code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
import sacrebleu as scb
from packaging import version
from sacrebleu import CHRF
import datasets
__A = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n'
__A = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n'
__A = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase__ ( datasets.Metric ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> List[str]:
if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ):
raise ImportWarning(
"""To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"""
"""You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[
"""https://github.com/m-popovic/chrF""",
] , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = CHRF.CHAR_ORDER , __UpperCAmelCase = CHRF.WORD_ORDER , __UpperCAmelCase = CHRF.BETA , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , ) -> Optional[Any]:
_lowerCAmelCase =len(references[0] )
if any(len(__UpperCAmelCase ) != references_per_prediction for refs in references ):
raise ValueError("""Sacrebleu requires the same number of references for each prediction""" )
_lowerCAmelCase =[[refs[i] for refs in references] for i in range(__UpperCAmelCase )]
_lowerCAmelCase =CHRF(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =sb_chrf.corpus_score(__UpperCAmelCase , __UpperCAmelCase )
return {
"score": output.score,
"char_order": output.char_order,
"word_order": output.word_order,
"beta": output.beta,
}
| 341 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
__A = logging.get_logger(__name__)
__A = {'vocab_file': 'spiece.model'}
__A = {
'vocab_file': {
'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model',
'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model',
}
}
__A = {
'xlnet-base-cased': None,
'xlnet-large-cased': None,
}
# Segments (not really needed)
__A = 0
__A = 1
__A = 2
__A = 3
__A = 4
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = VOCAB_FILES_NAMES
lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase = '''left'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<sep>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<cls>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=["<eop>", "<eod>"] , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it
_lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
_lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , )
_lowerCAmelCase =3
_lowerCAmelCase =do_lower_case
_lowerCAmelCase =remove_space
_lowerCAmelCase =keep_accents
_lowerCAmelCase =vocab_file
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__UpperCAmelCase )
@property
def _lowerCAmelCase ( self ) -> str:
return len(self.sp_model )
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> Optional[int]:
_lowerCAmelCase =self.__dict__.copy()
_lowerCAmelCase =None
return state
def __setstate__( self , __UpperCAmelCase ) -> Tuple:
_lowerCAmelCase =d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_lowerCAmelCase ={}
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[Any]:
if self.remove_space:
_lowerCAmelCase =""" """.join(inputs.strip().split() )
else:
_lowerCAmelCase =inputs
_lowerCAmelCase =outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
_lowerCAmelCase =unicodedata.normalize("""NFKD""" , __UpperCAmelCase )
_lowerCAmelCase ="""""".join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] )
if self.do_lower_case:
_lowerCAmelCase =outputs.lower()
return outputs
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
_lowerCAmelCase =self.preprocess_text(__UpperCAmelCase )
_lowerCAmelCase =self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase )
_lowerCAmelCase =[]
for piece in pieces:
if len(__UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
_lowerCAmelCase =self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
_lowerCAmelCase =cur_pieces[1:]
else:
_lowerCAmelCase =cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(__UpperCAmelCase )
else:
new_pieces.append(__UpperCAmelCase )
return new_pieces
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]:
return self.sp_model.PieceToId(__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
return self.sp_model.IdToPiece(__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> str:
_lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip()
return out_string
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> str:
_lowerCAmelCase =kwargs.pop("""use_source_tokenizer""" , __UpperCAmelCase )
_lowerCAmelCase =self.convert_ids_to_tokens(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
_lowerCAmelCase =[]
_lowerCAmelCase =[]
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) )
_lowerCAmelCase =[]
sub_texts.append(__UpperCAmelCase )
else:
current_sub_text.append(__UpperCAmelCase )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) )
# Mimic the behavior of the Rust tokenizer:
# By default, there are no spaces between special tokens
_lowerCAmelCase ="""""".join(__UpperCAmelCase )
_lowerCAmelCase =(
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
_lowerCAmelCase =self.clean_up_tokenization(__UpperCAmelCase )
return clean_text
else:
return text
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_lowerCAmelCase =[self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase )
if token_ids_a is not None:
return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1]
return ([0] * len(__UpperCAmelCase )) + [1, 1]
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_lowerCAmelCase =[self.sep_token_id]
_lowerCAmelCase =[2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCAmelCase , """wb""" ) as fi:
_lowerCAmelCase =self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase )
return (out_vocab_file,)
| 341 | 1 |
"""simple docstring"""
import argparse
import json
import os
import sys
import tempfile
import unittest
from argparse import Namespace
from dataclasses import dataclass, field
from enum import Enum
from pathlib import Path
from typing import List, Literal, Optional
import yaml
from transformers import HfArgumentParser, TrainingArguments
from transformers.hf_argparser import make_choice_type_function, string_to_bool
# Since Python 3.10, we can use the builtin `|` operator for Union types
# See PEP 604: https://peps.python.org/pep-0604
__A = sys.version_info >= (3, 10)
def _lowerCamelCase(__UpperCamelCase=None , __UpperCamelCase=None ) -> Optional[Any]:
return field(default_factory=lambda: default , metadata=__UpperCamelCase )
@dataclass
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = 42
lowerCamelCase = 42
lowerCamelCase = 42
lowerCamelCase = 42
@dataclass
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = 42
lowerCamelCase = field(default='''toto''' , metadata={'''help''': '''help message'''} )
@dataclass
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = False
lowerCamelCase = True
lowerCamelCase = None
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = '''titi'''
lowerCamelCase = '''toto'''
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = '''titi'''
lowerCamelCase = '''toto'''
lowerCamelCase = 42
@dataclass
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = "toto"
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase =BasicEnum(self.foo )
@dataclass
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = "toto"
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =MixedTypeEnum(self.foo )
@dataclass
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = None
lowerCamelCase = field(default=__magic_name__ , metadata={'''help''': '''help message'''} )
lowerCamelCase = None
lowerCamelCase = list_field(default=[] )
lowerCamelCase = list_field(default=[] )
@dataclass
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = list_field(default=[] )
lowerCamelCase = list_field(default=[1, 2, 3] )
lowerCamelCase = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] )
lowerCamelCase = list_field(default=[0.1, 0.2, 0.3] )
@dataclass
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = field()
lowerCamelCase = field()
lowerCamelCase = field()
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =BasicEnum(self.required_enum )
@dataclass
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = 42
lowerCamelCase = field()
lowerCamelCase = None
lowerCamelCase = field(default='''toto''' , metadata={'''help''': '''help message'''} )
lowerCamelCase = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] )
if is_python_no_less_than_3_10:
@dataclass
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = False
lowerCamelCase = True
lowerCamelCase = None
@dataclass
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = None
lowerCamelCase = field(default=__magic_name__ , metadata={'''help''': '''help message'''} )
lowerCamelCase = None
lowerCamelCase = list_field(default=[] )
lowerCamelCase = list_field(default=[] )
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
self.assertEqual(len(a._actions ) , len(b._actions ) )
for x, y in zip(a._actions , b._actions ):
_lowerCAmelCase ={k: v for k, v in vars(__UpperCAmelCase ).items() if k != """container"""}
_lowerCAmelCase ={k: v for k, v in vars(__UpperCAmelCase ).items() if k != """container"""}
# Choices with mixed type have custom function as "type"
# So we need to compare results directly for equality
if xx.get("""choices""" , __UpperCAmelCase ) and yy.get("""choices""" , __UpperCAmelCase ):
for expected_choice in yy["choices"] + xx["choices"]:
self.assertEqual(xx["""type"""](__UpperCAmelCase ) , yy["""type"""](__UpperCAmelCase ) )
del xx["type"], yy["type"]
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =HfArgumentParser(__UpperCAmelCase )
_lowerCAmelCase =argparse.ArgumentParser()
expected.add_argument("""--foo""" , type=__UpperCAmelCase , required=__UpperCAmelCase )
expected.add_argument("""--bar""" , type=__UpperCAmelCase , required=__UpperCAmelCase )
expected.add_argument("""--baz""" , type=__UpperCAmelCase , required=__UpperCAmelCase )
expected.add_argument("""--flag""" , type=__UpperCAmelCase , default=__UpperCAmelCase , const=__UpperCAmelCase , nargs="""?""" )
self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""]
((_lowerCAmelCase) , ) =parser.parse_args_into_dataclasses(__UpperCAmelCase , look_for_args_file=__UpperCAmelCase )
self.assertFalse(example.flag )
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =HfArgumentParser(__UpperCAmelCase )
_lowerCAmelCase =argparse.ArgumentParser()
expected.add_argument("""--foo""" , default=42 , type=__UpperCAmelCase )
expected.add_argument("""--baz""" , default="""toto""" , type=__UpperCAmelCase , help="""help message""" )
self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =argparse.ArgumentParser()
expected.add_argument("""--foo""" , type=__UpperCAmelCase , default=__UpperCAmelCase , const=__UpperCAmelCase , nargs="""?""" )
expected.add_argument("""--baz""" , type=__UpperCAmelCase , default=__UpperCAmelCase , const=__UpperCAmelCase , nargs="""?""" )
# A boolean no_* argument always has to come after its "default: True" regular counter-part
# and its default must be set to False
expected.add_argument("""--no_baz""" , action="""store_false""" , default=__UpperCAmelCase , dest="""baz""" )
expected.add_argument("""--opt""" , type=__UpperCAmelCase , default=__UpperCAmelCase )
_lowerCAmelCase =[WithDefaultBoolExample]
if is_python_no_less_than_3_10:
dataclass_types.append(__UpperCAmelCase )
for dataclass_type in dataclass_types:
_lowerCAmelCase =HfArgumentParser(__UpperCAmelCase )
self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =parser.parse_args([] )
self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , baz=__UpperCAmelCase , opt=__UpperCAmelCase ) )
_lowerCAmelCase =parser.parse_args(["""--foo""", """--no_baz"""] )
self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , baz=__UpperCAmelCase , opt=__UpperCAmelCase ) )
_lowerCAmelCase =parser.parse_args(["""--foo""", """--baz"""] )
self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , baz=__UpperCAmelCase , opt=__UpperCAmelCase ) )
_lowerCAmelCase =parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] )
self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , baz=__UpperCAmelCase , opt=__UpperCAmelCase ) )
_lowerCAmelCase =parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] )
self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , baz=__UpperCAmelCase , opt=__UpperCAmelCase ) )
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =HfArgumentParser(__UpperCAmelCase )
_lowerCAmelCase =argparse.ArgumentParser()
expected.add_argument(
"""--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42] ) , )
self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =parser.parse_args([] )
self.assertEqual(args.foo , """toto""" )
_lowerCAmelCase =parser.parse_args_into_dataclasses([] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.toto )
_lowerCAmelCase =parser.parse_args(["""--foo""", """titi"""] )
self.assertEqual(args.foo , """titi""" )
_lowerCAmelCase =parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.titi )
_lowerCAmelCase =parser.parse_args(["""--foo""", """42"""] )
self.assertEqual(args.foo , 42 )
_lowerCAmelCase =parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo )
def _lowerCAmelCase ( self ) -> List[Any]:
@dataclass
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = "toto"
_lowerCAmelCase =HfArgumentParser(__UpperCAmelCase )
_lowerCAmelCase =argparse.ArgumentParser()
expected.add_argument(
"""--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42] ) , )
self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =parser.parse_args([] )
self.assertEqual(args.foo , """toto""" )
_lowerCAmelCase =parser.parse_args(["""--foo""", """titi"""] )
self.assertEqual(args.foo , """titi""" )
_lowerCAmelCase =parser.parse_args(["""--foo""", """42"""] )
self.assertEqual(args.foo , 42 )
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =HfArgumentParser(__UpperCAmelCase )
_lowerCAmelCase =argparse.ArgumentParser()
expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=__UpperCAmelCase )
expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=__UpperCAmelCase )
expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=__UpperCAmelCase )
expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=__UpperCAmelCase )
self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =parser.parse_args([] )
self.assertEqual(
__UpperCAmelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , )
_lowerCAmelCase =parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() )
self.assertEqual(__UpperCAmelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) )
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =argparse.ArgumentParser()
expected.add_argument("""--foo""" , default=__UpperCAmelCase , type=__UpperCAmelCase )
expected.add_argument("""--bar""" , default=__UpperCAmelCase , type=__UpperCAmelCase , help="""help message""" )
expected.add_argument("""--baz""" , default=__UpperCAmelCase , type=__UpperCAmelCase )
expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=__UpperCAmelCase )
expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=__UpperCAmelCase )
_lowerCAmelCase =[OptionalExample]
if is_python_no_less_than_3_10:
dataclass_types.append(__UpperCAmelCase )
for dataclass_type in dataclass_types:
_lowerCAmelCase =HfArgumentParser(__UpperCAmelCase )
self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =parser.parse_args([] )
self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , bar=__UpperCAmelCase , baz=__UpperCAmelCase , ces=[] , des=[] ) )
_lowerCAmelCase =parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() )
self.assertEqual(__UpperCAmelCase , Namespace(foo=12 , bar=3.1_4 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) )
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =HfArgumentParser(__UpperCAmelCase )
_lowerCAmelCase =argparse.ArgumentParser()
expected.add_argument("""--required_list""" , nargs="""+""" , type=__UpperCAmelCase , required=__UpperCAmelCase )
expected.add_argument("""--required_str""" , type=__UpperCAmelCase , required=__UpperCAmelCase )
expected.add_argument(
"""--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=__UpperCAmelCase , )
self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =HfArgumentParser(__UpperCAmelCase )
_lowerCAmelCase =argparse.ArgumentParser()
expected.add_argument("""--foo""" , type=__UpperCAmelCase , required=__UpperCAmelCase )
expected.add_argument(
"""--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=__UpperCAmelCase , )
expected.add_argument("""--opt""" , type=__UpperCAmelCase , default=__UpperCAmelCase )
expected.add_argument("""--baz""" , default="""toto""" , type=__UpperCAmelCase , help="""help message""" )
expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=__UpperCAmelCase )
self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Optional[int]:
_lowerCAmelCase =HfArgumentParser(__UpperCAmelCase )
_lowerCAmelCase ={
"""foo""": 12,
"""bar""": 3.1_4,
"""baz""": """42""",
"""flag""": True,
}
_lowerCAmelCase =parser.parse_dict(__UpperCAmelCase )[0]
_lowerCAmelCase =BasicExample(**__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =HfArgumentParser(__UpperCAmelCase )
_lowerCAmelCase ={
"""foo""": 12,
"""bar""": 3.1_4,
"""baz""": """42""",
"""flag""": True,
"""extra""": 42,
}
self.assertRaises(__UpperCAmelCase , parser.parse_dict , __UpperCAmelCase , allow_extra_keys=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =HfArgumentParser(__UpperCAmelCase )
_lowerCAmelCase ={
"""foo""": 12,
"""bar""": 3.1_4,
"""baz""": """42""",
"""flag""": True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
_lowerCAmelCase =os.path.join(__UpperCAmelCase , """temp_json""" )
os.mkdir(__UpperCAmelCase )
with open(temp_local_path + """.json""" , """w+""" ) as f:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0]
_lowerCAmelCase =BasicExample(**__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =HfArgumentParser(__UpperCAmelCase )
_lowerCAmelCase ={
"""foo""": 12,
"""bar""": 3.1_4,
"""baz""": """42""",
"""flag""": True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
_lowerCAmelCase =os.path.join(__UpperCAmelCase , """temp_yaml""" )
os.mkdir(__UpperCAmelCase )
with open(temp_local_path + """.yaml""" , """w+""" ) as f:
yaml.dump(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0]
_lowerCAmelCase =BasicExample(**__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Optional[int]:
_lowerCAmelCase =HfArgumentParser(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
| 341 |
"""simple docstring"""
from __future__ import annotations
def _lowerCamelCase(__UpperCamelCase ) -> bool:
_lowerCAmelCase =str(__UpperCamelCase )
return n == n[::-1]
def _lowerCamelCase(__UpperCamelCase = 1000000 ) -> str:
_lowerCAmelCase =0
for i in range(1 , __UpperCamelCase ):
if is_palindrome(__UpperCamelCase ) and is_palindrome(bin(__UpperCamelCase ).split("""b""" )[1] ):
total += i
return total
if __name__ == "__main__":
print(solution(int(str(input().strip()))))
| 341 | 1 |
"""simple docstring"""
import argparse
from typing import List
import evaluate
import numpy as np
import torch
from datasets import DatasetDict, load_dataset
# New Code #
# We'll be using StratifiedKFold for this example
from sklearn.model_selection import StratifiedKFold
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to perform Cross Validation,
# and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
__A = 16
__A = 32
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 16 ) -> int:
_lowerCAmelCase =AutoTokenizer.from_pretrained("""bert-base-cased""" )
_lowerCAmelCase =DatasetDict(
{
"""train""": dataset["""train"""].select(__UpperCamelCase ),
"""validation""": dataset["""train"""].select(__UpperCamelCase ),
"""test""": dataset["""validation"""],
} )
def tokenize_function(__UpperCamelCase ):
# max_length=None => use the model max length (it's actually the default)
_lowerCAmelCase =tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__UpperCamelCase , max_length=__UpperCamelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
_lowerCAmelCase =datasets.map(
__UpperCamelCase , batched=__UpperCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
_lowerCAmelCase =tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(__UpperCamelCase ):
# On TPU it's best to pad everything to the same length or training will be very slow.
_lowerCAmelCase =128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
_lowerCAmelCase =16
elif accelerator.mixed_precision != "no":
_lowerCAmelCase =8
else:
_lowerCAmelCase =None
return tokenizer.pad(
__UpperCamelCase , padding="""longest""" , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors="""pt""" , )
# Instantiate dataloaders.
_lowerCAmelCase =DataLoader(
tokenized_datasets["""train"""] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase )
_lowerCAmelCase =DataLoader(
tokenized_datasets["""validation"""] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase )
_lowerCAmelCase =DataLoader(
tokenized_datasets["""test"""] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase )
return train_dataloader, eval_dataloader, test_dataloader
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Any:
# New Code #
_lowerCAmelCase =[]
# Download the dataset
_lowerCAmelCase =load_dataset("""glue""" , """mrpc""" )
# Create our splits
_lowerCAmelCase =StratifiedKFold(n_splits=int(args.num_folds ) )
# Initialize accelerator
_lowerCAmelCase =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
_lowerCAmelCase =config["""lr"""]
_lowerCAmelCase =int(config["""num_epochs"""] )
_lowerCAmelCase =int(config["""seed"""] )
_lowerCAmelCase =int(config["""batch_size"""] )
_lowerCAmelCase =evaluate.load("""glue""" , """mrpc""" )
# If the batch size is too big we use gradient accumulation
_lowerCAmelCase =1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
_lowerCAmelCase =batch_size // MAX_GPU_BATCH_SIZE
_lowerCAmelCase =MAX_GPU_BATCH_SIZE
set_seed(__UpperCamelCase )
# New Code #
# Create our folds:
_lowerCAmelCase =kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] )
_lowerCAmelCase =[]
# Iterate over them
for i, (train_idxs, valid_idxs) in enumerate(__UpperCamelCase ):
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =get_fold_dataloaders(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
_lowerCAmelCase =AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__UpperCamelCase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
_lowerCAmelCase =model.to(accelerator.device )
# Instantiate optimizer
_lowerCAmelCase =AdamW(params=model.parameters() , lr=__UpperCamelCase )
# Instantiate scheduler
_lowerCAmelCase =get_linear_schedule_with_warmup(
optimizer=__UpperCamelCase , num_warmup_steps=100 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =accelerator.prepare(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
# Now we train the model
for epoch in range(__UpperCamelCase ):
model.train()
for step, batch in enumerate(__UpperCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
_lowerCAmelCase =model(**__UpperCamelCase )
_lowerCAmelCase =outputs.loss
_lowerCAmelCase =loss / gradient_accumulation_steps
accelerator.backward(__UpperCamelCase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__UpperCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
_lowerCAmelCase =model(**__UpperCamelCase )
_lowerCAmelCase =outputs.logits.argmax(dim=-1 )
_lowerCAmelCase , _lowerCAmelCase =accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
metric.add_batch(
predictions=__UpperCamelCase , references=__UpperCamelCase , )
_lowerCAmelCase =metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'''epoch {epoch}:''' , __UpperCamelCase )
# New Code #
# We also run predictions on the test set at the very end
_lowerCAmelCase =[]
for step, batch in enumerate(__UpperCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
_lowerCAmelCase =model(**__UpperCamelCase )
_lowerCAmelCase =outputs.logits
_lowerCAmelCase , _lowerCAmelCase =accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
fold_predictions.append(predictions.cpu() )
if i == 0:
# We need all of the test predictions
test_references.append(references.cpu() )
# Use accelerator.print to print only on the main process.
test_predictions.append(torch.cat(__UpperCamelCase , dim=0 ) )
# We now need to release all our memory and get rid of the current model, optimizer, etc
accelerator.free_memory()
# New Code #
# Finally we check the accuracy of our folded results:
_lowerCAmelCase =torch.cat(__UpperCamelCase , dim=0 )
_lowerCAmelCase =torch.stack(__UpperCamelCase , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 )
_lowerCAmelCase =metric.compute(predictions=__UpperCamelCase , references=__UpperCamelCase )
accelerator.print("""Average test metrics from all folds:""" , __UpperCamelCase )
def _lowerCamelCase() -> Dict:
_lowerCAmelCase =argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" , type=__UpperCamelCase , default=__UpperCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" , )
parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" )
# New Code #
parser.add_argument("""--num_folds""" , type=__UpperCamelCase , default=3 , help="""The number of splits to perform across the dataset""" )
_lowerCAmelCase =parser.parse_args()
_lowerCAmelCase ={"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16}
training_function(__UpperCamelCase , __UpperCamelCase )
if __name__ == "__main__":
main()
| 341 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = '''llama'''
lowerCamelCase = ['''past_key_values''']
def __init__( self , __UpperCAmelCase=3_20_00 , __UpperCAmelCase=40_96 , __UpperCAmelCase=1_10_08 , __UpperCAmelCase=32 , __UpperCAmelCase=32 , __UpperCAmelCase=None , __UpperCAmelCase="silu" , __UpperCAmelCase=20_48 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-6 , __UpperCAmelCase=True , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=False , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]:
_lowerCAmelCase =vocab_size
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =hidden_size
_lowerCAmelCase =intermediate_size
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =num_key_value_heads
_lowerCAmelCase =hidden_act
_lowerCAmelCase =initializer_range
_lowerCAmelCase =rms_norm_eps
_lowerCAmelCase =pretraining_tp
_lowerCAmelCase =use_cache
_lowerCAmelCase =rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase , )
def _lowerCAmelCase ( self ) -> str:
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2:
raise ValueError(
"""`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """
f'''got {self.rope_scaling}''' )
_lowerCAmelCase =self.rope_scaling.get("""type""" , __UpperCAmelCase )
_lowerCAmelCase =self.rope_scaling.get("""factor""" , __UpperCAmelCase )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' )
if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0:
raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
| 341 | 1 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__A = logging.get_logger(__name__)
__A = '▁'
__A = {'vocab_file': 'spiece.model'}
__A = {
'vocab_file': {
'google/reformer-crime-and-punishment': (
'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model'
)
}
}
__A = {
'google/reformer-crime-and-punishment': 52_4288,
}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = VOCAB_FILES_NAMES
lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase = ['''input_ids''', '''attention_mask''']
def __init__( self , __UpperCAmelCase , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase=[] , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
_lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , )
_lowerCAmelCase =vocab_file
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__UpperCAmelCase )
@property
def _lowerCAmelCase ( self ) -> str:
return self.sp_model.get_piece_size()
def _lowerCAmelCase ( self ) -> Dict[str, int]:
_lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> Dict:
_lowerCAmelCase =self.__dict__.copy()
_lowerCAmelCase =None
return state
def __setstate__( self , __UpperCAmelCase ) -> Optional[Any]:
_lowerCAmelCase =d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_lowerCAmelCase ={}
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]:
return self.sp_model.piece_to_id(__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[Any]:
if index < self.sp_model.get_piece_size():
_lowerCAmelCase =self.sp_model.IdToPiece(__UpperCAmelCase )
return token
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Tuple:
_lowerCAmelCase =[]
_lowerCAmelCase =""""""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(__UpperCAmelCase ) + token
_lowerCAmelCase =[]
else:
current_sub_tokens.append(__UpperCAmelCase )
out_string += self.sp_model.decode(__UpperCAmelCase )
return out_string.strip()
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCAmelCase , """wb""" ) as fi:
_lowerCAmelCase =self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase )
return (out_vocab_file,)
| 341 |
"""simple docstring"""
import warnings
from .generation import TFGenerationMixin
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
# warning at import time
warnings.warn(
'''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will '''
'''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''' , __magic_name__ , )
| 341 | 1 |
"""simple docstring"""
from __future__ import annotations
import os
from typing import Any
import requests
__A = 'https://api.github.com'
# https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user
__A = BASE_URL + '/user'
# https://github.com/settings/tokens
__A = os.environ.get('USER_TOKEN', '')
def _lowerCamelCase(__UpperCamelCase ) -> dict[Any, Any]:
_lowerCAmelCase ={
"""Authorization""": F'''token {auth_token}''',
"""Accept""": """application/vnd.github.v3+json""",
}
return requests.get(__UpperCamelCase , headers=__UpperCamelCase ).json()
if __name__ == "__main__": # pragma: no cover
if USER_TOKEN:
for key, value in fetch_github_info(USER_TOKEN).items():
print(F"""{key}: {value}""")
else:
raise ValueError('\'USER_TOKEN\' field cannot be empty.')
