code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = JukeboxTokenizer
lowerCamelCase = {
'''artist''': '''Zac Brown Band''',
'''genres''': '''Country''',
'''lyrics''': '''I met a traveller from an antique land,
Who said "Two vast and trunkless legs of stone
Stand in the desert. . . . Near them, on the sand,
Half sunk a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,
Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them, and the heart that fed;
And on the pedestal, these words appear:
My name is Ozymandias, King of Kings;
Look on my Works, ye Mighty, and despair!
Nothing beside remains. Round the decay
Of that colossal Wreck, boundless and bare
The lone and level sands stretch far away
''',
}
@require_torch
def _lowerCAmelCase ( self ) -> str:
import torch
_lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" )
_lowerCAmelCase =tokenizer(**self.metas )["""input_ids"""]
# fmt: off
_lowerCAmelCase =[
torch.tensor([[
0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 10_69, 11]] ),
torch.tensor([[0, 0, 0, 10_69, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def _lowerCAmelCase ( self ) -> Any:
import torch
_lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" )
_lowerCAmelCase =tokenizer(**self.metas )["""input_ids"""]
# fmt: off
_lowerCAmelCase =[
torch.tensor([[
0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 341 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__A = {
'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'],
'tokenization_perceiver': ['PerceiverTokenizer'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ['PerceiverFeatureExtractor']
__A = ['PerceiverImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PerceiverForImageClassificationConvProcessing',
'PerceiverForImageClassificationFourier',
'PerceiverForImageClassificationLearned',
'PerceiverForMaskedLM',
'PerceiverForMultimodalAutoencoding',
'PerceiverForOpticalFlow',
'PerceiverForSequenceClassification',
'PerceiverLayer',
'PerceiverModel',
'PerceiverPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 1 |
"""simple docstring"""
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
__A = '__DUMMY_TRANSFORMERS_USER__'
__A = 'Dummy User'
__A = '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'
__A = 'https://hub-ci.huggingface.co'
__A = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}'
__A = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}'
__A = Path('~/.huggingface/hub_ci_token').expanduser()
@pytest.fixture
def _lowerCamelCase(__UpperCamelCase ) -> Optional[int]:
monkeypatch.setattr(
"""huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , __UpperCamelCase )
@pytest.fixture
def _lowerCamelCase(__UpperCamelCase ) -> Dict:
monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , __UpperCamelCase )
monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , __UpperCamelCase )
@pytest.fixture
def _lowerCamelCase(__UpperCamelCase ) -> Optional[int]:
monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , __UpperCamelCase )
@pytest.fixture
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]:
HfFolder.save_token(__UpperCamelCase )
yield
HfFolder.delete_token()
@pytest.fixture(scope="""session""" )
def _lowerCamelCase() -> Union[str, Any]:
return HfApi(endpoint=__UpperCamelCase )
@pytest.fixture(scope="""session""" )
def _lowerCamelCase(__UpperCamelCase ) -> str:
_lowerCAmelCase =HfFolder.get_token()
HfFolder.save_token(__UpperCamelCase )
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(__UpperCamelCase )
@pytest.fixture
def _lowerCamelCase(__UpperCamelCase ) -> List[str]:
def _cleanup_repo(__UpperCamelCase ):
hf_api.delete_repo(__UpperCamelCase , token=__UpperCamelCase , repo_type="""dataset""" )
return _cleanup_repo
@pytest.fixture
def _lowerCamelCase(__UpperCamelCase ) -> Dict:
@contextmanager
def _temporary_repo(__UpperCamelCase ):
try:
yield repo_id
finally:
cleanup_repo(__UpperCamelCase )
return _temporary_repo
@pytest.fixture(scope="""session""" )
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Any:
_lowerCAmelCase =F'''repo_txt_data-{int(time.time() * 1_0E3 )}'''
_lowerCAmelCase =F'''{CI_HUB_USER}/{repo_name}'''
hf_api.create_repo(__UpperCamelCase , token=__UpperCamelCase , repo_type="""dataset""" , private=__UpperCamelCase )
hf_api.upload_file(
token=__UpperCamelCase , path_or_fileobj=str(__UpperCamelCase ) , path_in_repo="""data/text_data.txt""" , repo_id=__UpperCamelCase , repo_type="""dataset""" , )
yield repo_id
try:
hf_api.delete_repo(__UpperCamelCase , token=__UpperCamelCase , repo_type="""dataset""" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Dict:
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope="""session""" )
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Any:
_lowerCAmelCase =F'''repo_zipped_txt_data-{int(time.time() * 1_0E3 )}'''
_lowerCAmelCase =F'''{CI_HUB_USER}/{repo_name}'''
hf_api.create_repo(__UpperCamelCase , token=__UpperCamelCase , repo_type="""dataset""" , private=__UpperCamelCase )
hf_api.upload_file(
token=__UpperCamelCase , path_or_fileobj=str(__UpperCamelCase ) , path_in_repo="""data.zip""" , repo_id=__UpperCamelCase , repo_type="""dataset""" , )
yield repo_id
try:
hf_api.delete_repo(__UpperCamelCase , token=__UpperCamelCase , repo_type="""dataset""" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[int]:
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope="""session""" )
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int:
_lowerCAmelCase =F'''repo_zipped_img_data-{int(time.time() * 1_0E3 )}'''
_lowerCAmelCase =F'''{CI_HUB_USER}/{repo_name}'''
hf_api.create_repo(__UpperCamelCase , token=__UpperCamelCase , repo_type="""dataset""" , private=__UpperCamelCase )
hf_api.upload_file(
token=__UpperCamelCase , path_or_fileobj=str(__UpperCamelCase ) , path_in_repo="""data.zip""" , repo_id=__UpperCamelCase , repo_type="""dataset""" , )
yield repo_id
try:
hf_api.delete_repo(__UpperCamelCase , token=__UpperCamelCase , repo_type="""dataset""" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[str]:
return hf_private_dataset_repo_zipped_img_data_
| 341 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A = {
'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST',
'Swinv2ForImageClassification',
'Swinv2ForMaskedImageModeling',
'Swinv2Model',
'Swinv2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 1 |
"""simple docstring"""
import shutil
import tempfile
import unittest
from unittest.mock import patch
from transformers import (
DefaultFlowCallback,
IntervalStrategy,
PrinterCallback,
ProgressCallback,
Trainer,
TrainerCallback,
TrainingArguments,
is_torch_available,
)
from transformers.testing_utils import require_torch
if is_torch_available():
from transformers.trainer import DEFAULT_CALLBACKS
from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
def __init__( self ) -> Optional[Any]:
_lowerCAmelCase =[]
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
self.events.append("""on_init_end""" )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> Any:
self.events.append("""on_train_begin""" )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> Any:
self.events.append("""on_train_end""" )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> str:
self.events.append("""on_epoch_begin""" )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> int:
self.events.append("""on_epoch_end""" )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
self.events.append("""on_step_begin""" )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
self.events.append("""on_step_end""" )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
self.events.append("""on_evaluate""" )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
self.events.append("""on_predict""" )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
self.events.append("""on_save""" )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> Any:
self.events.append("""on_log""" )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
self.events.append("""on_prediction_step""" )
@require_torch
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =tempfile.mkdtemp()
def _lowerCAmelCase ( self ) -> Any:
shutil.rmtree(self.output_dir )
def _lowerCAmelCase ( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=64 , __UpperCAmelCase=64 , __UpperCAmelCase=None , __UpperCAmelCase=False , **__UpperCAmelCase ) -> List[Any]:
# disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure
# its set to False since the tests later on depend on its value.
_lowerCAmelCase =RegressionDataset(length=__UpperCAmelCase )
_lowerCAmelCase =RegressionDataset(length=__UpperCAmelCase )
_lowerCAmelCase =RegressionModelConfig(a=__UpperCAmelCase , b=__UpperCAmelCase )
_lowerCAmelCase =RegressionPreTrainedModel(__UpperCAmelCase )
_lowerCAmelCase =TrainingArguments(self.output_dir , disable_tqdm=__UpperCAmelCase , report_to=[] , **__UpperCAmelCase )
return Trainer(
__UpperCAmelCase , __UpperCAmelCase , train_dataset=__UpperCAmelCase , eval_dataset=__UpperCAmelCase , callbacks=__UpperCAmelCase , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) )
# Order doesn't matter
_lowerCAmelCase =sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : cb.__name__ if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else cb.__class__.__name__ )
_lowerCAmelCase =sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : cb.__name__ if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else cb.__class__.__name__ )
for cba, cba in zip(__UpperCAmelCase , __UpperCAmelCase ):
if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ):
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
self.assertEqual(__UpperCAmelCase , cba.__class__ )
elif not isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ):
self.assertEqual(cba.__class__ , __UpperCAmelCase )
else:
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]:
_lowerCAmelCase =["""on_init_end""", """on_train_begin"""]
_lowerCAmelCase =0
_lowerCAmelCase =len(trainer.get_eval_dataloader() )
_lowerCAmelCase =["""on_prediction_step"""] * len(trainer.get_eval_dataloader() ) + ["""on_log""", """on_evaluate"""]
for _ in range(trainer.state.num_train_epochs ):
expected_events.append("""on_epoch_begin""" )
for _ in range(__UpperCAmelCase ):
step += 1
expected_events += ["on_step_begin", "on_step_end"]
if step % trainer.args.logging_steps == 0:
expected_events.append("""on_log""" )
if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
expected_events += evaluation_events.copy()
if step % trainer.args.save_steps == 0:
expected_events.append("""on_save""" )
expected_events.append("""on_epoch_end""" )
if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH:
expected_events += evaluation_events.copy()
expected_events += ["on_log", "on_train_end"]
return expected_events
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =self.get_trainer()
_lowerCAmelCase =DEFAULT_CALLBACKS.copy() + [ProgressCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , __UpperCAmelCase )
# Callbacks passed at init are added to the default callbacks
_lowerCAmelCase =self.get_trainer(callbacks=[MyTestTrainerCallback] )
expected_callbacks.append(__UpperCAmelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __UpperCAmelCase )
# TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
_lowerCAmelCase =self.get_trainer(disable_tqdm=__UpperCAmelCase )
_lowerCAmelCase =DEFAULT_CALLBACKS.copy() + [PrinterCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =DEFAULT_CALLBACKS.copy() + [ProgressCallback]
_lowerCAmelCase =self.get_trainer()
# We can add, pop, or remove by class name
trainer.remove_callback(__UpperCAmelCase )
expected_callbacks.remove(__UpperCAmelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __UpperCAmelCase )
_lowerCAmelCase =self.get_trainer()
_lowerCAmelCase =trainer.pop_callback(__UpperCAmelCase )
self.assertEqual(cb.__class__ , __UpperCAmelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __UpperCAmelCase )
trainer.add_callback(__UpperCAmelCase )
expected_callbacks.insert(0 , __UpperCAmelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __UpperCAmelCase )
# We can also add, pop, or remove by instance
_lowerCAmelCase =self.get_trainer()
_lowerCAmelCase =trainer.callback_handler.callbacks[0]
trainer.remove_callback(__UpperCAmelCase )
expected_callbacks.remove(__UpperCAmelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __UpperCAmelCase )
_lowerCAmelCase =self.get_trainer()
_lowerCAmelCase =trainer.callback_handler.callbacks[0]
_lowerCAmelCase =trainer.pop_callback(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __UpperCAmelCase )
trainer.add_callback(__UpperCAmelCase )
expected_callbacks.insert(0 , __UpperCAmelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Optional[Any]:
import warnings
# XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
warnings.simplefilter(action="""ignore""" , category=__UpperCAmelCase )
_lowerCAmelCase =self.get_trainer(callbacks=[MyTestTrainerCallback] )
trainer.train()
_lowerCAmelCase =trainer.callback_handler.callbacks[-2].events
self.assertEqual(__UpperCAmelCase , self.get_expected_events(__UpperCAmelCase ) )
# Independent log/save/eval
_lowerCAmelCase =self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 )
trainer.train()
_lowerCAmelCase =trainer.callback_handler.callbacks[-2].events
self.assertEqual(__UpperCAmelCase , self.get_expected_events(__UpperCAmelCase ) )
_lowerCAmelCase =self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 )
trainer.train()
_lowerCAmelCase =trainer.callback_handler.callbacks[-2].events
self.assertEqual(__UpperCAmelCase , self.get_expected_events(__UpperCAmelCase ) )
_lowerCAmelCase =self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""" )
trainer.train()
_lowerCAmelCase =trainer.callback_handler.callbacks[-2].events
self.assertEqual(__UpperCAmelCase , self.get_expected_events(__UpperCAmelCase ) )
_lowerCAmelCase =self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""" )
trainer.train()
_lowerCAmelCase =trainer.callback_handler.callbacks[-2].events
self.assertEqual(__UpperCAmelCase , self.get_expected_events(__UpperCAmelCase ) )
# A bit of everything
_lowerCAmelCase =self.get_trainer(
callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , )
trainer.train()
_lowerCAmelCase =trainer.callback_handler.callbacks[-2].events
self.assertEqual(__UpperCAmelCase , self.get_expected_events(__UpperCAmelCase ) )
# warning should be emitted for duplicated callbacks
with patch("""transformers.trainer_callback.logger.warning""" ) as warn_mock:
_lowerCAmelCase =self.get_trainer(
callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , )
assert str(__UpperCAmelCase ) in warn_mock.call_args[0][0]
| 341 |
"""simple docstring"""
import argparse
import json
import torch
from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=1 ) -> Tuple:
if n_shave_prefix_segments >= 0:
return ".".join(path.split(""".""" )[n_shave_prefix_segments:] )
else:
return ".".join(path.split(""".""" )[:n_shave_prefix_segments] )
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=0 ) -> List[str]:
_lowerCAmelCase =[]
for old_item in old_list:
_lowerCAmelCase =old_item.replace("""in_layers.0""" , """norm1""" )
_lowerCAmelCase =new_item.replace("""in_layers.2""" , """conv1""" )
_lowerCAmelCase =new_item.replace("""out_layers.0""" , """norm2""" )
_lowerCAmelCase =new_item.replace("""out_layers.3""" , """conv2""" )
_lowerCAmelCase =new_item.replace("""emb_layers.1""" , """time_emb_proj""" )
_lowerCAmelCase =new_item.replace("""skip_connection""" , """conv_shortcut""" )
_lowerCAmelCase =shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=0 ) -> Tuple:
_lowerCAmelCase =[]
for old_item in old_list:
_lowerCAmelCase =old_item
_lowerCAmelCase =new_item.replace("""norm.weight""" , """group_norm.weight""" )
_lowerCAmelCase =new_item.replace("""norm.bias""" , """group_norm.bias""" )
_lowerCAmelCase =new_item.replace("""proj_out.weight""" , """proj_attn.weight""" )
_lowerCAmelCase =new_item.replace("""proj_out.bias""" , """proj_attn.bias""" )
_lowerCAmelCase =shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None ) -> Optional[int]:
assert isinstance(__UpperCamelCase , __UpperCamelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
_lowerCAmelCase =old_checkpoint[path]
_lowerCAmelCase =old_tensor.shape[0] // 3
_lowerCAmelCase =(-1, channels) if len(old_tensor.shape ) == 3 else (-1)
_lowerCAmelCase =old_tensor.shape[0] // config["""num_head_channels"""] // 3
_lowerCAmelCase =old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =old_tensor.split(channels // num_heads , dim=1 )
_lowerCAmelCase =query.reshape(__UpperCamelCase )
_lowerCAmelCase =key.reshape(__UpperCamelCase )
_lowerCAmelCase =value.reshape(__UpperCamelCase )
for path in paths:
_lowerCAmelCase =path["""new"""]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
_lowerCAmelCase =new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" )
_lowerCAmelCase =new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" )
_lowerCAmelCase =new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" )
if additional_replacements is not None:
for replacement in additional_replacements:
_lowerCAmelCase =new_path.replace(replacement["""old"""] , replacement["""new"""] )
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
_lowerCAmelCase =old_checkpoint[path["""old"""]][:, :, 0]
else:
_lowerCAmelCase =old_checkpoint[path["""old"""]]
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Optional[Any]:
_lowerCAmelCase ={}
_lowerCAmelCase =checkpoint["""time_embed.0.weight"""]
_lowerCAmelCase =checkpoint["""time_embed.0.bias"""]
_lowerCAmelCase =checkpoint["""time_embed.2.weight"""]
_lowerCAmelCase =checkpoint["""time_embed.2.bias"""]
_lowerCAmelCase =checkpoint["""input_blocks.0.0.weight"""]
_lowerCAmelCase =checkpoint["""input_blocks.0.0.bias"""]
_lowerCAmelCase =checkpoint["""out.0.weight"""]
_lowerCAmelCase =checkpoint["""out.0.bias"""]
_lowerCAmelCase =checkpoint["""out.2.weight"""]
_lowerCAmelCase =checkpoint["""out.2.bias"""]
# Retrieves the keys for the input blocks only
_lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} )
_lowerCAmelCase ={
layer_id: [key for key in checkpoint if F'''input_blocks.{layer_id}''' in key]
for layer_id in range(__UpperCamelCase )
}
# Retrieves the keys for the middle blocks only
_lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} )
_lowerCAmelCase ={
layer_id: [key for key in checkpoint if F'''middle_block.{layer_id}''' in key]
for layer_id in range(__UpperCamelCase )
}
# Retrieves the keys for the output blocks only
_lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} )
_lowerCAmelCase ={
layer_id: [key for key in checkpoint if F'''output_blocks.{layer_id}''' in key]
for layer_id in range(__UpperCamelCase )
}
for i in range(1 , __UpperCamelCase ):
_lowerCAmelCase =(i - 1) // (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =(i - 1) % (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =[key for key in input_blocks[i] if F'''input_blocks.{i}.0''' in key]
_lowerCAmelCase =[key for key in input_blocks[i] if F'''input_blocks.{i}.1''' in key]
if F'''input_blocks.{i}.0.op.weight''' in checkpoint:
_lowerCAmelCase =checkpoint[
F'''input_blocks.{i}.0.op.weight'''
]
_lowerCAmelCase =checkpoint[
F'''input_blocks.{i}.0.op.bias'''
]
continue
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
_lowerCAmelCase ={"""old""": F'''input_blocks.{i}.0''', """new""": F'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''}
_lowerCAmelCase ={"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path, resnet_op] , config=__UpperCamelCase )
if len(__UpperCamelCase ):
_lowerCAmelCase =renew_attention_paths(__UpperCamelCase )
_lowerCAmelCase ={
"""old""": F'''input_blocks.{i}.1''',
"""new""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}''',
}
_lowerCAmelCase ={
F'''input_blocks.{i}.1.qkv.bias''': {
"""key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''',
"""query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''',
"""value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''',
},
F'''input_blocks.{i}.1.qkv.weight''': {
"""key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''',
"""query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''',
"""value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''',
},
}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase , )
_lowerCAmelCase =middle_blocks[0]
_lowerCAmelCase =middle_blocks[1]
_lowerCAmelCase =middle_blocks[2]
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase )
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase )
_lowerCAmelCase =renew_attention_paths(__UpperCamelCase )
_lowerCAmelCase ={
"""middle_block.1.qkv.bias""": {
"""key""": """mid_block.attentions.0.key.bias""",
"""query""": """mid_block.attentions.0.query.bias""",
"""value""": """mid_block.attentions.0.value.bias""",
},
"""middle_block.1.qkv.weight""": {
"""key""": """mid_block.attentions.0.key.weight""",
"""query""": """mid_block.attentions.0.query.weight""",
"""value""": """mid_block.attentions.0.value.weight""",
},
}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase )
for i in range(__UpperCamelCase ):
_lowerCAmelCase =i // (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =i % (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =[shave_segments(__UpperCamelCase , 2 ) for name in output_blocks[i]]
_lowerCAmelCase ={}
for layer in output_block_layers:
_lowerCAmelCase , _lowerCAmelCase =layer.split(""".""" )[0], shave_segments(__UpperCamelCase , 1 )
if layer_id in output_block_list:
output_block_list[layer_id].append(__UpperCamelCase )
else:
_lowerCAmelCase =[layer_name]
if len(__UpperCamelCase ) > 1:
_lowerCAmelCase =[key for key in output_blocks[i] if F'''output_blocks.{i}.0''' in key]
_lowerCAmelCase =[key for key in output_blocks[i] if F'''output_blocks.{i}.1''' in key]
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
_lowerCAmelCase ={"""old""": F'''output_blocks.{i}.0''', """new""": F'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''}
assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase )
if ["conv.weight", "conv.bias"] in output_block_list.values():
_lowerCAmelCase =list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] )
_lowerCAmelCase =checkpoint[
F'''output_blocks.{i}.{index}.conv.weight'''
]
_lowerCAmelCase =checkpoint[
F'''output_blocks.{i}.{index}.conv.bias'''
]
# Clear attentions as they have been attributed above.
if len(__UpperCamelCase ) == 2:
_lowerCAmelCase =[]
if len(__UpperCamelCase ):
_lowerCAmelCase =renew_attention_paths(__UpperCamelCase )
_lowerCAmelCase ={
"""old""": F'''output_blocks.{i}.1''',
"""new""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}''',
}
_lowerCAmelCase ={
F'''output_blocks.{i}.1.qkv.bias''': {
"""key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''',
"""query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''',
"""value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''',
},
F'''output_blocks.{i}.1.qkv.weight''': {
"""key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''',
"""query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''',
"""value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''',
},
}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=__UpperCamelCase , )
else:
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase , n_shave_prefix_segments=1 )
for path in resnet_0_paths:
_lowerCAmelCase =""".""".join(["""output_blocks""", str(__UpperCamelCase ), path["""old"""]] )
_lowerCAmelCase =""".""".join(["""up_blocks""", str(__UpperCamelCase ), """resnets""", str(__UpperCamelCase ), path["""new"""]] )
_lowerCAmelCase =checkpoint[old_path]
return new_checkpoint
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the architecture.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
__A = parser.parse_args()
__A = torch.load(args.checkpoint_path)
with open(args.config_file) as f:
__A = json.loads(f.read())
__A = convert_ldm_checkpoint(checkpoint, config)
if "ldm" in config:
del config["ldm"]
__A = UNetaDModel(**config)
model.load_state_dict(converted_checkpoint)
try:
__A = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1]))
__A = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1]))
__A = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae)
pipe.save_pretrained(args.dump_path)
except: # noqa: E722
model.save_pretrained(args.dump_path)
| 341 | 1 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaInpaintPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = KandinskyVaaInpaintPipeline
lowerCamelCase = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''']
lowerCamelCase = [
'''image_embeds''',
'''negative_image_embeds''',
'''image''',
'''mask_image''',
]
lowerCamelCase = [
'''generator''',
'''height''',
'''width''',
'''latents''',
'''guidance_scale''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
lowerCamelCase = False
@property
def _lowerCAmelCase ( self ) -> Union[str, Any]:
return 32
@property
def _lowerCAmelCase ( self ) -> Optional[int]:
return 32
@property
def _lowerCAmelCase ( self ) -> List[Any]:
return self.time_input_dim
@property
def _lowerCAmelCase ( self ) -> Tuple:
return self.time_input_dim * 4
@property
def _lowerCAmelCase ( self ) -> int:
return 1_00
@property
def _lowerCAmelCase ( self ) -> Any:
torch.manual_seed(0 )
_lowerCAmelCase ={
"""in_channels""": 9,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
_lowerCAmelCase =UNetaDConditionModel(**__UpperCAmelCase )
return model
@property
def _lowerCAmelCase ( self ) -> Optional[int]:
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def _lowerCAmelCase ( self ) -> List[str]:
torch.manual_seed(0 )
_lowerCAmelCase =VQModel(**self.dummy_movq_kwargs )
return model
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =self.dummy_unet
_lowerCAmelCase =self.dummy_movq
_lowerCAmelCase =DDIMScheduler(
num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__UpperCAmelCase , )
_lowerCAmelCase ={
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Optional[Any]:
_lowerCAmelCase =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
_lowerCAmelCase =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
__UpperCAmelCase )
# create init_image
_lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
_lowerCAmelCase =image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((2_56, 2_56) )
# create mask
_lowerCAmelCase =np.ones((64, 64) , dtype=np.floataa )
_lowerCAmelCase =0
if str(__UpperCAmelCase ).startswith("""mps""" ):
_lowerCAmelCase =torch.manual_seed(__UpperCAmelCase )
else:
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
_lowerCAmelCase ={
"""image""": init_image,
"""mask_image""": mask,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 2,
"""guidance_scale""": 4.0,
"""output_type""": """np""",
}
return inputs
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase ="""cpu"""
_lowerCAmelCase =self.get_dummy_components()
_lowerCAmelCase =self.pipeline_class(**__UpperCAmelCase )
_lowerCAmelCase =pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase =pipe(**self.get_dummy_inputs(__UpperCAmelCase ) )
_lowerCAmelCase =output.images
_lowerCAmelCase =pipe(
**self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0]
_lowerCAmelCase =image[0, -3:, -3:, -1]
_lowerCAmelCase =image_from_tuple[0, -3:, -3:, -1]
print(f'''image.shape {image.shape}''' )
assert image.shape == (1, 64, 64, 3)
_lowerCAmelCase =np.array(
[0.5_0_7_7_5_9_0_3, 0.4_9_5_2_7_1_9_5, 0.4_8_8_2_4_5_4_3, 0.5_0_1_9_2_2_3_7, 0.4_8_6_4_4_9_0_6, 0.4_9_3_7_3_8_1_4, 0.4_7_8_0_5_9_8, 0.4_7_2_3_4_8_2_7, 0.4_8_3_2_7_8_4_8] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
def _lowerCAmelCase ( self ) -> str:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> Tuple:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy""" )
_lowerCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
_lowerCAmelCase =np.ones((7_68, 7_68) , dtype=np.floataa )
_lowerCAmelCase =0
_lowerCAmelCase ="""a hat"""
_lowerCAmelCase =KandinskyVaaPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__UpperCAmelCase )
_lowerCAmelCase =KandinskyVaaInpaintPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-decoder-inpaint""" , torch_dtype=torch.floataa )
_lowerCAmelCase =pipeline.to(__UpperCAmelCase )
pipeline.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase =torch.Generator(device="""cpu""" ).manual_seed(0 )
_lowerCAmelCase , _lowerCAmelCase =pipe_prior(
__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
_lowerCAmelCase =pipeline(
image=__UpperCAmelCase , mask_image=__UpperCAmelCase , image_embeds=__UpperCAmelCase , negative_image_embeds=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , )
_lowerCAmelCase =output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
| 341 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase ) -> Optional[Any]:
_lowerCAmelCase =0
_lowerCAmelCase =len(__UpperCamelCase )
for i in range(n - 1 ):
for j in range(i + 1 , __UpperCamelCase ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def _lowerCamelCase(__UpperCamelCase ) -> List[Any]:
if len(__UpperCamelCase ) <= 1:
return arr, 0
_lowerCAmelCase =len(__UpperCamelCase ) // 2
_lowerCAmelCase =arr[0:mid]
_lowerCAmelCase =arr[mid:]
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =_count_cross_inversions(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =inversion_p + inversions_q + cross_inversions
return c, num_inversions
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Any:
_lowerCAmelCase =[]
_lowerCAmelCase =_lowerCAmelCase =_lowerCAmelCase =0
while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(__UpperCamelCase ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(__UpperCamelCase ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def _lowerCamelCase() -> str:
_lowerCAmelCase =[10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 8
print("""number of inversions = """ , __UpperCamelCase )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , __UpperCamelCase )
# an empty list should also have zero inversions
_lowerCAmelCase =[]
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , __UpperCamelCase )
if __name__ == "__main__":
main()
| 341 | 1 |
"""simple docstring"""
from ...processing_utils import ProcessorMixin
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = '''SpeechT5FeatureExtractor'''
lowerCamelCase = '''SpeechT5Tokenizer'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
_lowerCAmelCase =kwargs.pop("""audio""" , __UpperCAmelCase )
_lowerCAmelCase =kwargs.pop("""text""" , __UpperCAmelCase )
_lowerCAmelCase =kwargs.pop("""text_target""" , __UpperCAmelCase )
_lowerCAmelCase =kwargs.pop("""audio_target""" , __UpperCAmelCase )
_lowerCAmelCase =kwargs.pop("""sampling_rate""" , __UpperCAmelCase )
if audio is not None and text is not None:
raise ValueError(
"""Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?""" )
if audio_target is not None and text_target is not None:
raise ValueError(
"""Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?""" )
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
"""You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.""" )
if audio is not None:
_lowerCAmelCase =self.feature_extractor(__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase )
elif text is not None:
_lowerCAmelCase =self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase )
else:
_lowerCAmelCase =None
if audio_target is not None:
_lowerCAmelCase =self.feature_extractor(audio_target=__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase )
_lowerCAmelCase =targets["""input_values"""]
elif text_target is not None:
_lowerCAmelCase =self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase )
_lowerCAmelCase =targets["""input_ids"""]
else:
_lowerCAmelCase =None
if inputs is None:
return targets
if targets is not None:
_lowerCAmelCase =labels
_lowerCAmelCase =targets.get("""attention_mask""" )
if decoder_attention_mask is not None:
_lowerCAmelCase =decoder_attention_mask
return inputs
def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
_lowerCAmelCase =kwargs.pop("""input_values""" , __UpperCAmelCase )
_lowerCAmelCase =kwargs.pop("""input_ids""" , __UpperCAmelCase )
_lowerCAmelCase =kwargs.pop("""labels""" , __UpperCAmelCase )
if input_values is not None and input_ids is not None:
raise ValueError("""Cannot process both `input_values` and `input_ids` inputs.""" )
if input_values is None and input_ids is None and labels is None:
raise ValueError(
"""You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.""" )
if input_values is not None:
_lowerCAmelCase =self.feature_extractor.pad(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase )
elif input_ids is not None:
_lowerCAmelCase =self.tokenizer.pad(__UpperCAmelCase , **__UpperCAmelCase )
else:
_lowerCAmelCase =None
if labels is not None:
if "input_ids" in labels or (isinstance(__UpperCAmelCase , __UpperCAmelCase ) and "input_ids" in labels[0]):
_lowerCAmelCase =self.tokenizer.pad(__UpperCAmelCase , **__UpperCAmelCase )
_lowerCAmelCase =targets["""input_ids"""]
else:
_lowerCAmelCase =self.feature_extractor.feature_size
_lowerCAmelCase =self.feature_extractor.num_mel_bins
_lowerCAmelCase =self.feature_extractor.pad(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase )
_lowerCAmelCase =feature_size_hack
_lowerCAmelCase =targets["""input_values"""]
else:
_lowerCAmelCase =None
if inputs is None:
return targets
if targets is not None:
_lowerCAmelCase =labels
_lowerCAmelCase =targets.get("""attention_mask""" )
if decoder_attention_mask is not None:
_lowerCAmelCase =decoder_attention_mask
return inputs
def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
| 341 |
"""simple docstring"""
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = None
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = None
lowerCamelCase = None
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = True
lowerCamelCase = None
lowerCamelCase = 1
lowerCamelCase = None
lowerCamelCase = False
lowerCamelCase = None
lowerCamelCase = None
def _lowerCAmelCase ( self ) -> "DownloadConfig":
return self.__class__(**{k: copy.deepcopy(__UpperCAmelCase ) for k, v in self.__dict__.items()} )
| 341 | 1 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[Any]:
if height >= 1:
move_tower(height - 1 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
move_disk(__UpperCamelCase , __UpperCamelCase )
move_tower(height - 1 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> str:
print("""moving disk from""" , __UpperCamelCase , """to""" , __UpperCamelCase )
def _lowerCamelCase() -> Optional[Any]:
_lowerCAmelCase =int(input("""Height of hanoi: """ ).strip() )
move_tower(__UpperCamelCase , """A""" , """B""" , """C""" )
if __name__ == "__main__":
main()
| 341 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> int:
return int((input_a, input_a).count(1 ) != 0 )
def _lowerCamelCase() -> None:
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 341 | 1 |
"""simple docstring"""
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=7 ) -> Optional[int]:
_lowerCAmelCase =None
if token is not None:
_lowerCAmelCase ={"""Accept""": """application/vnd.github+json""", """Authorization""": F'''Bearer {token}'''}
# The id of a workflow (not of a workflow run)
_lowerCAmelCase ="""636036"""
_lowerCAmelCase =F'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs'''
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += F'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}'''
_lowerCAmelCase =requests.get(__UpperCamelCase , headers=__UpperCamelCase ).json()
return result["workflow_runs"]
def _lowerCamelCase(__UpperCamelCase ) -> Any:
_lowerCAmelCase =get_daily_ci_runs(__UpperCamelCase )
_lowerCAmelCase =None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
_lowerCAmelCase =workflow_run["""id"""]
break
return workflow_run_id
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> str:
_lowerCAmelCase =get_last_daily_ci_runs(__UpperCamelCase )
if workflow_run_id is not None:
_lowerCAmelCase =get_artifacts_links(worflow_run_id=__UpperCamelCase , token=__UpperCamelCase )
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
_lowerCAmelCase =artifacts_links[artifact_name]
download_artifact(
artifact_name=__UpperCamelCase , artifact_url=__UpperCamelCase , output_dir=__UpperCamelCase , token=__UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]:
get_last_daily_ci_artifacts(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase ={}
for artifact_name in artifact_names:
_lowerCAmelCase =os.path.join(__UpperCamelCase , F'''{artifact_name}.zip''' )
if os.path.isfile(__UpperCamelCase ):
_lowerCAmelCase ={}
with zipfile.ZipFile(__UpperCamelCase ) as z:
for filename in z.namelist():
if not os.path.isdir(__UpperCamelCase ):
# read the file
with z.open(__UpperCamelCase ) as f:
_lowerCAmelCase =f.read().decode("""UTF-8""" )
return results
| 341 |
"""simple docstring"""
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
__A = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n'
__A = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n'
__A = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase__ ( datasets.Metric ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> Any:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ),
"""references""": datasets.Sequence(
datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/BLEU""",
"""https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""",
] , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=4 , __UpperCAmelCase=False ) -> Tuple:
_lowerCAmelCase =compute_bleu(
reference_corpus=__UpperCAmelCase , translation_corpus=__UpperCAmelCase , max_order=__UpperCAmelCase , smooth=__UpperCAmelCase )
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) =score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 341 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = '''llama'''
lowerCamelCase = ['''past_key_values''']
def __init__( self , __UpperCAmelCase=3_20_00 , __UpperCAmelCase=40_96 , __UpperCAmelCase=1_10_08 , __UpperCAmelCase=32 , __UpperCAmelCase=32 , __UpperCAmelCase=None , __UpperCAmelCase="silu" , __UpperCAmelCase=20_48 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-6 , __UpperCAmelCase=True , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=False , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]:
_lowerCAmelCase =vocab_size
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =hidden_size
_lowerCAmelCase =intermediate_size
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =num_key_value_heads
_lowerCAmelCase =hidden_act
_lowerCAmelCase =initializer_range
_lowerCAmelCase =rms_norm_eps
_lowerCAmelCase =pretraining_tp
_lowerCAmelCase =use_cache
_lowerCAmelCase =rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase , )
def _lowerCAmelCase ( self ) -> str:
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2:
raise ValueError(
"""`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """
f'''got {self.rope_scaling}''' )
_lowerCAmelCase =self.rope_scaling.get("""type""" , __UpperCAmelCase )
_lowerCAmelCase =self.rope_scaling.get("""factor""" , __UpperCAmelCase )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' )
if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0:
raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
| 341 |
"""simple docstring"""
import argparse
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
parser.add_argument(
'--original_config_file',
type=str,
required=True,
help='The YAML config file corresponding to the original architecture.',
)
parser.add_argument(
'--num_in_channels',
default=None,
type=int,
help='The number of input channels. If `None` number of input channels will be automatically inferred.',
)
parser.add_argument(
'--image_size',
default=512,
type=int,
help=(
'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2'
' Base. Use 768 for Stable Diffusion v2.'
),
)
parser.add_argument(
'--extract_ema',
action='store_true',
help=(
'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights'
' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield'
' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.'
),
)
parser.add_argument(
'--upcast_attention',
action='store_true',
help=(
'Whether the attention computation should always be upcasted. This is necessary when running stable'
' diffusion 2.1.'
),
)
parser.add_argument(
'--from_safetensors',
action='store_true',
help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.',
)
parser.add_argument(
'--to_safetensors',
action='store_true',
help='Whether to store pipeline in safetensors format or not.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)')
def _lowerCamelCase(__UpperCamelCase ) -> List[str]:
if string == "True":
return True
elif string == "False":
return False
else:
raise ValueError(F'''could not parse string as bool {string}''' )
parser.add_argument(
'--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool
)
parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int)
__A = parser.parse_args()
__A = download_controlnet_from_original_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
extract_ema=args.extract_ema,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
use_linear_projection=args.use_linear_projection,
cross_attention_dim=args.cross_attention_dim,
)
controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 341 | 1 |
"""simple docstring"""
import inspect
import unittest
from transformers import MobileNetVaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileNetVaForImageClassification, MobileNetVaModel
from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> Optional[int]:
_lowerCAmelCase =self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__UpperCAmelCase , """tf_padding""" ) )
self.parent.assertTrue(hasattr(__UpperCAmelCase , """depth_multiplier""" ) )
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=3 , __UpperCAmelCase=32 , __UpperCAmelCase=0.2_5 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=10_24 , __UpperCAmelCase=32 , __UpperCAmelCase="relu6" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=None , ) -> Any:
_lowerCAmelCase =parent
_lowerCAmelCase =batch_size
_lowerCAmelCase =num_channels
_lowerCAmelCase =image_size
_lowerCAmelCase =depth_multiplier
_lowerCAmelCase =min_depth
_lowerCAmelCase =tf_padding
_lowerCAmelCase =int(last_hidden_size * depth_multiplier )
_lowerCAmelCase =output_stride
_lowerCAmelCase =hidden_act
_lowerCAmelCase =classifier_dropout_prob
_lowerCAmelCase =use_labels
_lowerCAmelCase =is_training
_lowerCAmelCase =num_labels
_lowerCAmelCase =initializer_range
_lowerCAmelCase =scope
def _lowerCAmelCase ( self ) -> Optional[int]:
_lowerCAmelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCAmelCase =None
_lowerCAmelCase =None
if self.use_labels:
_lowerCAmelCase =ids_tensor([self.batch_size] , self.num_labels )
_lowerCAmelCase =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
_lowerCAmelCase =self.get_config()
return config, pixel_values, labels, pixel_labels
def _lowerCAmelCase ( self ) -> List[str]:
return MobileNetVaConfig(
num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
_lowerCAmelCase =MobileNetVaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_lowerCAmelCase =model(__UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
_lowerCAmelCase =self.num_labels
_lowerCAmelCase =MobileNetVaForImageClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_lowerCAmelCase =model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =self.prepare_config_and_inputs()
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs
_lowerCAmelCase ={"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowerCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else ()
lowerCamelCase = (
{'''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification}
if is_torch_available()
else {}
)
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =MobileNetVaModelTester(self )
_lowerCAmelCase =MobileNetVaConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Optional[int]:
self.config_tester.run_common_tests()
@unittest.skip(reason="""MobileNetV1 does not use inputs_embeds""" )
def _lowerCAmelCase ( self ) -> Tuple:
pass
@unittest.skip(reason="""MobileNetV1 does not support input and output embeddings""" )
def _lowerCAmelCase ( self ) -> str:
pass
@unittest.skip(reason="""MobileNetV1 does not output attentions""" )
def _lowerCAmelCase ( self ) -> List[Any]:
pass
def _lowerCAmelCase ( self ) -> Optional[int]:
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase =model_class(__UpperCAmelCase )
_lowerCAmelCase =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCAmelCase =[*signature.parameters.keys()]
_lowerCAmelCase =["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Optional[Any]:
def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
_lowerCAmelCase =model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
_lowerCAmelCase =model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
_lowerCAmelCase =outputs.hidden_states
_lowerCAmelCase =26
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase =True
check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCAmelCase =True
check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> Union[str, Any]:
for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase =MobileNetVaModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def _lowerCamelCase() -> Union[str, Any]:
_lowerCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _lowerCAmelCase ( self ) -> Optional[Any]:
return (
MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v1_1.0_224""" ) if is_vision_available() else None
)
@slow
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v1_1.0_224""" ).to(__UpperCAmelCase )
_lowerCAmelCase =self.default_image_processor
_lowerCAmelCase =prepare_img()
_lowerCAmelCase =image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
_lowerCAmelCase =model(**__UpperCAmelCase )
# verify the logits
_lowerCAmelCase =torch.Size((1, 10_01) )
self.assertEqual(outputs.logits.shape , __UpperCAmelCase )
_lowerCAmelCase =torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) )
| 341 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available
__A = {
'configuration_audio_spectrogram_transformer': [
'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'ASTConfig',
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'ASTForAudioClassification',
'ASTModel',
'ASTPreTrainedModel',
]
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ['ASTFeatureExtractor']
if TYPE_CHECKING:
from .configuration_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
ASTConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ASTForAudioClassification,
ASTModel,
ASTPreTrainedModel,
)
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A = {
'configuration_informer': [
'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'InformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'InformerForPrediction',
'InformerModel',
'InformerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_informer import (
INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
InformerForPrediction,
InformerModel,
InformerPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__A = {
'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'],
'tokenization_m2m_100': ['M2M100Tokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST',
'M2M100ForConditionalGeneration',
'M2M100Model',
'M2M100PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
'uclanlp/visualbert-vqa': 'https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json',
'uclanlp/visualbert-vqa-pre': 'https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json',
'uclanlp/visualbert-vqa-coco-pre': (
'https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json'
),
'uclanlp/visualbert-vcr': 'https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json',
'uclanlp/visualbert-vcr-pre': 'https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json',
'uclanlp/visualbert-vcr-coco-pre': (
'https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json'
),
'uclanlp/visualbert-nlvr2': 'https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json',
'uclanlp/visualbert-nlvr2-pre': 'https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json',
'uclanlp/visualbert-nlvr2-coco-pre': (
'https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json'
)
# See all VisualBERT models at https://huggingface.co/models?filter=visual_bert
}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = '''visual_bert'''
def __init__( self , __UpperCAmelCase=3_05_22 , __UpperCAmelCase=7_68 , __UpperCAmelCase=5_12 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-12 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , **__UpperCAmelCase , ) -> int:
super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
_lowerCAmelCase =vocab_size
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =hidden_size
_lowerCAmelCase =visual_embedding_dim
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =intermediate_size
_lowerCAmelCase =hidden_act
_lowerCAmelCase =hidden_dropout_prob
_lowerCAmelCase =attention_probs_dropout_prob
_lowerCAmelCase =initializer_range
_lowerCAmelCase =type_vocab_size
_lowerCAmelCase =layer_norm_eps
_lowerCAmelCase =bypass_transformer
_lowerCAmelCase =special_visual_initialize
| 341 |
"""simple docstring"""
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
__A = datasets.logging.get_logger(__name__)
__A = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n'
__A = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n'
__A = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n'
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase="dummy_doc" ) -> Dict:
_lowerCAmelCase ={doc: key_lines}
_lowerCAmelCase ={doc: sys_lines}
_lowerCAmelCase ={}
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase , _lowerCAmelCase =reader.get_doc_mentions(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase )
key_singletons_num += singletons_num
if NP_only or min_span:
_lowerCAmelCase =reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =reader.get_doc_mentions(__UpperCamelCase , sys_doc_lines[doc] , __UpperCamelCase )
sys_singletons_num += singletons_num
if NP_only or min_span:
_lowerCAmelCase =reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase )
if remove_nested:
_lowerCAmelCase , _lowerCAmelCase =reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
_lowerCAmelCase , _lowerCAmelCase =reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
_lowerCAmelCase =reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =(key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
"""Number of removed nested coreferring mentions in the key """
F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' )
logger.info(
"""Number of resulting singleton clusters in the key """
F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' )
if not keep_singletons:
logger.info(
F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system '''
"""files, respectively""" )
return doc_coref_infos
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int:
_lowerCAmelCase =get_coref_infos(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase ={}
_lowerCAmelCase =0
_lowerCAmelCase =0
for name, metric in metrics:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =evaluator.evaluate_documents(__UpperCamelCase , __UpperCamelCase , beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} )
logger.info(
name.ljust(10 ) , F'''Recall: {recall * 100:.2f}''' , F''' Precision: {precision * 100:.2f}''' , F''' F1: {fa * 100:.2f}''' , )
if conll_subparts_num == 3:
_lowerCAmelCase =(conll / 3) * 100
logger.info(F'''CoNLL score: {conll:.2f}''' )
output_scores.update({"""conll_score""": conll} )
return output_scores
def _lowerCamelCase(__UpperCamelCase ) -> Tuple:
_lowerCAmelCase =False
for line in key_lines:
if not line.startswith("""#""" ):
if len(line.split() ) > 6:
_lowerCAmelCase =line.split()[5]
if not parse_col == "-":
_lowerCAmelCase =True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase__ ( datasets.Metric ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> str:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Sequence(datasets.Value("""string""" ) ),
} ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[
"""https://github.com/ns-moosavi/coval""",
"""https://www.aclweb.org/anthology/P16-1060""",
"""http://www.conll.cemantix.org/2012/data.html""",
] , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False ) -> Optional[Any]:
_lowerCAmelCase =[
("""mentions""", evaluator.mentions),
("""muc""", evaluator.muc),
("""bcub""", evaluator.b_cubed),
("""ceafe""", evaluator.ceafe),
("""lea""", evaluator.lea),
]
if min_span:
_lowerCAmelCase =util.check_gold_parse_annotation(__UpperCAmelCase )
if not has_gold_parse:
raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" )
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
_lowerCAmelCase =evaluate(
key_lines=__UpperCAmelCase , sys_lines=__UpperCAmelCase , metrics=__UpperCAmelCase , NP_only=__UpperCAmelCase , remove_nested=__UpperCAmelCase , keep_singletons=__UpperCAmelCase , min_span=__UpperCAmelCase , )
return score
| 341 | 1 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = KandinskyInpaintPipeline
lowerCamelCase = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''']
lowerCamelCase = [
'''prompt''',
'''negative_prompt''',
'''image_embeds''',
'''negative_image_embeds''',
'''image''',
'''mask_image''',
]
lowerCamelCase = [
'''generator''',
'''height''',
'''width''',
'''latents''',
'''guidance_scale''',
'''negative_prompt''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
lowerCamelCase = False
@property
def _lowerCAmelCase ( self ) -> Optional[int]:
return 32
@property
def _lowerCAmelCase ( self ) -> List[str]:
return 32
@property
def _lowerCAmelCase ( self ) -> Optional[int]:
return self.time_input_dim
@property
def _lowerCAmelCase ( self ) -> List[str]:
return self.time_input_dim * 4
@property
def _lowerCAmelCase ( self ) -> int:
return 1_00
@property
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase =XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" )
return tokenizer
@property
def _lowerCAmelCase ( self ) -> List[Any]:
torch.manual_seed(0 )
_lowerCAmelCase =MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , )
_lowerCAmelCase =MultilingualCLIP(__UpperCAmelCase )
_lowerCAmelCase =text_encoder.eval()
return text_encoder
@property
def _lowerCAmelCase ( self ) -> Union[str, Any]:
torch.manual_seed(0 )
_lowerCAmelCase ={
"""in_channels""": 9,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """text_image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """text_image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
_lowerCAmelCase =UNetaDConditionModel(**__UpperCAmelCase )
return model
@property
def _lowerCAmelCase ( self ) -> Optional[Any]:
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def _lowerCAmelCase ( self ) -> int:
torch.manual_seed(0 )
_lowerCAmelCase =VQModel(**self.dummy_movq_kwargs )
return model
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =self.dummy_text_encoder
_lowerCAmelCase =self.dummy_tokenizer
_lowerCAmelCase =self.dummy_unet
_lowerCAmelCase =self.dummy_movq
_lowerCAmelCase =DDIMScheduler(
num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__UpperCAmelCase , )
_lowerCAmelCase ={
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Any:
_lowerCAmelCase =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
_lowerCAmelCase =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__UpperCAmelCase )
# create init_image
_lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
_lowerCAmelCase =image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((2_56, 2_56) )
# create mask
_lowerCAmelCase =np.ones((64, 64) , dtype=np.floataa )
_lowerCAmelCase =0
if str(__UpperCAmelCase ).startswith("""mps""" ):
_lowerCAmelCase =torch.manual_seed(__UpperCAmelCase )
else:
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
_lowerCAmelCase ={
"""prompt""": """horse""",
"""image""": init_image,
"""mask_image""": mask,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 2,
"""guidance_scale""": 4.0,
"""output_type""": """np""",
}
return inputs
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase ="""cpu"""
_lowerCAmelCase =self.get_dummy_components()
_lowerCAmelCase =self.pipeline_class(**__UpperCAmelCase )
_lowerCAmelCase =pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase =pipe(**self.get_dummy_inputs(__UpperCAmelCase ) )
_lowerCAmelCase =output.images
_lowerCAmelCase =pipe(
**self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0]
_lowerCAmelCase =image[0, -3:, -3:, -1]
_lowerCAmelCase =image_from_tuple[0, -3:, -3:, -1]
print(f'''image.shape {image.shape}''' )
assert image.shape == (1, 64, 64, 3)
_lowerCAmelCase =np.array(
[0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
def _lowerCAmelCase ( self ) -> Union[str, Any]:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> List[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" )
_lowerCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
_lowerCAmelCase =np.ones((7_68, 7_68) , dtype=np.floataa )
_lowerCAmelCase =0
_lowerCAmelCase ="""a hat"""
_lowerCAmelCase =KandinskyPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__UpperCAmelCase )
_lowerCAmelCase =KandinskyInpaintPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa )
_lowerCAmelCase =pipeline.to(__UpperCAmelCase )
pipeline.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase =torch.Generator(device="""cpu""" ).manual_seed(0 )
_lowerCAmelCase , _lowerCAmelCase =pipe_prior(
__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
_lowerCAmelCase =pipeline(
__UpperCAmelCase , image=__UpperCAmelCase , mask_image=__UpperCAmelCase , image_embeds=__UpperCAmelCase , negative_image_embeds=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , )
_lowerCAmelCase =output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
| 341 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = XGLMConfig
lowerCamelCase = {}
lowerCamelCase = '''gelu'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=0.0_2 , ) -> List[str]:
_lowerCAmelCase =parent
_lowerCAmelCase =batch_size
_lowerCAmelCase =seq_length
_lowerCAmelCase =is_training
_lowerCAmelCase =use_input_mask
_lowerCAmelCase =use_labels
_lowerCAmelCase =vocab_size
_lowerCAmelCase =d_model
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =ffn_dim
_lowerCAmelCase =activation_function
_lowerCAmelCase =activation_dropout
_lowerCAmelCase =attention_dropout
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =initializer_range
_lowerCAmelCase =None
_lowerCAmelCase =0
_lowerCAmelCase =2
_lowerCAmelCase =1
def _lowerCAmelCase ( self ) -> Dict:
return XGLMConfig.from_pretrained("""facebook/xglm-564M""" )
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
_lowerCAmelCase =None
if self.use_input_mask:
_lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length] )
_lowerCAmelCase =self.get_config()
_lowerCAmelCase =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowerCAmelCase ( self ) -> str:
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__UpperCAmelCase , )
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =self.prepare_config_and_inputs()
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) =config_and_inputs
_lowerCAmelCase ={
"""input_ids""": input_ids,
"""head_mask""": head_mask,
}
return config, inputs_dict
@require_tf
class lowerCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
lowerCamelCase = (TFXGLMForCausalLM,) if is_tf_available() else ()
lowerCamelCase = (
{'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {}
)
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =TFXGLMModelTester(self )
_lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase , n_embd=37 )
def _lowerCAmelCase ( self ) -> int:
self.config_tester.run_common_tests()
@slow
def _lowerCAmelCase ( self ) -> Union[str, Any]:
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase =TFXGLMModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" )
def _lowerCAmelCase ( self ) -> Union[str, Any]:
super().test_resize_token_embeddings()
@require_tf
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def _lowerCAmelCase ( self , __UpperCAmelCase=True ) -> str:
_lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase =tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
_lowerCAmelCase =[2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81]
# fmt: on
_lowerCAmelCase =model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , __UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
tf.random.set_seed(0 )
_lowerCAmelCase =tokenizer("""Today is a nice day and""" , return_tensors="""tf""" )
_lowerCAmelCase =tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(""":/CPU:0""" ):
_lowerCAmelCase =model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , seed=[7, 0] )
_lowerCAmelCase =tokenizer.decode(output_ids[0] , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =(
"""Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"""
)
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase ="""left"""
# use different length sentences to test batching
_lowerCAmelCase =[
"""This is an extremelly long sentence that only exists to test the ability of the model to cope with """
"""left-padding, such as in batched generation. The output for the sequence below should be the same """
"""regardless of whether left padding is applied or not. When""",
"""Hello, my dog is a little""",
]
_lowerCAmelCase =tokenizer(__UpperCAmelCase , return_tensors="""tf""" , padding=__UpperCAmelCase )
_lowerCAmelCase =inputs["""input_ids"""]
_lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 )
_lowerCAmelCase =tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids
_lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 )
_lowerCAmelCase =tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids
_lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 )
_lowerCAmelCase =tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =tokenizer.decode(output_non_padded[0] , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =tokenizer.decode(output_padded[0] , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =[
"""This is an extremelly long sentence that only exists to test the ability of the model to cope with """
"""left-padding, such as in batched generation. The output for the sequence below should be the same """
"""regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """
"""a single""",
"""Hello, my dog is a little bit of a shy one, but he is very friendly""",
]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , [non_padded_sentence, padded_sentence] )
| 341 | 1 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__A = logging.get_logger(__name__)
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = ['''pixel_values''']
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 2_55 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> None:
super().__init__(**__UpperCAmelCase )
_lowerCAmelCase =size if size is not None else {"""height""": 3_84, """width""": 3_84}
_lowerCAmelCase =get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
_lowerCAmelCase =do_resize
_lowerCAmelCase =size
_lowerCAmelCase =resample
_lowerCAmelCase =do_rescale
_lowerCAmelCase =rescale_factor
_lowerCAmelCase =do_normalize
_lowerCAmelCase =image_mean if image_mean is not None else OPENAI_CLIP_MEAN
_lowerCAmelCase =image_std if image_std is not None else OPENAI_CLIP_STD
_lowerCAmelCase =do_convert_rgb
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
_lowerCAmelCase =get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' )
_lowerCAmelCase =(size["""height"""], size["""width"""])
return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> List[str]:
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image:
_lowerCAmelCase =do_resize if do_resize is not None else self.do_resize
_lowerCAmelCase =resample if resample is not None else self.resample
_lowerCAmelCase =do_rescale if do_rescale is not None else self.do_rescale
_lowerCAmelCase =rescale_factor if rescale_factor is not None else self.rescale_factor
_lowerCAmelCase =do_normalize if do_normalize is not None else self.do_normalize
_lowerCAmelCase =image_mean if image_mean is not None else self.image_mean
_lowerCAmelCase =image_std if image_std is not None else self.image_std
_lowerCAmelCase =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
_lowerCAmelCase =size if size is not None else self.size
_lowerCAmelCase =get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
_lowerCAmelCase =make_list_of_images(__UpperCAmelCase )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
_lowerCAmelCase =[convert_to_rgb(__UpperCAmelCase ) for image in images]
