(9999 , 4999 , -1 ): _lowerCamelCase : Union[str, Any] = 100002 * base_num if is_9_pandigital(_lowerCamelCase ): return candidate for base_num in range(333 , 99 , -1 ): _lowerCamelCase : Tuple = 1002003 * base_num if is_9_pandigital(_lowerCamelCase ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
340
0
"""simple docstring""" import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union _lowerCAmelCase : Tuple = re.compile(R'''^(?P<major>\d+)''' R'''\.(?P<minor>\d+)''' R'''\.(?P<patch>\d+)$''') @total_ordering @dataclass class A_ : lowerCAmelCase__ = 4_2 lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Any = _str_to_version_tuple(self.version_str ) def __repr__( self: List[str] ): '''simple docstring''' return F"""{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}""" @property def _lowercase ( self: Dict ): '''simple docstring''' return self.major, self.minor, self.patch def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): return Version(__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): return other raise TypeError(F"""{other} (type {type(__lowerCAmelCase )}) cannot be compared to version.""" ) def __eq__( self: int ,__lowerCAmelCase: str ): '''simple docstring''' try: _lowerCamelCase : int = self._validate_operand(__lowerCAmelCase ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self: List[Any] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : int = self._validate_operand(__lowerCAmelCase ) return self.tuple < other.tuple def __hash__( self: Optional[int] ): '''simple docstring''' return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def _lowercase ( cls: Optional[Any] ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : Any = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def _lowercase ( self: int ): '''simple docstring''' return self.version_str def lowerCamelCase_( _lowerCamelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase : List[str] = _VERSION_REG.match(_lowerCamelCase ) if not res: raise ValueError(F"""Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits.""" ) return tuple(int(_lowerCamelCase ) for v in [res.group("major" ), res.group("minor" ), res.group("patch" )] ) def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' return ".".join(str(_lowerCamelCase ) for v in version_tuple )
356
"""simple docstring""" import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class A_ ( _a ): lowerCAmelCase__ = 'char' lowerCAmelCase__ = 'bpe' lowerCAmelCase__ = 'wp' _lowerCAmelCase : List[str] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class A_ ( _a ): lowerCAmelCase__ = ['image_processor', 'char_tokenizer'] lowerCAmelCase__ = 'ViTImageProcessor' lowerCAmelCase__ = 'MgpstrTokenizer' def __init__( self: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: Optional[int]=None ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Any = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." ,__lowerCAmelCase ,) _lowerCamelCase : List[Any] = kwargs.pop("feature_extractor" ) _lowerCamelCase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : str = AutoTokenizer.from_pretrained("gpt2" ) _lowerCamelCase : List[str] = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(__lowerCAmelCase ,__lowerCAmelCase ) def __call__( self: Optional[int] ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,__lowerCAmelCase: Optional[Any]=None ,**__lowerCAmelCase: Tuple ): '''simple docstring''' if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: _lowerCamelCase : Optional[int] = self.image_processor(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) if text is not None: _lowerCamelCase : int = self.char_tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) if text is None: return inputs elif images is None: return encodings else: _lowerCamelCase : Tuple = encodings["input_ids"] return inputs def _lowercase ( self: int ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = sequences _lowerCamelCase : Dict = char_preds.size(0 ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._decode_helper(__lowerCAmelCase ,"char" ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self._decode_helper(__lowerCAmelCase ,"bpe" ) _lowerCamelCase, _lowerCamelCase : Tuple = self._decode_helper(__lowerCAmelCase ,"wp" ) _lowerCamelCase : List[str] = [] _lowerCamelCase : str = [] for i in range(__lowerCAmelCase ): _lowerCamelCase : str = [char_scores[i], bpe_scores[i], wp_scores[i]] _lowerCamelCase : List[Any] = [char_strs[i], bpe_strs[i], wp_strs[i]] _lowerCamelCase : Optional[Any] = scores.index(max(__lowerCAmelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _lowerCamelCase : Tuple = {} _lowerCamelCase : Tuple = final_strs _lowerCamelCase : int = final_scores _lowerCamelCase : str = char_strs _lowerCamelCase : Dict = bpe_strs _lowerCamelCase : int = wp_strs return out def _lowercase ( self: List[str] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: List[Any] ): '''simple docstring''' if format == DecodeType.CHARACTER: _lowerCamelCase : int = self.char_decode _lowerCamelCase : List[str] = 1 _lowerCamelCase : Optional[int] = "[s]" elif format == DecodeType.BPE: _lowerCamelCase : Dict = self.bpe_decode _lowerCamelCase : str = 2 _lowerCamelCase : Union[str, Any] = "#" elif format == DecodeType.WORDPIECE: _lowerCamelCase : int = self.wp_decode _lowerCamelCase : List[str] = 102 _lowerCamelCase : List[Any] = "[SEP]" else: raise ValueError(F"""Format {format} is not supported.""" ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = [], [] _lowerCamelCase : Any = pred_logits.size(0 ) _lowerCamelCase : int = pred_logits.size(1 ) _lowerCamelCase, _lowerCamelCase : List[Any] = pred_logits.topk(1 ,dim=-1 ,largest=__lowerCAmelCase ,sorted=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = preds_index.view(-1 ,__lowerCAmelCase )[:, 1:] _lowerCamelCase : List[str] = decoder(__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : str = torch.nn.functional.softmax(__lowerCAmelCase ,dim=2 ).max(dim=2 ) _lowerCamelCase : Any = preds_max_prob[:, 1:] for index in range(__lowerCAmelCase ): _lowerCamelCase : List[Any] = preds_str[index].find(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = preds_str[index][:pred_eos] _lowerCamelCase : Optional[Any] = preds_index[index].cpu().tolist() _lowerCamelCase : List[str] = pred_index.index(__lowerCAmelCase ) if eos_token in pred_index else -1 _lowerCamelCase : str = preds_max_prob[index][: pred_eos_index + 1] _lowerCamelCase : Union[str, Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__lowerCAmelCase ) conf_scores.append(__lowerCAmelCase ) return dec_strs, conf_scores def _lowercase ( self: Tuple ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : str = [seq.replace(" " ,"" ) for seq in self.char_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs def _lowercase ( self: List[str] ,__lowerCAmelCase: List[str] ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(__lowerCAmelCase ) def _lowercase ( self: Tuple ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [seq.replace(" " ,"" ) for seq in self.wp_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs
340
0
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake _lowerCAmelCase : int = numpy.array([0, 0]) _lowerCAmelCase : Dict = numpy.array([0.5, 0.8_660_254]) _lowerCAmelCase : str = numpy.array([1, 0]) _lowerCAmelCase : Union[str, Any] = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[numpy.ndarray]: '''simple docstring''' _lowerCamelCase : Dict = initial_vectors for _ in range(_lowerCamelCase ): _lowerCamelCase : int = iteration_step(_lowerCamelCase ) return vectors def lowerCamelCase_( _lowerCamelCase ) -> list[numpy.ndarray]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = [] for i, start_vector in enumerate(vectors[:-1] ): _lowerCamelCase : Union[str, Any] = vectors[i + 1] new_vectors.append(_lowerCamelCase ) _lowerCamelCase : Optional[int] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> numpy.ndarray: '''simple docstring''' _lowerCamelCase : int = numpy.radians(_lowerCamelCase ) _lowerCamelCase : Optional[Any] = numpy.cos(_lowerCamelCase ), numpy.sin(_lowerCamelCase ) _lowerCamelCase : str = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> None: '''simple docstring''' _lowerCamelCase : Optional[Any] = plt.gca() axes.set_aspect("equal" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _lowerCamelCase : Union[str, Any] = zip(*_lowerCamelCase ) plt.plot(_lowerCamelCase , _lowerCamelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Any = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
357
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version _lowerCAmelCase : List[Any] = get_logger(__name__) class A_ : lowerCAmelCase__ = 'dummy_data' lowerCAmelCase__ = 'datasets' lowerCAmelCase__ = False def __init__( self: List[str] ,__lowerCAmelCase: str ,__lowerCAmelCase: str ,__lowerCAmelCase: Union[Version, str] ,__lowerCAmelCase: Optional[str] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[List[Callable]] = None ,): '''simple docstring''' _lowerCamelCase : str = 0 _lowerCamelCase : List[str] = dataset_name _lowerCamelCase : Optional[int] = cache_dir _lowerCamelCase : Optional[int] = use_local_dummy_data _lowerCamelCase : int = config # download_callbacks take a single url as input _lowerCamelCase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _lowerCamelCase : int = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _lowerCamelCase : Tuple = str(__lowerCAmelCase ) # to be downloaded _lowerCamelCase : Optional[Any] = None _lowerCamelCase : Dict = None @property def _lowercase ( self: str ): '''simple docstring''' if self._dummy_file is None: _lowerCamelCase : List[str] = self.download_dummy_data() return self._dummy_file @property def _lowercase ( self: str ): '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" ,self.config.name ,self.version_name ) # structure is dummy / version_name return os.path.join("dummy" ,self.version_name ) @property def _lowercase ( self: Optional[Any] ): '''simple docstring''' return os.path.join(self.dummy_data_folder ,"dummy_data.zip" ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _lowerCamelCase : Optional[int] = cached_path( __lowerCAmelCase ,cache_dir=self.cache_dir ,extract_compressed_file=__lowerCAmelCase ,force_extract=__lowerCAmelCase ) return os.path.join(__lowerCAmelCase ,self.dummy_file_name ) @property def _lowercase ( self: Tuple ): '''simple docstring''' return os.path.join(self.datasets_scripts_dir ,self.dataset_name ,self.dummy_zip_file ) @property def _lowercase ( self: List[str] ): '''simple docstring''' if self._bucket_url is None: _lowerCamelCase : List[str] = hf_github_url(self.dataset_name ,self.dummy_zip_file.replace(os.sep ,"/" ) ) return self._bucket_url @property def _lowercase ( self: Union[str, Any] ): '''simple docstring''' if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep ,"/" ).split("/" )[:-1] ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: str ,*__lowerCAmelCase: List[Any] ): '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested _lowerCamelCase : Tuple = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _lowerCamelCase : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): return self.create_dummy_data_dict(__lowerCAmelCase ,__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,(list, tuple) ): return self.create_dummy_data_list(__lowerCAmelCase ,__lowerCAmelCase ) else: return self.create_dummy_data_single(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: Optional[int] ): '''simple docstring''' return self.download_and_extract(__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: int ): '''simple docstring''' return self.download_and_extract(__lowerCAmelCase ) def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' return path def _lowercase ( self: Optional[int] ): '''simple docstring''' return {} def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : str = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): for single_url in single_urls: download_callback(__lowerCAmelCase ) else: _lowerCamelCase : Union[str, Any] = single_urls download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Dict = [os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) ) for x in single_urls] else: _lowerCamelCase : Union[str, Any] = single_urls _lowerCamelCase : List[str] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) ) _lowerCamelCase : List[Any] = value # make sure that values are unique if all(isinstance(__lowerCAmelCase ,__lowerCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique _lowerCamelCase : List[Any] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Dict = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _lowerCamelCase : List[str] = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" ,__lowerCAmelCase ) ) for url in data_url ) _lowerCamelCase : Optional[Any] = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): _lowerCamelCase : Tuple = [data_url[0]] * len(__lowerCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(__lowerCAmelCase ) return dummy_data_list def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: List[Any] ): '''simple docstring''' for download_callback in self.download_callbacks: download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : Optional[int] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(__lowerCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass def _lowercase ( self: Optional[int] ): '''simple docstring''' pass def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' def _iter_archive_members(__lowerCAmelCase: Any ): # this preserves the order of the members inside the ZIP archive _lowerCamelCase : Tuple = Path(self.dummy_file ).parent _lowerCamelCase : str = path.relative_to(__lowerCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: _lowerCamelCase : Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = Path(__lowerCAmelCase ) _lowerCamelCase : int = _iter_archive_members(__lowerCAmelCase ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(__lowerCAmelCase ).as_posix(), file_path.open("rb" ) def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = [paths] for path in paths: if os.path.isfile(__lowerCAmelCase ): if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(__lowerCAmelCase ): if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(__lowerCAmelCase ): if filename.startswith((".", "__") ): continue yield os.path.join(__lowerCAmelCase ,__lowerCAmelCase )
340
0
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : Union[str, Any] = 384 _lowerCamelCase : List[str] = 7 if "tiny" in model_name: _lowerCamelCase : Optional[Any] = 96 _lowerCamelCase : int = (2, 2, 6, 2) _lowerCamelCase : Dict = (3, 6, 12, 24) elif "small" in model_name: _lowerCamelCase : List[Any] = 96 _lowerCamelCase : int = (2, 2, 18, 2) _lowerCamelCase : Tuple = (3, 6, 12, 24) elif "base" in model_name: _lowerCamelCase : List[Any] = 128 _lowerCamelCase : Optional[int] = (2, 2, 18, 2) _lowerCamelCase : str = (4, 8, 16, 32) _lowerCamelCase : Union[str, Any] = 12 _lowerCamelCase : Union[str, Any] = 512 elif "large" in model_name: _lowerCamelCase : List[Any] = 192 _lowerCamelCase : List[Any] = (2, 2, 18, 2) _lowerCamelCase : Tuple = (6, 12, 24, 48) _lowerCamelCase : Union[str, Any] = 12 _lowerCamelCase : Dict = 768 # set label information _lowerCamelCase : int = 150 _lowerCamelCase : List[Any] = "huggingface/label-files" _lowerCamelCase : Tuple = "ade20k-id2label.json" _lowerCamelCase : List[str] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Tuple = {v: k for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = SwinConfig( embed_dim=_lowerCamelCase , depths=_lowerCamelCase , num_heads=_lowerCamelCase , window_size=_lowerCamelCase , out_features=["stage1", "stage2", "stage3", "stage4"] , ) _lowerCamelCase : List[Any] = UperNetConfig( backbone_config=_lowerCamelCase , auxiliary_in_channels=_lowerCamelCase , num_labels=_lowerCamelCase , idalabel=_lowerCamelCase , labelaid=_lowerCamelCase , ) return config def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : Optional[Any] = [] # fmt: off # stem rename_keys.append(("backbone.patch_embed.projection.weight", "backbone.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.projection.bias", "backbone.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "backbone.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "backbone.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.stages.{i}.downsample.reduction.weight""", F"""backbone.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.stages.{i}.downsample.norm.weight""", F"""backbone.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.stages.{i}.downsample.norm.bias""", F"""backbone.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : Any = dct.pop(_lowerCamelCase ) _lowerCamelCase : List[str] = val def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _lowerCamelCase : Optional[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _lowerCamelCase : List[Any] = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""" ) _lowerCamelCase : List[str] = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Any = in_proj_weight[:dim, :] _lowerCamelCase : str = in_proj_bias[: dim] _lowerCamelCase : Tuple = in_proj_weight[ dim : dim * 2, : ] _lowerCamelCase : Optional[int] = in_proj_bias[ dim : dim * 2 ] _lowerCamelCase : List[Any] = in_proj_weight[ -dim :, : ] _lowerCamelCase : List[Any] = in_proj_bias[-dim :] # fmt: on def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : int = x.shape _lowerCamelCase : Optional[int] = x.reshape(_lowerCamelCase , 4 , in_channel // 4 ) _lowerCamelCase : Optional[Any] = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(_lowerCamelCase , _lowerCamelCase ) return x def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Dict = x.shape _lowerCamelCase : int = x.reshape(_lowerCamelCase , in_channel // 4 , 4 ) _lowerCamelCase : Tuple = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(_lowerCamelCase , _lowerCamelCase ) return x def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : Optional[int] = x.shape[0] _lowerCamelCase : List[str] = x.reshape(4 , in_channel // 4 ) _lowerCamelCase : List[str] = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(_lowerCamelCase ) return x def lowerCamelCase_( _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Dict = x.shape[0] _lowerCamelCase : int = x.reshape(in_channel // 4 , 4 ) _lowerCamelCase : str = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(_lowerCamelCase ) return x def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : List[str] = { "upernet-swin-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth", "upernet-swin-small": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth", "upernet-swin-base": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth", "upernet-swin-large": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth", } _lowerCamelCase : Tuple = model_name_to_url[model_name] _lowerCamelCase : int = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" , file_name=_lowerCamelCase )[ "state_dict" ] for name, param in state_dict.items(): print(_lowerCamelCase , param.shape ) _lowerCamelCase : Optional[Any] = get_upernet_config(_lowerCamelCase ) _lowerCamelCase : List[str] = UperNetForSemanticSegmentation(_lowerCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _lowerCamelCase : str = state_dict.pop(_lowerCamelCase ) if "bn" in key: _lowerCamelCase : Any = key.replace("bn" , "batch_norm" ) _lowerCamelCase : Optional[Any] = val # rename keys _lowerCamelCase : Dict = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: _lowerCamelCase : Tuple = reverse_correct_unfold_reduction_order(_lowerCamelCase ) if "norm" in key: _lowerCamelCase : Tuple = reverse_correct_unfold_norm_order(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) # verify on image _lowerCamelCase : Tuple = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" _lowerCamelCase : List[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert("RGB" ) _lowerCamelCase : Optional[int] = SegformerImageProcessor() _lowerCamelCase : Union[str, Any] = processor(_lowerCamelCase , return_tensors="pt" ).pixel_values with torch.no_grad(): _lowerCamelCase : int = model(_lowerCamelCase ) _lowerCamelCase : str = outputs.logits print(logits.shape ) print("First values of logits:" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": _lowerCamelCase : List[Any] = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ) elif model_name == "upernet-swin-small": _lowerCamelCase : Any = torch.tensor( [[-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.0_9_0_8, -7.0_9_0_8, -6.8_5_3_4]] ) elif model_name == "upernet-swin-base": _lowerCamelCase : Any = torch.tensor( [[-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.4_7_6_3, -6.4_7_6_3, -6.3_2_5_4]] ) elif model_name == "upernet-swin-large": _lowerCamelCase : str = torch.tensor( [[-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.4_0_4_4, -7.4_0_4_4, -7.2_5_8_6]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print(F"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(F"""openmmlab/{model_name}""" ) processor.push_to_hub(F"""openmmlab/{model_name}""" ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-swin-tiny''', type=str, choices=[f'''upernet-swin-{size}''' for size in ['''tiny''', '''small''', '''base''', '''large''']], help='''Name of the Swin + UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowerCAmelCase : List[Any] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
358
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) _lowerCamelCase : int = precision _lowerCamelCase : Dict = ceil(precision / 14 ) _lowerCamelCase : Optional[Any] = 426880 * Decimal(10005 ).sqrt() _lowerCamelCase : int = 1 _lowerCamelCase : Optional[int] = 13591409 _lowerCamelCase : int = Decimal(_lowerCamelCase ) for k in range(1 , _lowerCamelCase ): _lowerCamelCase : Union[str, Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowerCamelCase ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = 50 print(f'''The first {n} digits of pi is: {pi(n)}''')
340
0
"""simple docstring""" import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) _lowerCAmelCase : Optional[Any] = { '''iou_prediction_head.layers.0''': '''iou_prediction_head.proj_in''', '''iou_prediction_head.layers.1''': '''iou_prediction_head.layers.0''', '''iou_prediction_head.layers.2''': '''iou_prediction_head.proj_out''', '''mask_decoder.output_upscaling.0''': '''mask_decoder.upscale_conv1''', '''mask_decoder.output_upscaling.1''': '''mask_decoder.upscale_layer_norm''', '''mask_decoder.output_upscaling.3''': '''mask_decoder.upscale_conv2''', '''mask_downscaling.0''': '''mask_embed.conv1''', '''mask_downscaling.1''': '''mask_embed.layer_norm1''', '''mask_downscaling.3''': '''mask_embed.conv2''', '''mask_downscaling.4''': '''mask_embed.layer_norm2''', '''mask_downscaling.6''': '''mask_embed.conv3''', '''point_embeddings''': '''point_embed''', '''pe_layer.positional_encoding_gaussian_matrix''': '''shared_embedding.positional_embedding''', '''image_encoder''': '''vision_encoder''', '''neck.0''': '''neck.conv1''', '''neck.1''': '''neck.layer_norm1''', '''neck.2''': '''neck.conv2''', '''neck.3''': '''neck.layer_norm2''', '''patch_embed.proj''': '''patch_embed.projection''', '''.norm''': '''.layer_norm''', '''blocks''': '''layers''', } def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Dict = {} state_dict.pop("pixel_mean" , _lowerCamelCase ) state_dict.pop("pixel_std" , _lowerCamelCase ) _lowerCamelCase : Optional[Any] = R".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _lowerCamelCase : Tuple = key.replace(_lowerCamelCase , _lowerCamelCase ) if re.match(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Union[str, Any] = int(re.match(_lowerCamelCase , _lowerCamelCase ).group(2 ) ) if layer_nb == 0: _lowerCamelCase : Any = key.replace("layers.0" , "proj_in" ) elif layer_nb == 1: _lowerCamelCase : Optional[Any] = key.replace("layers.1" , "layers.0" ) elif layer_nb == 2: _lowerCamelCase : Dict = key.replace("layers.2" , "proj_out" ) _lowerCamelCase : int = value _lowerCamelCase : str = model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="ybelkada/segment-anything" ) -> int: '''simple docstring''' _lowerCamelCase : Tuple = hf_hub_download(_lowerCamelCase , F"""checkpoints/{model_name}.pth""" ) if "sam_vit_b" in model_name: _lowerCamelCase : Optional[int] = SamConfig() elif "sam_vit_l" in model_name: _lowerCamelCase : Optional[int] = SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) _lowerCamelCase : Tuple = SamConfig( vision_config=_lowerCamelCase , ) elif "sam_vit_h" in model_name: _lowerCamelCase : Tuple = SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) _lowerCamelCase : Union[str, Any] = SamConfig( vision_config=_lowerCamelCase , ) _lowerCamelCase : Any = torch.load(_lowerCamelCase , map_location="cpu" ) _lowerCamelCase : int = replace_keys(_lowerCamelCase ) _lowerCamelCase : Optional[int] = SamImageProcessor() _lowerCamelCase : str = SamProcessor(image_processor=_lowerCamelCase ) _lowerCamelCase : List[str] = SamModel(_lowerCamelCase ) hf_model.load_state_dict(_lowerCamelCase ) _lowerCamelCase : List[Any] = hf_model.to("cuda" ) _lowerCamelCase : Union[str, Any] = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" _lowerCamelCase : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert("RGB" ) _lowerCamelCase : Optional[Any] = [[[400, 650]]] _lowerCamelCase : Optional[Any] = [[1]] _lowerCamelCase : Union[str, Any] = processor(images=np.array(_lowerCamelCase ) , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _lowerCamelCase : List[Any] = hf_model(**_lowerCamelCase ) _lowerCamelCase : List[str] = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_7_9_8_9_0_2_5_1_1_5_9_6_6_8 _lowerCamelCase : List[Any] = processor( images=np.array(_lowerCamelCase ) , input_points=_lowerCamelCase , input_labels=_lowerCamelCase , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _lowerCamelCase : Union[str, Any] = hf_model(**_lowerCamelCase ) _lowerCamelCase : List[str] = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_7_1_2_6_0_3_0_9_2_1_9_3_6_0_4 _lowerCamelCase : str = ((75, 275, 1725, 850),) _lowerCamelCase : int = processor(images=np.array(_lowerCamelCase ) , input_boxes=_lowerCamelCase , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _lowerCamelCase : Any = hf_model(**_lowerCamelCase ) _lowerCamelCase : Union[str, Any] = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_6_8_6_0_1_5_6_0_5_9_2_6_5_1_4 # Test with 2 points and 1 image. _lowerCamelCase : Union[str, Any] = [[[400, 650], [800, 650]]] _lowerCamelCase : str = [[1, 1]] _lowerCamelCase : List[Any] = processor( images=np.array(_lowerCamelCase ) , input_points=_lowerCamelCase , input_labels=_lowerCamelCase , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): _lowerCamelCase : Dict = hf_model(**_lowerCamelCase ) _lowerCamelCase : Tuple = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_9_3_6_0_4_7_7_9_2_4_3_4_6_9_2 if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() _lowerCAmelCase : Union[str, Any] = ['''sam_vit_b_01ec64''', '''sam_vit_h_4b8939''', '''sam_vit_l_0b3195'''] parser.add_argument( '''--model_name''', default='''sam_vit_h_4b8939''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) parser.add_argument( '''--model_hub_id''', default='''ybelkada/segment-anything''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) _lowerCAmelCase : Optional[Any] = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
359
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class A_ ( _a ): lowerCAmelCase__ = 42 lowerCAmelCase__ = None def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=0.9_9_9 , _lowerCamelCase="cosine" , ) -> List[str]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_lowerCamelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowerCamelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _lowerCamelCase : str = [] for i in range(_lowerCamelCase ): _lowerCamelCase : Any = i / num_diffusion_timesteps _lowerCamelCase : Optional[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCamelCase ) / alpha_bar_fn(_lowerCamelCase ) , _lowerCamelCase ) ) return torch.tensor(_lowerCamelCase , dtype=torch.floataa ) class A_ ( _a , _a ): @register_to_config def __init__( self: str ,__lowerCAmelCase: int = 1_000 ,__lowerCAmelCase: str = "fixed_small_log" ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[float] = 1.0 ,__lowerCAmelCase: str = "epsilon" ,__lowerCAmelCase: str = "squaredcos_cap_v2" ,): '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) _lowerCamelCase : Union[str, Any] = betas_for_alpha_bar(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = 1.0 - self.betas _lowerCamelCase : Dict = torch.cumprod(self.alphas ,dim=0 ) _lowerCamelCase : int = torch.tensor(1.0 ) # standard deviation of the initial noise distribution _lowerCamelCase : Tuple = 1.0 # setable values _lowerCamelCase : List[Any] = None _lowerCamelCase : Union[str, Any] = torch.from_numpy(np.arange(0 ,__lowerCAmelCase )[::-1].copy() ) _lowerCamelCase : List[str] = variance_type def _lowercase ( self: Any ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ): '''simple docstring''' return sample def _lowercase ( self: Optional[int] ,__lowerCAmelCase: int ,__lowerCAmelCase: Union[str, torch.device] = None ): '''simple docstring''' _lowerCamelCase : str = num_inference_steps _lowerCamelCase : str = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) _lowerCamelCase : Union[str, Any] = (np.arange(0 ,__lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) _lowerCamelCase : int = torch.from_numpy(__lowerCAmelCase ).to(__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: List[str]=None ,__lowerCAmelCase: str=None ): '''simple docstring''' if prev_timestep is None: _lowerCamelCase : List[str] = t - 1 _lowerCamelCase : Optional[int] = self.alphas_cumprod[t] _lowerCamelCase : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _lowerCamelCase : Dict = 1 - alpha_prod_t _lowerCamelCase : str = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _lowerCamelCase : List[Any] = self.betas[t] else: _lowerCamelCase : str = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _lowerCamelCase : int = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: _lowerCamelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": _lowerCamelCase : Dict = torch.log(torch.clamp(__lowerCAmelCase ,min=1e-20 ) ) _lowerCamelCase : str = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler _lowerCamelCase : str = variance.log() _lowerCamelCase : str = beta.log() _lowerCamelCase : Optional[int] = (predicted_variance + 1) / 2 _lowerCamelCase : Union[str, Any] = frac * max_log + (1 - frac) * min_log return variance def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: int ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: bool = True ,): '''simple docstring''' _lowerCamelCase : str = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": _lowerCamelCase, _lowerCamelCase : int = torch.split(__lowerCAmelCase ,sample.shape[1] ,dim=1 ) else: _lowerCamelCase : List[Any] = None # 1. compute alphas, betas if prev_timestep is None: _lowerCamelCase : List[Any] = t - 1 _lowerCamelCase : Dict = self.alphas_cumprod[t] _lowerCamelCase : int = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _lowerCamelCase : Dict = 1 - alpha_prod_t _lowerCamelCase : List[str] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _lowerCamelCase : Any = self.betas[t] _lowerCamelCase : str = self.alphas[t] else: _lowerCamelCase : Any = 1 - alpha_prod_t / alpha_prod_t_prev _lowerCamelCase : Optional[Any] = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _lowerCamelCase : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _lowerCamelCase : List[Any] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: _lowerCamelCase : Any = torch.clamp( __lowerCAmelCase ,-self.config.clip_sample_range ,self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCamelCase : List[str] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t _lowerCamelCase : Optional[int] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCamelCase : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _lowerCamelCase : Union[str, Any] = 0 if t > 0: _lowerCamelCase : Dict = randn_tensor( model_output.shape ,dtype=model_output.dtype ,generator=__lowerCAmelCase ,device=model_output.device ) _lowerCamelCase : Any = self._get_variance( __lowerCAmelCase ,predicted_variance=__lowerCAmelCase ,prev_timestep=__lowerCAmelCase ,) if self.variance_type == "fixed_small_log": _lowerCamelCase : Optional[Any] = variance elif self.variance_type == "learned_range": _lowerCamelCase : Optional[int] = (0.5 * variance).exp() else: raise ValueError( F"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" " for the UnCLIPScheduler." ) _lowerCamelCase : Dict = variance * variance_noise _lowerCamelCase : List[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__lowerCAmelCase ,pred_original_sample=__lowerCAmelCase ) def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.IntTensor ,): '''simple docstring''' _lowerCamelCase : int = self.alphas_cumprod.to(device=original_samples.device ,dtype=original_samples.dtype ) _lowerCamelCase : Any = timesteps.to(original_samples.device ) _lowerCamelCase : List[Any] = alphas_cumprod[timesteps] ** 0.5 _lowerCamelCase : List[Any] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): _lowerCamelCase : int = sqrt_alpha_prod.unsqueeze(-1 ) _lowerCamelCase : Union[str, Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 _lowerCamelCase : str = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): _lowerCamelCase : Union[str, Any] = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) _lowerCamelCase : Dict = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
340
0
"""simple docstring""" import argparse import os import re _lowerCAmelCase : int = '''src/diffusers''' # Pattern that looks at the indentation in a line. _lowerCAmelCase : Optional[int] = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. _lowerCAmelCase : Any = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowerCAmelCase : str = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. _lowerCAmelCase : str = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowerCAmelCase : Dict = re.compile(R'''\[([^\]]+)\]''') def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : Tuple = _re_indent.search(_lowerCamelCase ) return "" if search is None else search.groups()[0] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase="" , _lowerCamelCase=None , _lowerCamelCase=None ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Tuple = 0 _lowerCamelCase : List[Any] = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(_lowerCamelCase ): index += 1 _lowerCamelCase : Union[str, Any] = ["\n".join(lines[:index] )] else: _lowerCamelCase : Optional[Any] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCamelCase : int = [lines[index]] index += 1 while index < len(_lowerCamelCase ) and (end_prompt is None or not lines[index].startswith(_lowerCamelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_lowerCamelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(_lowerCamelCase ) ) if index < len(_lowerCamelCase ) - 1: _lowerCamelCase : str = [lines[index + 1]] index += 1 else: _lowerCamelCase : Dict = [] else: blocks.append("\n".join(_lowerCamelCase ) ) _lowerCamelCase : Tuple = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_lowerCamelCase ) > 0: blocks.append("\n".join(_lowerCamelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_lowerCamelCase ): blocks.append("\n".join(lines[index:] ) ) return blocks def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' def _inner(_lowerCamelCase ): return key(_lowerCamelCase ).lower().replace("_" , "" ) return _inner def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=None ) -> List[str]: '''simple docstring''' def noop(_lowerCamelCase ): return x if key is None: _lowerCamelCase : Tuple = noop # Constants are all uppercase, they go first. _lowerCamelCase : Union[str, Any] = [obj for obj in objects if key(_lowerCamelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCamelCase : Optional[int] = [obj for obj in objects if key(_lowerCamelCase )[0].isupper() and not key(_lowerCamelCase ).isupper()] # Functions begin with a lowercase, they go last. _lowerCamelCase : Any = [obj for obj in objects if not key(_lowerCamelCase )[0].isupper()] _lowerCamelCase : Tuple = ignore_underscore(_lowerCamelCase ) return sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' def _replace(_lowerCamelCase ): _lowerCamelCase : Any = match.groups()[0] if "," not in imports: return F"""[{imports}]""" _lowerCamelCase : Optional[Any] = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCamelCase : List[str] = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(_lowerCamelCase )] ) + "]" _lowerCamelCase : int = import_statement.split("\n" ) if len(_lowerCamelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCamelCase : int = 2 if lines[1].strip() == "[" else 1 _lowerCamelCase : Any = [(i, _re_strip_line.search(_lowerCamelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCamelCase : Union[str, Any] = sort_objects(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] ) _lowerCamelCase : Dict = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_lowerCamelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCamelCase : List[str] = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCamelCase : Optional[Any] = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCamelCase : Optional[Any] = keys[:-1] _lowerCamelCase : Optional[Any] = get_indent(lines[1] ) + ", ".join([F"""\"{k}\"""" for k in sort_objects(_lowerCamelCase )] ) return "\n".join(_lowerCamelCase ) else: # Finally we have to deal with imports fitting on one line _lowerCamelCase : Any = _re_bracket_content.sub(_replace , _lowerCamelCase ) return import_statement def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=True ) -> int: '''simple docstring''' with open(_lowerCamelCase , "r" ) as f: _lowerCamelCase : int = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCamelCase : Optional[Any] = split_code_in_indented_blocks( _lowerCamelCase , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_lowerCamelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCamelCase : str = main_blocks[block_idx] _lowerCamelCase : Optional[Any] = block.split("\n" ) # Get to the start of the imports. _lowerCamelCase : Any = 0 while line_idx < len(_lowerCamelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCamelCase : Dict = len(_lowerCamelCase ) else: line_idx += 1 if line_idx >= len(_lowerCamelCase ): continue # Ignore beginning and last line: they don't contain anything. _lowerCamelCase : Optional[Any] = "\n".join(block_lines[line_idx:-1] ) _lowerCamelCase : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCamelCase : Union[str, Any] = split_code_in_indented_blocks(_lowerCamelCase , indent_level=_lowerCamelCase ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCamelCase : Optional[Any] = _re_direct_key if "_import_structure" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCamelCase : Dict = [(pattern.search(_lowerCamelCase ).groups()[0] if pattern.search(_lowerCamelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCamelCase : Any = [(i, key) for i, key in enumerate(_lowerCamelCase ) if key is not None] _lowerCamelCase : Tuple = [x[0] for x in sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCamelCase : Any = 0 _lowerCamelCase : str = [] for i in range(len(_lowerCamelCase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: _lowerCamelCase : Optional[int] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_lowerCamelCase ) count += 1 # And we put our main block back together with its first and last line. _lowerCamelCase : str = "\n".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_lowerCamelCase ): if check_only: return True else: print(F"""Overwriting {file}.""" ) with open(_lowerCamelCase , "w" ) as f: f.write("\n".join(_lowerCamelCase ) ) def lowerCamelCase_( _lowerCamelCase=True ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : int = [] for root, _, files in os.walk(_lowerCamelCase ): if "__init__.py" in files: _lowerCamelCase : Tuple = sort_imports(os.path.join(_lowerCamelCase , "__init__.py" ) , check_only=_lowerCamelCase ) if result: _lowerCamelCase : int = [os.path.join(_lowerCamelCase , "__init__.py" )] if len(_lowerCamelCase ) > 0: raise ValueError(F"""Would overwrite {len(_lowerCamelCase )} files, run `make style`.""" ) if __name__ == "__main__": _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') _lowerCAmelCase : Dict = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
360
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _lowerCAmelCase : str = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' for attribute in key.split("." ): _lowerCamelCase : Tuple = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: _lowerCamelCase : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: _lowerCamelCase : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowerCamelCase : Tuple = value elif weight_type == "weight_g": _lowerCamelCase : List[str] = value elif weight_type == "weight_v": _lowerCamelCase : List[Any] = value elif weight_type == "bias": _lowerCamelCase : str = value elif weight_type == "running_mean": _lowerCamelCase : Optional[int] = value elif weight_type == "running_var": _lowerCamelCase : Optional[Any] = value elif weight_type == "num_batches_tracked": _lowerCamelCase : int = value elif weight_type == "inv_freq": _lowerCamelCase : List[str] = value else: _lowerCamelCase : Optional[Any] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase : Dict = [] _lowerCamelCase : Optional[Any] = fairseq_model.state_dict() _lowerCamelCase : List[Any] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase : Dict = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) _lowerCamelCase : List[Any] = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase : Dict = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _lowerCamelCase : int = True if "*" in mapped_key: _lowerCamelCase : Tuple = name.split(_lowerCamelCase )[0].split("." )[-2] _lowerCamelCase : int = mapped_key.replace("*" , _lowerCamelCase ) if "pos_bias_u" in name: _lowerCamelCase : int = None elif "pos_bias_v" in name: _lowerCamelCase : Any = None elif "weight_g" in name: _lowerCamelCase : Any = "weight_g" elif "weight_v" in name: _lowerCamelCase : Any = "weight_v" elif "bias" in name: _lowerCamelCase : Optional[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase : Dict = "weight" elif "running_mean" in name: _lowerCamelCase : str = "running_mean" elif "inv_freq" in name: _lowerCamelCase : List[Any] = "inv_freq" elif "running_var" in name: _lowerCamelCase : Tuple = "running_var" elif "num_batches_tracked" in name: _lowerCamelCase : str = "num_batches_tracked" else: _lowerCamelCase : Dict = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : int = full_name.split("conv_layers." )[-1] _lowerCamelCase : List[Any] = name.split("." ) _lowerCamelCase : Union[str, Any] = int(items[0] ) _lowerCamelCase : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowerCamelCase : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowerCamelCase : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) _lowerCamelCase : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowerCamelCase : Optional[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> Dict: '''simple docstring''' if config_path is not None: _lowerCamelCase : Union[str, Any] = WavaVecaConformerConfig.from_pretrained(_lowerCamelCase , hidden_act="swish" ) else: _lowerCamelCase : Dict = WavaVecaConformerConfig() if "rope" in checkpoint_path: _lowerCamelCase : List[Any] = "rotary" if is_finetuned: if dict_path: _lowerCamelCase : Dict = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase : Optional[int] = target_dict.pad_index _lowerCamelCase : Dict = target_dict.bos_index _lowerCamelCase : Optional[Any] = target_dict.eos_index _lowerCamelCase : str = len(target_dict.symbols ) _lowerCamelCase : int = os.path.join(_lowerCamelCase , "vocab.json" ) if not os.path.isdir(_lowerCamelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) _lowerCamelCase : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase : List[str] = 0 _lowerCamelCase : List[Any] = 1 with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Optional[int] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCamelCase , ) _lowerCamelCase : Tuple = True if config.feat_extract_norm == "layer" else False _lowerCamelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) _lowerCamelCase : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) _lowerCamelCase : List[Any] = WavaVecaConformerForCTC(_lowerCamelCase ) else: _lowerCamelCase : Any = WavaVecaConformerForPreTraining(_lowerCamelCase ) if is_finetuned: _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _lowerCamelCase : List[Any] = argparse.Namespace(task="audio_pretraining" ) _lowerCamelCase : Optional[Any] = fairseq.tasks.setup_task(_lowerCamelCase ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCamelCase ) _lowerCamelCase : Dict = model[0].eval() recursively_load_weights(_lowerCamelCase , _lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) _lowerCAmelCase : str = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