| 341 |
"""simple docstring"""
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=16 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=30 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=None , ) -> Any:
_lowerCAmelCase =parent
_lowerCAmelCase =batch_size
_lowerCAmelCase =decoder_seq_length
# For common tests
_lowerCAmelCase =self.decoder_seq_length
_lowerCAmelCase =is_training
_lowerCAmelCase =use_attention_mask
_lowerCAmelCase =use_labels
_lowerCAmelCase =vocab_size
_lowerCAmelCase =d_model
_lowerCAmelCase =d_model
_lowerCAmelCase =decoder_layers
_lowerCAmelCase =decoder_layers
_lowerCAmelCase =decoder_ffn_dim
_lowerCAmelCase =decoder_attention_heads
_lowerCAmelCase =decoder_attention_heads
_lowerCAmelCase =eos_token_id
_lowerCAmelCase =bos_token_id
_lowerCAmelCase =pad_token_id
_lowerCAmelCase =decoder_start_token_id
_lowerCAmelCase =use_cache
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =None
_lowerCAmelCase =decoder_seq_length
_lowerCAmelCase =2
_lowerCAmelCase =1
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
_lowerCAmelCase =None
if self.use_attention_mask:
_lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 )
_lowerCAmelCase =None
if self.use_labels:
_lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
_lowerCAmelCase =TrOCRConfig(
vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , )
return (config, input_ids, attention_mask, lm_labels)
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[Any]:
_lowerCAmelCase =True
_lowerCAmelCase =TrOCRDecoder(config=__UpperCAmelCase ).to(__UpperCAmelCase ).eval()
_lowerCAmelCase =input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
_lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
_lowerCAmelCase =model(__UpperCAmelCase )
_lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 )
_lowerCAmelCase =outputs["""past_key_values"""]
# create hypothetical next token and extent to next_input_ids
_lowerCAmelCase =ids_tensor((2, 1) , config.vocab_size - 1 ) + 1
# append to next input_ids and
_lowerCAmelCase =torch.cat([input_ids, next_tokens] , dim=-1 )
_lowerCAmelCase =model(__UpperCAmelCase )["""last_hidden_state"""]
_lowerCAmelCase =model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )["""last_hidden_state"""]
# select random slice
_lowerCAmelCase =ids_tensor((1,) , output_from_past.shape[-1] ).item()
_lowerCAmelCase =output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
_lowerCAmelCase =output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 )
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =self.prepare_config_and_inputs()
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs
_lowerCAmelCase ={"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
lowerCamelCase = (TrOCRForCausalLM,) if is_torch_available() else ()
lowerCamelCase = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {}
lowerCamelCase = True
lowerCamelCase = False
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =TrOCRStandaloneDecoderModelTester(self , is_training=__UpperCAmelCase )
_lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> List[str]:
pass
def _lowerCAmelCase ( self ) -> List[Any]:
pass
def _lowerCAmelCase ( self ) -> Any:
pass
def _lowerCAmelCase ( self ) -> Optional[Any]:
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Tuple:
return
@unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :)
def _lowerCAmelCase ( self ) -> str:
pass
| 341 | 1 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> list:
_lowerCAmelCase =word.split()
def justify(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> str:
_lowerCAmelCase =max_width - width
_lowerCAmelCase =len(__UpperCamelCase )
if len(__UpperCamelCase ) == 1:
# if there is only word in line
# just insert overall_spaces_count for the remainder of line
return line[0] + " " * overall_spaces_count
else:
_lowerCAmelCase =words_count - 1
# num_spaces_between_words_list[i] : tells you to insert
# num_spaces_between_words_list[i] spaces
# after word on line[i]
_lowerCAmelCase =spaces_to_insert_between_words * [
overall_spaces_count // spaces_to_insert_between_words
]
_lowerCAmelCase =(
overall_spaces_count % spaces_to_insert_between_words
)
# distribute spaces via round robin to the left words
for i in range(__UpperCamelCase ):
num_spaces_between_words_list[i] += 1
_lowerCAmelCase =[]
for i in range(__UpperCamelCase ):
# add the word
aligned_words_list.append(line[i] )
# add the spaces to insert
aligned_words_list.append(num_spaces_between_words_list[i] * """ """ )
# just add the last word to the sentence
aligned_words_list.append(line[-1] )
# join the aligned words list to form a justified line
return "".join(__UpperCamelCase )
_lowerCAmelCase =[]
_lowerCAmelCase =[]
_lowerCAmelCase =0
for word in words:
if width + len(__UpperCamelCase ) + len(__UpperCamelCase ) <= max_width:
# keep adding words until we can fill out max_width
# width = sum of length of all words (without overall_spaces_count)
# len(word) = length of current word
# len(line) = number of overall_spaces_count to insert between words
line.append(__UpperCamelCase )
width += len(__UpperCamelCase )
else:
# justify the line and add it to result
answer.append(justify(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) )
# reset new line and new width
_lowerCAmelCase , _lowerCAmelCase =[word], len(__UpperCamelCase )
_lowerCAmelCase =max_width - width - len(__UpperCamelCase )
answer.append(""" """.join(__UpperCamelCase ) + (remaining_spaces + 1) * """ """ )
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 341 |
"""simple docstring"""
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = JukeboxTokenizer
lowerCamelCase = {
'''artist''': '''Zac Brown Band''',
'''genres''': '''Country''',
'''lyrics''': '''I met a traveller from an antique land,
Who said "Two vast and trunkless legs of stone
Stand in the desert. . . . Near them, on the sand,
Half sunk a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,
Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them, and the heart that fed;
And on the pedestal, these words appear:
My name is Ozymandias, King of Kings;
Look on my Works, ye Mighty, and despair!
Nothing beside remains. Round the decay
Of that colossal Wreck, boundless and bare
The lone and level sands stretch far away
''',
}
@require_torch
def _lowerCAmelCase ( self ) -> str:
import torch
_lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" )
_lowerCAmelCase =tokenizer(**self.metas )["""input_ids"""]
# fmt: off
_lowerCAmelCase =[
torch.tensor([[
0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 10_69, 11]] ),
torch.tensor([[0, 0, 0, 10_69, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def _lowerCAmelCase ( self ) -> Any:
import torch
_lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" )
_lowerCAmelCase =tokenizer(**self.metas )["""input_ids"""]
# fmt: off
_lowerCAmelCase =[
torch.tensor([[
0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 341 | 1 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__A = logging.get_logger(__name__)
__A = '▁'
__A = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'}
__A = {
'vocab_file': {
'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model',
},
'monolingual_vocab_file': {
'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt',
},
}
__A = {'vinai/bartpho-syllable': 1024}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = VOCAB_FILES_NAMES
lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase = ['''input_ids''', '''attention_mask''']
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it
_lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
_lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , )
_lowerCAmelCase =vocab_file
_lowerCAmelCase =monolingual_vocab_file
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__UpperCAmelCase ) )
# Load the reduced vocab
# Keep order of special tokens for backward compatibility
_lowerCAmelCase ={}
_lowerCAmelCase =0
for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids:
_lowerCAmelCase =cnt
cnt += 1
with open(__UpperCAmelCase , """r""" , encoding="""utf-8""" ) as f:
for line in f.readlines():
_lowerCAmelCase =line.strip().split()[0]
_lowerCAmelCase =len(self.fairseq_tokens_to_ids )
if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids:
_lowerCAmelCase =len(self.fairseq_tokens_to_ids )
_lowerCAmelCase ={v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ) -> Dict:
_lowerCAmelCase =self.__dict__.copy()
_lowerCAmelCase =None
_lowerCAmelCase =self.sp_model.serialized_model_proto()
return state
def __setstate__( self , __UpperCAmelCase ) -> List[Any]:
_lowerCAmelCase =d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_lowerCAmelCase ={}
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
_lowerCAmelCase =[self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(__UpperCAmelCase )) + [1]
return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1]
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_lowerCAmelCase =[self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def _lowerCAmelCase ( self ) -> Union[str, Any]:
return len(self.fairseq_ids_to_tokens )
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
else:
return self.unk_token_id
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]:
return self.fairseq_ids_to_tokens[index]
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip()
return out_string
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCAmelCase , """wb""" ) as fi:
_lowerCAmelCase =self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase )
if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath(
__UpperCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ):
copyfile(self.monolingual_vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.monolingual_vocab_file ):
with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as fp:
for token in self.fairseq_tokens_to_ids:
if token not in self.all_special_tokens:
fp.write(f'''{str(__UpperCAmelCase )} \n''' )
return out_vocab_file, out_monolingual_vocab_file
| 341 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__A = logging.get_logger(__name__)
__A = '▁'
__A = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'}
__A = {
'vocab_file': {
'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model',
},
'monolingual_vocab_file': {
'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt',
},
}
__A = {'vinai/bartpho-syllable': 1024}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = VOCAB_FILES_NAMES
lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase = ['''input_ids''', '''attention_mask''']
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it
_lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
_lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , )
_lowerCAmelCase =vocab_file
_lowerCAmelCase =monolingual_vocab_file
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__UpperCAmelCase ) )
# Load the reduced vocab
# Keep order of special tokens for backward compatibility
_lowerCAmelCase ={}
_lowerCAmelCase =0
for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids:
_lowerCAmelCase =cnt
cnt += 1
with open(__UpperCAmelCase , """r""" , encoding="""utf-8""" ) as f:
for line in f.readlines():
_lowerCAmelCase =line.strip().split()[0]
_lowerCAmelCase =len(self.fairseq_tokens_to_ids )
if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids:
_lowerCAmelCase =len(self.fairseq_tokens_to_ids )
_lowerCAmelCase ={v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ) -> Dict:
_lowerCAmelCase =self.__dict__.copy()
_lowerCAmelCase =None
_lowerCAmelCase =self.sp_model.serialized_model_proto()
return state
def __setstate__( self , __UpperCAmelCase ) -> List[Any]:
_lowerCAmelCase =d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_lowerCAmelCase ={}
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
_lowerCAmelCase =[self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(__UpperCAmelCase )) + [1]
return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1]
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_lowerCAmelCase =[self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def _lowerCAmelCase ( self ) -> Union[str, Any]:
return len(self.fairseq_ids_to_tokens )
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
else:
return self.unk_token_id
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]:
return self.fairseq_ids_to_tokens[index]
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip()
return out_string
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCAmelCase , """wb""" ) as fi:
_lowerCAmelCase =self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase )
if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath(
__UpperCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ):
copyfile(self.monolingual_vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.monolingual_vocab_file ):
with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as fp:
for token in self.fairseq_tokens_to_ids:
if token not in self.all_special_tokens:
fp.write(f'''{str(__UpperCAmelCase )} \n''' )
return out_vocab_file, out_monolingual_vocab_file
| 341 | 1 |
"""simple docstring"""
__A = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_0000)]
def _lowerCamelCase(__UpperCamelCase ) -> int:
_lowerCAmelCase =0
while number:
# Increased Speed Slightly by checking every 5 digits together.
sum_of_digits_squared += DIGITS_SQUARED[number % 100000]
number //= 100000
return sum_of_digits_squared
# There are 2 Chains made,
# One ends with 89 with the chain member 58 being the one which when declared first,
# there will be the least number of iterations for all the members to be checked.
# The other one ends with 1 and has only one element 1.
# So 58 and 1 are chosen to be declared at the starting.
# Changed dictionary to an array to quicken the solution
__A = [None] * 1000_0000
__A = True
__A = False
def _lowerCamelCase(__UpperCamelCase ) -> bool:
if CHAINS[number - 1] is not None:
return CHAINS[number - 1] # type: ignore
_lowerCAmelCase =chain(next_number(__UpperCamelCase ) )
_lowerCAmelCase =number_chain
while number < 10000000:
_lowerCAmelCase =number_chain
number *= 10
return number_chain
def _lowerCamelCase(__UpperCamelCase = 10000000 ) -> int:
for i in range(1 , __UpperCamelCase ):
if CHAINS[i] is None:
chain(i + 1 )
return CHAINS[:number].count(__UpperCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F"""{solution() = }""")
| 341 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =1
_lowerCAmelCase =3
_lowerCAmelCase =(32, 32)
_lowerCAmelCase =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCAmelCase )
return image
@property
def _lowerCAmelCase ( self ) -> Tuple:
torch.manual_seed(0 )
_lowerCAmelCase =UNetaDConditionModel(
block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__UpperCAmelCase , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , )
return model
@property
def _lowerCAmelCase ( self ) -> Tuple:
torch.manual_seed(0 )
_lowerCAmelCase =AutoencoderKL(
block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def _lowerCAmelCase ( self ) -> Optional[Any]:
torch.manual_seed(0 )
_lowerCAmelCase =CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , )
return CLIPTextModel(__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase =self.dummy_cond_unet_upscale
_lowerCAmelCase =DDPMScheduler()
_lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" )
_lowerCAmelCase =self.dummy_vae
_lowerCAmelCase =self.dummy_text_encoder
_lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
_lowerCAmelCase =StableDiffusionUpscalePipeline(
unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , )
_lowerCAmelCase =sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase ="""A painting of a squirrel eating a burger"""
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
_lowerCAmelCase =output.images
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=__UpperCAmelCase , )[0]
_lowerCAmelCase =image[0, -3:, -3:, -1]
_lowerCAmelCase =image_from_tuple[0, -3:, -3:, -1]
_lowerCAmelCase =low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
_lowerCAmelCase =np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase =self.dummy_cond_unet_upscale
_lowerCAmelCase =DDPMScheduler()
_lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" )
_lowerCAmelCase =self.dummy_vae
_lowerCAmelCase =self.dummy_text_encoder
_lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
_lowerCAmelCase =StableDiffusionUpscalePipeline(
unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , )
_lowerCAmelCase =sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase ="""A painting of a squirrel eating a burger"""
_lowerCAmelCase =sd_pipe(
2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
_lowerCAmelCase =output.images
assert image.shape[0] == 2
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
_lowerCAmelCase =output.images
assert image.shape[0] == 2
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =self.dummy_cond_unet_upscale
_lowerCAmelCase =DDPMScheduler()
_lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" )
_lowerCAmelCase =self.dummy_vae
_lowerCAmelCase =self.dummy_text_encoder
_lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
# put models in fp16, except vae as it overflows in fp16
_lowerCAmelCase =unet.half()
_lowerCAmelCase =text_encoder.half()
# make sure here that pndm scheduler skips prk
_lowerCAmelCase =StableDiffusionUpscalePipeline(
unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , )
_lowerCAmelCase =sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase ="""A painting of a squirrel eating a burger"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type="""np""" , ).images
_lowerCAmelCase =low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
@slow
@require_torch_gpu
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> int:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_lowerCAmelCase =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"""
"""/upsampled_cat.npy""" )
_lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler"""
_lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing()
_lowerCAmelCase ="""a cat sitting on a park bench"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , )
_lowerCAmelCase =output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 1e-3
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_lowerCAmelCase =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"""
"""/upsampled_cat_fp16.npy""" )
_lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler"""
_lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(
__UpperCAmelCase , torch_dtype=torch.floataa , )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing()
_lowerCAmelCase ="""a cat sitting on a park bench"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , )
_lowerCAmelCase =output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 5e-1
def _lowerCAmelCase ( self ) -> Optional[Any]:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_lowerCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler"""
_lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(
__UpperCAmelCase , torch_dtype=torch.floataa , )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
_lowerCAmelCase ="""a cat sitting on a park bench"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , output_type="""np""" , )
_lowerCAmelCase =torch.cuda.max_memory_allocated()
# make sure that less than 2.9 GB is allocated
assert mem_bytes < 2.9 * 10**9
| 341 | 1 |
"""simple docstring"""
import re
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = ['''image_processor''', '''tokenizer''']
lowerCamelCase = '''AutoImageProcessor'''
lowerCamelCase = '''AutoTokenizer'''
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Optional[int]:
_lowerCAmelCase =None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __UpperCAmelCase , )
_lowerCAmelCase =kwargs.pop("""feature_extractor""" )
_lowerCAmelCase =image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =self.image_processor
_lowerCAmelCase =False
def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*__UpperCAmelCase , **__UpperCAmelCase )
_lowerCAmelCase =kwargs.pop("""images""" , __UpperCAmelCase )
_lowerCAmelCase =kwargs.pop("""text""" , __UpperCAmelCase )
if len(__UpperCAmelCase ) > 0:
_lowerCAmelCase =args[0]
_lowerCAmelCase =args[1:]
if images is None and text is None:
raise ValueError("""You need to specify either an `images` or `text` input to process.""" )
if images is not None:
_lowerCAmelCase =self.image_processor(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase )
if text is not None:
_lowerCAmelCase =self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
_lowerCAmelCase =encodings["""input_ids"""]
return inputs
def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
@contextmanager
def _lowerCAmelCase ( self ) -> int:
warnings.warn(
"""`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """
"""labels by using the argument `text` of the regular `__call__` method (either in the same call as """
"""your images inputs, or in a separate call.""" )
_lowerCAmelCase =True
_lowerCAmelCase =self.tokenizer
yield
_lowerCAmelCase =self.image_processor
_lowerCAmelCase =False
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=None ) -> Tuple:
if added_vocab is None:
_lowerCAmelCase =self.tokenizer.get_added_vocab()
_lowerCAmelCase ={}
while tokens:
_lowerCAmelCase =re.search(r"""<s_(.*?)>""" , __UpperCAmelCase , re.IGNORECASE )
if start_token is None:
break
_lowerCAmelCase =start_token.group(1 )
_lowerCAmelCase =re.search(rf'''</s_{key}>''' , __UpperCAmelCase , re.IGNORECASE )
_lowerCAmelCase =start_token.group()
if end_token is None:
_lowerCAmelCase =tokens.replace(__UpperCAmelCase , """""" )
else:
_lowerCAmelCase =end_token.group()
_lowerCAmelCase =re.escape(__UpperCAmelCase )
_lowerCAmelCase =re.escape(__UpperCAmelCase )
_lowerCAmelCase =re.search(f'''{start_token_escaped}(.*?){end_token_escaped}''' , __UpperCAmelCase , re.IGNORECASE )
if content is not None:
_lowerCAmelCase =content.group(1 ).strip()
if r"<s_" in content and r"</s_" in content: # non-leaf node
_lowerCAmelCase =self.tokenajson(__UpperCAmelCase , is_inner_value=__UpperCAmelCase , added_vocab=__UpperCAmelCase )
if value:
if len(__UpperCAmelCase ) == 1:
_lowerCAmelCase =value[0]
_lowerCAmelCase =value
else: # leaf nodes
_lowerCAmelCase =[]
for leaf in content.split(r"""<sep/>""" ):
_lowerCAmelCase =leaf.strip()
if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>":
_lowerCAmelCase =leaf[1:-2] # for categorical special tokens
output[key].append(__UpperCAmelCase )
if len(output[key] ) == 1:
_lowerCAmelCase =output[key][0]
_lowerCAmelCase =tokens[tokens.find(__UpperCAmelCase ) + len(__UpperCAmelCase ) :].strip()
if tokens[:6] == r"<sep/>": # non-leaf nodes
return [output] + self.tokenajson(tokens[6:] , is_inner_value=__UpperCAmelCase , added_vocab=__UpperCAmelCase )
if len(__UpperCAmelCase ):
return [output] if is_inner_value else output
else:
return [] if is_inner_value else {"text_sequence": tokens}
@property
def _lowerCAmelCase ( self ) -> str:
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __UpperCAmelCase , )
return self.image_processor_class
@property
def _lowerCAmelCase ( self ) -> Union[str, Any]:
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __UpperCAmelCase , )
return self.image_processor
| 341 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json',
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = '''cvt'''
def __init__( self , __UpperCAmelCase=3 , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[64, 1_92, 3_84] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 10] , __UpperCAmelCase=[4.0, 4.0, 4.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.1] , __UpperCAmelCase=[True, True, True] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , __UpperCAmelCase=[3, 3, 3] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-12 , **__UpperCAmelCase , ) -> Optional[Any]:
super().__init__(**__UpperCAmelCase )
_lowerCAmelCase =num_channels
_lowerCAmelCase =patch_sizes
_lowerCAmelCase =patch_stride
_lowerCAmelCase =patch_padding
_lowerCAmelCase =embed_dim
_lowerCAmelCase =num_heads
_lowerCAmelCase =depth
_lowerCAmelCase =mlp_ratio
_lowerCAmelCase =attention_drop_rate
_lowerCAmelCase =drop_rate
_lowerCAmelCase =drop_path_rate
_lowerCAmelCase =qkv_bias
_lowerCAmelCase =cls_token
_lowerCAmelCase =qkv_projection_method
_lowerCAmelCase =kernel_qkv
_lowerCAmelCase =padding_kv
_lowerCAmelCase =stride_kv
_lowerCAmelCase =padding_q
_lowerCAmelCase =stride_q
_lowerCAmelCase =initializer_range
_lowerCAmelCase =layer_norm_eps
| 341 | 1 |
"""simple docstring"""
import argparse
import torch
from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]:
# Construct model
if gpta_config_file == "":
_lowerCAmelCase =GPTaConfig()
else:
_lowerCAmelCase =GPTaConfig.from_json_file(__UpperCamelCase )
_lowerCAmelCase =GPTaModel(__UpperCamelCase )
# Load weights from numpy
load_tf_weights_in_gpta(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
# Save pytorch-model
_lowerCAmelCase =pytorch_dump_folder_path + """/""" + WEIGHTS_NAME
_lowerCAmelCase =pytorch_dump_folder_path + """/""" + CONFIG_NAME
print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' )
torch.save(model.state_dict() , __UpperCamelCase )
print(F'''Save configuration file to {pytorch_config_dump_path}''' )
with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--gpt2_config_file',
default='',
type=str,
help=(
'An optional config json file corresponding to the pre-trained OpenAI model. \n'
'This specifies the model architecture.'