# All transformations expect numpy arrays.
_lowerCAmelCase =[to_numpy_array(__UpperCAmelCase ) for image in images]
if do_resize:
_lowerCAmelCase =[self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images]
if do_rescale:
_lowerCAmelCase =[self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images]
if do_normalize:
_lowerCAmelCase =[self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images]
_lowerCAmelCase =[to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images]
_lowerCAmelCase =BatchFeature(data={"""pixel_values""": images} , tensor_type=__UpperCAmelCase )
return encoded_outputs
| 341 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
__A = logging.get_logger(__name__)
__A = {'vocab_file': 'spiece.model'}
__A = {
'vocab_file': {
'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model',
'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model',
}
}
__A = {
'xlnet-base-cased': None,
'xlnet-large-cased': None,
}
# Segments (not really needed)
__A = 0
__A = 1
__A = 2
__A = 3
__A = 4
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = VOCAB_FILES_NAMES
lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase = '''left'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<sep>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<cls>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=["<eop>", "<eod>"] , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it
_lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
_lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , )
_lowerCAmelCase =3
_lowerCAmelCase =do_lower_case
_lowerCAmelCase =remove_space
_lowerCAmelCase =keep_accents
_lowerCAmelCase =vocab_file
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__UpperCAmelCase )
@property
def _lowerCAmelCase ( self ) -> str:
return len(self.sp_model )
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> Optional[int]:
_lowerCAmelCase =self.__dict__.copy()
_lowerCAmelCase =None
return state
def __setstate__( self , __UpperCAmelCase ) -> Tuple:
_lowerCAmelCase =d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_lowerCAmelCase ={}
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[Any]:
if self.remove_space:
_lowerCAmelCase =""" """.join(inputs.strip().split() )
else:
_lowerCAmelCase =inputs
_lowerCAmelCase =outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
_lowerCAmelCase =unicodedata.normalize("""NFKD""" , __UpperCAmelCase )
_lowerCAmelCase ="""""".join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] )
if self.do_lower_case:
_lowerCAmelCase =outputs.lower()
return outputs
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
_lowerCAmelCase =self.preprocess_text(__UpperCAmelCase )
_lowerCAmelCase =self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase )
_lowerCAmelCase =[]
for piece in pieces:
if len(__UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
_lowerCAmelCase =self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
_lowerCAmelCase =cur_pieces[1:]
else:
_lowerCAmelCase =cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(__UpperCAmelCase )
else:
new_pieces.append(__UpperCAmelCase )
return new_pieces
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]:
return self.sp_model.PieceToId(__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
return self.sp_model.IdToPiece(__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> str:
_lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip()
return out_string
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> str:
_lowerCAmelCase =kwargs.pop("""use_source_tokenizer""" , __UpperCAmelCase )
_lowerCAmelCase =self.convert_ids_to_tokens(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
_lowerCAmelCase =[]
_lowerCAmelCase =[]
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) )
_lowerCAmelCase =[]
sub_texts.append(__UpperCAmelCase )
else:
current_sub_text.append(__UpperCAmelCase )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) )
# Mimic the behavior of the Rust tokenizer:
# By default, there are no spaces between special tokens
_lowerCAmelCase ="""""".join(__UpperCAmelCase )
_lowerCAmelCase =(
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
_lowerCAmelCase =self.clean_up_tokenization(__UpperCAmelCase )
return clean_text
else:
return text
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_lowerCAmelCase =[self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase )
if token_ids_a is not None:
return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1]
return ([0] * len(__UpperCAmelCase )) + [1, 1]
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_lowerCAmelCase =[self.sep_token_id]
_lowerCAmelCase =[2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCAmelCase , """wb""" ) as fi:
_lowerCAmelCase =self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase )
return (out_vocab_file,)
| 341 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json',
# See all ViT MSN models at https://huggingface.co/models?filter=vit_msn
}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = '''vit_msn'''
def __init__( self , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-06 , __UpperCAmelCase=2_24 , __UpperCAmelCase=16 , __UpperCAmelCase=3 , __UpperCAmelCase=True , **__UpperCAmelCase , ) -> Optional[int]:
super().__init__(**__UpperCAmelCase )
_lowerCAmelCase =hidden_size
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =intermediate_size
_lowerCAmelCase =hidden_act
_lowerCAmelCase =hidden_dropout_prob
_lowerCAmelCase =attention_probs_dropout_prob
_lowerCAmelCase =initializer_range
_lowerCAmelCase =layer_norm_eps
_lowerCAmelCase =image_size
_lowerCAmelCase =patch_size
_lowerCAmelCase =num_channels
_lowerCAmelCase =qkv_bias
| 341 |
"""simple docstring"""
from __future__ import annotations
def _lowerCamelCase(__UpperCamelCase ) -> bool:
_lowerCAmelCase =str(__UpperCamelCase )
return n == n[::-1]
def _lowerCamelCase(__UpperCamelCase = 1000000 ) -> str:
_lowerCAmelCase =0
for i in range(1 , __UpperCamelCase ):
if is_palindrome(__UpperCamelCase ) and is_palindrome(bin(__UpperCamelCase ).split("""b""" )[1] ):
total += i
return total
if __name__ == "__main__":
print(solution(int(str(input().strip()))))
| 341 | 1 |
"""simple docstring"""
from math import cos, sin, sqrt, tau
from audio_filters.iir_filter import IIRFilter
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 / sqrt(2 ) ) -> IIRFilter:
_lowerCAmelCase =tau * frequency / samplerate
_lowerCAmelCase =sin(__UpperCamelCase )
_lowerCAmelCase =cos(__UpperCamelCase )
_lowerCAmelCase =_sin / (2 * q_factor)
_lowerCAmelCase =(1 - _cos) / 2
_lowerCAmelCase =1 - _cos
_lowerCAmelCase =1 + alpha
_lowerCAmelCase =-2 * _cos
_lowerCAmelCase =1 - alpha
_lowerCAmelCase =IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 / sqrt(2 ) ) -> IIRFilter:
_lowerCAmelCase =tau * frequency / samplerate
_lowerCAmelCase =sin(__UpperCamelCase )
_lowerCAmelCase =cos(__UpperCamelCase )
_lowerCAmelCase =_sin / (2 * q_factor)
_lowerCAmelCase =(1 + _cos) / 2
_lowerCAmelCase =-1 - _cos
_lowerCAmelCase =1 + alpha
_lowerCAmelCase =-2 * _cos
_lowerCAmelCase =1 - alpha
_lowerCAmelCase =IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 / sqrt(2 ) ) -> IIRFilter:
_lowerCAmelCase =tau * frequency / samplerate
_lowerCAmelCase =sin(__UpperCamelCase )
_lowerCAmelCase =cos(__UpperCamelCase )
_lowerCAmelCase =_sin / (2 * q_factor)
_lowerCAmelCase =_sin / 2
_lowerCAmelCase =0
_lowerCAmelCase =-ba
_lowerCAmelCase =1 + alpha
_lowerCAmelCase =-2 * _cos
_lowerCAmelCase =1 - alpha
_lowerCAmelCase =IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 / sqrt(2 ) ) -> IIRFilter:
_lowerCAmelCase =tau * frequency / samplerate
_lowerCAmelCase =sin(__UpperCamelCase )
_lowerCAmelCase =cos(__UpperCamelCase )
_lowerCAmelCase =_sin / (2 * q_factor)
_lowerCAmelCase =1 - alpha
_lowerCAmelCase =-2 * _cos
_lowerCAmelCase =1 + alpha
_lowerCAmelCase =IIRFilter(2 )
filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] )
return filt
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 / sqrt(2 ) , ) -> IIRFilter:
_lowerCAmelCase =tau * frequency / samplerate
_lowerCAmelCase =sin(__UpperCamelCase )
_lowerCAmelCase =cos(__UpperCamelCase )
_lowerCAmelCase =_sin / (2 * q_factor)
_lowerCAmelCase =10 ** (gain_db / 40)
_lowerCAmelCase =1 + alpha * big_a
_lowerCAmelCase =-2 * _cos
_lowerCAmelCase =1 - alpha * big_a
_lowerCAmelCase =1 + alpha / big_a
_lowerCAmelCase =-2 * _cos
_lowerCAmelCase =1 - alpha / big_a
_lowerCAmelCase =IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 / sqrt(2 ) , ) -> IIRFilter:
_lowerCAmelCase =tau * frequency / samplerate
_lowerCAmelCase =sin(__UpperCamelCase )
_lowerCAmelCase =cos(__UpperCamelCase )
_lowerCAmelCase =_sin / (2 * q_factor)
_lowerCAmelCase =10 ** (gain_db / 40)
_lowerCAmelCase =(big_a + 1) - (big_a - 1) * _cos
_lowerCAmelCase =(big_a + 1) + (big_a - 1) * _cos
_lowerCAmelCase =(big_a - 1) - (big_a + 1) * _cos
_lowerCAmelCase =(big_a - 1) + (big_a + 1) * _cos
_lowerCAmelCase =2 * sqrt(__UpperCamelCase ) * alpha
_lowerCAmelCase =big_a * (pmc + aaa)
_lowerCAmelCase =2 * big_a * mpc
_lowerCAmelCase =big_a * (pmc - aaa)
_lowerCAmelCase =ppmc + aaa
_lowerCAmelCase =-2 * pmpc
_lowerCAmelCase =ppmc - aaa
_lowerCAmelCase =IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 / sqrt(2 ) , ) -> IIRFilter:
_lowerCAmelCase =tau * frequency / samplerate
_lowerCAmelCase =sin(__UpperCamelCase )
_lowerCAmelCase =cos(__UpperCamelCase )
_lowerCAmelCase =_sin / (2 * q_factor)
_lowerCAmelCase =10 ** (gain_db / 40)
_lowerCAmelCase =(big_a + 1) - (big_a - 1) * _cos
_lowerCAmelCase =(big_a + 1) + (big_a - 1) * _cos
_lowerCAmelCase =(big_a - 1) - (big_a + 1) * _cos
_lowerCAmelCase =(big_a - 1) + (big_a + 1) * _cos
_lowerCAmelCase =2 * sqrt(__UpperCamelCase ) * alpha
_lowerCAmelCase =big_a * (ppmc + aaa)
_lowerCAmelCase =-2 * big_a * pmpc
_lowerCAmelCase =big_a * (ppmc - aaa)
_lowerCAmelCase =pmc + aaa
_lowerCAmelCase =2 * mpc
_lowerCAmelCase =pmc - aaa
_lowerCAmelCase =IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
| 341 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = '''llama'''
lowerCamelCase = ['''past_key_values''']
def __init__( self , __UpperCAmelCase=3_20_00 , __UpperCAmelCase=40_96 , __UpperCAmelCase=1_10_08 , __UpperCAmelCase=32 , __UpperCAmelCase=32 , __UpperCAmelCase=None , __UpperCAmelCase="silu" , __UpperCAmelCase=20_48 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-6 , __UpperCAmelCase=True , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=False , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]:
_lowerCAmelCase =vocab_size
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =hidden_size
_lowerCAmelCase =intermediate_size
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =num_key_value_heads
_lowerCAmelCase =hidden_act
_lowerCAmelCase =initializer_range
_lowerCAmelCase =rms_norm_eps
_lowerCAmelCase =pretraining_tp
_lowerCAmelCase =use_cache
_lowerCAmelCase =rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase , )
def _lowerCAmelCase ( self ) -> str:
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2:
raise ValueError(
"""`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """
f'''got {self.rope_scaling}''' )
_lowerCAmelCase =self.rope_scaling.get("""type""" , __UpperCAmelCase )
_lowerCAmelCase =self.rope_scaling.get("""factor""" , __UpperCAmelCase )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' )
if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0:
raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
| 341 | 1 |
"""simple docstring"""
from __future__ import annotations
from sys import maxsize
from typing import Generic, TypeVar
__A = TypeVar('T')
def _lowerCamelCase(__UpperCamelCase ) -> int:
return (position - 1) // 2
def _lowerCamelCase(__UpperCamelCase ) -> int:
return (2 * position) + 1
def _lowerCamelCase(__UpperCamelCase ) -> int:
return (2 * position) + 2
class lowerCamelCase__ ( Generic[T] ):
'''simple docstring'''
def __init__( self ) -> None:
_lowerCAmelCase =[]
_lowerCAmelCase ={}
_lowerCAmelCase =0
def __len__( self ) -> int:
return self.elements
def __repr__( self ) -> str:
return str(self.heap )
def _lowerCAmelCase ( self ) -> bool:
# Check if the priority queue is empty
return self.elements == 0
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
# Add an element with given priority to the queue
self.heap.append((elem, weight) )
_lowerCAmelCase =self.elements
self.elements += 1
self._bubble_up(__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> T:
# Remove and return the element with lowest weight (highest priority)
if self.elements > 1:
self._swap_nodes(0 , self.elements - 1 )
_lowerCAmelCase , _lowerCAmelCase =self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
_lowerCAmelCase , _lowerCAmelCase =self.heap[0]
self._bubble_down(__UpperCAmelCase )
return elem
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
# Update the weight of the given key
_lowerCAmelCase =self.position_map[elem]
_lowerCAmelCase =(elem, weight)
if position > 0:
_lowerCAmelCase =get_parent_position(__UpperCAmelCase )
_lowerCAmelCase , _lowerCAmelCase =self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(__UpperCAmelCase )
else:
self._bubble_down(__UpperCAmelCase )
else:
self._bubble_down(__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> None:
# Place a node at the proper position (upward movement) [to be used internally
# only]
_lowerCAmelCase =self.position_map[elem]
if curr_pos == 0:
return None
_lowerCAmelCase =get_parent_position(__UpperCAmelCase )
_lowerCAmelCase , _lowerCAmelCase =self.heap[curr_pos]
_lowerCAmelCase , _lowerCAmelCase =self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(__UpperCAmelCase , __UpperCAmelCase )
return self._bubble_up(__UpperCAmelCase )
return None
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> None:
# Place a node at the proper position (downward movement) [to be used
# internally only]
_lowerCAmelCase =self.position_map[elem]
_lowerCAmelCase , _lowerCAmelCase =self.heap[curr_pos]
_lowerCAmelCase =get_child_left_position(__UpperCAmelCase )
_lowerCAmelCase =get_child_right_position(__UpperCAmelCase )
if child_left_position < self.elements and child_right_position < self.elements:
_lowerCAmelCase , _lowerCAmelCase =self.heap[child_left_position]
_lowerCAmelCase , _lowerCAmelCase =self.heap[child_right_position]
if child_right_weight < child_left_weight and child_right_weight < weight:
self._swap_nodes(__UpperCAmelCase , __UpperCAmelCase )
return self._bubble_down(__UpperCAmelCase )
if child_left_position < self.elements:
_lowerCAmelCase , _lowerCAmelCase =self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(__UpperCAmelCase , __UpperCAmelCase )
return self._bubble_down(__UpperCAmelCase )
else:
return None
if child_right_position < self.elements:
_lowerCAmelCase , _lowerCAmelCase =self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(__UpperCAmelCase , __UpperCAmelCase )
return self._bubble_down(__UpperCAmelCase )
return None
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
# Swap the nodes at the given positions
_lowerCAmelCase =self.heap[nodea_pos][0]
_lowerCAmelCase =self.heap[nodea_pos][0]
_lowerCAmelCase , _lowerCAmelCase =(
self.heap[nodea_pos],
self.heap[nodea_pos],
)
_lowerCAmelCase =nodea_pos
_lowerCAmelCase =nodea_pos
class lowerCamelCase__ ( Generic[T] ):
'''simple docstring'''
def __init__( self ) -> None:
_lowerCAmelCase ={}
_lowerCAmelCase =0
def __repr__( self ) -> str:
return str(self.connections )
def __len__( self ) -> int:
return self.nodes
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> None:
# Add a node in the graph if it is not in the graph
if node not in self.connections:
_lowerCAmelCase ={}
self.nodes += 1
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> None:
# Add an edge between 2 nodes in the graph
self.add_node(__UpperCAmelCase )
self.add_node(__UpperCAmelCase )
_lowerCAmelCase =weight
_lowerCAmelCase =weight
def _lowerCamelCase(__UpperCamelCase , ) -> tuple[dict[T, int], dict[T, T | None]]:
_lowerCAmelCase ={node: maxsize for node in graph.connections}
_lowerCAmelCase ={node: None for node in graph.connections}
_lowerCAmelCase =MinPriorityQueue()
for node, weight in dist.items():
priority_queue.push(__UpperCamelCase , __UpperCamelCase )
if priority_queue.is_empty():
return dist, parent
# initialization
_lowerCAmelCase =priority_queue.extract_min()
_lowerCAmelCase =0
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
_lowerCAmelCase =dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(__UpperCamelCase , dist[neighbour] )
_lowerCAmelCase =node
# running prim's algorithm
while not priority_queue.is_empty():
_lowerCAmelCase =priority_queue.extract_min()
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
_lowerCAmelCase =dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(__UpperCamelCase , dist[neighbour] )
_lowerCAmelCase =node
return dist, parent
| 341 |
"""simple docstring"""
import warnings
from .generation import TFGenerationMixin
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
# warning at import time
warnings.warn(
'''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will '''
'''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''' , __magic_name__ , )
| 341 | 1 |
"""simple docstring"""
import argparse
from pathlib import Path
import torch
from packaging import version
from torch.onnx import export
from diffusers import AutoencoderKL
__A = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11')
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False , ) -> Any:
output_path.parent.mkdir(parents=__UpperCamelCase , exist_ok=__UpperCamelCase )
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
__UpperCamelCase , __UpperCamelCase , f=output_path.as_posix() , input_names=__UpperCamelCase , output_names=__UpperCamelCase , dynamic_axes=__UpperCamelCase , do_constant_folding=__UpperCamelCase , use_external_data_format=__UpperCamelCase , enable_onnx_checker=__UpperCamelCase , opset_version=__UpperCamelCase , )
else:
export(
__UpperCamelCase , __UpperCamelCase , f=output_path.as_posix() , input_names=__UpperCamelCase , output_names=__UpperCamelCase , dynamic_axes=__UpperCamelCase , do_constant_folding=__UpperCamelCase , opset_version=__UpperCamelCase , )
@torch.no_grad()
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = False ) -> List[Any]:
_lowerCAmelCase =torch.floataa if fpaa else torch.floataa
if fpaa and torch.cuda.is_available():
_lowerCAmelCase ="""cuda"""
elif fpaa and not torch.cuda.is_available():
raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" )
else:
_lowerCAmelCase ="""cpu"""
_lowerCAmelCase =Path(__UpperCamelCase )
# VAE DECODER
_lowerCAmelCase =AutoencoderKL.from_pretrained(model_path + """/vae""" )
_lowerCAmelCase =vae_decoder.config.latent_channels
# forward only through the decoder part
_lowerCAmelCase =vae_decoder.decode
onnx_export(
__UpperCamelCase , model_args=(
torch.randn(1 , __UpperCamelCase , 25 , 25 ).to(device=__UpperCamelCase , dtype=__UpperCamelCase ),
False,
) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={
"""latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""},
} , opset=__UpperCamelCase , )
del vae_decoder
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument(
'--model_path',
type=str,
required=True,
help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).',
)
parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.')
parser.add_argument(
'--opset',
default=14,
type=int,
help='The version of the ONNX operator set to use.',
)
parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode')
__A = parser.parse_args()
print(args.output_path)
convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
print('SD: Done: ONNX')
| 341 |
"""simple docstring"""
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=16 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=30 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=None , ) -> Any:
_lowerCAmelCase =parent
_lowerCAmelCase =batch_size
_lowerCAmelCase =decoder_seq_length
# For common tests
_lowerCAmelCase =self.decoder_seq_length
_lowerCAmelCase =is_training
_lowerCAmelCase =use_attention_mask
_lowerCAmelCase =use_labels
_lowerCAmelCase =vocab_size
_lowerCAmelCase =d_model
_lowerCAmelCase =d_model
_lowerCAmelCase =decoder_layers
_lowerCAmelCase =decoder_layers
_lowerCAmelCase =decoder_ffn_dim
_lowerCAmelCase =decoder_attention_heads
_lowerCAmelCase =decoder_attention_heads
_lowerCAmelCase =eos_token_id
_lowerCAmelCase =bos_token_id
_lowerCAmelCase =pad_token_id
_lowerCAmelCase =decoder_start_token_id
_lowerCAmelCase =use_cache
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =None
_lowerCAmelCase =decoder_seq_length
_lowerCAmelCase =2
_lowerCAmelCase =1
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
_lowerCAmelCase =None
if self.use_attention_mask:
_lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 )
_lowerCAmelCase =None
if self.use_labels:
_lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
_lowerCAmelCase =TrOCRConfig(
vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , )
return (config, input_ids, attention_mask, lm_labels)
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[Any]:
_lowerCAmelCase =True
_lowerCAmelCase =TrOCRDecoder(config=__UpperCAmelCase ).to(__UpperCAmelCase ).eval()
_lowerCAmelCase =input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
_lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
_lowerCAmelCase =model(__UpperCAmelCase )
_lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 )
_lowerCAmelCase =outputs["""past_key_values"""]
# create hypothetical next token and extent to next_input_ids
_lowerCAmelCase =ids_tensor((2, 1) , config.vocab_size - 1 ) + 1
# append to next input_ids and
_lowerCAmelCase =torch.cat([input_ids, next_tokens] , dim=-1 )
_lowerCAmelCase =model(__UpperCAmelCase )["""last_hidden_state"""]
_lowerCAmelCase =model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )["""last_hidden_state"""]
# select random slice
_lowerCAmelCase =ids_tensor((1,) , output_from_past.shape[-1] ).item()
_lowerCAmelCase =output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
_lowerCAmelCase =output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 )
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =self.prepare_config_and_inputs()
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs
_lowerCAmelCase ={"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
lowerCamelCase = (TrOCRForCausalLM,) if is_torch_available() else ()
lowerCamelCase = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {}
lowerCamelCase = True
lowerCamelCase = False
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =TrOCRStandaloneDecoderModelTester(self , is_training=__UpperCAmelCase )
_lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> List[str]:
pass
def _lowerCAmelCase ( self ) -> List[Any]:
pass
def _lowerCAmelCase ( self ) -> Any:
pass
def _lowerCAmelCase ( self ) -> Optional[Any]:
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Tuple:
return
@unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :)
def _lowerCAmelCase ( self ) -> str:
pass
| 341 | 1 |
"""simple docstring"""
import math
import sys
def _lowerCamelCase(__UpperCamelCase ) -> str:
_lowerCAmelCase =""""""
try:
with open(__UpperCamelCase , """rb""" ) as binary_file:
_lowerCAmelCase =binary_file.read()
for dat in data:
_lowerCAmelCase =F'''{dat:08b}'''
result += curr_byte
return result
except OSError:
print("""File not accessible""" )
sys.exit()
def _lowerCamelCase(__UpperCamelCase ) -> str:
_lowerCAmelCase ={"""0""": """0""", """1""": """1"""}
_lowerCAmelCase , _lowerCAmelCase ="""""", """"""
_lowerCAmelCase =len(__UpperCamelCase )
for i in range(len(__UpperCamelCase ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
_lowerCAmelCase =lexicon[curr_string]
result += last_match_id
_lowerCAmelCase =last_match_id + """0"""
if math.loga(__UpperCamelCase ).is_integer():
_lowerCAmelCase ={}
for curr_key in list(__UpperCamelCase ):
_lowerCAmelCase =lexicon.pop(__UpperCamelCase )
_lowerCAmelCase =new_lex
_lowerCAmelCase =last_match_id + """1"""
index += 1
_lowerCAmelCase =""""""
return result
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> None:
_lowerCAmelCase =8
try:
with open(__UpperCamelCase , """wb""" ) as opened_file:
_lowerCAmelCase =[
to_write[i : i + byte_length]
for i in range(0 , len(__UpperCamelCase ) , __UpperCamelCase )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append("""10000000""" )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array[:-1]:
opened_file.write(int(__UpperCamelCase , 2 ).to_bytes(1 , byteorder="""big""" ) )
except OSError:
print("""File not accessible""" )
sys.exit()
def _lowerCamelCase(__UpperCamelCase ) -> str:
_lowerCAmelCase =0
for letter in data_bits:
if letter == "1":
break
counter += 1
_lowerCAmelCase =data_bits[counter:]
_lowerCAmelCase =data_bits[counter + 1 :]
return data_bits
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> None:
_lowerCAmelCase =read_file_binary(__UpperCamelCase )
_lowerCAmelCase =remove_prefix(__UpperCamelCase )
_lowerCAmelCase =decompress_data(__UpperCamelCase )
write_file_binary(__UpperCamelCase , __UpperCamelCase )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 341 |
"""simple docstring"""
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = JukeboxTokenizer
lowerCamelCase = {
'''artist''': '''Zac Brown Band''',
'''genres''': '''Country''',
'''lyrics''': '''I met a traveller from an antique land,
Who said "Two vast and trunkless legs of stone
Stand in the desert. . . . Near them, on the sand,
Half sunk a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,
Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them, and the heart that fed;
And on the pedestal, these words appear:
My name is Ozymandias, King of Kings;
Look on my Works, ye Mighty, and despair!
Nothing beside remains. Round the decay
Of that colossal Wreck, boundless and bare
The lone and level sands stretch far away
''',
}
@require_torch
def _lowerCAmelCase ( self ) -> str:
import torch
_lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" )
_lowerCAmelCase =tokenizer(**self.metas )["""input_ids"""]
# fmt: off
_lowerCAmelCase =[
torch.tensor([[
0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 10_69, 11]] ),
torch.tensor([[0, 0, 0, 10_69, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def _lowerCAmelCase ( self ) -> Any:
import torch
_lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" )
_lowerCAmelCase =tokenizer(**self.metas )["""input_ids"""]
# fmt: off
_lowerCAmelCase =[
torch.tensor([[
0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 341 | 1 |
"""simple docstring"""
__A = [
(1000, 'M'),
(900, 'CM'),
(500, 'D'),
(400, 'CD'),
(100, 'C'),
(90, 'XC'),
(50, 'L'),
(40, 'XL'),
(10, 'X'),
(9, 'IX'),
(5, 'V'),
(4, 'IV'),
(1, 'I'),
]
def _lowerCamelCase(__UpperCamelCase ) -> int:
_lowerCAmelCase ={"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000}
_lowerCAmelCase =0
_lowerCAmelCase =0
while place < len(__UpperCamelCase ):
if (place + 1 < len(__UpperCamelCase )) and (vals[roman[place]] < vals[roman[place + 1]]):
total += vals[roman[place + 1]] - vals[roman[place]]
place += 2
else:
total += vals[roman[place]]
place += 1
return total
def _lowerCamelCase(__UpperCamelCase ) -> str:
_lowerCAmelCase =[]
for arabic, roman in ROMAN:
((_lowerCAmelCase) , (_lowerCAmelCase)) =divmod(__UpperCamelCase , __UpperCamelCase )
result.append(roman * factor )
if number == 0:
break
return "".join(__UpperCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 341 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__A = logging.get_logger(__name__)
__A = '▁'
__A = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'}
__A = {
'vocab_file': {
'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model',
},
'monolingual_vocab_file': {
'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt',
},
}
__A = {'vinai/bartpho-syllable': 1024}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = VOCAB_FILES_NAMES
lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase = ['''input_ids''', '''attention_mask''']
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it
_lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
_lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , )
_lowerCAmelCase =vocab_file
_lowerCAmelCase =monolingual_vocab_file
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__UpperCAmelCase ) )
# Load the reduced vocab
# Keep order of special tokens for backward compatibility
_lowerCAmelCase ={}
_lowerCAmelCase =0
for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids:
_lowerCAmelCase =cnt
cnt += 1
with open(__UpperCAmelCase , """r""" , encoding="""utf-8""" ) as f:
for line in f.readlines():
_lowerCAmelCase =line.strip().split()[0]
_lowerCAmelCase =len(self.fairseq_tokens_to_ids )
if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids:
_lowerCAmelCase =len(self.fairseq_tokens_to_ids )
_lowerCAmelCase ={v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ) -> Dict:
_lowerCAmelCase =self.__dict__.copy()
_lowerCAmelCase =None
_lowerCAmelCase =self.sp_model.serialized_model_proto()
return state
def __setstate__( self , __UpperCAmelCase ) -> List[Any]:
_lowerCAmelCase =d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_lowerCAmelCase ={}
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
_lowerCAmelCase =[self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(__UpperCAmelCase )) + [1]
return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1]
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_lowerCAmelCase =[self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def _lowerCAmelCase ( self ) -> Union[str, Any]:
return len(self.fairseq_ids_to_tokens )
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
else:
return self.unk_token_id
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]:
return self.fairseq_ids_to_tokens[index]
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip()
return out_string
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCAmelCase , """wb""" ) as fi:
_lowerCAmelCase =self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase )
if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath(
__UpperCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ):
copyfile(self.monolingual_vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.monolingual_vocab_file ):
with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as fp:
for token in self.fairseq_tokens_to_ids:
if token not in self.all_special_tokens:
fp.write(f'''{str(__UpperCAmelCase )} \n''' )
return out_vocab_file, out_monolingual_vocab_file
| 341 | 1 |
"""simple docstring"""
import math
from collections.abc import Iterator
from itertools import takewhile
def _lowerCamelCase(__UpperCamelCase ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__UpperCamelCase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def _lowerCamelCase() -> Iterator[int]:
_lowerCAmelCase =2
while True:
if is_prime(__UpperCamelCase ):
yield num
num += 1
def _lowerCamelCase(__UpperCamelCase = 2000000 ) -> int:
return sum(takewhile(lambda __UpperCamelCase : x < n , prime_generator() ) )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 341 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =1
_lowerCAmelCase =3
_lowerCAmelCase =(32, 32)
_lowerCAmelCase =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCAmelCase )
return image
@property
def _lowerCAmelCase ( self ) -> Tuple:
torch.manual_seed(0 )
_lowerCAmelCase =UNetaDConditionModel(
block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__UpperCAmelCase , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , )
return model
@property
def _lowerCAmelCase ( self ) -> Tuple:
torch.manual_seed(0 )
_lowerCAmelCase =AutoencoderKL(
block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def _lowerCAmelCase ( self ) -> Optional[Any]:
torch.manual_seed(0 )
_lowerCAmelCase =CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , )
return CLIPTextModel(__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase =self.dummy_cond_unet_upscale
_lowerCAmelCase =DDPMScheduler()
_lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" )
_lowerCAmelCase =self.dummy_vae
_lowerCAmelCase =self.dummy_text_encoder
_lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
_lowerCAmelCase =StableDiffusionUpscalePipeline(
unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , )
_lowerCAmelCase =sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase ="""A painting of a squirrel eating a burger"""
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
_lowerCAmelCase =output.images
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=__UpperCAmelCase , )[0]
_lowerCAmelCase =image[0, -3:, -3:, -1]
_lowerCAmelCase =image_from_tuple[0, -3:, -3:, -1]
_lowerCAmelCase =low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
_lowerCAmelCase =np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase =self.dummy_cond_unet_upscale
_lowerCAmelCase =DDPMScheduler()
_lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" )
_lowerCAmelCase =self.dummy_vae
_lowerCAmelCase =self.dummy_text_encoder
_lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
_lowerCAmelCase =StableDiffusionUpscalePipeline(
unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , )
_lowerCAmelCase =sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase ="""A painting of a squirrel eating a burger"""
_lowerCAmelCase =sd_pipe(
2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
_lowerCAmelCase =output.images
assert image.shape[0] == 2
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
_lowerCAmelCase =output.images
assert image.shape[0] == 2
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =self.dummy_cond_unet_upscale
_lowerCAmelCase =DDPMScheduler()
_lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" )
_lowerCAmelCase =self.dummy_vae
_lowerCAmelCase =self.dummy_text_encoder
_lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
# put models in fp16, except vae as it overflows in fp16
_lowerCAmelCase =unet.half()
_lowerCAmelCase =text_encoder.half()
# make sure here that pndm scheduler skips prk
_lowerCAmelCase =StableDiffusionUpscalePipeline(
unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , )
_lowerCAmelCase =sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase ="""A painting of a squirrel eating a burger"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type="""np""" , ).images
_lowerCAmelCase =low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
@slow
@require_torch_gpu
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> int:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_lowerCAmelCase =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"""
"""/upsampled_cat.npy""" )
_lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler"""
_lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing()
_lowerCAmelCase ="""a cat sitting on a park bench"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , )
_lowerCAmelCase =output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 1e-3
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_lowerCAmelCase =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"""
"""/upsampled_cat_fp16.npy""" )
_lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler"""
_lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(
__UpperCAmelCase , torch_dtype=torch.floataa , )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing()
_lowerCAmelCase ="""a cat sitting on a park bench"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , )
_lowerCAmelCase =output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 5e-1
def _lowerCAmelCase ( self ) -> Optional[Any]:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_lowerCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler"""
_lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(
__UpperCAmelCase , torch_dtype=torch.floataa , )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
_lowerCAmelCase ="""a cat sitting on a park bench"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , output_type="""np""" , )
_lowerCAmelCase =torch.cuda.max_memory_allocated()
# make sure that less than 2.9 GB is allocated
assert mem_bytes < 2.9 * 10**9
| 341 | 1 |
"""simple docstring"""
import inspect
import os
import unittest
from dataclasses import dataclass
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs
from accelerate.state import AcceleratorState
from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu
from accelerate.utils import KwargsHandler
@dataclass
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = 0
lowerCamelCase = False
lowerCamelCase = 3.0
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> Optional[Any]:
# If no defaults are changed, `to_kwargs` returns an empty dict.
self.assertDictEqual(MockClass().to_kwargs() , {} )
self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"""a""": 2} )
self.assertDictEqual(MockClass(a=2 , b=__UpperCAmelCase ).to_kwargs() , {"""a""": 2, """b""": True} )
self.assertDictEqual(MockClass(a=2 , c=2.2_5 ).to_kwargs() , {"""a""": 2, """c""": 2.2_5} )
@require_cuda
def _lowerCAmelCase ( self ) -> int:
# If no defaults are changed, `to_kwargs` returns an empty dict.
_lowerCAmelCase =GradScalerKwargs(init_scale=10_24 , growth_factor=2 )
AcceleratorState._reset_state()
_lowerCAmelCase =Accelerator(mixed_precision="""fp16""" , kwargs_handlers=[scaler_handler] )
print(accelerator.use_fpaa )
_lowerCAmelCase =accelerator.scaler
# Check the kwargs have been applied
self.assertEqual(scaler._init_scale , 1_0_2_4.0 )
self.assertEqual(scaler._growth_factor , 2.0 )
# Check the other values are at the default
self.assertEqual(scaler._backoff_factor , 0.5 )
self.assertEqual(scaler._growth_interval , 20_00 )
self.assertEqual(scaler._enabled , __UpperCAmelCase )
@require_multi_gpu
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase =["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )]
execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() )
if __name__ == "__main__":
__A = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True)
__A = Accelerator(kwargs_handlers=[ddp_scaler])
__A = torch.nn.Linear(100, 200)
__A = accelerator.prepare(model)
# Check the values changed in kwargs
__A = ''
__A = model.bucket_bytes_cap // (1024 * 1024)
if observed_bucket_cap_map != 15:
error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n"
if model.find_unused_parameters is not True:
error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n"
# Check the values of the defaults
if model.dim != 0:
error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n"
if model.broadcast_buffers is not True:
error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n"
if model.gradient_as_bucket_view is not False:
error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n"
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 341 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json',
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = '''cvt'''
def __init__( self , __UpperCAmelCase=3 , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[64, 1_92, 3_84] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 10] , __UpperCAmelCase=[4.0, 4.0, 4.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.1] , __UpperCAmelCase=[True, True, True] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , __UpperCAmelCase=[3, 3, 3] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-12 , **__UpperCAmelCase , ) -> Optional[Any]:
super().__init__(**__UpperCAmelCase )
_lowerCAmelCase =num_channels
_lowerCAmelCase =patch_sizes
_lowerCAmelCase =patch_stride
_lowerCAmelCase =patch_padding
_lowerCAmelCase =embed_dim
_lowerCAmelCase =num_heads
_lowerCAmelCase =depth
_lowerCAmelCase =mlp_ratio
_lowerCAmelCase =attention_drop_rate
_lowerCAmelCase =drop_rate
_lowerCAmelCase =drop_path_rate
_lowerCAmelCase =qkv_bias
_lowerCAmelCase =cls_token
_lowerCAmelCase =qkv_projection_method
_lowerCAmelCase =kernel_qkv
_lowerCAmelCase =padding_kv
_lowerCAmelCase =stride_kv
_lowerCAmelCase =padding_q
_lowerCAmelCase =stride_q
_lowerCAmelCase =initializer_range
_lowerCAmelCase =layer_norm_eps
| 341 | 1 |
"""simple docstring"""
import argparse
from collections import defaultdict
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[str]:
_lowerCAmelCase =F'''{file}_{class_name}_{test_name}'''
done_test[_id] += 1
with open(__UpperCamelCase , """r""" ) as f:
_lowerCAmelCase =f.readlines()
_lowerCAmelCase =F'''class {class_name}('''
_lowerCAmelCase =F'''{4 * ' '}def {test_name}('''
_lowerCAmelCase =F'''{8 * ' '}{correct_line.split()[0]}'''
_lowerCAmelCase =F'''{16 * ' '}{correct_line.split()[0]}'''
_lowerCAmelCase =False
_lowerCAmelCase =False
_lowerCAmelCase =False
_lowerCAmelCase =False
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =[]
for line in lines:
if line.startswith(__UpperCamelCase ):
_lowerCAmelCase =True
elif in_class and line.startswith(__UpperCamelCase ):
_lowerCAmelCase =True
elif in_class and in_func and (line.startswith(__UpperCamelCase ) or line.startswith(__UpperCamelCase )):
_lowerCAmelCase =len(line.split(correct_line.split()[0] )[0] )
count += 1
if count == done_test[_id]:
_lowerCAmelCase =True
if in_class and in_func and in_line:
if ")" not in line:
continue
else:
_lowerCAmelCase =True
if in_class and in_func and in_line and insert_line:
new_lines.append(F'''{spaces * ' '}{correct_line}''' )
_lowerCAmelCase =_lowerCAmelCase =_lowerCAmelCase =_lowerCAmelCase =False
else:
new_lines.append(__UpperCamelCase )
with open(__UpperCamelCase , """w""" ) as f:
for line in new_lines:
f.write(__UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=None ) -> Dict:
if fail is not None:
with open(__UpperCamelCase , """r""" ) as f:
_lowerCAmelCase ={l.strip() for l in f.readlines()}
else:
_lowerCAmelCase =None
with open(__UpperCamelCase , """r""" ) as f:
_lowerCAmelCase =f.readlines()
_lowerCAmelCase =defaultdict(__UpperCamelCase )
for line in correct_lines:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =line.split(""";""" )
if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures:
overwrite_file(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument('--correct_filename', help='filename of tests with expected result')
parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None)
__A = parser.parse_args()
main(args.correct_filename, args.fail_filename)
| 341 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = ['''image_processor''', '''tokenizer''']
lowerCamelCase = '''CLIPImageProcessor'''
lowerCamelCase = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''')
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase =None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __UpperCAmelCase , )
_lowerCAmelCase =kwargs.pop("""feature_extractor""" )
_lowerCAmelCase =image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Optional[Any]:
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
_lowerCAmelCase =self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if images is not None:
_lowerCAmelCase =self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is not None and images is not None:
_lowerCAmelCase =image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase )
def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
@property
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =self.tokenizer.model_input_names
_lowerCAmelCase =self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 341 | 1 |
"""simple docstring"""
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase =self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__UpperCAmelCase , """width_multiplier""" ) )
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=64 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase="swish" , __UpperCAmelCase=3 , __UpperCAmelCase=32 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=None , __UpperCAmelCase=0.2_5 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , ) -> Optional[Any]:
_lowerCAmelCase =parent
_lowerCAmelCase =batch_size
_lowerCAmelCase =image_size
_lowerCAmelCase =patch_size
_lowerCAmelCase =num_channels
_lowerCAmelCase =make_divisible(5_12 * width_multiplier , divisor=8 )
_lowerCAmelCase =hidden_act
_lowerCAmelCase =conv_kernel_size
_lowerCAmelCase =output_stride
_lowerCAmelCase =classifier_dropout_prob
_lowerCAmelCase =use_labels
_lowerCAmelCase =is_training
_lowerCAmelCase =num_labels
_lowerCAmelCase =initializer_range
_lowerCAmelCase =scope
_lowerCAmelCase =width_multiplier
_lowerCAmelCase =ffn_dropout
_lowerCAmelCase =attn_dropout
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCAmelCase =None
_lowerCAmelCase =None
if self.use_labels:
_lowerCAmelCase =ids_tensor([self.batch_size] , self.num_labels )
_lowerCAmelCase =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
_lowerCAmelCase =self.get_config()
return config, pixel_values, labels, pixel_labels
def _lowerCAmelCase ( self ) -> str:
return MobileViTVaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
_lowerCAmelCase =MobileViTVaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_lowerCAmelCase =model(__UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
_lowerCAmelCase =self.num_labels
_lowerCAmelCase =MobileViTVaForImageClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_lowerCAmelCase =model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
_lowerCAmelCase =self.num_labels
_lowerCAmelCase =MobileViTVaForSemanticSegmentation(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_lowerCAmelCase =model(__UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
_lowerCAmelCase =model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =self.prepare_config_and_inputs()
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs
_lowerCAmelCase ={"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowerCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = (
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
lowerCamelCase = (
{
'''feature-extraction''': MobileViTVaModel,
'''image-classification''': MobileViTVaForImageClassification,
'''image-segmentation''': MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
def _lowerCAmelCase ( self ) -> Optional[int]:
_lowerCAmelCase =MobileViTVaModelTester(self )
_lowerCAmelCase =MobileViTVaConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> int:
self.config_tester.run_common_tests()
@unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" )
def _lowerCAmelCase ( self ) -> str:
pass
@unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" )
def _lowerCAmelCase ( self ) -> Optional[Any]:
pass
@unittest.skip(reason="""MobileViTV2 does not output attentions""" )
def _lowerCAmelCase ( self ) -> List[Any]:
pass
@require_torch_multi_gpu
@unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" )
def _lowerCAmelCase ( self ) -> List[Any]:
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def _lowerCAmelCase ( self ) -> str:
pass
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase =model_class(__UpperCAmelCase )
_lowerCAmelCase =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCAmelCase =[*signature.parameters.keys()]
_lowerCAmelCase =["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> str:
def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
_lowerCAmelCase =model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
_lowerCAmelCase =model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
_lowerCAmelCase =outputs.hidden_states
_lowerCAmelCase =5
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
_lowerCAmelCase =2
for i in range(len(__UpperCAmelCase ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase =True
check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCAmelCase =True
check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> Union[str, Any]:
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase =MobileViTVaModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def _lowerCamelCase() -> Optional[Any]:
_lowerCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _lowerCAmelCase ( self ) -> Tuple:
return (
MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" )
if is_vision_available()
else None
)
@slow
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to(
__UpperCAmelCase )
_lowerCAmelCase =self.default_image_processor
_lowerCAmelCase =prepare_img()
_lowerCAmelCase =image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
_lowerCAmelCase =model(**__UpperCAmelCase )
# verify the logits
_lowerCAmelCase =torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , __UpperCAmelCase )
_lowerCAmelCase =torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) )
@slow
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
_lowerCAmelCase =model.to(__UpperCAmelCase )
_lowerCAmelCase =MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
_lowerCAmelCase =prepare_img()
_lowerCAmelCase =image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
_lowerCAmelCase =model(**__UpperCAmelCase )
_lowerCAmelCase =outputs.logits
# verify the logits
_lowerCAmelCase =torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape , __UpperCAmelCase )
_lowerCAmelCase =torch.tensor(
[
[[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]],
[[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]],
[[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]],
] , device=__UpperCAmelCase , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1e-4 ) )
@slow
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase =MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
_lowerCAmelCase =model.to(__UpperCAmelCase )
_lowerCAmelCase =MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
_lowerCAmelCase =prepare_img()
_lowerCAmelCase =image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
_lowerCAmelCase =model(**__UpperCAmelCase )
_lowerCAmelCase =outputs.logits.detach().cpu()
_lowerCAmelCase =image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(50, 60)] )
_lowerCAmelCase =torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
_lowerCAmelCase =image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase )
_lowerCAmelCase =torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
| 341 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__A = {
'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'],
'tokenization_perceiver': ['PerceiverTokenizer'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ['PerceiverFeatureExtractor']
__A = ['PerceiverImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PerceiverForImageClassificationConvProcessing',
'PerceiverForImageClassificationFourier',
'PerceiverForImageClassificationLearned',
'PerceiverForMaskedLM',
'PerceiverForMultimodalAutoencoding',
'PerceiverForOpticalFlow',
'PerceiverForSequenceClassification',
'PerceiverLayer',
'PerceiverModel',
'PerceiverPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 1 |
"""simple docstring"""
import argparse
import json
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
VideoMAEConfig,
VideoMAEForPreTraining,
VideoMAEForVideoClassification,
VideoMAEImageProcessor,
)
def _lowerCamelCase(__UpperCamelCase ) -> Tuple:
_lowerCAmelCase =VideoMAEConfig()
set_architecture_configs(__UpperCamelCase , __UpperCamelCase )
if "finetuned" not in model_name:
_lowerCAmelCase =False
if "finetuned" in model_name:
_lowerCAmelCase ="""huggingface/label-files"""
if "kinetics" in model_name:
_lowerCAmelCase =400
_lowerCAmelCase ="""kinetics400-id2label.json"""
elif "ssv2" in model_name:
_lowerCAmelCase =174
_lowerCAmelCase ="""something-something-v2-id2label.json"""
else:
raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" )
_lowerCAmelCase =json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) , """r""" ) )
_lowerCAmelCase ={int(__UpperCamelCase ): v for k, v in idalabel.items()}
_lowerCAmelCase =idalabel
_lowerCAmelCase ={v: k for k, v in idalabel.items()}
return config
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> List[Any]:
if "small" in model_name:
_lowerCAmelCase =384
_lowerCAmelCase =1536
_lowerCAmelCase =12
_lowerCAmelCase =16
_lowerCAmelCase =12
_lowerCAmelCase =3
_lowerCAmelCase =192
_lowerCAmelCase =768
elif "large" in model_name:
_lowerCAmelCase =1024
_lowerCAmelCase =4096
_lowerCAmelCase =24
_lowerCAmelCase =16
_lowerCAmelCase =12
_lowerCAmelCase =8
_lowerCAmelCase =512
_lowerCAmelCase =2048
elif "huge" in model_name:
_lowerCAmelCase =1280
_lowerCAmelCase =5120
_lowerCAmelCase =32
_lowerCAmelCase =16
_lowerCAmelCase =12
_lowerCAmelCase =8
_lowerCAmelCase =640
_lowerCAmelCase =2560
elif "base" not in model_name:
raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" )
def _lowerCamelCase(__UpperCamelCase ) -> Union[str, Any]:
if "encoder." in name:
_lowerCAmelCase =name.replace("""encoder.""" , """""" )
if "cls_token" in name:
_lowerCAmelCase =name.replace("""cls_token""" , """videomae.embeddings.cls_token""" )
if "decoder_pos_embed" in name:
_lowerCAmelCase =name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" )
if "pos_embed" in name and "decoder" not in name:
_lowerCAmelCase =name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" )
if "patch_embed.proj" in name:
_lowerCAmelCase =name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
_lowerCAmelCase =name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" )
if "decoder.blocks" in name:
_lowerCAmelCase =name.replace("""decoder.blocks""" , """decoder.decoder_layers""" )
if "blocks" in name:
_lowerCAmelCase =name.replace("""blocks""" , """videomae.encoder.layer""" )
if "attn.proj" in name:
_lowerCAmelCase =name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name and "bias" not in name:
_lowerCAmelCase =name.replace("""attn""" , """attention.self""" )
if "attn" in name:
_lowerCAmelCase =name.replace("""attn""" , """attention.attention""" )
if "norm1" in name:
_lowerCAmelCase =name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
_lowerCAmelCase =name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
_lowerCAmelCase =name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
_lowerCAmelCase =name.replace("""mlp.fc2""" , """output.dense""" )
if "decoder_embed" in name:
_lowerCAmelCase =name.replace("""decoder_embed""" , """decoder.decoder_embed""" )
if "decoder_norm" in name:
_lowerCAmelCase =name.replace("""decoder_norm""" , """decoder.decoder_norm""" )
if "decoder_pred" in name:
_lowerCAmelCase =name.replace("""decoder_pred""" , """decoder.decoder_pred""" )
if "norm.weight" in name and "decoder" not in name and "fc" not in name:
_lowerCAmelCase =name.replace("""norm.weight""" , """videomae.layernorm.weight""" )
if "norm.bias" in name and "decoder" not in name and "fc" not in name:
_lowerCAmelCase =name.replace("""norm.bias""" , """videomae.layernorm.bias""" )
if "head" in name and "decoder" not in name:
_lowerCAmelCase =name.replace("""head""" , """classifier""" )
return name
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> str:
for key in orig_state_dict.copy().keys():
_lowerCAmelCase =orig_state_dict.pop(__UpperCamelCase )
if key.startswith("""encoder.""" ):
_lowerCAmelCase =key.replace("""encoder.""" , """""" )
if "qkv" in key:
_lowerCAmelCase =key.split(""".""" )
if key.startswith("""decoder.blocks""" ):
_lowerCAmelCase =config.decoder_hidden_size
_lowerCAmelCase =int(key_split[2] )
_lowerCAmelCase ="""decoder.decoder_layers."""
if "weight" in key:
_lowerCAmelCase =val[:dim, :]
_lowerCAmelCase =val[dim : dim * 2, :]
_lowerCAmelCase =val[-dim:, :]
else:
_lowerCAmelCase =config.hidden_size
_lowerCAmelCase =int(key_split[1] )
_lowerCAmelCase ="""videomae.encoder.layer."""
if "weight" in key:
_lowerCAmelCase =val[:dim, :]
_lowerCAmelCase =val[dim : dim * 2, :]
_lowerCAmelCase =val[-dim:, :]
else:
_lowerCAmelCase =val
return orig_state_dict
def _lowerCamelCase() -> Tuple:
_lowerCAmelCase =hf_hub_download(
repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" )
_lowerCAmelCase =np.load(__UpperCamelCase )
return list(__UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Any:
_lowerCAmelCase =get_videomae_config(__UpperCamelCase )
if "finetuned" in model_name:
_lowerCAmelCase =VideoMAEForVideoClassification(__UpperCamelCase )
else:
_lowerCAmelCase =VideoMAEForPreTraining(__UpperCamelCase )
# download original checkpoint, hosted on Google Drive
_lowerCAmelCase ="""pytorch_model.bin"""
gdown.cached_download(__UpperCamelCase , __UpperCamelCase , quiet=__UpperCamelCase )
_lowerCAmelCase =torch.load(__UpperCamelCase , map_location="""cpu""" )
if "model" in files:
_lowerCAmelCase =files["""model"""]
else:
_lowerCAmelCase =files["""module"""]
_lowerCAmelCase =convert_state_dict(__UpperCamelCase , __UpperCamelCase )
model.load_state_dict(__UpperCamelCase )
model.eval()
# verify model on basic input
_lowerCAmelCase =VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
_lowerCAmelCase =prepare_video()
_lowerCAmelCase =image_processor(__UpperCamelCase , return_tensors="""pt""" )
if "finetuned" not in model_name:
_lowerCAmelCase =hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" )
_lowerCAmelCase =torch.load(__UpperCamelCase )
_lowerCAmelCase =model(**__UpperCamelCase )
_lowerCAmelCase =outputs.logits
_lowerCAmelCase =[
"""videomae-small-finetuned-kinetics""",
"""videomae-small-finetuned-ssv2""",
# Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600)
"""videomae-base-short""",
"""videomae-base-short-finetuned-kinetics""",
"""videomae-base""",
"""videomae-base-finetuned-kinetics""",
"""videomae-large""",
"""videomae-large-finetuned-kinetics""",
"""videomae-huge-finetuned-kinetics""",
# Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400)
"""videomae-base-short-ssv2""",
"""videomae-base-short-finetuned-ssv2""",
"""videomae-base-ssv2""",
"""videomae-base-finetuned-ssv2""",
]
# NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5]
if model_name == "videomae-small-finetuned-kinetics":
_lowerCAmelCase =torch.Size([1, 400] )
_lowerCAmelCase =torch.tensor([-0.92_91, -0.40_61, -0.93_07] )
elif model_name == "videomae-small-finetuned-ssv2":
_lowerCAmelCase =torch.Size([1, 174] )
_lowerCAmelCase =torch.tensor([0.26_71, -0.46_89, -0.82_35] )
elif model_name == "videomae-base":
_lowerCAmelCase =torch.Size([1, 1408, 1536] )
_lowerCAmelCase =torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] )
elif model_name == "videomae-base-short":
_lowerCAmelCase =torch.Size([1, 1408, 1536] )
_lowerCAmelCase =torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] )
# we verified the loss both for normalized and unnormalized targets for this one
_lowerCAmelCase =torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] )
elif model_name == "videomae-large":
_lowerCAmelCase =torch.Size([1, 1408, 1536] )
_lowerCAmelCase =torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] )
elif model_name == "videomae-large-finetuned-kinetics":
_lowerCAmelCase =torch.Size([1, 400] )
_lowerCAmelCase =torch.tensor([0.07_71, 0.00_11, -0.36_25] )
elif model_name == "videomae-huge-finetuned-kinetics":
_lowerCAmelCase =torch.Size([1, 400] )
_lowerCAmelCase =torch.tensor([0.24_33, 0.16_32, -0.48_94] )
elif model_name == "videomae-base-short-finetuned-kinetics":
_lowerCAmelCase =torch.Size([1, 400] )
_lowerCAmelCase =torch.tensor([0.65_88, 0.09_90, -0.24_93] )
elif model_name == "videomae-base-finetuned-kinetics":
_lowerCAmelCase =torch.Size([1, 400] )
_lowerCAmelCase =torch.tensor([0.36_69, -0.06_88, -0.24_21] )
elif model_name == "videomae-base-short-ssv2":
_lowerCAmelCase =torch.Size([1, 1408, 1536] )
_lowerCAmelCase =torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] )
elif model_name == "videomae-base-short-finetuned-ssv2":
_lowerCAmelCase =torch.Size([1, 174] )
_lowerCAmelCase =torch.tensor([-0.05_37, -0.15_39, -0.32_66] )
elif model_name == "videomae-base-ssv2":
_lowerCAmelCase =torch.Size([1, 1408, 1536] )
_lowerCAmelCase =torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] )
elif model_name == "videomae-base-finetuned-ssv2":
_lowerCAmelCase =torch.Size([1, 174] )
_lowerCAmelCase =torch.tensor([0.19_61, -0.83_37, -0.63_89] )
else:
raise ValueError(F'''Model name not supported. Should be one of {model_names}''' )
# verify logits
assert logits.shape == expected_shape
if "finetuned" in model_name:
assert torch.allclose(logits[0, :3] , __UpperCamelCase , atol=1E-4 )
else:
print("""Logits:""" , logits[0, :3, :3] )
assert torch.allclose(logits[0, :3, :3] , __UpperCamelCase , atol=1E-4 )
print("""Logits ok!""" )
# verify loss, if applicable
if model_name == "videomae-base-short":
_lowerCAmelCase =outputs.loss
assert torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-4 )
print("""Loss ok!""" )
if pytorch_dump_folder_path is not None:
print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__UpperCamelCase )
model.save_pretrained(__UpperCamelCase )
if push_to_hub:
print("""Pushing to the hub...""" )
model.push_to_hub(__UpperCamelCase , organization="""nielsr""" )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&export=download&confirm=t&uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4',
type=str,
help=(
'URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct'
' download link.'
),
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='/Users/nielsrogge/Documents/VideoMAE/Test',
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument('--model_name', default='videomae-base', type=str, help='Name of the model.')