340
0
"""simple docstring""" import re def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' if len(re.findall("[ATCG]" , _lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" , "TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
361
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' _validate_point(_lowerCamelCase ) _validate_point(_lowerCamelCase ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(_lowerCamelCase , _lowerCamelCase ) ) ) def lowerCamelCase_( _lowerCamelCase ) -> None: '''simple docstring''' if point: if isinstance(_lowerCamelCase , _lowerCamelCase ): for item in point: if not isinstance(_lowerCamelCase , (int, float) ): _lowerCamelCase : Dict = ( "Expected a list of numbers as input, found " F"""{type(_lowerCamelCase ).__name__}""" ) raise TypeError(_lowerCamelCase ) else: _lowerCamelCase : Optional[int] = F"""Expected a list of numbers as input, found {type(_lowerCamelCase ).__name__}""" raise TypeError(_lowerCamelCase ) else: raise ValueError("Missing an input" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' _validate_point(_lowerCamelCase ) _validate_point(_lowerCamelCase ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(_lowerCamelCase , _lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
340
0
"""simple docstring""" import argparse _lowerCAmelCase : Tuple = '''docs/source/_static/js/custom.js''' def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' with open(_lowerCamelCase , encoding="utf-8" , newline="\n" ) as f: _lowerCamelCase : Optional[int] = f.readlines() _lowerCamelCase : Optional[Any] = 0 # First let's put the right version while not lines[index].startswith("const stableVersion =" ): index += 1 _lowerCamelCase : Optional[int] = F"""const stableVersion = \"v{version}\"\n""" # Then update the dictionary while not lines[index].startswith("const versionMapping = {" ): index += 1 # We go until the end while not lines[index].startswith("}" ): index += 1 # We add the new version at the end lines[index - 1] += F""" \"v{version}\": \"v{version}\",\n""" with open(_lowerCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--version''', help='''Release version.''') _lowerCAmelCase : Dict = parser.parse_args() update_custom_js(args.version)
362
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Optional[Any] = np.inf def set_batch_size(_lowerCamelCase ) -> None: nonlocal batch_size if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Optional[int] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_lowerCamelCase , _lowerCamelCase ) and feature.dtype == "binary": _lowerCamelCase : List[str] = min(_lowerCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_lowerCamelCase , _lowerCamelCase ) return None if batch_size is np.inf else batch_size class A_ ( _a ): def __init__( self: Optional[int] ,__lowerCAmelCase: NestedDataStructureLike[PathLike] ,__lowerCAmelCase: Optional[NamedSplit] = None ,__lowerCAmelCase: Optional[Features] = None ,__lowerCAmelCase: str = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: int ,): '''simple docstring''' super().__init__( __lowerCAmelCase ,split=__lowerCAmelCase ,features=__lowerCAmelCase ,cache_dir=__lowerCAmelCase ,keep_in_memory=__lowerCAmelCase ,streaming=__lowerCAmelCase ,num_proc=__lowerCAmelCase ,**__lowerCAmelCase ,) _lowerCamelCase : Tuple = path_or_paths if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) else {self.split: path_or_paths} _lowerCamelCase : Any = _PACKAGED_DATASETS_MODULES["parquet"][1] _lowerCamelCase : int = Parquet( cache_dir=__lowerCAmelCase ,data_files=__lowerCAmelCase ,features=__lowerCAmelCase ,hash=__lowerCAmelCase ,**__lowerCAmelCase ,) def _lowercase ( self: Optional[int] ): '''simple docstring''' if self.streaming: _lowerCamelCase : List[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _lowerCamelCase : Tuple = None _lowerCamelCase : Optional[int] = None _lowerCamelCase : List[str] = None _lowerCamelCase : str = None self.builder.download_and_prepare( download_config=__lowerCAmelCase ,download_mode=__lowerCAmelCase ,verification_mode=__lowerCAmelCase ,base_path=__lowerCAmelCase ,num_proc=self.num_proc ,) _lowerCamelCase : Any = self.builder.as_dataset( split=self.split ,verification_mode=__lowerCAmelCase ,in_memory=self.keep_in_memory ) return dataset class A_ : def __init__( self: str ,__lowerCAmelCase: Dataset ,__lowerCAmelCase: Union[PathLike, BinaryIO] ,__lowerCAmelCase: Optional[int] = None ,**__lowerCAmelCase: List[Any] ,): '''simple docstring''' _lowerCamelCase : Any = dataset _lowerCamelCase : Any = path_or_buf _lowerCamelCase : Any = batch_size or get_writer_batch_size(dataset.features ) _lowerCamelCase : List[str] = parquet_writer_kwargs def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Tuple = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf ,(str, bytes, os.PathLike) ): with open(self.path_or_buf ,"wb+" ) as buffer: _lowerCamelCase : str = self._write(file_obj=__lowerCAmelCase ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs ) else: _lowerCamelCase : Optional[int] = self._write(file_obj=self.path_or_buf ,batch_size=__lowerCAmelCase ,**self.parquet_writer_kwargs ) return written def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: BinaryIO ,__lowerCAmelCase: int ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[int] = parquet_writer_kwargs.pop("path_or_buf" ,__lowerCAmelCase ) _lowerCamelCase : List[str] = self.dataset.features.arrow_schema _lowerCamelCase : str = pq.ParquetWriter(__lowerCAmelCase ,schema=__lowerCAmelCase ,**__lowerCAmelCase ) for offset in logging.tqdm( range(0 ,len(self.dataset ) ,__lowerCAmelCase ) ,unit="ba" ,disable=not logging.is_progress_bar_enabled() ,desc="Creating parquet from Arrow format" ,): _lowerCamelCase : List[str] = query_table( table=self.dataset._data ,key=slice(__lowerCAmelCase ,offset + batch_size ) ,indices=self.dataset._indices if self.dataset._indices is not None else None ,) writer.write_table(__lowerCAmelCase ) written += batch.nbytes writer.close() return written
340
0