),
)
__A = parser.parse_args()
convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
| 341 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = ['''image_processor''', '''tokenizer''']
lowerCamelCase = '''CLIPImageProcessor'''
lowerCamelCase = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''')
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase =None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __UpperCAmelCase , )
_lowerCAmelCase =kwargs.pop("""feature_extractor""" )
_lowerCAmelCase =image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Optional[Any]:
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
_lowerCAmelCase =self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if images is not None:
_lowerCAmelCase =self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is not None and images is not None:
_lowerCAmelCase =image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase )
def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
@property
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =self.tokenizer.model_input_names
_lowerCAmelCase =self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 341 | 1 |
"""simple docstring"""
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = (EulerDiscreteScheduler,)
lowerCamelCase = 10
def _lowerCAmelCase ( self , **__UpperCAmelCase ) -> Any:
_lowerCAmelCase ={
"""num_train_timesteps""": 11_00,
"""beta_start""": 0.0_0_0_1,
"""beta_end""": 0.0_2,
"""beta_schedule""": """linear""",
}
config.update(**__UpperCAmelCase )
return config
def _lowerCAmelCase ( self ) -> List[str]:
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Optional[int]:
for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ):
self.check_over_configs(beta_start=__UpperCAmelCase , beta_end=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> int:
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Tuple:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =self.scheduler_classes[0]
_lowerCAmelCase =self.get_scheduler_config()
_lowerCAmelCase =scheduler_class(**__UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps )
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =self.dummy_model()
_lowerCAmelCase =self.dummy_sample_deter * scheduler.init_noise_sigma
_lowerCAmelCase =sample.to(__UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_lowerCAmelCase =scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =model(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase )
_lowerCAmelCase =output.prev_sample
_lowerCAmelCase =torch.sum(torch.abs(__UpperCAmelCase ) )
_lowerCAmelCase =torch.mean(torch.abs(__UpperCAmelCase ) )
assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1e-2
assert abs(result_mean.item() - 0.0_1_3_1 ) < 1e-3
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =self.scheduler_classes[0]
_lowerCAmelCase =self.get_scheduler_config(prediction_type="""v_prediction""" )
_lowerCAmelCase =scheduler_class(**__UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps )
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =self.dummy_model()
_lowerCAmelCase =self.dummy_sample_deter * scheduler.init_noise_sigma
_lowerCAmelCase =sample.to(__UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_lowerCAmelCase =scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =model(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase )
_lowerCAmelCase =output.prev_sample
_lowerCAmelCase =torch.sum(torch.abs(__UpperCAmelCase ) )
_lowerCAmelCase =torch.mean(torch.abs(__UpperCAmelCase ) )
assert abs(result_sum.item() - 0.0_0_0_2 ) < 1e-2
assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =self.scheduler_classes[0]
_lowerCAmelCase =self.get_scheduler_config()
_lowerCAmelCase =scheduler_class(**__UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps , device=__UpperCAmelCase )
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =self.dummy_model()
_lowerCAmelCase =self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
_lowerCAmelCase =sample.to(__UpperCAmelCase )
for t in scheduler.timesteps:
_lowerCAmelCase =scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =model(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase )
_lowerCAmelCase =output.prev_sample
_lowerCAmelCase =torch.sum(torch.abs(__UpperCAmelCase ) )
_lowerCAmelCase =torch.mean(torch.abs(__UpperCAmelCase ) )
assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1e-2
assert abs(result_mean.item() - 0.0_1_3_1 ) < 1e-3
def _lowerCAmelCase ( self ) -> Optional[int]:
_lowerCAmelCase =self.scheduler_classes[0]
_lowerCAmelCase =self.get_scheduler_config()
_lowerCAmelCase =scheduler_class(**__UpperCAmelCase , use_karras_sigmas=__UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps , device=__UpperCAmelCase )
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =self.dummy_model()
_lowerCAmelCase =self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
_lowerCAmelCase =sample.to(__UpperCAmelCase )
for t in scheduler.timesteps:
_lowerCAmelCase =scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =model(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase )
_lowerCAmelCase =output.prev_sample
_lowerCAmelCase =torch.sum(torch.abs(__UpperCAmelCase ) )
_lowerCAmelCase =torch.mean(torch.abs(__UpperCAmelCase ) )
assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9 ) < 1e-2
assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3 ) < 1e-3
| 341 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__A = {
'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'],
'tokenization_perceiver': ['PerceiverTokenizer'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ['PerceiverFeatureExtractor']
__A = ['PerceiverImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PerceiverForImageClassificationConvProcessing',
'PerceiverForImageClassificationFourier',
'PerceiverForImageClassificationLearned',
'PerceiverForMaskedLM',
'PerceiverForMultimodalAutoencoding',
'PerceiverForOpticalFlow',
'PerceiverForSequenceClassification',
'PerceiverLayer',
'PerceiverModel',
'PerceiverPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 1 |
"""simple docstring"""
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
__A = 'platform'
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , ) -> Dict:
if attention_mask is None:
_lowerCAmelCase =np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
_lowerCAmelCase =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
_lowerCAmelCase =np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_lowerCAmelCase =np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
_lowerCAmelCase =np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=0.0_2 , ) -> Union[str, Any]:
_lowerCAmelCase =parent
_lowerCAmelCase =batch_size
_lowerCAmelCase =seq_length
_lowerCAmelCase =is_training
_lowerCAmelCase =use_labels
_lowerCAmelCase =vocab_size
_lowerCAmelCase =hidden_size
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =intermediate_size
_lowerCAmelCase =hidden_act
_lowerCAmelCase =hidden_dropout_prob
_lowerCAmelCase =attention_probs_dropout_prob
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =eos_token_id
_lowerCAmelCase =pad_token_id
_lowerCAmelCase =bos_token_id
_lowerCAmelCase =initializer_range
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size )
_lowerCAmelCase =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 )
_lowerCAmelCase =shift_tokens_right(__UpperCAmelCase , 1 , 2 )
_lowerCAmelCase =BlenderbotConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=__UpperCAmelCase , )
_lowerCAmelCase =prepare_blenderbot_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
return config, inputs_dict
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase , _lowerCAmelCase =self.prepare_config_and_inputs()
return config, inputs_dict
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
_lowerCAmelCase =20
_lowerCAmelCase =model_class_name(__UpperCAmelCase )
_lowerCAmelCase =model.encode(inputs_dict["""input_ids"""] )
_lowerCAmelCase , _lowerCAmelCase =(
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_lowerCAmelCase =model.init_cache(decoder_input_ids.shape[0] , __UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
_lowerCAmelCase =jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_lowerCAmelCase =model.decode(
decoder_input_ids[:, :-1] , __UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , decoder_position_ids=__UpperCAmelCase , )
_lowerCAmelCase =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
_lowerCAmelCase =model.decode(
decoder_input_ids[:, -1:] , __UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__UpperCAmelCase , )
_lowerCAmelCase =model.decode(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
_lowerCAmelCase =20
_lowerCAmelCase =model_class_name(__UpperCAmelCase )
_lowerCAmelCase =model.encode(inputs_dict["""input_ids"""] )
_lowerCAmelCase , _lowerCAmelCase =(
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_lowerCAmelCase =jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
_lowerCAmelCase =model.init_cache(decoder_input_ids.shape[0] , __UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_lowerCAmelCase =model.decode(
decoder_input_ids[:, :-1] , __UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , decoder_position_ids=__UpperCAmelCase , )
_lowerCAmelCase =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
_lowerCAmelCase =model.decode(
decoder_input_ids[:, -1:] , __UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__UpperCAmelCase , decoder_position_ids=__UpperCAmelCase , )
_lowerCAmelCase =model.decode(__UpperCAmelCase , __UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase )
_lowerCAmelCase =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
@require_flax
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = 99
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
_lowerCAmelCase =input_ids.shape[0]
_lowerCAmelCase =BlenderbotConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._get_config_and_data()
_lowerCAmelCase =FlaxBlenderbotForConditionalGeneration(__UpperCAmelCase )
_lowerCAmelCase =lm_model(input_ids=__UpperCAmelCase )
_lowerCAmelCase =(batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =BlenderbotConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
_lowerCAmelCase =FlaxBlenderbotForConditionalGeneration(__UpperCAmelCase )
_lowerCAmelCase =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa )
_lowerCAmelCase =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa )
_lowerCAmelCase =lm_model(input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase )
_lowerCAmelCase =(*summary.shape, config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa )
_lowerCAmelCase =shift_tokens_right(__UpperCAmelCase , 1 , 2 )
_lowerCAmelCase =np.equal(__UpperCAmelCase , 1 ).astype(np.floataa ).sum()
_lowerCAmelCase =np.equal(__UpperCAmelCase , 1 ).astype(np.floataa ).sum()
self.assertEqual(shifted.shape , input_ids.shape )
self.assertEqual(__UpperCAmelCase , n_pad_before - 1 )
self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() )
@require_flax
class lowerCamelCase__ ( __magic_name__ , unittest.TestCase , __magic_name__ ):
'''simple docstring'''
lowerCamelCase = True
lowerCamelCase = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
lowerCamelCase = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =FlaxBlenderbotModelTester(self )
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_lowerCAmelCase =self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =model_class(__UpperCAmelCase )
@jax.jit
def encode_jitted(__UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ):
return model.encode(input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase )
with self.subTest("""JIT Enabled""" ):
_lowerCAmelCase =encode_jitted(**__UpperCAmelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
_lowerCAmelCase =encode_jitted(**__UpperCAmelCase ).to_tuple()
self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) )
for jitted_output, output in zip(__UpperCAmelCase , __UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_lowerCAmelCase =model_class(__UpperCAmelCase )
_lowerCAmelCase =model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
_lowerCAmelCase ={
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
return model.decode(
decoder_input_ids=__UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , encoder_outputs=__UpperCAmelCase , )
with self.subTest("""JIT Enabled""" ):
_lowerCAmelCase =decode_jitted(**__UpperCAmelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
_lowerCAmelCase =decode_jitted(**__UpperCAmelCase ).to_tuple()
self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) )
for jitted_output, output in zip(__UpperCAmelCase , __UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def _lowerCAmelCase ( self ) -> List[Any]:
for model_class_name in self.all_model_classes:
_lowerCAmelCase =model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" )
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
_lowerCAmelCase =np.ones((1, 1) ) * model.config.eos_token_id
_lowerCAmelCase =model(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""" )
@slow
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase ={"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25}
_lowerCAmelCase ={"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True}
_lowerCAmelCase =FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=__UpperCAmelCase )
_lowerCAmelCase =BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" )
_lowerCAmelCase =["""Sam"""]
_lowerCAmelCase =tokenizer(__UpperCAmelCase , return_tensors="""jax""" )
_lowerCAmelCase =model.generate(**__UpperCAmelCase , **__UpperCAmelCase )
_lowerCAmelCase ="""Sam is a great name. It means \"sun\" in Gaelic."""
_lowerCAmelCase =tokenizer.batch_decode(__UpperCAmelCase , **__UpperCAmelCase )
assert generated_txt[0].strip() == tgt_text
| 341 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A = {
'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST',
'Swinv2ForImageClassification',
'Swinv2ForMaskedImageModeling',
'Swinv2Model',
'Swinv2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 1 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> int:
return int((input_a, input_a).count(1 ) != 0 )
def _lowerCamelCase() -> None:
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 341 |
"""simple docstring"""
import argparse
import json
import torch
from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=1 ) -> Tuple:
if n_shave_prefix_segments >= 0:
return ".".join(path.split(""".""" )[n_shave_prefix_segments:] )
else:
return ".".join(path.split(""".""" )[:n_shave_prefix_segments] )
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=0 ) -> List[str]:
_lowerCAmelCase =[]
for old_item in old_list:
_lowerCAmelCase =old_item.replace("""in_layers.0""" , """norm1""" )
_lowerCAmelCase =new_item.replace("""in_layers.2""" , """conv1""" )
_lowerCAmelCase =new_item.replace("""out_layers.0""" , """norm2""" )
_lowerCAmelCase =new_item.replace("""out_layers.3""" , """conv2""" )
_lowerCAmelCase =new_item.replace("""emb_layers.1""" , """time_emb_proj""" )
_lowerCAmelCase =new_item.replace("""skip_connection""" , """conv_shortcut""" )
_lowerCAmelCase =shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=0 ) -> Tuple:
_lowerCAmelCase =[]
for old_item in old_list:
_lowerCAmelCase =old_item
_lowerCAmelCase =new_item.replace("""norm.weight""" , """group_norm.weight""" )
_lowerCAmelCase =new_item.replace("""norm.bias""" , """group_norm.bias""" )
_lowerCAmelCase =new_item.replace("""proj_out.weight""" , """proj_attn.weight""" )
_lowerCAmelCase =new_item.replace("""proj_out.bias""" , """proj_attn.bias""" )
_lowerCAmelCase =shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None ) -> Optional[int]:
assert isinstance(__UpperCamelCase , __UpperCamelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
_lowerCAmelCase =old_checkpoint[path]
_lowerCAmelCase =old_tensor.shape[0] // 3
_lowerCAmelCase =(-1, channels) if len(old_tensor.shape ) == 3 else (-1)
_lowerCAmelCase =old_tensor.shape[0] // config["""num_head_channels"""] // 3
_lowerCAmelCase =old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =old_tensor.split(channels // num_heads , dim=1 )
_lowerCAmelCase =query.reshape(__UpperCamelCase )
_lowerCAmelCase =key.reshape(__UpperCamelCase )
_lowerCAmelCase =value.reshape(__UpperCamelCase )
for path in paths:
_lowerCAmelCase =path["""new"""]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
_lowerCAmelCase =new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" )
_lowerCAmelCase =new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" )
_lowerCAmelCase =new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" )
if additional_replacements is not None:
for replacement in additional_replacements:
_lowerCAmelCase =new_path.replace(replacement["""old"""] , replacement["""new"""] )
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
_lowerCAmelCase =old_checkpoint[path["""old"""]][:, :, 0]
else:
_lowerCAmelCase =old_checkpoint[path["""old"""]]
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Optional[Any]:
_lowerCAmelCase ={}
_lowerCAmelCase =checkpoint["""time_embed.0.weight"""]
_lowerCAmelCase =checkpoint["""time_embed.0.bias"""]
_lowerCAmelCase =checkpoint["""time_embed.2.weight"""]
_lowerCAmelCase =checkpoint["""time_embed.2.bias"""]
_lowerCAmelCase =checkpoint["""input_blocks.0.0.weight"""]
_lowerCAmelCase =checkpoint["""input_blocks.0.0.bias"""]
_lowerCAmelCase =checkpoint["""out.0.weight"""]
_lowerCAmelCase =checkpoint["""out.0.bias"""]
_lowerCAmelCase =checkpoint["""out.2.weight"""]
_lowerCAmelCase =checkpoint["""out.2.bias"""]
# Retrieves the keys for the input blocks only
_lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} )
_lowerCAmelCase ={
layer_id: [key for key in checkpoint if F'''input_blocks.{layer_id}''' in key]
for layer_id in range(__UpperCamelCase )
}
# Retrieves the keys for the middle blocks only
_lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} )
_lowerCAmelCase ={
layer_id: [key for key in checkpoint if F'''middle_block.{layer_id}''' in key]
for layer_id in range(__UpperCamelCase )
}
# Retrieves the keys for the output blocks only
_lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} )
_lowerCAmelCase ={
layer_id: [key for key in checkpoint if F'''output_blocks.{layer_id}''' in key]
for layer_id in range(__UpperCamelCase )
}
for i in range(1 , __UpperCamelCase ):
_lowerCAmelCase =(i - 1) // (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =(i - 1) % (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =[key for key in input_blocks[i] if F'''input_blocks.{i}.0''' in key]
_lowerCAmelCase =[key for key in input_blocks[i] if F'''input_blocks.{i}.1''' in key]
if F'''input_blocks.{i}.0.op.weight''' in checkpoint:
_lowerCAmelCase =checkpoint[
F'''input_blocks.{i}.0.op.weight'''
]
_lowerCAmelCase =checkpoint[
F'''input_blocks.{i}.0.op.bias'''
]
continue
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
_lowerCAmelCase ={"""old""": F'''input_blocks.{i}.0''', """new""": F'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''}
_lowerCAmelCase ={"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path, resnet_op] , config=__UpperCamelCase )
if len(__UpperCamelCase ):
_lowerCAmelCase =renew_attention_paths(__UpperCamelCase )
_lowerCAmelCase ={
"""old""": F'''input_blocks.{i}.1''',
"""new""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}''',
}
_lowerCAmelCase ={
F'''input_blocks.{i}.1.qkv.bias''': {
"""key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''',
"""query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''',
"""value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''',
},
F'''input_blocks.{i}.1.qkv.weight''': {
"""key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''',
"""query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''',
"""value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''',
},
}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase , )
_lowerCAmelCase =middle_blocks[0]
_lowerCAmelCase =middle_blocks[1]
_lowerCAmelCase =middle_blocks[2]
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase )
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase )
_lowerCAmelCase =renew_attention_paths(__UpperCamelCase )
_lowerCAmelCase ={
"""middle_block.1.qkv.bias""": {
"""key""": """mid_block.attentions.0.key.bias""",
"""query""": """mid_block.attentions.0.query.bias""",
"""value""": """mid_block.attentions.0.value.bias""",
},
"""middle_block.1.qkv.weight""": {
"""key""": """mid_block.attentions.0.key.weight""",
"""query""": """mid_block.attentions.0.query.weight""",
"""value""": """mid_block.attentions.0.value.weight""",
},
}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase )
for i in range(__UpperCamelCase ):
_lowerCAmelCase =i // (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =i % (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =[shave_segments(__UpperCamelCase , 2 ) for name in output_blocks[i]]
_lowerCAmelCase ={}
for layer in output_block_layers:
_lowerCAmelCase , _lowerCAmelCase =layer.split(""".""" )[0], shave_segments(__UpperCamelCase , 1 )
if layer_id in output_block_list:
output_block_list[layer_id].append(__UpperCamelCase )
else:
_lowerCAmelCase =[layer_name]
if len(__UpperCamelCase ) > 1:
_lowerCAmelCase =[key for key in output_blocks[i] if F'''output_blocks.{i}.0''' in key]
_lowerCAmelCase =[key for key in output_blocks[i] if F'''output_blocks.{i}.1''' in key]
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
_lowerCAmelCase ={"""old""": F'''output_blocks.{i}.0''', """new""": F'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''}
assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase )
if ["conv.weight", "conv.bias"] in output_block_list.values():
_lowerCAmelCase =list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] )
_lowerCAmelCase =checkpoint[
F'''output_blocks.{i}.{index}.conv.weight'''
]
_lowerCAmelCase =checkpoint[
F'''output_blocks.{i}.{index}.conv.bias'''
]
# Clear attentions as they have been attributed above.
if len(__UpperCamelCase ) == 2:
_lowerCAmelCase =[]
if len(__UpperCamelCase ):
_lowerCAmelCase =renew_attention_paths(__UpperCamelCase )
_lowerCAmelCase ={
"""old""": F'''output_blocks.{i}.1''',
"""new""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}''',
}
_lowerCAmelCase ={
F'''output_blocks.{i}.1.qkv.bias''': {
"""key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''',
"""query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''',
"""value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''',
},
F'''output_blocks.{i}.1.qkv.weight''': {
"""key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''',
"""query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''',
"""value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''',
},
}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=__UpperCamelCase , )
else:
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase , n_shave_prefix_segments=1 )
for path in resnet_0_paths:
_lowerCAmelCase =""".""".join(["""output_blocks""", str(__UpperCamelCase ), path["""old"""]] )
_lowerCAmelCase =""".""".join(["""up_blocks""", str(__UpperCamelCase ), """resnets""", str(__UpperCamelCase ), path["""new"""]] )
_lowerCAmelCase =checkpoint[old_path]
return new_checkpoint
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the architecture.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
__A = parser.parse_args()
__A = torch.load(args.checkpoint_path)
with open(args.config_file) as f:
__A = json.loads(f.read())
__A = convert_ldm_checkpoint(checkpoint, config)
if "ldm" in config:
del config["ldm"]
__A = UNetaDModel(**config)
model.load_state_dict(converted_checkpoint)
try:
__A = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1]))
__A = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1]))
__A = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae)
pipe.save_pretrained(args.dump_path)
except: # noqa: E722
model.save_pretrained(args.dump_path)
| 341 | 1 |
"""simple docstring"""
import requests
__A = 'https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey='
def _lowerCamelCase(__UpperCamelCase ) -> None:
# fetching a list of articles in json format
_lowerCAmelCase =requests.get(_NEWS_API + bbc_news_api_key ).json()
# each article in the list is a dict
for i, article in enumerate(bbc_news_page["""articles"""] , 1 ):
print(F'''{i}.) {article['title']}''' )
if __name__ == "__main__":
fetch_bbc_news(bbc_news_api_key='<Your BBC News API key goes here>')
| 341 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase ) -> Optional[Any]:
_lowerCAmelCase =0
_lowerCAmelCase =len(__UpperCamelCase )
for i in range(n - 1 ):
for j in range(i + 1 , __UpperCamelCase ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def _lowerCamelCase(__UpperCamelCase ) -> List[Any]:
if len(__UpperCamelCase ) <= 1:
return arr, 0
_lowerCAmelCase =len(__UpperCamelCase ) // 2
_lowerCAmelCase =arr[0:mid]
_lowerCAmelCase =arr[mid:]
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =_count_cross_inversions(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =inversion_p + inversions_q + cross_inversions
return c, num_inversions
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Any:
_lowerCAmelCase =[]
_lowerCAmelCase =_lowerCAmelCase =_lowerCAmelCase =0
while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(__UpperCamelCase ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(__UpperCamelCase ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def _lowerCamelCase() -> str:
_lowerCAmelCase =[10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 8
print("""number of inversions = """ , __UpperCamelCase )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , __UpperCamelCase )
# an empty list should also have zero inversions
_lowerCAmelCase =[]
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , __UpperCamelCase )
if __name__ == "__main__":
main()
| 341 | 1 |
"""simple docstring"""
__A = 0 # The first color of the flag.
__A = 1 # The second color of the flag.
__A = 2 # The third color of the flag.
__A = (red, white, blue)
def _lowerCamelCase(__UpperCamelCase ) -> list:
if not sequence:
return []
if len(__UpperCamelCase ) == 1:
return list(__UpperCamelCase )
_lowerCAmelCase =0
_lowerCAmelCase =len(__UpperCamelCase ) - 1
_lowerCAmelCase =0
while mid <= high:
if sequence[mid] == colors[0]:
_lowerCAmelCase , _lowerCAmelCase =sequence[mid], sequence[low]
low += 1
mid += 1
elif sequence[mid] == colors[1]:
mid += 1
elif sequence[mid] == colors[2]:
_lowerCAmelCase , _lowerCAmelCase =sequence[high], sequence[mid]
high -= 1
else:
_lowerCAmelCase =F'''The elements inside the sequence must contains only {colors} values'''
raise ValueError(__UpperCamelCase )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
__A = input('Enter numbers separated by commas:\n').strip()
__A = [int(item.strip()) for item in user_input.split(',')]
print(F"""{dutch_national_flag_sort(unsorted)}""")
| 341 |
"""simple docstring"""
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = None
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = None
lowerCamelCase = None
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = True
lowerCamelCase = None
lowerCamelCase = 1
lowerCamelCase = None
lowerCamelCase = False
lowerCamelCase = None
lowerCamelCase = None
def _lowerCAmelCase ( self ) -> "DownloadConfig":
return self.__class__(**{k: copy.deepcopy(__UpperCAmelCase ) for k, v in self.__dict__.items()} )
| 341 | 1 |
"""simple docstring"""
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Any:
# load base model
_lowerCAmelCase =StableDiffusionPipeline.from_pretrained(__UpperCamelCase , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
_lowerCAmelCase =load_file(__UpperCamelCase )
_lowerCAmelCase =[]
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
_lowerCAmelCase =key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" )
_lowerCAmelCase =pipeline.text_encoder
else:
_lowerCAmelCase =key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" )
_lowerCAmelCase =pipeline.unet
# find the target layer
_lowerCAmelCase =layer_infos.pop(0 )
while len(__UpperCamelCase ) > -1:
try:
_lowerCAmelCase =curr_layer.__getattr__(__UpperCamelCase )
if len(__UpperCamelCase ) > 0:
_lowerCAmelCase =layer_infos.pop(0 )
elif len(__UpperCamelCase ) == 0:
break
except Exception:
if len(__UpperCamelCase ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
_lowerCAmelCase =layer_infos.pop(0 )
_lowerCAmelCase =[]
if "lora_down" in key:
pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) )
pair_keys.append(__UpperCamelCase )
else:
pair_keys.append(__UpperCamelCase )
pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
_lowerCAmelCase =state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
_lowerCAmelCase =state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(__UpperCamelCase , __UpperCamelCase ).unsqueeze(2 ).unsqueeze(3 )
else:
_lowerCAmelCase =state_dict[pair_keys[0]].to(torch.floataa )
_lowerCAmelCase =state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(__UpperCamelCase , __UpperCamelCase )
# update visited list
for item in pair_keys:
visited.append(__UpperCamelCase )
return pipeline
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument(
'--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.'