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
__A = parser.parse_args()
convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 341 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A = {
'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST',
'Swinv2ForImageClassification',
'Swinv2ForMaskedImageModeling',
'Swinv2Model',
'Swinv2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 1 |
"""simple docstring"""
from . import (
albert,
align,
altclip,
audio_spectrogram_transformer,
auto,
autoformer,
bark,
bart,
barthez,
bartpho,
beit,
bert,
bert_generation,
bert_japanese,
bertweet,
big_bird,
bigbird_pegasus,
biogpt,
bit,
blenderbot,
blenderbot_small,
blip,
blip_a,
bloom,
bridgetower,
byta,
camembert,
canine,
chinese_clip,
clap,
clip,
clipseg,
codegen,
conditional_detr,
convbert,
convnext,
convnextva,
cpm,
cpmant,
ctrl,
cvt,
dataavec,
deberta,
deberta_va,
decision_transformer,
deformable_detr,
deit,
deprecated,
deta,
detr,
dialogpt,
dinat,
distilbert,
dit,
donut,
dpr,
dpt,
efficientformer,
efficientnet,
electra,
encodec,
encoder_decoder,
ernie,
ernie_m,
esm,
falcon,
flaubert,
flava,
fnet,
focalnet,
fsmt,
funnel,
git,
glpn,
gpta,
gpt_bigcode,
gpt_neo,
gpt_neox,
gpt_neox_japanese,
gpt_swa,
gptj,
gptsan_japanese,
graphormer,
groupvit,
herbert,
hubert,
ibert,
imagegpt,
informer,
instructblip,
jukebox,
layoutlm,
layoutlmva,
layoutlmva,
layoutxlm,
led,
levit,
lilt,
llama,
longformer,
longta,
luke,
lxmert,
mam_aaa,
marian,
markuplm,
maskaformer,
maskformer,
mbart,
mbartaa,
mega,
megatron_bert,
megatron_gpta,
mgp_str,
mluke,
mobilebert,
mobilenet_va,
mobilenet_va,
mobilevit,
mobilevitva,
mpnet,
mra,
mta,
musicgen,
mvp,
nat,
nezha,
nllb,
nllb_moe,
nystromformer,
oneformer,
open_llama,
openai,
opt,
owlvit,
pegasus,
pegasus_x,
perceiver,
phobert,
pixastruct,
plbart,
poolformer,
prophetnet,
qdqbert,
rag,
realm,
reformer,
regnet,
rembert,
resnet,
roberta,
roberta_prelayernorm,
roc_bert,
roformer,
rwkv,
sam,
segformer,
sew,
sew_d,
speech_encoder_decoder,
speech_to_text,
speech_to_text_a,
speechta,
splinter,
squeezebert,
swiftformer,
swin,
swinasr,
swinva,
switch_transformers,
ta,
table_transformer,
tapas,
time_series_transformer,
timesformer,
timm_backbone,
transfo_xl,
trocr,
tvlt,
umta,
unispeech,
unispeech_sat,
upernet,
videomae,
vilt,
vision_encoder_decoder,
vision_text_dual_encoder,
visual_bert,
vit,
vit_hybrid,
vit_mae,
vit_msn,
vivit,
wavaveca,
wavaveca_conformer,
wavaveca_phoneme,
wavaveca_with_lm,
wavlm,
whisper,
x_clip,
xglm,
xlm,
xlm_prophetnet,
xlm_roberta,
xlm_roberta_xl,
xlnet,
xmod,
yolos,
yoso,
)
| 341 |
"""simple docstring"""
import argparse
import json
import torch
from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=1 ) -> Tuple:
if n_shave_prefix_segments >= 0:
return ".".join(path.split(""".""" )[n_shave_prefix_segments:] )
else:
return ".".join(path.split(""".""" )[:n_shave_prefix_segments] )
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=0 ) -> List[str]:
_lowerCAmelCase =[]
for old_item in old_list:
_lowerCAmelCase =old_item.replace("""in_layers.0""" , """norm1""" )
_lowerCAmelCase =new_item.replace("""in_layers.2""" , """conv1""" )
_lowerCAmelCase =new_item.replace("""out_layers.0""" , """norm2""" )
_lowerCAmelCase =new_item.replace("""out_layers.3""" , """conv2""" )
_lowerCAmelCase =new_item.replace("""emb_layers.1""" , """time_emb_proj""" )
_lowerCAmelCase =new_item.replace("""skip_connection""" , """conv_shortcut""" )
_lowerCAmelCase =shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=0 ) -> Tuple:
_lowerCAmelCase =[]
for old_item in old_list:
_lowerCAmelCase =old_item
_lowerCAmelCase =new_item.replace("""norm.weight""" , """group_norm.weight""" )
_lowerCAmelCase =new_item.replace("""norm.bias""" , """group_norm.bias""" )
_lowerCAmelCase =new_item.replace("""proj_out.weight""" , """proj_attn.weight""" )
_lowerCAmelCase =new_item.replace("""proj_out.bias""" , """proj_attn.bias""" )
_lowerCAmelCase =shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None ) -> Optional[int]:
assert isinstance(__UpperCamelCase , __UpperCamelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
_lowerCAmelCase =old_checkpoint[path]
_lowerCAmelCase =old_tensor.shape[0] // 3
_lowerCAmelCase =(-1, channels) if len(old_tensor.shape ) == 3 else (-1)
_lowerCAmelCase =old_tensor.shape[0] // config["""num_head_channels"""] // 3
_lowerCAmelCase =old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =old_tensor.split(channels // num_heads , dim=1 )
_lowerCAmelCase =query.reshape(__UpperCamelCase )
_lowerCAmelCase =key.reshape(__UpperCamelCase )
_lowerCAmelCase =value.reshape(__UpperCamelCase )
for path in paths:
_lowerCAmelCase =path["""new"""]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
_lowerCAmelCase =new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" )
_lowerCAmelCase =new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" )
_lowerCAmelCase =new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" )
if additional_replacements is not None:
for replacement in additional_replacements:
_lowerCAmelCase =new_path.replace(replacement["""old"""] , replacement["""new"""] )
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
_lowerCAmelCase =old_checkpoint[path["""old"""]][:, :, 0]
else:
_lowerCAmelCase =old_checkpoint[path["""old"""]]
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Optional[Any]:
_lowerCAmelCase ={}
_lowerCAmelCase =checkpoint["""time_embed.0.weight"""]
_lowerCAmelCase =checkpoint["""time_embed.0.bias"""]
_lowerCAmelCase =checkpoint["""time_embed.2.weight"""]
_lowerCAmelCase =checkpoint["""time_embed.2.bias"""]
_lowerCAmelCase =checkpoint["""input_blocks.0.0.weight"""]
_lowerCAmelCase =checkpoint["""input_blocks.0.0.bias"""]
_lowerCAmelCase =checkpoint["""out.0.weight"""]
_lowerCAmelCase =checkpoint["""out.0.bias"""]
_lowerCAmelCase =checkpoint["""out.2.weight"""]
_lowerCAmelCase =checkpoint["""out.2.bias"""]
# Retrieves the keys for the input blocks only
_lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} )
_lowerCAmelCase ={
layer_id: [key for key in checkpoint if F'''input_blocks.{layer_id}''' in key]
for layer_id in range(__UpperCamelCase )
}
# Retrieves the keys for the middle blocks only
_lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} )
_lowerCAmelCase ={
layer_id: [key for key in checkpoint if F'''middle_block.{layer_id}''' in key]
for layer_id in range(__UpperCamelCase )
}
# Retrieves the keys for the output blocks only
_lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} )
_lowerCAmelCase ={
layer_id: [key for key in checkpoint if F'''output_blocks.{layer_id}''' in key]
for layer_id in range(__UpperCamelCase )
}
for i in range(1 , __UpperCamelCase ):
_lowerCAmelCase =(i - 1) // (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =(i - 1) % (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =[key for key in input_blocks[i] if F'''input_blocks.{i}.0''' in key]
_lowerCAmelCase =[key for key in input_blocks[i] if F'''input_blocks.{i}.1''' in key]
if F'''input_blocks.{i}.0.op.weight''' in checkpoint:
_lowerCAmelCase =checkpoint[
F'''input_blocks.{i}.0.op.weight'''
]
_lowerCAmelCase =checkpoint[
F'''input_blocks.{i}.0.op.bias'''
]
continue
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
_lowerCAmelCase ={"""old""": F'''input_blocks.{i}.0''', """new""": F'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''}
_lowerCAmelCase ={"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path, resnet_op] , config=__UpperCamelCase )
if len(__UpperCamelCase ):
_lowerCAmelCase =renew_attention_paths(__UpperCamelCase )
_lowerCAmelCase ={
"""old""": F'''input_blocks.{i}.1''',
"""new""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}''',
}
_lowerCAmelCase ={
F'''input_blocks.{i}.1.qkv.bias''': {
"""key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''',
"""query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''',
"""value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''',
},
F'''input_blocks.{i}.1.qkv.weight''': {
"""key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''',
"""query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''',
"""value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''',
},
}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase , )
_lowerCAmelCase =middle_blocks[0]
_lowerCAmelCase =middle_blocks[1]
_lowerCAmelCase =middle_blocks[2]
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase )
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase )
_lowerCAmelCase =renew_attention_paths(__UpperCamelCase )
_lowerCAmelCase ={
"""middle_block.1.qkv.bias""": {
"""key""": """mid_block.attentions.0.key.bias""",
"""query""": """mid_block.attentions.0.query.bias""",
"""value""": """mid_block.attentions.0.value.bias""",
},
"""middle_block.1.qkv.weight""": {
"""key""": """mid_block.attentions.0.key.weight""",
"""query""": """mid_block.attentions.0.query.weight""",
"""value""": """mid_block.attentions.0.value.weight""",
},
}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase )
for i in range(__UpperCamelCase ):
_lowerCAmelCase =i // (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =i % (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =[shave_segments(__UpperCamelCase , 2 ) for name in output_blocks[i]]
_lowerCAmelCase ={}
for layer in output_block_layers:
_lowerCAmelCase , _lowerCAmelCase =layer.split(""".""" )[0], shave_segments(__UpperCamelCase , 1 )
if layer_id in output_block_list:
output_block_list[layer_id].append(__UpperCamelCase )
else:
_lowerCAmelCase =[layer_name]
if len(__UpperCamelCase ) > 1:
_lowerCAmelCase =[key for key in output_blocks[i] if F'''output_blocks.{i}.0''' in key]
_lowerCAmelCase =[key for key in output_blocks[i] if F'''output_blocks.{i}.1''' in key]
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
_lowerCAmelCase ={"""old""": F'''output_blocks.{i}.0''', """new""": F'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''}
assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase )
if ["conv.weight", "conv.bias"] in output_block_list.values():
_lowerCAmelCase =list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] )
_lowerCAmelCase =checkpoint[
F'''output_blocks.{i}.{index}.conv.weight'''
]
_lowerCAmelCase =checkpoint[
F'''output_blocks.{i}.{index}.conv.bias'''
]
# Clear attentions as they have been attributed above.
if len(__UpperCamelCase ) == 2:
_lowerCAmelCase =[]
if len(__UpperCamelCase ):
_lowerCAmelCase =renew_attention_paths(__UpperCamelCase )
_lowerCAmelCase ={
"""old""": F'''output_blocks.{i}.1''',
"""new""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}''',
}
_lowerCAmelCase ={
F'''output_blocks.{i}.1.qkv.bias''': {
"""key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''',
"""query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''',
"""value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''',
},
F'''output_blocks.{i}.1.qkv.weight''': {
"""key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''',
"""query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''',
"""value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''',
},
}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=__UpperCamelCase , )
else:
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase , n_shave_prefix_segments=1 )
for path in resnet_0_paths:
_lowerCAmelCase =""".""".join(["""output_blocks""", str(__UpperCamelCase ), path["""old"""]] )
_lowerCAmelCase =""".""".join(["""up_blocks""", str(__UpperCamelCase ), """resnets""", str(__UpperCamelCase ), path["""new"""]] )
_lowerCAmelCase =checkpoint[old_path]
return new_checkpoint
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the architecture.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
__A = parser.parse_args()
__A = torch.load(args.checkpoint_path)
with open(args.config_file) as f:
__A = json.loads(f.read())
__A = convert_ldm_checkpoint(checkpoint, config)
if "ldm" in config:
del config["ldm"]
__A = UNetaDModel(**config)
model.load_state_dict(converted_checkpoint)
try:
__A = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1]))
__A = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1]))
__A = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae)
pipe.save_pretrained(args.dump_path)
except: # noqa: E722
model.save_pretrained(args.dump_path)
| 341 | 1 |
"""simple docstring"""
import argparse
import re
from flax.traverse_util import flatten_dict, unflatten_dict
from tax import checkpoints
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
from transformers.utils import logging
logging.set_verbosity_info()
# should not include what is already done by the `from_pt` argument
__A = {
'/attention/': '/0/SelfAttention/',
'/self_attention/': '/0/SelfAttention/',
'/encoder_decoder_attention/': '/1/EncDecAttention/',
'value': 'v',
'query': 'q',
'key': 'k',
'out': 'o',
'pre_self_attention_layer_norm': '0/layer_norm',
'pre_cross_attention_layer_norm': '1/layer_norm',
'pre_attention_layer_norm': '0/layer_norm', # previously 1, but seems wrong
'token_embedder': 'shared',
'encoder_norm': 'final_layer_norm',
'decoder_norm': 'final_layer_norm',
'relpos_bias/rel_embedding': 'block/0/layer/0/SelfAttention/relative_attention_bias/weight',
'router/router_weights/w/': 'router/classifier/',
'roer/roer_weights/w/': 'router/classifier/',
'logits_dense': 'lm_head',
}
def _lowerCamelCase(__UpperCamelCase ) -> Optional[Any]:
# 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in
# the original model
_lowerCAmelCase =list(s_dict.keys() )
for key in keys:
_lowerCAmelCase =R""".*/layers_(\d+)"""
_lowerCAmelCase =key
if re.match(__UpperCamelCase , __UpperCamelCase ):
_lowerCAmelCase =re.sub(R"""layers_(\d+)""" , R"""block/\1/layer""" , __UpperCamelCase )
_lowerCAmelCase =R"""(encoder|decoder)\/"""
if re.match(__UpperCamelCase , __UpperCamelCase ):
_lowerCAmelCase =re.match(__UpperCamelCase , __UpperCamelCase ).groups()
if groups[0] == "encoder":
_lowerCAmelCase =re.sub(R"""/mlp/""" , R"""/1/mlp/""" , __UpperCamelCase )
_lowerCAmelCase =re.sub(R"""/pre_mlp_layer_norm/""" , R"""/1/layer_norm/""" , __UpperCamelCase )
elif groups[0] == "decoder":
_lowerCAmelCase =re.sub(R"""/mlp/""" , R"""/2/mlp/""" , __UpperCamelCase )
_lowerCAmelCase =re.sub(R"""/pre_mlp_layer_norm/""" , R"""/2/layer_norm/""" , __UpperCamelCase )
# 2. Convert other classic mappings
for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items():
if old_key in new_key:
_lowerCAmelCase =new_key.replace(__UpperCamelCase , __UpperCamelCase )
print(F'''{key} -> {new_key}''' )
_lowerCAmelCase =s_dict.pop(__UpperCamelCase )
if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict:
_lowerCAmelCase =s_dict[
"""encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight"""
].T
if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict:
_lowerCAmelCase =s_dict[
"""decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight"""
].T
# 3. Take extra care of the EXPERTS layer
for key in list(s_dict.keys() ):
if "expert" in key:
_lowerCAmelCase =s_dict[key].shape[0]
_lowerCAmelCase =s_dict[key]
for idx in range(__UpperCamelCase ):
_lowerCAmelCase =expert_weihts[idx]
print(F'''{key} -> {key.replace('expert/' , 'nested fstring' )}''' )
s_dict.pop(__UpperCamelCase )
return s_dict
__A = {
'NUM_ENCODER_LAYERS': 'num_layers',
'NUM_DECODER_LAYERS': 'num_decoder_layers',
'NUM_HEADS': 'num_heads',
'HEAD_DIM': 'd_kv',
'EMBED_DIM': 'd_model',
'MLP_DIM': 'd_ff',
'NUM_SELECTED_EXPERTS': 'num_selected_experts',
'NUM_ENCODER_SPARSE_LAYERS': 'num_sparse_encoder_layers',
'NUM_DECODER_SPARSE_LAYERS': 'num_sparse_decoder_layers',
'dense.MlpBlock.activations': 'feed_forward_proj',
}
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Tuple:
# Convert a google style config to the hugging face fromat
import regex as re
with open(__UpperCamelCase , """r""" ) as f:
_lowerCAmelCase =f.read()
_lowerCAmelCase =re.findall(R"""(.*) = ([0-9.]*)""" , __UpperCamelCase )
_lowerCAmelCase ={}
for param, value in regex_match:
if param in GIN_TO_CONFIG_MAPPING and value != "":
_lowerCAmelCase =float(__UpperCamelCase ) if """.""" in value else int(__UpperCamelCase )
_lowerCAmelCase =re.findall(R"""(.*activations) = \(\'(.*)\',\)""" , __UpperCamelCase )[0]
_lowerCAmelCase =str(activation[1] )
_lowerCAmelCase =num_experts
_lowerCAmelCase =SwitchTransformersConfig(**__UpperCamelCase )
return config
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase="./" , __UpperCamelCase=8 ) -> Tuple:
# Initialise PyTorch model
print(F'''Loading flax weights from : {flax_checkpoint_path}''' )
_lowerCAmelCase =checkpoints.load_tax_checkpoint(__UpperCamelCase )
if gin_file is not None:
_lowerCAmelCase =convert_gin_to_config(__UpperCamelCase , __UpperCamelCase )
else:
_lowerCAmelCase =SwitchTransformersConfig.from_pretrained(__UpperCamelCase )
_lowerCAmelCase =SwitchTransformersForConditionalGeneration(__UpperCamelCase )
_lowerCAmelCase =flax_params["""target"""]
_lowerCAmelCase =flatten_dict(__UpperCamelCase , sep="""/""" )
_lowerCAmelCase =rename_keys(__UpperCamelCase )
_lowerCAmelCase =unflatten_dict(__UpperCamelCase , sep="""/""" )
# Load the flax params in the PT model
load_flax_weights_in_pytorch_model(__UpperCamelCase , __UpperCamelCase )
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
pt_model.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--switch_t5x_checkpoint_path',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the'
' model architecture. If not provided, a `gin_file` has to be provided.'
),
)
parser.add_argument(
'--gin_file',
default=None,
type=str,
required=False,
help='Path to the gin config file. If not provided, a `config_file` has to be passed ',
)
parser.add_argument(
'--config_name', default=None, type=str, required=False, help='Config name of SwitchTransformers model.'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output pytorch model.'
)
parser.add_argument('--num_experts', default=8, type=int, required=False, help='Number of experts')
__A = parser.parse_args()
convert_flax_checkpoint_to_pytorch(
args.switch_tax_checkpoint_path,
args.config_name,
args.gin_file,
args.pytorch_dump_folder_path,
args.num_experts,
)
| 341 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase ) -> Optional[Any]:
_lowerCAmelCase =0
_lowerCAmelCase =len(__UpperCamelCase )
for i in range(n - 1 ):
for j in range(i + 1 , __UpperCamelCase ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def _lowerCamelCase(__UpperCamelCase ) -> List[Any]:
if len(__UpperCamelCase ) <= 1:
return arr, 0
_lowerCAmelCase =len(__UpperCamelCase ) // 2
_lowerCAmelCase =arr[0:mid]
_lowerCAmelCase =arr[mid:]
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =_count_cross_inversions(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =inversion_p + inversions_q + cross_inversions
return c, num_inversions
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Any:
_lowerCAmelCase =[]
_lowerCAmelCase =_lowerCAmelCase =_lowerCAmelCase =0
while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(__UpperCamelCase ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(__UpperCamelCase ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def _lowerCamelCase() -> str:
_lowerCAmelCase =[10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 8
print("""number of inversions = """ , __UpperCamelCase )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , __UpperCamelCase )
# an empty list should also have zero inversions
_lowerCAmelCase =[]
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , __UpperCamelCase )
if __name__ == "__main__":
main()
| 341 | 1 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> list:
_lowerCAmelCase =len(__UpperCamelCase )
_lowerCAmelCase =[]
for i in range(len(__UpperCamelCase ) - pat_len + 1 ):
_lowerCAmelCase =True
for j in range(__UpperCamelCase ):
if s[i + j] != pattern[j]:
_lowerCAmelCase =False
break
if match_found:
position.append(__UpperCamelCase )
return position
if __name__ == "__main__":
assert naive_pattern_search('ABCDEFG', 'DE') == [3]
print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
| 341 |
"""simple docstring"""
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = None
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = None
lowerCamelCase = None
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = True
lowerCamelCase = None
lowerCamelCase = 1
lowerCamelCase = None
lowerCamelCase = False
lowerCamelCase = None
lowerCamelCase = None
def _lowerCAmelCase ( self ) -> "DownloadConfig":
return self.__class__(**{k: copy.deepcopy(__UpperCAmelCase ) for k, v in self.__dict__.items()} )
| 341 | 1 |
"""simple docstring"""
import os
import unittest
from transformers import LxmertTokenizer, LxmertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = LxmertTokenizer
lowerCamelCase = LxmertTokenizerFast
lowerCamelCase = True
lowerCamelCase = True
def _lowerCAmelCase ( self ) -> Optional[int]:
super().setUp()
_lowerCAmelCase =[
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
_lowerCAmelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]:
_lowerCAmelCase ="""UNwant\u00E9d,running"""
_lowerCAmelCase ="""unwanted, running"""
return input_text, output_text
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase =self.tokenizer_class(self.vocab_file )
_lowerCAmelCase =tokenizer.tokenize("""UNwant\u00E9d,running""" )
self.assertListEqual(__UpperCAmelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] )
def _lowerCAmelCase ( self ) -> Dict:
if not self.test_rust_tokenizer:
return
_lowerCAmelCase =self.get_tokenizer()
_lowerCAmelCase =self.get_rust_tokenizer()
_lowerCAmelCase ="""I was born in 92000, and this is falsé."""
_lowerCAmelCase =tokenizer.tokenize(__UpperCAmelCase )
_lowerCAmelCase =rust_tokenizer.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =self.get_rust_tokenizer()
_lowerCAmelCase =tokenizer.encode(__UpperCAmelCase )
_lowerCAmelCase =rust_tokenizer.encode(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
| 341 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> int:
return int((input_a, input_a).count(1 ) != 0 )
def _lowerCamelCase() -> None:
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 341 | 1 |
"""simple docstring"""
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase ="""ylacombe/bark-small"""
_lowerCAmelCase =tempfile.mkdtemp()
_lowerCAmelCase ="""en_speaker_1"""
_lowerCAmelCase ="""This is a test string"""
_lowerCAmelCase ="""speaker_embeddings_path.json"""
_lowerCAmelCase ="""speaker_embeddings"""
def _lowerCAmelCase ( self , **__UpperCAmelCase ) -> Tuple:
return AutoTokenizer.from_pretrained(self.checkpoint , **__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Union[str, Any]:
shutil.rmtree(self.tmpdirname )
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =self.get_tokenizer()
_lowerCAmelCase =BarkProcessor(tokenizer=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
_lowerCAmelCase =BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def _lowerCAmelCase ( self ) -> Optional[int]:
_lowerCAmelCase =BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
_lowerCAmelCase =self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
_lowerCAmelCase =BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
_lowerCAmelCase =35
_lowerCAmelCase =2
_lowerCAmelCase =8
_lowerCAmelCase ={
"""semantic_prompt""": np.ones(__UpperCAmelCase ),
"""coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ),
"""fine_prompt""": np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
_lowerCAmelCase =processor(text=self.input_string , voice_preset=__UpperCAmelCase )
_lowerCAmelCase =inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__UpperCAmelCase , np.array([] ) ).tolist() )
# test loading voice preset from npz file
_lowerCAmelCase =os.path.join(self.tmpdirname , """file.npz""" )
np.savez(__UpperCAmelCase , **__UpperCAmelCase )
_lowerCAmelCase =processor(text=self.input_string , voice_preset=__UpperCAmelCase )
_lowerCAmelCase =inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__UpperCAmelCase , np.array([] ) ).tolist() )
# test loading voice preset from the hub
_lowerCAmelCase =processor(text=self.input_string , voice_preset=self.voice_preset )
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =self.get_tokenizer()
_lowerCAmelCase =BarkProcessor(tokenizer=__UpperCAmelCase )
_lowerCAmelCase =processor(text=self.input_string )
_lowerCAmelCase =tokenizer(
self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
| 341 |
"""simple docstring"""
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
__A = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n'
__A = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n'
__A = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase__ ( datasets.Metric ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> Any:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ),
"""references""": datasets.Sequence(
datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/BLEU""",
"""https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""",
] , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=4 , __UpperCAmelCase=False ) -> Tuple:
_lowerCAmelCase =compute_bleu(
reference_corpus=__UpperCAmelCase , translation_corpus=__UpperCAmelCase , max_order=__UpperCAmelCase , smooth=__UpperCAmelCase )
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) =score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 341 | 1 |
"""simple docstring"""
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
__A = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n'
__A = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n'
__A = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase__ ( datasets.Metric ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> Any:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ),
"""references""": datasets.Sequence(
datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/BLEU""",
"""https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""",
] , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=4 , __UpperCAmelCase=False ) -> Tuple:
_lowerCAmelCase =compute_bleu(
reference_corpus=__UpperCAmelCase , translation_corpus=__UpperCAmelCase , max_order=__UpperCAmelCase , smooth=__UpperCAmelCase )
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) =score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 341 |
"""simple docstring"""
import argparse
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
parser.add_argument(
'--original_config_file',
type=str,
required=True,
help='The YAML config file corresponding to the original architecture.',
)
parser.add_argument(
'--num_in_channels',
default=None,
type=int,
help='The number of input channels. If `None` number of input channels will be automatically inferred.',
)
parser.add_argument(
'--image_size',
default=512,
type=int,
help=(
'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2'
' Base. Use 768 for Stable Diffusion v2.'
),
)
parser.add_argument(
'--extract_ema',
action='store_true',
help=(
'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights'
' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield'
' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.'
),
)
parser.add_argument(
'--upcast_attention',
action='store_true',
help=(
'Whether the attention computation should always be upcasted. This is necessary when running stable'
' diffusion 2.1.'
),
)
parser.add_argument(
'--from_safetensors',
action='store_true',
help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.',
)
parser.add_argument(
'--to_safetensors',
action='store_true',
help='Whether to store pipeline in safetensors format or not.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)')
def _lowerCamelCase(__UpperCamelCase ) -> List[str]:
if string == "True":
return True
elif string == "False":
return False
else:
raise ValueError(F'''could not parse string as bool {string}''' )
parser.add_argument(
'--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool
)
parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int)
__A = parser.parse_args()
__A = download_controlnet_from_original_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
extract_ema=args.extract_ema,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
use_linear_projection=args.use_linear_projection,
cross_attention_dim=args.cross_attention_dim,
)
controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 341 | 1 |
"""simple docstring"""
from __future__ import annotations
from dataclasses import dataclass
@dataclass
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = 42
lowerCamelCase = None
lowerCamelCase = None
def _lowerCamelCase(__UpperCamelCase ) -> bool:
# Validation
def is_valid_tree(__UpperCamelCase ) -> bool:
if node is None:
return True
if not isinstance(__UpperCamelCase , __UpperCamelCase ):
return False
try:
float(node.data )
except (TypeError, ValueError):
return False
return is_valid_tree(node.left ) and is_valid_tree(node.right )
if not is_valid_tree(__UpperCamelCase ):
raise ValueError(
"""Each node should be type of TreeNode and data should be float.""" )
def is_binary_search_tree_recursive_check(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> bool:
if node is None:
return True
return (
left_bound < node.data < right_bound
and is_binary_search_tree_recursive_check(node.left , __UpperCamelCase , node.data )
and is_binary_search_tree_recursive_check(
node.right , node.data , __UpperCamelCase )
)
return is_binary_search_tree_recursive_check(__UpperCamelCase , -float("""inf""" ) , float("""inf""" ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 341 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available
__A = {
'configuration_audio_spectrogram_transformer': [
'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'ASTConfig',
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'ASTForAudioClassification',
'ASTModel',
'ASTPreTrainedModel',
]
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ['ASTFeatureExtractor']
if TYPE_CHECKING:
from .configuration_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
ASTConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ASTForAudioClassification,
ASTModel,
ASTPreTrainedModel,
)
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 1 |
"""simple docstring"""
import requests
from bsa import BeautifulSoup
def _lowerCamelCase(__UpperCamelCase = "https://www.worldometers.info/coronavirus" ) -> dict:
_lowerCAmelCase =BeautifulSoup(requests.get(__UpperCamelCase ).text , """html.parser""" )
_lowerCAmelCase =soup.findAll("""h1""" )
_lowerCAmelCase =soup.findAll("""div""" , {"""class""": """maincounter-number"""} )
keys += soup.findAll("""span""" , {"""class""": """panel-title"""} )
values += soup.findAll("""div""" , {"""class""": """number-table-main"""} )
return {key.text.strip(): value.text.strip() for key, value in zip(__UpperCamelCase , __UpperCamelCase )}
if __name__ == "__main__":
print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n')
for key, value in world_covidaa_stats().items():
print(F"""{key}\n{value}\n""")
| 341 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__A = {
'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'],
'tokenization_m2m_100': ['M2M100Tokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST',
'M2M100ForConditionalGeneration',
'M2M100Model',
'M2M100PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 1 |
"""simple docstring"""
import unittest
from diffusers.models.unet_ad_blocks import * # noqa F403
from diffusers.utils import torch_device
from .test_unet_blocks_common import UNetBlockTesterMixin
class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = DownBlockaD # noqa F405
lowerCamelCase = '''down'''
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =[-0.0_2_3_2, -0.9_8_6_9, 0.8_0_5_4, -0.0_6_3_7, -0.1_6_8_8, -1.4_2_6_4, 0.4_4_7_0, -1.3_3_9_4, 0.0_9_0_4]
super().test_output(__UpperCAmelCase )
class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = ResnetDownsampleBlockaD # noqa F405
lowerCamelCase = '''down'''
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =[0.0_7_1_0, 0.2_4_1_0, -0.7_3_2_0, -1.0_7_5_7, -1.1_3_4_3, 0.3_5_4_0, -0.0_1_3_3, -0.2_5_7_6, 0.0_9_4_8]
super().test_output(__UpperCAmelCase )
class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = AttnDownBlockaD # noqa F405
lowerCamelCase = '''down'''
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase =[0.0_6_3_6, 0.8_9_6_4, -0.6_2_3_4, -1.0_1_3_1, 0.0_8_4_4, 0.4_9_3_5, 0.3_4_3_7, 0.0_9_1_1, -0.2_9_5_7]
super().test_output(__UpperCAmelCase )
class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = CrossAttnDownBlockaD # noqa F405
lowerCamelCase = '''down'''
def _lowerCAmelCase ( self ) -> Optional[int]:
_lowerCAmelCase , _lowerCAmelCase =super().prepare_init_args_and_inputs_for_common()
_lowerCAmelCase =32
return init_dict, inputs_dict
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =[0.2_2_3_8, -0.7_3_9_6, -0.2_2_5_5, -0.3_8_2_9, 0.1_9_2_5, 1.1_6_6_5, 0.0_6_0_3, -0.7_2_9_5, 0.1_9_8_3]
super().test_output(__UpperCAmelCase )
class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = SimpleCrossAttnDownBlockaD # noqa F405
lowerCamelCase = '''down'''
@property
def _lowerCAmelCase ( self ) -> List[Any]:
return super().get_dummy_input(include_encoder_hidden_states=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase , _lowerCAmelCase =super().prepare_init_args_and_inputs_for_common()
_lowerCAmelCase =32
return init_dict, inputs_dict
@unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" )
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =[0.7_9_2_1, -0.0_9_9_2, -0.1_9_6_2, -0.7_6_9_5, -0.4_2_4_2, 0.7_8_0_4, 0.4_7_3_7, 0.2_7_6_5, 0.3_3_3_8]
super().test_output(__UpperCAmelCase )
class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = SkipDownBlockaD # noqa F405
lowerCamelCase = '''down'''
@property
def _lowerCAmelCase ( self ) -> Any:
return super().get_dummy_input(include_skip_sample=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Optional[int]:
_lowerCAmelCase =[-0.0_8_4_5, -0.2_0_8_7, -0.2_4_6_5, 0.0_9_7_1, 0.1_9_0_0, -0.0_4_8_4, 0.2_6_6_4, 0.4_1_7_9, 0.5_0_6_9]
super().test_output(__UpperCAmelCase )
class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = AttnSkipDownBlockaD # noqa F405
lowerCamelCase = '''down'''
@property
def _lowerCAmelCase ( self ) -> Optional[Any]:
return super().get_dummy_input(include_skip_sample=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =[0.5_5_3_9, 0.1_6_0_9, 0.4_9_2_4, 0.0_5_3_7, -0.1_9_9_5, 0.4_0_5_0, 0.0_9_7_9, -0.2_7_2_1, -0.0_6_4_2]
super().test_output(__UpperCAmelCase )
class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = DownEncoderBlockaD # noqa F405
lowerCamelCase = '''down'''
@property
def _lowerCAmelCase ( self ) -> str:
return super().get_dummy_input(include_temb=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase ={
"""in_channels""": 32,
"""out_channels""": 32,
}
_lowerCAmelCase =self.dummy_input
return init_dict, inputs_dict
def _lowerCAmelCase ( self ) -> Optional[int]:
_lowerCAmelCase =[1.1_1_0_2, 0.5_3_0_2, 0.4_8_7_2, -0.0_0_2_3, -0.8_0_4_2, 0.0_4_8_3, -0.3_4_8_9, -0.5_6_3_2, 0.7_6_2_6]
super().test_output(__UpperCAmelCase )
class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = AttnDownEncoderBlockaD # noqa F405
lowerCamelCase = '''down'''
@property
def _lowerCAmelCase ( self ) -> Optional[int]:
return super().get_dummy_input(include_temb=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase ={
"""in_channels""": 32,
"""out_channels""": 32,
}
_lowerCAmelCase =self.dummy_input
return init_dict, inputs_dict
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =[0.8_9_6_6, -0.1_4_8_6, 0.8_5_6_8, 0.8_1_4_1, -0.9_0_4_6, -0.1_3_4_2, -0.0_9_7_2, -0.7_4_1_7, 0.1_5_3_8]
super().test_output(__UpperCAmelCase )
class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = UNetMidBlockaD # noqa F405
lowerCamelCase = '''mid'''
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase ={
"""in_channels""": 32,
"""temb_channels""": 1_28,
}
_lowerCAmelCase =self.dummy_input
return init_dict, inputs_dict
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =[-0.1_0_6_2, 1.7_2_4_8, 0.3_4_9_4, 1.4_5_6_9, -0.0_9_1_0, -1.2_4_2_1, -0.9_9_8_4, 0.6_7_3_6, 1.0_0_2_8]
super().test_output(__UpperCAmelCase )
class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = UNetMidBlockaDCrossAttn # noqa F405
lowerCamelCase = '''mid'''
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase , _lowerCAmelCase =super().prepare_init_args_and_inputs_for_common()
_lowerCAmelCase =32
return init_dict, inputs_dict
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =[0.0_1_8_7, 2.4_2_2_0, 0.4_4_8_4, 1.1_2_0_3, -0.6_1_2_1, -1.5_1_2_2, -0.8_2_7_0, 0.7_8_5_1, 1.8_3_3_5]
super().test_output(__UpperCAmelCase )
class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = UNetMidBlockaDSimpleCrossAttn # noqa F405
lowerCamelCase = '''mid'''
@property
def _lowerCAmelCase ( self ) -> str:
return super().get_dummy_input(include_encoder_hidden_states=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase , _lowerCAmelCase =super().prepare_init_args_and_inputs_for_common()
_lowerCAmelCase =32
return init_dict, inputs_dict
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =[0.7_1_4_3, 1.9_9_7_4, 0.5_4_4_8, 1.3_9_7_7, 0.1_2_8_2, -1.1_2_3_7, -1.4_2_3_8, 0.5_5_3_0, 0.8_8_8_0]
super().test_output(__UpperCAmelCase )
class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = UpBlockaD # noqa F405
lowerCamelCase = '''up'''
@property
def _lowerCAmelCase ( self ) -> Any:
return super().get_dummy_input(include_res_hidden_states_tuple=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =[-0.2_0_4_1, -0.4_1_6_5, -0.3_0_2_2, 0.0_0_4_1, -0.6_6_2_8, -0.7_0_5_3, 0.1_9_2_8, -0.0_3_2_5, 0.0_5_2_3]
super().test_output(__UpperCAmelCase )
class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = ResnetUpsampleBlockaD # noqa F405
lowerCamelCase = '''up'''
@property
def _lowerCAmelCase ( self ) -> Tuple:
return super().get_dummy_input(include_res_hidden_states_tuple=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =[0.2_2_8_7, 0.3_5_4_9, -0.1_3_4_6, 0.4_7_9_7, -0.1_7_1_5, -0.9_6_4_9, 0.7_3_0_5, -0.5_8_6_4, -0.6_2_4_4]
super().test_output(__UpperCAmelCase )
class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = CrossAttnUpBlockaD # noqa F405
lowerCamelCase = '''up'''
@property
def _lowerCAmelCase ( self ) -> Dict:
return super().get_dummy_input(include_res_hidden_states_tuple=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Optional[int]:
_lowerCAmelCase , _lowerCAmelCase =super().prepare_init_args_and_inputs_for_common()
_lowerCAmelCase =32
return init_dict, inputs_dict
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =[-0.1_4_0_3, -0.3_5_1_5, -0.0_4_2_0, -0.1_4_2_5, 0.3_1_6_7, 0.5_0_9_4, -0.2_1_8_1, 0.5_9_3_1, 0.5_5_8_2]
super().test_output(__UpperCAmelCase )
class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = SimpleCrossAttnUpBlockaD # noqa F405
lowerCamelCase = '''up'''
@property
def _lowerCAmelCase ( self ) -> Optional[Any]:
return super().get_dummy_input(include_res_hidden_states_tuple=__UpperCAmelCase , include_encoder_hidden_states=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase , _lowerCAmelCase =super().prepare_init_args_and_inputs_for_common()
_lowerCAmelCase =32
return init_dict, inputs_dict
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =[0.2_6_4_5, 0.1_4_8_0, 0.0_9_0_9, 0.8_0_4_4, -0.9_7_5_8, -0.9_0_8_3, 0.0_9_9_4, -1.1_4_5_3, -0.7_4_0_2]
super().test_output(__UpperCAmelCase )
class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = AttnUpBlockaD # noqa F405
lowerCamelCase = '''up'''
@property
def _lowerCAmelCase ( self ) -> List[Any]:
return super().get_dummy_input(include_res_hidden_states_tuple=__UpperCAmelCase )
@unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" )
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase =[0.0_9_7_9, 0.1_3_2_6, 0.0_0_2_1, 0.0_6_5_9, 0.2_2_4_9, 0.0_0_5_9, 0.1_1_3_2, 0.5_9_5_2, 0.1_0_3_3]
super().test_output(__UpperCAmelCase )
class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = SkipUpBlockaD # noqa F405
lowerCamelCase = '''up'''
@property
def _lowerCAmelCase ( self ) -> Dict:
return super().get_dummy_input(include_res_hidden_states_tuple=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =[-0.0_8_9_3, -0.1_2_3_4, -0.1_5_0_6, -0.0_3_3_2, 0.0_1_2_3, -0.0_2_1_1, 0.0_5_6_6, 0.0_1_4_3, 0.0_3_6_2]
super().test_output(__UpperCAmelCase )
class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = AttnSkipUpBlockaD # noqa F405
lowerCamelCase = '''up'''
@property
def _lowerCAmelCase ( self ) -> Tuple:
return super().get_dummy_input(include_res_hidden_states_tuple=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =[0.0_3_6_1, 0.0_6_1_7, 0.2_7_8_7, -0.0_3_5_0, 0.0_3_4_2, 0.3_4_2_1, -0.0_8_4_3, 0.0_9_1_3, 0.3_0_1_5]
super().test_output(__UpperCAmelCase )
class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = UpDecoderBlockaD # noqa F405
lowerCamelCase = '''up'''
@property
def _lowerCAmelCase ( self ) -> Any:
return super().get_dummy_input(include_temb=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase ={"""in_channels""": 32, """out_channels""": 32}
_lowerCAmelCase =self.dummy_input
return init_dict, inputs_dict
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =[0.4_4_0_4, 0.1_9_9_8, -0.9_8_8_6, -0.3_3_2_0, -0.3_1_2_8, -0.7_0_3_4, -0.6_9_5_5, -0.2_3_3_8, -0.3_1_3_7]
super().test_output(__UpperCAmelCase )
class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = AttnUpDecoderBlockaD # noqa F405
lowerCamelCase = '''up'''
@property
def _lowerCAmelCase ( self ) -> Tuple:
return super().get_dummy_input(include_temb=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase ={"""in_channels""": 32, """out_channels""": 32}
_lowerCAmelCase =self.dummy_input
return init_dict, inputs_dict
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =[0.6_7_3_8, 0.4_4_9_1, 0.1_0_5_5, 1.0_7_1_0, 0.7_3_1_6, 0.3_3_3_9, 0.3_3_5_2, 0.1_0_2_3, 0.3_5_6_8]
super().test_output(__UpperCAmelCase )
| 341 |
"""simple docstring"""
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
__A = datasets.logging.get_logger(__name__)
__A = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n'
__A = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n'
__A = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n'
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase="dummy_doc" ) -> Dict:
_lowerCAmelCase ={doc: key_lines}
_lowerCAmelCase ={doc: sys_lines}
_lowerCAmelCase ={}
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase , _lowerCAmelCase =reader.get_doc_mentions(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase )
key_singletons_num += singletons_num
if NP_only or min_span:
_lowerCAmelCase =reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =reader.get_doc_mentions(__UpperCamelCase , sys_doc_lines[doc] , __UpperCamelCase )
sys_singletons_num += singletons_num
if NP_only or min_span:
_lowerCAmelCase =reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase )
if remove_nested:
_lowerCAmelCase , _lowerCAmelCase =reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
_lowerCAmelCase , _lowerCAmelCase =reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
_lowerCAmelCase =reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =(key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
"""Number of removed nested coreferring mentions in the key """
F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' )
logger.info(
"""Number of resulting singleton clusters in the key """
F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' )
if not keep_singletons:
logger.info(
F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system '''
"""files, respectively""" )
return doc_coref_infos
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int:
_lowerCAmelCase =get_coref_infos(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase ={}
_lowerCAmelCase =0
_lowerCAmelCase =0
for name, metric in metrics:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =evaluator.evaluate_documents(__UpperCamelCase , __UpperCamelCase , beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} )
logger.info(
name.ljust(10 ) , F'''Recall: {recall * 100:.2f}''' , F''' Precision: {precision * 100:.2f}''' , F''' F1: {fa * 100:.2f}''' , )
if conll_subparts_num == 3:
_lowerCAmelCase =(conll / 3) * 100
logger.info(F'''CoNLL score: {conll:.2f}''' )
output_scores.update({"""conll_score""": conll} )
return output_scores
def _lowerCamelCase(__UpperCamelCase ) -> Tuple:
_lowerCAmelCase =False
for line in key_lines:
if not line.startswith("""#""" ):
if len(line.split() ) > 6:
_lowerCAmelCase =line.split()[5]
if not parse_col == "-":
_lowerCAmelCase =True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase__ ( datasets.Metric ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> str:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Sequence(datasets.Value("""string""" ) ),
} ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[
"""https://github.com/ns-moosavi/coval""",
"""https://www.aclweb.org/anthology/P16-1060""",
"""http://www.conll.cemantix.org/2012/data.html""",
] , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False ) -> Optional[Any]:
_lowerCAmelCase =[
("""mentions""", evaluator.mentions),
("""muc""", evaluator.muc),
("""bcub""", evaluator.b_cubed),
("""ceafe""", evaluator.ceafe),
("""lea""", evaluator.lea),
]
if min_span:
_lowerCAmelCase =util.check_gold_parse_annotation(__UpperCAmelCase )
if not has_gold_parse:
raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" )
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
_lowerCAmelCase =evaluate(
key_lines=__UpperCAmelCase , sys_lines=__UpperCAmelCase , metrics=__UpperCAmelCase , NP_only=__UpperCAmelCase , remove_nested=__UpperCAmelCase , keep_singletons=__UpperCAmelCase , min_span=__UpperCAmelCase , )
return score
| 341 | 1 |
"""simple docstring"""
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=1_00 , __UpperCAmelCase=13 , __UpperCAmelCase=30 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=[0, 1, 2, 3] , ) -> Optional[int]:
_lowerCAmelCase =parent
_lowerCAmelCase =1_00
_lowerCAmelCase =batch_size
_lowerCAmelCase =image_size
_lowerCAmelCase =patch_size
_lowerCAmelCase =num_channels
_lowerCAmelCase =is_training
_lowerCAmelCase =use_labels
_lowerCAmelCase =hidden_size
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =intermediate_size
_lowerCAmelCase =hidden_act
_lowerCAmelCase =hidden_dropout_prob
_lowerCAmelCase =attention_probs_dropout_prob
_lowerCAmelCase =type_sequence_label_size
_lowerCAmelCase =initializer_range
_lowerCAmelCase =scope
_lowerCAmelCase =out_indices
_lowerCAmelCase =num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
_lowerCAmelCase =(image_size // patch_size) ** 2
_lowerCAmelCase =num_patches + 1
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCAmelCase =None
_lowerCAmelCase =None
if self.use_labels:
_lowerCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCAmelCase =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
_lowerCAmelCase =self.get_config()
return config, pixel_values, labels, pixel_labels
def _lowerCAmelCase ( self ) -> Union[str, Any]:
return BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
_lowerCAmelCase =BeitModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_lowerCAmelCase =model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
_lowerCAmelCase =BeitForMaskedImageModeling(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_lowerCAmelCase =model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase =self.type_sequence_label_size
_lowerCAmelCase =BeitForImageClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_lowerCAmelCase =model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_lowerCAmelCase =1
_lowerCAmelCase =BeitForImageClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_lowerCAmelCase =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_lowerCAmelCase =model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
_lowerCAmelCase =self.num_labels
_lowerCAmelCase =BeitForSemanticSegmentation(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_lowerCAmelCase =model(__UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
_lowerCAmelCase =model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =self.prepare_config_and_inputs()
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs
_lowerCAmelCase ={"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowerCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
lowerCamelCase = (
{
'''feature-extraction''': BeitModel,
'''image-classification''': BeitForImageClassification,
'''image-segmentation''': BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =BeitModelTester(self )
_lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 )
def _lowerCAmelCase ( self ) -> int:
self.config_tester.run_common_tests()
@unittest.skip(reason="""BEiT does not use inputs_embeds""" )
def _lowerCAmelCase ( self ) -> Optional[Any]:
pass
@require_torch_multi_gpu
@unittest.skip(reason="""BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def _lowerCAmelCase ( self ) -> List[Any]:
pass
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase =model_class(__UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_lowerCAmelCase =model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) )
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase =model_class(__UpperCAmelCase )
_lowerCAmelCase =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCAmelCase =[*signature.parameters.keys()]
_lowerCAmelCase =["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Dict:
if not self.model_tester.is_training:
return
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase =True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling]:
continue
_lowerCAmelCase =model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.train()
_lowerCAmelCase =self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase )
_lowerCAmelCase =model(**__UpperCAmelCase ).loss
loss.backward()
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
_lowerCAmelCase =False
_lowerCAmelCase =True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
_lowerCAmelCase =model_class(__UpperCAmelCase )
model.gradient_checkpointing_enable()
model.to(__UpperCAmelCase )
model.train()
_lowerCAmelCase =self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase )
_lowerCAmelCase =model(**__UpperCAmelCase ).loss
loss.backward()
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase =_config_zero_init(__UpperCAmelCase )
for model_class in self.all_model_classes:
_lowerCAmelCase =model_class(config=__UpperCAmelCase )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@slow
def _lowerCAmelCase ( self ) -> List[str]:
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase =BeitModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def _lowerCamelCase() -> Dict:
_lowerCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _lowerCAmelCase ( self ) -> Any:
return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None
@slow
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase =BeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ).to(__UpperCAmelCase )
_lowerCAmelCase =self.default_image_processor
_lowerCAmelCase =prepare_img()
_lowerCAmelCase =image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).pixel_values.to(__UpperCAmelCase )
# prepare bool_masked_pos
_lowerCAmelCase =torch.ones((1, 1_96) , dtype=torch.bool ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
_lowerCAmelCase =model(pixel_values=__UpperCAmelCase , bool_masked_pos=__UpperCAmelCase )
_lowerCAmelCase =outputs.logits
# verify the logits
_lowerCAmelCase =torch.Size((1, 1_96, 81_92) )
self.assertEqual(logits.shape , __UpperCAmelCase )
_lowerCAmelCase =torch.tensor(
[[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __UpperCAmelCase , atol=1e-2 ) )
@slow
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =BeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ).to(__UpperCAmelCase )
_lowerCAmelCase =self.default_image_processor
_lowerCAmelCase =prepare_img()
_lowerCAmelCase =image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
_lowerCAmelCase =model(**__UpperCAmelCase )
_lowerCAmelCase =outputs.logits
# verify the logits
_lowerCAmelCase =torch.Size((1, 10_00) )
self.assertEqual(logits.shape , __UpperCAmelCase )
_lowerCAmelCase =torch.tensor([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) )
_lowerCAmelCase =2_81
self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =BeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ).to(
__UpperCAmelCase )
_lowerCAmelCase =self.default_image_processor
_lowerCAmelCase =prepare_img()
_lowerCAmelCase =image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
_lowerCAmelCase =model(**__UpperCAmelCase )
_lowerCAmelCase =outputs.logits
# verify the logits
_lowerCAmelCase =torch.Size((1, 2_18_41) )
self.assertEqual(logits.shape , __UpperCAmelCase )
_lowerCAmelCase =torch.tensor([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) )
_lowerCAmelCase =23_96
self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" )
_lowerCAmelCase =model.to(__UpperCAmelCase )
_lowerCAmelCase =BeitImageProcessor(do_resize=__UpperCAmelCase , size=6_40 , do_center_crop=__UpperCAmelCase )
_lowerCAmelCase =load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" )
_lowerCAmelCase =Image.open(ds[0]["""file"""] )
_lowerCAmelCase =image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
_lowerCAmelCase =model(**__UpperCAmelCase )
_lowerCAmelCase =outputs.logits
# verify the logits
_lowerCAmelCase =torch.Size((1, 1_50, 1_60, 1_60) )
self.assertEqual(logits.shape , __UpperCAmelCase )
_lowerCAmelCase =version.parse(PIL.__version__ ) < version.parse("""9.0.0""" )
if is_pillow_less_than_a:
_lowerCAmelCase =torch.tensor(
[
[[-4.9_2_2_5, -2.3_9_5_4, -3.0_5_2_2], [-2.8_8_2_2, -1.0_0_4_6, -1.7_5_6_1], [-2.9_5_4_9, -1.3_2_2_8, -2.1_3_4_7]],
[[-5.8_1_6_8, -3.4_1_2_9, -4.0_7_7_8], [-3.8_6_5_1, -2.2_2_1_4, -3.0_2_7_7], [-3.8_3_5_6, -2.4_6_4_3, -3.3_5_3_5]],
[[-0.0_0_7_8, 3.9_9_5_2, 4.0_7_5_4], [2.9_8_5_6, 4.6_9_4_4, 5.0_0_3_5], [3.2_4_1_3, 4.7_8_1_3, 4.9_9_6_9]],
] , device=__UpperCAmelCase , )
else:
_lowerCAmelCase =torch.tensor(
[
[[-4.8_9_6_0, -2.3_6_8_8, -3.0_3_5_5], [-2.8_4_7_8, -0.9_8_3_6, -1.7_4_1_8], [-2.9_4_4_9, -1.3_3_3_2, -2.1_4_5_6]],
[[-5.8_0_8_1, -3.4_1_2_4, -4.1_0_0_6], [-3.8_5_6_1, -2.2_0_8_1, -3.0_3_2_3], [-3.8_3_6_5, -2.4_6_0_1, -3.3_6_6_9]],
[[-0.0_3_0_9, 3.9_8_6_8, 4.0_5_4_0], [2.9_6_4_0, 4.6_8_7_7, 4.9_9_7_6], [3.2_0_8_1, 4.7_6_9_0, 4.9_9_4_2]],
] , device=__UpperCAmelCase , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1e-4 ) )
@slow
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" )
_lowerCAmelCase =model.to(__UpperCAmelCase )
_lowerCAmelCase =BeitImageProcessor(do_resize=__UpperCAmelCase , size=6_40 , do_center_crop=__UpperCAmelCase )
_lowerCAmelCase =load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" )
_lowerCAmelCase =Image.open(ds[0]["""file"""] )
_lowerCAmelCase =image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
_lowerCAmelCase =model(**__UpperCAmelCase )
_lowerCAmelCase =outputs.logits.detach().cpu()
_lowerCAmelCase =image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(5_00, 3_00)] )
_lowerCAmelCase =torch.Size((5_00, 3_00) )
self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
_lowerCAmelCase =image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase )
_lowerCAmelCase =torch.Size((1_60, 1_60) )
self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
| 341 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = XGLMConfig
lowerCamelCase = {}
lowerCamelCase = '''gelu'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=0.0_2 , ) -> List[str]:
_lowerCAmelCase =parent
_lowerCAmelCase =batch_size
_lowerCAmelCase =seq_length
_lowerCAmelCase =is_training
_lowerCAmelCase =use_input_mask
_lowerCAmelCase =use_labels
_lowerCAmelCase =vocab_size
_lowerCAmelCase =d_model
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =ffn_dim
_lowerCAmelCase =activation_function
_lowerCAmelCase =activation_dropout
_lowerCAmelCase =attention_dropout
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =initializer_range
_lowerCAmelCase =None
_lowerCAmelCase =0
_lowerCAmelCase =2
_lowerCAmelCase =1
def _lowerCAmelCase ( self ) -> Dict:
return XGLMConfig.from_pretrained("""facebook/xglm-564M""" )
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
_lowerCAmelCase =None
if self.use_input_mask:
_lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length] )
_lowerCAmelCase =self.get_config()
_lowerCAmelCase =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowerCAmelCase ( self ) -> str:
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__UpperCAmelCase , )
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =self.prepare_config_and_inputs()
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) =config_and_inputs
_lowerCAmelCase ={
"""input_ids""": input_ids,
"""head_mask""": head_mask,
}
return config, inputs_dict
@require_tf
class lowerCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
lowerCamelCase = (TFXGLMForCausalLM,) if is_tf_available() else ()
lowerCamelCase = (
{'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {}
)
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =TFXGLMModelTester(self )
_lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase , n_embd=37 )
def _lowerCAmelCase ( self ) -> int:
self.config_tester.run_common_tests()
@slow
def _lowerCAmelCase ( self ) -> Union[str, Any]:
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase =TFXGLMModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" )
def _lowerCAmelCase ( self ) -> Union[str, Any]:
super().test_resize_token_embeddings()
@require_tf
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def _lowerCAmelCase ( self , __UpperCAmelCase=True ) -> str:
_lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase =tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
_lowerCAmelCase =[2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81]
# fmt: on
_lowerCAmelCase =model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , __UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
tf.random.set_seed(0 )
_lowerCAmelCase =tokenizer("""Today is a nice day and""" , return_tensors="""tf""" )
_lowerCAmelCase =tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(""":/CPU:0""" ):
_lowerCAmelCase =model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , seed=[7, 0] )
_lowerCAmelCase =tokenizer.decode(output_ids[0] , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =(
"""Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"""
)
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase ="""left"""
# use different length sentences to test batching
_lowerCAmelCase =[
"""This is an extremelly long sentence that only exists to test the ability of the model to cope with """
"""left-padding, such as in batched generation. The output for the sequence below should be the same """
"""regardless of whether left padding is applied or not. When""",
"""Hello, my dog is a little""",
]
_lowerCAmelCase =tokenizer(__UpperCAmelCase , return_tensors="""tf""" , padding=__UpperCAmelCase )
_lowerCAmelCase =inputs["""input_ids"""]
_lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 )
_lowerCAmelCase =tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids
_lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 )
_lowerCAmelCase =tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids
_lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 )
_lowerCAmelCase =tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =tokenizer.decode(output_non_padded[0] , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =tokenizer.decode(output_padded[0] , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =[
"""This is an extremelly long sentence that only exists to test the ability of the model to cope with """
"""left-padding, such as in batched generation. The output for the sequence below should be the same """
"""regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """
"""a single""",
"""Hello, my dog is a little bit of a shy one, but he is very friendly""",
]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , [non_padded_sentence, padded_sentence] )
| 341 | 1 |
"""simple docstring"""
from __future__ import annotations
import queue
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self , __UpperCAmelCase ) -> List[str]:
_lowerCAmelCase =data
_lowerCAmelCase =None
_lowerCAmelCase =None
def _lowerCamelCase() -> TreeNode:
print("""\n********Press N to stop entering at any point of time********\n""" )
_lowerCAmelCase =input("""Enter the value of the root node: """ ).strip().lower()
_lowerCAmelCase =queue.Queue()
_lowerCAmelCase =TreeNode(int(__UpperCamelCase ) )
q.put(__UpperCamelCase )
while not q.empty():
_lowerCAmelCase =q.get()
_lowerCAmelCase =F'''Enter the left node of {node_found.data}: '''
_lowerCAmelCase =input(__UpperCamelCase ).strip().lower() or """n"""
if check == "n":
return tree_node
_lowerCAmelCase =TreeNode(int(__UpperCamelCase ) )
_lowerCAmelCase =left_node
q.put(__UpperCamelCase )
_lowerCAmelCase =F'''Enter the right node of {node_found.data}: '''
_lowerCAmelCase =input(__UpperCamelCase ).strip().lower() or """n"""
if check == "n":
return tree_node
_lowerCAmelCase =TreeNode(int(__UpperCamelCase ) )
_lowerCAmelCase =right_node
q.put(__UpperCamelCase )
raise
def _lowerCamelCase(__UpperCamelCase ) -> None:
if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node:
return
print(node.data , end=""",""" )
pre_order(node.left )
pre_order(node.right )
def _lowerCamelCase(__UpperCamelCase ) -> None:
if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node:
return
in_order(node.left )
print(node.data , end=""",""" )
in_order(node.right )
def _lowerCamelCase(__UpperCamelCase ) -> None:
if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end=""",""" )
def _lowerCamelCase(__UpperCamelCase ) -> None:
if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node:
return
_lowerCAmelCase =queue.Queue()
q.put(__UpperCamelCase )
while not q.empty():
_lowerCAmelCase =q.get()
print(node_dequeued.data , end=""",""" )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def _lowerCamelCase(__UpperCamelCase ) -> None:
if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node:
return
_lowerCAmelCase =queue.Queue()
q.put(__UpperCamelCase )
while not q.empty():
_lowerCAmelCase =[]
while not q.empty():
_lowerCAmelCase =q.get()
print(node_dequeued.data , end=""",""" )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(__UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase ) -> None:
if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node:
return
_lowerCAmelCase =[]
_lowerCAmelCase =node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end=""",""" )
stack.append(__UpperCamelCase )
_lowerCAmelCase =n.left
# end of while means current node doesn't have left child
_lowerCAmelCase =stack.pop()
# start to traverse its right child
_lowerCAmelCase =n.right
def _lowerCamelCase(__UpperCamelCase ) -> None:
if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node:
return
_lowerCAmelCase =[]
_lowerCAmelCase =node
while n or stack:
while n:
stack.append(__UpperCamelCase )
_lowerCAmelCase =n.left
_lowerCAmelCase =stack.pop()
print(n.data , end=""",""" )
_lowerCAmelCase =n.right
def _lowerCamelCase(__UpperCamelCase ) -> None:
if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node:
return
_lowerCAmelCase , _lowerCAmelCase =[], []
_lowerCAmelCase =node
stacka.append(__UpperCamelCase )
while stacka: # to find the reversed order of post order, store it in stack2
_lowerCAmelCase =stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(__UpperCamelCase )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end=""",""" )
def _lowerCamelCase(__UpperCamelCase = "" , __UpperCamelCase=50 , __UpperCamelCase="*" ) -> str:
if not s:
return "\n" + width * char
_lowerCAmelCase , _lowerCAmelCase =divmod(width - len(__UpperCamelCase ) - 2 , 2 )
return F'''{left * char} {s} {(left + extra) * char}'''
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt('Binary Tree Traversals'))
__A = build_tree()
print(prompt('Pre Order Traversal'))
pre_order(node)
print(prompt() + '\n')
print(prompt('In Order Traversal'))
in_order(node)
print(prompt() + '\n')
print(prompt('Post Order Traversal'))
post_order(node)
print(prompt() + '\n')
print(prompt('Level Order Traversal'))
level_order(node)
print(prompt() + '\n')
print(prompt('Actual Level Order Traversal'))
level_order_actual(node)
print('*' * 50 + '\n')
print(prompt('Pre Order Traversal - Iteration Version'))
pre_order_iter(node)
print(prompt() + '\n')
print(prompt('In Order Traversal - Iteration Version'))
in_order_iter(node)
print(prompt() + '\n')
print(prompt('Post Order Traversal - Iteration Version'))
post_order_iter(node)
print(prompt())
| 341 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
__A = logging.get_logger(__name__)
__A = {'vocab_file': 'spiece.model'}
__A = {
'vocab_file': {
'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model',
'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model',
}
}
__A = {
'xlnet-base-cased': None,
'xlnet-large-cased': None,
}
# Segments (not really needed)
__A = 0
__A = 1
__A = 2
__A = 3
__A = 4
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = VOCAB_FILES_NAMES
lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase = '''left'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<sep>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<cls>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=["<eop>", "<eod>"] , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it
_lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
_lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , )
_lowerCAmelCase =3
_lowerCAmelCase =do_lower_case
_lowerCAmelCase =remove_space
_lowerCAmelCase =keep_accents
_lowerCAmelCase =vocab_file
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__UpperCAmelCase )
@property
def _lowerCAmelCase ( self ) -> str:
return len(self.sp_model )
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> Optional[int]:
_lowerCAmelCase =self.__dict__.copy()
_lowerCAmelCase =None
return state
def __setstate__( self , __UpperCAmelCase ) -> Tuple:
_lowerCAmelCase =d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_lowerCAmelCase ={}
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[Any]:
if self.remove_space:
_lowerCAmelCase =""" """.join(inputs.strip().split() )
else:
_lowerCAmelCase =inputs
_lowerCAmelCase =outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
_lowerCAmelCase =unicodedata.normalize("""NFKD""" , __UpperCAmelCase )
_lowerCAmelCase ="""""".join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] )
if self.do_lower_case:
_lowerCAmelCase =outputs.lower()
return outputs
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
_lowerCAmelCase =self.preprocess_text(__UpperCAmelCase )
_lowerCAmelCase =self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase )
_lowerCAmelCase =[]
for piece in pieces:
if len(__UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
_lowerCAmelCase =self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
_lowerCAmelCase =cur_pieces[1:]
else:
_lowerCAmelCase =cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(__UpperCAmelCase )
else:
new_pieces.append(__UpperCAmelCase )
return new_pieces
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]:
return self.sp_model.PieceToId(__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
return self.sp_model.IdToPiece(__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> str:
_lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip()
return out_string
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> str:
_lowerCAmelCase =kwargs.pop("""use_source_tokenizer""" , __UpperCAmelCase )
_lowerCAmelCase =self.convert_ids_to_tokens(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
_lowerCAmelCase =[]
_lowerCAmelCase =[]
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) )
_lowerCAmelCase =[]
sub_texts.append(__UpperCAmelCase )
else:
current_sub_text.append(__UpperCAmelCase )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) )
# Mimic the behavior of the Rust tokenizer:
# By default, there are no spaces between special tokens
_lowerCAmelCase ="""""".join(__UpperCAmelCase )
_lowerCAmelCase =(
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
_lowerCAmelCase =self.clean_up_tokenization(__UpperCAmelCase )
return clean_text
else:
return text
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_lowerCAmelCase =[self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase )
if token_ids_a is not None:
return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1]
return ([0] * len(__UpperCAmelCase )) + [1, 1]
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_lowerCAmelCase =[self.sep_token_id]
_lowerCAmelCase =[2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCAmelCase , """wb""" ) as fi:
_lowerCAmelCase =self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase )
return (out_vocab_file,)
| 341 | 1 |
"""simple docstring"""
import warnings
from .generation import TFGenerationMixin
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
# warning at import time
warnings.warn(
'''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will '''
'''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''' , __magic_name__ , )
| 341 |
"""simple docstring"""
from __future__ import annotations
def _lowerCamelCase(__UpperCamelCase ) -> bool:
_lowerCAmelCase =str(__UpperCamelCase )
return n == n[::-1]
def _lowerCamelCase(__UpperCamelCase = 1000000 ) -> str:
_lowerCAmelCase =0
for i in range(1 , __UpperCamelCase ):
if is_palindrome(__UpperCamelCase ) and is_palindrome(bin(__UpperCamelCase ).split("""b""" )[1] ):
total += i
return total
if __name__ == "__main__":
print(solution(int(str(input().strip()))))
| 341 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A = {
'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST',
'Swinv2ForImageClassification',
'Swinv2ForMaskedImageModeling',
'Swinv2Model',
'Swinv2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = '''llama'''
lowerCamelCase = ['''past_key_values''']
def __init__( self , __UpperCAmelCase=3_20_00 , __UpperCAmelCase=40_96 , __UpperCAmelCase=1_10_08 , __UpperCAmelCase=32 , __UpperCAmelCase=32 , __UpperCAmelCase=None , __UpperCAmelCase="silu" , __UpperCAmelCase=20_48 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-6 , __UpperCAmelCase=True , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=False , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]:
_lowerCAmelCase =vocab_size
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =hidden_size
_lowerCAmelCase =intermediate_size
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =num_key_value_heads
_lowerCAmelCase =hidden_act
_lowerCAmelCase =initializer_range
_lowerCAmelCase =rms_norm_eps
_lowerCAmelCase =pretraining_tp
_lowerCAmelCase =use_cache
_lowerCAmelCase =rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase , )
def _lowerCAmelCase ( self ) -> str:
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2:
raise ValueError(
"""`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """
f'''got {self.rope_scaling}''' )
_lowerCAmelCase =self.rope_scaling.get("""type""" , __UpperCAmelCase )
_lowerCAmelCase =self.rope_scaling.get("""factor""" , __UpperCAmelCase )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' )
if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0:
raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
| 341 | 1 |
"""simple docstring"""
import argparse
import torch
from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel
from transformers.utils import logging
logging.set_verbosity_info()
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Dict:
# Initialise PyTorch model
_lowerCAmelCase =FunnelConfig.from_json_file(__UpperCamelCase )
print(F'''Building PyTorch model from configuration: {config}''' )
_lowerCAmelCase =FunnelBaseModel(__UpperCamelCase ) if base_model else FunnelModel(__UpperCamelCase )
# Load weights from tf checkpoint
load_tf_weights_in_funnel(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , __UpperCamelCase )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--base_model', action='store_true', help='Whether you want just the base model (no decoder) or not.'