)
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
parser.add_argument(
'--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors'
)
parser.add_argument(
'--lora_prefix_text_encoder',
default='lora_te',
type=str,
help='The prefix of text encoder weight in safetensors',
)
parser.add_argument('--alpha', default=0.75, type=float, help='The merging ratio in W = W0 + alpha * deltaW')
parser.add_argument(
'--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.'
)
parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)')
__A = parser.parse_args()
__A = args.base_model_path
__A = args.checkpoint_path
__A = args.dump_path
__A = args.lora_prefix_unet
__A = args.lora_prefix_text_encoder
__A = args.alpha
__A = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
__A = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 341 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> int:
return int((input_a, input_a).count(1 ) != 0 )
def _lowerCamelCase() -> None:
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 341 | 1 |
"""simple docstring"""
from math import factorial, radians
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase = 18 , __UpperCamelCase = 10 ) -> float:
_lowerCAmelCase =angle_in_degrees - ((angle_in_degrees // 3_60.0) * 3_60.0)
# Converting from degrees to radians
_lowerCAmelCase =radians(__UpperCamelCase )
_lowerCAmelCase =angle_in_radians
_lowerCAmelCase =3
_lowerCAmelCase =-1
for _ in range(__UpperCamelCase ):
result += (b * (angle_in_radians**a)) / factorial(__UpperCamelCase )
_lowerCAmelCase =-b # One positive term and the next will be negative and so on...
a += 2 # Increased by 2 for every term.
return round(__UpperCamelCase , __UpperCamelCase )
if __name__ == "__main__":
__import__('doctest').testmod()
| 341 |
"""simple docstring"""
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
__A = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n'
__A = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n'
__A = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase__ ( datasets.Metric ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> Any:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ),
"""references""": datasets.Sequence(
datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/BLEU""",
"""https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""",
] , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=4 , __UpperCAmelCase=False ) -> Tuple:
_lowerCAmelCase =compute_bleu(
reference_corpus=__UpperCAmelCase , translation_corpus=__UpperCAmelCase , max_order=__UpperCAmelCase , smooth=__UpperCAmelCase )
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) =score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 341 | 1 |
"""simple docstring"""
import argparse
import json
import os
import pickle
import shutil
import numpy as np
import torch
from distiller import Distiller
from lm_seqs_dataset import LmSeqsDataset
from transformers import (
BertConfig,
BertForMaskedLM,
BertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPTaConfig,
GPTaLMHeadModel,
GPTaTokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
__A = {
'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
'bert': (BertConfig, BertForMaskedLM, BertTokenizer),
'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer),
}
def _lowerCamelCase(__UpperCamelCase ) -> Optional[int]:
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
if args.mlm:
assert os.path.isfile(args.token_counts )
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
else:
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
assert args.teacher_type == args.student_type or (
args.student_type == "distilbert" and args.teacher_type == "bert"
)
assert os.path.isfile(args.student_config )
if args.student_pretrained_weights is not None:
assert os.path.isfile(args.student_pretrained_weights )
if args.freeze_token_type_embds:
assert args.student_type in ["roberta"]
assert args.alpha_ce >= 0.0
assert args.alpha_mlm >= 0.0
assert args.alpha_clm >= 0.0
assert args.alpha_mse >= 0.0
assert args.alpha_cos >= 0.0
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> str:
if args.student_type == "roberta":
_lowerCAmelCase =False
elif args.student_type == "gpt2":
_lowerCAmelCase =False
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> int:
if args.student_type == "roberta":
_lowerCAmelCase =False
def _lowerCamelCase() -> Any:
_lowerCAmelCase =argparse.ArgumentParser(description="""Training""" )
parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""" )
parser.add_argument(
"""--dump_path""" , type=__UpperCamelCase , required=__UpperCamelCase , help="""The output directory (log, checkpoints, parameters, etc.)""" )
parser.add_argument(
"""--data_file""" , type=__UpperCamelCase , required=__UpperCamelCase , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , )
parser.add_argument(
"""--student_type""" , type=__UpperCamelCase , choices=["""distilbert""", """roberta""", """gpt2"""] , required=__UpperCamelCase , help="""The student type (DistilBERT, RoBERTa).""" , )
parser.add_argument("""--student_config""" , type=__UpperCamelCase , required=__UpperCamelCase , help="""Path to the student configuration.""" )
parser.add_argument(
"""--student_pretrained_weights""" , default=__UpperCamelCase , type=__UpperCamelCase , help="""Load student initialization checkpoint.""" )
parser.add_argument(
"""--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=__UpperCamelCase , help="""Teacher type (BERT, RoBERTa).""" )
parser.add_argument("""--teacher_name""" , type=__UpperCamelCase , required=__UpperCamelCase , help="""The teacher model.""" )
parser.add_argument("""--temperature""" , default=2.0 , type=__UpperCamelCase , help="""Temperature for the softmax temperature.""" )
parser.add_argument(
"""--alpha_ce""" , default=0.5 , type=__UpperCamelCase , help="""Linear weight for the distillation loss. Must be >=0.""" )
parser.add_argument(
"""--alpha_mlm""" , default=0.0 , type=__UpperCamelCase , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , )
parser.add_argument("""--alpha_clm""" , default=0.5 , type=__UpperCamelCase , help="""Linear weight for the CLM loss. Must be >=0.""" )
parser.add_argument("""--alpha_mse""" , default=0.0 , type=__UpperCamelCase , help="""Linear weight of the MSE loss. Must be >=0.""" )
parser.add_argument(
"""--alpha_cos""" , default=0.0 , type=__UpperCamelCase , help="""Linear weight of the cosine embedding loss. Must be >=0.""" )
parser.add_argument(
"""--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" )
parser.add_argument(
"""--mlm_mask_prop""" , default=0.15 , type=__UpperCamelCase , help="""Proportion of tokens for which we need to make a prediction.""" , )
parser.add_argument("""--word_mask""" , default=0.8 , type=__UpperCamelCase , help="""Proportion of tokens to mask out.""" )
parser.add_argument("""--word_keep""" , default=0.1 , type=__UpperCamelCase , help="""Proportion of tokens to keep.""" )
parser.add_argument("""--word_rand""" , default=0.1 , type=__UpperCamelCase , help="""Proportion of tokens to randomly replace.""" )
parser.add_argument(
"""--mlm_smoothing""" , default=0.7 , type=__UpperCamelCase , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , )
parser.add_argument("""--token_counts""" , type=__UpperCamelCase , help="""The token counts in the data_file for MLM.""" )
parser.add_argument(
"""--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , )
parser.add_argument(
"""--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , )
parser.add_argument(
"""--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , )
parser.add_argument("""--n_epoch""" , type=__UpperCamelCase , default=3 , help="""Number of pass on the whole dataset.""" )
parser.add_argument("""--batch_size""" , type=__UpperCamelCase , default=5 , help="""Batch size (for each process).""" )
parser.add_argument(
"""--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , )
parser.add_argument(
"""--gradient_accumulation_steps""" , type=__UpperCamelCase , default=50 , help="""Gradient accumulation for larger training batches.""" , )
parser.add_argument("""--warmup_prop""" , default=0.05 , type=__UpperCamelCase , help="""Linear warmup proportion.""" )
parser.add_argument("""--weight_decay""" , default=0.0 , type=__UpperCamelCase , help="""Weight decay if we apply some.""" )
parser.add_argument("""--learning_rate""" , default=5E-4 , type=__UpperCamelCase , help="""The initial learning rate for Adam.""" )
parser.add_argument("""--adam_epsilon""" , default=1E-6 , type=__UpperCamelCase , help="""Epsilon for Adam optimizer.""" )
parser.add_argument("""--max_grad_norm""" , default=5.0 , type=__UpperCamelCase , help="""Max gradient norm.""" )
parser.add_argument("""--initializer_range""" , default=0.02 , type=__UpperCamelCase , help="""Random initialization range.""" )
parser.add_argument(
"""--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , )
parser.add_argument(
"""--fp16_opt_level""" , type=__UpperCamelCase , default="""O1""" , help=(
"""For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."""
"""See details at https://nvidia.github.io/apex/amp.html"""
) , )
parser.add_argument("""--n_gpu""" , type=__UpperCamelCase , default=1 , help="""Number of GPUs in the node.""" )
parser.add_argument("""--local_rank""" , type=__UpperCamelCase , default=-1 , help="""Distributed training - Local rank""" )
parser.add_argument("""--seed""" , type=__UpperCamelCase , default=56 , help="""Random seed""" )
parser.add_argument("""--log_interval""" , type=__UpperCamelCase , default=500 , help="""Tensorboard logging interval.""" )
parser.add_argument("""--checkpoint_interval""" , type=__UpperCamelCase , default=4000 , help="""Checkpoint interval.""" )
_lowerCAmelCase =parser.parse_args()
sanity_checks(__UpperCamelCase )
# ARGS #
init_gpu_params(__UpperCamelCase )
set_seed(__UpperCamelCase )
if args.is_master:
if os.path.exists(args.dump_path ):
if not args.force:
raise ValueError(
F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite'''
""" itUse `--force` if you want to overwrite it""" )
else:
shutil.rmtree(args.dump_path )
if not os.path.exists(args.dump_path ):
os.makedirs(args.dump_path )
logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' )
# SAVE PARAMS #
logger.info(F'''Param: {args}''' )
with open(os.path.join(args.dump_path , """parameters.json""" ) , """w""" ) as f:
json.dump(vars(__UpperCamelCase ) , __UpperCamelCase , indent=4 )
git_log(args.dump_path )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =MODEL_CLASSES[args.student_type]
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =MODEL_CLASSES[args.teacher_type]
# TOKENIZER #
_lowerCAmelCase =teacher_tokenizer_class.from_pretrained(args.teacher_name )
_lowerCAmelCase ={}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
_lowerCAmelCase =tokenizer.all_special_tokens.index(__UpperCamelCase )
_lowerCAmelCase =tokenizer.all_special_ids[idx]
logger.info(F'''Special tokens {special_tok_ids}''' )
_lowerCAmelCase =special_tok_ids
_lowerCAmelCase =tokenizer.max_model_input_sizes[args.teacher_name]
# DATA LOADER #
logger.info(F'''Loading data from {args.data_file}''' )
with open(args.data_file , """rb""" ) as fp:
_lowerCAmelCase =pickle.load(__UpperCamelCase )
if args.mlm:
logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' )
with open(args.token_counts , """rb""" ) as fp:
_lowerCAmelCase =pickle.load(__UpperCamelCase )
_lowerCAmelCase =np.maximum(__UpperCamelCase , 1 ) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
_lowerCAmelCase =0.0 # do not predict special tokens
_lowerCAmelCase =torch.from_numpy(__UpperCamelCase )
else:
_lowerCAmelCase =None
_lowerCAmelCase =LmSeqsDataset(params=__UpperCamelCase , data=__UpperCamelCase )
logger.info("""Data loader created.""" )
# STUDENT #
logger.info(F'''Loading student config from {args.student_config}''' )
_lowerCAmelCase =student_config_class.from_pretrained(args.student_config )
_lowerCAmelCase =True
if args.student_pretrained_weights is not None:
logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' )
_lowerCAmelCase =student_model_class.from_pretrained(args.student_pretrained_weights , config=__UpperCamelCase )
else:
_lowerCAmelCase =student_model_class(__UpperCamelCase )
if args.n_gpu > 0:
student.to(F'''cuda:{args.local_rank}''' )
logger.info("""Student loaded.""" )
# TEACHER #
_lowerCAmelCase =teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__UpperCamelCase )
if args.n_gpu > 0:
teacher.to(F'''cuda:{args.local_rank}''' )
logger.info(F'''Teacher loaded from {args.teacher_name}.''' )
# FREEZING #
if args.freeze_pos_embs:
freeze_pos_embeddings(__UpperCamelCase , __UpperCamelCase )
if args.freeze_token_type_embds:
freeze_token_type_embeddings(__UpperCamelCase , __UpperCamelCase )
# SANITY CHECKS #
assert student.config.vocab_size == teacher.config.vocab_size
assert student.config.hidden_size == teacher.config.hidden_size
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
if args.mlm:
assert token_probs.size(0 ) == stu_architecture_config.vocab_size
# DISTILLER #
torch.cuda.empty_cache()
_lowerCAmelCase =Distiller(
params=__UpperCamelCase , dataset=__UpperCamelCase , token_probs=__UpperCamelCase , student=__UpperCamelCase , teacher=__UpperCamelCase )
distiller.train()
logger.info("""Let's go get some drinks.""" )
if __name__ == "__main__":
main()
| 341 |
"""simple docstring"""
import argparse
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
parser.add_argument(
'--original_config_file',
type=str,
required=True,
help='The YAML config file corresponding to the original architecture.',
)
parser.add_argument(
'--num_in_channels',
default=None,
type=int,
help='The number of input channels. If `None` number of input channels will be automatically inferred.',
)
parser.add_argument(
'--image_size',
default=512,
type=int,
help=(
'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2'
' Base. Use 768 for Stable Diffusion v2.'
),
)
parser.add_argument(
'--extract_ema',
action='store_true',
help=(
'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights'
' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield'
' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.'
),
)
parser.add_argument(
'--upcast_attention',
action='store_true',
help=(
'Whether the attention computation should always be upcasted. This is necessary when running stable'
' diffusion 2.1.'
),
)
parser.add_argument(
'--from_safetensors',
action='store_true',
help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.',
)
parser.add_argument(
'--to_safetensors',
action='store_true',
help='Whether to store pipeline in safetensors format or not.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)')
def _lowerCamelCase(__UpperCamelCase ) -> List[str]:
if string == "True":
return True
elif string == "False":
return False
else:
raise ValueError(F'''could not parse string as bool {string}''' )
parser.add_argument(
'--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool
)
parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int)
__A = parser.parse_args()
__A = download_controlnet_from_original_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
extract_ema=args.extract_ema,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
use_linear_projection=args.use_linear_projection,
cross_attention_dim=args.cross_attention_dim,
)
controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 341 | 1 |
"""simple docstring"""
from __future__ import annotations
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> float:
_lowerCAmelCase =sorted(numsa + numsa )
_lowerCAmelCase , _lowerCAmelCase =divmod(len(__UpperCamelCase ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
__A = [float(x) for x in input('Enter the elements of first array: ').split()]
__A = [float(x) for x in input('Enter the elements of second array: ').split()]
print(F"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
| 341 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available
__A = {
'configuration_audio_spectrogram_transformer': [
'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'ASTConfig',
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'ASTForAudioClassification',
'ASTModel',
'ASTPreTrainedModel',
]
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ['ASTFeatureExtractor']
if TYPE_CHECKING:
from .configuration_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
ASTConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ASTForAudioClassification,
ASTModel,
ASTPreTrainedModel,
)
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 1 |
"""simple docstring"""
import argparse
import os
import jax as jnp
import numpy as onp
import torch
import torch.nn as nn
from music_spectrogram_diffusion import inference
from tax import checkpoints
from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline
from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder
__A = 'base_with_context'
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Dict:
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""] ) )
_lowerCAmelCase =nn.Parameter(
torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__UpperCamelCase )
for lyr_num, lyr in enumerate(model.encoders ):
_lowerCAmelCase =weights[F'''layers_{lyr_num}''']
_lowerCAmelCase =nn.Parameter(
torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) )
_lowerCAmelCase =ly_weight["""attention"""]
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) )
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) )
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) )
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) )
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) )
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) )
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) )
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) )
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) )
return model
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Optional[int]:
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T ) )
_lowerCAmelCase =nn.Parameter(
torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__UpperCamelCase )
for lyr_num, lyr in enumerate(model.encoders ):
_lowerCAmelCase =weights[F'''layers_{lyr_num}''']
_lowerCAmelCase =ly_weight["""attention"""]
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) )
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) )
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) )
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) )
_lowerCAmelCase =nn.Parameter(
torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) )
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) )
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) )
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) )
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) )
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) )
return model
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> str:
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T ) )
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T ) )
_lowerCAmelCase =nn.Parameter(
torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__UpperCamelCase )
_lowerCAmelCase =nn.Parameter(
torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T ) )
for lyr_num, lyr in enumerate(model.decoders ):
_lowerCAmelCase =weights[F'''layers_{lyr_num}''']
_lowerCAmelCase =nn.Parameter(
torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""] ) )
_lowerCAmelCase =nn.Parameter(
torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T ) )
_lowerCAmelCase =ly_weight["""self_attention"""]
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) )
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) )
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) )
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) )
_lowerCAmelCase =ly_weight["""MultiHeadDotProductAttention_0"""]
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) )
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) )
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) )
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) )
_lowerCAmelCase =nn.Parameter(
torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""] ) )
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) )
_lowerCAmelCase =nn.Parameter(
torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T ) )
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) )
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) )
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) )
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""] ) )
_lowerCAmelCase =nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T ) )
return model
def _lowerCamelCase(__UpperCamelCase ) -> Optional[int]:
_lowerCAmelCase =checkpoints.load_tax_checkpoint(args.checkpoint_path )
_lowerCAmelCase =jnp.tree_util.tree_map(onp.array , __UpperCamelCase )
_lowerCAmelCase =[
"""from __gin__ import dynamic_registration""",
"""from music_spectrogram_diffusion.models.diffusion import diffusion_utils""",
"""diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0""",
"""diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()""",
]
_lowerCAmelCase =os.path.join(args.checkpoint_path , """..""" , """config.gin""" )
_lowerCAmelCase =inference.parse_training_gin_file(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =inference.InferenceModel(args.checkpoint_path , __UpperCamelCase )
_lowerCAmelCase =DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" , variance_type="""fixed_large""" )
_lowerCAmelCase =SpectrogramNotesEncoder(
max_length=synth_model.sequence_length["""inputs"""] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , )
_lowerCAmelCase =SpectrogramContEncoder(
input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["""targets_context"""] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , )
_lowerCAmelCase =TaFilmDecoder(
input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["""targets_context"""] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , )
_lowerCAmelCase =load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""] , __UpperCamelCase )
_lowerCAmelCase =load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""] , __UpperCamelCase )
_lowerCAmelCase =load_decoder(ta_checkpoint["""target"""]["""decoder"""] , __UpperCamelCase )
_lowerCAmelCase =OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder""" )
_lowerCAmelCase =SpectrogramDiffusionPipeline(
notes_encoder=__UpperCamelCase , continuous_encoder=__UpperCamelCase , decoder=__UpperCamelCase , scheduler=__UpperCamelCase , melgan=__UpperCamelCase , )
if args.save:
pipe.save_pretrained(args.output_path )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument('--output_path', default=None, type=str, required=True, help='Path to the converted model.')
parser.add_argument(
'--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.'