)
__A = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model
)
| 341 |
"""simple docstring"""
import warnings
from .generation import TFGenerationMixin
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
# warning at import time
warnings.warn(
'''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will '''
'''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''' , __magic_name__ , )
| 341 | 1 |
"""simple docstring"""
import argparse
import struct
import unittest
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self , __UpperCAmelCase ) -> None:
_lowerCAmelCase =data
# Initialize hash values
_lowerCAmelCase =[
0x6_a_0_9_e_6_6_7,
0xb_b_6_7_a_e_8_5,
0x3_c_6_e_f_3_7_2,
0xa_5_4_f_f_5_3_a,
0x5_1_0_e_5_2_7_f,
0x9_b_0_5_6_8_8_c,
0x1_f_8_3_d_9_a_b,
0x5_b_e_0_c_d_1_9,
]
# Initialize round constants
_lowerCAmelCase =[
0x4_2_8_a_2_f_9_8,
0x7_1_3_7_4_4_9_1,
0xb_5_c_0_f_b_c_f,
0xe_9_b_5_d_b_a_5,
0x3_9_5_6_c_2_5_b,
0x5_9_f_1_1_1_f_1,
0x9_2_3_f_8_2_a_4,
0xa_b_1_c_5_e_d_5,
0xd_8_0_7_a_a_9_8,
0x1_2_8_3_5_b_0_1,
0x2_4_3_1_8_5_b_e,
0x5_5_0_c_7_d_c_3,
0x7_2_b_e_5_d_7_4,
0x8_0_d_e_b_1_f_e,
0x9_b_d_c_0_6_a_7,
0xc_1_9_b_f_1_7_4,
0xe_4_9_b_6_9_c_1,
0xe_f_b_e_4_7_8_6,
0x0_f_c_1_9_d_c_6,
0x2_4_0_c_a_1_c_c,
0x2_d_e_9_2_c_6_f,
0x4_a_7_4_8_4_a_a,
0x5_c_b_0_a_9_d_c,
0x7_6_f_9_8_8_d_a,
0x9_8_3_e_5_1_5_2,
0xa_8_3_1_c_6_6_d,
0xb_0_0_3_2_7_c_8,
0xb_f_5_9_7_f_c_7,
0xc_6_e_0_0_b_f_3,
0xd_5_a_7_9_1_4_7,
0x0_6_c_a_6_3_5_1,
0x1_4_2_9_2_9_6_7,
0x2_7_b_7_0_a_8_5,
0x2_e_1_b_2_1_3_8,
0x4_d_2_c_6_d_f_c,
0x5_3_3_8_0_d_1_3,
0x6_5_0_a_7_3_5_4,
0x7_6_6_a_0_a_b_b,
0x8_1_c_2_c_9_2_e,
0x9_2_7_2_2_c_8_5,
0xa_2_b_f_e_8_a_1,
0xa_8_1_a_6_6_4_b,
0xc_2_4_b_8_b_7_0,
0xc_7_6_c_5_1_a_3,
0xd_1_9_2_e_8_1_9,
0xd_6_9_9_0_6_2_4,
0xf_4_0_e_3_5_8_5,
0x1_0_6_a_a_0_7_0,
0x1_9_a_4_c_1_1_6,
0x1_e_3_7_6_c_0_8,
0x2_7_4_8_7_7_4_c,
0x3_4_b_0_b_c_b_5,
0x3_9_1_c_0_c_b_3,
0x4_e_d_8_a_a_4_a,
0x5_b_9_c_c_a_4_f,
0x6_8_2_e_6_f_f_3,
0x7_4_8_f_8_2_e_e,
0x7_8_a_5_6_3_6_f,
0x8_4_c_8_7_8_1_4,
0x8_c_c_7_0_2_0_8,
0x9_0_b_e_f_f_f_a,
0xa_4_5_0_6_c_e_b,
0xb_e_f_9_a_3_f_7,
0xc_6_7_1_7_8_f_2,
]
_lowerCAmelCase =self.preprocessing(self.data )
self.final_hash()
@staticmethod
def _lowerCAmelCase ( __UpperCAmelCase ) -> bytes:
_lowerCAmelCase =b"""\x80""" + (b"""\x00""" * (63 - (len(__UpperCAmelCase ) + 8) % 64))
_lowerCAmelCase =struct.pack(""">Q""" , (len(__UpperCAmelCase ) * 8) )
return data + padding + big_endian_integer
def _lowerCAmelCase ( self ) -> None:
# Convert into blocks of 64 bytes
_lowerCAmelCase =[
self.preprocessed_data[x : x + 64]
for x in range(0 , len(self.preprocessed_data ) , 64 )
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
_lowerCAmelCase =list(struct.unpack(""">16L""" , __UpperCAmelCase ) )
# add 48 0-ed integers
words += [0] * 48
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self.hashes
for index in range(0 , 64 ):
if index > 15:
# modify the zero-ed indexes at the end of the array
_lowerCAmelCase =(
self.ror(words[index - 15] , 7 )
^ self.ror(words[index - 15] , 18 )
^ (words[index - 15] >> 3)
)
_lowerCAmelCase =(
self.ror(words[index - 2] , 17 )
^ self.ror(words[index - 2] , 19 )
^ (words[index - 2] >> 10)
)
_lowerCAmelCase =(
words[index - 16] + sa + words[index - 7] + sa
) % 0x1_0_0_0_0_0_0_0_0
# Compression
_lowerCAmelCase =self.ror(__UpperCAmelCase , 6 ) ^ self.ror(__UpperCAmelCase , 11 ) ^ self.ror(__UpperCAmelCase , 25 )
_lowerCAmelCase =(e & f) ^ ((~e & 0xf_f_f_f_f_f_f_f) & g)
_lowerCAmelCase =(
h + sa + ch + self.round_constants[index] + words[index]
) % 0x1_0_0_0_0_0_0_0_0
_lowerCAmelCase =self.ror(__UpperCAmelCase , 2 ) ^ self.ror(__UpperCAmelCase , 13 ) ^ self.ror(__UpperCAmelCase , 22 )
_lowerCAmelCase =(a & b) ^ (a & c) ^ (b & c)
_lowerCAmelCase =(sa + maj) % 0x1_0_0_0_0_0_0_0_0
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =(
g,
f,
e,
((d + tempa) % 0x1_0_0_0_0_0_0_0_0),
c,
b,
a,
((tempa + tempa) % 0x1_0_0_0_0_0_0_0_0),
)
_lowerCAmelCase =[a, b, c, d, e, f, g, h]
# Modify final values
_lowerCAmelCase =[
((element + mutated_hash_values[index]) % 0x1_0_0_0_0_0_0_0_0)
for index, element in enumerate(self.hashes )
]
_lowerCAmelCase ="""""".join([hex(__UpperCAmelCase )[2:].zfill(8 ) for value in self.hashes] )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> int:
return 0xf_f_f_f_f_f_f_f & (value << (32 - rotations)) | (value >> rotations)
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> None:
import hashlib
_lowerCAmelCase =bytes("""Test String""" , """utf-8""" )
self.assertEqual(SHAaaa(__UpperCAmelCase ).hash , hashlib.shaaaa(__UpperCAmelCase ).hexdigest() )
def _lowerCamelCase() -> None:
import doctest
doctest.testmod()
_lowerCAmelCase =argparse.ArgumentParser()
parser.add_argument(
"""-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , )
parser.add_argument(
"""-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" )
_lowerCAmelCase =parser.parse_args()
_lowerCAmelCase =args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file , """rb""" ) as f:
_lowerCAmelCase =f.read()
else:
_lowerCAmelCase =bytes(__UpperCamelCase , """utf-8""" )
print(SHAaaa(__UpperCamelCase ).hash )
if __name__ == "__main__":
main()
| 341 |
"""simple docstring"""
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=16 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=30 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=None , ) -> Any:
_lowerCAmelCase =parent
_lowerCAmelCase =batch_size
_lowerCAmelCase =decoder_seq_length
# For common tests
_lowerCAmelCase =self.decoder_seq_length
_lowerCAmelCase =is_training
_lowerCAmelCase =use_attention_mask
_lowerCAmelCase =use_labels
_lowerCAmelCase =vocab_size
_lowerCAmelCase =d_model
_lowerCAmelCase =d_model
_lowerCAmelCase =decoder_layers
_lowerCAmelCase =decoder_layers
_lowerCAmelCase =decoder_ffn_dim
_lowerCAmelCase =decoder_attention_heads
_lowerCAmelCase =decoder_attention_heads
_lowerCAmelCase =eos_token_id
_lowerCAmelCase =bos_token_id
_lowerCAmelCase =pad_token_id
_lowerCAmelCase =decoder_start_token_id
_lowerCAmelCase =use_cache
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =None
_lowerCAmelCase =decoder_seq_length
_lowerCAmelCase =2
_lowerCAmelCase =1
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
_lowerCAmelCase =None
if self.use_attention_mask:
_lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 )
_lowerCAmelCase =None
if self.use_labels:
_lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
_lowerCAmelCase =TrOCRConfig(
vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , )
return (config, input_ids, attention_mask, lm_labels)
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[Any]:
_lowerCAmelCase =True
_lowerCAmelCase =TrOCRDecoder(config=__UpperCAmelCase ).to(__UpperCAmelCase ).eval()
_lowerCAmelCase =input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
_lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
_lowerCAmelCase =model(__UpperCAmelCase )
_lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 )
_lowerCAmelCase =outputs["""past_key_values"""]
# create hypothetical next token and extent to next_input_ids
_lowerCAmelCase =ids_tensor((2, 1) , config.vocab_size - 1 ) + 1
# append to next input_ids and
_lowerCAmelCase =torch.cat([input_ids, next_tokens] , dim=-1 )
_lowerCAmelCase =model(__UpperCAmelCase )["""last_hidden_state"""]
_lowerCAmelCase =model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )["""last_hidden_state"""]
# select random slice
_lowerCAmelCase =ids_tensor((1,) , output_from_past.shape[-1] ).item()
_lowerCAmelCase =output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
_lowerCAmelCase =output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 )
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =self.prepare_config_and_inputs()
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs
_lowerCAmelCase ={"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
lowerCamelCase = (TrOCRForCausalLM,) if is_torch_available() else ()
lowerCamelCase = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {}
lowerCamelCase = True
lowerCamelCase = False
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =TrOCRStandaloneDecoderModelTester(self , is_training=__UpperCAmelCase )
_lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> List[str]:
pass
def _lowerCAmelCase ( self ) -> List[Any]:
pass
def _lowerCAmelCase ( self ) -> Any:
pass
def _lowerCAmelCase ( self ) -> Optional[Any]:
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Tuple:
return
@unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :)
def _lowerCAmelCase ( self ) -> str:
pass
| 341 | 1 |
"""simple docstring"""
from math import pow
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> tuple[int, int]:
if current_sum == needed_sum:
# If the sum of the powers is equal to needed_sum, then we have a solution.
solutions_count += 1
return current_sum, solutions_count
_lowerCAmelCase =int(pow(__UpperCamelCase , __UpperCamelCase ) )
if current_sum + i_to_n <= needed_sum:
# If the sum of the powers is less than needed_sum, then continue adding powers.
current_sum += i_to_n
_lowerCAmelCase , _lowerCAmelCase =backtrack(
__UpperCamelCase , __UpperCamelCase , current_number + 1 , __UpperCamelCase , __UpperCamelCase )
current_sum -= i_to_n
if i_to_n < needed_sum:
# If the power of i is less than needed_sum, then try with the next power.
_lowerCAmelCase , _lowerCAmelCase =backtrack(
__UpperCamelCase , __UpperCamelCase , current_number + 1 , __UpperCamelCase , __UpperCamelCase )
return current_sum, solutions_count
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> int:
if not (1 <= needed_sum <= 1000 and 2 <= power <= 10):
raise ValueError(
"""Invalid input\n"""
"""needed_sum must be between 1 and 1000, power between 2 and 10.""" )
return backtrack(__UpperCamelCase , __UpperCamelCase , 1 , 0 , 0 )[1] # Return the solutions_count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 341 |
"""simple docstring"""
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = JukeboxTokenizer
lowerCamelCase = {
'''artist''': '''Zac Brown Band''',
'''genres''': '''Country''',
'''lyrics''': '''I met a traveller from an antique land,
Who said "Two vast and trunkless legs of stone
Stand in the desert. . . . Near them, on the sand,
Half sunk a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,
Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them, and the heart that fed;
And on the pedestal, these words appear:
My name is Ozymandias, King of Kings;
Look on my Works, ye Mighty, and despair!
Nothing beside remains. Round the decay
Of that colossal Wreck, boundless and bare
The lone and level sands stretch far away
''',
}
@require_torch
def _lowerCAmelCase ( self ) -> str:
import torch
_lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" )
_lowerCAmelCase =tokenizer(**self.metas )["""input_ids"""]
# fmt: off
_lowerCAmelCase =[
torch.tensor([[
0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 10_69, 11]] ),
torch.tensor([[0, 0, 0, 10_69, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def _lowerCAmelCase ( self ) -> Any:
import torch
_lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" )
_lowerCAmelCase =tokenizer(**self.metas )["""input_ids"""]
# fmt: off
_lowerCAmelCase =[
torch.tensor([[
0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 341 | 1 |
"""simple docstring"""
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =0
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Union[str, Any]:
with tempfile.TemporaryDirectory() as tmpdirname:
_lowerCAmelCase =Path(__UpperCAmelCase ) / """preprocessor_config.json"""
_lowerCAmelCase =Path(__UpperCAmelCase ) / """config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__UpperCAmelCase , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(__UpperCAmelCase , """w""" ) )
_lowerCAmelCase =AutoImageProcessor.from_pretrained(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Union[str, Any]:
# Ensure we can load the image processor from the feature extractor config
with tempfile.TemporaryDirectory() as tmpdirname:
_lowerCAmelCase =Path(__UpperCAmelCase ) / """preprocessor_config.json"""
_lowerCAmelCase =Path(__UpperCAmelCase ) / """config.json"""
json.dump(
{"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__UpperCAmelCase , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(__UpperCAmelCase , """w""" ) )
_lowerCAmelCase =AutoImageProcessor.from_pretrained(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Dict:
with tempfile.TemporaryDirectory() as tmpdirname:
_lowerCAmelCase =CLIPConfig()
# Create a dummy config file with image_proceesor_type
_lowerCAmelCase =Path(__UpperCAmelCase ) / """preprocessor_config.json"""
_lowerCAmelCase =Path(__UpperCAmelCase ) / """config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__UpperCAmelCase , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(__UpperCAmelCase , """w""" ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
_lowerCAmelCase =AutoImageProcessor.from_pretrained(__UpperCAmelCase ).to_dict()
config_dict.pop("""image_processor_type""" )
_lowerCAmelCase =CLIPImageProcessor(**__UpperCAmelCase )
# save in new folder
model_config.save_pretrained(__UpperCAmelCase )
config.save_pretrained(__UpperCAmelCase )
_lowerCAmelCase =AutoImageProcessor.from_pretrained(__UpperCAmelCase )
# make sure private variable is not incorrectly saved
_lowerCAmelCase =json.loads(config.to_json_string() )
self.assertTrue("""_processor_class""" not in dict_as_saved )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Tuple:
with tempfile.TemporaryDirectory() as tmpdirname:
_lowerCAmelCase =Path(__UpperCAmelCase ) / """preprocessor_config.json"""
json.dump(
{"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__UpperCAmelCase , """w""" ) , )
_lowerCAmelCase =AutoImageProcessor.from_pretrained(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Dict:
with self.assertRaisesRegex(
__UpperCAmelCase , """clip-base is not a local folder and is not a valid model identifier""" ):
_lowerCAmelCase =AutoImageProcessor.from_pretrained("""clip-base""" )
def _lowerCAmelCase ( self ) -> Tuple:
with self.assertRaisesRegex(
__UpperCAmelCase , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
_lowerCAmelCase =AutoImageProcessor.from_pretrained(__UpperCAmelCase , revision="""aaaaaa""" )
def _lowerCAmelCase ( self ) -> List[str]:
with self.assertRaisesRegex(
__UpperCAmelCase , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ):
_lowerCAmelCase =AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" )
def _lowerCAmelCase ( self ) -> Optional[Any]:
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(__UpperCAmelCase ):
_lowerCAmelCase =AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(__UpperCAmelCase ):
_lowerCAmelCase =AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__UpperCAmelCase )
_lowerCAmelCase =AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__UpperCAmelCase )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(__UpperCAmelCase )
_lowerCAmelCase =AutoImageProcessor.from_pretrained(__UpperCAmelCase , trust_remote_code=__UpperCAmelCase )
self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" )
def _lowerCAmelCase ( self ) -> Dict:
try:
AutoConfig.register("""custom""" , __UpperCAmelCase )
AutoImageProcessor.register(__UpperCAmelCase , __UpperCAmelCase )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__UpperCAmelCase ):
AutoImageProcessor.register(__UpperCAmelCase , __UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
_lowerCAmelCase =Path(__UpperCAmelCase ) / """preprocessor_config.json"""
_lowerCAmelCase =Path(__UpperCAmelCase ) / """config.json"""
json.dump(
{"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__UpperCAmelCase , """w""" ) , )
json.dump({"""model_type""": """clip"""} , open(__UpperCAmelCase , """w""" ) )
_lowerCAmelCase =CustomImageProcessor.from_pretrained(__UpperCAmelCase )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(__UpperCAmelCase )
_lowerCAmelCase =AutoImageProcessor.from_pretrained(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def _lowerCAmelCase ( self ) -> Tuple:
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = True
try:
AutoConfig.register("""custom""" , __UpperCAmelCase )
AutoImageProcessor.register(__UpperCAmelCase , __UpperCAmelCase )
# If remote code is not set, the default is to use local
_lowerCAmelCase =AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
_lowerCAmelCase =AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__UpperCAmelCase )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
_lowerCAmelCase =AutoImageProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__UpperCAmelCase )
self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" )
self.assertTrue(not hasattr(__UpperCAmelCase , """is_local""" ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 341 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__A = logging.get_logger(__name__)
__A = '▁'
__A = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'}
__A = {
'vocab_file': {
'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model',
},
'monolingual_vocab_file': {
'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt',
},
}
__A = {'vinai/bartpho-syllable': 1024}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = VOCAB_FILES_NAMES
lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase = ['''input_ids''', '''attention_mask''']
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it
_lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
_lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , )
_lowerCAmelCase =vocab_file
_lowerCAmelCase =monolingual_vocab_file
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__UpperCAmelCase ) )
# Load the reduced vocab
# Keep order of special tokens for backward compatibility
_lowerCAmelCase ={}
_lowerCAmelCase =0
for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids:
_lowerCAmelCase =cnt
cnt += 1
with open(__UpperCAmelCase , """r""" , encoding="""utf-8""" ) as f:
for line in f.readlines():
_lowerCAmelCase =line.strip().split()[0]
_lowerCAmelCase =len(self.fairseq_tokens_to_ids )
if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids:
_lowerCAmelCase =len(self.fairseq_tokens_to_ids )
_lowerCAmelCase ={v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ) -> Dict:
_lowerCAmelCase =self.__dict__.copy()
_lowerCAmelCase =None
_lowerCAmelCase =self.sp_model.serialized_model_proto()
return state
def __setstate__( self , __UpperCAmelCase ) -> List[Any]:
_lowerCAmelCase =d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_lowerCAmelCase ={}
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
_lowerCAmelCase =[self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(__UpperCAmelCase )) + [1]
return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1]
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_lowerCAmelCase =[self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def _lowerCAmelCase ( self ) -> Union[str, Any]:
return len(self.fairseq_ids_to_tokens )
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
else:
return self.unk_token_id
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]:
return self.fairseq_ids_to_tokens[index]
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip()
return out_string
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCAmelCase , """wb""" ) as fi:
_lowerCAmelCase =self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase )
if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath(
__UpperCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ):
copyfile(self.monolingual_vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.monolingual_vocab_file ):
with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as fp:
for token in self.fairseq_tokens_to_ids:
if token not in self.all_special_tokens:
fp.write(f'''{str(__UpperCAmelCase )} \n''' )
return out_vocab_file, out_monolingual_vocab_file
| 341 | 1 |
"""simple docstring"""
import unittest
from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__A = get_tests_dir('fixtures/test_sentencepiece.model')
@require_sentencepiece
class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = XLMProphetNetTokenizer
lowerCamelCase = False
lowerCamelCase = True
def _lowerCAmelCase ( self ) -> Union[str, Any]:
super().setUp()
# We have a SentencePiece fixture for testing
_lowerCAmelCase =XLMProphetNetTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase ="""[PAD]"""
_lowerCAmelCase =0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """[PAD]""" )
self.assertEqual(vocab_keys[1] , """[CLS]""" )
self.assertEqual(vocab_keys[-1] , """j""" )
self.assertEqual(len(__UpperCAmelCase ) , 10_12 )
def _lowerCAmelCase ( self ) -> Tuple:
self.assertEqual(self.get_tokenizer().vocab_size , 10_12 )
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =XLMProphetNetTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase )
_lowerCAmelCase =tokenizer.tokenize("""This is a test""" )
self.assertListEqual(__UpperCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
_lowerCAmelCase =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
__UpperCAmelCase , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
_lowerCAmelCase =tokenizer.convert_tokens_to_ids(__UpperCAmelCase )
self.assertListEqual(
__UpperCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, -9, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, -9, 4]
] , )
_lowerCAmelCase =tokenizer.convert_ids_to_tokens(__UpperCAmelCase )
self.assertListEqual(
__UpperCAmelCase , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""[UNK]""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""[UNK]""",
""".""",
] , )
@cached_property
def _lowerCAmelCase ( self ) -> int:
return XLMProphetNetTokenizer.from_pretrained("""microsoft/xprophetnet-large-wiki100-cased""" )
@slow
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase ="""Hello World!"""
_lowerCAmelCase =[3_53_89, 66_72, 49, 2]
self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) )
@slow
def _lowerCAmelCase ( self ) -> Any:
# fmt: off
_lowerCAmelCase ={"""input_ids""": [[1_10_73, 8_27_83, 18, 26, 8_27_83, 5_49, 5_15_40, 2_48, 1_72_09, 13_01, 2_17, 20, 21_51_86, 13_25, 1_47, 1_72_09, 13_01, 2_17, 20, 5_63_70, 53, 12_20_20, 20, 1_64_77, 27, 8_73_55, 45_48, 20, 47_28, 7_83_92, 17, 15_99_69, 18, 26, 2_44_91, 6_29, 15, 5_38, 2_27_04, 54_39, 15, 27_88, 2_44_91, 98_85, 15, 4_35_34, 6_05, 15, 8_14, 1_84_03, 3_32_00, 29, 15, 4_35_34, 2_44_58, 1_24_10, 1_11, 2_49_66, 8_36_69, 96_37, 14_40_68, 26, 8_50, 2_23_46, 27, 1_47, 2_49_66, 8_36_69, 8_34_90, 26, 3_91_13, 7_35, 27, 6_89, 6_56, 28_00, 13_39, 46_00, 53, 12_20_20, 11_57_85, 34, 8_16, 13_39, 4_68_87, 18, 1_47, 5_39_05, 19_51, 4_22_38, 4_11_70, 1_77_32, 8_34, 4_36, 15, 2_75_23, 9_87_33, 2_17, 1_47, 55_42, 49_81, 9_30, 1_73_47, 16, 2], [2_00_91, 6_29, 94, 8_27_86, 58, 4_90, 20, 15_28, 84, 5_39_05, 3_44, 8_05_92, 11_01_28, 1_88_22, 52_67, 13_06, 62, 15_25_37, 3_08, 79_97, 4_01, 12_44_27, 5_49, 3_54_42, 2_25, 1_09, 1_50_55, 2_57_48, 1_47, 71_19, 4_37_12, 34, 7_67, 13_53_66, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_92, 6_37_84, 11_94_66, 17, 14_78_08, 8_82_14, 18, 6_56, 81, 32, 32_96, 1_02_80, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__UpperCAmelCase , model_name="""microsoft/xprophetnet-large-wiki100-cased""" , revision="""1acad1643ddd54a44df6a1b797ada8373685d90e""" , )
| 341 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =1
_lowerCAmelCase =3
_lowerCAmelCase =(32, 32)
_lowerCAmelCase =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCAmelCase )
return image
@property
def _lowerCAmelCase ( self ) -> Tuple:
torch.manual_seed(0 )
_lowerCAmelCase =UNetaDConditionModel(
block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__UpperCAmelCase , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , )
return model
@property
def _lowerCAmelCase ( self ) -> Tuple:
torch.manual_seed(0 )
_lowerCAmelCase =AutoencoderKL(
block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def _lowerCAmelCase ( self ) -> Optional[Any]:
torch.manual_seed(0 )
_lowerCAmelCase =CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , )
return CLIPTextModel(__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase =self.dummy_cond_unet_upscale
_lowerCAmelCase =DDPMScheduler()
_lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" )
_lowerCAmelCase =self.dummy_vae
_lowerCAmelCase =self.dummy_text_encoder
_lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
_lowerCAmelCase =StableDiffusionUpscalePipeline(
unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , )
_lowerCAmelCase =sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase ="""A painting of a squirrel eating a burger"""
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
_lowerCAmelCase =output.images
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=__UpperCAmelCase , )[0]
_lowerCAmelCase =image[0, -3:, -3:, -1]
_lowerCAmelCase =image_from_tuple[0, -3:, -3:, -1]
_lowerCAmelCase =low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
_lowerCAmelCase =np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase =self.dummy_cond_unet_upscale
_lowerCAmelCase =DDPMScheduler()
_lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" )
_lowerCAmelCase =self.dummy_vae
_lowerCAmelCase =self.dummy_text_encoder
_lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
_lowerCAmelCase =StableDiffusionUpscalePipeline(
unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , )
_lowerCAmelCase =sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase ="""A painting of a squirrel eating a burger"""
_lowerCAmelCase =sd_pipe(
2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
_lowerCAmelCase =output.images
assert image.shape[0] == 2
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
_lowerCAmelCase =output.images
assert image.shape[0] == 2
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =self.dummy_cond_unet_upscale
_lowerCAmelCase =DDPMScheduler()
_lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" )
_lowerCAmelCase =self.dummy_vae
_lowerCAmelCase =self.dummy_text_encoder
_lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
# put models in fp16, except vae as it overflows in fp16
_lowerCAmelCase =unet.half()
_lowerCAmelCase =text_encoder.half()
# make sure here that pndm scheduler skips prk
_lowerCAmelCase =StableDiffusionUpscalePipeline(
unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , )
_lowerCAmelCase =sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase ="""A painting of a squirrel eating a burger"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type="""np""" , ).images
_lowerCAmelCase =low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
@slow
@require_torch_gpu
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> int:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_lowerCAmelCase =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"""
"""/upsampled_cat.npy""" )
_lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler"""
_lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing()
_lowerCAmelCase ="""a cat sitting on a park bench"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , )
_lowerCAmelCase =output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 1e-3
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_lowerCAmelCase =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"""
"""/upsampled_cat_fp16.npy""" )
_lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler"""
_lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(
__UpperCAmelCase , torch_dtype=torch.floataa , )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing()
_lowerCAmelCase ="""a cat sitting on a park bench"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , )
_lowerCAmelCase =output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 5e-1
def _lowerCAmelCase ( self ) -> Optional[Any]:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_lowerCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler"""
_lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(
__UpperCAmelCase , torch_dtype=torch.floataa , )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
_lowerCAmelCase ="""a cat sitting on a park bench"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , output_type="""np""" , )
_lowerCAmelCase =torch.cuda.max_memory_allocated()
# make sure that less than 2.9 GB is allocated
assert mem_bytes < 2.9 * 10**9
| 341 | 1 |
"""simple docstring"""
import heapq as hq
import math
from collections.abc import Iterator
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self , __UpperCAmelCase ) -> Optional[Any]:
_lowerCAmelCase =str(id_ )
_lowerCAmelCase =None
_lowerCAmelCase =None
_lowerCAmelCase =[]
_lowerCAmelCase ={} # {vertex:distance}
def __lt__( self , __UpperCAmelCase ) -> Union[str, Any]:
return self.key < other.key
def __repr__( self ) -> Any:
return self.id
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]:
self.neighbors.append(__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> str:
_lowerCAmelCase =weight
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[str]:
# add the neighbors:
graph[a - 1].add_neighbor(graph[b - 1] )
graph[b - 1].add_neighbor(graph[a - 1] )
# add the edges:
graph[a - 1].add_edge(graph[b - 1] , __UpperCamelCase )
graph[b - 1].add_edge(graph[a - 1] , __UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> list:
_lowerCAmelCase =[]
for u in graph:
_lowerCAmelCase =math.inf
_lowerCAmelCase =None
_lowerCAmelCase =0
_lowerCAmelCase =graph[:]
while q:
_lowerCAmelCase =min(__UpperCamelCase )
q.remove(__UpperCamelCase )
for v in u.neighbors:
if (v in q) and (u.edges[v.id] < v.key):
_lowerCAmelCase =u
_lowerCAmelCase =u.edges[v.id]
for i in range(1 , len(__UpperCamelCase ) ):
a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) )
return a
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Iterator[tuple]:
for u in graph:
_lowerCAmelCase =math.inf
_lowerCAmelCase =None
_lowerCAmelCase =0
_lowerCAmelCase =list(__UpperCamelCase )
hq.heapify(__UpperCamelCase )
while h:
_lowerCAmelCase =hq.heappop(__UpperCamelCase )
for v in u.neighbors:
if (v in h) and (u.edges[v.id] < v.key):
_lowerCAmelCase =u
_lowerCAmelCase =u.edges[v.id]
hq.heapify(__UpperCamelCase )
for i in range(1 , len(__UpperCamelCase ) ):
yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1)
def _lowerCamelCase() -> None:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 341 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json',
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = '''cvt'''
def __init__( self , __UpperCAmelCase=3 , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[64, 1_92, 3_84] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 10] , __UpperCAmelCase=[4.0, 4.0, 4.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.1] , __UpperCAmelCase=[True, True, True] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , __UpperCAmelCase=[3, 3, 3] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-12 , **__UpperCAmelCase , ) -> Optional[Any]:
super().__init__(**__UpperCAmelCase )
_lowerCAmelCase =num_channels
_lowerCAmelCase =patch_sizes
_lowerCAmelCase =patch_stride
_lowerCAmelCase =patch_padding
_lowerCAmelCase =embed_dim
_lowerCAmelCase =num_heads
_lowerCAmelCase =depth
_lowerCAmelCase =mlp_ratio
_lowerCAmelCase =attention_drop_rate
_lowerCAmelCase =drop_rate
_lowerCAmelCase =drop_path_rate
_lowerCAmelCase =qkv_bias
_lowerCAmelCase =cls_token
_lowerCAmelCase =qkv_projection_method
_lowerCAmelCase =kernel_qkv
_lowerCAmelCase =padding_kv
_lowerCAmelCase =stride_kv
_lowerCAmelCase =padding_q
_lowerCAmelCase =stride_q
_lowerCAmelCase =initializer_range
_lowerCAmelCase =layer_norm_eps
| 341 | 1 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =10
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =[1, 2, 3, 4]
_lowerCAmelCase =[1, 2, 3, 4, 0, 0, 0, 0, 0, 0]
self.assertEqual(truncate_or_pad(__UpperCAmelCase , self.block_size , 0 ) , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
_lowerCAmelCase =[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(__UpperCAmelCase , self.block_size , 0 ) , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
_lowerCAmelCase =[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(__UpperCAmelCase , self.block_size , 0 ) , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Optional[int]:
_lowerCAmelCase ="""It was the year of Our Lord one thousand seven hundred and
seventy-five.\n\nSpiritual revelations were conceded to England at that
favoured period, as at this."""
_lowerCAmelCase , _lowerCAmelCase =process_story(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , [] )
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =""""""
_lowerCAmelCase , _lowerCAmelCase =process_story(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , [] )
self.assertEqual(__UpperCAmelCase , [] )
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =(
"""It was the year of Our Lord one thousand seven hundred and """
"""seventy-five\n\nSpiritual revelations were conceded to England """
"""at that favoured period, as at this.\n@highlight\n\nIt was the best of times"""
)
_lowerCAmelCase , _lowerCAmelCase =process_story(__UpperCAmelCase )
_lowerCAmelCase =[
"""It was the year of Our Lord one thousand seven hundred and seventy-five.""",
"""Spiritual revelations were conceded to England at that favoured period, as at this.""",
]
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =["""It was the best of times."""]
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =torch.tensor([1, 2, 3, 4] )
_lowerCAmelCase =torch.tensor([1, 1, 1, 1] )
np.testing.assert_array_equal(build_mask(__UpperCAmelCase , 0 ).numpy() , expected.numpy() )
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =torch.tensor([1, 2, 3, 4, 23, 23, 23] )
_lowerCAmelCase =torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(__UpperCAmelCase , 23 ).numpy() , expected.numpy() )
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =torch.tensor([8, 2, 3, 4, 1, 1, 1] )
_lowerCAmelCase =torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(__UpperCAmelCase , 1 ).numpy() , expected.numpy() )
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =1_01
_lowerCAmelCase =torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_01, 5, 6], [1, 1_01, 3, 4, 1_01, 6]] )
_lowerCAmelCase =torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] )
_lowerCAmelCase =compute_token_type_ids(__UpperCAmelCase , __UpperCAmelCase )
np.testing.assert_array_equal(__UpperCAmelCase , __UpperCAmelCase )
| 341 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = ['''image_processor''', '''tokenizer''']
lowerCamelCase = '''CLIPImageProcessor'''
lowerCamelCase = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''')
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase =None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __UpperCAmelCase , )
_lowerCAmelCase =kwargs.pop("""feature_extractor""" )
_lowerCAmelCase =image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Optional[Any]:
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
_lowerCAmelCase =self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if images is not None:
_lowerCAmelCase =self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is not None and images is not None:
_lowerCAmelCase =image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase )
def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
@property
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =self.tokenizer.model_input_names
_lowerCAmelCase =self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 341 | 1 |
"""simple docstring"""
from __future__ import annotations
import unittest
import numpy as np
from transformers import BlipTextConfig
from transformers.testing_utils import require_tf, slow
from transformers.utils import is_tf_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
if is_tf_available():
import tensorflow as tf
from transformers import TFBlipTextModel
from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=12 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=0 , __UpperCAmelCase=None , ) -> Dict:
_lowerCAmelCase =parent
_lowerCAmelCase =batch_size
_lowerCAmelCase =seq_length
_lowerCAmelCase =is_training
_lowerCAmelCase =use_input_mask
_lowerCAmelCase =use_labels
_lowerCAmelCase =vocab_size
_lowerCAmelCase =hidden_size
_lowerCAmelCase =projection_dim
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =intermediate_size
_lowerCAmelCase =dropout
_lowerCAmelCase =attention_dropout
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =initializer_range
_lowerCAmelCase =scope
_lowerCAmelCase =bos_token_id
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowerCAmelCase =None
if self.use_input_mask:
_lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length] )
if input_mask is not None:
_lowerCAmelCase =input_mask.numpy()
_lowerCAmelCase , _lowerCAmelCase =input_mask.shape
_lowerCAmelCase =np.random.randint(1 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(__UpperCAmelCase ):
_lowerCAmelCase =1
_lowerCAmelCase =0
_lowerCAmelCase =self.get_config()
return config, input_ids, tf.convert_to_tensor(__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Optional[int]:
return BlipTextConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
_lowerCAmelCase =TFBlipTextModel(config=__UpperCAmelCase )
_lowerCAmelCase =model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , training=__UpperCAmelCase )
_lowerCAmelCase =model(__UpperCAmelCase , training=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =self.prepare_config_and_inputs()
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs
_lowerCAmelCase ={"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = (TFBlipTextModel,) if is_tf_available() else ()
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =BlipTextModelTester(self )
_lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def _lowerCAmelCase ( self ) -> Tuple:
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Tuple:
pass
def _lowerCAmelCase ( self ) -> Optional[Any]:
pass
@unittest.skip(reason="""Blip does not use inputs_embeds""" )
def _lowerCAmelCase ( self ) -> Dict:
pass
@unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" )
def _lowerCAmelCase ( self ) -> int:
pass
@unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" )
def _lowerCAmelCase ( self ) -> int:
pass
@slow
def _lowerCAmelCase ( self ) -> Any:
for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase =TFBlipTextModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase=True ) -> List[Any]:
super().test_pt_tf_model_equivalence(allow_missing_keys=__UpperCAmelCase )
| 341 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__A = {
'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'],
'tokenization_perceiver': ['PerceiverTokenizer'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ['PerceiverFeatureExtractor']
__A = ['PerceiverImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PerceiverForImageClassificationConvProcessing',
'PerceiverForImageClassificationFourier',
'PerceiverForImageClassificationLearned',
'PerceiverForMaskedLM',
'PerceiverForMultimodalAutoencoding',
'PerceiverForOpticalFlow',
'PerceiverForSequenceClassification',
'PerceiverLayer',
'PerceiverModel',
'PerceiverPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 1 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class lowerCamelCase__ ( metaclass=__magic_name__ ):
'''simple docstring'''
lowerCamelCase = ['''flax''', '''transformers''']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(self , ["""flax""", """transformers"""] )
@classmethod
def _lowerCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
requires_backends(cls , ["""flax""", """transformers"""] )
@classmethod
def _lowerCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["""flax""", """transformers"""] )
class lowerCamelCase__ ( metaclass=__magic_name__ ):
'''simple docstring'''
lowerCamelCase = ['''flax''', '''transformers''']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(self , ["""flax""", """transformers"""] )
@classmethod
def _lowerCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls , ["""flax""", """transformers"""] )
@classmethod
def _lowerCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ["""flax""", """transformers"""] )
class lowerCamelCase__ ( metaclass=__magic_name__ ):
'''simple docstring'''
lowerCamelCase = ['''flax''', '''transformers''']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(self , ["""flax""", """transformers"""] )
@classmethod
def _lowerCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
requires_backends(cls , ["""flax""", """transformers"""] )
@classmethod
def _lowerCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
requires_backends(cls , ["""flax""", """transformers"""] )
class lowerCamelCase__ ( metaclass=__magic_name__ ):
'''simple docstring'''
lowerCamelCase = ['''flax''', '''transformers''']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(self , ["""flax""", """transformers"""] )
@classmethod
def _lowerCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
requires_backends(cls , ["""flax""", """transformers"""] )
@classmethod
def _lowerCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ["""flax""", """transformers"""] )
| 341 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A = {
'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST',
'Swinv2ForImageClassification',
'Swinv2ForMaskedImageModeling',
'Swinv2Model',
'Swinv2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 1 |
"""simple docstring"""
from math import isclose, sqrt
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> tuple[float, float, float]:
_lowerCAmelCase =point_y / 4 / point_x
_lowerCAmelCase =2 * normal_gradient / (1 + normal_gradient * normal_gradient)
_lowerCAmelCase =(1 - normal_gradient * normal_gradient) / (
1 + normal_gradient * normal_gradient
)
_lowerCAmelCase =(sa - ca * incoming_gradient) / (ca + sa * incoming_gradient)
# to find the next point, solve the simultaeneous equations:
# y^2 + 4x^2 = 100
# y - b = m * (x - a)
# ==> A x^2 + B x + C = 0
_lowerCAmelCase =outgoing_gradient**2 + 4
_lowerCAmelCase =2 * outgoing_gradient * (point_y - outgoing_gradient * point_x)
_lowerCAmelCase =(point_y - outgoing_gradient * point_x) ** 2 - 100
_lowerCAmelCase =(
-linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
_lowerCAmelCase =(
-linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
# two solutions, one of which is our input point
_lowerCAmelCase =x_minus if isclose(__UpperCamelCase , __UpperCamelCase ) else x_plus
_lowerCAmelCase =point_y + outgoing_gradient * (next_x - point_x)
return next_x, next_y, outgoing_gradient
def _lowerCamelCase(__UpperCamelCase = 1.4 , __UpperCamelCase = -9.6 ) -> int:
_lowerCAmelCase =0
_lowerCAmelCase =first_x_coord
_lowerCAmelCase =first_y_coord
_lowerCAmelCase =(10.1 - point_y) / (0.0 - point_x)
while not (-0.01 <= point_x <= 0.01 and point_y > 0):
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =next_point(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
num_reflections += 1
return num_reflections
if __name__ == "__main__":
print(F"""{solution() = }""")
| 341 |
"""simple docstring"""
import argparse
import json
import torch
from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=1 ) -> Tuple:
if n_shave_prefix_segments >= 0:
return ".".join(path.split(""".""" )[n_shave_prefix_segments:] )
else:
return ".".join(path.split(""".""" )[:n_shave_prefix_segments] )
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=0 ) -> List[str]:
_lowerCAmelCase =[]
for old_item in old_list:
_lowerCAmelCase =old_item.replace("""in_layers.0""" , """norm1""" )
_lowerCAmelCase =new_item.replace("""in_layers.2""" , """conv1""" )
_lowerCAmelCase =new_item.replace("""out_layers.0""" , """norm2""" )
_lowerCAmelCase =new_item.replace("""out_layers.3""" , """conv2""" )
_lowerCAmelCase =new_item.replace("""emb_layers.1""" , """time_emb_proj""" )
_lowerCAmelCase =new_item.replace("""skip_connection""" , """conv_shortcut""" )
_lowerCAmelCase =shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=0 ) -> Tuple:
_lowerCAmelCase =[]
for old_item in old_list:
_lowerCAmelCase =old_item
_lowerCAmelCase =new_item.replace("""norm.weight""" , """group_norm.weight""" )
_lowerCAmelCase =new_item.replace("""norm.bias""" , """group_norm.bias""" )
_lowerCAmelCase =new_item.replace("""proj_out.weight""" , """proj_attn.weight""" )
_lowerCAmelCase =new_item.replace("""proj_out.bias""" , """proj_attn.bias""" )
_lowerCAmelCase =shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None ) -> Optional[int]:
assert isinstance(__UpperCamelCase , __UpperCamelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
_lowerCAmelCase =old_checkpoint[path]
_lowerCAmelCase =old_tensor.shape[0] // 3
_lowerCAmelCase =(-1, channels) if len(old_tensor.shape ) == 3 else (-1)
_lowerCAmelCase =old_tensor.shape[0] // config["""num_head_channels"""] // 3
_lowerCAmelCase =old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =old_tensor.split(channels // num_heads , dim=1 )
_lowerCAmelCase =query.reshape(__UpperCamelCase )
_lowerCAmelCase =key.reshape(__UpperCamelCase )
_lowerCAmelCase =value.reshape(__UpperCamelCase )
for path in paths:
_lowerCAmelCase =path["""new"""]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
_lowerCAmelCase =new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" )
_lowerCAmelCase =new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" )
_lowerCAmelCase =new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" )
if additional_replacements is not None:
for replacement in additional_replacements:
_lowerCAmelCase =new_path.replace(replacement["""old"""] , replacement["""new"""] )
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
_lowerCAmelCase =old_checkpoint[path["""old"""]][:, :, 0]
else:
_lowerCAmelCase =old_checkpoint[path["""old"""]]
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Optional[Any]:
_lowerCAmelCase ={}
_lowerCAmelCase =checkpoint["""time_embed.0.weight"""]
_lowerCAmelCase =checkpoint["""time_embed.0.bias"""]
_lowerCAmelCase =checkpoint["""time_embed.2.weight"""]
_lowerCAmelCase =checkpoint["""time_embed.2.bias"""]
_lowerCAmelCase =checkpoint["""input_blocks.0.0.weight"""]
_lowerCAmelCase =checkpoint["""input_blocks.0.0.bias"""]
_lowerCAmelCase =checkpoint["""out.0.weight"""]
_lowerCAmelCase =checkpoint["""out.0.bias"""]
_lowerCAmelCase =checkpoint["""out.2.weight"""]
_lowerCAmelCase =checkpoint["""out.2.bias"""]
# Retrieves the keys for the input blocks only
_lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} )
_lowerCAmelCase ={
layer_id: [key for key in checkpoint if F'''input_blocks.{layer_id}''' in key]
for layer_id in range(__UpperCamelCase )
}
# Retrieves the keys for the middle blocks only
_lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} )
_lowerCAmelCase ={
layer_id: [key for key in checkpoint if F'''middle_block.{layer_id}''' in key]
for layer_id in range(__UpperCamelCase )
}
# Retrieves the keys for the output blocks only
_lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} )
_lowerCAmelCase ={
layer_id: [key for key in checkpoint if F'''output_blocks.{layer_id}''' in key]
for layer_id in range(__UpperCamelCase )
}
for i in range(1 , __UpperCamelCase ):
_lowerCAmelCase =(i - 1) // (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =(i - 1) % (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =[key for key in input_blocks[i] if F'''input_blocks.{i}.0''' in key]
_lowerCAmelCase =[key for key in input_blocks[i] if F'''input_blocks.{i}.1''' in key]
if F'''input_blocks.{i}.0.op.weight''' in checkpoint:
_lowerCAmelCase =checkpoint[
F'''input_blocks.{i}.0.op.weight'''
]
_lowerCAmelCase =checkpoint[
F'''input_blocks.{i}.0.op.bias'''
]
continue
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
_lowerCAmelCase ={"""old""": F'''input_blocks.{i}.0''', """new""": F'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''}
_lowerCAmelCase ={"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path, resnet_op] , config=__UpperCamelCase )
if len(__UpperCamelCase ):
_lowerCAmelCase =renew_attention_paths(__UpperCamelCase )
_lowerCAmelCase ={
"""old""": F'''input_blocks.{i}.1''',
"""new""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}''',
}
_lowerCAmelCase ={
F'''input_blocks.{i}.1.qkv.bias''': {
"""key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''',
"""query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''',
"""value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''',
},
F'''input_blocks.{i}.1.qkv.weight''': {
"""key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''',
"""query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''',
"""value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''',
},
}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase , )
_lowerCAmelCase =middle_blocks[0]
_lowerCAmelCase =middle_blocks[1]
_lowerCAmelCase =middle_blocks[2]
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase )
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase )
_lowerCAmelCase =renew_attention_paths(__UpperCamelCase )
_lowerCAmelCase ={
"""middle_block.1.qkv.bias""": {
"""key""": """mid_block.attentions.0.key.bias""",
"""query""": """mid_block.attentions.0.query.bias""",
"""value""": """mid_block.attentions.0.value.bias""",
},
"""middle_block.1.qkv.weight""": {
"""key""": """mid_block.attentions.0.key.weight""",
"""query""": """mid_block.attentions.0.query.weight""",
"""value""": """mid_block.attentions.0.value.weight""",
},
}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase )
for i in range(__UpperCamelCase ):
_lowerCAmelCase =i // (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =i % (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =[shave_segments(__UpperCamelCase , 2 ) for name in output_blocks[i]]
_lowerCAmelCase ={}
for layer in output_block_layers:
_lowerCAmelCase , _lowerCAmelCase =layer.split(""".""" )[0], shave_segments(__UpperCamelCase , 1 )
if layer_id in output_block_list:
output_block_list[layer_id].append(__UpperCamelCase )
else:
_lowerCAmelCase =[layer_name]
if len(__UpperCamelCase ) > 1:
_lowerCAmelCase =[key for key in output_blocks[i] if F'''output_blocks.{i}.0''' in key]
_lowerCAmelCase =[key for key in output_blocks[i] if F'''output_blocks.{i}.1''' in key]
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
_lowerCAmelCase ={"""old""": F'''output_blocks.{i}.0''', """new""": F'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''}
assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase )
if ["conv.weight", "conv.bias"] in output_block_list.values():
_lowerCAmelCase =list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] )
_lowerCAmelCase =checkpoint[
F'''output_blocks.{i}.{index}.conv.weight'''
]
_lowerCAmelCase =checkpoint[
F'''output_blocks.{i}.{index}.conv.bias'''
]
# Clear attentions as they have been attributed above.
if len(__UpperCamelCase ) == 2:
_lowerCAmelCase =[]
if len(__UpperCamelCase ):
_lowerCAmelCase =renew_attention_paths(__UpperCamelCase )
_lowerCAmelCase ={
"""old""": F'''output_blocks.{i}.1''',
"""new""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}''',
}
_lowerCAmelCase ={
F'''output_blocks.{i}.1.qkv.bias''': {
"""key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''',
"""query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''',
"""value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''',
},
F'''output_blocks.{i}.1.qkv.weight''': {
"""key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''',
"""query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''',
"""value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''',
},
}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=__UpperCamelCase , )
else:
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase , n_shave_prefix_segments=1 )
for path in resnet_0_paths:
_lowerCAmelCase =""".""".join(["""output_blocks""", str(__UpperCamelCase ), path["""old"""]] )
_lowerCAmelCase =""".""".join(["""up_blocks""", str(__UpperCamelCase ), """resnets""", str(__UpperCamelCase ), path["""new"""]] )
_lowerCAmelCase =checkpoint[old_path]
return new_checkpoint
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the architecture.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
__A = parser.parse_args()
__A = torch.load(args.checkpoint_path)
with open(args.config_file) as f:
__A = json.loads(f.read())
__A = convert_ldm_checkpoint(checkpoint, config)
if "ldm" in config:
del config["ldm"]
__A = UNetaDModel(**config)
model.load_state_dict(converted_checkpoint)
try:
__A = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1]))
__A = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1]))
__A = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae)
pipe.save_pretrained(args.dump_path)
except: # noqa: E722
model.save_pretrained(args.dump_path)
| 341 | 1 |
"""simple docstring"""
import argparse
import os
import re
import numpy as np
import PIL
import torch
from timm import create_model
from torch.optim.lr_scheduler import OneCycleLR
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor
from accelerate import Accelerator
def _lowerCamelCase(__UpperCamelCase ) -> Optional[Any]:
_lowerCAmelCase =fname.split(os.path.sep )[-1]
return re.search(R"""^(.*)_\d+\.jpg$""" , __UpperCamelCase ).groups()[0]
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Union[str, Any]:
_lowerCAmelCase =file_names
_lowerCAmelCase =image_transform
_lowerCAmelCase =label_to_id
def __len__( self ) -> Union[str, Any]:
return len(self.file_names )
def __getitem__( self , __UpperCAmelCase ) -> List[Any]:
_lowerCAmelCase =self.file_names[idx]
_lowerCAmelCase =PIL.Image.open(__UpperCAmelCase )
_lowerCAmelCase =raw_image.convert("""RGB""" )
if self.image_transform is not None:
_lowerCAmelCase =self.image_transform(__UpperCAmelCase )
_lowerCAmelCase =extract_label(__UpperCAmelCase )
if self.label_to_id is not None:
_lowerCAmelCase =self.label_to_id[label]
return {"image": image, "label": label}
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Any:
# Initialize accelerator
if args.with_tracking:
_lowerCAmelCase =Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="""all""" , project_dir=args.project_dir )
else:
_lowerCAmelCase =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
_lowerCAmelCase =config["""lr"""]
_lowerCAmelCase =int(config["""num_epochs"""] )
_lowerCAmelCase =int(config["""seed"""] )
_lowerCAmelCase =int(config["""batch_size"""] )
_lowerCAmelCase =config["""image_size"""]
if not isinstance(__UpperCamelCase , (list, tuple) ):
_lowerCAmelCase =(image_size, image_size)
# Parse out whether we are saving every epoch or after a certain number of batches
if hasattr(args.checkpointing_steps , """isdigit""" ):
if args.checkpointing_steps == "epoch":
_lowerCAmelCase =args.checkpointing_steps
elif args.checkpointing_steps.isdigit():
_lowerCAmelCase =int(args.checkpointing_steps )
else:
raise ValueError(
F'''Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.''' )
else:
_lowerCAmelCase =None
# We need to initialize the trackers we use, and also store our configuration
if args.with_tracking:
_lowerCAmelCase =os.path.split(__UpperCamelCase )[-1].split(""".""" )[0]
accelerator.init_trackers(__UpperCamelCase , __UpperCamelCase )
# Grab all the image filenames
_lowerCAmelCase =[os.path.join(args.data_dir , __UpperCamelCase ) for fname in os.listdir(args.data_dir ) if fname.endswith(""".jpg""" )]
# Build the label correspondences
_lowerCAmelCase =[extract_label(__UpperCamelCase ) for fname in file_names]
_lowerCAmelCase =list(set(__UpperCamelCase ) )
id_to_label.sort()
_lowerCAmelCase ={lbl: i for i, lbl in enumerate(__UpperCamelCase )}
# Set the seed before splitting the data.
np.random.seed(__UpperCamelCase )
torch.manual_seed(__UpperCamelCase )
torch.cuda.manual_seed_all(__UpperCamelCase )
# Split our filenames between train and validation
_lowerCAmelCase =np.random.permutation(len(__UpperCamelCase ) )
_lowerCAmelCase =int(0.8 * len(__UpperCamelCase ) )
_lowerCAmelCase =random_perm[:cut]
_lowerCAmelCase =random_perm[cut:]
# For training we use a simple RandomResizedCrop
_lowerCAmelCase =Compose([RandomResizedCrop(__UpperCamelCase , scale=(0.5, 1.0) ), ToTensor()] )
_lowerCAmelCase =PetsDataset(
[file_names[i] for i in train_split] , image_transform=__UpperCamelCase , label_to_id=__UpperCamelCase )
# For evaluation, we use a deterministic Resize
_lowerCAmelCase =Compose([Resize(__UpperCamelCase ), ToTensor()] )
_lowerCAmelCase =PetsDataset([file_names[i] for i in eval_split] , image_transform=__UpperCamelCase , label_to_id=__UpperCamelCase )
# Instantiate dataloaders.
_lowerCAmelCase =DataLoader(__UpperCamelCase , shuffle=__UpperCamelCase , batch_size=__UpperCamelCase , num_workers=4 )
_lowerCAmelCase =DataLoader(__UpperCamelCase , shuffle=__UpperCamelCase , batch_size=__UpperCamelCase , num_workers=4 )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
_lowerCAmelCase =create_model("""resnet50d""" , pretrained=__UpperCamelCase , num_classes=len(__UpperCamelCase ) )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
_lowerCAmelCase =model.to(accelerator.device )
# Freezing the base model
for param in model.parameters():
_lowerCAmelCase =False
for param in model.get_classifier().parameters():
_lowerCAmelCase =True
# We normalize the batches of images to be a bit faster.
_lowerCAmelCase =torch.tensor(model.default_cfg["""mean"""] )[None, :, None, None].to(accelerator.device )
_lowerCAmelCase =torch.tensor(model.default_cfg["""std"""] )[None, :, None, None].to(accelerator.device )
# Instantiate optimizer
_lowerCAmelCase =torch.optim.Adam(params=model.parameters() , lr=lr / 25 )
# Instantiate learning rate scheduler
_lowerCAmelCase =OneCycleLR(optimizer=__UpperCamelCase , max_lr=__UpperCamelCase , epochs=__UpperCamelCase , steps_per_epoch=len(__UpperCamelCase ) )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =accelerator.prepare(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
# We need to keep track of how many total steps we have iterated over
_lowerCAmelCase =0
# We also need to keep track of the starting epoch so files are named properly
_lowerCAmelCase =0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(F'''Resumed from checkpoint: {args.resume_from_checkpoint}''' )
accelerator.load_state(args.resume_from_checkpoint )
_lowerCAmelCase =os.path.basename(args.resume_from_checkpoint )
else:
# Get the most recent checkpoint
_lowerCAmelCase =[f.name for f in os.scandir(os.getcwd() ) if f.is_dir()]
dirs.sort(key=os.path.getctime )
_lowerCAmelCase =dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
# Extract `epoch_{i}` or `step_{i}`
_lowerCAmelCase =os.path.splitext(__UpperCamelCase )[0]
if "epoch" in training_difference:
_lowerCAmelCase =int(training_difference.replace("""epoch_""" , """""" ) ) + 1
_lowerCAmelCase =None
else:
_lowerCAmelCase =int(training_difference.replace("""step_""" , """""" ) )
_lowerCAmelCase =resume_step // len(__UpperCamelCase )
resume_step -= starting_epoch * len(__UpperCamelCase )
# Now we train the model
for epoch in range(__UpperCamelCase , __UpperCamelCase ):
model.train()
if args.with_tracking:
_lowerCAmelCase =0
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
# We need to skip steps until we reach the resumed step
_lowerCAmelCase =accelerator.skip_first_batches(__UpperCamelCase , __UpperCamelCase )
overall_step += resume_step
else:
# After the first iteration though, we need to go back to the original dataloader
_lowerCAmelCase =train_dataloader
for batch in active_dataloader:
# We could avoid this line since we set the accelerator with `device_placement=True`.
_lowerCAmelCase ={k: v.to(accelerator.device ) for k, v in batch.items()}
_lowerCAmelCase =(batch["""image"""] - mean) / std
_lowerCAmelCase =model(__UpperCamelCase )
_lowerCAmelCase =torch.nn.functional.cross_entropy(__UpperCamelCase , batch["""label"""] )
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
accelerator.backward(__UpperCamelCase )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
if isinstance(__UpperCamelCase , __UpperCamelCase ):
_lowerCAmelCase =F'''step_{overall_step}'''
if overall_step % checkpointing_steps == 0:
if args.output_dir is not None:
_lowerCAmelCase =os.path.join(args.output_dir , __UpperCamelCase )
accelerator.save_state(__UpperCamelCase )
model.eval()
_lowerCAmelCase =0
_lowerCAmelCase =0
for step, batch in enumerate(__UpperCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
_lowerCAmelCase ={k: v.to(accelerator.device ) for k, v in batch.items()}
_lowerCAmelCase =(batch["""image"""] - mean) / std
with torch.no_grad():
_lowerCAmelCase =model(__UpperCamelCase )
_lowerCAmelCase =outputs.argmax(dim=-1 )
_lowerCAmelCase , _lowerCAmelCase =accelerator.gather_for_metrics((predictions, batch["""label"""]) )
_lowerCAmelCase =predictions == references
num_elems += accurate_preds.shape[0]
accurate += accurate_preds.long().sum()
_lowerCAmelCase =accurate.item() / num_elems
# Use accelerator.print to print only on the main process.
accelerator.print(F'''epoch {epoch}: {100 * eval_metric:.2f}''' )
if args.with_tracking:
accelerator.log(
{
"""accuracy""": 100 * eval_metric,
"""train_loss""": total_loss.item() / len(__UpperCamelCase ),
"""epoch""": epoch,
} , step=__UpperCamelCase , )
if checkpointing_steps == "epoch":
_lowerCAmelCase =F'''epoch_{epoch}'''
if args.output_dir is not None:
_lowerCAmelCase =os.path.join(args.output_dir , __UpperCamelCase )
accelerator.save_state(__UpperCamelCase )
if args.with_tracking:
accelerator.end_training()
def _lowerCamelCase() -> Optional[Any]:
_lowerCAmelCase =argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument("""--data_dir""" , required=__UpperCamelCase , help="""The data folder on disk.""" )
parser.add_argument("""--fp16""" , action="""store_true""" , help="""If passed, will use FP16 training.""" )
parser.add_argument(
"""--mixed_precision""" , type=__UpperCamelCase , default=__UpperCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" , )
parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" )
parser.add_argument(
"""--checkpointing_steps""" , type=__UpperCamelCase , default=__UpperCamelCase , help="""Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.""" , )
parser.add_argument(
"""--output_dir""" , type=__UpperCamelCase , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , )
parser.add_argument(
"""--resume_from_checkpoint""" , type=__UpperCamelCase , default=__UpperCamelCase , help="""If the training should continue from a checkpoint folder.""" , )
parser.add_argument(
"""--with_tracking""" , action="""store_true""" , help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" , )
parser.add_argument(
"""--project_dir""" , type=__UpperCamelCase , default="""logs""" , help="""Location on where to store experiment tracking logs` and relevent project information""" , )
_lowerCAmelCase =parser.parse_args()
_lowerCAmelCase ={"""lr""": 3E-2, """num_epochs""": 3, """seed""": 42, """batch_size""": 64, """image_size""": 224}
training_function(__UpperCamelCase , __UpperCamelCase )
if __name__ == "__main__":
main()
| 341 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase ) -> Optional[Any]:
_lowerCAmelCase =0
_lowerCAmelCase =len(__UpperCamelCase )
for i in range(n - 1 ):
for j in range(i + 1 , __UpperCamelCase ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def _lowerCamelCase(__UpperCamelCase ) -> List[Any]:
if len(__UpperCamelCase ) <= 1:
return arr, 0
_lowerCAmelCase =len(__UpperCamelCase ) // 2
_lowerCAmelCase =arr[0:mid]
_lowerCAmelCase =arr[mid:]
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =_count_cross_inversions(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =inversion_p + inversions_q + cross_inversions
return c, num_inversions
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Any:
_lowerCAmelCase =[]
_lowerCAmelCase =_lowerCAmelCase =_lowerCAmelCase =0
while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(__UpperCamelCase ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(__UpperCamelCase ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def _lowerCamelCase() -> str:
_lowerCAmelCase =[10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 8
print("""number of inversions = """ , __UpperCamelCase )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , __UpperCamelCase )
# an empty list should also have zero inversions
_lowerCAmelCase =[]
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , __UpperCamelCase )
if __name__ == "__main__":
main()
| 341 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST',
'ViTMSNModel',
'ViTMSNForImageClassification',
'ViTMSNPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_msn import (
VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMSNForImageClassification,
ViTMSNModel,
ViTMSNPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 |
"""simple docstring"""
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = None
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = None
lowerCamelCase = None
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = True
lowerCamelCase = None
lowerCamelCase = 1
lowerCamelCase = None
lowerCamelCase = False
lowerCamelCase = None
lowerCamelCase = None
def _lowerCAmelCase ( self ) -> "DownloadConfig":
return self.__class__(**{k: copy.deepcopy(__UpperCAmelCase ) for k, v in self.__dict__.items()} )
| 341 | 1 |
"""simple docstring"""
from random import randint
from tempfile import TemporaryFile
import numpy as np
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[str]:
_lowerCAmelCase =0
if start < end:
_lowerCAmelCase =randint(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =a[end]
_lowerCAmelCase =a[pivot]
_lowerCAmelCase =temp
_lowerCAmelCase , _lowerCAmelCase =_in_place_partition(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
count += _in_place_quick_sort(__UpperCamelCase , __UpperCamelCase , p - 1 )
count += _in_place_quick_sort(__UpperCamelCase , p + 1 , __UpperCamelCase )
return count
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Tuple:
_lowerCAmelCase =0
_lowerCAmelCase =randint(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =a[end]
_lowerCAmelCase =a[pivot]
_lowerCAmelCase =temp
_lowerCAmelCase =start - 1
for index in range(__UpperCamelCase , __UpperCamelCase ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
_lowerCAmelCase =new_pivot_index + 1
_lowerCAmelCase =a[new_pivot_index]
_lowerCAmelCase =a[index]
_lowerCAmelCase =temp
_lowerCAmelCase =a[new_pivot_index + 1]
_lowerCAmelCase =a[end]
_lowerCAmelCase =temp
return new_pivot_index + 1, count
__A = TemporaryFile()
__A = 100 # 1000 elements are to be sorted
__A , __A = 0, 1 # mean and standard deviation
__A = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print('The array is')
print(X)
outfile.seek(0) # using the same array
__A = np.load(outfile)
__A = len(M) - 1
__A = _in_place_quick_sort(M, 0, r)
print(
'No of Comparisons for 100 elements selected from a standard normal distribution'
'is :'
)
print(z)
| 341 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> int:
return int((input_a, input_a).count(1 ) != 0 )
def _lowerCamelCase() -> None:
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 341 | 1 |
"""simple docstring"""
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
_lowerCAmelCase =name
_lowerCAmelCase =value
_lowerCAmelCase =weight
def __repr__( self ) -> List[Any]:
return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})'''
def _lowerCAmelCase ( self ) -> List[str]:
return self.value
def _lowerCAmelCase ( self ) -> Dict:
return self.name
def _lowerCAmelCase ( self ) -> str:
return self.weight
def _lowerCAmelCase ( self ) -> List[str]:
return self.value / self.weight
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[Any]:
_lowerCAmelCase =[]
for i in range(len(__UpperCamelCase ) ):
menu.append(Things(name[i] , value[i] , weight[i] ) )
return menu
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Tuple:
_lowerCAmelCase =sorted(__UpperCamelCase , key=__UpperCamelCase , reverse=__UpperCamelCase )
_lowerCAmelCase =[]
_lowerCAmelCase , _lowerCAmelCase =0.0, 0.0
for i in range(len(__UpperCamelCase ) ):
if (total_cost + items_copy[i].get_weight()) <= max_cost:
result.append(items_copy[i] )
total_cost += items_copy[i].get_weight()
total_value += items_copy[i].get_value()
return (result, total_value)
def _lowerCamelCase() -> List[Any]:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 341 |
"""simple docstring"""
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
__A = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n'
__A = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n'
__A = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase__ ( datasets.Metric ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> Any:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ),
"""references""": datasets.Sequence(
datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/BLEU""",
"""https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""",
] , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=4 , __UpperCAmelCase=False ) -> Tuple:
_lowerCAmelCase =compute_bleu(
reference_corpus=__UpperCAmelCase , translation_corpus=__UpperCAmelCase , max_order=__UpperCAmelCase , smooth=__UpperCAmelCase )
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) =score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 341 | 1 |
"""simple docstring"""
from __future__ import annotations
def _lowerCamelCase(__UpperCamelCase ) -> list:
if len(__UpperCamelCase ) == 0:
return []
_lowerCAmelCase , _lowerCAmelCase =min(__UpperCamelCase ), max(__UpperCamelCase )
_lowerCAmelCase =int(max_value - min_value ) + 1
_lowerCAmelCase =[[] for _ in range(__UpperCamelCase )]
for i in my_list:
buckets[int(i - min_value )].append(__UpperCamelCase )
return [v for bucket in buckets for v in sorted(__UpperCamelCase )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
| 341 |
"""simple docstring"""
import argparse
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
parser.add_argument(
'--original_config_file',
type=str,
required=True,
help='The YAML config file corresponding to the original architecture.',
)
parser.add_argument(
'--num_in_channels',
default=None,
type=int,
help='The number of input channels. If `None` number of input channels will be automatically inferred.',
)
parser.add_argument(
'--image_size',
default=512,
type=int,
help=(
'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2'
' Base. Use 768 for Stable Diffusion v2.'
),
)
parser.add_argument(
'--extract_ema',
action='store_true',
help=(
'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights'
' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield'
' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.'
),
)
parser.add_argument(
'--upcast_attention',
action='store_true',
help=(
'Whether the attention computation should always be upcasted. This is necessary when running stable'
' diffusion 2.1.'
),
)
parser.add_argument(
'--from_safetensors',
action='store_true',
help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.',
)
parser.add_argument(
'--to_safetensors',
action='store_true',
help='Whether to store pipeline in safetensors format or not.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)')
def _lowerCamelCase(__UpperCamelCase ) -> List[str]:
if string == "True":
return True
elif string == "False":
return False
else:
raise ValueError(F'''could not parse string as bool {string}''' )
parser.add_argument(
'--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool
)
parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int)
__A = parser.parse_args()
__A = download_controlnet_from_original_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
extract_ema=args.extract_ema,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
use_linear_projection=args.use_linear_projection,
cross_attention_dim=args.cross_attention_dim,
)
controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 341 | 1 |
"""simple docstring"""
import string
def _lowerCamelCase(__UpperCamelCase ) -> None:
for key in range(len(string.ascii_uppercase ) ):
_lowerCAmelCase =""""""
for symbol in message:
if symbol in string.ascii_uppercase:
_lowerCAmelCase =string.ascii_uppercase.find(__UpperCamelCase )
_lowerCAmelCase =num - key
if num < 0:
_lowerCAmelCase =num + len(string.ascii_uppercase )
_lowerCAmelCase =translated + string.ascii_uppercase[num]
else:
_lowerCAmelCase =translated + symbol
print(F'''Decryption using Key #{key}: {translated}''' )
def _lowerCamelCase() -> None:
_lowerCAmelCase =input("""Encrypted message: """ )
_lowerCAmelCase =message.upper()
decrypt(__UpperCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 341 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available
__A = {
'configuration_audio_spectrogram_transformer': [
'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'ASTConfig',
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'ASTForAudioClassification',
'ASTModel',
'ASTPreTrainedModel',
]
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ['ASTFeatureExtractor']
if TYPE_CHECKING:
from .configuration_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
ASTConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ASTForAudioClassification,
ASTModel,
ASTPreTrainedModel,
)
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 1 |
"""simple docstring"""
import os
import zipfile
import pytest
from datasets.utils.extract import (
BzipaExtractor,
Extractor,
GzipExtractor,
LzaExtractor,
SevenZipExtractor,
TarExtractor,
XzExtractor,
ZipExtractor,
ZstdExtractor,
)
from .utils import require_lza, require_pyazr, require_zstandard
@pytest.mark.parametrize(
"""compression_format, is_archive""" , [
("""7z""", True),
("""bz2""", False),
("""gzip""", False),
("""lz4""", False),
("""tar""", True),
("""xz""", False),
("""zip""", True),
("""zstd""", False),
] , )
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> Optional[int]:
_lowerCAmelCase ={
"""7z""": (seven_zip_file, SevenZipExtractor),
"""bz2""": (bza_file, BzipaExtractor),
"""gzip""": (gz_file, GzipExtractor),
"""lz4""": (lza_file, LzaExtractor),
"""tar""": (tar_file, TarExtractor),
"""xz""": (xz_file, XzExtractor),
"""zip""": (zip_file, ZipExtractor),
"""zstd""": (zstd_file, ZstdExtractor),
}
_lowerCAmelCase , _lowerCAmelCase =input_paths_and_base_extractors[compression_format]
if input_path is None:
_lowerCAmelCase =F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(__UpperCamelCase )
assert base_extractor.is_extractable(__UpperCamelCase )
_lowerCAmelCase =tmp_path / ("""extracted""" if is_archive else """extracted.txt""")
base_extractor.extract(__UpperCamelCase , __UpperCamelCase )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
_lowerCAmelCase =file_path.read_text(encoding="""utf-8""" )
else:
_lowerCAmelCase =output_path.read_text(encoding="""utf-8""" )
_lowerCAmelCase =text_file.read_text(encoding="""utf-8""" )
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize(
"""compression_format, is_archive""" , [
("""7z""", True),
("""bz2""", False),
("""gzip""", False),
("""lz4""", False),
("""tar""", True),
("""xz""", False),
("""zip""", True),
("""zstd""", False),
] , )
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> Any:
_lowerCAmelCase ={
"""7z""": seven_zip_file,
"""bz2""": bza_file,
"""gzip""": gz_file,
"""lz4""": lza_file,
"""tar""": tar_file,
"""xz""": xz_file,
"""zip""": zip_file,
"""zstd""": zstd_file,
}
_lowerCAmelCase =input_paths[compression_format]
if input_path is None:
_lowerCAmelCase =F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(__UpperCamelCase )
_lowerCAmelCase =Extractor.infer_extractor_format(__UpperCamelCase )
assert extractor_format is not None
_lowerCAmelCase =tmp_path / ("""extracted""" if is_archive else """extracted.txt""")
Extractor.extract(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
_lowerCAmelCase =file_path.read_text(encoding="""utf-8""" )
else:
_lowerCAmelCase =output_path.read_text(encoding="""utf-8""" )
_lowerCAmelCase =text_file.read_text(encoding="""utf-8""" )
assert extracted_file_content == expected_file_content
@pytest.fixture
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> List[str]:
import tarfile
_lowerCAmelCase =tmp_path / """data_dot_dot"""
directory.mkdir()
_lowerCAmelCase =directory / """tar_file_with_dot_dot.tar"""
with tarfile.TarFile(__UpperCamelCase , """w""" ) as f:
f.add(__UpperCamelCase , arcname=os.path.join("""..""" , text_file.name ) )
return path
@pytest.fixture
def _lowerCamelCase(__UpperCamelCase ) -> List[str]:
import tarfile
_lowerCAmelCase =tmp_path / """data_sym_link"""
directory.mkdir()
_lowerCAmelCase =directory / """tar_file_with_sym_link.tar"""
os.symlink("""..""" , directory / """subdir""" , target_is_directory=__UpperCamelCase )
with tarfile.TarFile(__UpperCamelCase , """w""" ) as f:
f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8
return path
@pytest.mark.parametrize(
"""insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , )
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Dict:
_lowerCAmelCase ={
"""tar_file_with_dot_dot""": tar_file_with_dot_dot,
"""tar_file_with_sym_link""": tar_file_with_sym_link,
}
_lowerCAmelCase =insecure_tar_files[insecure_tar_file]
_lowerCAmelCase =tmp_path / """extracted"""
TarExtractor.extract(__UpperCamelCase , __UpperCamelCase )
assert caplog.text
for record in caplog.records:
assert record.levelname == "ERROR"
assert error_log in record.msg
def _lowerCamelCase(__UpperCamelCase ) -> Any:
# We should have less false positives than zipfile.is_zipfile
# We do that by checking only the magic number
_lowerCAmelCase =tmpdir / """not_a_zip_file"""
# From: https://github.com/python/cpython/pull/5053
_lowerCAmelCase =(
b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00"""
b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I"""
b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07"""
b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82"""
)
with not_a_zip_file.open("""wb""" ) as f:
f.write(__UpperCamelCase )
assert zipfile.is_zipfile(str(__UpperCamelCase ) ) # is a false positive for `zipfile`
assert not ZipExtractor.is_extractable(__UpperCamelCase ) # but we're right
| 341 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__A = {
'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'],
'tokenization_m2m_100': ['M2M100Tokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST',
'M2M100ForConditionalGeneration',
'M2M100Model',
'M2M100PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 1 |
"""simple docstring"""
import argparse
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
parser.add_argument(
'--original_config_file',
type=str,
required=True,
help='The YAML config file corresponding to the original architecture.',
)
parser.add_argument(
'--num_in_channels',
default=None,
type=int,
help='The number of input channels. If `None` number of input channels will be automatically inferred.',
)
parser.add_argument(
'--image_size',
default=512,
type=int,
help=(
'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2'
' Base. Use 768 for Stable Diffusion v2.'
),
)
parser.add_argument(
'--extract_ema',
action='store_true',
help=(
'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights'
' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield'
' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.'
),
)
parser.add_argument(
'--upcast_attention',
action='store_true',
help=(
'Whether the attention computation should always be upcasted. This is necessary when running stable'
' diffusion 2.1.'
),
)
parser.add_argument(
'--from_safetensors',
action='store_true',
help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.',
)
parser.add_argument(
'--to_safetensors',
action='store_true',
help='Whether to store pipeline in safetensors format or not.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)')
def _lowerCamelCase(__UpperCamelCase ) -> List[str]:
if string == "True":
return True
elif string == "False":
return False
else:
raise ValueError(F'''could not parse string as bool {string}''' )
parser.add_argument(
'--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool
)
parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int)
__A = parser.parse_args()
__A = download_controlnet_from_original_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
extract_ema=args.extract_ema,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
use_linear_projection=args.use_linear_projection,
cross_attention_dim=args.cross_attention_dim,
)
controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 341 |
"""simple docstring"""
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
__A = datasets.logging.get_logger(__name__)
__A = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n'
__A = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n'
__A = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n'
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase="dummy_doc" ) -> Dict:
_lowerCAmelCase ={doc: key_lines}
_lowerCAmelCase ={doc: sys_lines}
_lowerCAmelCase ={}
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase , _lowerCAmelCase =reader.get_doc_mentions(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase )
key_singletons_num += singletons_num
if NP_only or min_span:
_lowerCAmelCase =reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =reader.get_doc_mentions(__UpperCamelCase , sys_doc_lines[doc] , __UpperCamelCase )
sys_singletons_num += singletons_num
if NP_only or min_span:
_lowerCAmelCase =reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase )
if remove_nested:
_lowerCAmelCase , _lowerCAmelCase =reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
_lowerCAmelCase , _lowerCAmelCase =reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
_lowerCAmelCase =reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =(key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
"""Number of removed nested coreferring mentions in the key """
F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' )
logger.info(
"""Number of resulting singleton clusters in the key """
F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' )
if not keep_singletons:
logger.info(
F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system '''
"""files, respectively""" )
return doc_coref_infos
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int:
_lowerCAmelCase =get_coref_infos(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase ={}
_lowerCAmelCase =0
_lowerCAmelCase =0
for name, metric in metrics:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =evaluator.evaluate_documents(__UpperCamelCase , __UpperCamelCase , beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} )
logger.info(
name.ljust(10 ) , F'''Recall: {recall * 100:.2f}''' , F''' Precision: {precision * 100:.2f}''' , F''' F1: {fa * 100:.2f}''' , )
if conll_subparts_num == 3:
_lowerCAmelCase =(conll / 3) * 100
logger.info(F'''CoNLL score: {conll:.2f}''' )
output_scores.update({"""conll_score""": conll} )
return output_scores
def _lowerCamelCase(__UpperCamelCase ) -> Tuple:
_lowerCAmelCase =False
for line in key_lines:
if not line.startswith("""#""" ):
if len(line.split() ) > 6:
_lowerCAmelCase =line.split()[5]
if not parse_col == "-":
_lowerCAmelCase =True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase__ ( datasets.Metric ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> str:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Sequence(datasets.Value("""string""" ) ),
} ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[
"""https://github.com/ns-moosavi/coval""",
"""https://www.aclweb.org/anthology/P16-1060""",
"""http://www.conll.cemantix.org/2012/data.html""",
] , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False ) -> Optional[Any]:
_lowerCAmelCase =[
("""mentions""", evaluator.mentions),
("""muc""", evaluator.muc),
("""bcub""", evaluator.b_cubed),
("""ceafe""", evaluator.ceafe),
("""lea""", evaluator.lea),
]
if min_span:
_lowerCAmelCase =util.check_gold_parse_annotation(__UpperCAmelCase )
if not has_gold_parse:
raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" )
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
_lowerCAmelCase =evaluate(
key_lines=__UpperCAmelCase , sys_lines=__UpperCAmelCase , metrics=__UpperCAmelCase , NP_only=__UpperCAmelCase , remove_nested=__UpperCAmelCase , keep_singletons=__UpperCAmelCase , min_span=__UpperCAmelCase , )
return score
| 341 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A = {
'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'],
'feature_extraction_mctct': ['MCTCTFeatureExtractor'],
'processing_mctct': ['MCTCTProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MCTCTForCTC',
'MCTCTModel',
'MCTCTPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = XGLMConfig
lowerCamelCase = {}
lowerCamelCase = '''gelu'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=0.0_2 , ) -> List[str]:
_lowerCAmelCase =parent
_lowerCAmelCase =batch_size
_lowerCAmelCase =seq_length
_lowerCAmelCase =is_training
_lowerCAmelCase =use_input_mask
_lowerCAmelCase =use_labels
_lowerCAmelCase =vocab_size
_lowerCAmelCase =d_model
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =ffn_dim
_lowerCAmelCase =activation_function
_lowerCAmelCase =activation_dropout
_lowerCAmelCase =attention_dropout
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =initializer_range
_lowerCAmelCase =None
_lowerCAmelCase =0
_lowerCAmelCase =2
_lowerCAmelCase =1
def _lowerCAmelCase ( self ) -> Dict:
return XGLMConfig.from_pretrained("""facebook/xglm-564M""" )
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
_lowerCAmelCase =None
if self.use_input_mask:
_lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length] )
_lowerCAmelCase =self.get_config()
_lowerCAmelCase =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowerCAmelCase ( self ) -> str:
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__UpperCAmelCase , )
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =self.prepare_config_and_inputs()
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) =config_and_inputs
_lowerCAmelCase ={
"""input_ids""": input_ids,
"""head_mask""": head_mask,
}
return config, inputs_dict
@require_tf
class lowerCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
lowerCamelCase = (TFXGLMForCausalLM,) if is_tf_available() else ()
lowerCamelCase = (
{'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {}
)
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =TFXGLMModelTester(self )
_lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase , n_embd=37 )
def _lowerCAmelCase ( self ) -> int:
self.config_tester.run_common_tests()
@slow
def _lowerCAmelCase ( self ) -> Union[str, Any]:
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase =TFXGLMModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" )
def _lowerCAmelCase ( self ) -> Union[str, Any]:
super().test_resize_token_embeddings()
@require_tf
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def _lowerCAmelCase ( self , __UpperCAmelCase=True ) -> str:
_lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase =tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
_lowerCAmelCase =[2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81]
# fmt: on
_lowerCAmelCase =model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , __UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
tf.random.set_seed(0 )
_lowerCAmelCase =tokenizer("""Today is a nice day and""" , return_tensors="""tf""" )
_lowerCAmelCase =tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(""":/CPU:0""" ):
_lowerCAmelCase =model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , seed=[7, 0] )
_lowerCAmelCase =tokenizer.decode(output_ids[0] , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =(
"""Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"""
)
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase ="""left"""
# use different length sentences to test batching
_lowerCAmelCase =[
"""This is an extremelly long sentence that only exists to test the ability of the model to cope with """
"""left-padding, such as in batched generation. The output for the sequence below should be the same """
"""regardless of whether left padding is applied or not. When""",
"""Hello, my dog is a little""",
]
_lowerCAmelCase =tokenizer(__UpperCAmelCase , return_tensors="""tf""" , padding=__UpperCAmelCase )
_lowerCAmelCase =inputs["""input_ids"""]
_lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 )
_lowerCAmelCase =tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids
_lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 )
_lowerCAmelCase =tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids
_lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 )
_lowerCAmelCase =tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =tokenizer.decode(output_non_padded[0] , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =tokenizer.decode(output_padded[0] , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =[
"""This is an extremelly long sentence that only exists to test the ability of the model to cope with """
"""left-padding, such as in batched generation. The output for the sequence below should be the same """
"""regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """
"""a single""",
"""Hello, my dog is a little bit of a shy one, but he is very friendly""",
]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , [non_padded_sentence, padded_sentence] )
| 341 | 1 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> str:
if n == 0:
return 1
elif n % 2 == 1:
return (binary_exponentiation(__UpperCamelCase , n - 1 , __UpperCamelCase ) * a) % mod
else:
_lowerCAmelCase =binary_exponentiation(__UpperCamelCase , n / 2 , __UpperCamelCase )
return (b * b) % mod
# a prime number
__A = 701
__A = 10_0000_0000
__A = 10
# using binary exponentiation function, O(log(p)):
print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p)
print((a / b) % p == (a * b ** (p - 2)) % p)
| 341 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
__A = logging.get_logger(__name__)
__A = {'vocab_file': 'spiece.model'}
__A = {
'vocab_file': {
'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model',
'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model',
}
}
__A = {
'xlnet-base-cased': None,
'xlnet-large-cased': None,
}
# Segments (not really needed)
__A = 0
__A = 1
__A = 2
__A = 3
__A = 4
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = VOCAB_FILES_NAMES
lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase = '''left'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<sep>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<cls>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=["<eop>", "<eod>"] , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it
_lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
_lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , )
_lowerCAmelCase =3
_lowerCAmelCase =do_lower_case
_lowerCAmelCase =remove_space
_lowerCAmelCase =keep_accents
_lowerCAmelCase =vocab_file
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__UpperCAmelCase )
@property
def _lowerCAmelCase ( self ) -> str:
return len(self.sp_model )
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> Optional[int]:
_lowerCAmelCase =self.__dict__.copy()
_lowerCAmelCase =None
return state
def __setstate__( self , __UpperCAmelCase ) -> Tuple:
_lowerCAmelCase =d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_lowerCAmelCase ={}
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[Any]:
if self.remove_space:
_lowerCAmelCase =""" """.join(inputs.strip().split() )
else:
_lowerCAmelCase =inputs
_lowerCAmelCase =outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
_lowerCAmelCase =unicodedata.normalize("""NFKD""" , __UpperCAmelCase )
_lowerCAmelCase ="""""".join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] )
if self.do_lower_case:
_lowerCAmelCase =outputs.lower()
return outputs
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
_lowerCAmelCase =self.preprocess_text(__UpperCAmelCase )
_lowerCAmelCase =self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase )
_lowerCAmelCase =[]
for piece in pieces:
if len(__UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
_lowerCAmelCase =self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
_lowerCAmelCase =cur_pieces[1:]
else:
_lowerCAmelCase =cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(__UpperCAmelCase )
else:
new_pieces.append(__UpperCAmelCase )
return new_pieces
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]:
return self.sp_model.PieceToId(__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
return self.sp_model.IdToPiece(__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> str:
_lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip()
return out_string
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> str:
_lowerCAmelCase =kwargs.pop("""use_source_tokenizer""" , __UpperCAmelCase )
_lowerCAmelCase =self.convert_ids_to_tokens(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
_lowerCAmelCase =[]
_lowerCAmelCase =[]
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) )
_lowerCAmelCase =[]
sub_texts.append(__UpperCAmelCase )
else:
current_sub_text.append(__UpperCAmelCase )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) )
# Mimic the behavior of the Rust tokenizer:
# By default, there are no spaces between special tokens
_lowerCAmelCase ="""""".join(__UpperCAmelCase )
_lowerCAmelCase =(
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
_lowerCAmelCase =self.clean_up_tokenization(__UpperCAmelCase )
return clean_text
else:
return text
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_lowerCAmelCase =[self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase )
if token_ids_a is not None:
return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1]
return ([0] * len(__UpperCAmelCase )) + [1, 1]
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_lowerCAmelCase =[self.sep_token_id]
_lowerCAmelCase =[2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCAmelCase , """wb""" ) as fi:
_lowerCAmelCase =self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase )
return (out_vocab_file,)
| 341 | 1 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase = 1000 ) -> int:
_lowerCAmelCase , _lowerCAmelCase =1, 1
_lowerCAmelCase =[]
for i in range(1 , n + 1 ):
_lowerCAmelCase =prev_numerator + 2 * prev_denominator
_lowerCAmelCase =prev_numerator + prev_denominator
if len(str(__UpperCamelCase ) ) > len(str(__UpperCamelCase ) ):
result.append(__UpperCamelCase )
_lowerCAmelCase =numerator
_lowerCAmelCase =denominator
return len(__UpperCamelCase )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 341 |
"""simple docstring"""
from __future__ import annotations
def _lowerCamelCase(__UpperCamelCase ) -> bool:
_lowerCAmelCase =str(__UpperCamelCase )
return n == n[::-1]
def _lowerCamelCase(__UpperCamelCase = 1000000 ) -> str:
_lowerCAmelCase =0
for i in range(1 , __UpperCamelCase ):
if is_palindrome(__UpperCamelCase ) and is_palindrome(bin(__UpperCamelCase ).split("""b""" )[1] ):
total += i
return total
if __name__ == "__main__":
print(solution(int(str(input().strip()))))
| 341 | 1 |
"""simple docstring"""
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
__A = TypeVar('KEY')
__A = TypeVar('VAL')
@dataclass(frozen=__magic_name__ , slots=__magic_name__ )
class lowerCamelCase__ ( Generic[KEY, VAL] ):
'''simple docstring'''
lowerCamelCase = 42
lowerCamelCase = 42
class lowerCamelCase__ ( _Item ):
'''simple docstring'''
def __init__( self ) -> None:
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __bool__( self ) -> bool:
return False
__A = _DeletedItem()
class lowerCamelCase__ ( MutableMapping[KEY, VAL] ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase = 8 , __UpperCAmelCase = 0.7_5 ) -> None:
_lowerCAmelCase =initial_block_size
_lowerCAmelCase =[None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
_lowerCAmelCase =capacity_factor
_lowerCAmelCase =0
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> int:
return hash(__UpperCAmelCase ) % len(self._buckets )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> int:
return (ind + 1) % len(self._buckets )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> bool:
_lowerCAmelCase =self._buckets[ind]
if not stored:
_lowerCAmelCase =_Item(__UpperCAmelCase , __UpperCAmelCase )
self._len += 1
return True
elif stored.key == key:
_lowerCAmelCase =_Item(__UpperCAmelCase , __UpperCAmelCase )
return True
else:
return False
def _lowerCAmelCase ( self ) -> bool:
_lowerCAmelCase =len(self._buckets ) * self._capacity_factor
return len(self ) >= int(__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> bool:
if len(self._buckets ) <= self._initial_block_size:
return False
_lowerCAmelCase =len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> None:
_lowerCAmelCase =self._buckets
_lowerCAmelCase =[None] * new_size
_lowerCAmelCase =0
for item in old_buckets:
if item:
self._add_item(item.key , item.val )
def _lowerCAmelCase ( self ) -> None:
self._resize(len(self._buckets ) * 2 )
def _lowerCAmelCase ( self ) -> None:
self._resize(len(self._buckets ) // 2 )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Iterator[int]:
_lowerCAmelCase =self._get_bucket_index(__UpperCAmelCase )
for _ in range(len(self._buckets ) ):
yield ind
_lowerCAmelCase =self._get_next_ind(__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
for ind in self._iterate_buckets(__UpperCAmelCase ):
if self._try_set(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
break
def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
if self._is_full():
self._size_up()
self._add_item(__UpperCAmelCase , __UpperCAmelCase )
def __delitem__( self , __UpperCAmelCase ) -> None:
for ind in self._iterate_buckets(__UpperCAmelCase ):
_lowerCAmelCase =self._buckets[ind]
if item is None:
raise KeyError(__UpperCAmelCase )
if item is _deleted:
continue
if item.key == key:
_lowerCAmelCase =_deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self , __UpperCAmelCase ) -> VAL:
for ind in self._iterate_buckets(__UpperCAmelCase ):
_lowerCAmelCase =self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(__UpperCAmelCase )
def __len__( self ) -> int:
return self._len
def __iter__( self ) -> Iterator[KEY]:
yield from (item.key for item in self._buckets if item)
def __repr__( self ) -> str:
_lowerCAmelCase =""" ,""".join(
f'''{item.key}: {item.val}''' for item in self._buckets if item )
return f'''HashMap({val_string})'''
| 341 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = '''llama'''
lowerCamelCase = ['''past_key_values''']
def __init__( self , __UpperCAmelCase=3_20_00 , __UpperCAmelCase=40_96 , __UpperCAmelCase=1_10_08 , __UpperCAmelCase=32 , __UpperCAmelCase=32 , __UpperCAmelCase=None , __UpperCAmelCase="silu" , __UpperCAmelCase=20_48 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-6 , __UpperCAmelCase=True , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=False , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]:
_lowerCAmelCase =vocab_size
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =hidden_size
_lowerCAmelCase =intermediate_size
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =num_key_value_heads
_lowerCAmelCase =hidden_act
_lowerCAmelCase =initializer_range
_lowerCAmelCase =rms_norm_eps
_lowerCAmelCase =pretraining_tp
_lowerCAmelCase =use_cache
_lowerCAmelCase =rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase , )
def _lowerCAmelCase ( self ) -> str:
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2:
raise ValueError(
"""`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """
f'''got {self.rope_scaling}''' )
_lowerCAmelCase =self.rope_scaling.get("""type""" , __UpperCAmelCase )
_lowerCAmelCase =self.rope_scaling.get("""factor""" , __UpperCAmelCase )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' )
if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0:
raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
| 341 | 1 |
"""simple docstring"""
import html
from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from ...utils import is_bsa_available, logging, requires_backends
if is_bsa_available():
import bsa
from bsa import BeautifulSoup
__A = logging.get_logger(__name__)
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
def __init__( self , **__UpperCAmelCase ) -> List[str]:
requires_backends(self , ["""bs4"""] )
super().__init__(**__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]:
_lowerCAmelCase =[]
_lowerCAmelCase =[]
_lowerCAmelCase =element if element.name else element.parent
for parent in child.parents: # type: bs4.element.Tag
_lowerCAmelCase =parent.find_all(child.name , recursive=__UpperCAmelCase )
xpath_tags.append(child.name )
xpath_subscripts.append(
0 if 1 == len(__UpperCAmelCase ) else next(i for i, s in enumerate(__UpperCAmelCase , 1 ) if s is child ) )
_lowerCAmelCase =parent
xpath_tags.reverse()
xpath_subscripts.reverse()
return xpath_tags, xpath_subscripts
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Dict:
_lowerCAmelCase =BeautifulSoup(__UpperCAmelCase , """html.parser""" )
_lowerCAmelCase =[]
_lowerCAmelCase =[]
_lowerCAmelCase =[]
for element in html_code.descendants:
if type(__UpperCAmelCase ) == bsa.element.NavigableString:
if type(element.parent ) != bsa.element.Tag:
continue
_lowerCAmelCase =html.unescape(__UpperCAmelCase ).strip()
if not text_in_this_tag:
continue
all_doc_strings.append(__UpperCAmelCase )
_lowerCAmelCase , _lowerCAmelCase =self.xpath_soup(__UpperCAmelCase )
stringaxtag_seq.append(__UpperCAmelCase )
stringaxsubs_seq.append(__UpperCAmelCase )
if len(__UpperCAmelCase ) != len(__UpperCAmelCase ):
raise ValueError("""Number of doc strings and xtags does not correspond""" )
if len(__UpperCAmelCase ) != len(__UpperCAmelCase ):
raise ValueError("""Number of doc strings and xsubs does not correspond""" )
return all_doc_strings, stringaxtag_seq, stringaxsubs_seq
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
_lowerCAmelCase =""""""
for tagname, subs in zip(__UpperCAmelCase , __UpperCAmelCase ):
xpath += f'''/{tagname}'''
if subs != 0:
xpath += f'''[{subs}]'''
return xpath
def __call__( self , __UpperCAmelCase ) -> BatchFeature:
_lowerCAmelCase =False
# Check that strings has a valid type
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
_lowerCAmelCase =True
elif isinstance(__UpperCAmelCase , (list, tuple) ):
if len(__UpperCAmelCase ) == 0 or isinstance(html_strings[0] , __UpperCAmelCase ):
_lowerCAmelCase =True
if not valid_strings:
raise ValueError(
"""HTML strings must of type `str`, `List[str]` (batch of examples), """
f'''but is of type {type(__UpperCAmelCase )}.''' )
_lowerCAmelCase =bool(isinstance(__UpperCAmelCase , (list, tuple) ) and (isinstance(html_strings[0] , __UpperCAmelCase )) )
if not is_batched:
_lowerCAmelCase =[html_strings]
# Get nodes + xpaths
_lowerCAmelCase =[]
_lowerCAmelCase =[]
for html_string in html_strings:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self.get_three_from_single(__UpperCAmelCase )
nodes.append(__UpperCAmelCase )
_lowerCAmelCase =[]
for node, tag_list, sub_list in zip(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
_lowerCAmelCase =self.construct_xpath(__UpperCAmelCase , __UpperCAmelCase )
xpath_strings.append(__UpperCAmelCase )
xpaths.append(__UpperCAmelCase )
# return as Dict
_lowerCAmelCase ={"""nodes""": nodes, """xpaths""": xpaths}
_lowerCAmelCase =BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
return encoded_inputs
| 341 |
"""simple docstring"""
import warnings
from .generation import TFGenerationMixin
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
# warning at import time
warnings.warn(
'''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will '''
'''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''' , __magic_name__ , )
| 341 | 1 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase ) -> str:
if not all(char in """01""" for char in bin_string ):
raise ValueError("""Non-binary value was passed to the function""" )
if not bin_string:
raise ValueError("""Empty string was passed to the function""" )
_lowerCAmelCase =""""""
while len(__UpperCamelCase ) % 3 != 0:
_lowerCAmelCase ="""0""" + bin_string
_lowerCAmelCase =[
bin_string[index : index + 3]
for index in range(len(__UpperCamelCase ) )
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
_lowerCAmelCase =0
for index, val in enumerate(__UpperCamelCase ):
oct_val += int(2 ** (2 - index) * int(__UpperCamelCase ) )
oct_string += str(__UpperCamelCase )
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod()
| 341 |
"""simple docstring"""
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=16 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=30 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=None , ) -> Any:
_lowerCAmelCase =parent
_lowerCAmelCase =batch_size
_lowerCAmelCase =decoder_seq_length
# For common tests
_lowerCAmelCase =self.decoder_seq_length
_lowerCAmelCase =is_training
_lowerCAmelCase =use_attention_mask
_lowerCAmelCase =use_labels
_lowerCAmelCase =vocab_size
_lowerCAmelCase =d_model
_lowerCAmelCase =d_model
_lowerCAmelCase =decoder_layers
_lowerCAmelCase =decoder_layers
_lowerCAmelCase =decoder_ffn_dim
_lowerCAmelCase =decoder_attention_heads
_lowerCAmelCase =decoder_attention_heads
_lowerCAmelCase =eos_token_id
_lowerCAmelCase =bos_token_id
_lowerCAmelCase =pad_token_id
_lowerCAmelCase =decoder_start_token_id
_lowerCAmelCase =use_cache
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =None
_lowerCAmelCase =decoder_seq_length
_lowerCAmelCase =2
_lowerCAmelCase =1
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
_lowerCAmelCase =None
if self.use_attention_mask:
_lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 )
_lowerCAmelCase =None
if self.use_labels:
_lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
_lowerCAmelCase =TrOCRConfig(
vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , )
return (config, input_ids, attention_mask, lm_labels)
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[Any]:
_lowerCAmelCase =True
_lowerCAmelCase =TrOCRDecoder(config=__UpperCAmelCase ).to(__UpperCAmelCase ).eval()
_lowerCAmelCase =input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
_lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
_lowerCAmelCase =model(__UpperCAmelCase )
_lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 )
_lowerCAmelCase =outputs["""past_key_values"""]
# create hypothetical next token and extent to next_input_ids
_lowerCAmelCase =ids_tensor((2, 1) , config.vocab_size - 1 ) + 1
# append to next input_ids and
_lowerCAmelCase =torch.cat([input_ids, next_tokens] , dim=-1 )
_lowerCAmelCase =model(__UpperCAmelCase )["""last_hidden_state"""]
_lowerCAmelCase =model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )["""last_hidden_state"""]
# select random slice
_lowerCAmelCase =ids_tensor((1,) , output_from_past.shape[-1] ).item()
_lowerCAmelCase =output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
_lowerCAmelCase =output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 )
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =self.prepare_config_and_inputs()
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs
_lowerCAmelCase ={"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
lowerCamelCase = (TrOCRForCausalLM,) if is_torch_available() else ()
lowerCamelCase = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {}
lowerCamelCase = True
lowerCamelCase = False
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =TrOCRStandaloneDecoderModelTester(self , is_training=__UpperCAmelCase )
_lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> List[str]:
pass
def _lowerCAmelCase ( self ) -> List[Any]:
pass
def _lowerCAmelCase ( self ) -> Any:
pass
def _lowerCAmelCase ( self ) -> Optional[Any]:
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Tuple:
return
@unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :)
def _lowerCAmelCase ( self ) -> str:
pass
| 341 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json',
'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json',
'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json',
'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json',
'funnel-transformer/intermediate': (
'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json'
),
'funnel-transformer/intermediate-base': (
'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json'
),
'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json',
'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json',
'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json',
'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json',
}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = '''funnel'''
lowerCamelCase = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''n_head''',
}
def __init__( self , __UpperCAmelCase=3_05_22 , __UpperCAmelCase=[4, 4, 4] , __UpperCAmelCase=None , __UpperCAmelCase=2 , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=64 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=None , __UpperCAmelCase=1e-9 , __UpperCAmelCase="mean" , __UpperCAmelCase="relative_shift" , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , **__UpperCAmelCase , ) -> Any:
_lowerCAmelCase =vocab_size
_lowerCAmelCase =block_sizes
_lowerCAmelCase =[1] * len(__UpperCAmelCase ) if block_repeats is None else block_repeats
assert len(__UpperCAmelCase ) == len(
self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length."
_lowerCAmelCase =num_decoder_layers
_lowerCAmelCase =d_model
_lowerCAmelCase =n_head
_lowerCAmelCase =d_head
_lowerCAmelCase =d_inner
_lowerCAmelCase =hidden_act
_lowerCAmelCase =hidden_dropout
_lowerCAmelCase =attention_dropout
_lowerCAmelCase =activation_dropout
_lowerCAmelCase =initializer_range
_lowerCAmelCase =initializer_std
_lowerCAmelCase =layer_norm_eps
assert pooling_type in [
"mean",
"max",
], f'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.'''
_lowerCAmelCase =pooling_type
assert attention_type in [
"relative_shift",
"factorized",
], f'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.'''
_lowerCAmelCase =attention_type
_lowerCAmelCase =separate_cls
_lowerCAmelCase =truncate_seq
_lowerCAmelCase =pool_q_only
super().__init__(**__UpperCAmelCase )
@property
def _lowerCAmelCase ( self ) -> Any:
return sum(self.block_sizes )
@num_hidden_layers.setter
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]:
raise NotImplementedError(
"""This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.""" )
@property
def _lowerCAmelCase ( self ) -> int:
return len(self.block_sizes )
@num_blocks.setter
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]:
raise NotImplementedError("""This model does not support the setting of `num_blocks`. Please set `block_sizes`.""" )
| 341 |
"""simple docstring"""
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = JukeboxTokenizer
lowerCamelCase = {
'''artist''': '''Zac Brown Band''',
'''genres''': '''Country''',
'''lyrics''': '''I met a traveller from an antique land,
Who said "Two vast and trunkless legs of stone
Stand in the desert. . . . Near them, on the sand,
Half sunk a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,
Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them, and the heart that fed;
And on the pedestal, these words appear:
My name is Ozymandias, King of Kings;
Look on my Works, ye Mighty, and despair!
Nothing beside remains. Round the decay
Of that colossal Wreck, boundless and bare
The lone and level sands stretch far away
''',
}
@require_torch
def _lowerCAmelCase ( self ) -> str:
import torch
_lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" )
_lowerCAmelCase =tokenizer(**self.metas )["""input_ids"""]
# fmt: off
_lowerCAmelCase =[
torch.tensor([[
0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 10_69, 11]] ),
torch.tensor([[0, 0, 0, 10_69, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def _lowerCAmelCase ( self ) -> Any:
import torch
_lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" )
_lowerCAmelCase =tokenizer(**self.metas )["""input_ids"""]
# fmt: off
_lowerCAmelCase =[
torch.tensor([[
0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 341 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json',
'YituTech/conv-bert-medium-small': (
'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json'
),
'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json',
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = '''convbert'''
def __init__( self , __UpperCAmelCase=3_05_22 , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-12 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=7_68 , __UpperCAmelCase=2 , __UpperCAmelCase=9 , __UpperCAmelCase=1 , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[int]:
super().__init__(
pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , )
_lowerCAmelCase =vocab_size
_lowerCAmelCase =hidden_size
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =intermediate_size
_lowerCAmelCase =hidden_act
_lowerCAmelCase =hidden_dropout_prob
_lowerCAmelCase =attention_probs_dropout_prob
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =type_vocab_size
_lowerCAmelCase =initializer_range
_lowerCAmelCase =layer_norm_eps
_lowerCAmelCase =embedding_size
_lowerCAmelCase =head_ratio
_lowerCAmelCase =conv_kernel_size
_lowerCAmelCase =num_groups
_lowerCAmelCase =classifier_dropout
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
@property
def _lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
_lowerCAmelCase ={0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_lowerCAmelCase ={0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 341 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__A = logging.get_logger(__name__)
__A = '▁'
__A = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'}
__A = {
'vocab_file': {
'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model',
},
'monolingual_vocab_file': {
'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt',
},
}
__A = {'vinai/bartpho-syllable': 1024}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = VOCAB_FILES_NAMES
lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase = ['''input_ids''', '''attention_mask''']
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it
_lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
_lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , )
_lowerCAmelCase =vocab_file
_lowerCAmelCase =monolingual_vocab_file
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__UpperCAmelCase ) )
# Load the reduced vocab
# Keep order of special tokens for backward compatibility
_lowerCAmelCase ={}
_lowerCAmelCase =0
for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids:
_lowerCAmelCase =cnt
cnt += 1
with open(__UpperCAmelCase , """r""" , encoding="""utf-8""" ) as f:
for line in f.readlines():
_lowerCAmelCase =line.strip().split()[0]
_lowerCAmelCase =len(self.fairseq_tokens_to_ids )
if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids:
_lowerCAmelCase =len(self.fairseq_tokens_to_ids )
_lowerCAmelCase ={v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ) -> Dict:
_lowerCAmelCase =self.__dict__.copy()
_lowerCAmelCase =None
_lowerCAmelCase =self.sp_model.serialized_model_proto()
return state
def __setstate__( self , __UpperCAmelCase ) -> List[Any]:
_lowerCAmelCase =d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_lowerCAmelCase ={}
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
_lowerCAmelCase =[self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(__UpperCAmelCase )) + [1]
return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1]
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_lowerCAmelCase =[self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def _lowerCAmelCase ( self ) -> Union[str, Any]:
return len(self.fairseq_ids_to_tokens )
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
else:
return self.unk_token_id
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]:
return self.fairseq_ids_to_tokens[index]
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip()
return out_string
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCAmelCase , """wb""" ) as fi:
_lowerCAmelCase =self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase )
if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath(
__UpperCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ):
copyfile(self.monolingual_vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.monolingual_vocab_file ):
with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as fp:
for token in self.fairseq_tokens_to_ids:
if token not in self.all_special_tokens:
fp.write(f'''{str(__UpperCAmelCase )} \n''' )
return out_vocab_file, out_monolingual_vocab_file
| 341 | 1 |
"""simple docstring"""
from __future__ import annotations
__A = list[list[int]]
# assigning initial values to the grid
__A = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
__A = [
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> bool:
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def _lowerCamelCase(__UpperCamelCase ) -> tuple[int, int] | None:
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def _lowerCamelCase(__UpperCamelCase ) -> Matrix | None:
if location := find_empty_location(__UpperCamelCase ):
_lowerCAmelCase , _lowerCAmelCase =location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1 , 10 ):
if is_safe(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ):
_lowerCAmelCase =digit
if sudoku(__UpperCamelCase ) is not None:
return grid
_lowerCAmelCase =0
return None
def _lowerCamelCase(__UpperCamelCase ) -> None:
for row in grid:
for cell in row:
print(__UpperCamelCase , end=""" """ )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print('\nExample grid:\n' + '=' * 20)
print_solution(example_grid)
print('\nExample grid solution:')
__A = sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print('Cannot find a solution.')
| 341 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =1
_lowerCAmelCase =3
_lowerCAmelCase =(32, 32)
_lowerCAmelCase =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCAmelCase )
return image
@property
def _lowerCAmelCase ( self ) -> Tuple:
torch.manual_seed(0 )
_lowerCAmelCase =UNetaDConditionModel(
block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__UpperCAmelCase , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , )
return model
@property
def _lowerCAmelCase ( self ) -> Tuple:
torch.manual_seed(0 )
_lowerCAmelCase =AutoencoderKL(
block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def _lowerCAmelCase ( self ) -> Optional[Any]:
torch.manual_seed(0 )
_lowerCAmelCase =CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , )
return CLIPTextModel(__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase =self.dummy_cond_unet_upscale
_lowerCAmelCase =DDPMScheduler()
_lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" )
_lowerCAmelCase =self.dummy_vae
_lowerCAmelCase =self.dummy_text_encoder
_lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
_lowerCAmelCase =StableDiffusionUpscalePipeline(
unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , )
_lowerCAmelCase =sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase ="""A painting of a squirrel eating a burger"""
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
_lowerCAmelCase =output.images
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=__UpperCAmelCase , )[0]
_lowerCAmelCase =image[0, -3:, -3:, -1]
_lowerCAmelCase =image_from_tuple[0, -3:, -3:, -1]
_lowerCAmelCase =low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
_lowerCAmelCase =np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase =self.dummy_cond_unet_upscale
_lowerCAmelCase =DDPMScheduler()
_lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" )
_lowerCAmelCase =self.dummy_vae
_lowerCAmelCase =self.dummy_text_encoder
_lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
_lowerCAmelCase =StableDiffusionUpscalePipeline(
unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , )
_lowerCAmelCase =sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase ="""A painting of a squirrel eating a burger"""
_lowerCAmelCase =sd_pipe(
2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
_lowerCAmelCase =output.images
assert image.shape[0] == 2
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
_lowerCAmelCase =output.images
assert image.shape[0] == 2
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =self.dummy_cond_unet_upscale
_lowerCAmelCase =DDPMScheduler()
_lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" )
_lowerCAmelCase =self.dummy_vae
_lowerCAmelCase =self.dummy_text_encoder
_lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
# put models in fp16, except vae as it overflows in fp16
_lowerCAmelCase =unet.half()
_lowerCAmelCase =text_encoder.half()
# make sure here that pndm scheduler skips prk
_lowerCAmelCase =StableDiffusionUpscalePipeline(
unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , )
_lowerCAmelCase =sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase ="""A painting of a squirrel eating a burger"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type="""np""" , ).images
_lowerCAmelCase =low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
@slow
@require_torch_gpu
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> int:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_lowerCAmelCase =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"""
"""/upsampled_cat.npy""" )
_lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler"""
_lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing()
_lowerCAmelCase ="""a cat sitting on a park bench"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , )
_lowerCAmelCase =output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 1e-3
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_lowerCAmelCase =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"""
"""/upsampled_cat_fp16.npy""" )
_lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler"""
_lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(
__UpperCAmelCase , torch_dtype=torch.floataa , )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing()
_lowerCAmelCase ="""a cat sitting on a park bench"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , )
_lowerCAmelCase =output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 5e-1
def _lowerCAmelCase ( self ) -> Optional[Any]:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_lowerCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler"""
_lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(
__UpperCAmelCase , torch_dtype=torch.floataa , )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
_lowerCAmelCase ="""a cat sitting on a park bench"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , output_type="""np""" , )
_lowerCAmelCase =torch.cuda.max_memory_allocated()
# make sure that less than 2.9 GB is allocated
assert mem_bytes < 2.9 * 10**9
| 341 | 1 |
"""simple docstring"""
import argparse
import json
import torch
from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=1 ) -> Tuple:
if n_shave_prefix_segments >= 0:
return ".".join(path.split(""".""" )[n_shave_prefix_segments:] )
else:
return ".".join(path.split(""".""" )[:n_shave_prefix_segments] )
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=0 ) -> List[str]:
_lowerCAmelCase =[]
for old_item in old_list:
_lowerCAmelCase =old_item.replace("""in_layers.0""" , """norm1""" )
_lowerCAmelCase =new_item.replace("""in_layers.2""" , """conv1""" )
_lowerCAmelCase =new_item.replace("""out_layers.0""" , """norm2""" )
_lowerCAmelCase =new_item.replace("""out_layers.3""" , """conv2""" )
_lowerCAmelCase =new_item.replace("""emb_layers.1""" , """time_emb_proj""" )
_lowerCAmelCase =new_item.replace("""skip_connection""" , """conv_shortcut""" )
_lowerCAmelCase =shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=0 ) -> Tuple:
_lowerCAmelCase =[]
for old_item in old_list:
_lowerCAmelCase =old_item
_lowerCAmelCase =new_item.replace("""norm.weight""" , """group_norm.weight""" )
_lowerCAmelCase =new_item.replace("""norm.bias""" , """group_norm.bias""" )
_lowerCAmelCase =new_item.replace("""proj_out.weight""" , """proj_attn.weight""" )
_lowerCAmelCase =new_item.replace("""proj_out.bias""" , """proj_attn.bias""" )
_lowerCAmelCase =shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None ) -> Optional[int]:
assert isinstance(__UpperCamelCase , __UpperCamelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
_lowerCAmelCase =old_checkpoint[path]
_lowerCAmelCase =old_tensor.shape[0] // 3
_lowerCAmelCase =(-1, channels) if len(old_tensor.shape ) == 3 else (-1)
_lowerCAmelCase =old_tensor.shape[0] // config["""num_head_channels"""] // 3
_lowerCAmelCase =old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =old_tensor.split(channels // num_heads , dim=1 )
_lowerCAmelCase =query.reshape(__UpperCamelCase )
_lowerCAmelCase =key.reshape(__UpperCamelCase )
_lowerCAmelCase =value.reshape(__UpperCamelCase )
for path in paths:
_lowerCAmelCase =path["""new"""]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
_lowerCAmelCase =new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" )
_lowerCAmelCase =new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" )
_lowerCAmelCase =new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" )
if additional_replacements is not None:
for replacement in additional_replacements:
_lowerCAmelCase =new_path.replace(replacement["""old"""] , replacement["""new"""] )
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
_lowerCAmelCase =old_checkpoint[path["""old"""]][:, :, 0]
else:
_lowerCAmelCase =old_checkpoint[path["""old"""]]
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Optional[Any]:
_lowerCAmelCase ={}
_lowerCAmelCase =checkpoint["""time_embed.0.weight"""]
_lowerCAmelCase =checkpoint["""time_embed.0.bias"""]
_lowerCAmelCase =checkpoint["""time_embed.2.weight"""]
_lowerCAmelCase =checkpoint["""time_embed.2.bias"""]
_lowerCAmelCase =checkpoint["""input_blocks.0.0.weight"""]
_lowerCAmelCase =checkpoint["""input_blocks.0.0.bias"""]
_lowerCAmelCase =checkpoint["""out.0.weight"""]
_lowerCAmelCase =checkpoint["""out.0.bias"""]
_lowerCAmelCase =checkpoint["""out.2.weight"""]
_lowerCAmelCase =checkpoint["""out.2.bias"""]
# Retrieves the keys for the input blocks only
_lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} )
_lowerCAmelCase ={
layer_id: [key for key in checkpoint if F'''input_blocks.{layer_id}''' in key]
for layer_id in range(__UpperCamelCase )
}
# Retrieves the keys for the middle blocks only
_lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} )
_lowerCAmelCase ={
layer_id: [key for key in checkpoint if F'''middle_block.{layer_id}''' in key]
for layer_id in range(__UpperCamelCase )
}
# Retrieves the keys for the output blocks only
_lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} )
_lowerCAmelCase ={
layer_id: [key for key in checkpoint if F'''output_blocks.{layer_id}''' in key]
for layer_id in range(__UpperCamelCase )
}
for i in range(1 , __UpperCamelCase ):
_lowerCAmelCase =(i - 1) // (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =(i - 1) % (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =[key for key in input_blocks[i] if F'''input_blocks.{i}.0''' in key]
_lowerCAmelCase =[key for key in input_blocks[i] if F'''input_blocks.{i}.1''' in key]
if F'''input_blocks.{i}.0.op.weight''' in checkpoint:
_lowerCAmelCase =checkpoint[
F'''input_blocks.{i}.0.op.weight'''
]
_lowerCAmelCase =checkpoint[
F'''input_blocks.{i}.0.op.bias'''
]
continue
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
_lowerCAmelCase ={"""old""": F'''input_blocks.{i}.0''', """new""": F'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''}
_lowerCAmelCase ={"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path, resnet_op] , config=__UpperCamelCase )
if len(__UpperCamelCase ):
_lowerCAmelCase =renew_attention_paths(__UpperCamelCase )
_lowerCAmelCase ={
"""old""": F'''input_blocks.{i}.1''',
"""new""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}''',
}
_lowerCAmelCase ={
F'''input_blocks.{i}.1.qkv.bias''': {
"""key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''',
"""query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''',
"""value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''',
},
F'''input_blocks.{i}.1.qkv.weight''': {
"""key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''',
"""query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''',
"""value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''',
},
}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase , )
_lowerCAmelCase =middle_blocks[0]
_lowerCAmelCase =middle_blocks[1]
_lowerCAmelCase =middle_blocks[2]
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase )
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase )
_lowerCAmelCase =renew_attention_paths(__UpperCamelCase )
_lowerCAmelCase ={
"""middle_block.1.qkv.bias""": {
"""key""": """mid_block.attentions.0.key.bias""",
"""query""": """mid_block.attentions.0.query.bias""",
"""value""": """mid_block.attentions.0.value.bias""",
},
"""middle_block.1.qkv.weight""": {
"""key""": """mid_block.attentions.0.key.weight""",
"""query""": """mid_block.attentions.0.query.weight""",
"""value""": """mid_block.attentions.0.value.weight""",
},
}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase )
for i in range(__UpperCamelCase ):
_lowerCAmelCase =i // (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =i % (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =[shave_segments(__UpperCamelCase , 2 ) for name in output_blocks[i]]
_lowerCAmelCase ={}
for layer in output_block_layers:
_lowerCAmelCase , _lowerCAmelCase =layer.split(""".""" )[0], shave_segments(__UpperCamelCase , 1 )
if layer_id in output_block_list:
output_block_list[layer_id].append(__UpperCamelCase )
else:
_lowerCAmelCase =[layer_name]
if len(__UpperCamelCase ) > 1:
_lowerCAmelCase =[key for key in output_blocks[i] if F'''output_blocks.{i}.0''' in key]
_lowerCAmelCase =[key for key in output_blocks[i] if F'''output_blocks.{i}.1''' in key]
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
_lowerCAmelCase ={"""old""": F'''output_blocks.{i}.0''', """new""": F'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''}
assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase )
if ["conv.weight", "conv.bias"] in output_block_list.values():
_lowerCAmelCase =list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] )
_lowerCAmelCase =checkpoint[
F'''output_blocks.{i}.{index}.conv.weight'''
]
_lowerCAmelCase =checkpoint[
F'''output_blocks.{i}.{index}.conv.bias'''
]
# Clear attentions as they have been attributed above.
if len(__UpperCamelCase ) == 2:
_lowerCAmelCase =[]
if len(__UpperCamelCase ):
_lowerCAmelCase =renew_attention_paths(__UpperCamelCase )
_lowerCAmelCase ={
"""old""": F'''output_blocks.{i}.1''',
"""new""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}''',
}
_lowerCAmelCase ={
F'''output_blocks.{i}.1.qkv.bias''': {
"""key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''',
"""query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''',
"""value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''',
},
F'''output_blocks.{i}.1.qkv.weight''': {
"""key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''',
"""query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''',
"""value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''',
},
}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=__UpperCamelCase , )
else:
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase , n_shave_prefix_segments=1 )
for path in resnet_0_paths:
_lowerCAmelCase =""".""".join(["""output_blocks""", str(__UpperCamelCase ), path["""old"""]] )
_lowerCAmelCase =""".""".join(["""up_blocks""", str(__UpperCamelCase ), """resnets""", str(__UpperCamelCase ), path["""new"""]] )
_lowerCAmelCase =checkpoint[old_path]
return new_checkpoint
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the architecture.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
__A = parser.parse_args()
__A = torch.load(args.checkpoint_path)
with open(args.config_file) as f:
__A = json.loads(f.read())
__A = convert_ldm_checkpoint(checkpoint, config)
if "ldm" in config:
del config["ldm"]
__A = UNetaDModel(**config)
model.load_state_dict(converted_checkpoint)
try:
__A = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1]))
__A = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1]))
__A = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae)
pipe.save_pretrained(args.dump_path)
except: # noqa: E722
model.save_pretrained(args.dump_path)
| 341 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json',
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = '''cvt'''
def __init__( self , __UpperCAmelCase=3 , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[64, 1_92, 3_84] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 10] , __UpperCAmelCase=[4.0, 4.0, 4.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.1] , __UpperCAmelCase=[True, True, True] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , __UpperCAmelCase=[3, 3, 3] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-12 , **__UpperCAmelCase , ) -> Optional[Any]:
super().__init__(**__UpperCAmelCase )
_lowerCAmelCase =num_channels
_lowerCAmelCase =patch_sizes
_lowerCAmelCase =patch_stride
_lowerCAmelCase =patch_padding
_lowerCAmelCase =embed_dim
_lowerCAmelCase =num_heads
_lowerCAmelCase =depth
_lowerCAmelCase =mlp_ratio
_lowerCAmelCase =attention_drop_rate
_lowerCAmelCase =drop_rate
_lowerCAmelCase =drop_path_rate
_lowerCAmelCase =qkv_bias
_lowerCAmelCase =cls_token
_lowerCAmelCase =qkv_projection_method
_lowerCAmelCase =kernel_qkv
_lowerCAmelCase =padding_kv
_lowerCAmelCase =stride_kv
_lowerCAmelCase =padding_q
_lowerCAmelCase =stride_q
_lowerCAmelCase =initializer_range
_lowerCAmelCase =layer_norm_eps
| 341 | 1 |
"""simple docstring"""