)
parser.add_argument(
'--checkpoint_path',
default=F"""{MODEL}/checkpoint_500000""",
type=str,
required=False,
help='Path to the original jax model checkpoint.',
)
__A = parser.parse_args()
main(args)
| 341 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__A = {
'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'],
'tokenization_m2m_100': ['M2M100Tokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST',
'M2M100ForConditionalGeneration',
'M2M100Model',
'M2M100PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 1 |
"""simple docstring"""
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = None
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = None
lowerCamelCase = None
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = True
lowerCamelCase = None
lowerCamelCase = 1
lowerCamelCase = None
lowerCamelCase = False
lowerCamelCase = None
lowerCamelCase = None
def _lowerCAmelCase ( self ) -> "DownloadConfig":
return self.__class__(**{k: copy.deepcopy(__UpperCAmelCase ) for k, v in self.__dict__.items()} )
| 341 |
"""simple docstring"""
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
__A = datasets.logging.get_logger(__name__)
__A = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n'
__A = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n'
__A = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n'
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase="dummy_doc" ) -> Dict:
_lowerCAmelCase ={doc: key_lines}
_lowerCAmelCase ={doc: sys_lines}
_lowerCAmelCase ={}
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase , _lowerCAmelCase =reader.get_doc_mentions(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase )
key_singletons_num += singletons_num
if NP_only or min_span:
_lowerCAmelCase =reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =reader.get_doc_mentions(__UpperCamelCase , sys_doc_lines[doc] , __UpperCamelCase )
sys_singletons_num += singletons_num
if NP_only or min_span:
_lowerCAmelCase =reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase )
if remove_nested:
_lowerCAmelCase , _lowerCAmelCase =reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
_lowerCAmelCase , _lowerCAmelCase =reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
_lowerCAmelCase =reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =(key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
"""Number of removed nested coreferring mentions in the key """
F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' )
logger.info(
"""Number of resulting singleton clusters in the key """
F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' )
if not keep_singletons:
logger.info(
F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system '''
"""files, respectively""" )
return doc_coref_infos
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int:
_lowerCAmelCase =get_coref_infos(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase ={}
_lowerCAmelCase =0
_lowerCAmelCase =0
for name, metric in metrics:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =evaluator.evaluate_documents(__UpperCamelCase , __UpperCamelCase , beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} )
logger.info(
name.ljust(10 ) , F'''Recall: {recall * 100:.2f}''' , F''' Precision: {precision * 100:.2f}''' , F''' F1: {fa * 100:.2f}''' , )
if conll_subparts_num == 3:
_lowerCAmelCase =(conll / 3) * 100
logger.info(F'''CoNLL score: {conll:.2f}''' )
output_scores.update({"""conll_score""": conll} )
return output_scores
def _lowerCamelCase(__UpperCamelCase ) -> Tuple:
_lowerCAmelCase =False
for line in key_lines:
if not line.startswith("""#""" ):
if len(line.split() ) > 6:
_lowerCAmelCase =line.split()[5]
if not parse_col == "-":
_lowerCAmelCase =True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase__ ( datasets.Metric ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> str:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Sequence(datasets.Value("""string""" ) ),
} ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[
"""https://github.com/ns-moosavi/coval""",
"""https://www.aclweb.org/anthology/P16-1060""",
"""http://www.conll.cemantix.org/2012/data.html""",
] , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False ) -> Optional[Any]:
_lowerCAmelCase =[
("""mentions""", evaluator.mentions),
("""muc""", evaluator.muc),
("""bcub""", evaluator.b_cubed),
("""ceafe""", evaluator.ceafe),
("""lea""", evaluator.lea),
]
if min_span:
_lowerCAmelCase =util.check_gold_parse_annotation(__UpperCAmelCase )
if not has_gold_parse:
raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" )
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
_lowerCAmelCase =evaluate(
key_lines=__UpperCAmelCase , sys_lines=__UpperCAmelCase , metrics=__UpperCAmelCase , NP_only=__UpperCAmelCase , remove_nested=__UpperCAmelCase , keep_singletons=__UpperCAmelCase , min_span=__UpperCAmelCase , )
return score
| 341 | 1 |
"""simple docstring"""
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
__A = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, 'utils'))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
__A = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n'
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , """schedulers/""" ) )
_lowerCAmelCase =self.diffusers_dir
shutil.copy(
os.path.join(__UpperCAmelCase , """src/diffusers/schedulers/scheduling_ddpm.py""" ) , os.path.join(self.diffusers_dir , """schedulers/scheduling_ddpm.py""" ) , )
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase ="""src/diffusers"""
shutil.rmtree(self.diffusers_dir )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> Tuple:
_lowerCAmelCase =comment + f'''\nclass {class_name}(nn.Module):\n''' + class_code
if overwrite_result is not None:
_lowerCAmelCase =comment + f'''\nclass {class_name}(nn.Module):\n''' + overwrite_result
_lowerCAmelCase =black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 )
_lowerCAmelCase =black.format_str(__UpperCAmelCase , mode=__UpperCAmelCase )
_lowerCAmelCase =os.path.join(self.diffusers_dir , """new_code.py""" )
with open(__UpperCAmelCase , """w""" , newline="""\n""" ) as f:
f.write(__UpperCAmelCase )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(__UpperCAmelCase ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=__UpperCAmelCase )
with open(__UpperCAmelCase , """r""" ) as f:
self.assertTrue(f.read() , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Optional[int]:
_lowerCAmelCase =check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""" )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> str:
# Base copy consistency
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , REFERENCE_CODE + """\n""" , )
# With no empty line at the end
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , __UpperCAmelCase , )
# Copy consistency with rename
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , re.sub("""DDPM""" , """Test""" , __UpperCAmelCase ) , )
# Copy consistency with a really long name
_lowerCAmelCase ="""TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason"""
self.check_copy_consistency(
f'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , f'''{long_class_name}SchedulerOutput''' , re.sub("""Bert""" , __UpperCAmelCase , __UpperCAmelCase ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , __UpperCAmelCase , overwrite_result=re.sub("""DDPM""" , """Test""" , __UpperCAmelCase ) , )
| 341 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = XGLMConfig
lowerCamelCase = {}
lowerCamelCase = '''gelu'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=0.0_2 , ) -> List[str]:
_lowerCAmelCase =parent
_lowerCAmelCase =batch_size
_lowerCAmelCase =seq_length
_lowerCAmelCase =is_training
_lowerCAmelCase =use_input_mask
_lowerCAmelCase =use_labels
_lowerCAmelCase =vocab_size
_lowerCAmelCase =d_model
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =ffn_dim
_lowerCAmelCase =activation_function
_lowerCAmelCase =activation_dropout
_lowerCAmelCase =attention_dropout
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =initializer_range
_lowerCAmelCase =None
_lowerCAmelCase =0
_lowerCAmelCase =2
_lowerCAmelCase =1
def _lowerCAmelCase ( self ) -> Dict:
return XGLMConfig.from_pretrained("""facebook/xglm-564M""" )
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
_lowerCAmelCase =None
if self.use_input_mask:
_lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length] )
_lowerCAmelCase =self.get_config()
_lowerCAmelCase =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowerCAmelCase ( self ) -> str:
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__UpperCAmelCase , )
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =self.prepare_config_and_inputs()
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) =config_and_inputs
_lowerCAmelCase ={
"""input_ids""": input_ids,
"""head_mask""": head_mask,
}
return config, inputs_dict
@require_tf
class lowerCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
lowerCamelCase = (TFXGLMForCausalLM,) if is_tf_available() else ()
lowerCamelCase = (
{'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {}
)
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =TFXGLMModelTester(self )
_lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase , n_embd=37 )
def _lowerCAmelCase ( self ) -> int:
self.config_tester.run_common_tests()
@slow
def _lowerCAmelCase ( self ) -> Union[str, Any]:
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase =TFXGLMModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" )
def _lowerCAmelCase ( self ) -> Union[str, Any]:
super().test_resize_token_embeddings()
@require_tf
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def _lowerCAmelCase ( self , __UpperCAmelCase=True ) -> str:
_lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase =tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
_lowerCAmelCase =[2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81]
# fmt: on
_lowerCAmelCase =model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , __UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
tf.random.set_seed(0 )
_lowerCAmelCase =tokenizer("""Today is a nice day and""" , return_tensors="""tf""" )
_lowerCAmelCase =tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(""":/CPU:0""" ):
_lowerCAmelCase =model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , seed=[7, 0] )
_lowerCAmelCase =tokenizer.decode(output_ids[0] , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =(
"""Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"""
)
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase ="""left"""
# use different length sentences to test batching
_lowerCAmelCase =[
"""This is an extremelly long sentence that only exists to test the ability of the model to cope with """
"""left-padding, such as in batched generation. The output for the sequence below should be the same """
"""regardless of whether left padding is applied or not. When""",
"""Hello, my dog is a little""",
]
_lowerCAmelCase =tokenizer(__UpperCAmelCase , return_tensors="""tf""" , padding=__UpperCAmelCase )
_lowerCAmelCase =inputs["""input_ids"""]
_lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 )
_lowerCAmelCase =tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids
_lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 )
_lowerCAmelCase =tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids
_lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 )
_lowerCAmelCase =tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =tokenizer.decode(output_non_padded[0] , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =tokenizer.decode(output_padded[0] , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =[
"""This is an extremelly long sentence that only exists to test the ability of the model to cope with """
"""left-padding, such as in batched generation. The output for the sequence below should be the same """
"""regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """
"""a single""",
"""Hello, my dog is a little bit of a shy one, but he is very friendly""",
]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , [non_padded_sentence, padded_sentence] )
| 341 | 1 |
"""simple docstring"""
import os
import string
import sys
__A = 1 << 8
__A = {
'tab': ord('\t'),
'newline': ord('\r'),
'esc': 27,
'up': 65 + ARROW_KEY_FLAG,
'down': 66 + ARROW_KEY_FLAG,
'right': 67 + ARROW_KEY_FLAG,
'left': 68 + ARROW_KEY_FLAG,
'mod_int': 91,
'undefined': sys.maxsize,
'interrupt': 3,
'insert': 50,
'delete': 51,
'pg_up': 53,
'pg_down': 54,
}
__A = KEYMAP['up']
__A = KEYMAP['left']
if sys.platform == "win32":
__A = []
__A = {
B'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG,
B'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG,
B'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG,
B'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG,
B'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG,
B'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG,
B'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG,
B'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG,
}
for i in range(10):
__A = ord(str(i))
def _lowerCamelCase() -> List[str]:
if os.name == "nt":
import msvcrt
_lowerCAmelCase ="""mbcs"""
# Flush the keyboard buffer
while msvcrt.kbhit():
msvcrt.getch()
if len(__UpperCamelCase ) == 0:
# Read the keystroke
_lowerCAmelCase =msvcrt.getch()
# If it is a prefix char, get second part
if ch in (b"\x00", b"\xe0"):
_lowerCAmelCase =ch + msvcrt.getch()
# Translate actual Win chars to bullet char types
try:
_lowerCAmelCase =chr(WIN_KEYMAP[cha] )
WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) )
WIN_CH_BUFFER.append(__UpperCamelCase )
if ord(__UpperCamelCase ) in (
KEYMAP["insert"] - 1 << 9,
KEYMAP["delete"] - 1 << 9,
KEYMAP["pg_up"] - 1 << 9,
KEYMAP["pg_down"] - 1 << 9,
):
WIN_CH_BUFFER.append(chr(126 ) )
_lowerCAmelCase =chr(KEYMAP["""esc"""] )
except KeyError:
_lowerCAmelCase =cha[1]
else:
_lowerCAmelCase =ch.decode(__UpperCamelCase )
else:
_lowerCAmelCase =WIN_CH_BUFFER.pop(0 )
elif os.name == "posix":
import termios
import tty
_lowerCAmelCase =sys.stdin.fileno()
_lowerCAmelCase =termios.tcgetattr(__UpperCamelCase )
try:
tty.setraw(__UpperCamelCase )
_lowerCAmelCase =sys.stdin.read(1 )
finally:
termios.tcsetattr(__UpperCamelCase , termios.TCSADRAIN , __UpperCamelCase )
return ch
def _lowerCamelCase() -> Dict:
_lowerCAmelCase =get_raw_chars()
if ord(__UpperCamelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
return char
elif ord(__UpperCamelCase ) == KEYMAP["esc"]:
_lowerCAmelCase =get_raw_chars()
if ord(__UpperCamelCase ) == KEYMAP["mod_int"]:
_lowerCAmelCase =get_raw_chars()
if ord(__UpperCamelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__UpperCamelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
return chr(ord(__UpperCamelCase ) + ARROW_KEY_FLAG )
else:
return KEYMAP["undefined"]
else:
return get_raw_chars()
else:
if char in string.printable:
return char
else:
return KEYMAP["undefined"]
| 341 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
__A = logging.get_logger(__name__)
__A = {'vocab_file': 'spiece.model'}
__A = {
'vocab_file': {
'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model',
'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model',
}
}
__A = {
'xlnet-base-cased': None,
'xlnet-large-cased': None,
}
# Segments (not really needed)
__A = 0
__A = 1
__A = 2
__A = 3
__A = 4
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = VOCAB_FILES_NAMES
lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase = '''left'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<sep>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<cls>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=["<eop>", "<eod>"] , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it
_lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
_lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , )
_lowerCAmelCase =3
_lowerCAmelCase =do_lower_case
_lowerCAmelCase =remove_space
_lowerCAmelCase =keep_accents
_lowerCAmelCase =vocab_file
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__UpperCAmelCase )
@property
def _lowerCAmelCase ( self ) -> str:
return len(self.sp_model )
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> Optional[int]:
_lowerCAmelCase =self.__dict__.copy()
_lowerCAmelCase =None
return state
def __setstate__( self , __UpperCAmelCase ) -> Tuple:
_lowerCAmelCase =d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_lowerCAmelCase ={}
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[Any]:
if self.remove_space:
_lowerCAmelCase =""" """.join(inputs.strip().split() )
else:
_lowerCAmelCase =inputs
_lowerCAmelCase =outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
_lowerCAmelCase =unicodedata.normalize("""NFKD""" , __UpperCAmelCase )
_lowerCAmelCase ="""""".join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] )
if self.do_lower_case:
_lowerCAmelCase =outputs.lower()
return outputs
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
_lowerCAmelCase =self.preprocess_text(__UpperCAmelCase )
_lowerCAmelCase =self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase )
_lowerCAmelCase =[]
for piece in pieces:
if len(__UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
_lowerCAmelCase =self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
_lowerCAmelCase =cur_pieces[1:]
else:
_lowerCAmelCase =cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(__UpperCAmelCase )
else:
new_pieces.append(__UpperCAmelCase )
return new_pieces
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]:
return self.sp_model.PieceToId(__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
return self.sp_model.IdToPiece(__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> str:
_lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip()
return out_string
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> str:
_lowerCAmelCase =kwargs.pop("""use_source_tokenizer""" , __UpperCAmelCase )
_lowerCAmelCase =self.convert_ids_to_tokens(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
_lowerCAmelCase =[]
_lowerCAmelCase =[]
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) )
_lowerCAmelCase =[]
sub_texts.append(__UpperCAmelCase )
else:
current_sub_text.append(__UpperCAmelCase )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) )
# Mimic the behavior of the Rust tokenizer:
# By default, there are no spaces between special tokens
_lowerCAmelCase ="""""".join(__UpperCAmelCase )
_lowerCAmelCase =(
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
_lowerCAmelCase =self.clean_up_tokenization(__UpperCAmelCase )
return clean_text
else:
return text
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_lowerCAmelCase =[self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase )
if token_ids_a is not None:
return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1]
return ([0] * len(__UpperCAmelCase )) + [1, 1]
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_lowerCAmelCase =[self.sep_token_id]
_lowerCAmelCase =[2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCAmelCase , """wb""" ) as fi:
_lowerCAmelCase =self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase )
return (out_vocab_file,)
| 341 | 1 |
"""simple docstring"""
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_tensorflow_text_available():
from transformers.models.bert import TFBertTokenizer
__A = ['bert-base-uncased', 'bert-base-cased']
__A = 'hf-internal-testing/tiny-bert-tf-only'
if is_tf_available():
class lowerCamelCase__ ( tf.keras.Model ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase ) -> Union[str, Any]:
super().__init__()
_lowerCAmelCase =tokenizer
_lowerCAmelCase =AutoConfig.from_pretrained(__UpperCAmelCase )
_lowerCAmelCase =TFAutoModel.from_config(__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Any:
_lowerCAmelCase =self.tokenizer(__UpperCAmelCase )
_lowerCAmelCase =self.bert(**__UpperCAmelCase )
return out["pooler_output"]
@require_tf
@require_tensorflow_text
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> Optional[Any]:
super().setUp()
_lowerCAmelCase =[
BertTokenizer.from_pretrained(__UpperCAmelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2)
] # repeat for when fast_bert_tokenizer=false
_lowerCAmelCase =[TFBertTokenizer.from_pretrained(__UpperCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] + [
TFBertTokenizer.from_pretrained(__UpperCAmelCase , use_fast_bert_tokenizer=__UpperCAmelCase )
for checkpoint in TOKENIZER_CHECKPOINTS
]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
_lowerCAmelCase =[
"""This is a straightforward English test sentence.""",
"""This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""",
"""Now we're going to add some Chinese: 一 二 三 一二三""",
"""And some much more rare Chinese: 齉 堃 齉堃""",
"""Je vais aussi écrire en français pour tester les accents""",
"""Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""",
]
_lowerCAmelCase =list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def _lowerCAmelCase ( self ) -> str:
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in (self.test_sentences, self.paired_sentences):
_lowerCAmelCase =tokenizer(__UpperCAmelCase , return_tensors="""tf""" , padding="""longest""" )
_lowerCAmelCase =tf_tokenizer(__UpperCAmelCase )
for key in python_outputs.keys():
self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) )
self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) )
@slow
def _lowerCAmelCase ( self ) -> Union[str, Any]:
for tf_tokenizer in self.tf_tokenizers:
_lowerCAmelCase =tf_tokenizer(self.paired_sentences )
_lowerCAmelCase =tf_tokenizer(
text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , )
for key in merged_outputs.keys():
self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) )
@slow
def _lowerCAmelCase ( self ) -> Union[str, Any]:
for tf_tokenizer in self.tf_tokenizers:
_lowerCAmelCase =tf.function(__UpperCAmelCase )
for test_inputs in (self.test_sentences, self.paired_sentences):
_lowerCAmelCase =tf.constant(__UpperCAmelCase )
_lowerCAmelCase =compiled_tokenizer(__UpperCAmelCase )
_lowerCAmelCase =tf_tokenizer(__UpperCAmelCase )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def _lowerCAmelCase ( self ) -> List[Any]:
for tf_tokenizer in self.tf_tokenizers:
_lowerCAmelCase =ModelToSave(tokenizer=__UpperCAmelCase )
_lowerCAmelCase =tf.convert_to_tensor(self.test_sentences )
_lowerCAmelCase =model(__UpperCAmelCase ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
_lowerCAmelCase =Path(__UpperCAmelCase ) / """saved.model"""
model.save(__UpperCAmelCase )
_lowerCAmelCase =tf.keras.models.load_model(__UpperCAmelCase )
_lowerCAmelCase =loaded_model(__UpperCAmelCase )
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1e-5 )
| 341 |
"""simple docstring"""
from __future__ import annotations
def _lowerCamelCase(__UpperCamelCase ) -> bool:
_lowerCAmelCase =str(__UpperCamelCase )
return n == n[::-1]
def _lowerCamelCase(__UpperCamelCase = 1000000 ) -> str:
_lowerCAmelCase =0
for i in range(1 , __UpperCamelCase ):
if is_palindrome(__UpperCamelCase ) and is_palindrome(bin(__UpperCamelCase ).split("""b""" )[1] ):
total += i
return total
if __name__ == "__main__":
print(solution(int(str(input().strip()))))
| 341 | 1 |
"""simple docstring"""
from math import factorial
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> int:
# If either of the conditions are true, the function is being asked
# to calculate a factorial of a negative number, which is not possible
if n < k or k < 0:
raise ValueError("""Please enter positive integers for n and k where n >= k""" )
return factorial(__UpperCamelCase ) // (factorial(__UpperCamelCase ) * factorial(n - k ))
if __name__ == "__main__":
print(
'The number of five-card hands possible from a standard',
F"""fifty-two card deck is: {combinations(52, 5)}\n""",
)
print(
'If a class of 40 students must be arranged into groups of',
F"""4 for group projects, there are {combinations(40, 4)} ways""",
'to arrange them.\n',
)
print(
'If 10 teams are competing in a Formula One race, there',
F"""are {combinations(10, 3)} ways that first, second and""",
'third place can be awarded.',
)
| 341 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = '''llama'''
lowerCamelCase = ['''past_key_values''']
def __init__( self , __UpperCAmelCase=3_20_00 , __UpperCAmelCase=40_96 , __UpperCAmelCase=1_10_08 , __UpperCAmelCase=32 , __UpperCAmelCase=32 , __UpperCAmelCase=None , __UpperCAmelCase="silu" , __UpperCAmelCase=20_48 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-6 , __UpperCAmelCase=True , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=False , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]:
_lowerCAmelCase =vocab_size
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =hidden_size
_lowerCAmelCase =intermediate_size
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =num_key_value_heads
_lowerCAmelCase =hidden_act
_lowerCAmelCase =initializer_range
_lowerCAmelCase =rms_norm_eps
_lowerCAmelCase =pretraining_tp
_lowerCAmelCase =use_cache
_lowerCAmelCase =rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase , )
def _lowerCAmelCase ( self ) -> str:
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2:
raise ValueError(
"""`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """
f'''got {self.rope_scaling}''' )
_lowerCAmelCase =self.rope_scaling.get("""type""" , __UpperCAmelCase )
_lowerCAmelCase =self.rope_scaling.get("""factor""" , __UpperCAmelCase )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' )
if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0:
raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
| 341 | 1 |
"""simple docstring"""
from typing import Optional, Union
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models.modeling_utils import ModelMixin
class lowerCamelCase__ ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
@register_to_config
def __init__( self , __UpperCAmelCase = 7_68 , ) -> Dict:
super().__init__()
_lowerCAmelCase =nn.Parameter(torch.zeros(1 , __UpperCAmelCase ) )
_lowerCAmelCase =nn.Parameter(torch.ones(1 , __UpperCAmelCase ) )
def _lowerCAmelCase ( self , __UpperCAmelCase = None , __UpperCAmelCase = None , ) -> Any:
_lowerCAmelCase =nn.Parameter(self.mean.to(__UpperCAmelCase ).to(__UpperCAmelCase ) )
_lowerCAmelCase =nn.Parameter(self.std.to(__UpperCAmelCase ).to(__UpperCAmelCase ) )
return self
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase =(embeds - self.mean) * 1.0 / self.std
return embeds
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Any:
_lowerCAmelCase =(embeds * self.std) + self.mean
return embeds
| 341 |
"""simple docstring"""
import warnings
from .generation import TFGenerationMixin
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
# warning at import time
warnings.warn(
'''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will '''
'''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''' , __magic_name__ , )
| 341 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__A = {
'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'],
'tokenization_m2m_100': ['M2M100Tokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST',
'M2M100ForConditionalGeneration',
'M2M100Model',
'M2M100PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 |
"""simple docstring"""
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=16 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=30 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=None , ) -> Any:
_lowerCAmelCase =parent
_lowerCAmelCase =batch_size
_lowerCAmelCase =decoder_seq_length
# For common tests
_lowerCAmelCase =self.decoder_seq_length
_lowerCAmelCase =is_training
_lowerCAmelCase =use_attention_mask
_lowerCAmelCase =use_labels
_lowerCAmelCase =vocab_size
_lowerCAmelCase =d_model
_lowerCAmelCase =d_model
_lowerCAmelCase =decoder_layers
_lowerCAmelCase =decoder_layers
_lowerCAmelCase =decoder_ffn_dim