import os
from typing import Dict, List, Tuple, TypeVar, Union
__A = TypeVar('T')
__A = Union[List[T], Tuple[T, ...]]
__A = Union[T, List[T], Dict[str, T]]
__A = Union[str, bytes, os.PathLike]
| 341 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = ['''image_processor''', '''tokenizer''']
lowerCamelCase = '''CLIPImageProcessor'''
lowerCamelCase = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''')
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase =None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __UpperCAmelCase , )
_lowerCAmelCase =kwargs.pop("""feature_extractor""" )
_lowerCAmelCase =image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Optional[Any]:
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
_lowerCAmelCase =self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if images is not None:
_lowerCAmelCase =self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is not None and images is not None:
_lowerCAmelCase =image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase )
def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
@property
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =self.tokenizer.model_input_names
_lowerCAmelCase =self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 341 | 1 |
"""simple docstring"""
import inspect
import unittest
import warnings
from math import ceil, floor
from transformers import LevitConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
LevitForImageClassification,
LevitForImageClassificationWithTeacher,
LevitModel,
)
from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__UpperCAmelCase , """hidden_sizes""" ) )
self.parent.assertTrue(hasattr(__UpperCAmelCase , """num_attention_heads""" ) )
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=64 , __UpperCAmelCase=3 , __UpperCAmelCase=3 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=16 , __UpperCAmelCase=[1_28, 2_56, 3_84] , __UpperCAmelCase=[4, 6, 8] , __UpperCAmelCase=[2, 3, 4] , __UpperCAmelCase=[16, 16, 16] , __UpperCAmelCase=0 , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=2 , ) -> List[Any]:
_lowerCAmelCase =parent
_lowerCAmelCase =batch_size
_lowerCAmelCase =image_size
_lowerCAmelCase =num_channels
_lowerCAmelCase =kernel_size
_lowerCAmelCase =stride
_lowerCAmelCase =padding
_lowerCAmelCase =hidden_sizes
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =depths
_lowerCAmelCase =key_dim
_lowerCAmelCase =drop_path_rate
_lowerCAmelCase =patch_size
_lowerCAmelCase =attention_ratio
_lowerCAmelCase =mlp_ratio
_lowerCAmelCase =initializer_range
_lowerCAmelCase =[
["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
_lowerCAmelCase =is_training
_lowerCAmelCase =use_labels
_lowerCAmelCase =num_labels
_lowerCAmelCase =initializer_range
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCAmelCase =None
if self.use_labels:
_lowerCAmelCase =ids_tensor([self.batch_size] , self.num_labels )
_lowerCAmelCase =self.get_config()
return config, pixel_values, labels
def _lowerCAmelCase ( self ) -> str:
return LevitConfig(
image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
_lowerCAmelCase =LevitModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_lowerCAmelCase =model(__UpperCAmelCase )
_lowerCAmelCase =(self.image_size, self.image_size)
_lowerCAmelCase , _lowerCAmelCase =image_size[0], image_size[1]
for _ in range(4 ):
_lowerCAmelCase =floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 )
_lowerCAmelCase =floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
_lowerCAmelCase =self.num_labels
_lowerCAmelCase =LevitForImageClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_lowerCAmelCase =model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =self.prepare_config_and_inputs()
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs
_lowerCAmelCase ={"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowerCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = (
(LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher)
if is_torch_available()
else ()
)
lowerCamelCase = (
{
'''feature-extraction''': LevitModel,
'''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher),
}
if is_torch_available()
else {}
)
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =LevitModelTester(self )
_lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 )
def _lowerCAmelCase ( self ) -> List[str]:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _lowerCAmelCase ( self ) -> List[str]:
return
@unittest.skip(reason="""Levit does not use inputs_embeds""" )
def _lowerCAmelCase ( self ) -> Tuple:
pass
@unittest.skip(reason="""Levit does not support input and output embeddings""" )
def _lowerCAmelCase ( self ) -> str:
pass
@unittest.skip(reason="""Levit does not output attentions""" )
def _lowerCAmelCase ( self ) -> List[Any]:
pass
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase =model_class(__UpperCAmelCase )
_lowerCAmelCase =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCAmelCase =[*signature.parameters.keys()]
_lowerCAmelCase =["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Optional[Any]:
def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
_lowerCAmelCase =model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
_lowerCAmelCase =model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
_lowerCAmelCase =outputs.hidden_states
_lowerCAmelCase =len(self.model_tester.depths ) + 1
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
_lowerCAmelCase =(self.model_tester.image_size, self.model_tester.image_size)
_lowerCAmelCase , _lowerCAmelCase =image_size[0], image_size[1]
for _ in range(4 ):
_lowerCAmelCase =floor(
(
(height + 2 * self.model_tester.padding - self.model_tester.kernel_size)
/ self.model_tester.stride
)
+ 1 )
_lowerCAmelCase =floor(
(
(width + 2 * self.model_tester.padding - self.model_tester.kernel_size)
/ self.model_tester.stride
)
+ 1 )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [
height * width,
self.model_tester.hidden_sizes[0],
] , )
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase =True
check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCAmelCase =True
check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def _lowerCAmelCase ( self ) -> str:
pass
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> Optional[Any]:
_lowerCAmelCase =super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase )
if return_labels:
if model_class.__name__ == "LevitForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Any:
if not self.model_tester.is_training:
return
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase =True
for model_class in self.all_model_classes:
# LevitForImageClassificationWithTeacher supports inference-only
if (
model_class in get_values(__UpperCAmelCase )
or model_class.__name__ == "LevitForImageClassificationWithTeacher"
):
continue
_lowerCAmelCase =model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.train()
_lowerCAmelCase =self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase )
_lowerCAmelCase =model(**__UpperCAmelCase ).loss
loss.backward()
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
_lowerCAmelCase =False
_lowerCAmelCase =True
for model_class in self.all_model_classes:
if model_class in get_values(__UpperCAmelCase ) or not model_class.supports_gradient_checkpointing:
continue
# LevitForImageClassificationWithTeacher supports inference-only
if model_class.__name__ == "LevitForImageClassificationWithTeacher":
continue
_lowerCAmelCase =model_class(__UpperCAmelCase )
model.gradient_checkpointing_enable()
model.to(__UpperCAmelCase )
model.train()
_lowerCAmelCase =self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase )
_lowerCAmelCase =model(**__UpperCAmelCase ).loss
loss.backward()
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase =[
{"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float},
{"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long},
{"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float},
]
for model_class in self.all_model_classes:
if (
model_class
not in [
*get_values(__UpperCAmelCase ),
]
or model_class.__name__ == "LevitForImageClassificationWithTeacher"
):
continue
for problem_type in problem_types:
with self.subTest(msg=f'''Testing {model_class} with {problem_type['title']}''' ):
_lowerCAmelCase =problem_type["""title"""]
_lowerCAmelCase =problem_type["""num_labels"""]
_lowerCAmelCase =model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.train()
_lowerCAmelCase =self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase )
if problem_type["num_labels"] > 1:
_lowerCAmelCase =inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] )
_lowerCAmelCase =inputs["""labels"""].to(problem_type["""dtype"""] )
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=__UpperCAmelCase ) as warning_list:
_lowerCAmelCase =model(**__UpperCAmelCase ).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message ):
raise ValueError(
f'''Something is going wrong in the regression problem: intercepted {w.message}''' )
loss.backward()
@slow
def _lowerCAmelCase ( self ) -> str:
for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase =LevitModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def _lowerCamelCase() -> Dict:
_lowerCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _lowerCAmelCase ( self ) -> Optional[Any]:
return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase =LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
__UpperCAmelCase )
_lowerCAmelCase =self.default_image_processor
_lowerCAmelCase =prepare_img()
_lowerCAmelCase =image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
_lowerCAmelCase =model(**__UpperCAmelCase )
# verify the logits
_lowerCAmelCase =torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , __UpperCAmelCase )
_lowerCAmelCase =torch.tensor([1.0_4_4_8, -0.3_7_4_5, -1.8_3_1_7] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) )
| 341 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__A = {
'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'],
'tokenization_perceiver': ['PerceiverTokenizer'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ['PerceiverFeatureExtractor']
__A = ['PerceiverImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PerceiverForImageClassificationConvProcessing',
'PerceiverForImageClassificationFourier',
'PerceiverForImageClassificationLearned',
'PerceiverForMaskedLM',
'PerceiverForMultimodalAutoencoding',
'PerceiverForOpticalFlow',
'PerceiverForSequenceClassification',
'PerceiverLayer',
'PerceiverModel',
'PerceiverPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 1 |
"""simple docstring"""
import os
from datetime import datetime as dt
from github import Github
__A = [
'good first issue',
'good second issue',
'good difficult issue',
'enhancement',
'new pipeline/model',
'new scheduler',
'wip',
]
def _lowerCamelCase() -> Optional[int]:
_lowerCAmelCase =Github(os.environ["""GITHUB_TOKEN"""] )
_lowerCAmelCase =g.get_repo("""huggingface/diffusers""" )
_lowerCAmelCase =repo.get_issues(state="""open""" )
for issue in open_issues:
_lowerCAmelCase =sorted(issue.get_comments() , key=lambda __UpperCamelCase : i.created_at , reverse=__UpperCamelCase )
_lowerCAmelCase =comments[0] if len(__UpperCamelCase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state="""closed""" )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state="""open""" )
issue.remove_from_labels("""stale""" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
"""This issue has been automatically marked as stale because it has not had """
"""recent activity. If you think this still needs to be addressed """
"""please comment on this thread.\n\nPlease note that issues that do not follow the """
"""[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """
"""are likely to be ignored.""" )
issue.add_to_labels("""stale""" )
if __name__ == "__main__":
main()
| 341 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A = {
'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST',
'Swinv2ForImageClassification',
'Swinv2ForMaskedImageModeling',
'Swinv2Model',
'Swinv2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 1 |
"""simple docstring"""
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel
if is_vision_available():
from transformers import MaskFormerImageProcessor
if is_vision_available():
from PIL import Image
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=10 , __UpperCAmelCase=3 , __UpperCAmelCase=32 * 4 , __UpperCAmelCase=32 * 6 , __UpperCAmelCase=4 , __UpperCAmelCase=32 , ) -> Any:
_lowerCAmelCase =parent
_lowerCAmelCase =batch_size
_lowerCAmelCase =is_training
_lowerCAmelCase =use_auxiliary_loss
_lowerCAmelCase =num_queries
_lowerCAmelCase =num_channels
_lowerCAmelCase =min_size
_lowerCAmelCase =max_size
_lowerCAmelCase =num_labels
_lowerCAmelCase =mask_feature_size
def _lowerCAmelCase ( self ) -> Optional[int]:
_lowerCAmelCase =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
__UpperCAmelCase )
_lowerCAmelCase =torch.ones([self.batch_size, self.min_size, self.max_size] , device=__UpperCAmelCase )
_lowerCAmelCase =(
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__UpperCAmelCase ) > 0.5
).float()
_lowerCAmelCase =(torch.rand((self.batch_size, self.num_labels) , device=__UpperCAmelCase ) > 0.5).long()
_lowerCAmelCase =self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def _lowerCAmelCase ( self ) -> int:
return MaskFormerConfig.from_backbone_and_decoder_configs(
backbone_config=SwinConfig(
depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig(
decoder_ffn_dim=1_28 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , )
def _lowerCAmelCase ( self ) -> Optional[int]:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self.prepare_config_and_inputs()
_lowerCAmelCase ={"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask}
return config, inputs_dict
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
_lowerCAmelCase =output.encoder_hidden_states
_lowerCAmelCase =output.pixel_decoder_hidden_states
_lowerCAmelCase =output.transformer_decoder_hidden_states
self.parent.assertTrue(len(__UpperCAmelCase ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(__UpperCAmelCase ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(__UpperCAmelCase ) , config.decoder_config.decoder_layers )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> Any:
with torch.no_grad():
_lowerCAmelCase =MaskFormerModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_lowerCAmelCase =model(pixel_values=__UpperCAmelCase , pixel_mask=__UpperCAmelCase )
_lowerCAmelCase =model(__UpperCAmelCase , output_hidden_states=__UpperCAmelCase )
# the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the
# encoder and pixel decoder
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(__UpperCAmelCase , __UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]:
_lowerCAmelCase =MaskFormerForInstanceSegmentation(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
def comm_check_on_output(__UpperCAmelCase ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
_lowerCAmelCase =model(pixel_values=__UpperCAmelCase , pixel_mask=__UpperCAmelCase )
_lowerCAmelCase =model(__UpperCAmelCase )
comm_check_on_output(__UpperCAmelCase )
_lowerCAmelCase =model(
pixel_values=__UpperCAmelCase , pixel_mask=__UpperCAmelCase , mask_labels=__UpperCAmelCase , class_labels=__UpperCAmelCase )
comm_check_on_output(__UpperCAmelCase )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class lowerCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else ()
lowerCamelCase = (
{'''feature-extraction''': MaskFormerModel, '''image-segmentation''': MaskFormerForInstanceSegmentation}
if is_torch_available()
else {}
)
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase =MaskFormerModelTester(self )
_lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> str:
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(__UpperCAmelCase , **__UpperCAmelCase , output_hidden_states=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*__UpperCAmelCase )
@unittest.skip(reason="""MaskFormer does not use inputs_embeds""" )
def _lowerCAmelCase ( self ) -> Dict:
pass
@unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" )
def _lowerCAmelCase ( self ) -> Optional[Any]:
pass
@unittest.skip(reason="""MaskFormer is not a generative model""" )
def _lowerCAmelCase ( self ) -> Tuple:
pass
@unittest.skip(reason="""MaskFormer does not use token embeddings""" )
def _lowerCAmelCase ( self ) -> List[str]:
pass
@require_torch_multi_gpu
@unittest.skip(
reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def _lowerCAmelCase ( self ) -> List[Any]:
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def _lowerCAmelCase ( self ) -> List[str]:
pass
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase =model_class(__UpperCAmelCase )
_lowerCAmelCase =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCAmelCase =[*signature.parameters.keys()]
_lowerCAmelCase =["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> Optional[Any]:
for model_name in ["facebook/maskformer-swin-small-coco"]:
_lowerCAmelCase =MaskFormerModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =(self.model_tester.min_size,) * 2
_lowerCAmelCase ={
"""pixel_values""": torch.randn((2, 3, *size) , device=__UpperCAmelCase ),
"""mask_labels""": torch.randn((2, 10, *size) , device=__UpperCAmelCase ),
"""class_labels""": torch.zeros(2 , 10 , device=__UpperCAmelCase ).long(),
}
_lowerCAmelCase =MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(__UpperCAmelCase )
_lowerCAmelCase =model(**__UpperCAmelCase )
self.assertTrue(outputs.loss is not None )
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(__UpperCAmelCase , **__UpperCAmelCase , output_hidden_states=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase =model_class(__UpperCAmelCase ).to(__UpperCAmelCase )
_lowerCAmelCase =model(**__UpperCAmelCase , output_attentions=__UpperCAmelCase )
self.assertTrue(outputs.attentions is not None )
def _lowerCAmelCase ( self ) -> Dict:
if not self.model_tester.is_training:
return
# only MaskFormerForInstanceSegmentation has the loss
_lowerCAmelCase =self.all_model_classes[1]
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
_lowerCAmelCase =model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.train()
_lowerCAmelCase =model(__UpperCAmelCase , mask_labels=__UpperCAmelCase , class_labels=__UpperCAmelCase ).loss
loss.backward()
def _lowerCAmelCase ( self ) -> Optional[Any]:
# only MaskFormerForInstanceSegmentation has the loss
_lowerCAmelCase =self.all_model_classes[1]
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
_lowerCAmelCase =True
_lowerCAmelCase =True
_lowerCAmelCase =model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.train()
_lowerCAmelCase =model(__UpperCAmelCase , mask_labels=__UpperCAmelCase , class_labels=__UpperCAmelCase )
_lowerCAmelCase =outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
_lowerCAmelCase =outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
# we requires_grad=True in inputs_embeds (line 2152), the original implementation don't
_lowerCAmelCase =outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
_lowerCAmelCase =outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=__UpperCAmelCase )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
__A = 1E-4
def _lowerCamelCase() -> List[Any]:
_lowerCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_vision
@slow
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _lowerCAmelCase ( self ) -> Optional[Any]:
return (
MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" )
if is_vision_available()
else None
)
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(__UpperCAmelCase )
_lowerCAmelCase =self.default_image_processor
_lowerCAmelCase =prepare_img()
_lowerCAmelCase =image_processor(__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase )
_lowerCAmelCase =inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(__UpperCAmelCase , (1, 3, 8_00, 10_88) )
with torch.no_grad():
_lowerCAmelCase =model(**__UpperCAmelCase )
_lowerCAmelCase =torch.tensor(
[[-0.0_4_8_2, 0.9_2_2_8, 0.4_9_5_1], [-0.2_5_4_7, 0.8_0_1_7, 0.8_5_2_7], [-0.0_0_6_9, 0.3_3_8_5, -0.0_0_8_9]] ).to(__UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , __UpperCAmelCase , atol=__UpperCAmelCase ) )
_lowerCAmelCase =torch.tensor(
[[-0.8_4_2_2, -0.8_4_3_4, -0.9_7_1_8], [-1.0_1_4_4, -0.5_5_6_5, -0.4_1_9_5], [-1.0_0_3_8, -0.4_4_8_4, -0.1_9_6_1]] ).to(__UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __UpperCAmelCase , atol=__UpperCAmelCase ) )
_lowerCAmelCase =torch.tensor(
[[0.2_8_5_2, -0.0_1_5_9, 0.9_7_3_5], [0.6_2_5_4, 0.1_8_5_8, 0.8_5_2_9], [-0.0_6_8_0, -0.4_1_1_6, 1.8_4_1_3]] ).to(__UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __UpperCAmelCase , atol=__UpperCAmelCase ) )
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =(
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" )
.to(__UpperCAmelCase )
.eval()
)
_lowerCAmelCase =self.default_image_processor
_lowerCAmelCase =prepare_img()
_lowerCAmelCase =image_processor(__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase )
_lowerCAmelCase =inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(__UpperCAmelCase , (1, 3, 8_00, 10_88) )
with torch.no_grad():
_lowerCAmelCase =model(**__UpperCAmelCase )
# masks_queries_logits
_lowerCAmelCase =outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
_lowerCAmelCase =[
[-1.3_7_3_7_1_2_4, -1.7_7_2_4_9_3_7, -1.9_3_6_4_2_3_3],
[-1.5_9_7_7_2_8_1, -1.9_8_6_7_9_3_9, -2.1_5_2_3_6_9_5],
[-1.5_7_9_5_3_9_8, -1.9_2_6_9_8_3_2, -2.0_9_3_9_4_2],
]
_lowerCAmelCase =torch.tensor(__UpperCAmelCase ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __UpperCAmelCase , atol=__UpperCAmelCase ) )
# class_queries_logits
_lowerCAmelCase =outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
_lowerCAmelCase =torch.tensor(
[
[1.65_12e00, -5.25_72e00, -3.35_19e00],
[3.61_69e-02, -5.90_25e00, -2.93_13e00],
[1.07_66e-04, -7.76_30e00, -5.12_63e00],
] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __UpperCAmelCase , atol=__UpperCAmelCase ) )
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =(
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" )
.to(__UpperCAmelCase )
.eval()
)
_lowerCAmelCase =self.default_image_processor
_lowerCAmelCase =prepare_img()
_lowerCAmelCase =image_processor(__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase )
_lowerCAmelCase =inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(__UpperCAmelCase , (1, 3, 8_00, 10_88) )
with torch.no_grad():
_lowerCAmelCase =model(**__UpperCAmelCase )
# masks_queries_logits
_lowerCAmelCase =outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
_lowerCAmelCase =[[-0.9_0_4_6, -2.6_3_6_6, -4.6_0_6_2], [-3.4_1_7_9, -5.7_8_9_0, -8.8_0_5_7], [-4.9_1_7_9, -7.6_5_6_0, -1_0.7_7_1_1]]
_lowerCAmelCase =torch.tensor(__UpperCAmelCase ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __UpperCAmelCase , atol=__UpperCAmelCase ) )
# class_queries_logits
_lowerCAmelCase =outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
_lowerCAmelCase =torch.tensor(
[[4.7_1_8_8, -3.2_5_8_5, -2.8_8_5_7], [6.6_8_7_1, -2.9_1_8_1, -1.2_4_8_7], [7.2_4_4_9, -2.2_7_6_4, -2.1_8_7_4]] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __UpperCAmelCase , atol=__UpperCAmelCase ) )
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =(
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" )
.to(__UpperCAmelCase )
.eval()
)
_lowerCAmelCase =self.default_image_processor
_lowerCAmelCase =image_processor(
[np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="""pt""" , )
_lowerCAmelCase =inputs["""pixel_values"""].to(__UpperCAmelCase )
_lowerCAmelCase =[el.to(__UpperCAmelCase ) for el in inputs["""mask_labels"""]]
_lowerCAmelCase =[el.to(__UpperCAmelCase ) for el in inputs["""class_labels"""]]
with torch.no_grad():
_lowerCAmelCase =model(**__UpperCAmelCase )
self.assertTrue(outputs.loss is not None )
| 341 |
"""simple docstring"""
import argparse
import json
import torch
from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=1 ) -> Tuple:
if n_shave_prefix_segments >= 0:
return ".".join(path.split(""".""" )[n_shave_prefix_segments:] )
else:
return ".".join(path.split(""".""" )[:n_shave_prefix_segments] )
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=0 ) -> List[str]:
_lowerCAmelCase =[]
for old_item in old_list:
_lowerCAmelCase =old_item.replace("""in_layers.0""" , """norm1""" )
_lowerCAmelCase =new_item.replace("""in_layers.2""" , """conv1""" )
_lowerCAmelCase =new_item.replace("""out_layers.0""" , """norm2""" )
_lowerCAmelCase =new_item.replace("""out_layers.3""" , """conv2""" )
_lowerCAmelCase =new_item.replace("""emb_layers.1""" , """time_emb_proj""" )
_lowerCAmelCase =new_item.replace("""skip_connection""" , """conv_shortcut""" )
_lowerCAmelCase =shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=0 ) -> Tuple:
_lowerCAmelCase =[]
for old_item in old_list:
_lowerCAmelCase =old_item
_lowerCAmelCase =new_item.replace("""norm.weight""" , """group_norm.weight""" )
_lowerCAmelCase =new_item.replace("""norm.bias""" , """group_norm.bias""" )
_lowerCAmelCase =new_item.replace("""proj_out.weight""" , """proj_attn.weight""" )
_lowerCAmelCase =new_item.replace("""proj_out.bias""" , """proj_attn.bias""" )
_lowerCAmelCase =shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None ) -> Optional[int]:
assert isinstance(__UpperCamelCase , __UpperCamelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
_lowerCAmelCase =old_checkpoint[path]
_lowerCAmelCase =old_tensor.shape[0] // 3
_lowerCAmelCase =(-1, channels) if len(old_tensor.shape ) == 3 else (-1)
_lowerCAmelCase =old_tensor.shape[0] // config["""num_head_channels"""] // 3
_lowerCAmelCase =old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =old_tensor.split(channels // num_heads , dim=1 )
_lowerCAmelCase =query.reshape(__UpperCamelCase )
_lowerCAmelCase =key.reshape(__UpperCamelCase )
_lowerCAmelCase =value.reshape(__UpperCamelCase )
for path in paths:
_lowerCAmelCase =path["""new"""]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
_lowerCAmelCase =new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" )
_lowerCAmelCase =new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" )
_lowerCAmelCase =new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" )
if additional_replacements is not None:
for replacement in additional_replacements:
_lowerCAmelCase =new_path.replace(replacement["""old"""] , replacement["""new"""] )
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
_lowerCAmelCase =old_checkpoint[path["""old"""]][:, :, 0]
else:
_lowerCAmelCase =old_checkpoint[path["""old"""]]
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Optional[Any]:
_lowerCAmelCase ={}
_lowerCAmelCase =checkpoint["""time_embed.0.weight"""]
_lowerCAmelCase =checkpoint["""time_embed.0.bias"""]
_lowerCAmelCase =checkpoint["""time_embed.2.weight"""]
_lowerCAmelCase =checkpoint["""time_embed.2.bias"""]
_lowerCAmelCase =checkpoint["""input_blocks.0.0.weight"""]
_lowerCAmelCase =checkpoint["""input_blocks.0.0.bias"""]
_lowerCAmelCase =checkpoint["""out.0.weight"""]
_lowerCAmelCase =checkpoint["""out.0.bias"""]
_lowerCAmelCase =checkpoint["""out.2.weight"""]
_lowerCAmelCase =checkpoint["""out.2.bias"""]
# Retrieves the keys for the input blocks only
_lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} )
_lowerCAmelCase ={
layer_id: [key for key in checkpoint if F'''input_blocks.{layer_id}''' in key]
for layer_id in range(__UpperCamelCase )
}
# Retrieves the keys for the middle blocks only
_lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} )
_lowerCAmelCase ={
layer_id: [key for key in checkpoint if F'''middle_block.{layer_id}''' in key]
for layer_id in range(__UpperCamelCase )
}
# Retrieves the keys for the output blocks only
_lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} )
_lowerCAmelCase ={
layer_id: [key for key in checkpoint if F'''output_blocks.{layer_id}''' in key]
for layer_id in range(__UpperCamelCase )
}
for i in range(1 , __UpperCamelCase ):
_lowerCAmelCase =(i - 1) // (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =(i - 1) % (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =[key for key in input_blocks[i] if F'''input_blocks.{i}.0''' in key]
_lowerCAmelCase =[key for key in input_blocks[i] if F'''input_blocks.{i}.1''' in key]
if F'''input_blocks.{i}.0.op.weight''' in checkpoint:
_lowerCAmelCase =checkpoint[
F'''input_blocks.{i}.0.op.weight'''
]
_lowerCAmelCase =checkpoint[
F'''input_blocks.{i}.0.op.bias'''
]
continue
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
_lowerCAmelCase ={"""old""": F'''input_blocks.{i}.0''', """new""": F'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''}
_lowerCAmelCase ={"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path, resnet_op] , config=__UpperCamelCase )
if len(__UpperCamelCase ):
_lowerCAmelCase =renew_attention_paths(__UpperCamelCase )
_lowerCAmelCase ={
"""old""": F'''input_blocks.{i}.1''',
"""new""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}''',
}
_lowerCAmelCase ={
F'''input_blocks.{i}.1.qkv.bias''': {
"""key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''',
"""query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''',
"""value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''',
},
F'''input_blocks.{i}.1.qkv.weight''': {
"""key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''',
"""query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''',
"""value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''',
},
}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase , )
_lowerCAmelCase =middle_blocks[0]
_lowerCAmelCase =middle_blocks[1]
_lowerCAmelCase =middle_blocks[2]
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase )
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase )
_lowerCAmelCase =renew_attention_paths(__UpperCamelCase )
_lowerCAmelCase ={
"""middle_block.1.qkv.bias""": {
"""key""": """mid_block.attentions.0.key.bias""",
"""query""": """mid_block.attentions.0.query.bias""",
"""value""": """mid_block.attentions.0.value.bias""",
},
"""middle_block.1.qkv.weight""": {
"""key""": """mid_block.attentions.0.key.weight""",
"""query""": """mid_block.attentions.0.query.weight""",
"""value""": """mid_block.attentions.0.value.weight""",
},
}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase )
for i in range(__UpperCamelCase ):
_lowerCAmelCase =i // (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =i % (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =[shave_segments(__UpperCamelCase , 2 ) for name in output_blocks[i]]
_lowerCAmelCase ={}
for layer in output_block_layers:
_lowerCAmelCase , _lowerCAmelCase =layer.split(""".""" )[0], shave_segments(__UpperCamelCase , 1 )
if layer_id in output_block_list:
output_block_list[layer_id].append(__UpperCamelCase )
else:
_lowerCAmelCase =[layer_name]
if len(__UpperCamelCase ) > 1:
_lowerCAmelCase =[key for key in output_blocks[i] if F'''output_blocks.{i}.0''' in key]
_lowerCAmelCase =[key for key in output_blocks[i] if F'''output_blocks.{i}.1''' in key]
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
_lowerCAmelCase ={"""old""": F'''output_blocks.{i}.0''', """new""": F'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''}
assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase )
if ["conv.weight", "conv.bias"] in output_block_list.values():
_lowerCAmelCase =list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] )
_lowerCAmelCase =checkpoint[
F'''output_blocks.{i}.{index}.conv.weight'''
]
_lowerCAmelCase =checkpoint[
F'''output_blocks.{i}.{index}.conv.bias'''
]
# Clear attentions as they have been attributed above.
if len(__UpperCamelCase ) == 2:
_lowerCAmelCase =[]
if len(__UpperCamelCase ):
_lowerCAmelCase =renew_attention_paths(__UpperCamelCase )
_lowerCAmelCase ={
"""old""": F'''output_blocks.{i}.1''',
"""new""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}''',
}
_lowerCAmelCase ={
F'''output_blocks.{i}.1.qkv.bias''': {
"""key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''',
"""query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''',
"""value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''',
},
F'''output_blocks.{i}.1.qkv.weight''': {
"""key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''',
"""query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''',
"""value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''',
},
}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=__UpperCamelCase , )
else:
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase , n_shave_prefix_segments=1 )
for path in resnet_0_paths:
_lowerCAmelCase =""".""".join(["""output_blocks""", str(__UpperCamelCase ), path["""old"""]] )
_lowerCAmelCase =""".""".join(["""up_blocks""", str(__UpperCamelCase ), """resnets""", str(__UpperCamelCase ), path["""new"""]] )
_lowerCAmelCase =checkpoint[old_path]
return new_checkpoint
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the architecture.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
__A = parser.parse_args()
__A = torch.load(args.checkpoint_path)
with open(args.config_file) as f:
__A = json.loads(f.read())
__A = convert_ldm_checkpoint(checkpoint, config)
if "ldm" in config:
del config["ldm"]
__A = UNetaDModel(**config)
model.load_state_dict(converted_checkpoint)
try:
__A = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1]))
__A = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1]))
__A = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae)
pipe.save_pretrained(args.dump_path)
except: # noqa: E722
model.save_pretrained(args.dump_path)
| 341 | 1 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__A = logging.get_logger(__name__)
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = ['''pixel_values''']
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 2_55 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
super().__init__(**__UpperCAmelCase )
_lowerCAmelCase =size if size is not None else {"""shortest_edge""": 3_84}
_lowerCAmelCase =get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
_lowerCAmelCase =do_resize
_lowerCAmelCase =size
# Default value set here for backwards compatibility where the value in config is None
_lowerCAmelCase =crop_pct if crop_pct is not None else 2_24 / 2_56
_lowerCAmelCase =resample
_lowerCAmelCase =do_rescale
_lowerCAmelCase =rescale_factor
_lowerCAmelCase =do_normalize
_lowerCAmelCase =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_lowerCAmelCase =image_std if image_std is not None else IMAGENET_STANDARD_STD
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
_lowerCAmelCase =get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
if "shortest_edge" not in size:
raise ValueError(f'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' )
_lowerCAmelCase =size["""shortest_edge"""]
if shortest_edge < 3_84:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
_lowerCAmelCase =int(shortest_edge / crop_pct )
_lowerCAmelCase =get_resize_output_image_size(__UpperCAmelCase , size=__UpperCAmelCase , default_to_square=__UpperCAmelCase )
_lowerCAmelCase =resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=__UpperCAmelCase , size=(shortest_edge, shortest_edge) , data_format=__UpperCAmelCase , **__UpperCAmelCase )
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
__UpperCAmelCase , size=(shortest_edge, shortest_edge) , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> List[str]:
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image:
_lowerCAmelCase =do_resize if do_resize is not None else self.do_resize
_lowerCAmelCase =crop_pct if crop_pct is not None else self.crop_pct
_lowerCAmelCase =resample if resample is not None else self.resample
_lowerCAmelCase =do_rescale if do_rescale is not None else self.do_rescale
_lowerCAmelCase =rescale_factor if rescale_factor is not None else self.rescale_factor
_lowerCAmelCase =do_normalize if do_normalize is not None else self.do_normalize
_lowerCAmelCase =image_mean if image_mean is not None else self.image_mean
_lowerCAmelCase =image_std if image_std is not None else self.image_std
_lowerCAmelCase =size if size is not None else self.size
_lowerCAmelCase =get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
_lowerCAmelCase =make_list_of_images(__UpperCAmelCase )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_resize and size["shortest_edge"] < 3_84 and crop_pct is None:
raise ValueError("""crop_pct must be specified if size < 384.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
_lowerCAmelCase =[to_numpy_array(__UpperCAmelCase ) for image in images]
if do_resize:
_lowerCAmelCase =[self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , crop_pct=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images]
if do_rescale:
_lowerCAmelCase =[self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images]
if do_normalize:
_lowerCAmelCase =[self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images]
_lowerCAmelCase =[to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images]
_lowerCAmelCase ={"""pixel_values""": images}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 341 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase ) -> Optional[Any]:
_lowerCAmelCase =0
_lowerCAmelCase =len(__UpperCamelCase )
for i in range(n - 1 ):
for j in range(i + 1 , __UpperCamelCase ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def _lowerCamelCase(__UpperCamelCase ) -> List[Any]:
if len(__UpperCamelCase ) <= 1:
return arr, 0
_lowerCAmelCase =len(__UpperCamelCase ) // 2
_lowerCAmelCase =arr[0:mid]
_lowerCAmelCase =arr[mid:]
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =_count_cross_inversions(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =inversion_p + inversions_q + cross_inversions
return c, num_inversions
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Any:
_lowerCAmelCase =[]
_lowerCAmelCase =_lowerCAmelCase =_lowerCAmelCase =0
while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(__UpperCamelCase ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(__UpperCamelCase ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def _lowerCamelCase() -> str:
_lowerCAmelCase =[10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 8
print("""number of inversions = """ , __UpperCamelCase )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , __UpperCamelCase )
# an empty list should also have zero inversions
_lowerCAmelCase =[]
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , __UpperCamelCase )
if __name__ == "__main__":
main()
| 341 | 1 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor
from ..utils import is_datasets_available
from .base import PipelineTool
if is_datasets_available():
from datasets import load_dataset
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = '''microsoft/speecht5_tts'''
lowerCamelCase = (
'''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the '''
'''text to read (in English) and returns a waveform object containing the sound.'''
)
lowerCamelCase = '''text_reader'''
lowerCamelCase = SpeechTaProcessor
lowerCamelCase = SpeechTaForTextToSpeech
lowerCamelCase = SpeechTaHifiGan
lowerCamelCase = ['''text''']
lowerCamelCase = ['''audio''']
def _lowerCAmelCase ( self ) -> List[Any]:
if self.post_processor is None:
_lowerCAmelCase ="""microsoft/speecht5_hifigan"""
super().setup()
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> Tuple:
_lowerCAmelCase =self.pre_processor(text=__UpperCAmelCase , return_tensors="""pt""" , truncation=__UpperCAmelCase )
if speaker_embeddings is None:
if not is_datasets_available():
raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" )
_lowerCAmelCase =load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" )
_lowerCAmelCase =torch.tensor(embeddings_dataset[73_05]["""xvector"""] ).unsqueeze(0 )
return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings}
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
with torch.no_grad():
return self.model.generate_speech(**__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[Any]:
with torch.no_grad():
return self.post_processor(__UpperCAmelCase ).cpu().detach()
| 341 |
"""simple docstring"""
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = None
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = None
lowerCamelCase = None
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = True
lowerCamelCase = None
lowerCamelCase = 1
lowerCamelCase = None
lowerCamelCase = False
lowerCamelCase = None
lowerCamelCase = None
def _lowerCAmelCase ( self ) -> "DownloadConfig":
return self.__class__(**{k: copy.deepcopy(__UpperCAmelCase ) for k, v in self.__dict__.items()} )
| 341 | 1 |
"""simple docstring"""
from collections import deque
from math import floor
from random import random
from time import time
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self ) -> Union[str, Any]:
_lowerCAmelCase ={}
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> List[str]:
if self.graph.get(__UpperCAmelCase ):
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
_lowerCAmelCase =[[w, v]]
if not self.graph.get(__UpperCAmelCase ):
_lowerCAmelCase =[]
def _lowerCAmelCase ( self ) -> Union[str, Any]:
return list(self.graph )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Dict:
if s == d:
return []
_lowerCAmelCase =[]
_lowerCAmelCase =[]
if s == -2:
_lowerCAmelCase =list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_lowerCAmelCase =s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_lowerCAmelCase =s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(__UpperCAmelCase )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
_lowerCAmelCase =node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(__UpperCAmelCase ) != 0:
_lowerCAmelCase =stack[len(__UpperCAmelCase ) - 1]
else:
_lowerCAmelCase =ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return visited
def _lowerCAmelCase ( self , __UpperCAmelCase=-1 ) -> Optional[int]:
if c == -1:
_lowerCAmelCase =floor(random() * 1_00_00 ) + 10
for i in range(__UpperCAmelCase ):
# every vertex has max 100 edges
for _ in range(floor(random() * 1_02 ) + 1 ):
_lowerCAmelCase =floor(random() * c ) + 1
if n != i:
self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 )
def _lowerCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple:
_lowerCAmelCase =deque()
_lowerCAmelCase =[]
if s == -2:
_lowerCAmelCase =list(self.graph )[0]
d.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
while d:
_lowerCAmelCase =d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> str:
_lowerCAmelCase =0
for x in self.graph:
for y in self.graph[x]:
if y[1] == u:
count += 1
return count
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> int:
return len(self.graph[u] )
def _lowerCAmelCase ( self , __UpperCAmelCase=-2 ) -> Dict:
_lowerCAmelCase =[]
_lowerCAmelCase =[]
if s == -2:
_lowerCAmelCase =list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_lowerCAmelCase =s
_lowerCAmelCase =[]
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_lowerCAmelCase =s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_lowerCAmelCase =node[1]
break
# check if all the children are visited
if s == ss:
sorted_nodes.append(stack.pop() )
if len(__UpperCAmelCase ) != 0:
_lowerCAmelCase =stack[len(__UpperCAmelCase ) - 1]
else:
_lowerCAmelCase =ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return sorted_nodes
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =[]
_lowerCAmelCase =[]
_lowerCAmelCase =list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_lowerCAmelCase =-2
_lowerCAmelCase =[]
_lowerCAmelCase =s
_lowerCAmelCase =False
_lowerCAmelCase =set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_lowerCAmelCase =s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_lowerCAmelCase =len(__UpperCAmelCase ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_lowerCAmelCase =node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_lowerCAmelCase =True
if len(__UpperCAmelCase ) != 0:
_lowerCAmelCase =stack[len(__UpperCAmelCase ) - 1]
else:
_lowerCAmelCase =False
indirect_parents.append(__UpperCAmelCase )
_lowerCAmelCase =s
_lowerCAmelCase =ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return list(__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =[]
_lowerCAmelCase =[]
_lowerCAmelCase =list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_lowerCAmelCase =-2
_lowerCAmelCase =[]
_lowerCAmelCase =s
_lowerCAmelCase =False
_lowerCAmelCase =set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_lowerCAmelCase =s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_lowerCAmelCase =len(__UpperCAmelCase ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_lowerCAmelCase =node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_lowerCAmelCase =True
if len(__UpperCAmelCase ) != 0:
_lowerCAmelCase =stack[len(__UpperCAmelCase ) - 1]
else:
_lowerCAmelCase =False
indirect_parents.append(__UpperCAmelCase )
_lowerCAmelCase =s
_lowerCAmelCase =ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return False
def _lowerCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]:
_lowerCAmelCase =time()
self.dfs(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =time()
return end - begin
def _lowerCAmelCase ( self , __UpperCAmelCase=-2 ) -> str:
_lowerCAmelCase =time()
self.bfs(__UpperCAmelCase )
_lowerCAmelCase =time()
return end - begin
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self ) -> Any:
_lowerCAmelCase ={}
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> Optional[Any]:
# check if the u exists
if self.graph.get(__UpperCAmelCase ):
# if there already is a edge
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
# if u does not exist
_lowerCAmelCase =[[w, v]]
# add the other way
if self.graph.get(__UpperCAmelCase ):
# if there already is a edge
if self.graph[v].count([w, u] ) == 0:
self.graph[v].append([w, u] )
else:
# if u does not exist
_lowerCAmelCase =[[w, u]]
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]:
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(__UpperCAmelCase )
# the other way round
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[v]:
if _[1] == u:
self.graph[v].remove(__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> List[Any]:
if s == d:
return []
_lowerCAmelCase =[]
_lowerCAmelCase =[]
if s == -2:
_lowerCAmelCase =list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_lowerCAmelCase =s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_lowerCAmelCase =s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(__UpperCAmelCase )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
_lowerCAmelCase =node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(__UpperCAmelCase ) != 0:
_lowerCAmelCase =stack[len(__UpperCAmelCase ) - 1]
else:
_lowerCAmelCase =ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return visited
def _lowerCAmelCase ( self , __UpperCAmelCase=-1 ) -> str:
if c == -1:
_lowerCAmelCase =floor(random() * 1_00_00 ) + 10
for i in range(__UpperCAmelCase ):
# every vertex has max 100 edges
for _ in range(floor(random() * 1_02 ) + 1 ):
_lowerCAmelCase =floor(random() * c ) + 1
if n != i:
self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 )
def _lowerCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[Any]:
_lowerCAmelCase =deque()
_lowerCAmelCase =[]
if s == -2:
_lowerCAmelCase =list(self.graph )[0]
d.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
while d:
_lowerCAmelCase =d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[Any]:
return len(self.graph[u] )
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =[]
_lowerCAmelCase =[]
_lowerCAmelCase =list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_lowerCAmelCase =-2
_lowerCAmelCase =[]
_lowerCAmelCase =s
_lowerCAmelCase =False
_lowerCAmelCase =set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_lowerCAmelCase =s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_lowerCAmelCase =len(__UpperCAmelCase ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_lowerCAmelCase =node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_lowerCAmelCase =True
if len(__UpperCAmelCase ) != 0:
_lowerCAmelCase =stack[len(__UpperCAmelCase ) - 1]
else:
_lowerCAmelCase =False
indirect_parents.append(__UpperCAmelCase )
_lowerCAmelCase =s
_lowerCAmelCase =ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return list(__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =[]
_lowerCAmelCase =[]
_lowerCAmelCase =list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_lowerCAmelCase =-2
_lowerCAmelCase =[]
_lowerCAmelCase =s
_lowerCAmelCase =False
_lowerCAmelCase =set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_lowerCAmelCase =s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_lowerCAmelCase =len(__UpperCAmelCase ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_lowerCAmelCase =node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_lowerCAmelCase =True
if len(__UpperCAmelCase ) != 0:
_lowerCAmelCase =stack[len(__UpperCAmelCase ) - 1]
else:
_lowerCAmelCase =False
indirect_parents.append(__UpperCAmelCase )
_lowerCAmelCase =s
_lowerCAmelCase =ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return False
def _lowerCAmelCase ( self ) -> List[Any]:
return list(self.graph )
def _lowerCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[Any]:
_lowerCAmelCase =time()
self.dfs(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =time()
return end - begin
def _lowerCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple:
_lowerCAmelCase =time()
self.bfs(__UpperCAmelCase )
_lowerCAmelCase =time()
return end - begin
| 341 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> int:
return int((input_a, input_a).count(1 ) != 0 )
def _lowerCamelCase() -> None:
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 341 | 1 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_mobilevit import MobileViTImageProcessor
__A = logging.get_logger(__name__)
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None:
warnings.warn(
"""The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use MobileViTImageProcessor instead.""" , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 341 |
"""simple docstring"""
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
__A = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n'
__A = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n'
__A = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase__ ( datasets.Metric ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> Any:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ),
"""references""": datasets.Sequence(
datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/BLEU""",
"""https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""",
] , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=4 , __UpperCAmelCase=False ) -> Tuple:
_lowerCAmelCase =compute_bleu(
reference_corpus=__UpperCAmelCase , translation_corpus=__UpperCAmelCase , max_order=__UpperCAmelCase , smooth=__UpperCAmelCase )
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) =score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 341 | 1 |
"""simple docstring"""
import json
import os
from datetime import date
from pathlib import Path
from tabulate import DataRow, TableFormat, tabulate
__A = TableFormat(
lineabove=None,
linebelowheader=None,
linebetweenrows=None,
linebelow=None,
headerrow=DataRow('', '|', '|'),
datarow=DataRow('', '|', '|'),
padding=1,
with_header_hide=None,
)
__A = []
__A = []
__A = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}}
__A = [
{
'type': 'header',
'text': {
'type': 'plain_text',
'text': F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""",
'emoji': True,
},
}
]
__A = 0
for log in Path().glob('*.log'):
__A = 0
with open(log, 'r') as f:
for line in f:
__A = json.loads(line)
if line.get('nodeid', '') != "":
__A = line['nodeid']
if line.get('duration', None) is not None:
__A = F"""{line["duration"]:.4f}"""
if line.get('outcome', '') == "failed":
section_num_failed += 1
failed.append([test, duration, log.name.split('_')[0]])
total_num_failed += 1
group_info.append([str(log), section_num_failed, failed])
__A = []
log.unlink()
__A = ''
__A = []
if total_num_failed > 0:
for name, num_failed, failed_tests in group_info:
if num_failed > 0:
if num_failed == 1:
message += F"*{name[1:]}: {num_failed} failed test*\n"
else:
message += F"*{name[1:]}: {num_failed} failed tests*\n"
__A = []
__A = {}
for test in failed_tests:
__A = test[0].split('::')
__A = data[0].split('/')[-1]
if data[0] not in filesafailed:
__A = [data[1:]]
else:
filesafailed[data[0]] += [data[1:]]
failed_table.append(data)
__A = [test[0] for test in failed_table]
__A = list(set(files))
# Count number of instances in failed_tests
__A = []
for file in individual_files:
table.append([file, len(filesafailed[file])])
__A = tabulate(
table,
headers=['Test Location', 'Num Failed'],
tablefmt=hf_table_format,
stralign='right',
)
message += F"\n```\n{failed_table}\n```"
all_filesafailed.append(filesafailed)
if len(message) > 3000:
__A = 'Too many failed tests, please see the full report in the Action results.'
__A = len(err) + 10
__A = message[: 3000 - offset] + F"""\n...\n```\n{err}"""
print(F"""### {message}""")
else:
__A = 'No failed tests! 🤗'
print(F"""## {message}""")
payload.append(no_error_payload)
if os.environ.get('TEST_TYPE', '') != "":
from slack_sdk import WebClient
__A = WebClient(token=os.environ['SLACK_API_TOKEN'])
if message != "No failed tests! 🤗":
__A = {
'type': 'section',
'text': {
'type': 'mrkdwn',
'text': message,
},
}
payload.append(md_report)
__A = {
'type': 'section',
'text': {
'type': 'mrkdwn',
'text': '*For more details:*',
},
'accessory': {
'type': 'button',
'text': {
'type': 'plain_text',
'text': 'Check Action results',
'emoji': True,
},
'url': F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""",
},
}
payload.append(action_button)
__A = {
'type': 'context',
'elements': [
{
'type': 'plain_text',
'text': F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""",
}
],
}
payload.append(date_report)
__A = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload)
__A = response.data['ts']
for failed_file in all_filesafailed:
for test_location, test_failures in failed_file.items():
# Keep only the first instance of the test name
__A = ''
for i, row in enumerate(test_failures):
if row[0] != test_class:
__A = row[0]
else:
__A = ''
__A = {
'type': 'section',
'text': {
'type': 'mrkdwn',
'text': F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""",
},
}
client.chat_postMessage(
channel='#accelerate-ci-daily',
thread_ts=ts,
blocks=[payload],
)
| 341 |
"""simple docstring"""
import argparse
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
parser.add_argument(
'--original_config_file',
type=str,
required=True,
help='The YAML config file corresponding to the original architecture.',
)
parser.add_argument(
'--num_in_channels',
default=None,
type=int,
help='The number of input channels. If `None` number of input channels will be automatically inferred.',
)
parser.add_argument(
'--image_size',
default=512,
type=int,
help=(
'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2'
' Base. Use 768 for Stable Diffusion v2.'
),
)
parser.add_argument(
'--extract_ema',
action='store_true',
help=(
'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights'
' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield'
' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.'
),
)
parser.add_argument(
'--upcast_attention',
action='store_true',
help=(
'Whether the attention computation should always be upcasted. This is necessary when running stable'
' diffusion 2.1.'
),
)
parser.add_argument(
'--from_safetensors',
action='store_true',
help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.',
)
parser.add_argument(
'--to_safetensors',
action='store_true',
help='Whether to store pipeline in safetensors format or not.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)')
def _lowerCamelCase(__UpperCamelCase ) -> List[str]:
if string == "True":
return True
elif string == "False":
return False
else:
raise ValueError(F'''could not parse string as bool {string}''' )
parser.add_argument(
'--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool
)
parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int)
__A = parser.parse_args()
__A = download_controlnet_from_original_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
extract_ema=args.extract_ema,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
use_linear_projection=args.use_linear_projection,
cross_attention_dim=args.cross_attention_dim,
)
controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 341 | 1 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase ) -> Optional[Any]:
_lowerCAmelCase =0
_lowerCAmelCase =len(__UpperCamelCase )
for i in range(n - 1 ):
for j in range(i + 1 , __UpperCamelCase ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def _lowerCamelCase(__UpperCamelCase ) -> List[Any]:
if len(__UpperCamelCase ) <= 1:
return arr, 0
_lowerCAmelCase =len(__UpperCamelCase ) // 2
_lowerCAmelCase =arr[0:mid]
_lowerCAmelCase =arr[mid:]
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =_count_cross_inversions(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =inversion_p + inversions_q + cross_inversions
return c, num_inversions
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Any:
_lowerCAmelCase =[]
_lowerCAmelCase =_lowerCAmelCase =_lowerCAmelCase =0
while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(__UpperCamelCase ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(__UpperCamelCase ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def _lowerCamelCase() -> str:
_lowerCAmelCase =[10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 8
print("""number of inversions = """ , __UpperCamelCase )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , __UpperCamelCase )
# an empty list should also have zero inversions
_lowerCAmelCase =[]
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , __UpperCamelCase )
if __name__ == "__main__":
main()
| 341 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available
__A = {
'configuration_audio_spectrogram_transformer': [
'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'ASTConfig',
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'ASTForAudioClassification',
'ASTModel',
'ASTPreTrainedModel',
]
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ['ASTFeatureExtractor']
if TYPE_CHECKING:
from .configuration_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
ASTConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ASTForAudioClassification,
ASTModel,
ASTPreTrainedModel,
)
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 1 |
"""simple docstring"""
import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
__A = {
'text_branch': 'text_model',
'audio_branch': 'audio_model.audio_encoder',
'attn': 'attention.self',
'self.proj': 'output.dense',
'attention.self_mask': 'attn_mask',
'mlp.fc1': 'intermediate.dense',
'mlp.fc2': 'output.dense',
'norm1': 'layernorm_before',
'norm2': 'layernorm_after',
'bn0': 'batch_norm',
}
__A = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc')
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=False ) -> List[Any]:
_lowerCAmelCase , _lowerCAmelCase =create_model(
"""HTSAT-tiny""" , """roberta""" , __UpperCamelCase , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=__UpperCamelCase , fusion_type="""aff_2d""" if enable_fusion else None , )
return model, model_cfg
def _lowerCamelCase(__UpperCamelCase ) -> Union[str, Any]:
_lowerCAmelCase ={}
_lowerCAmelCase =R""".*sequential.(\d+).*"""
_lowerCAmelCase =R""".*_projection.(\d+).*"""
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
_lowerCAmelCase =key.replace(__UpperCamelCase , __UpperCamelCase )
if re.match(__UpperCamelCase , __UpperCamelCase ):
# replace sequential layers with list
_lowerCAmelCase =re.match(__UpperCamelCase , __UpperCamelCase ).group(1 )
_lowerCAmelCase =key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(__UpperCamelCase )//3}.linear.''' )
elif re.match(__UpperCamelCase , __UpperCamelCase ):
_lowerCAmelCase =int(re.match(__UpperCamelCase , __UpperCamelCase ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
_lowerCAmelCase =1 if projecton_layer == 0 else 2
_lowerCAmelCase =key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' )
if "audio" and "qkv" in key:
# split qkv into query key and value
_lowerCAmelCase =value
_lowerCAmelCase =mixed_qkv.size(0 ) // 3
_lowerCAmelCase =mixed_qkv[:qkv_dim]
_lowerCAmelCase =mixed_qkv[qkv_dim : qkv_dim * 2]
_lowerCAmelCase =mixed_qkv[qkv_dim * 2 :]
_lowerCAmelCase =query_layer
_lowerCAmelCase =key_layer
_lowerCAmelCase =value_layer
else:
_lowerCAmelCase =value
return model_state_dict
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False ) -> Any:
_lowerCAmelCase , _lowerCAmelCase =init_clap(__UpperCamelCase , enable_fusion=__UpperCamelCase )
clap_model.eval()
_lowerCAmelCase =clap_model.state_dict()
_lowerCAmelCase =rename_state_dict(__UpperCamelCase )
_lowerCAmelCase =ClapConfig()
_lowerCAmelCase =enable_fusion
_lowerCAmelCase =ClapModel(__UpperCamelCase )
# ignore the spectrogram embedding layer
model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase )
model.save_pretrained(__UpperCamelCase )
transformers_config.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not')
__A = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 341 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__A = {
'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'],
'tokenization_m2m_100': ['M2M100Tokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST',
'M2M100ForConditionalGeneration',
'M2M100Model',
'M2M100PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 1 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> List[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =1
_lowerCAmelCase =3
_lowerCAmelCase =(32, 32)
_lowerCAmelCase =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCAmelCase )
return image
@property
def _lowerCAmelCase ( self ) -> str:
torch.manual_seed(0 )
_lowerCAmelCase =UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
return model
@property
def _lowerCAmelCase ( self ) -> str:
torch.manual_seed(0 )
_lowerCAmelCase =AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def _lowerCAmelCase ( self ) -> List[Any]:
torch.manual_seed(0 )
_lowerCAmelCase =RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , )
return RobertaSeriesModelWithTransformation(__UpperCAmelCase )
@property
def _lowerCAmelCase ( self ) -> Optional[Any]:
def extract(*__UpperCAmelCase , **__UpperCAmelCase ):
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self ) -> Optional[Any]:
_lowerCAmelCase =torch.ones([0] )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[Any]:
self.pixel_values.to(__UpperCAmelCase )
return self
return Out()
return extract
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase =self.dummy_cond_unet
_lowerCAmelCase =PNDMScheduler(skip_prk_steps=__UpperCAmelCase )
_lowerCAmelCase =self.dummy_vae
_lowerCAmelCase =self.dummy_text_encoder
_lowerCAmelCase =XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" )
_lowerCAmelCase =77
_lowerCAmelCase =self.dummy_image.to(__UpperCAmelCase )
_lowerCAmelCase =init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
_lowerCAmelCase =AltDiffusionImgaImgPipeline(
unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , safety_checker=__UpperCAmelCase , feature_extractor=self.dummy_extractor , )
_lowerCAmelCase =VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__UpperCAmelCase )
_lowerCAmelCase =alt_pipe.to(__UpperCAmelCase )
alt_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase ="""A painting of a squirrel eating a burger"""
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_lowerCAmelCase =alt_pipe(
[prompt] , generator=__UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=__UpperCAmelCase , )
_lowerCAmelCase =output.images
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_lowerCAmelCase =alt_pipe(
[prompt] , generator=__UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=__UpperCAmelCase , return_dict=__UpperCAmelCase , )[0]
_lowerCAmelCase =image[0, -3:, -3:, -1]
_lowerCAmelCase =image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
_lowerCAmelCase =np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =self.dummy_cond_unet
_lowerCAmelCase =PNDMScheduler(skip_prk_steps=__UpperCAmelCase )
_lowerCAmelCase =self.dummy_vae
_lowerCAmelCase =self.dummy_text_encoder
_lowerCAmelCase =XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" )
_lowerCAmelCase =77
_lowerCAmelCase =self.dummy_image.to(__UpperCAmelCase )
# put models in fp16
_lowerCAmelCase =unet.half()
_lowerCAmelCase =vae.half()
_lowerCAmelCase =bert.half()
# make sure here that pndm scheduler skips prk
_lowerCAmelCase =AltDiffusionImgaImgPipeline(
unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , safety_checker=__UpperCAmelCase , feature_extractor=self.dummy_extractor , )
_lowerCAmelCase =VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__UpperCAmelCase )
_lowerCAmelCase =alt_pipe.to(__UpperCAmelCase )
alt_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase ="""A painting of a squirrel eating a burger"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =alt_pipe(
[prompt] , generator=__UpperCAmelCase , num_inference_steps=2 , output_type="""np""" , image=__UpperCAmelCase , ).images
assert image.shape == (1, 32, 32, 3)
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def _lowerCAmelCase ( self ) -> Optional[int]:
_lowerCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/img2img/sketch-mountains-input.jpg""" )
# resize to resolution that is divisible by 8 but not 16 or 32
_lowerCAmelCase =init_image.resize((7_60, 5_04) )
_lowerCAmelCase ="""BAAI/AltDiffusion"""
_lowerCAmelCase =AltDiffusionImgaImgPipeline.from_pretrained(
__UpperCAmelCase , safety_checker=__UpperCAmelCase , )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing()
_lowerCAmelCase ="""A fantasy landscape, trending on artstation"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , strength=0.7_5 , guidance_scale=7.5 , generator=__UpperCAmelCase , output_type="""np""" , )
_lowerCAmelCase =output.images[0]
_lowerCAmelCase =image[2_55:2_58, 3_83:3_86, -1]
assert image.shape == (5_04, 7_60, 3)
_lowerCAmelCase =np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> str:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/img2img/sketch-mountains-input.jpg""" )
_lowerCAmelCase =init_image.resize((7_68, 5_12) )
_lowerCAmelCase =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" )
_lowerCAmelCase ="""BAAI/AltDiffusion"""
_lowerCAmelCase =AltDiffusionImgaImgPipeline.from_pretrained(
__UpperCAmelCase , safety_checker=__UpperCAmelCase , )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing()
_lowerCAmelCase ="""A fantasy landscape, trending on artstation"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , strength=0.7_5 , guidance_scale=7.5 , generator=__UpperCAmelCase , output_type="""np""" , )
_lowerCAmelCase =output.images[0]
assert image.shape == (5_12, 7_68, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1e-2
| 341 |
"""simple docstring"""
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
__A = datasets.logging.get_logger(__name__)
__A = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n'
__A = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n'
__A = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n'
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase="dummy_doc" ) -> Dict:
_lowerCAmelCase ={doc: key_lines}
_lowerCAmelCase ={doc: sys_lines}
_lowerCAmelCase ={}
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase , _lowerCAmelCase =reader.get_doc_mentions(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase )
key_singletons_num += singletons_num
if NP_only or min_span:
_lowerCAmelCase =reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =reader.get_doc_mentions(__UpperCamelCase , sys_doc_lines[doc] , __UpperCamelCase )
sys_singletons_num += singletons_num
if NP_only or min_span:
_lowerCAmelCase =reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase )
if remove_nested:
_lowerCAmelCase , _lowerCAmelCase =reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
_lowerCAmelCase , _lowerCAmelCase =reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
_lowerCAmelCase =reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =(key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
"""Number of removed nested coreferring mentions in the key """
F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' )
logger.info(
"""Number of resulting singleton clusters in the key """
F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' )
if not keep_singletons:
logger.info(
F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system '''
"""files, respectively""" )
return doc_coref_infos
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int:
_lowerCAmelCase =get_coref_infos(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase ={}
_lowerCAmelCase =0
_lowerCAmelCase =0
for name, metric in metrics:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =evaluator.evaluate_documents(__UpperCamelCase , __UpperCamelCase , beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} )
logger.info(
name.ljust(10 ) , F'''Recall: {recall * 100:.2f}''' , F''' Precision: {precision * 100:.2f}''' , F''' F1: {fa * 100:.2f}''' , )
if conll_subparts_num == 3:
_lowerCAmelCase =(conll / 3) * 100
logger.info(F'''CoNLL score: {conll:.2f}''' )
output_scores.update({"""conll_score""": conll} )
return output_scores
def _lowerCamelCase(__UpperCamelCase ) -> Tuple:
_lowerCAmelCase =False
for line in key_lines:
if not line.startswith("""#""" ):
if len(line.split() ) > 6:
_lowerCAmelCase =line.split()[5]
if not parse_col == "-":
_lowerCAmelCase =True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase__ ( datasets.Metric ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> str:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Sequence(datasets.Value("""string""" ) ),
} ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[
"""https://github.com/ns-moosavi/coval""",
"""https://www.aclweb.org/anthology/P16-1060""",
"""http://www.conll.cemantix.org/2012/data.html""",
] , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False ) -> Optional[Any]:
_lowerCAmelCase =[
("""mentions""", evaluator.mentions),
("""muc""", evaluator.muc),
("""bcub""", evaluator.b_cubed),
("""ceafe""", evaluator.ceafe),
("""lea""", evaluator.lea),
]
if min_span:
_lowerCAmelCase =util.check_gold_parse_annotation(__UpperCAmelCase )
if not has_gold_parse:
raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" )
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
_lowerCAmelCase =evaluate(
key_lines=__UpperCAmelCase , sys_lines=__UpperCAmelCase , metrics=__UpperCAmelCase , NP_only=__UpperCAmelCase , remove_nested=__UpperCAmelCase , keep_singletons=__UpperCAmelCase , min_span=__UpperCAmelCase , )
return score
| 341 | 1 |
"""simple docstring"""
from jiwer import compute_measures
import datasets
__A = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n'
__A = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n'
__A = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase__ ( datasets.Metric ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> Optional[int]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Value("""string""" , id="""sequence""" ),
} ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/Word_error_rate""",
] , )
def _lowerCAmelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=False ) -> Union[str, Any]:
if concatenate_texts:
return compute_measures(__UpperCAmelCase , __UpperCAmelCase )["wer"]
else:
_lowerCAmelCase =0
_lowerCAmelCase =0
for prediction, reference in zip(__UpperCAmelCase , __UpperCAmelCase ):
_lowerCAmelCase =compute_measures(__UpperCAmelCase , __UpperCAmelCase )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 341 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = XGLMConfig
lowerCamelCase = {}
lowerCamelCase = '''gelu'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=0.0_2 , ) -> List[str]:
_lowerCAmelCase =parent
_lowerCAmelCase =batch_size
_lowerCAmelCase =seq_length
_lowerCAmelCase =is_training
_lowerCAmelCase =use_input_mask
_lowerCAmelCase =use_labels
_lowerCAmelCase =vocab_size
_lowerCAmelCase =d_model
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =ffn_dim
_lowerCAmelCase =activation_function
_lowerCAmelCase =activation_dropout
_lowerCAmelCase =attention_dropout
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =initializer_range
_lowerCAmelCase =None
_lowerCAmelCase =0
_lowerCAmelCase =2
_lowerCAmelCase =1
def _lowerCAmelCase ( self ) -> Dict:
return XGLMConfig.from_pretrained("""facebook/xglm-564M""" )
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
_lowerCAmelCase =None
if self.use_input_mask:
_lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length] )
_lowerCAmelCase =self.get_config()
_lowerCAmelCase =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowerCAmelCase ( self ) -> str:
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__UpperCAmelCase , )
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =self.prepare_config_and_inputs()
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) =config_and_inputs
_lowerCAmelCase ={
"""input_ids""": input_ids,
"""head_mask""": head_mask,
}
return config, inputs_dict
@require_tf
class lowerCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
lowerCamelCase = (TFXGLMForCausalLM,) if is_tf_available() else ()
lowerCamelCase = (
{'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {}
)
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =TFXGLMModelTester(self )
_lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase , n_embd=37 )
def _lowerCAmelCase ( self ) -> int:
self.config_tester.run_common_tests()
@slow
def _lowerCAmelCase ( self ) -> Union[str, Any]:
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase =TFXGLMModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" )
def _lowerCAmelCase ( self ) -> Union[str, Any]:
super().test_resize_token_embeddings()
@require_tf
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def _lowerCAmelCase ( self , __UpperCAmelCase=True ) -> str:
_lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase =tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
_lowerCAmelCase =[2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81]
# fmt: on
_lowerCAmelCase =model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , __UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
tf.random.set_seed(0 )
_lowerCAmelCase =tokenizer("""Today is a nice day and""" , return_tensors="""tf""" )
_lowerCAmelCase =tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(""":/CPU:0""" ):
_lowerCAmelCase =model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , seed=[7, 0] )
_lowerCAmelCase =tokenizer.decode(output_ids[0] , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =(
"""Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"""
)
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase ="""left"""
# use different length sentences to test batching
_lowerCAmelCase =[
"""This is an extremelly long sentence that only exists to test the ability of the model to cope with """
"""left-padding, such as in batched generation. The output for the sequence below should be the same """
"""regardless of whether left padding is applied or not. When""",
"""Hello, my dog is a little""",
]
_lowerCAmelCase =tokenizer(__UpperCAmelCase , return_tensors="""tf""" , padding=__UpperCAmelCase )
_lowerCAmelCase =inputs["""input_ids"""]
_lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 )
_lowerCAmelCase =tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids
_lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 )
_lowerCAmelCase =tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids
_lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 )
_lowerCAmelCase =tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =tokenizer.decode(output_non_padded[0] , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =tokenizer.decode(output_padded[0] , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =[
"""This is an extremelly long sentence that only exists to test the ability of the model to cope with """
"""left-padding, such as in batched generation. The output for the sequence below should be the same """
"""regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """
"""a single""",
"""Hello, my dog is a little bit of a shy one, but he is very friendly""",
]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , [non_padded_sentence, padded_sentence] )
| 341 | 1 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = XGLMConfig
lowerCamelCase = {}
lowerCamelCase = '''gelu'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=0.0_2 , ) -> List[str]:
_lowerCAmelCase =parent
_lowerCAmelCase =batch_size
_lowerCAmelCase =seq_length
_lowerCAmelCase =is_training
_lowerCAmelCase =use_input_mask
_lowerCAmelCase =use_labels
_lowerCAmelCase =vocab_size
_lowerCAmelCase =d_model
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =ffn_dim
_lowerCAmelCase =activation_function
_lowerCAmelCase =activation_dropout
_lowerCAmelCase =attention_dropout
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =initializer_range
_lowerCAmelCase =None
_lowerCAmelCase =0
_lowerCAmelCase =2
_lowerCAmelCase =1
def _lowerCAmelCase ( self ) -> Dict:
return XGLMConfig.from_pretrained("""facebook/xglm-564M""" )
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
_lowerCAmelCase =None
if self.use_input_mask:
_lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length] )
_lowerCAmelCase =self.get_config()
_lowerCAmelCase =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowerCAmelCase ( self ) -> str:
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__UpperCAmelCase , )
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =self.prepare_config_and_inputs()
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) =config_and_inputs
_lowerCAmelCase ={
"""input_ids""": input_ids,
"""head_mask""": head_mask,
}
return config, inputs_dict
@require_tf
class lowerCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
lowerCamelCase = (TFXGLMForCausalLM,) if is_tf_available() else ()
lowerCamelCase = (
{'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {}
)
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =TFXGLMModelTester(self )
_lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase , n_embd=37 )
def _lowerCAmelCase ( self ) -> int:
self.config_tester.run_common_tests()
@slow
def _lowerCAmelCase ( self ) -> Union[str, Any]:
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase =TFXGLMModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" )
def _lowerCAmelCase ( self ) -> Union[str, Any]:
super().test_resize_token_embeddings()
@require_tf
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def _lowerCAmelCase ( self , __UpperCAmelCase=True ) -> str:
_lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase =tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
_lowerCAmelCase =[2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81]
# fmt: on
_lowerCAmelCase =model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , __UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
tf.random.set_seed(0 )
_lowerCAmelCase =tokenizer("""Today is a nice day and""" , return_tensors="""tf""" )
_lowerCAmelCase =tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(""":/CPU:0""" ):
_lowerCAmelCase =model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , seed=[7, 0] )
_lowerCAmelCase =tokenizer.decode(output_ids[0] , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =(
"""Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"""
)
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase ="""left"""
# use different length sentences to test batching
_lowerCAmelCase =[
"""This is an extremelly long sentence that only exists to test the ability of the model to cope with """
"""left-padding, such as in batched generation. The output for the sequence below should be the same """
"""regardless of whether left padding is applied or not. When""",
"""Hello, my dog is a little""",
]
_lowerCAmelCase =tokenizer(__UpperCAmelCase , return_tensors="""tf""" , padding=__UpperCAmelCase )
_lowerCAmelCase =inputs["""input_ids"""]
_lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 )
_lowerCAmelCase =tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids
_lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 )
_lowerCAmelCase =tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids
_lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 )
_lowerCAmelCase =tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =tokenizer.decode(output_non_padded[0] , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =tokenizer.decode(output_padded[0] , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =[
"""This is an extremelly long sentence that only exists to test the ability of the model to cope with """
"""left-padding, such as in batched generation. The output for the sequence below should be the same """
"""regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """
"""a single""",
"""Hello, my dog is a little bit of a shy one, but he is very friendly""",
]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , [non_padded_sentence, padded_sentence] )
| 341 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
__A = logging.get_logger(__name__)
__A = {'vocab_file': 'spiece.model'}
__A = {
'vocab_file': {
'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model',
'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model',
}
}
__A = {
'xlnet-base-cased': None,
'xlnet-large-cased': None,
}
# Segments (not really needed)
__A = 0
__A = 1
__A = 2
__A = 3
__A = 4
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = VOCAB_FILES_NAMES
lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase = '''left'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<sep>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<cls>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=["<eop>", "<eod>"] , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it
_lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
_lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , )
_lowerCAmelCase =3
_lowerCAmelCase =do_lower_case
_lowerCAmelCase =remove_space
_lowerCAmelCase =keep_accents
_lowerCAmelCase =vocab_file
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__UpperCAmelCase )
@property
def _lowerCAmelCase ( self ) -> str:
return len(self.sp_model )
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> Optional[int]:
_lowerCAmelCase =self.__dict__.copy()
_lowerCAmelCase =None
return state
def __setstate__( self , __UpperCAmelCase ) -> Tuple:
_lowerCAmelCase =d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_lowerCAmelCase ={}
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[Any]:
if self.remove_space:
_lowerCAmelCase =""" """.join(inputs.strip().split() )
else:
_lowerCAmelCase =inputs
_lowerCAmelCase =outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
_lowerCAmelCase =unicodedata.normalize("""NFKD""" , __UpperCAmelCase )
_lowerCAmelCase ="""""".join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] )
if self.do_lower_case:
_lowerCAmelCase =outputs.lower()
return outputs
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
_lowerCAmelCase =self.preprocess_text(__UpperCAmelCase )
_lowerCAmelCase =self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase )
_lowerCAmelCase =[]
for piece in pieces:
if len(__UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
_lowerCAmelCase =self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
_lowerCAmelCase =cur_pieces[1:]
else:
_lowerCAmelCase =cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(__UpperCAmelCase )
else:
new_pieces.append(__UpperCAmelCase )
return new_pieces
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]:
return self.sp_model.PieceToId(__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
return self.sp_model.IdToPiece(__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> str:
_lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip()
return out_string
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> str:
_lowerCAmelCase =kwargs.pop("""use_source_tokenizer""" , __UpperCAmelCase )
_lowerCAmelCase =self.convert_ids_to_tokens(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
_lowerCAmelCase =[]
_lowerCAmelCase =[]
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) )
_lowerCAmelCase =[]
sub_texts.append(__UpperCAmelCase )
else:
current_sub_text.append(__UpperCAmelCase )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) )
# Mimic the behavior of the Rust tokenizer:
# By default, there are no spaces between special tokens
_lowerCAmelCase ="""""".join(__UpperCAmelCase )
_lowerCAmelCase =(
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
_lowerCAmelCase =self.clean_up_tokenization(__UpperCAmelCase )
return clean_text
else:
return text
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_lowerCAmelCase =[self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase )
if token_ids_a is not None:
return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1]
return ([0] * len(__UpperCAmelCase )) + [1, 1]
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_lowerCAmelCase =[self.sep_token_id]
_lowerCAmelCase =[2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCAmelCase , """wb""" ) as fi:
_lowerCAmelCase =self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase )
return (out_vocab_file,)
| 341 | 1 |
"""simple docstring"""
import random
def _lowerCamelCase(__UpperCamelCase ) -> bool:
_lowerCAmelCase =num - 1
_lowerCAmelCase =0
while s % 2 == 0:
_lowerCAmelCase =s // 2
t += 1
for _ in range(5 ):
_lowerCAmelCase =random.randrange(2 , num - 1 )
_lowerCAmelCase =pow(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
if v != 1:
_lowerCAmelCase =0
while v != (num - 1):
if i == t - 1:
return False
else:
_lowerCAmelCase =i + 1
_lowerCAmelCase =(v**2) % num
return True
def _lowerCamelCase(__UpperCamelCase ) -> bool:
if num < 2:
return False
_lowerCAmelCase =[
2,
3,
5,
7,
11,
13,
17,
19,
23,
29,
31,
37,
41,
43,
47,
53,
59,
61,
67,
71,
73,
79,
83,
89,
97,
101,
103,
107,
109,
113,
127,
131,
137,
139,
149,
151,
157,
163,
167,
173,
179,
181,
191,
193,
197,
199,
211,
223,
227,
229,
233,
239,
241,
251,
257,
263,
269,
271,
277,
281,
283,
293,
307,
311,
313,
317,
331,
337,
347,
349,
353,
359,
367,
373,
379,
383,
389,
397,
401,
409,
419,
421,
431,
433,
439,
443,
449,
457,
461,
463,
467,
479,
487,
491,
499,
503,
509,
521,
523,
541,
547,
557,
563,
569,
571,
577,
587,
593,
599,
601,
607,
613,
617,
619,
631,
641,
643,
647,
653,
659,
661,
673,
677,
683,
691,
701,
709,
719,
727,
733,
739,
743,
751,
757,
761,
769,
773,
787,
797,
809,
811,
821,
823,
827,
829,
839,
853,
857,
859,
863,
877,
881,
883,
887,
907,
911,
919,
929,
937,
941,
947,
953,
967,
971,
977,
983,
991,
997,
]
if num in low_primes:
return True
for prime in low_primes:
if (num % prime) == 0:
return False
return rabin_miller(__UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase = 1024 ) -> int:
while True:
_lowerCAmelCase =random.randrange(2 ** (keysize - 1) , 2 ** (keysize) )
if is_prime_low_num(__UpperCamelCase ):
return num
if __name__ == "__main__":
__A = generate_large_prime()
print(('Prime number:', num))
print(('is_prime_low_num:', is_prime_low_num(num)))
| 341 |
"""simple docstring"""
from __future__ import annotations
def _lowerCamelCase(__UpperCamelCase ) -> bool:
_lowerCAmelCase =str(__UpperCamelCase )
return n == n[::-1]
def _lowerCamelCase(__UpperCamelCase = 1000000 ) -> str:
_lowerCAmelCase =0
for i in range(1 , __UpperCamelCase ):
if is_palindrome(__UpperCamelCase ) and is_palindrome(bin(__UpperCamelCase ).split("""b""" )[1] ):
total += i
return total
if __name__ == "__main__":
print(solution(int(str(input().strip()))))
| 341 | 1 |
"""simple docstring"""
import darl # noqa
import gym
import tqdm
from diffusers.experimental import ValueGuidedRLPipeline
__A = {
'n_samples': 64,
'horizon': 32,
'num_inference_steps': 20,
'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network
'scale_grad_by_std': True,
'scale': 0.1,
'eta': 0.0,
't_grad_cutoff': 2,
'device': 'cpu',
}
if __name__ == "__main__":
__A = 'hopper-medium-v2'
__A = gym.make(env_name)
__A = ValueGuidedRLPipeline.from_pretrained(
'bglick13/hopper-medium-v2-value-function-hor32',
env=env,
)
env.seed(0)
__A = env.reset()
__A = 0
__A = 0
__A = 1000
__A = [obs.copy()]
try:
for t in tqdm.tqdm(range(T)):
# call the policy
__A = pipeline(obs, planning_horizon=32)
# execute action in environment
__A , __A , __A , __A = env.step(denorm_actions)
__A = env.get_normalized_score(total_reward)
# update return
total_reward += reward
total_score += score
print(
F"""Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:"""
F""" {total_score}"""
)
# save observations for rendering
rollout.append(next_observation.copy())
__A = next_observation
except KeyboardInterrupt:
pass
print(F"""Total reward: {total_reward}""")
| 341 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = '''llama'''
lowerCamelCase = ['''past_key_values''']
def __init__( self , __UpperCAmelCase=3_20_00 , __UpperCAmelCase=40_96 , __UpperCAmelCase=1_10_08 , __UpperCAmelCase=32 , __UpperCAmelCase=32 , __UpperCAmelCase=None , __UpperCAmelCase="silu" , __UpperCAmelCase=20_48 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-6 , __UpperCAmelCase=True , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=False , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]:
_lowerCAmelCase =vocab_size
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =hidden_size
_lowerCAmelCase =intermediate_size
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =num_key_value_heads
_lowerCAmelCase =hidden_act
_lowerCAmelCase =initializer_range
_lowerCAmelCase =rms_norm_eps
_lowerCAmelCase =pretraining_tp
_lowerCAmelCase =use_cache
_lowerCAmelCase =rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase , )
def _lowerCAmelCase ( self ) -> str:
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2:
raise ValueError(
"""`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """
f'''got {self.rope_scaling}''' )
_lowerCAmelCase =self.rope_scaling.get("""type""" , __UpperCAmelCase )
_lowerCAmelCase =self.rope_scaling.get("""factor""" , __UpperCAmelCase )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' )
if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0:
raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
| 341 | 1 |
"""simple docstring"""
from __future__ import annotations
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> list:
_lowerCAmelCase =[]
_lowerCAmelCase , _lowerCAmelCase =input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
_lowerCAmelCase =result + left + right
return input_list
def _lowerCamelCase(__UpperCamelCase ) -> list:
if len(__UpperCamelCase ) <= 1:
return input_list
_lowerCAmelCase =list(__UpperCamelCase )
# iteration for two-way merging
_lowerCAmelCase =2
while p <= len(__UpperCamelCase ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(__UpperCamelCase ) , __UpperCamelCase ):
_lowerCAmelCase =i
_lowerCAmelCase =i + p - 1
_lowerCAmelCase =(low + high + 1) // 2
_lowerCAmelCase =merge(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
# final merge of last two parts
if p * 2 >= len(__UpperCamelCase ):
_lowerCAmelCase =i
_lowerCAmelCase =merge(__UpperCamelCase , 0 , __UpperCamelCase , len(__UpperCamelCase ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
__A = input('Enter numbers separated by a comma:\n').strip()
if user_input == "":
__A = []
else:
__A = [int(item.strip()) for item in user_input.split(',')]
print(iter_merge_sort(unsorted))
| 341 |
"""simple docstring"""
import warnings
from .generation import TFGenerationMixin
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
# warning at import time
warnings.warn(
'''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will '''
'''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''' , __magic_name__ , )
| 341 | 1 |
"""simple docstring"""
import os
import unittest
from transformers import FunnelTokenizer, FunnelTokenizerFast
from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = FunnelTokenizer
lowerCamelCase = FunnelTokenizerFast
lowerCamelCase = True
lowerCamelCase = True
def _lowerCAmelCase ( self ) -> Tuple:
super().setUp()
_lowerCAmelCase =[
"""<unk>""",
"""<cls>""",
"""<sep>""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
_lowerCAmelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def _lowerCAmelCase ( self , **__UpperCAmelCase ) -> List[str]:
return FunnelTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def _lowerCAmelCase ( self , **__UpperCAmelCase ) -> Tuple:
return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]:
_lowerCAmelCase ="""UNwant\u00E9d,running"""
_lowerCAmelCase ="""unwanted, running"""
return input_text, output_text
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =self.tokenizer_class(self.vocab_file )
_lowerCAmelCase =tokenizer.tokenize("""UNwant\u00E9d,running""" )
self.assertListEqual(__UpperCAmelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] )
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =self.get_tokenizers(do_lower_case=__UpperCAmelCase )
for tokenizer in tokenizers:
_lowerCAmelCase =tokenizer("""UNwant\u00E9d,running""" )
_lowerCAmelCase =len(inputs["""input_ids"""] ) - 1
self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len )
_lowerCAmelCase =tokenizer("""UNwant\u00E9d,running""" , """UNwant\u00E9d,running""" )
self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len + [1] * sentence_len )
| 341 |
"""simple docstring"""
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=16 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=30 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=None , ) -> Any:
_lowerCAmelCase =parent
_lowerCAmelCase =batch_size
_lowerCAmelCase =decoder_seq_length
# For common tests
_lowerCAmelCase =self.decoder_seq_length
_lowerCAmelCase =is_training
_lowerCAmelCase =use_attention_mask
_lowerCAmelCase =use_labels
_lowerCAmelCase =vocab_size
_lowerCAmelCase =d_model
_lowerCAmelCase =d_model
_lowerCAmelCase =decoder_layers
_lowerCAmelCase =decoder_layers
_lowerCAmelCase =decoder_ffn_dim
_lowerCAmelCase =decoder_attention_heads
_lowerCAmelCase =decoder_attention_heads
_lowerCAmelCase =eos_token_id
_lowerCAmelCase =bos_token_id
_lowerCAmelCase =pad_token_id
_lowerCAmelCase =decoder_start_token_id
_lowerCAmelCase =use_cache
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =None
_lowerCAmelCase =decoder_seq_length
_lowerCAmelCase =2
_lowerCAmelCase =1
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
_lowerCAmelCase =None
if self.use_attention_mask:
_lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 )
_lowerCAmelCase =None
if self.use_labels:
_lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
_lowerCAmelCase =TrOCRConfig(
vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , )
return (config, input_ids, attention_mask, lm_labels)
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[Any]:
_lowerCAmelCase =True
_lowerCAmelCase =TrOCRDecoder(config=__UpperCAmelCase ).to(__UpperCAmelCase ).eval()
_lowerCAmelCase =input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
_lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
_lowerCAmelCase =model(__UpperCAmelCase )
_lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 )
_lowerCAmelCase =outputs["""past_key_values"""]
# create hypothetical next token and extent to next_input_ids
_lowerCAmelCase =ids_tensor((2, 1) , config.vocab_size - 1 ) + 1
# append to next input_ids and
_lowerCAmelCase =torch.cat([input_ids, next_tokens] , dim=-1 )
_lowerCAmelCase =model(__UpperCAmelCase )["""last_hidden_state"""]
_lowerCAmelCase =model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )["""last_hidden_state"""]
# select random slice
_lowerCAmelCase =ids_tensor((1,) , output_from_past.shape[-1] ).item()
_lowerCAmelCase =output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
_lowerCAmelCase =output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 )
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =self.prepare_config_and_inputs()
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs
_lowerCAmelCase ={"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
lowerCamelCase = (TrOCRForCausalLM,) if is_torch_available() else ()
lowerCamelCase = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {}
lowerCamelCase = True
lowerCamelCase = False
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =TrOCRStandaloneDecoderModelTester(self , is_training=__UpperCAmelCase )
_lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> List[str]:
pass
def _lowerCAmelCase ( self ) -> List[Any]:
pass
def _lowerCAmelCase ( self ) -> Any:
pass
def _lowerCAmelCase ( self ) -> Optional[Any]:
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Tuple:
return
@unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :)
def _lowerCAmelCase ( self ) -> str:
pass
| 341 | 1 |
"""simple docstring"""
import os
from tempfile import TemporaryDirectory
from unittest import TestCase
import pytest
from absl.testing import parameterized
from datasets import config
from datasets.arrow_reader import HF_GCP_BASE_URL
from datasets.builder import DatasetBuilder
from datasets.dataset_dict import IterableDatasetDict
from datasets.iterable_dataset import IterableDataset
from datasets.load import dataset_module_factory, import_main_class
from datasets.utils.file_utils import cached_path
__A = [
{'dataset': 'wikipedia', 'config_name': '20220301.de'},
{'dataset': 'wikipedia', 'config_name': '20220301.en'},
{'dataset': 'wikipedia', 'config_name': '20220301.fr'},
{'dataset': 'wikipedia', 'config_name': '20220301.frr'},
{'dataset': 'wikipedia', 'config_name': '20220301.it'},
{'dataset': 'wikipedia', 'config_name': '20220301.simple'},
{'dataset': 'snli', 'config_name': 'plain_text'},
{'dataset': 'eli5', 'config_name': 'LFQA_reddit'},
{'dataset': 'wiki40b', 'config_name': 'en'},
{'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.compressed'},
{'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.no_index'},
{'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.multiset.no_index'},
{'dataset': 'natural_questions', 'config_name': 'default'},
]
def _lowerCamelCase(__UpperCamelCase=True ) -> Optional[Any]:
if with_config:
return [
{
"testcase_name": d["dataset"] + "/" + d["config_name"],
"dataset": d["dataset"],
"config_name": d["config_name"],
}
for d in DATASETS_ON_HF_GCP
]
else:
return [
{"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP}
]
@parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__magic_name__ ) )
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = None
lowerCamelCase = None
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
with TemporaryDirectory() as tmp_dir:
_lowerCAmelCase =dataset_module_factory(__UpperCAmelCase , cache_dir=__UpperCAmelCase )
_lowerCAmelCase =import_main_class(dataset_module.module_path , dataset=__UpperCAmelCase )
_lowerCAmelCase =builder_cls(
cache_dir=__UpperCAmelCase , config_name=__UpperCAmelCase , hash=dataset_module.hash , )
_lowerCAmelCase ="""/""".join(
[
HF_GCP_BASE_URL,
builder_instance._relative_data_dir(with_hash=__UpperCAmelCase ).replace(os.sep , """/""" ),
config.DATASET_INFO_FILENAME,
] )
_lowerCAmelCase =cached_path(__UpperCAmelCase , cache_dir=__UpperCAmelCase )
self.assertTrue(os.path.exists(__UpperCAmelCase ) )
@pytest.mark.integration
def _lowerCamelCase(__UpperCamelCase ) -> Optional[Any]:
_lowerCAmelCase =tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple"""
_lowerCAmelCase =dataset_module_factory("""wikipedia""" , cache_dir=__UpperCamelCase )
_lowerCAmelCase =import_main_class(dataset_module.module_path )
_lowerCAmelCase =builder_cls(
cache_dir=__UpperCamelCase , config_name="""20220301.frr""" , hash=dataset_module.hash , )
# use the HF cloud storage, not the original download_and_prepare that uses apache-beam
_lowerCAmelCase =None
builder_instance.download_and_prepare()
_lowerCAmelCase =builder_instance.as_dataset()
assert ds
@pytest.mark.integration
def _lowerCamelCase(__UpperCamelCase ) -> Union[str, Any]:
_lowerCAmelCase =dataset_module_factory("""wikipedia""" , cache_dir=__UpperCamelCase )
_lowerCAmelCase =import_main_class(dataset_module.module_path , dataset=__UpperCamelCase )
_lowerCAmelCase =builder_cls(
cache_dir=__UpperCamelCase , config_name="""20220301.frr""" , hash=dataset_module.hash , )
_lowerCAmelCase =builder_instance.as_streaming_dataset()
assert ds
assert isinstance(__UpperCamelCase , __UpperCamelCase )
assert "train" in ds
assert isinstance(ds["""train"""] , __UpperCamelCase )
assert next(iter(ds["""train"""] ) )
| 341 |
"""simple docstring"""
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = JukeboxTokenizer
lowerCamelCase = {
'''artist''': '''Zac Brown Band''',
'''genres''': '''Country''',
'''lyrics''': '''I met a traveller from an antique land,
Who said "Two vast and trunkless legs of stone
Stand in the desert. . . . Near them, on the sand,
Half sunk a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,
Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them, and the heart that fed;
And on the pedestal, these words appear:
My name is Ozymandias, King of Kings;
Look on my Works, ye Mighty, and despair!
Nothing beside remains. Round the decay
Of that colossal Wreck, boundless and bare
The lone and level sands stretch far away
''',
}
@require_torch
def _lowerCAmelCase ( self ) -> str:
import torch
_lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" )
_lowerCAmelCase =tokenizer(**self.metas )["""input_ids"""]
# fmt: off
_lowerCAmelCase =[
torch.tensor([[
0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 10_69, 11]] ),
torch.tensor([[0, 0, 0, 10_69, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def _lowerCAmelCase ( self ) -> Any:
import torch
_lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" )
_lowerCAmelCase =tokenizer(**self.metas )["""input_ids"""]
# fmt: off
_lowerCAmelCase =[
torch.tensor([[
0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 341 | 1 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = ['''image_processor''', '''tokenizer''']
lowerCamelCase = '''CLIPImageProcessor'''
lowerCamelCase = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''')
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase =None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __UpperCAmelCase , )
_lowerCAmelCase =kwargs.pop("""feature_extractor""" )
_lowerCAmelCase =image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Optional[Any]:
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
_lowerCAmelCase =self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if images is not None:
_lowerCAmelCase =self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is not None and images is not None:
_lowerCAmelCase =image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase )
def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
@property
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =self.tokenizer.model_input_names
_lowerCAmelCase =self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 341 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__A = logging.get_logger(__name__)
__A = '▁'
__A = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'}
__A = {
'vocab_file': {
'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model',
},
'monolingual_vocab_file': {
'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt',
},
}
__A = {'vinai/bartpho-syllable': 1024}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = VOCAB_FILES_NAMES
lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase = ['''input_ids''', '''attention_mask''']
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it
_lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
_lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , )
_lowerCAmelCase =vocab_file
_lowerCAmelCase =monolingual_vocab_file
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__UpperCAmelCase ) )
# Load the reduced vocab
# Keep order of special tokens for backward compatibility
_lowerCAmelCase ={}
_lowerCAmelCase =0
for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids:
_lowerCAmelCase =cnt
cnt += 1
with open(__UpperCAmelCase , """r""" , encoding="""utf-8""" ) as f:
for line in f.readlines():
_lowerCAmelCase =line.strip().split()[0]
_lowerCAmelCase =len(self.fairseq_tokens_to_ids )
if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids:
_lowerCAmelCase =len(self.fairseq_tokens_to_ids )
_lowerCAmelCase ={v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ) -> Dict:
_lowerCAmelCase =self.__dict__.copy()
_lowerCAmelCase =None
_lowerCAmelCase =self.sp_model.serialized_model_proto()
return state
def __setstate__( self , __UpperCAmelCase ) -> List[Any]:
_lowerCAmelCase =d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_lowerCAmelCase ={}
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
_lowerCAmelCase =[self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(__UpperCAmelCase )) + [1]
return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1]
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_lowerCAmelCase =[self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def _lowerCAmelCase ( self ) -> Union[str, Any]:
return len(self.fairseq_ids_to_tokens )
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
else:
return self.unk_token_id
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]:
return self.fairseq_ids_to_tokens[index]
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip()
return out_string
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCAmelCase , """wb""" ) as fi:
_lowerCAmelCase =self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase )
if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath(
__UpperCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ):
copyfile(self.monolingual_vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.monolingual_vocab_file ):
with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as fp:
for token in self.fairseq_tokens_to_ids:
if token not in self.all_special_tokens:
fp.write(f'''{str(__UpperCAmelCase )} \n''' )
return out_vocab_file, out_monolingual_vocab_file
| 341 | 1 |
"""simple docstring"""
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = (UnCLIPScheduler,)
def _lowerCAmelCase ( self , **__UpperCAmelCase ) -> Optional[int]:
_lowerCAmelCase ={
"""num_train_timesteps""": 10_00,
"""variance_type""": """fixed_small_log""",
"""clip_sample""": True,
"""clip_sample_range""": 1.0,
"""prediction_type""": """epsilon""",
}
config.update(**__UpperCAmelCase )
return config
def _lowerCAmelCase ( self ) -> Tuple:
for timesteps in [1, 5, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Any:
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Any:
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Union[str, Any]:
for clip_sample_range in [1, 5, 10, 20]:
self.check_over_configs(clip_sample_range=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Dict:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> int:
for time_step in [0, 5_00, 9_99]:
for prev_timestep in [None, 5, 1_00, 2_50, 5_00, 7_50]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=__UpperCAmelCase , prev_timestep=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =self.scheduler_classes[0]
_lowerCAmelCase =self.get_scheduler_config(variance_type="""fixed_small_log""" )
_lowerCAmelCase =scheduler_class(**__UpperCAmelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.00_00e-10 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.0_5_4_9_6_2_5 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.9_9_9_4_9_8_7 ) ) < 1e-5
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =self.scheduler_classes[0]
_lowerCAmelCase =self.get_scheduler_config(variance_type="""learned_range""" )
_lowerCAmelCase =scheduler_class(**__UpperCAmelCase )
_lowerCAmelCase =0.5
assert scheduler._get_variance(1 , predicted_variance=__UpperCAmelCase ) - -1_0.1_7_1_2_7_9_0 < 1e-5
assert scheduler._get_variance(4_87 , predicted_variance=__UpperCAmelCase ) - -5.7_9_9_8_0_5_2 < 1e-5
assert scheduler._get_variance(9_99 , predicted_variance=__UpperCAmelCase ) - -0.0_0_1_0_0_1_1 < 1e-5
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =self.scheduler_classes[0]
_lowerCAmelCase =self.get_scheduler_config()
_lowerCAmelCase =scheduler_class(**__UpperCAmelCase )
_lowerCAmelCase =scheduler.timesteps
_lowerCAmelCase =self.dummy_model()
_lowerCAmelCase =self.dummy_sample_deter
_lowerCAmelCase =torch.manual_seed(0 )
for i, t in enumerate(__UpperCAmelCase ):
# 1. predict noise residual
_lowerCAmelCase =model(__UpperCAmelCase , __UpperCAmelCase )
# 2. predict previous mean of sample x_t-1
_lowerCAmelCase =scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample
_lowerCAmelCase =pred_prev_sample
_lowerCAmelCase =torch.sum(torch.abs(__UpperCAmelCase ) )
_lowerCAmelCase =torch.mean(torch.abs(__UpperCAmelCase ) )
assert abs(result_sum.item() - 2_5_2.2_6_8_2_4_9_5 ) < 1e-2
assert abs(result_mean.item() - 0.3_2_8_4_7_4_3 ) < 1e-3
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =self.scheduler_classes[0]
_lowerCAmelCase =self.get_scheduler_config()
_lowerCAmelCase =scheduler_class(**__UpperCAmelCase )
scheduler.set_timesteps(25 )
_lowerCAmelCase =scheduler.timesteps
_lowerCAmelCase =self.dummy_model()
_lowerCAmelCase =self.dummy_sample_deter
_lowerCAmelCase =torch.manual_seed(0 )
for i, t in enumerate(__UpperCAmelCase ):
# 1. predict noise residual
_lowerCAmelCase =model(__UpperCAmelCase , __UpperCAmelCase )
if i + 1 == timesteps.shape[0]:
_lowerCAmelCase =None
else:
_lowerCAmelCase =timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
_lowerCAmelCase =scheduler.step(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , prev_timestep=__UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample
_lowerCAmelCase =pred_prev_sample
_lowerCAmelCase =torch.sum(torch.abs(__UpperCAmelCase ) )
_lowerCAmelCase =torch.mean(torch.abs(__UpperCAmelCase ) )
assert abs(result_sum.item() - 2_5_8.2_0_4_4_9_8_3 ) < 1e-2
assert abs(result_mean.item() - 0.3_3_6_2_0_3_8 ) < 1e-3
def _lowerCAmelCase ( self ) -> Dict:
pass
def _lowerCAmelCase ( self ) -> List[str]:
pass
| 341 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =1
_lowerCAmelCase =3
_lowerCAmelCase =(32, 32)
_lowerCAmelCase =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCAmelCase )
return image
@property
def _lowerCAmelCase ( self ) -> Tuple:
torch.manual_seed(0 )
_lowerCAmelCase =UNetaDConditionModel(
block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__UpperCAmelCase , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , )
return model
@property
def _lowerCAmelCase ( self ) -> Tuple:
torch.manual_seed(0 )
_lowerCAmelCase =AutoencoderKL(
block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def _lowerCAmelCase ( self ) -> Optional[Any]:
torch.manual_seed(0 )
_lowerCAmelCase =CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , )
return CLIPTextModel(__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase =self.dummy_cond_unet_upscale
_lowerCAmelCase =DDPMScheduler()
_lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" )
_lowerCAmelCase =self.dummy_vae
_lowerCAmelCase =self.dummy_text_encoder
_lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
_lowerCAmelCase =StableDiffusionUpscalePipeline(
unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , )
_lowerCAmelCase =sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase ="""A painting of a squirrel eating a burger"""
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
_lowerCAmelCase =output.images
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=__UpperCAmelCase , )[0]
_lowerCAmelCase =image[0, -3:, -3:, -1]
_lowerCAmelCase =image_from_tuple[0, -3:, -3:, -1]
_lowerCAmelCase =low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
_lowerCAmelCase =np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase =self.dummy_cond_unet_upscale
_lowerCAmelCase =DDPMScheduler()
_lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" )
_lowerCAmelCase =self.dummy_vae
_lowerCAmelCase =self.dummy_text_encoder
_lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
_lowerCAmelCase =StableDiffusionUpscalePipeline(
unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , )
_lowerCAmelCase =sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase ="""A painting of a squirrel eating a burger"""
_lowerCAmelCase =sd_pipe(
2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
_lowerCAmelCase =output.images
assert image.shape[0] == 2
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
_lowerCAmelCase =output.images
assert image.shape[0] == 2
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =self.dummy_cond_unet_upscale
_lowerCAmelCase =DDPMScheduler()
_lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" )
_lowerCAmelCase =self.dummy_vae
_lowerCAmelCase =self.dummy_text_encoder
_lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
# put models in fp16, except vae as it overflows in fp16
_lowerCAmelCase =unet.half()
_lowerCAmelCase =text_encoder.half()
# make sure here that pndm scheduler skips prk
_lowerCAmelCase =StableDiffusionUpscalePipeline(
unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , )
_lowerCAmelCase =sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase ="""A painting of a squirrel eating a burger"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type="""np""" , ).images
_lowerCAmelCase =low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
@slow
@require_torch_gpu
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> int:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_lowerCAmelCase =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"""
"""/upsampled_cat.npy""" )
_lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler"""
_lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing()
_lowerCAmelCase ="""a cat sitting on a park bench"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , )
_lowerCAmelCase =output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 1e-3
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_lowerCAmelCase =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"""
"""/upsampled_cat_fp16.npy""" )
_lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler"""
_lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(
__UpperCAmelCase , torch_dtype=torch.floataa , )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing()
_lowerCAmelCase ="""a cat sitting on a park bench"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , )
_lowerCAmelCase =output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 5e-1
def _lowerCAmelCase ( self ) -> Optional[Any]:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_lowerCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler"""
_lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(
__UpperCAmelCase , torch_dtype=torch.floataa , )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
_lowerCAmelCase ="""a cat sitting on a park bench"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , output_type="""np""" , )
_lowerCAmelCase =torch.cuda.max_memory_allocated()
# make sure that less than 2.9 GB is allocated
assert mem_bytes < 2.9 * 10**9
| 341 | 1 |
"""simple docstring"""
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
__A = logging.get_logger(__name__)
@add_end_docstrings(__magic_name__ )
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
def __init__( self , **__UpperCAmelCase ) -> Optional[int]:
super().__init__(**__UpperCAmelCase )
if self.framework == "tf":
raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' )
requires_backends(self , """vision""" )
self.check_model_type(__UpperCAmelCase )
def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> str:
if "text_queries" in kwargs:
_lowerCAmelCase =kwargs.pop("""text_queries""" )
if isinstance(__UpperCAmelCase , (str, Image.Image) ):
_lowerCAmelCase ={"""image""": image, """candidate_labels""": candidate_labels}
else:
_lowerCAmelCase =image
_lowerCAmelCase =super().__call__(__UpperCAmelCase , **__UpperCAmelCase )
return results
def _lowerCAmelCase ( self , **__UpperCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase ={}
if "threshold" in kwargs:
_lowerCAmelCase =kwargs["""threshold"""]
if "top_k" in kwargs:
_lowerCAmelCase =kwargs["""top_k"""]
return {}, {}, postprocess_params
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Tuple:
_lowerCAmelCase =load_image(inputs["""image"""] )
_lowerCAmelCase =inputs["""candidate_labels"""]
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
_lowerCAmelCase =candidate_labels.split(""",""" )
_lowerCAmelCase =torch.tensor([[image.height, image.width]] , dtype=torch.intaa )
for i, candidate_label in enumerate(__UpperCAmelCase ):
_lowerCAmelCase =self.tokenizer(__UpperCAmelCase , return_tensors=self.framework )
_lowerCAmelCase =self.image_processor(__UpperCAmelCase , return_tensors=self.framework )
yield {
"is_last": i == len(__UpperCAmelCase ) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]:
_lowerCAmelCase =model_inputs.pop("""target_size""" )
_lowerCAmelCase =model_inputs.pop("""candidate_label""" )
_lowerCAmelCase =model_inputs.pop("""is_last""" )
_lowerCAmelCase =self.model(**__UpperCAmelCase )
_lowerCAmelCase ={"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs}
return model_outputs
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0.1 , __UpperCAmelCase=None ) -> Tuple:
_lowerCAmelCase =[]
for model_output in model_outputs:
_lowerCAmelCase =model_output["""candidate_label"""]
_lowerCAmelCase =BaseModelOutput(__UpperCAmelCase )
_lowerCAmelCase =self.image_processor.post_process_object_detection(
outputs=__UpperCAmelCase , threshold=__UpperCAmelCase , target_sizes=model_output["""target_size"""] )[0]
for index in outputs["scores"].nonzero():
_lowerCAmelCase =outputs["""scores"""][index].item()
_lowerCAmelCase =self._get_bounding_box(outputs["""boxes"""][index][0] )
_lowerCAmelCase ={"""score""": score, """label""": label, """box""": box}
results.append(__UpperCAmelCase )
_lowerCAmelCase =sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase )
if top_k:
_lowerCAmelCase =results[:top_k]
return results
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Dict[str, int]:
if self.framework != "pt":
raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""" )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =box.int().tolist()
_lowerCAmelCase ={
"""xmin""": xmin,
"""ymin""": ymin,
"""xmax""": xmax,
"""ymax""": ymax,
}
return bbox
| 341 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json',
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = '''cvt'''
def __init__( self , __UpperCAmelCase=3 , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[64, 1_92, 3_84] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 10] , __UpperCAmelCase=[4.0, 4.0, 4.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.1] , __UpperCAmelCase=[True, True, True] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , __UpperCAmelCase=[3, 3, 3] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-12 , **__UpperCAmelCase , ) -> Optional[Any]:
super().__init__(**__UpperCAmelCase )
_lowerCAmelCase =num_channels
_lowerCAmelCase =patch_sizes
_lowerCAmelCase =patch_stride
_lowerCAmelCase =patch_padding
_lowerCAmelCase =embed_dim
_lowerCAmelCase =num_heads
_lowerCAmelCase =depth
_lowerCAmelCase =mlp_ratio
_lowerCAmelCase =attention_drop_rate
_lowerCAmelCase =drop_rate
_lowerCAmelCase =drop_path_rate
_lowerCAmelCase =qkv_bias
_lowerCAmelCase =cls_token
_lowerCAmelCase =qkv_projection_method
_lowerCAmelCase =kernel_qkv
_lowerCAmelCase =padding_kv
_lowerCAmelCase =stride_kv
_lowerCAmelCase =padding_q
_lowerCAmelCase =stride_q
_lowerCAmelCase =initializer_range
_lowerCAmelCase =layer_norm_eps
| 341 | 1 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase = 1000 ) -> int:
_lowerCAmelCase =2**power
_lowerCAmelCase =0
while n:
_lowerCAmelCase , _lowerCAmelCase =r + n % 10, n // 10
return r
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 341 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = ['''image_processor''', '''tokenizer''']
lowerCamelCase = '''CLIPImageProcessor'''
lowerCamelCase = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''')
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase =None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __UpperCAmelCase , )
_lowerCAmelCase =kwargs.pop("""feature_extractor""" )
_lowerCAmelCase =image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Optional[Any]:
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
_lowerCAmelCase =self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if images is not None:
_lowerCAmelCase =self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is not None and images is not None:
_lowerCAmelCase =image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase )
def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
@property
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =self.tokenizer.model_input_names
_lowerCAmelCase =self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 341 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
'facebook/nllb-moe-54B': 'https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json',
}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = '''nllb-moe'''
lowerCamelCase = ['''past_key_values''']
lowerCamelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self , __UpperCAmelCase=12_81_12 , __UpperCAmelCase=10_24 , __UpperCAmelCase=12 , __UpperCAmelCase=40_96 , __UpperCAmelCase=16 , __UpperCAmelCase=12 , __UpperCAmelCase=40_96 , __UpperCAmelCase=16 , __UpperCAmelCase=0.0_5 , __UpperCAmelCase=0.0_5 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase="relu" , __UpperCAmelCase=10_24 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="float32" , __UpperCAmelCase=False , __UpperCAmelCase=1_28 , __UpperCAmelCase=64 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=0.0_0_1 , __UpperCAmelCase=0.0_0_1 , __UpperCAmelCase="all" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=1.0 , __UpperCAmelCase=0.2 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Optional[int]:
_lowerCAmelCase =vocab_size
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =d_model
_lowerCAmelCase =encoder_ffn_dim
_lowerCAmelCase =encoder_layers
_lowerCAmelCase =encoder_attention_heads
_lowerCAmelCase =decoder_ffn_dim
_lowerCAmelCase =decoder_layers
_lowerCAmelCase =decoder_attention_heads
_lowerCAmelCase =dropout
_lowerCAmelCase =attention_dropout
_lowerCAmelCase =activation_dropout
_lowerCAmelCase =activation_function
_lowerCAmelCase =init_std
_lowerCAmelCase =encoder_layerdrop
_lowerCAmelCase =decoder_layerdrop
_lowerCAmelCase =use_cache
_lowerCAmelCase =encoder_layers
_lowerCAmelCase =scale_embedding # scale factor will be sqrt(d_model) if True
_lowerCAmelCase =router_z_loss_coef
_lowerCAmelCase =router_aux_loss_coef
_lowerCAmelCase =decoder_sparse_step
_lowerCAmelCase =encoder_sparse_step
_lowerCAmelCase =num_experts
_lowerCAmelCase =expert_capacity
_lowerCAmelCase =router_bias
if router_dtype not in ["float32", "float16", "bfloat16"]:
raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' )
_lowerCAmelCase =router_dtype
_lowerCAmelCase =router_ignore_padding_tokens
_lowerCAmelCase =batch_prioritized_routing
_lowerCAmelCase =second_expert_policy
_lowerCAmelCase =normalize_router_prob_before_dropping
_lowerCAmelCase =moe_eval_capacity_token_fraction
_lowerCAmelCase =moe_token_dropout
_lowerCAmelCase =output_router_logits
super().__init__(
pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , **__UpperCAmelCase , )
| 341 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__A = {
'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'],
'tokenization_perceiver': ['PerceiverTokenizer'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ['PerceiverFeatureExtractor']
__A = ['PerceiverImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PerceiverForImageClassificationConvProcessing',
'PerceiverForImageClassificationFourier',
'PerceiverForImageClassificationLearned',
'PerceiverForMaskedLM',
'PerceiverForMultimodalAutoencoding',
'PerceiverForOpticalFlow',
'PerceiverForSequenceClassification',
'PerceiverLayer',
'PerceiverModel',
'PerceiverPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 1 |
"""simple docstring"""
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
__A = 'src/diffusers'
# Matches is_xxx_available()
__A = re.compile(r'is\_([a-z_]*)_available\(\)')
# Matches from xxx import bla
__A = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n')
__A = '\n{0} = None\n'
__A = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n'
__A = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n'
def _lowerCamelCase(__UpperCamelCase ) -> List[str]:
_lowerCAmelCase =_re_backend.findall(__UpperCamelCase )
if len(__UpperCamelCase ) == 0:
return None
return "_and_".join(__UpperCamelCase )
def _lowerCamelCase() -> int:
with open(os.path.join(__UpperCamelCase , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
_lowerCAmelCase =f.readlines()
# Get to the point we do the actual imports for type checking
_lowerCAmelCase =0
_lowerCAmelCase ={}
# Go through the end of the file
while line_index < len(__UpperCamelCase ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
_lowerCAmelCase =find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith("""else:""" ):
line_index += 1
line_index += 1
_lowerCAmelCase =[]
# Until we unindent, add backend objects to the list
while line_index < len(__UpperCamelCase ) and len(lines[line_index] ) > 1:
_lowerCAmelCase =lines[line_index]
_lowerCAmelCase =_re_single_line_import.search(__UpperCamelCase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(__UpperCamelCase ) > 0:
_lowerCAmelCase =objects
else:
line_index += 1
return backend_specific_objects
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Optional[int]:
if name.isupper():
return DUMMY_CONSTANT.format(__UpperCamelCase )
elif name.islower():
return DUMMY_FUNCTION.format(__UpperCamelCase , __UpperCamelCase )
else:
return DUMMY_CLASS.format(__UpperCamelCase , __UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase=None ) -> str:
if backend_specific_objects is None:
_lowerCAmelCase =read_init()
# For special correspondence backend to module name as used in the function requires_modulename
_lowerCAmelCase ={}
for backend, objects in backend_specific_objects.items():
_lowerCAmelCase ="""[""" + """, """.join(F'''"{b}"''' for b in backend.split("""_and_""" ) ) + """]"""
_lowerCAmelCase ="""# This file is autogenerated by the command `make fix-copies`, do not edit.\n"""
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(__UpperCamelCase , __UpperCamelCase ) for o in objects] )
_lowerCAmelCase =dummy_file
return dummy_files
def _lowerCamelCase(__UpperCamelCase=False ) -> int:
_lowerCAmelCase =create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
_lowerCAmelCase ={"""torch""": """pt"""}
# Locate actual dummy modules and read their content.
_lowerCAmelCase =os.path.join(__UpperCamelCase , """utils""" )
_lowerCAmelCase ={
backend: os.path.join(__UpperCamelCase , F'''dummy_{short_names.get(__UpperCamelCase , __UpperCamelCase )}_objects.py''' )
for backend in dummy_files.keys()
}
_lowerCAmelCase ={}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(__UpperCamelCase ):
with open(__UpperCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
_lowerCAmelCase =f.read()
else:
_lowerCAmelCase =""""""
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
F'''Updating diffusers.utils.dummy_{short_names.get(__UpperCamelCase , __UpperCamelCase )}_objects.py as the main '''
"""__init__ has new objects.""" )
with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
"""The main __init__ has objects that are not present in """
F'''diffusers.utils.dummy_{short_names.get(__UpperCamelCase , __UpperCamelCase )}_objects.py. Run `make fix-copies` '''
"""to fix this.""" )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.')