_lowerCAmelCase =decoder_attention_heads
_lowerCAmelCase =decoder_attention_heads
_lowerCAmelCase =eos_token_id
_lowerCAmelCase =bos_token_id
_lowerCAmelCase =pad_token_id
_lowerCAmelCase =decoder_start_token_id
_lowerCAmelCase =use_cache
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =None
_lowerCAmelCase =decoder_seq_length
_lowerCAmelCase =2
_lowerCAmelCase =1
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
_lowerCAmelCase =None
if self.use_attention_mask:
_lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 )
_lowerCAmelCase =None
if self.use_labels:
_lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
_lowerCAmelCase =TrOCRConfig(
vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , )
return (config, input_ids, attention_mask, lm_labels)
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[Any]:
_lowerCAmelCase =True
_lowerCAmelCase =TrOCRDecoder(config=__UpperCAmelCase ).to(__UpperCAmelCase ).eval()
_lowerCAmelCase =input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
_lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
_lowerCAmelCase =model(__UpperCAmelCase )
_lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 )
_lowerCAmelCase =outputs["""past_key_values"""]
# create hypothetical next token and extent to next_input_ids
_lowerCAmelCase =ids_tensor((2, 1) , config.vocab_size - 1 ) + 1
# append to next input_ids and
_lowerCAmelCase =torch.cat([input_ids, next_tokens] , dim=-1 )
_lowerCAmelCase =model(__UpperCAmelCase )["""last_hidden_state"""]
_lowerCAmelCase =model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )["""last_hidden_state"""]
# select random slice
_lowerCAmelCase =ids_tensor((1,) , output_from_past.shape[-1] ).item()
_lowerCAmelCase =output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
_lowerCAmelCase =output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 )
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =self.prepare_config_and_inputs()
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs
_lowerCAmelCase ={"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
lowerCamelCase = (TrOCRForCausalLM,) if is_torch_available() else ()
lowerCamelCase = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {}
lowerCamelCase = True
lowerCamelCase = False
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =TrOCRStandaloneDecoderModelTester(self , is_training=__UpperCAmelCase )
_lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> List[str]:
pass
def _lowerCAmelCase ( self ) -> List[Any]:
pass
def _lowerCAmelCase ( self ) -> Any:
pass
def _lowerCAmelCase ( self ) -> Optional[Any]:
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Tuple:
return
@unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :)
def _lowerCAmelCase ( self ) -> str:
pass
| 341 | 1 |
"""simple docstring"""
import argparse
import logging
import os
from datetime import datetime
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader, RandomSampler, TensorDataset
from tqdm import tqdm
from transformers import GPTaLMHeadModel
__A = logging.getLogger(__name__)
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Tuple:
# save results
if os.path.exists(__UpperCamelCase ):
if os.path.exists(os.path.join(__UpperCamelCase , """config.json""" ) ) and os.path.isfile(
os.path.join(__UpperCamelCase , """config.json""" ) ):
os.remove(os.path.join(__UpperCamelCase , """config.json""" ) )
if os.path.exists(os.path.join(__UpperCamelCase , """pytorch_model.bin""" ) ) and os.path.isfile(
os.path.join(__UpperCamelCase , """pytorch_model.bin""" ) ):
os.remove(os.path.join(__UpperCamelCase , """pytorch_model.bin""" ) )
else:
os.makedirs(__UpperCamelCase )
model.save_pretrained(__UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=False ) -> Tuple:
_lowerCAmelCase =2
if unlogit:
_lowerCAmelCase =torch.pow(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =p * torch.log(__UpperCamelCase )
_lowerCAmelCase =0
return -plogp.sum(dim=-1 )
def _lowerCamelCase(__UpperCamelCase ) -> str:
logger.info("""lv, h >\t""" + """\t""".join(F'''{x + 1}''' for x in range(len(__UpperCamelCase ) ) ) )
for row in range(len(__UpperCamelCase ) ):
if tensor.dtype != torch.long:
logger.info(F'''layer {row + 1}:\t''' + """\t""".join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) )
else:
logger.info(F'''layer {row + 1}:\t''' + """\t""".join(F'''{x:d}''' for x in tensor[row].cpu().data ) )
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=False ) -> int:
_lowerCAmelCase , _lowerCAmelCase =model.config.num_hidden_layers, model.config.num_attention_heads
_lowerCAmelCase =torch.zeros(__UpperCamelCase , __UpperCamelCase ).to(args.device )
_lowerCAmelCase =torch.zeros(__UpperCamelCase , __UpperCamelCase ).to(args.device )
if head_mask is None:
_lowerCAmelCase =torch.ones(__UpperCamelCase , __UpperCamelCase ).to(args.device )
head_mask.requires_grad_(requires_grad=__UpperCamelCase )
# If actually pruned attention multi-head, set head mask to None to avoid shape mismatch
if actually_pruned:
_lowerCAmelCase =None
_lowerCAmelCase =0.0
_lowerCAmelCase =0.0
for step, inputs in enumerate(tqdm(__UpperCamelCase , desc="""Iteration""" , disable=args.local_rank not in [-1, 0] ) ):
_lowerCAmelCase =tuple(t.to(args.device ) for t in inputs )
((_lowerCAmelCase) , ) =inputs
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
_lowerCAmelCase =model(__UpperCamelCase , labels=__UpperCamelCase , head_mask=__UpperCamelCase )
# (loss), lm_logits, presents, (all hidden_states), (attentions)
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =(
outputs[0],
outputs[1],
outputs[-1],
) # Loss and logits are the first, attention the last
loss.backward() # Backpropagate to populate the gradients in the head mask
total_loss += loss.detach().cpu().numpy()
if compute_entropy:
for layer, attn in enumerate(__UpperCamelCase ):
_lowerCAmelCase =entropy(attn.detach() , __UpperCamelCase )
attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach()
if compute_importance:
head_importance += head_mask.grad.abs().detach()
tot_tokens += torch.ones_like(__UpperCamelCase ).float().detach().sum().data
# Normalize
attn_entropy /= tot_tokens
head_importance /= tot_tokens
# Layerwise importance normalization
if not args.dont_normalize_importance_by_layer:
_lowerCAmelCase =2
_lowerCAmelCase =torch.pow(torch.pow(__UpperCamelCase , __UpperCamelCase ).sum(-1 ) , 1 / exponent )
head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-2_0
if not args.dont_normalize_global_importance:
_lowerCAmelCase =(head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())
# Print matrices
if compute_entropy:
logger.info("""Attention entropies""" )
print_ad_tensor(__UpperCamelCase )
if compute_importance:
logger.info("""Head importance scores""" )
print_ad_tensor(__UpperCamelCase )
logger.info("""Head ranked by importance scores""" )
_lowerCAmelCase =torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device )
_lowerCAmelCase =torch.arange(
head_importance.numel() , device=args.device )
_lowerCAmelCase =head_ranks.view_as(__UpperCamelCase )
print_ad_tensor(__UpperCamelCase )
return attn_entropy, head_importance, total_loss
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Any:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =compute_heads_importance(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , compute_entropy=__UpperCamelCase )
_lowerCAmelCase =1 / loss # instead of downsteam score use the LM loss
logger.info("""Pruning: original score: %f, threshold: %f""" , __UpperCamelCase , original_score * args.masking_threshold )
_lowerCAmelCase =torch.ones_like(__UpperCamelCase )
_lowerCAmelCase =max(1 , int(new_head_mask.numel() * args.masking_amount ) )
_lowerCAmelCase =original_score
while current_score >= original_score * args.masking_threshold:
_lowerCAmelCase =new_head_mask.clone().detach() # save current head mask
# heads from least important to most - keep only not-masked heads
_lowerCAmelCase =float("""Inf""" )
_lowerCAmelCase =head_importance.view(-1 ).sort()[1]
if len(__UpperCamelCase ) <= num_to_mask:
print("""BREAK BY num_to_mask""" )
break
# mask heads
_lowerCAmelCase =current_heads_to_mask[:num_to_mask]
logger.info("""Heads to mask: %s""" , str(current_heads_to_mask.tolist() ) )
_lowerCAmelCase =new_head_mask.view(-1 )
_lowerCAmelCase =0.0
_lowerCAmelCase =new_head_mask.view_as(__UpperCamelCase )
_lowerCAmelCase =new_head_mask.clone().detach()
print_ad_tensor(__UpperCamelCase )
# Compute metric and head importance again
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =compute_heads_importance(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , compute_entropy=__UpperCamelCase , head_mask=__UpperCamelCase )
_lowerCAmelCase =1 / loss
logger.info(
"""Masking: current score: %f, remaining heads %d (%.1f percents)""" , __UpperCamelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , )
logger.info("""Final head mask""" )
print_ad_tensor(__UpperCamelCase )
np.save(os.path.join(args.output_dir , """head_mask.npy""" ) , head_mask.detach().cpu().numpy() )
return head_mask
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int:
_lowerCAmelCase =datetime.now()
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =compute_heads_importance(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , compute_entropy=__UpperCamelCase , compute_importance=__UpperCamelCase , head_mask=__UpperCamelCase )
_lowerCAmelCase =1 / loss
_lowerCAmelCase =datetime.now() - before_time
_lowerCAmelCase =sum(p.numel() for p in model.parameters() )
_lowerCAmelCase ={
layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__UpperCamelCase ) )
}
for k, v in heads_to_prune.items():
if isinstance(__UpperCamelCase , __UpperCamelCase ):
_lowerCAmelCase =[
v,
]
assert sum(len(__UpperCamelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item()
model.prune_heads(__UpperCamelCase )
_lowerCAmelCase =sum(p.numel() for p in model.parameters() )
_lowerCAmelCase =datetime.now()
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =compute_heads_importance(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , compute_entropy=__UpperCamelCase , compute_importance=__UpperCamelCase , head_mask=__UpperCamelCase , actually_pruned=__UpperCamelCase , )
_lowerCAmelCase =1 / loss
_lowerCAmelCase =datetime.now() - before_time
logger.info(
"""Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)""" , __UpperCamelCase , __UpperCamelCase , pruned_num_params / original_num_params * 100 , )
logger.info("""Pruning: score with masking: %f score with pruning: %f""" , __UpperCamelCase , __UpperCamelCase )
logger.info("""Pruning: speed ratio (original timing / new timing): %f percents""" , original_time / new_time * 100 )
save_model(__UpperCamelCase , args.output_dir )
def _lowerCamelCase() -> int:
_lowerCAmelCase =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--data_dir""" , default=__UpperCamelCase , type=__UpperCamelCase , required=__UpperCamelCase , help="""The input data dir. Should contain the .tsv files (or other data files) for the task.""" , )
parser.add_argument(
"""--model_name_or_path""" , default=__UpperCamelCase , type=__UpperCamelCase , required=__UpperCamelCase , help="""Path to pretrained model or model identifier from huggingface.co/models""" , )
parser.add_argument(
"""--output_dir""" , default=__UpperCamelCase , type=__UpperCamelCase , required=__UpperCamelCase , help="""The output directory where the model predictions and checkpoints will be written.""" , )
# Other parameters
parser.add_argument(
"""--config_name""" , default="""""" , type=__UpperCamelCase , help="""Pretrained config name or path if not the same as model_name_or_path""" , )
parser.add_argument(
"""--tokenizer_name""" , default="""""" , type=__UpperCamelCase , help="""Pretrained tokenizer name or path if not the same as model_name_or_path""" , )
parser.add_argument(
"""--cache_dir""" , default=__UpperCamelCase , type=__UpperCamelCase , help="""Where do you want to store the pre-trained models downloaded from s3""" , )
parser.add_argument(
"""--data_subset""" , type=__UpperCamelCase , default=-1 , help="""If > 0: limit the data to a subset of data_subset instances.""" )
parser.add_argument(
"""--overwrite_output_dir""" , action="""store_true""" , help="""Whether to overwrite data in output directory""" )
parser.add_argument(
"""--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" )
parser.add_argument(
"""--dont_normalize_importance_by_layer""" , action="""store_true""" , help="""Don't normalize importance score by layers""" )
parser.add_argument(
"""--dont_normalize_global_importance""" , action="""store_true""" , help="""Don't normalize all importance scores between 0 and 1""" , )
parser.add_argument(
"""--try_masking""" , action="""store_true""" , help="""Whether to try to mask head until a threshold of accuracy.""" )
parser.add_argument(
"""--masking_threshold""" , default=0.9 , type=__UpperCamelCase , help="""masking threshold in term of metrics (stop masking when metric < threshold * original metric value).""" , )
parser.add_argument(
"""--masking_amount""" , default=0.1 , type=__UpperCamelCase , help="""Amount to heads to masking at each masking step.""" )
parser.add_argument("""--metric_name""" , default="""acc""" , type=__UpperCamelCase , help="""Metric to use for head masking.""" )
parser.add_argument(
"""--max_seq_length""" , default=128 , type=__UpperCamelCase , help=(
"""The maximum total input sequence length after WordPiece tokenization. \n"""
"""Sequences longer than this will be truncated, sequences shorter padded."""
) , )
parser.add_argument("""--batch_size""" , default=1 , type=__UpperCamelCase , help="""Batch size.""" )
parser.add_argument("""--seed""" , type=__UpperCamelCase , default=42 )
parser.add_argument("""--local_rank""" , type=__UpperCamelCase , default=-1 , help="""local_rank for distributed training on gpus""" )
parser.add_argument("""--no_cuda""" , action="""store_true""" , help="""Whether not to use CUDA when available""" )
parser.add_argument("""--server_ip""" , type=__UpperCamelCase , default="""""" , help="""Can be used for distant debugging.""" )
parser.add_argument("""--server_port""" , type=__UpperCamelCase , default="""""" , help="""Can be used for distant debugging.""" )
_lowerCAmelCase =parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("""Waiting for debugger attach""" )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__UpperCamelCase )
ptvsd.wait_for_attach()
# Setup devices and distributed training
if args.local_rank == -1 or args.no_cuda:
_lowerCAmelCase =torch.device("""cuda""" if torch.cuda.is_available() and not args.no_cuda else """cpu""" )
_lowerCAmelCase =0 if args.no_cuda else torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank )
_lowerCAmelCase =torch.device("""cuda""" , args.local_rank )
_lowerCAmelCase =1
torch.distributed.init_process_group(backend="""nccl""" ) # Initializes the distributed backend
# Setup logging
logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN )
logger.info("""device: {} n_gpu: {}, distributed: {}""".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) )
_lowerCAmelCase =GPTaLMHeadModel.from_pretrained(args.model_name_or_path )
# Distributed and parallel training
model.to(args.device )
if args.local_rank != -1:
_lowerCAmelCase =nn.parallel.DistributedDataParallel(
__UpperCamelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__UpperCamelCase )
elif args.n_gpu > 1:
_lowerCAmelCase =nn.DataParallel(__UpperCamelCase )
# Print/save training arguments
os.makedirs(args.output_dir , exist_ok=__UpperCamelCase )
torch.save(__UpperCamelCase , os.path.join(args.output_dir , """run_args.bin""" ) )
logger.info("""Training/evaluation parameters %s""" , __UpperCamelCase )
# Prepare dataset
_lowerCAmelCase =np.concatenate(
[
np.loadtxt(args.data_dir , dtype=np.intaa ),
] )
_lowerCAmelCase =(torch.from_numpy(__UpperCamelCase ),)
_lowerCAmelCase =TensorDataset(*__UpperCamelCase )
_lowerCAmelCase =RandomSampler(__UpperCamelCase )
_lowerCAmelCase =DataLoader(__UpperCamelCase , sampler=__UpperCamelCase , batch_size=args.batch_size )
# Compute head entropy and importance score
compute_heads_importance(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
# Try head masking (set heads to zero until the score goes under a threshole)
# and head pruning (remove masked heads and see the effect on the network)
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
_lowerCAmelCase =mask_heads(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
prune_heads(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
if __name__ == "__main__":
main()
| 341 |
"""simple docstring"""
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = JukeboxTokenizer
lowerCamelCase = {
'''artist''': '''Zac Brown Band''',
'''genres''': '''Country''',
'''lyrics''': '''I met a traveller from an antique land,
Who said "Two vast and trunkless legs of stone
Stand in the desert. . . . Near them, on the sand,
Half sunk a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,
Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them, and the heart that fed;
And on the pedestal, these words appear:
My name is Ozymandias, King of Kings;
Look on my Works, ye Mighty, and despair!
Nothing beside remains. Round the decay
Of that colossal Wreck, boundless and bare
The lone and level sands stretch far away
''',
}
@require_torch
def _lowerCAmelCase ( self ) -> str:
import torch
_lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" )
_lowerCAmelCase =tokenizer(**self.metas )["""input_ids"""]
# fmt: off
_lowerCAmelCase =[
torch.tensor([[
0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 10_69, 11]] ),
torch.tensor([[0, 0, 0, 10_69, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def _lowerCAmelCase ( self ) -> Any:
import torch
_lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" )
_lowerCAmelCase =tokenizer(**self.metas )["""input_ids"""]
# fmt: off
_lowerCAmelCase =[
torch.tensor([[
0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 341 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
__A = {
'configuration_xlm': ['XLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMConfig', 'XLMOnnxConfig'],
'tokenization_xlm': ['XLMTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'XLM_PRETRAINED_MODEL_ARCHIVE_LIST',
'XLMForMultipleChoice',
'XLMForQuestionAnswering',
'XLMForQuestionAnsweringSimple',
'XLMForSequenceClassification',
'XLMForTokenClassification',
'XLMModel',
'XLMPreTrainedModel',
'XLMWithLMHeadModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFXLMForMultipleChoice',
'TFXLMForQuestionAnsweringSimple',
'TFXLMForSequenceClassification',
'TFXLMForTokenClassification',
'TFXLMMainLayer',
'TFXLMModel',
'TFXLMPreTrainedModel',
'TFXLMWithLMHeadModel',
]
if TYPE_CHECKING:
from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig
from .tokenization_xlm import XLMTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm import (
XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMPreTrainedModel,
XLMWithLMHeadModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm import (
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMForMultipleChoice,
TFXLMForQuestionAnsweringSimple,
TFXLMForSequenceClassification,
TFXLMForTokenClassification,
TFXLMMainLayer,
TFXLMModel,
TFXLMPreTrainedModel,
TFXLMWithLMHeadModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__A = logging.get_logger(__name__)
__A = '▁'
__A = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'}
__A = {
'vocab_file': {
'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model',
},
'monolingual_vocab_file': {
'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt',
},
}
__A = {'vinai/bartpho-syllable': 1024}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = VOCAB_FILES_NAMES
lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase = ['''input_ids''', '''attention_mask''']
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it
_lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
_lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , )
_lowerCAmelCase =vocab_file
_lowerCAmelCase =monolingual_vocab_file
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__UpperCAmelCase ) )
# Load the reduced vocab
# Keep order of special tokens for backward compatibility
_lowerCAmelCase ={}
_lowerCAmelCase =0
for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids:
_lowerCAmelCase =cnt
cnt += 1
with open(__UpperCAmelCase , """r""" , encoding="""utf-8""" ) as f:
for line in f.readlines():
_lowerCAmelCase =line.strip().split()[0]
_lowerCAmelCase =len(self.fairseq_tokens_to_ids )
if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids:
_lowerCAmelCase =len(self.fairseq_tokens_to_ids )
_lowerCAmelCase ={v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ) -> Dict:
_lowerCAmelCase =self.__dict__.copy()
_lowerCAmelCase =None
_lowerCAmelCase =self.sp_model.serialized_model_proto()
return state
def __setstate__( self , __UpperCAmelCase ) -> List[Any]:
_lowerCAmelCase =d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_lowerCAmelCase ={}
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
_lowerCAmelCase =[self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(__UpperCAmelCase )) + [1]
return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1]
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_lowerCAmelCase =[self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def _lowerCAmelCase ( self ) -> Union[str, Any]:
return len(self.fairseq_ids_to_tokens )
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
else:
return self.unk_token_id
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]:
return self.fairseq_ids_to_tokens[index]
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip()
return out_string
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCAmelCase , """wb""" ) as fi:
_lowerCAmelCase =self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase )
if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath(
__UpperCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ):
copyfile(self.monolingual_vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.monolingual_vocab_file ):
with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as fp:
for token in self.fairseq_tokens_to_ids:
if token not in self.all_special_tokens:
fp.write(f'''{str(__UpperCAmelCase )} \n''' )
return out_vocab_file, out_monolingual_vocab_file
| 341 | 1 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase ) -> int:
_lowerCAmelCase =1
for i in range(1 , num + 1 ):
fact *= i
return fact
def _lowerCamelCase(__UpperCamelCase ) -> int:
_lowerCAmelCase =0
while number > 0:
_lowerCAmelCase =number % 10
sum_of_digits += last_digit
_lowerCAmelCase =number // 10 # Removing the last_digit from the given number
return sum_of_digits
def _lowerCamelCase(__UpperCamelCase = 100 ) -> int:
_lowerCAmelCase =factorial(__UpperCamelCase )
_lowerCAmelCase =split_and_add(__UpperCamelCase )
return result
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 341 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =1
_lowerCAmelCase =3
_lowerCAmelCase =(32, 32)
_lowerCAmelCase =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCAmelCase )
return image
@property
def _lowerCAmelCase ( self ) -> Tuple:
torch.manual_seed(0 )
_lowerCAmelCase =UNetaDConditionModel(
block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__UpperCAmelCase , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , )
return model
@property
def _lowerCAmelCase ( self ) -> Tuple:
torch.manual_seed(0 )
_lowerCAmelCase =AutoencoderKL(
block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def _lowerCAmelCase ( self ) -> Optional[Any]:
torch.manual_seed(0 )
_lowerCAmelCase =CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , )
return CLIPTextModel(__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase =self.dummy_cond_unet_upscale
_lowerCAmelCase =DDPMScheduler()
_lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" )
_lowerCAmelCase =self.dummy_vae
_lowerCAmelCase =self.dummy_text_encoder
_lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
_lowerCAmelCase =StableDiffusionUpscalePipeline(
unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , )
_lowerCAmelCase =sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase ="""A painting of a squirrel eating a burger"""
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
_lowerCAmelCase =output.images
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=__UpperCAmelCase , )[0]
_lowerCAmelCase =image[0, -3:, -3:, -1]
_lowerCAmelCase =image_from_tuple[0, -3:, -3:, -1]
_lowerCAmelCase =low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
_lowerCAmelCase =np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase =self.dummy_cond_unet_upscale
_lowerCAmelCase =DDPMScheduler()
_lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" )
_lowerCAmelCase =self.dummy_vae
_lowerCAmelCase =self.dummy_text_encoder
_lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
_lowerCAmelCase =StableDiffusionUpscalePipeline(
unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , )
_lowerCAmelCase =sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase ="""A painting of a squirrel eating a burger"""
_lowerCAmelCase =sd_pipe(
2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
_lowerCAmelCase =output.images
assert image.shape[0] == 2
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
_lowerCAmelCase =output.images
assert image.shape[0] == 2
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =self.dummy_cond_unet_upscale
_lowerCAmelCase =DDPMScheduler()
_lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" )
_lowerCAmelCase =self.dummy_vae
_lowerCAmelCase =self.dummy_text_encoder
_lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
# put models in fp16, except vae as it overflows in fp16
_lowerCAmelCase =unet.half()
_lowerCAmelCase =text_encoder.half()
# make sure here that pndm scheduler skips prk
_lowerCAmelCase =StableDiffusionUpscalePipeline(
unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , )
_lowerCAmelCase =sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase ="""A painting of a squirrel eating a burger"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type="""np""" , ).images
_lowerCAmelCase =low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
@slow
@require_torch_gpu
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> int:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_lowerCAmelCase =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"""
"""/upsampled_cat.npy""" )
_lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler"""
_lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing()
_lowerCAmelCase ="""a cat sitting on a park bench"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , )
_lowerCAmelCase =output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 1e-3
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_lowerCAmelCase =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"""
"""/upsampled_cat_fp16.npy""" )
_lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler"""
_lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(
__UpperCAmelCase , torch_dtype=torch.floataa , )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing()
_lowerCAmelCase ="""a cat sitting on a park bench"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , )
_lowerCAmelCase =output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 5e-1
def _lowerCAmelCase ( self ) -> Optional[Any]:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_lowerCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler"""
_lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(
__UpperCAmelCase , torch_dtype=torch.floataa , )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
_lowerCAmelCase ="""a cat sitting on a park bench"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , output_type="""np""" , )