__A = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 341 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A = {
'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST',
'Swinv2ForImageClassification',
'Swinv2ForMaskedImageModeling',
'Swinv2Model',
'Swinv2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 1 |
"""simple docstring"""
import os
from pathlib import Path
from unittest.mock import patch
import pytest
import zstandard as zstd
from datasets.download.download_config import DownloadConfig
from datasets.utils.file_utils import (
OfflineModeIsEnabled,
cached_path,
fsspec_get,
fsspec_head,
ftp_get,
ftp_head,
get_from_cache,
http_get,
http_head,
)
__A = '\\n Text data.\n Second line of data.'
__A = 'file'
@pytest.fixture(scope="""session""" )
def _lowerCamelCase(__UpperCamelCase ) -> Optional[int]:
_lowerCAmelCase =tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""")
_lowerCAmelCase =bytes(__UpperCamelCase , """utf-8""" )
with zstd.open(__UpperCamelCase , """wb""" ) as f:
f.write(__UpperCamelCase )
return path
@pytest.fixture
def _lowerCamelCase(__UpperCamelCase ) -> List[Any]:
with open(os.path.join(tmpfs.local_root_dir , __UpperCamelCase ) , """w""" ) as f:
f.write(__UpperCamelCase )
return FILE_PATH
@pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] )
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[Any]:
_lowerCAmelCase ={"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path}
_lowerCAmelCase =input_paths[compression_format]
_lowerCAmelCase =tmp_path / """cache"""
_lowerCAmelCase =DownloadConfig(cache_dir=__UpperCamelCase , extract_compressed_file=__UpperCamelCase )
_lowerCAmelCase =cached_path(__UpperCamelCase , download_config=__UpperCamelCase )
with open(__UpperCamelCase ) as f:
_lowerCAmelCase =f.read()
with open(__UpperCamelCase ) as f:
_lowerCAmelCase =f.read()
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize("""default_extracted""" , [True, False] )
@pytest.mark.parametrize("""default_cache_dir""" , [True, False] )
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[int]:
_lowerCAmelCase ="""custom_cache"""
_lowerCAmelCase ="""custom_extracted_dir"""
_lowerCAmelCase =tmp_path / """custom_extracted_path"""
if default_extracted:
_lowerCAmelCase =("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""")
else:
monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , __UpperCamelCase )
monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(__UpperCamelCase ) )
_lowerCAmelCase =custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir)
_lowerCAmelCase =xz_file
_lowerCAmelCase =(
DownloadConfig(extract_compressed_file=__UpperCamelCase )
if default_cache_dir
else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=__UpperCamelCase )
)
_lowerCAmelCase =cached_path(__UpperCamelCase , download_config=__UpperCamelCase )
assert Path(__UpperCamelCase ).parent.parts[-2:] == expected
def _lowerCamelCase(__UpperCamelCase ) -> Tuple:
# absolute path
_lowerCAmelCase =str(Path(__UpperCamelCase ).resolve() )
assert cached_path(__UpperCamelCase ) == text_file
# relative path
_lowerCAmelCase =str(Path(__UpperCamelCase ).resolve().relative_to(Path(os.getcwd() ) ) )
assert cached_path(__UpperCamelCase ) == text_file
def _lowerCamelCase(__UpperCamelCase ) -> List[str]:
# absolute path
_lowerCAmelCase =str(tmp_path.resolve() / """__missing_file__.txt""" )
with pytest.raises(__UpperCamelCase ):
cached_path(__UpperCamelCase )
# relative path
_lowerCAmelCase ="""./__missing_file__.txt"""
with pytest.raises(__UpperCamelCase ):
cached_path(__UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase ) -> int:
_lowerCAmelCase =get_from_cache(F'''tmp://{tmpfs_file}''' )
with open(__UpperCamelCase ) as f:
_lowerCAmelCase =f.read()
assert output_file_content == FILE_CONTENT
@patch("""datasets.config.HF_DATASETS_OFFLINE""" , __UpperCamelCase )
def _lowerCamelCase() -> List[str]:
with pytest.raises(__UpperCamelCase ):
cached_path("""https://huggingface.co""" )
@patch("""datasets.config.HF_DATASETS_OFFLINE""" , __UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase ) -> Optional[int]:
_lowerCAmelCase =tmp_path_factory.mktemp("""data""" ) / """file.html"""
with pytest.raises(__UpperCamelCase ):
http_get("""https://huggingface.co""" , temp_file=__UpperCamelCase )
with pytest.raises(__UpperCamelCase ):
http_head("""https://huggingface.co""" )
@patch("""datasets.config.HF_DATASETS_OFFLINE""" , __UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase ) -> str:
_lowerCAmelCase =tmp_path_factory.mktemp("""data""" ) / """file.html"""
with pytest.raises(__UpperCamelCase ):
ftp_get("""ftp://huggingface.co""" , temp_file=__UpperCamelCase )
with pytest.raises(__UpperCamelCase ):
ftp_head("""ftp://huggingface.co""" )
@patch("""datasets.config.HF_DATASETS_OFFLINE""" , __UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase ) -> Optional[Any]:
_lowerCAmelCase =tmp_path_factory.mktemp("""data""" ) / """file.html"""
with pytest.raises(__UpperCamelCase ):
fsspec_get("""s3://huggingface.co""" , temp_file=__UpperCamelCase )
with pytest.raises(__UpperCamelCase ):
fsspec_head("""s3://huggingface.co""" )
| 341 |
"""simple docstring"""
import argparse
import json
import torch
from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=1 ) -> Tuple:
if n_shave_prefix_segments >= 0:
return ".".join(path.split(""".""" )[n_shave_prefix_segments:] )
else:
return ".".join(path.split(""".""" )[:n_shave_prefix_segments] )
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=0 ) -> List[str]:
_lowerCAmelCase =[]
for old_item in old_list:
_lowerCAmelCase =old_item.replace("""in_layers.0""" , """norm1""" )
_lowerCAmelCase =new_item.replace("""in_layers.2""" , """conv1""" )
_lowerCAmelCase =new_item.replace("""out_layers.0""" , """norm2""" )
_lowerCAmelCase =new_item.replace("""out_layers.3""" , """conv2""" )
_lowerCAmelCase =new_item.replace("""emb_layers.1""" , """time_emb_proj""" )
_lowerCAmelCase =new_item.replace("""skip_connection""" , """conv_shortcut""" )
_lowerCAmelCase =shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=0 ) -> Tuple:
_lowerCAmelCase =[]
for old_item in old_list:
_lowerCAmelCase =old_item
_lowerCAmelCase =new_item.replace("""norm.weight""" , """group_norm.weight""" )
_lowerCAmelCase =new_item.replace("""norm.bias""" , """group_norm.bias""" )
_lowerCAmelCase =new_item.replace("""proj_out.weight""" , """proj_attn.weight""" )
_lowerCAmelCase =new_item.replace("""proj_out.bias""" , """proj_attn.bias""" )
_lowerCAmelCase =shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None ) -> Optional[int]:
assert isinstance(__UpperCamelCase , __UpperCamelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
_lowerCAmelCase =old_checkpoint[path]
_lowerCAmelCase =old_tensor.shape[0] // 3
_lowerCAmelCase =(-1, channels) if len(old_tensor.shape ) == 3 else (-1)
_lowerCAmelCase =old_tensor.shape[0] // config["""num_head_channels"""] // 3
_lowerCAmelCase =old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =old_tensor.split(channels // num_heads , dim=1 )
_lowerCAmelCase =query.reshape(__UpperCamelCase )
_lowerCAmelCase =key.reshape(__UpperCamelCase )
_lowerCAmelCase =value.reshape(__UpperCamelCase )
for path in paths:
_lowerCAmelCase =path["""new"""]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
_lowerCAmelCase =new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" )
_lowerCAmelCase =new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" )
_lowerCAmelCase =new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" )
if additional_replacements is not None:
for replacement in additional_replacements:
_lowerCAmelCase =new_path.replace(replacement["""old"""] , replacement["""new"""] )
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
_lowerCAmelCase =old_checkpoint[path["""old"""]][:, :, 0]
else:
_lowerCAmelCase =old_checkpoint[path["""old"""]]
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Optional[Any]:
_lowerCAmelCase ={}
_lowerCAmelCase =checkpoint["""time_embed.0.weight"""]
_lowerCAmelCase =checkpoint["""time_embed.0.bias"""]
_lowerCAmelCase =checkpoint["""time_embed.2.weight"""]
_lowerCAmelCase =checkpoint["""time_embed.2.bias"""]
_lowerCAmelCase =checkpoint["""input_blocks.0.0.weight"""]
_lowerCAmelCase =checkpoint["""input_blocks.0.0.bias"""]
_lowerCAmelCase =checkpoint["""out.0.weight"""]
_lowerCAmelCase =checkpoint["""out.0.bias"""]
_lowerCAmelCase =checkpoint["""out.2.weight"""]
_lowerCAmelCase =checkpoint["""out.2.bias"""]
# Retrieves the keys for the input blocks only
_lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} )
_lowerCAmelCase ={
layer_id: [key for key in checkpoint if F'''input_blocks.{layer_id}''' in key]
for layer_id in range(__UpperCamelCase )
}
# Retrieves the keys for the middle blocks only
_lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} )
_lowerCAmelCase ={
layer_id: [key for key in checkpoint if F'''middle_block.{layer_id}''' in key]
for layer_id in range(__UpperCamelCase )
}
# Retrieves the keys for the output blocks only
_lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} )
_lowerCAmelCase ={
layer_id: [key for key in checkpoint if F'''output_blocks.{layer_id}''' in key]
for layer_id in range(__UpperCamelCase )
}
for i in range(1 , __UpperCamelCase ):
_lowerCAmelCase =(i - 1) // (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =(i - 1) % (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =[key for key in input_blocks[i] if F'''input_blocks.{i}.0''' in key]
_lowerCAmelCase =[key for key in input_blocks[i] if F'''input_blocks.{i}.1''' in key]
if F'''input_blocks.{i}.0.op.weight''' in checkpoint:
_lowerCAmelCase =checkpoint[
F'''input_blocks.{i}.0.op.weight'''
]
_lowerCAmelCase =checkpoint[
F'''input_blocks.{i}.0.op.bias'''
]
continue
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
_lowerCAmelCase ={"""old""": F'''input_blocks.{i}.0''', """new""": F'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''}
_lowerCAmelCase ={"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path, resnet_op] , config=__UpperCamelCase )
if len(__UpperCamelCase ):
_lowerCAmelCase =renew_attention_paths(__UpperCamelCase )
_lowerCAmelCase ={
"""old""": F'''input_blocks.{i}.1''',
"""new""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}''',
}
_lowerCAmelCase ={
F'''input_blocks.{i}.1.qkv.bias''': {
"""key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''',
"""query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''',
"""value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''',
},
F'''input_blocks.{i}.1.qkv.weight''': {
"""key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''',
"""query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''',
"""value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''',
},
}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase , )
_lowerCAmelCase =middle_blocks[0]
_lowerCAmelCase =middle_blocks[1]
_lowerCAmelCase =middle_blocks[2]
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase )
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase )
_lowerCAmelCase =renew_attention_paths(__UpperCamelCase )
_lowerCAmelCase ={
"""middle_block.1.qkv.bias""": {
"""key""": """mid_block.attentions.0.key.bias""",
"""query""": """mid_block.attentions.0.query.bias""",
"""value""": """mid_block.attentions.0.value.bias""",
},
"""middle_block.1.qkv.weight""": {
"""key""": """mid_block.attentions.0.key.weight""",
"""query""": """mid_block.attentions.0.query.weight""",
"""value""": """mid_block.attentions.0.value.weight""",
},
}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase )
for i in range(__UpperCamelCase ):
_lowerCAmelCase =i // (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =i % (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =[shave_segments(__UpperCamelCase , 2 ) for name in output_blocks[i]]
_lowerCAmelCase ={}
for layer in output_block_layers:
_lowerCAmelCase , _lowerCAmelCase =layer.split(""".""" )[0], shave_segments(__UpperCamelCase , 1 )
if layer_id in output_block_list:
output_block_list[layer_id].append(__UpperCamelCase )
else:
_lowerCAmelCase =[layer_name]
if len(__UpperCamelCase ) > 1:
_lowerCAmelCase =[key for key in output_blocks[i] if F'''output_blocks.{i}.0''' in key]
_lowerCAmelCase =[key for key in output_blocks[i] if F'''output_blocks.{i}.1''' in key]
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
_lowerCAmelCase ={"""old""": F'''output_blocks.{i}.0''', """new""": F'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''}
assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase )
if ["conv.weight", "conv.bias"] in output_block_list.values():
_lowerCAmelCase =list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] )
_lowerCAmelCase =checkpoint[
F'''output_blocks.{i}.{index}.conv.weight'''
]
_lowerCAmelCase =checkpoint[
F'''output_blocks.{i}.{index}.conv.bias'''
]
# Clear attentions as they have been attributed above.
if len(__UpperCamelCase ) == 2:
_lowerCAmelCase =[]
if len(__UpperCamelCase ):
_lowerCAmelCase =renew_attention_paths(__UpperCamelCase )
_lowerCAmelCase ={
"""old""": F'''output_blocks.{i}.1''',
"""new""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}''',
}
_lowerCAmelCase ={
F'''output_blocks.{i}.1.qkv.bias''': {
"""key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''',
"""query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''',
"""value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''',
},
F'''output_blocks.{i}.1.qkv.weight''': {
"""key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''',
"""query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''',
"""value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''',
},
}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=__UpperCamelCase , )
else:
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase , n_shave_prefix_segments=1 )
for path in resnet_0_paths:
_lowerCAmelCase =""".""".join(["""output_blocks""", str(__UpperCamelCase ), path["""old"""]] )
_lowerCAmelCase =""".""".join(["""up_blocks""", str(__UpperCamelCase ), """resnets""", str(__UpperCamelCase ), path["""new"""]] )
_lowerCAmelCase =checkpoint[old_path]
return new_checkpoint
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the architecture.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
__A = parser.parse_args()
__A = torch.load(args.checkpoint_path)
with open(args.config_file) as f:
__A = json.loads(f.read())
__A = convert_ldm_checkpoint(checkpoint, config)
if "ldm" in config:
del config["ldm"]
__A = UNetaDModel(**config)
model.load_state_dict(converted_checkpoint)
try:
__A = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1]))
__A = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1]))
__A = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae)
pipe.save_pretrained(args.dump_path)
except: # noqa: E722
model.save_pretrained(args.dump_path)
| 341 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
'facebook/xlm-roberta-xl': 'https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json',
'facebook/xlm-roberta-xxl': 'https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json',
# See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl
}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = '''xlm-roberta-xl'''
def __init__( self , __UpperCAmelCase=25_08_80 , __UpperCAmelCase=25_60 , __UpperCAmelCase=36 , __UpperCAmelCase=32 , __UpperCAmelCase=1_02_40 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_14 , __UpperCAmelCase=1 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-05 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]:
super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
_lowerCAmelCase =vocab_size
_lowerCAmelCase =hidden_size
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =hidden_act
_lowerCAmelCase =intermediate_size
_lowerCAmelCase =hidden_dropout_prob
_lowerCAmelCase =attention_probs_dropout_prob
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =type_vocab_size
_lowerCAmelCase =initializer_range
_lowerCAmelCase =layer_norm_eps
_lowerCAmelCase =position_embedding_type
_lowerCAmelCase =use_cache
_lowerCAmelCase =classifier_dropout
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
@property
def _lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
_lowerCAmelCase ={0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_lowerCAmelCase ={0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 341 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase ) -> Optional[Any]:
_lowerCAmelCase =0
_lowerCAmelCase =len(__UpperCamelCase )
for i in range(n - 1 ):
for j in range(i + 1 , __UpperCamelCase ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def _lowerCamelCase(__UpperCamelCase ) -> List[Any]:
if len(__UpperCamelCase ) <= 1:
return arr, 0
_lowerCAmelCase =len(__UpperCamelCase ) // 2
_lowerCAmelCase =arr[0:mid]
_lowerCAmelCase =arr[mid:]
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =_count_cross_inversions(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =inversion_p + inversions_q + cross_inversions
return c, num_inversions
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Any:
_lowerCAmelCase =[]
_lowerCAmelCase =_lowerCAmelCase =_lowerCAmelCase =0
while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(__UpperCamelCase ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(__UpperCamelCase ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def _lowerCamelCase() -> str:
_lowerCAmelCase =[10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 8
print("""number of inversions = """ , __UpperCamelCase )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , __UpperCamelCase )
# an empty list should also have zero inversions
_lowerCAmelCase =[]
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , __UpperCamelCase )
if __name__ == "__main__":
main()
| 341 | 1 |
"""simple docstring"""
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=16 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=30 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=None , ) -> Any:
_lowerCAmelCase =parent
_lowerCAmelCase =batch_size
_lowerCAmelCase =decoder_seq_length
# For common tests
_lowerCAmelCase =self.decoder_seq_length
_lowerCAmelCase =is_training
_lowerCAmelCase =use_attention_mask
_lowerCAmelCase =use_labels
_lowerCAmelCase =vocab_size
_lowerCAmelCase =d_model
_lowerCAmelCase =d_model
_lowerCAmelCase =decoder_layers
_lowerCAmelCase =decoder_layers
_lowerCAmelCase =decoder_ffn_dim
_lowerCAmelCase =decoder_attention_heads
_lowerCAmelCase =decoder_attention_heads
_lowerCAmelCase =eos_token_id
_lowerCAmelCase =bos_token_id
_lowerCAmelCase =pad_token_id
_lowerCAmelCase =decoder_start_token_id
_lowerCAmelCase =use_cache
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =None
_lowerCAmelCase =decoder_seq_length
_lowerCAmelCase =2
_lowerCAmelCase =1
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
_lowerCAmelCase =None
if self.use_attention_mask:
_lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 )
_lowerCAmelCase =None
if self.use_labels:
_lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
_lowerCAmelCase =TrOCRConfig(
vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , )
return (config, input_ids, attention_mask, lm_labels)
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[Any]:
_lowerCAmelCase =True
_lowerCAmelCase =TrOCRDecoder(config=__UpperCAmelCase ).to(__UpperCAmelCase ).eval()
_lowerCAmelCase =input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
_lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
_lowerCAmelCase =model(__UpperCAmelCase )
_lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 )
_lowerCAmelCase =outputs["""past_key_values"""]
# create hypothetical next token and extent to next_input_ids
_lowerCAmelCase =ids_tensor((2, 1) , config.vocab_size - 1 ) + 1
# append to next input_ids and
_lowerCAmelCase =torch.cat([input_ids, next_tokens] , dim=-1 )
_lowerCAmelCase =model(__UpperCAmelCase )["""last_hidden_state"""]
_lowerCAmelCase =model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )["""last_hidden_state"""]
# select random slice
_lowerCAmelCase =ids_tensor((1,) , output_from_past.shape[-1] ).item()
_lowerCAmelCase =output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
_lowerCAmelCase =output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 )
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =self.prepare_config_and_inputs()
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs
_lowerCAmelCase ={"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
lowerCamelCase = (TrOCRForCausalLM,) if is_torch_available() else ()
lowerCamelCase = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {}
lowerCamelCase = True
lowerCamelCase = False
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =TrOCRStandaloneDecoderModelTester(self , is_training=__UpperCAmelCase )
_lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> List[str]:
pass
def _lowerCAmelCase ( self ) -> List[Any]:
pass
def _lowerCAmelCase ( self ) -> Any:
pass
def _lowerCAmelCase ( self ) -> Optional[Any]:
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Tuple:
return
@unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :)
def _lowerCAmelCase ( self ) -> str:
pass
| 341 |
"""simple docstring"""
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = None
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = None
lowerCamelCase = None
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = True
lowerCamelCase = None
lowerCamelCase = 1
lowerCamelCase = None
lowerCamelCase = False
lowerCamelCase = None
lowerCamelCase = None
def _lowerCAmelCase ( self ) -> "DownloadConfig":
return self.__class__(**{k: copy.deepcopy(__UpperCAmelCase ) for k, v in self.__dict__.items()} )
| 341 | 1 |
"""simple docstring"""
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=__magic_name__ )
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} )
lowerCamelCase = Features({'''text''': Value('''string''' )} )
lowerCamelCase = Features({} )
lowerCamelCase = "text"
@property
def _lowerCAmelCase ( self ) -> Dict[str, str]:
return {self.text_column: "text"}
| 341 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> int:
return int((input_a, input_a).count(1 ) != 0 )
def _lowerCamelCase() -> None:
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 341 | 1 |
"""simple docstring"""
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
__A = logging.get_logger(__name__)
__A = [
['attention', 'attn'],
['encoder_attention', 'encoder_attn'],
['q_lin', 'q_proj'],
['k_lin', 'k_proj'],
['v_lin', 'v_proj'],
['out_lin', 'out_proj'],
['norm_embeddings', 'layernorm_embedding'],
['position_embeddings', 'embed_positions'],
['embeddings', 'embed_tokens'],
['ffn.lin', 'fc'],
]
def _lowerCamelCase(__UpperCamelCase ) -> List[str]:
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
_lowerCAmelCase =k.replace(__UpperCamelCase , __UpperCamelCase )
if k.startswith("""encoder""" ):
_lowerCAmelCase =k.replace(""".attn""" , """.self_attn""" )
_lowerCAmelCase =k.replace("""norm1""" , """self_attn_layer_norm""" )
_lowerCAmelCase =k.replace("""norm2""" , """final_layer_norm""" )
elif k.startswith("""decoder""" ):
_lowerCAmelCase =k.replace("""norm1""" , """self_attn_layer_norm""" )
_lowerCAmelCase =k.replace("""norm2""" , """encoder_attn_layer_norm""" )
_lowerCAmelCase =k.replace("""norm3""" , """final_layer_norm""" )
return k
def _lowerCamelCase(__UpperCamelCase ) -> Union[str, Any]:
_lowerCAmelCase =[
"""model.encoder.layernorm_embedding.weight""",
"""model.encoder.layernorm_embedding.bias""",
"""model.decoder.layernorm_embedding.weight""",
"""model.decoder.layernorm_embedding.bias""",
]
for k in keys:
_lowerCAmelCase =sd.pop(__UpperCamelCase )
_lowerCAmelCase =k.replace("""layernorm_embedding""" , """layer_norm""" )
assert new_k not in sd
_lowerCAmelCase =v
__A = ['START']
@torch.no_grad()
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]:
_lowerCAmelCase =torch.load(__UpperCamelCase , map_location="""cpu""" )
_lowerCAmelCase =model["""model"""]
_lowerCAmelCase =BlenderbotConfig.from_json_file(__UpperCamelCase )
_lowerCAmelCase =BlenderbotForConditionalGeneration(__UpperCamelCase )
_lowerCAmelCase =m.model.state_dict().keys()
_lowerCAmelCase =[]
_lowerCAmelCase ={}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
_lowerCAmelCase =rename_state_dict_key(__UpperCamelCase )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
_lowerCAmelCase =v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(__UpperCamelCase )
m.model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase )
m.half()
m.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin')
parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.')
parser.add_argument(
'--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use'
)
__A = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 341 |
"""simple docstring"""
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
__A = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n'
__A = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n'
__A = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase__ ( datasets.Metric ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> Any:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ),
"""references""": datasets.Sequence(
datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/BLEU""",
"""https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""",
] , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=4 , __UpperCAmelCase=False ) -> Tuple:
_lowerCAmelCase =compute_bleu(
reference_corpus=__UpperCAmelCase , translation_corpus=__UpperCAmelCase , max_order=__UpperCAmelCase , smooth=__UpperCAmelCase )
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) =score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 341 | 1 |
"""simple docstring"""
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
__A = logging.getLogger(__name__)
@dataclass
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = field(
default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} )
lowerCamelCase = field(default=__magic_name__ , metadata={'''help''': '''Whether to SortishSamler or not.'''} )
lowerCamelCase = field(
default=__magic_name__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} )
lowerCamelCase = field(default=__magic_name__ , metadata={'''help''': '''whether to use adafactor'''} )
lowerCamelCase = field(
default=__magic_name__ , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} )
lowerCamelCase = field(
default=__magic_name__ , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} )
lowerCamelCase = field(default=__magic_name__ , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} )
lowerCamelCase = field(
default=__magic_name__ , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} )
lowerCamelCase = field(
default='''linear''' , metadata={'''help''': F"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} , )
| 341 |
"""simple docstring"""
import argparse
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
parser.add_argument(
'--original_config_file',
type=str,
required=True,
help='The YAML config file corresponding to the original architecture.',
)
parser.add_argument(
'--num_in_channels',
default=None,
type=int,
help='The number of input channels. If `None` number of input channels will be automatically inferred.',
)
parser.add_argument(
'--image_size',
default=512,
type=int,
help=(
'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2'
' Base. Use 768 for Stable Diffusion v2.'
),
)
parser.add_argument(
'--extract_ema',
action='store_true',
help=(
'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights'
' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield'
' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.'
),
)
parser.add_argument(
'--upcast_attention',
action='store_true',
help=(
'Whether the attention computation should always be upcasted. This is necessary when running stable'
' diffusion 2.1.'
),
)
parser.add_argument(
'--from_safetensors',
action='store_true',
help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.',
)
parser.add_argument(
'--to_safetensors',
action='store_true',
help='Whether to store pipeline in safetensors format or not.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)')
def _lowerCamelCase(__UpperCamelCase ) -> List[str]:
if string == "True":
return True
elif string == "False":
return False
else:
raise ValueError(F'''could not parse string as bool {string}''' )
parser.add_argument(
'--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool
)
parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int)
__A = parser.parse_args()
__A = download_controlnet_from_original_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
extract_ema=args.extract_ema,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
use_linear_projection=args.use_linear_projection,
cross_attention_dim=args.cross_attention_dim,
)
controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 341 | 1 |
"""simple docstring"""
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class lowerCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = StableUnCLIPPipeline
lowerCamelCase = TEXT_TO_IMAGE_PARAMS
lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS
lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
lowerCamelCase = False
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase =32
_lowerCAmelCase =embedder_hidden_size
# prior components
torch.manual_seed(0 )
_lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
torch.manual_seed(0 )
_lowerCAmelCase =CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=__UpperCAmelCase , projection_dim=__UpperCAmelCase , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
_lowerCAmelCase =PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=__UpperCAmelCase , num_layers=1 , )
torch.manual_seed(0 )
_lowerCAmelCase =DDPMScheduler(
variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=10_00 , clip_sample=__UpperCAmelCase , clip_sample_range=5.0 , beta_schedule="""squaredcos_cap_v2""" , )
# regular denoising components
torch.manual_seed(0 )
_lowerCAmelCase =StableUnCLIPImageNormalizer(embedding_dim=__UpperCAmelCase )
_lowerCAmelCase =DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" )
torch.manual_seed(0 )
_lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
torch.manual_seed(0 )
_lowerCAmelCase =CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=__UpperCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
_lowerCAmelCase =UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__UpperCAmelCase , layers_per_block=1 , upcast_attention=__UpperCAmelCase , use_linear_projection=__UpperCAmelCase , )
torch.manual_seed(0 )
_lowerCAmelCase =DDIMScheduler(
beta_schedule="""scaled_linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type="""v_prediction""" , set_alpha_to_one=__UpperCAmelCase , steps_offset=1 , )
torch.manual_seed(0 )
_lowerCAmelCase =AutoencoderKL()
_lowerCAmelCase ={
# prior components
"""prior_tokenizer""": prior_tokenizer,
"""prior_text_encoder""": prior_text_encoder,
"""prior""": prior,
"""prior_scheduler""": prior_scheduler,
# image noising components
"""image_normalizer""": image_normalizer,
"""image_noising_scheduler""": image_noising_scheduler,
# regular denoising components
"""tokenizer""": tokenizer,
"""text_encoder""": text_encoder,
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
}
return components
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Dict:
if str(__UpperCAmelCase ).startswith("""mps""" ):
_lowerCAmelCase =torch.manual_seed(__UpperCAmelCase )
else:
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
_lowerCAmelCase ={
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""prior_num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =torch_device == """cpu"""
self._test_attention_slicing_forward_pass(test_max_difference=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =torch_device in ["""cpu""", """mps"""]
self._test_inference_batch_single_identical(test_max_difference=__UpperCAmelCase )
@slow
@require_torch_gpu
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> List[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""" )
_lowerCAmelCase =StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_lowerCAmelCase =torch.Generator(device="""cpu""" ).manual_seed(0 )
_lowerCAmelCase =pipe("""anime turle""" , generator=__UpperCAmelCase , output_type="""np""" )
_lowerCAmelCase =output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Tuple:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_lowerCAmelCase =StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa )
_lowerCAmelCase =pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_lowerCAmelCase =pipe(
"""anime turtle""" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="""np""" , )
_lowerCAmelCase =torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 341 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available
__A = {
'configuration_audio_spectrogram_transformer': [
'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'ASTConfig',
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'ASTForAudioClassification',
'ASTModel',
'ASTPreTrainedModel',
]
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ['ASTFeatureExtractor']
if TYPE_CHECKING:
from .configuration_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
ASTConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ASTForAudioClassification,
ASTModel,
ASTPreTrainedModel,
)
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 1 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from diffusers import (
AudioDiffusionPipeline,
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
DiffusionPipeline,
Mel,
UNetaDConditionModel,
UNetaDModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> List[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _lowerCAmelCase ( self ) -> Tuple:
torch.manual_seed(0 )
_lowerCAmelCase =UNetaDModel(
sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , )
return model
@property
def _lowerCAmelCase ( self ) -> Optional[int]:
torch.manual_seed(0 )
_lowerCAmelCase =UNetaDConditionModel(
sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , cross_attention_dim=10 , )
return model
@property
def _lowerCAmelCase ( self ) -> Optional[int]:
torch.manual_seed(0 )
_lowerCAmelCase =AutoencoderKL(
sample_size=(1_28, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , )
_lowerCAmelCase =UNetaDModel(
sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , )
return vqvae, unet
@slow
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase =Mel(
x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , )
_lowerCAmelCase =DDPMScheduler()
_lowerCAmelCase =AudioDiffusionPipeline(vqvae=__UpperCAmelCase , unet=self.dummy_unet , mel=__UpperCAmelCase , scheduler=__UpperCAmelCase )
_lowerCAmelCase =pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(42 )
_lowerCAmelCase =pipe(generator=__UpperCAmelCase , steps=4 )
_lowerCAmelCase =output.audios[0]
_lowerCAmelCase =output.images[0]
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(42 )
_lowerCAmelCase =pipe(generator=__UpperCAmelCase , steps=4 , return_dict=__UpperCAmelCase )
_lowerCAmelCase =output[0][0]
assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length)
assert (
image.height == self.dummy_unet.config.sample_size[0]
and image.width == self.dummy_unet.config.sample_size[1]
)
_lowerCAmelCase =np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10]
_lowerCAmelCase =np.frombuffer(image_from_tuple.tobytes() , dtype="""uint8""" )[:10]
_lowerCAmelCase =np.array([69, 2_55, 2_55, 2_55, 0, 0, 77, 1_81, 12, 1_27] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0
_lowerCAmelCase =Mel(
x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , )
_lowerCAmelCase =DDIMScheduler()
_lowerCAmelCase =self.dummy_vqvae_and_unet
_lowerCAmelCase =AudioDiffusionPipeline(
vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=__UpperCAmelCase , scheduler=__UpperCAmelCase )
_lowerCAmelCase =pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
np.random.seed(0 )
_lowerCAmelCase =np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) )
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(42 )
_lowerCAmelCase =pipe(raw_audio=__UpperCAmelCase , generator=__UpperCAmelCase , start_step=5 , steps=10 )
_lowerCAmelCase =output.images[0]
assert (
image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0]
and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1]
)
_lowerCAmelCase =np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10]
_lowerCAmelCase =np.array([1_20, 1_17, 1_10, 1_09, 1_38, 1_67, 1_38, 1_48, 1_32, 1_21] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
_lowerCAmelCase =self.dummy_unet_condition
_lowerCAmelCase =AudioDiffusionPipeline(
vqvae=self.dummy_vqvae_and_unet[0] , unet=__UpperCAmelCase , mel=__UpperCAmelCase , scheduler=__UpperCAmelCase )
_lowerCAmelCase =pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
np.random.seed(0 )
_lowerCAmelCase =torch.rand((1, 1, 10) )
_lowerCAmelCase =pipe(generator=__UpperCAmelCase , encoding=__UpperCAmelCase )
_lowerCAmelCase =output.images[0]
_lowerCAmelCase =np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10]
_lowerCAmelCase =np.array([1_07, 1_03, 1_20, 1_27, 1_42, 1_22, 1_13, 1_22, 97, 1_11] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
@slow
@require_torch_gpu
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> Optional[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase =torch_device
_lowerCAmelCase =DiffusionPipeline.from_pretrained("""teticio/audio-diffusion-ddim-256""" )
_lowerCAmelCase =pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(42 )
_lowerCAmelCase =pipe(generator=__UpperCAmelCase )
_lowerCAmelCase =output.audios[0]
_lowerCAmelCase =output.images[0]
assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length)
assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1]
_lowerCAmelCase =np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10]
_lowerCAmelCase =np.array([1_51, 1_67, 1_54, 1_44, 1_22, 1_34, 1_21, 1_05, 70, 26] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
| 341 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__A = {
'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'],
'tokenization_m2m_100': ['M2M100Tokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST',
'M2M100ForConditionalGeneration',
'M2M100Model',
'M2M100PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 1 |
"""simple docstring"""
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate
# and perform gradient accumulation
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
__A = 16
__A = 32
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase = 16 ) -> Optional[Any]:
_lowerCAmelCase =AutoTokenizer.from_pretrained("""bert-base-cased""" )
_lowerCAmelCase =load_dataset("""glue""" , """mrpc""" )
def tokenize_function(__UpperCamelCase ):
# max_length=None => use the model max length (it's actually the default)
_lowerCAmelCase =tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__UpperCamelCase , max_length=__UpperCamelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
_lowerCAmelCase =datasets.map(
__UpperCamelCase , batched=__UpperCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
_lowerCAmelCase =tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(__UpperCamelCase ):
# On TPU it's best to pad everything to the same length or training will be very slow.
_lowerCAmelCase =128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
_lowerCAmelCase =16
elif accelerator.mixed_precision != "no":
_lowerCAmelCase =8
else:
_lowerCAmelCase =None
return tokenizer.pad(
__UpperCamelCase , padding="""longest""" , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors="""pt""" , )
# Instantiate dataloaders.
_lowerCAmelCase =DataLoader(
tokenized_datasets["""train"""] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase )
_lowerCAmelCase =DataLoader(
tokenized_datasets["""validation"""] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
__A = mocked_dataloaders # noqa: F811
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> List[str]:
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __UpperCamelCase ) == "1":
_lowerCAmelCase =2
# New Code #
_lowerCAmelCase =int(args.gradient_accumulation_steps )
# Initialize accelerator
_lowerCAmelCase =Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__UpperCamelCase )
if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1:
raise NotImplementedError(
"""Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
_lowerCAmelCase =config["""lr"""]
_lowerCAmelCase =int(config["""num_epochs"""] )
_lowerCAmelCase =int(config["""seed"""] )
_lowerCAmelCase =int(config["""batch_size"""] )
_lowerCAmelCase =evaluate.load("""glue""" , """mrpc""" )
set_seed(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =get_dataloaders(__UpperCamelCase , __UpperCamelCase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
_lowerCAmelCase =AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__UpperCamelCase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
_lowerCAmelCase =model.to(accelerator.device )
# Instantiate optimizer
_lowerCAmelCase =AdamW(params=model.parameters() , lr=__UpperCamelCase )
# Instantiate scheduler
_lowerCAmelCase =get_linear_schedule_with_warmup(
optimizer=__UpperCamelCase , num_warmup_steps=100 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =accelerator.prepare(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
# Now we train the model
for epoch in range(__UpperCamelCase ):
model.train()
for step, batch in enumerate(__UpperCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
# New code #
# We use the new `accumulate` context manager to perform gradient accumulation
# We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests.
with accelerator.accumulate(__UpperCamelCase ):
_lowerCAmelCase =model(**__UpperCamelCase )
_lowerCAmelCase =output.loss
accelerator.backward(__UpperCamelCase )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__UpperCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
_lowerCAmelCase =model(**__UpperCamelCase )
_lowerCAmelCase =outputs.logits.argmax(dim=-1 )
_lowerCAmelCase , _lowerCAmelCase =accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
metric.add_batch(
predictions=__UpperCamelCase , references=__UpperCamelCase , )
_lowerCAmelCase =metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'''epoch {epoch}:''' , __UpperCamelCase )
def _lowerCamelCase() -> Dict:
_lowerCAmelCase =argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" , type=__UpperCamelCase , default=__UpperCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" , )
# New Code #
parser.add_argument(
"""--gradient_accumulation_steps""" , type=__UpperCamelCase , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , )
parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" )
_lowerCAmelCase =parser.parse_args()
_lowerCAmelCase ={"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16}
training_function(__UpperCamelCase , __UpperCamelCase )
if __name__ == "__main__":
main()
| 341 |
"""simple docstring"""
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
__A = datasets.logging.get_logger(__name__)
__A = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n'
__A = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n'
__A = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n'
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase="dummy_doc" ) -> Dict:
_lowerCAmelCase ={doc: key_lines}
_lowerCAmelCase ={doc: sys_lines}
_lowerCAmelCase ={}
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase , _lowerCAmelCase =reader.get_doc_mentions(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase )
key_singletons_num += singletons_num
if NP_only or min_span:
_lowerCAmelCase =reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =reader.get_doc_mentions(__UpperCamelCase , sys_doc_lines[doc] , __UpperCamelCase )
sys_singletons_num += singletons_num
if NP_only or min_span:
_lowerCAmelCase =reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase )
if remove_nested:
_lowerCAmelCase , _lowerCAmelCase =reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
_lowerCAmelCase , _lowerCAmelCase =reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
_lowerCAmelCase =reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =(key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
"""Number of removed nested coreferring mentions in the key """
F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' )
logger.info(
"""Number of resulting singleton clusters in the key """
F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' )
if not keep_singletons:
logger.info(
F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system '''
"""files, respectively""" )
return doc_coref_infos
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int:
_lowerCAmelCase =get_coref_infos(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase ={}
_lowerCAmelCase =0
_lowerCAmelCase =0
for name, metric in metrics:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =evaluator.evaluate_documents(__UpperCamelCase , __UpperCamelCase , beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} )
logger.info(
name.ljust(10 ) , F'''Recall: {recall * 100:.2f}''' , F''' Precision: {precision * 100:.2f}''' , F''' F1: {fa * 100:.2f}''' , )
if conll_subparts_num == 3:
_lowerCAmelCase =(conll / 3) * 100
logger.info(F'''CoNLL score: {conll:.2f}''' )
output_scores.update({"""conll_score""": conll} )
return output_scores
def _lowerCamelCase(__UpperCamelCase ) -> Tuple:
_lowerCAmelCase =False
for line in key_lines:
if not line.startswith("""#""" ):
if len(line.split() ) > 6:
_lowerCAmelCase =line.split()[5]
if not parse_col == "-":
_lowerCAmelCase =True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase__ ( datasets.Metric ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> str:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Sequence(datasets.Value("""string""" ) ),
} ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[
"""https://github.com/ns-moosavi/coval""",
"""https://www.aclweb.org/anthology/P16-1060""",
"""http://www.conll.cemantix.org/2012/data.html""",
] , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False ) -> Optional[Any]:
_lowerCAmelCase =[
("""mentions""", evaluator.mentions),
("""muc""", evaluator.muc),
("""bcub""", evaluator.b_cubed),
("""ceafe""", evaluator.ceafe),
("""lea""", evaluator.lea),
]
if min_span:
_lowerCAmelCase =util.check_gold_parse_annotation(__UpperCAmelCase )
if not has_gold_parse:
raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" )
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
_lowerCAmelCase =evaluate(
key_lines=__UpperCAmelCase , sys_lines=__UpperCAmelCase , metrics=__UpperCAmelCase , NP_only=__UpperCAmelCase , remove_nested=__UpperCAmelCase , keep_singletons=__UpperCAmelCase , min_span=__UpperCAmelCase , )
return score
| 341 | 1 |
"""simple docstring"""
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SegformerConfig,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
__A = logging.get_logger(__name__)
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=False ) -> List[Any]:
_lowerCAmelCase =OrderedDict()
for key, value in state_dict.items():
if encoder_only and not key.startswith("""head""" ):
_lowerCAmelCase ="""segformer.encoder.""" + key
if key.startswith("""backbone""" ):
_lowerCAmelCase =key.replace("""backbone""" , """segformer.encoder""" )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
_lowerCAmelCase =key[key.find("""patch_embed""" ) + len("""patch_embed""" )]
_lowerCAmelCase =key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(__UpperCamelCase )-1}''' )
if "norm" in key:
_lowerCAmelCase =key.replace("""norm""" , """layer_norm""" )
if "segformer.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
_lowerCAmelCase =key[key.find("""segformer.encoder.layer_norm""" ) + len("""segformer.encoder.layer_norm""" )]
_lowerCAmelCase =key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(__UpperCamelCase )-1}''' )
if "layer_norm1" in key:
_lowerCAmelCase =key.replace("""layer_norm1""" , """layer_norm_1""" )
if "layer_norm2" in key:
_lowerCAmelCase =key.replace("""layer_norm2""" , """layer_norm_2""" )
if "block" in key:
# replace for example block1 by block.0
_lowerCAmelCase =key[key.find("""block""" ) + len("""block""" )]
_lowerCAmelCase =key.replace(F'''block{idx}''' , F'''block.{int(__UpperCamelCase )-1}''' )
if "attn.q" in key:
_lowerCAmelCase =key.replace("""attn.q""" , """attention.self.query""" )
if "attn.proj" in key:
_lowerCAmelCase =key.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in key:
_lowerCAmelCase =key.replace("""attn""" , """attention.self""" )
if "fc1" in key:
_lowerCAmelCase =key.replace("""fc1""" , """dense1""" )
if "fc2" in key:
_lowerCAmelCase =key.replace("""fc2""" , """dense2""" )
if "linear_pred" in key:
_lowerCAmelCase =key.replace("""linear_pred""" , """classifier""" )
if "linear_fuse" in key:
_lowerCAmelCase =key.replace("""linear_fuse.conv""" , """linear_fuse""" )
_lowerCAmelCase =key.replace("""linear_fuse.bn""" , """batch_norm""" )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
_lowerCAmelCase =key[key.find("""linear_c""" ) + len("""linear_c""" )]
_lowerCAmelCase =key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(__UpperCamelCase )-1}''' )
if key.startswith("""head""" ):
_lowerCAmelCase =key.replace("""head""" , """classifier""" )
_lowerCAmelCase =value
return new_state_dict
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Dict:
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
_lowerCAmelCase =state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' )
_lowerCAmelCase =state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' )
# next, add keys and values (in that order) to the state dict
_lowerCAmelCase =kv_weight[
: config.hidden_sizes[i], :
]
_lowerCAmelCase =kv_bias[: config.hidden_sizes[i]]
_lowerCAmelCase =kv_weight[
config.hidden_sizes[i] :, :
]
_lowerCAmelCase =kv_bias[
config.hidden_sizes[i] :
]
def _lowerCamelCase() -> List[Any]:
_lowerCAmelCase ="""http://images.cocodataset.org/val2017/000000039769.jpg"""
_lowerCAmelCase =Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw )
return image
@torch.no_grad()
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Dict:
_lowerCAmelCase =SegformerConfig()
_lowerCAmelCase =False
# set attributes based on model_name
_lowerCAmelCase ="""huggingface/label-files"""
if "segformer" in model_name:
_lowerCAmelCase =model_name[len("""segformer.""" ) : len("""segformer.""" ) + 2]
if "ade" in model_name:
_lowerCAmelCase =150
_lowerCAmelCase ="""ade20k-id2label.json"""
_lowerCAmelCase =(1, 150, 128, 128)
elif "city" in model_name:
_lowerCAmelCase =19
_lowerCAmelCase ="""cityscapes-id2label.json"""
_lowerCAmelCase =(1, 19, 128, 128)
else:
raise ValueError(F'''Model {model_name} not supported''' )
elif "mit" in model_name:
_lowerCAmelCase =True
_lowerCAmelCase =model_name[4:6]
_lowerCAmelCase =1000
_lowerCAmelCase ="""imagenet-1k-id2label.json"""
_lowerCAmelCase =(1, 1000)
else:
raise ValueError(F'''Model {model_name} not supported''' )
# set config attributes
_lowerCAmelCase =json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) , """r""" ) )
_lowerCAmelCase ={int(__UpperCamelCase ): v for k, v in idalabel.items()}
_lowerCAmelCase =idalabel
_lowerCAmelCase ={v: k for k, v in idalabel.items()}
if size == "b0":
pass
elif size == "b1":
_lowerCAmelCase =[64, 128, 320, 512]
_lowerCAmelCase =256
elif size == "b2":
_lowerCAmelCase =[64, 128, 320, 512]
_lowerCAmelCase =768
_lowerCAmelCase =[3, 4, 6, 3]
elif size == "b3":
_lowerCAmelCase =[64, 128, 320, 512]
_lowerCAmelCase =768
_lowerCAmelCase =[3, 4, 18, 3]
elif size == "b4":
_lowerCAmelCase =[64, 128, 320, 512]
_lowerCAmelCase =768
_lowerCAmelCase =[3, 8, 27, 3]
elif size == "b5":
_lowerCAmelCase =[64, 128, 320, 512]
_lowerCAmelCase =768
_lowerCAmelCase =[3, 6, 40, 3]
else:
raise ValueError(F'''Size {size} not supported''' )
# load image processor (only resize + normalize)
_lowerCAmelCase =SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=__UpperCamelCase , align=__UpperCamelCase , do_random_crop=__UpperCamelCase )
# prepare image
_lowerCAmelCase =prepare_img()
_lowerCAmelCase =image_processor(images=__UpperCamelCase , return_tensors="""pt""" ).pixel_values
logger.info(F'''Converting model {model_name}...''' )
# load original state dict
if encoder_only:
_lowerCAmelCase =torch.load(__UpperCamelCase , map_location=torch.device("""cpu""" ) )
else:
_lowerCAmelCase =torch.load(__UpperCamelCase , map_location=torch.device("""cpu""" ) )["""state_dict"""]
# rename keys
_lowerCAmelCase =rename_keys(__UpperCamelCase , encoder_only=__UpperCamelCase )
if not encoder_only:
del state_dict["decode_head.conv_seg.weight"]
del state_dict["decode_head.conv_seg.bias"]
# key and value matrices need special treatment
read_in_k_v(__UpperCamelCase , __UpperCamelCase )
# create HuggingFace model and load state dict
if encoder_only:
_lowerCAmelCase =False
_lowerCAmelCase =SegformerForImageClassification(__UpperCamelCase )
else:
_lowerCAmelCase =SegformerForSemanticSegmentation(__UpperCamelCase )
model.load_state_dict(__UpperCamelCase )
model.eval()
# forward pass
_lowerCAmelCase =model(__UpperCamelCase )
_lowerCAmelCase =outputs.logits
# set expected_slice based on model name
# ADE20k checkpoints
if model_name == "segformer.b0.512x512.ade.160k":
_lowerCAmelCase =torch.tensor(
[
[[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]],
[[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]],
[[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]],
] )
elif model_name == "segformer.b1.512x512.ade.160k":
_lowerCAmelCase =torch.tensor(
[
[[-7.58_20, -8.72_31, -8.32_15], [-8.06_00, -10.35_29, -10.03_04], [-7.52_08, -9.41_03, -9.62_39]],
[[-12.69_18, -13.89_94, -13.71_37], [-13.31_96, -15.75_23, -15.47_89], [-12.93_43, -14.87_57, -14.96_89]],
[[-11.19_11, -11.94_21, -11.32_43], [-11.33_42, -13.68_39, -13.35_81], [-10.39_09, -12.18_32, -12.48_58]],
] )
elif model_name == "segformer.b2.512x512.ade.160k":
_lowerCAmelCase =torch.tensor(
[
[[-11.81_73, -14.38_50, -16.31_28], [-14.56_48, -16.58_04, -18.65_68], [-14.72_23, -15.73_87, -18.42_18]],
[[-15.72_90, -17.91_71, -19.44_23], [-18.31_05, -19.94_48, -21.46_61], [-17.92_96, -18.64_97, -20.79_10]],
[[-15.07_83, -17.03_36, -18.27_89], [-16.87_71, -18.68_70, -20.16_12], [-16.24_54, -17.14_26, -19.50_55]],
] )
elif model_name == "segformer.b3.512x512.ade.160k":
_lowerCAmelCase =torch.tensor(
[
[[-9.08_78, -10.20_81, -10.18_91], [-9.31_44, -10.79_41, -10.98_43], [-9.22_94, -10.38_55, -10.57_04]],
[[-12.23_16, -13.90_68, -13.61_02], [-12.91_61, -14.37_02, -14.32_35], [-12.52_33, -13.71_74, -13.79_32]],
[[-14.62_75, -15.24_90, -14.97_27], [-14.34_00, -15.96_87, -16.28_27], [-14.14_84, -15.40_33, -15.89_37]],
] )
elif model_name == "segformer.b4.512x512.ade.160k":
_lowerCAmelCase =torch.tensor(
[
[[-12.31_44, -13.24_47, -14.08_02], [-13.36_14, -14.58_16, -15.61_17], [-13.33_40, -14.44_33, -16.22_19]],
[[-19.27_81, -20.41_28, -20.75_06], [-20.61_53, -21.65_66, -22.09_98], [-19.98_00, -21.04_30, -22.14_94]],
[[-18.87_39, -19.78_04, -21.18_34], [-20.12_33, -21.67_65, -23.29_44], [-20.03_15, -21.26_41, -23.69_44]],
] )
elif model_name == "segformer.b5.640x640.ade.160k":
_lowerCAmelCase =torch.tensor(
[
[[-9.55_24, -12.08_35, -11.73_48], [-10.52_29, -13.64_46, -14.56_62], [-9.58_42, -12.88_51, -13.94_14]],
[[-15.34_32, -17.53_23, -17.08_18], [-16.33_30, -18.92_55, -19.21_01], [-15.13_40, -17.78_48, -18.39_71]],
[[-12.60_72, -14.94_86, -14.66_31], [-13.76_29, -17.09_07, -17.77_45], [-12.78_99, -16.16_95, -17.16_71]],
] )
# Cityscapes checkpoints
elif model_name == "segformer.b0.1024x1024.city.160k":
_lowerCAmelCase =torch.tensor(
[
[[-11.92_95, -13.40_57, -14.81_06], [-13.34_31, -14.81_79, -15.37_81], [-14.28_36, -15.59_42, -16.15_88]],
[[-11.49_06, -12.80_67, -13.65_64], [-13.11_89, -14.05_00, -14.15_43], [-13.87_48, -14.51_36, -14.87_89]],
[[0.53_74, 0.10_67, -0.47_42], [0.11_41, -0.22_55, -0.70_99], [-0.30_00, -0.59_24, -1.31_05]],
] )
elif model_name == "segformer.b0.512x1024.city.160k":
_lowerCAmelCase =torch.tensor(
[
[[-7.82_17, -9.87_67, -10.17_17], [-9.44_38, -10.90_58, -11.40_47], [-9.79_39, -12.34_95, -12.10_79]],
[[-7.15_14, -9.53_36, -10.08_60], [-9.77_76, -11.68_22, -11.84_39], [-10.14_11, -12.76_55, -12.89_72]],
[[0.30_21, 0.08_05, -0.23_10], [-0.03_28, -0.16_05, -0.27_14], [-0.14_08, -0.54_77, -0.69_76]],
] )
elif model_name == "segformer.b0.640x1280.city.160k":
_lowerCAmelCase =torch.tensor(
[
[
[-1.1_3_7_2E0_1, -1.2_7_8_7E0_1, -1.3_4_7_7E0_1],
[-1.2_5_3_6E0_1, -1.4_1_9_4E0_1, -1.4_4_0_9E0_1],
[-1.3_2_1_7E0_1, -1.4_8_8_8E0_1, -1.5_3_2_7E0_1],
],
[
[-1.4_7_9_1E0_1, -1.7_1_2_2E0_1, -1.8_2_7_7E0_1],
[-1.7_1_6_3E0_1, -1.9_1_9_2E0_1, -1.9_5_3_3E0_1],
[-1.7_8_9_7E0_1, -1.9_9_9_1E0_1, -2.0_3_1_5E0_1],
],
[
[7.6_7_2_3E-0_1, 4.1_9_2_1E-0_1, -7.7_8_7_8E-0_2],
[4.7_7_7_2E-0_1, 9.5_5_5_7E-0_3, -2.8_0_8_2E-0_1],
[3.6_0_3_2E-0_1, -2.4_8_2_6E-0_1, -5.1_1_6_8E-0_1],
],
] )
elif model_name == "segformer.b0.768x768.city.160k":
_lowerCAmelCase =torch.tensor(
[
[[-9.49_59, -11.30_87, -11.74_79], [-11.00_25, -12.65_40, -12.33_19], [-11.40_64, -13.04_87, -12.99_05]],
[[-9.89_05, -11.30_84, -12.08_54], [-11.17_26, -12.76_98, -12.95_83], [-11.59_85, -13.32_78, -14.17_74]],
[[0.22_13, 0.01_92, -0.24_66], [-0.17_31, -0.42_13, -0.48_74], [-0.31_26, -0.65_41, -1.13_89]],
] )
elif model_name == "segformer.b1.1024x1024.city.160k":
_lowerCAmelCase =torch.tensor(
[
[[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]],
[[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]],
[[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]],
] )
elif model_name == "segformer.b2.1024x1024.city.160k":
_lowerCAmelCase =torch.tensor(
[
[[-16.09_76, -16.48_56, -17.39_62], [-16.62_34, -19.03_42, -19.76_85], [-16.09_00, -18.06_61, -19.11_80]],
[[-18.47_50, -18.84_88, -19.50_74], [-19.40_30, -22.15_70, -22.59_77], [-19.11_91, -20.84_86, -22.37_83]],
[[-4.51_78, -5.50_37, -6.51_09], [-5.08_84, -7.21_74, -8.03_34], [-4.41_56, -5.81_17, -7.29_70]],
] )
elif model_name == "segformer.b3.1024x1024.city.160k":
_lowerCAmelCase =torch.tensor(
[
[[-14.20_81, -14.47_32, -14.19_77], [-14.58_67, -16.44_23, -16.63_56], [-13.44_41, -14.96_85, -16.86_96]],
[[-14.45_76, -14.70_73, -15.04_51], [-15.08_16, -17.62_37, -17.98_73], [-14.42_13, -16.01_99, -18.59_92]],
[[-4.73_49, -4.95_88, -5.09_66], [-4.32_10, -6.93_25, -7.25_91], [-3.43_12, -4.74_84, -7.19_17]],
] )
elif model_name == "segformer.b4.1024x1024.city.160k":
_lowerCAmelCase =torch.tensor(
[
[[-11.77_37, -11.95_26, -11.32_73], [-13.66_92, -14.45_74, -13.88_78], [-13.89_37, -14.69_24, -15.93_45]],
[[-14.67_06, -14.53_30, -14.13_06], [-16.15_02, -16.81_80, -16.42_69], [-16.83_38, -17.89_39, -20.17_46]],
[[1.04_91, 0.82_89, 1.03_10], [1.10_44, 0.52_19, 0.80_55], [1.08_99, 0.69_26, 0.55_90]],
] )
elif model_name == "segformer.b5.1024x1024.city.160k":
_lowerCAmelCase =torch.tensor(
[
[[-12.56_41, -13.47_77, -13.06_84], [-13.95_87, -15.89_83, -16.65_57], [-13.31_09, -15.73_50, -16.31_41]],
[[-14.70_74, -15.43_52, -14.59_44], [-16.63_53, -18.16_63, -18.61_20], [-15.17_02, -18.03_29, -18.15_47]],
[[-1.79_90, -2.09_51, -1.77_84], [-2.63_97, -3.82_45, -3.96_86], [-1.52_64, -2.81_26, -2.93_16]],
] )
else:
_lowerCAmelCase =logits.argmax(-1 ).item()
print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] )
# verify logits
if not encoder_only:
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3, :3, :3] , __UpperCamelCase , atol=1E-2 )
# finally, save model and image processor
logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase )
model.save_pretrained(__UpperCamelCase )
image_processor.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument(
'--model_name',
default='segformer.b0.512x512.ade.160k',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
__A = parser.parse_args()
convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 341 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = XGLMConfig
lowerCamelCase = {}
lowerCamelCase = '''gelu'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=0.0_2 , ) -> List[str]:
_lowerCAmelCase =parent
_lowerCAmelCase =batch_size
_lowerCAmelCase =seq_length
_lowerCAmelCase =is_training
_lowerCAmelCase =use_input_mask
_lowerCAmelCase =use_labels
_lowerCAmelCase =vocab_size
_lowerCAmelCase =d_model
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =ffn_dim
_lowerCAmelCase =activation_function
_lowerCAmelCase =activation_dropout
_lowerCAmelCase =attention_dropout
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =initializer_range
_lowerCAmelCase =None
_lowerCAmelCase =0
_lowerCAmelCase =2
_lowerCAmelCase =1
def _lowerCAmelCase ( self ) -> Dict:
return XGLMConfig.from_pretrained("""facebook/xglm-564M""" )
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
_lowerCAmelCase =None
if self.use_input_mask:
_lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length] )
_lowerCAmelCase =self.get_config()
_lowerCAmelCase =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowerCAmelCase ( self ) -> str:
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__UpperCAmelCase , )
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =self.prepare_config_and_inputs()
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) =config_and_inputs
_lowerCAmelCase ={
"""input_ids""": input_ids,
"""head_mask""": head_mask,
}
return config, inputs_dict
@require_tf
class lowerCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
lowerCamelCase = (TFXGLMForCausalLM,) if is_tf_available() else ()
lowerCamelCase = (
{'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {}
)
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =TFXGLMModelTester(self )
_lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase , n_embd=37 )
def _lowerCAmelCase ( self ) -> int:
self.config_tester.run_common_tests()
@slow
def _lowerCAmelCase ( self ) -> Union[str, Any]:
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase =TFXGLMModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" )
def _lowerCAmelCase ( self ) -> Union[str, Any]:
super().test_resize_token_embeddings()
@require_tf
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def _lowerCAmelCase ( self , __UpperCAmelCase=True ) -> str:
_lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase =tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
_lowerCAmelCase =[2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81]
# fmt: on
_lowerCAmelCase =model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , __UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
tf.random.set_seed(0 )
_lowerCAmelCase =tokenizer("""Today is a nice day and""" , return_tensors="""tf""" )
_lowerCAmelCase =tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(""":/CPU:0""" ):
_lowerCAmelCase =model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , seed=[7, 0] )
_lowerCAmelCase =tokenizer.decode(output_ids[0] , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =(
"""Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"""
)
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase ="""left"""
# use different length sentences to test batching
_lowerCAmelCase =[
"""This is an extremelly long sentence that only exists to test the ability of the model to cope with """
"""left-padding, such as in batched generation. The output for the sequence below should be the same """
"""regardless of whether left padding is applied or not. When""",
"""Hello, my dog is a little""",
]
_lowerCAmelCase =tokenizer(__UpperCAmelCase , return_tensors="""tf""" , padding=__UpperCAmelCase )
_lowerCAmelCase =inputs["""input_ids"""]
_lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 )
_lowerCAmelCase =tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids
_lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 )
_lowerCAmelCase =tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids
_lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 )
_lowerCAmelCase =tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =tokenizer.decode(output_non_padded[0] , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =tokenizer.decode(output_padded[0] , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =[
"""This is an extremelly long sentence that only exists to test the ability of the model to cope with """
"""left-padding, such as in batched generation. The output for the sequence below should be the same """
"""regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """
"""a single""",
"""Hello, my dog is a little bit of a shy one, but he is very friendly""",
]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , [non_padded_sentence, padded_sentence] )
| 341 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.