_lowerCAmelCase =torch.cuda.max_memory_allocated()
# make sure that less than 2.9 GB is allocated
assert mem_bytes < 2.9 * 10**9
| 341 | 1 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_pegasus import PegasusTokenizer
else:
__A = None
__A = logging.get_logger(__name__)
__A = '▁'
__A = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
__A = {
'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'},
'tokenizer_file': {
'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json'
},
}
__A = {
'google/pegasus-xsum': 512,
}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = VOCAB_FILES_NAMES
lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase = PegasusTokenizer
lowerCamelCase = ['''input_ids''', '''attention_mask''']
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<pad>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<mask_2>" , __UpperCAmelCase="<mask_1>" , __UpperCAmelCase=None , __UpperCAmelCase=1_03 , **__UpperCAmelCase , ) -> Any:
_lowerCAmelCase =offset
if additional_special_tokens is not None:
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
raise TypeError(
f'''additional_special_tokens should be of type {type(__UpperCAmelCase )}, but is'''
f''' {type(__UpperCAmelCase )}''' )
_lowerCAmelCase =(
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
f'''<unk_{i}>''' for i in range(len(__UpperCAmelCase ) , self.offset - 1 )
]
if len(set(__UpperCAmelCase ) ) != len(__UpperCAmelCase ):
raise ValueError(
"""Please make sure that the provided additional_special_tokens do not contain an incorrectly"""
f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' )
_lowerCAmelCase =additional_special_tokens_extended
else:
_lowerCAmelCase =[mask_token_sent] if mask_token_sent is not None else []
additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )]
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , pad_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , mask_token_sent=__UpperCAmelCase , offset=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , )
_lowerCAmelCase =vocab_file
_lowerCAmelCase =False if not self.vocab_file else True
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
_lowerCAmelCase =set(self.all_special_ids ) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special
if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ):
raise ValueError(
"""There should be 3 special tokens: mask_token, pad_token, and eos_token +"""
f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' )
return [1 if x in all_special_ids else 0 for x in seq]
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return self._special_token_mask(__UpperCAmelCase )
elif token_ids_a is None:
return self._special_token_mask(__UpperCAmelCase ) + [1]
else:
return self._special_token_mask(token_ids_a + token_ids_a ) + [1]
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[int]:
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ):
copyfile(self.vocab_file , __UpperCAmelCase )
return (out_vocab_file,)
| 341 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json',
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = '''cvt'''
def __init__( self , __UpperCAmelCase=3 , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[64, 1_92, 3_84] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 10] , __UpperCAmelCase=[4.0, 4.0, 4.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.1] , __UpperCAmelCase=[True, True, True] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , __UpperCAmelCase=[3, 3, 3] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-12 , **__UpperCAmelCase , ) -> Optional[Any]:
super().__init__(**__UpperCAmelCase )
_lowerCAmelCase =num_channels
_lowerCAmelCase =patch_sizes
_lowerCAmelCase =patch_stride
_lowerCAmelCase =patch_padding
_lowerCAmelCase =embed_dim
_lowerCAmelCase =num_heads
_lowerCAmelCase =depth
_lowerCAmelCase =mlp_ratio
_lowerCAmelCase =attention_drop_rate
_lowerCAmelCase =drop_rate
_lowerCAmelCase =drop_path_rate
_lowerCAmelCase =qkv_bias
_lowerCAmelCase =cls_token
_lowerCAmelCase =qkv_projection_method
_lowerCAmelCase =kernel_qkv
_lowerCAmelCase =padding_kv
_lowerCAmelCase =stride_kv
_lowerCAmelCase =padding_q
_lowerCAmelCase =stride_q
_lowerCAmelCase =initializer_range
_lowerCAmelCase =layer_norm_eps
| 341 | 1 |
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = ViTImageProcessor if is_vision_available() else None
@property
def _lowerCAmelCase ( self ) -> List[str]:
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =(3, 32, 1_28)
_lowerCAmelCase =tempfile.mkdtemp()
# fmt: off
_lowerCAmelCase =["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
_lowerCAmelCase =dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
_lowerCAmelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(__UpperCAmelCase ) + """\n""" )
_lowerCAmelCase ={
"""do_normalize""": False,
"""do_resize""": True,
"""image_processor_type""": """ViTImageProcessor""",
"""resample""": 3,
"""size""": {"""height""": 32, """width""": 1_28},
}
_lowerCAmelCase =os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def _lowerCAmelCase ( self , **__UpperCAmelCase ) -> List[Any]:
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def _lowerCAmelCase ( self , **__UpperCAmelCase ) -> Tuple:
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Any:
shutil.rmtree(self.tmpdirname )
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )
_lowerCAmelCase =Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) )
return image_input
def _lowerCAmelCase ( self ) -> Optional[int]:
_lowerCAmelCase =self.get_tokenizer()
_lowerCAmelCase =self.get_image_processor()
_lowerCAmelCase =MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
_lowerCAmelCase =MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Optional[int]:
_lowerCAmelCase =self.get_tokenizer()
_lowerCAmelCase =self.get_image_processor()
_lowerCAmelCase =MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
_lowerCAmelCase =self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
_lowerCAmelCase =self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 )
_lowerCAmelCase =MgpstrProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =self.get_image_processor()
_lowerCAmelCase =self.get_tokenizer()
_lowerCAmelCase =MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
_lowerCAmelCase =self.prepare_image_inputs()
_lowerCAmelCase =image_processor(__UpperCAmelCase , return_tensors="""np""" )
_lowerCAmelCase =processor(images=__UpperCAmelCase , return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =self.get_image_processor()
_lowerCAmelCase =self.get_tokenizer()
_lowerCAmelCase =MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
_lowerCAmelCase ="""test"""
_lowerCAmelCase =processor(text=__UpperCAmelCase )
_lowerCAmelCase =tokenizer(__UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =self.get_image_processor()
_lowerCAmelCase =self.get_tokenizer()
_lowerCAmelCase =MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
_lowerCAmelCase ="""test"""
_lowerCAmelCase =self.prepare_image_inputs()
_lowerCAmelCase =processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =self.get_image_processor()
_lowerCAmelCase =self.get_tokenizer()
_lowerCAmelCase =MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
_lowerCAmelCase =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
_lowerCAmelCase =processor.char_decode(__UpperCAmelCase )
_lowerCAmelCase =tokenizer.batch_decode(__UpperCAmelCase )
_lowerCAmelCase =[seq.replace(""" """ , """""" ) for seq in decoded_tok]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =self.get_image_processor()
_lowerCAmelCase =self.get_tokenizer()
_lowerCAmelCase =MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
_lowerCAmelCase =None
_lowerCAmelCase =self.prepare_image_inputs()
_lowerCAmelCase =processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =self.get_image_processor()
_lowerCAmelCase =self.get_tokenizer()
_lowerCAmelCase =MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
_lowerCAmelCase =torch.randn(1 , 27 , 38 )
_lowerCAmelCase =torch.randn(1 , 27 , 5_02_57 )
_lowerCAmelCase =torch.randn(1 , 27 , 3_05_22 )
_lowerCAmelCase =processor.batch_decode([char_input, bpe_input, wp_input] )
self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
| 341 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = ['''image_processor''', '''tokenizer''']
lowerCamelCase = '''CLIPImageProcessor'''
lowerCamelCase = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''')
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase =None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __UpperCAmelCase , )
_lowerCAmelCase =kwargs.pop("""feature_extractor""" )
_lowerCAmelCase =image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Optional[Any]:
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
_lowerCAmelCase =self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if images is not None:
_lowerCAmelCase =self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is not None and images is not None:
_lowerCAmelCase =image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase )
def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
@property
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =self.tokenizer.model_input_names
_lowerCAmelCase =self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 341 | 1 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_deformable_detr import DeformableDetrImageProcessor
__A = logging.get_logger(__name__)
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None:
warnings.warn(
"""The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use DeformableDetrImageProcessor instead.""" , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 341 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__A = {
'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'],
'tokenization_perceiver': ['PerceiverTokenizer'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ['PerceiverFeatureExtractor']
__A = ['PerceiverImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PerceiverForImageClassificationConvProcessing',
'PerceiverForImageClassificationFourier',
'PerceiverForImageClassificationLearned',
'PerceiverForMaskedLM',
'PerceiverForMultimodalAutoencoding',
'PerceiverForOpticalFlow',
'PerceiverForSequenceClassification',
'PerceiverLayer',
'PerceiverModel',
'PerceiverPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 1 |
"""simple docstring"""
from scipy.stats import pearsonr
import datasets
__A = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n'
__A = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n'
__A = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase__ ( datasets.Metric ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> int:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""float""" ),
"""references""": datasets.Value("""float""" ),
} ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> List[Any]:
if return_pvalue:
_lowerCAmelCase =pearsonr(__UpperCAmelCase , __UpperCAmelCase )
return {"pearsonr": results[0], "p-value": results[1]}
else:
return {"pearsonr": float(pearsonr(__UpperCAmelCase , __UpperCAmelCase )[0] )}
| 341 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A = {
'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST',
'Swinv2ForImageClassification',
'Swinv2ForMaskedImageModeling',
'Swinv2Model',
'Swinv2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 1 |
"""simple docstring"""
import math
from collections.abc import Callable
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> float:
_lowerCAmelCase =xa
_lowerCAmelCase =xa
while True:
if x_n == x_na or function(__UpperCamelCase ) == function(__UpperCamelCase ):
raise ZeroDivisionError("""float division by zero, could not find root""" )
_lowerCAmelCase =x_na - (
function(__UpperCamelCase ) / ((function(__UpperCamelCase ) - function(__UpperCamelCase )) / (x_na - x_n))
)
if abs(x_na - x_na ) < 10**-5:
return x_na
_lowerCAmelCase =x_na
_lowerCAmelCase =x_na
def _lowerCamelCase(__UpperCamelCase ) -> float:
return math.pow(__UpperCamelCase , 3 ) - (2 * x) - 5
if __name__ == "__main__":
print(intersection(f, 3, 3.5))
| 341 |
"""simple docstring"""
import argparse
import json
import torch
from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=1 ) -> Tuple:
if n_shave_prefix_segments >= 0:
return ".".join(path.split(""".""" )[n_shave_prefix_segments:] )
else:
return ".".join(path.split(""".""" )[:n_shave_prefix_segments] )
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=0 ) -> List[str]:
_lowerCAmelCase =[]
for old_item in old_list:
_lowerCAmelCase =old_item.replace("""in_layers.0""" , """norm1""" )
_lowerCAmelCase =new_item.replace("""in_layers.2""" , """conv1""" )
_lowerCAmelCase =new_item.replace("""out_layers.0""" , """norm2""" )
_lowerCAmelCase =new_item.replace("""out_layers.3""" , """conv2""" )
_lowerCAmelCase =new_item.replace("""emb_layers.1""" , """time_emb_proj""" )
_lowerCAmelCase =new_item.replace("""skip_connection""" , """conv_shortcut""" )
_lowerCAmelCase =shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=0 ) -> Tuple:
_lowerCAmelCase =[]
for old_item in old_list:
_lowerCAmelCase =old_item
_lowerCAmelCase =new_item.replace("""norm.weight""" , """group_norm.weight""" )
_lowerCAmelCase =new_item.replace("""norm.bias""" , """group_norm.bias""" )
_lowerCAmelCase =new_item.replace("""proj_out.weight""" , """proj_attn.weight""" )
_lowerCAmelCase =new_item.replace("""proj_out.bias""" , """proj_attn.bias""" )
_lowerCAmelCase =shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None ) -> Optional[int]:
assert isinstance(__UpperCamelCase , __UpperCamelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
_lowerCAmelCase =old_checkpoint[path]
_lowerCAmelCase =old_tensor.shape[0] // 3
_lowerCAmelCase =(-1, channels) if len(old_tensor.shape ) == 3 else (-1)
_lowerCAmelCase =old_tensor.shape[0] // config["""num_head_channels"""] // 3
_lowerCAmelCase =old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =old_tensor.split(channels // num_heads , dim=1 )
_lowerCAmelCase =query.reshape(__UpperCamelCase )
_lowerCAmelCase =key.reshape(__UpperCamelCase )
_lowerCAmelCase =value.reshape(__UpperCamelCase )
for path in paths:
_lowerCAmelCase =path["""new"""]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
_lowerCAmelCase =new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" )
_lowerCAmelCase =new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" )
_lowerCAmelCase =new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" )
if additional_replacements is not None:
for replacement in additional_replacements:
_lowerCAmelCase =new_path.replace(replacement["""old"""] , replacement["""new"""] )
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
_lowerCAmelCase =old_checkpoint[path["""old"""]][:, :, 0]
else:
_lowerCAmelCase =old_checkpoint[path["""old"""]]
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Optional[Any]:
_lowerCAmelCase ={}
_lowerCAmelCase =checkpoint["""time_embed.0.weight"""]
_lowerCAmelCase =checkpoint["""time_embed.0.bias"""]
_lowerCAmelCase =checkpoint["""time_embed.2.weight"""]
_lowerCAmelCase =checkpoint["""time_embed.2.bias"""]
_lowerCAmelCase =checkpoint["""input_blocks.0.0.weight"""]
_lowerCAmelCase =checkpoint["""input_blocks.0.0.bias"""]
_lowerCAmelCase =checkpoint["""out.0.weight"""]
_lowerCAmelCase =checkpoint["""out.0.bias"""]
_lowerCAmelCase =checkpoint["""out.2.weight"""]
_lowerCAmelCase =checkpoint["""out.2.bias"""]
# Retrieves the keys for the input blocks only
_lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} )
_lowerCAmelCase ={
layer_id: [key for key in checkpoint if F'''input_blocks.{layer_id}''' in key]
for layer_id in range(__UpperCamelCase )
}
# Retrieves the keys for the middle blocks only
_lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} )
_lowerCAmelCase ={
layer_id: [key for key in checkpoint if F'''middle_block.{layer_id}''' in key]
for layer_id in range(__UpperCamelCase )
}
# Retrieves the keys for the output blocks only
_lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} )
_lowerCAmelCase ={
layer_id: [key for key in checkpoint if F'''output_blocks.{layer_id}''' in key]
for layer_id in range(__UpperCamelCase )
}
for i in range(1 , __UpperCamelCase ):
_lowerCAmelCase =(i - 1) // (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =(i - 1) % (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =[key for key in input_blocks[i] if F'''input_blocks.{i}.0''' in key]
_lowerCAmelCase =[key for key in input_blocks[i] if F'''input_blocks.{i}.1''' in key]
if F'''input_blocks.{i}.0.op.weight''' in checkpoint:
_lowerCAmelCase =checkpoint[
F'''input_blocks.{i}.0.op.weight'''
]
_lowerCAmelCase =checkpoint[
F'''input_blocks.{i}.0.op.bias'''
]
continue
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
_lowerCAmelCase ={"""old""": F'''input_blocks.{i}.0''', """new""": F'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''}
_lowerCAmelCase ={"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path, resnet_op] , config=__UpperCamelCase )
if len(__UpperCamelCase ):
_lowerCAmelCase =renew_attention_paths(__UpperCamelCase )
_lowerCAmelCase ={
"""old""": F'''input_blocks.{i}.1''',
"""new""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}''',
}
_lowerCAmelCase ={
F'''input_blocks.{i}.1.qkv.bias''': {
"""key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''',
"""query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''',
"""value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''',
},
F'''input_blocks.{i}.1.qkv.weight''': {
"""key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''',
"""query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''',
"""value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''',
},
}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase , )
_lowerCAmelCase =middle_blocks[0]
_lowerCAmelCase =middle_blocks[1]
_lowerCAmelCase =middle_blocks[2]
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase )
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase )
_lowerCAmelCase =renew_attention_paths(__UpperCamelCase )
_lowerCAmelCase ={
"""middle_block.1.qkv.bias""": {
"""key""": """mid_block.attentions.0.key.bias""",
"""query""": """mid_block.attentions.0.query.bias""",
"""value""": """mid_block.attentions.0.value.bias""",
},
"""middle_block.1.qkv.weight""": {
"""key""": """mid_block.attentions.0.key.weight""",
"""query""": """mid_block.attentions.0.query.weight""",
"""value""": """mid_block.attentions.0.value.weight""",
},
}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase )
for i in range(__UpperCamelCase ):
_lowerCAmelCase =i // (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =i % (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =[shave_segments(__UpperCamelCase , 2 ) for name in output_blocks[i]]
_lowerCAmelCase ={}
for layer in output_block_layers:
_lowerCAmelCase , _lowerCAmelCase =layer.split(""".""" )[0], shave_segments(__UpperCamelCase , 1 )
if layer_id in output_block_list:
output_block_list[layer_id].append(__UpperCamelCase )
else:
_lowerCAmelCase =[layer_name]
if len(__UpperCamelCase ) > 1:
_lowerCAmelCase =[key for key in output_blocks[i] if F'''output_blocks.{i}.0''' in key]
_lowerCAmelCase =[key for key in output_blocks[i] if F'''output_blocks.{i}.1''' in key]
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
_lowerCAmelCase ={"""old""": F'''output_blocks.{i}.0''', """new""": F'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''}
assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase )
if ["conv.weight", "conv.bias"] in output_block_list.values():
_lowerCAmelCase =list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] )
_lowerCAmelCase =checkpoint[
F'''output_blocks.{i}.{index}.conv.weight'''
]
_lowerCAmelCase =checkpoint[
F'''output_blocks.{i}.{index}.conv.bias'''
]
# Clear attentions as they have been attributed above.
if len(__UpperCamelCase ) == 2:
_lowerCAmelCase =[]
if len(__UpperCamelCase ):
_lowerCAmelCase =renew_attention_paths(__UpperCamelCase )
_lowerCAmelCase ={
"""old""": F'''output_blocks.{i}.1''',
"""new""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}''',
}
_lowerCAmelCase ={
F'''output_blocks.{i}.1.qkv.bias''': {
"""key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''',
"""query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''',
"""value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''',
},
F'''output_blocks.{i}.1.qkv.weight''': {
"""key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''',
"""query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''',
"""value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''',
},
}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=__UpperCamelCase , )
else:
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase , n_shave_prefix_segments=1 )
for path in resnet_0_paths:
_lowerCAmelCase =""".""".join(["""output_blocks""", str(__UpperCamelCase ), path["""old"""]] )
_lowerCAmelCase =""".""".join(["""up_blocks""", str(__UpperCamelCase ), """resnets""", str(__UpperCamelCase ), path["""new"""]] )
_lowerCAmelCase =checkpoint[old_path]
return new_checkpoint
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the architecture.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
__A = parser.parse_args()
__A = torch.load(args.checkpoint_path)
with open(args.config_file) as f:
__A = json.loads(f.read())
__A = convert_ldm_checkpoint(checkpoint, config)
if "ldm" in config:
del config["ldm"]
__A = UNetaDModel(**config)
model.load_state_dict(converted_checkpoint)
try:
__A = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1]))
__A = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1]))
__A = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae)
pipe.save_pretrained(args.dump_path)
except: # noqa: E722
model.save_pretrained(args.dump_path)
| 341 | 1 |
"""simple docstring"""
import os
import pytest
from transformers.dynamic_module_utils import get_imports
__A = '\nimport os\n'
__A = '\ndef foo():\n import os\n return False\n'
__A = '\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n'
__A = '\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n'
__A = '\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n'
__A = '\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n'
__A = '\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n'
__A = '\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n'
__A = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n'
__A = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n'
__A = [
TOP_LEVEL_IMPORT,
IMPORT_IN_FUNCTION,
DEEPLY_NESTED_IMPORT,
TOP_LEVEL_TRY_IMPORT,
GENERIC_EXCEPT_IMPORT,
MULTILINE_TRY_IMPORT,
MULTILINE_BOTH_IMPORT,
MULTIPLE_EXCEPTS_IMPORT,
EXCEPT_AS_IMPORT,
TRY_IMPORT_IN_FUNCTION,
]
@pytest.mark.parametrize("""case""" , __UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Any:
_lowerCAmelCase =os.path.join(__UpperCamelCase , """test_file.py""" )
with open(__UpperCamelCase , """w""" ) as _tmp_file:
_tmp_file.write(__UpperCamelCase )
_lowerCAmelCase =get_imports(__UpperCamelCase )
assert parsed_imports == ["os"]
| 341 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase ) -> Optional[Any]:
_lowerCAmelCase =0
_lowerCAmelCase =len(__UpperCamelCase )
for i in range(n - 1 ):
for j in range(i + 1 , __UpperCamelCase ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def _lowerCamelCase(__UpperCamelCase ) -> List[Any]:
if len(__UpperCamelCase ) <= 1:
return arr, 0
_lowerCAmelCase =len(__UpperCamelCase ) // 2
_lowerCAmelCase =arr[0:mid]
_lowerCAmelCase =arr[mid:]
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =_count_cross_inversions(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =inversion_p + inversions_q + cross_inversions
return c, num_inversions
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Any:
_lowerCAmelCase =[]
_lowerCAmelCase =_lowerCAmelCase =_lowerCAmelCase =0
while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(__UpperCamelCase ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(__UpperCamelCase ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def _lowerCamelCase() -> str:
_lowerCAmelCase =[10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 8
print("""number of inversions = """ , __UpperCamelCase )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , __UpperCamelCase )
# an empty list should also have zero inversions
_lowerCAmelCase =[]
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , __UpperCamelCase )
if __name__ == "__main__":
main()
| 341 | 1 |
"""simple docstring"""
from __future__ import annotations
from math import pi
from typing import Protocol
import matplotlib.pyplot as plt
import numpy as np
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> float:
return 0.0
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> tuple[int | float, int | float]:
_lowerCAmelCase =min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] )
_lowerCAmelCase =max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] )
return lowest, highest
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> None:
_lowerCAmelCase =512
_lowerCAmelCase =[1] + [0] * (size - 1)
_lowerCAmelCase =[filter_type.process(__UpperCamelCase ) for item in inputs]
_lowerCAmelCase =[0] * (samplerate - size) # zero-padding
outputs += filler
_lowerCAmelCase =np.abs(np.fft.fft(__UpperCamelCase ) )
_lowerCAmelCase =20 * np.logaa(__UpperCamelCase )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel("""Frequency (Hz)""" )
plt.xscale("""log""" )
# Display within reasonable bounds
_lowerCAmelCase =get_bounds(__UpperCamelCase , __UpperCamelCase )
plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) )
plt.ylabel("""Gain (dB)""" )
plt.plot(__UpperCamelCase )
plt.show()
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> None:
_lowerCAmelCase =512
_lowerCAmelCase =[1] + [0] * (size - 1)
_lowerCAmelCase =[filter_type.process(__UpperCamelCase ) for item in inputs]
_lowerCAmelCase =[0] * (samplerate - size) # zero-padding
outputs += filler
_lowerCAmelCase =np.angle(np.fft.fft(__UpperCamelCase ) )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel("""Frequency (Hz)""" )
plt.xscale("""log""" )
plt.ylim(-2 * pi , 2 * pi )
plt.ylabel("""Phase shift (Radians)""" )
plt.plot(np.unwrap(__UpperCamelCase , -2 * pi ) )
plt.show()
| 341 |
"""simple docstring"""
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = None
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = None
lowerCamelCase = None
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = True
lowerCamelCase = None
lowerCamelCase = 1
lowerCamelCase = None
lowerCamelCase = False
lowerCamelCase = None
lowerCamelCase = None
def _lowerCAmelCase ( self ) -> "DownloadConfig":
return self.__class__(**{k: copy.deepcopy(__UpperCAmelCase ) for k, v in self.__dict__.items()} )
| 341 | 1 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> int:
_lowerCAmelCase =1 # To kept the Calculated Value
# Since C(n, k) = C(n, n-k)
if k > (n - k):
_lowerCAmelCase =n - k
# Calculate C(n,k)
for i in range(__UpperCamelCase ):
result *= n - i
result //= i + 1
return result
def _lowerCamelCase(__UpperCamelCase ) -> int:
return binomial_coefficient(2 * node_count , __UpperCamelCase ) // (node_count + 1)
def _lowerCamelCase(__UpperCamelCase ) -> int:
if n < 0:
raise ValueError("""factorial() not defined for negative values""" )
_lowerCAmelCase =1
for i in range(1 , n + 1 ):
result *= i
return result
def _lowerCamelCase(__UpperCamelCase ) -> int:
return catalan_number(__UpperCamelCase ) * factorial(__UpperCamelCase )
if __name__ == "__main__":
__A = int(input('Enter the number of nodes: ').strip() or 0)
if node_count <= 0:
raise ValueError('We need some nodes to work with.')
print(
F"""Given {node_count} nodes, there are {binary_tree_count(node_count)} """
F"""binary trees and {catalan_number(node_count)} binary search trees."""
)
| 341 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> int:
return int((input_a, input_a).count(1 ) != 0 )
def _lowerCamelCase() -> None:
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 341 | 1 |
"""simple docstring"""
import argparse
import torch
from torch import nn
from transformers import MBartConfig, MBartForConditionalGeneration
def _lowerCamelCase(__UpperCamelCase ) -> List[str]:
_lowerCAmelCase =[
"""encoder.version""",
"""decoder.version""",
"""model.encoder.version""",
"""model.decoder.version""",
"""_float_tensor""",
"""decoder.output_projection.weight""",
]
for k in ignore_keys:
state_dict.pop(__UpperCamelCase , __UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase ) -> Any:
_lowerCAmelCase , _lowerCAmelCase =emb.weight.shape
_lowerCAmelCase =nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase )
_lowerCAmelCase =emb.weight.data
return lin_layer
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase="facebook/mbart-large-en-ro" , __UpperCamelCase=False , __UpperCamelCase=False ) -> str:
_lowerCAmelCase =torch.load(__UpperCamelCase , map_location="""cpu""" )["""model"""]
remove_ignore_keys_(__UpperCamelCase )
_lowerCAmelCase =state_dict["""encoder.embed_tokens.weight"""].shape[0]
_lowerCAmelCase =MBartConfig.from_pretrained(__UpperCamelCase , vocab_size=__UpperCamelCase )
if mbart_aa and finetuned:
_lowerCAmelCase ="""relu"""
_lowerCAmelCase =state_dict["""decoder.embed_tokens.weight"""]
_lowerCAmelCase =MBartForConditionalGeneration(__UpperCamelCase )
model.model.load_state_dict(__UpperCamelCase )
if finetuned:
_lowerCAmelCase =make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
__A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.'
)
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument(
'--hf_config',
default='facebook/mbart-large-cc25',
type=str,
help='Which huggingface architecture to use: mbart-large',
)
parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint')
parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint')
__A = parser.parse_args()
__A = convert_fairseq_mbart_checkpoint_from_disk(
args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa
)
model.save_pretrained(args.pytorch_dump_folder_path)
| 341 |
"""simple docstring"""
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
__A = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n'
__A = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n'
__A = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase__ ( datasets.Metric ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> Any:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ),
"""references""": datasets.Sequence(
datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/BLEU""",
"""https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""",
] , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=4 , __UpperCAmelCase=False ) -> Tuple:
_lowerCAmelCase =compute_bleu(
reference_corpus=__UpperCAmelCase , translation_corpus=__UpperCAmelCase , max_order=__UpperCAmelCase , smooth=__UpperCAmelCase )
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) =score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 341 | 1 |
"""simple docstring"""
import socket
def _lowerCamelCase() -> Any:
_lowerCAmelCase =socket.socket(socket.AF_INET , socket.SOCK_STREAM )
_lowerCAmelCase =socket.gethostname()
_lowerCAmelCase =12312
sock.connect((host, port) )
sock.send(b"""Hello server!""" )
with open("""Received_file""" , """wb""" ) as out_file:
print("""File opened""" )
print("""Receiving data...""" )
while True:
_lowerCAmelCase =sock.recv(1024 )
if not data:
break
out_file.write(__UpperCamelCase )
print("""Successfully received the file""" )
sock.close()
print("""Connection closed""" )
if __name__ == "__main__":
main()
| 341 |
"""simple docstring"""
import argparse
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
parser.add_argument(
'--original_config_file',
type=str,
required=True,
help='The YAML config file corresponding to the original architecture.',
)
parser.add_argument(
'--num_in_channels',
default=None,
type=int,
help='The number of input channels. If `None` number of input channels will be automatically inferred.',
)
parser.add_argument(
'--image_size',
default=512,
type=int,
help=(
'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2'
' Base. Use 768 for Stable Diffusion v2.'
),
)
parser.add_argument(
'--extract_ema',
action='store_true',
help=(
'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights'
' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield'
' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.'
),
)
parser.add_argument(
'--upcast_attention',
action='store_true',
help=(
'Whether the attention computation should always be upcasted. This is necessary when running stable'
' diffusion 2.1.'
),
)
parser.add_argument(
'--from_safetensors',
action='store_true',
help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.',
)
parser.add_argument(
'--to_safetensors',
action='store_true',
help='Whether to store pipeline in safetensors format or not.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)')
def _lowerCamelCase(__UpperCamelCase ) -> List[str]:
if string == "True":
return True
elif string == "False":
return False
else:
raise ValueError(F'''could not parse string as bool {string}''' )
parser.add_argument(
'--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool
)
parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int)
__A = parser.parse_args()
__A = download_controlnet_from_original_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
extract_ema=args.extract_ema,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
use_linear_projection=args.use_linear_projection,
cross_attention_dim=args.cross_attention_dim,
)
controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 341 | 1 |
"""simple docstring"""
from __future__ import annotations
__A = 'Muhammad Umer Farooq'
__A = 'MIT'
__A = '1.0.0'
__A = 'Muhammad Umer Farooq'
__A = '[email protected]'
__A = 'Alpha'
import re
from html.parser import HTMLParser
from urllib import parse
import requests
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase ) -> None:
super().__init__()
_lowerCAmelCase =[]
_lowerCAmelCase =domain
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None:
# Only parse the 'anchor' tag.
if tag == "a":
# Check the list of defined attributes.
for name, value in attrs:
# If href is defined, and not empty nor # print it.
if name == "href" and value != "#" and value != "":
# If not already in urls.
if value not in self.urls:
_lowerCAmelCase =parse.urljoin(self.domain , __UpperCAmelCase )
self.urls.append(__UpperCAmelCase )
def _lowerCamelCase(__UpperCamelCase ) -> str:
return ".".join(get_sub_domain_name(__UpperCamelCase ).split(""".""" )[-2:] )
def _lowerCamelCase(__UpperCamelCase ) -> str:
return parse.urlparse(__UpperCamelCase ).netloc
def _lowerCamelCase(__UpperCamelCase = "https://github.com" ) -> list[str]:
_lowerCAmelCase =get_domain_name(__UpperCamelCase )
# Initialize the parser
_lowerCAmelCase =Parser(__UpperCamelCase )
try:
# Open URL
_lowerCAmelCase =requests.get(__UpperCamelCase )
# pass the raw HTML to the parser to get links
parser.feed(r.text )
# Get links and loop through
_lowerCAmelCase =set()
for link in parser.urls:
# open URL.
# read = requests.get(link)
try:
_lowerCAmelCase =requests.get(__UpperCamelCase )
# Get the valid email.
_lowerCAmelCase =re.findall("""[a-zA-Z0-9]+@""" + domain , read.text )
# If not in list then append it.
for email in emails:
valid_emails.add(__UpperCamelCase )
except ValueError:
pass
except ValueError:
raise SystemExit(1 )
# Finally return a sorted list of email addresses with no duplicates.
return sorted(__UpperCamelCase )
if __name__ == "__main__":
__A = emails_from_url('https://github.com')
print(F"""{len(emails)} emails found:""")
print('\n'.join(sorted(emails)))
| 341 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available
__A = {
'configuration_audio_spectrogram_transformer': [
'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'ASTConfig',
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'ASTForAudioClassification',
'ASTModel',
'ASTPreTrainedModel',
]
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ['ASTFeatureExtractor']
if TYPE_CHECKING:
from .configuration_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
ASTConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ASTForAudioClassification,
ASTModel,
ASTPreTrainedModel,
)
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
__A = logging.get_logger(__name__)
__A = {
'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json',
'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json',
'microsoft/deberta-v2-xlarge-mnli': (
'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json'
),
'microsoft/deberta-v2-xxlarge-mnli': (
'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json'
),
}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = '''deberta-v2'''
def __init__( self , __UpperCAmelCase=12_81_00 , __UpperCAmelCase=15_36 , __UpperCAmelCase=24 , __UpperCAmelCase=24 , __UpperCAmelCase=61_44 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=0 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-7 , __UpperCAmelCase=False , __UpperCAmelCase=-1 , __UpperCAmelCase=0 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=0 , __UpperCAmelCase="gelu" , **__UpperCAmelCase , ) -> Tuple:
super().__init__(**__UpperCAmelCase )
_lowerCAmelCase =hidden_size
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =intermediate_size
_lowerCAmelCase =hidden_act
_lowerCAmelCase =hidden_dropout_prob
_lowerCAmelCase =attention_probs_dropout_prob
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =type_vocab_size
_lowerCAmelCase =initializer_range
_lowerCAmelCase =relative_attention
_lowerCAmelCase =max_relative_positions
_lowerCAmelCase =pad_token_id
_lowerCAmelCase =position_biased_input
# Backwards compatibility
if type(__UpperCAmelCase ) == str:
_lowerCAmelCase =[x.strip() for x in pos_att_type.lower().split("""|""" )]
_lowerCAmelCase =pos_att_type
_lowerCAmelCase =vocab_size
_lowerCAmelCase =layer_norm_eps
_lowerCAmelCase =kwargs.get("""pooler_hidden_size""" , __UpperCAmelCase )
_lowerCAmelCase =pooler_dropout
_lowerCAmelCase =pooler_hidden_act
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
@property
def _lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
_lowerCAmelCase ={0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_lowerCAmelCase ={0: """batch""", 1: """sequence"""}
if self._config.type_vocab_size > 0:
return OrderedDict(
[("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] )
else:
return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] )
@property
def _lowerCAmelCase ( self ) -> int:
return 12
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = 3 , __UpperCAmelCase = 40 , __UpperCAmelCase = 40 , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
_lowerCAmelCase =super().generate_dummy_inputs(preprocessor=__UpperCAmelCase , framework=__UpperCAmelCase )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 341 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__A = {
'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'],
'tokenization_m2m_100': ['M2M100Tokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST',
'M2M100ForConditionalGeneration',
'M2M100Model',
'M2M100PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 1 |
"""simple docstring"""
import qiskit
def _lowerCamelCase(__UpperCamelCase = 2 ) -> qiskit.result.counts.Counts:
_lowerCAmelCase =qubits
# Using Aer's simulator
_lowerCAmelCase =qiskit.Aer.get_backend("""aer_simulator""" )
# Creating a Quantum Circuit acting on the q register
_lowerCAmelCase =qiskit.QuantumCircuit(__UpperCamelCase , __UpperCamelCase )
# Adding a H gate on qubit 0 (now q0 in superposition)
circuit.h(0 )
for i in range(1 , __UpperCamelCase ):
# Adding CX (CNOT) gate
circuit.cx(i - 1 , __UpperCamelCase )
# Mapping the quantum measurement to the classical bits
circuit.measure(list(range(__UpperCamelCase ) ) , list(range(__UpperCamelCase ) ) )
# Now measuring any one qubit would affect other qubits to collapse
# their super position and have same state as the measured one.
# Executing the circuit on the simulator
_lowerCAmelCase =qiskit.execute(__UpperCamelCase , __UpperCamelCase , shots=1000 )
return job.result().get_counts(__UpperCamelCase )
if __name__ == "__main__":
print(F"""Total count for various states are: {quantum_entanglement(3)}""")
| 341 |
"""simple docstring"""
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
__A = datasets.logging.get_logger(__name__)
__A = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n'
__A = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n'
__A = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n'
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase="dummy_doc" ) -> Dict:
_lowerCAmelCase ={doc: key_lines}
_lowerCAmelCase ={doc: sys_lines}
_lowerCAmelCase ={}
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase , _lowerCAmelCase =reader.get_doc_mentions(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase )
key_singletons_num += singletons_num
if NP_only or min_span:
_lowerCAmelCase =reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =reader.get_doc_mentions(__UpperCamelCase , sys_doc_lines[doc] , __UpperCamelCase )
sys_singletons_num += singletons_num
if NP_only or min_span:
_lowerCAmelCase =reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase )
if remove_nested:
_lowerCAmelCase , _lowerCAmelCase =reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
_lowerCAmelCase , _lowerCAmelCase =reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
_lowerCAmelCase =reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =(key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
"""Number of removed nested coreferring mentions in the key """
F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' )
logger.info(
"""Number of resulting singleton clusters in the key """
F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' )
if not keep_singletons:
logger.info(
F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system '''
"""files, respectively""" )
return doc_coref_infos
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int:
_lowerCAmelCase =get_coref_infos(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase ={}
_lowerCAmelCase =0
_lowerCAmelCase =0
for name, metric in metrics:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =evaluator.evaluate_documents(__UpperCamelCase , __UpperCamelCase , beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} )
logger.info(
name.ljust(10 ) , F'''Recall: {recall * 100:.2f}''' , F''' Precision: {precision * 100:.2f}''' , F''' F1: {fa * 100:.2f}''' , )
if conll_subparts_num == 3:
_lowerCAmelCase =(conll / 3) * 100
logger.info(F'''CoNLL score: {conll:.2f}''' )
output_scores.update({"""conll_score""": conll} )
return output_scores
def _lowerCamelCase(__UpperCamelCase ) -> Tuple:
_lowerCAmelCase =False
for line in key_lines:
if not line.startswith("""#""" ):
if len(line.split() ) > 6:
_lowerCAmelCase =line.split()[5]
if not parse_col == "-":
_lowerCAmelCase =True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase__ ( datasets.Metric ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> str:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Sequence(datasets.Value("""string""" ) ),
} ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[
"""https://github.com/ns-moosavi/coval""",
"""https://www.aclweb.org/anthology/P16-1060""",
"""http://www.conll.cemantix.org/2012/data.html""",
] , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False ) -> Optional[Any]:
_lowerCAmelCase =[
("""mentions""", evaluator.mentions),
("""muc""", evaluator.muc),
("""bcub""", evaluator.b_cubed),
("""ceafe""", evaluator.ceafe),
("""lea""", evaluator.lea),
]
if min_span:
_lowerCAmelCase =util.check_gold_parse_annotation(__UpperCAmelCase )
if not has_gold_parse:
raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" )
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
_lowerCAmelCase =evaluate(
key_lines=__UpperCAmelCase , sys_lines=__UpperCAmelCase , metrics=__UpperCAmelCase , NP_only=__UpperCAmelCase , remove_nested=__UpperCAmelCase , keep_singletons=__UpperCAmelCase , min_span=__UpperCAmelCase , )
return score
| 341 | 1 |
"""simple docstring"""
import asyncio
import os
import shutil
import subprocess
import sys
import tempfile
import unittest
from distutils.util import strtobool
from functools import partial
from pathlib import Path
from typing import List, Union
from unittest import mock
import torch
from ..state import AcceleratorState, PartialState
from ..utils import (
gather,
is_bnb_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_mps_available,
is_safetensors_available,
is_tensorboard_available,
is_torch_version,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=False ) -> int:
try:
_lowerCAmelCase =os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
_lowerCAmelCase =default
else:
# KEY is set, convert it to True or False.
try:
_lowerCAmelCase =strtobool(__UpperCamelCase )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(F'''If set, {key} must be yes or no.''' )
return _value
__A = parse_flag_from_env('RUN_SLOW', default=False)
def _lowerCamelCase(__UpperCamelCase ) -> Any:
return unittest.skip("""Test was skipped""" )(__UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase ) -> Dict:
return unittest.skipUnless(_run_slow_tests , """test is slow""" )(__UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase ) -> Union[str, Any]:
return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""" )(__UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase ) -> List[str]:
return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""" )(__UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase ) -> Tuple:
return unittest.skipUnless(is_xpu_available() , """test requires a XPU""" )(__UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase ) -> str:
return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""" )(__UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase ) -> Dict:
return unittest.skipUnless(
is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""" )(__UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase ) -> Tuple:
return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""" )(__UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase ) -> List[Any]:
return unittest.skipUnless(is_tpu_available() , """test requires TPU""" )(__UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase ) -> Union[str, Any]:
return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""" )(__UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase ) -> Tuple:
return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""" )(__UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase ) -> List[str]:
return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""" )(__UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase ) -> Dict:
return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""" )(__UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase ) -> str:
return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""" )(__UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase ) -> Tuple:
return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""" )(__UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase ) -> Union[str, Any]:
return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""" ) , """test requires torch version >= 1.12.0""" )(__UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase=None , __UpperCamelCase=None ) -> Optional[Any]:
if test_case is None:
return partial(__UpperCamelCase , version=__UpperCamelCase )
return unittest.skipUnless(is_torch_version(""">=""" , __UpperCamelCase ) , F'''test requires torch version >= {version}''' )(__UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase ) -> Tuple:
return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""" )(__UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase ) -> Dict:
return unittest.skipUnless(is_wandb_available() , """test requires wandb""" )(__UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase ) -> Optional[int]:
return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""" )(__UpperCamelCase )
__A = (
any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available()
)
def _lowerCamelCase(__UpperCamelCase ) -> List[str]:
return unittest.skipUnless(
_atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(__UpperCamelCase )
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = True
@classmethod
def _lowerCAmelCase ( cls ) -> Any:
_lowerCAmelCase =tempfile.mkdtemp()
@classmethod
def _lowerCAmelCase ( cls ) -> Optional[int]:
if os.path.exists(cls.tmpdir ):
shutil.rmtree(cls.tmpdir )
def _lowerCAmelCase ( self ) -> List[Any]:
if self.clear_on_setup:
for path in Path(self.tmpdir ).glob("""**/*""" ):
if path.is_file():
path.unlink()
elif path.is_dir():
shutil.rmtree(__UpperCAmelCase )
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> List[Any]:
super().tearDown()
# Reset the state of the AcceleratorState singleton.
AcceleratorState._reset_state()
PartialState._reset_state()
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> str:
_lowerCAmelCase =mocks if isinstance(__UpperCAmelCase , (tuple, list) ) else [mocks]
for m in self.mocks:
m.start()
self.addCleanup(m.stop )
def _lowerCamelCase(__UpperCamelCase ) -> List[Any]:
_lowerCAmelCase =AcceleratorState()
_lowerCAmelCase =tensor[None].clone().to(state.device )
_lowerCAmelCase =gather(__UpperCamelCase ).cpu()
_lowerCAmelCase =tensor[0].cpu()
for i in range(tensors.shape[0] ):
if not torch.equal(tensors[i] , __UpperCamelCase ):
return False
return True
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
_lowerCAmelCase =returncode
_lowerCAmelCase =stdout
_lowerCAmelCase =stderr
async def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]:
while True:
_lowerCAmelCase =await stream.readline()
if line:
callback(__UpperCamelCase )
else:
break
async def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=False , __UpperCamelCase=False ) -> _RunOutput:
if echo:
print("""\nRunning: """ , """ """.join(__UpperCamelCase ) )
_lowerCAmelCase =await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=__UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCamelCase , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
_lowerCAmelCase =[]
_lowerCAmelCase =[]
def tee(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase="" ):
_lowerCAmelCase =line.decode("""utf-8""" ).rstrip()
sink.append(__UpperCamelCase )
if not quiet:
print(__UpperCamelCase , __UpperCamelCase , file=__UpperCamelCase )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
asyncio.create_task(_read_stream(p.stdout , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stdout , label="""stdout:""" ) ) ),
asyncio.create_task(_read_stream(p.stderr , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stderr , label="""stderr:""" ) ) ),
] , timeout=__UpperCamelCase , )
return _RunOutput(await p.wait() , __UpperCamelCase , __UpperCamelCase )
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=180 , __UpperCamelCase=False , __UpperCamelCase=True ) -> _RunOutput:
_lowerCAmelCase =asyncio.get_event_loop()
_lowerCAmelCase =loop.run_until_complete(
_stream_subprocess(__UpperCamelCase , env=__UpperCamelCase , stdin=__UpperCamelCase , timeout=__UpperCamelCase , quiet=__UpperCamelCase , echo=__UpperCamelCase ) )
_lowerCAmelCase =""" """.join(__UpperCamelCase )
if result.returncode > 0:
_lowerCAmelCase ="""\n""".join(result.stderr )
raise RuntimeError(
F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n'''
F'''The combined stderr from workers follows:\n{stderr}''' )
return result
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
pass
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=False ) -> int:
try:
_lowerCAmelCase =subprocess.check_output(__UpperCamelCase , stderr=subprocess.STDOUT )
if return_stdout:
if hasattr(__UpperCamelCase , """decode""" ):
_lowerCAmelCase =output.decode("""utf-8""" )
return output
except subprocess.CalledProcessError as e:
raise SubprocessCallException(
F'''Command `{' '.join(__UpperCamelCase )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
| 341 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = XGLMConfig
lowerCamelCase = {}
lowerCamelCase = '''gelu'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=0.0_2 , ) -> List[str]:
_lowerCAmelCase =parent
_lowerCAmelCase =batch_size
_lowerCAmelCase =seq_length
_lowerCAmelCase =is_training
_lowerCAmelCase =use_input_mask
_lowerCAmelCase =use_labels
_lowerCAmelCase =vocab_size
_lowerCAmelCase =d_model
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =ffn_dim
_lowerCAmelCase =activation_function
_lowerCAmelCase =activation_dropout
_lowerCAmelCase =attention_dropout
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =initializer_range
_lowerCAmelCase =None
_lowerCAmelCase =0
_lowerCAmelCase =2
_lowerCAmelCase =1
def _lowerCAmelCase ( self ) -> Dict:
return XGLMConfig.from_pretrained("""facebook/xglm-564M""" )
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
_lowerCAmelCase =None
if self.use_input_mask:
_lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length] )
_lowerCAmelCase =self.get_config()
_lowerCAmelCase =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowerCAmelCase ( self ) -> str:
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__UpperCAmelCase , )
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =self.prepare_config_and_inputs()
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) =config_and_inputs
_lowerCAmelCase ={
"""input_ids""": input_ids,
"""head_mask""": head_mask,
}
return config, inputs_dict
@require_tf
class lowerCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
lowerCamelCase = (TFXGLMForCausalLM,) if is_tf_available() else ()
lowerCamelCase = (
{'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {}
)
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =TFXGLMModelTester(self )
_lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase , n_embd=37 )
def _lowerCAmelCase ( self ) -> int:
self.config_tester.run_common_tests()
@slow
def _lowerCAmelCase ( self ) -> Union[str, Any]:
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase =TFXGLMModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" )
def _lowerCAmelCase ( self ) -> Union[str, Any]:
super().test_resize_token_embeddings()
@require_tf
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def _lowerCAmelCase ( self , __UpperCAmelCase=True ) -> str:
_lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase =tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
_lowerCAmelCase =[2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81]
# fmt: on
_lowerCAmelCase =model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , __UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
tf.random.set_seed(0 )
_lowerCAmelCase =tokenizer("""Today is a nice day and""" , return_tensors="""tf""" )
_lowerCAmelCase =tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(""":/CPU:0""" ):
_lowerCAmelCase =model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , seed=[7, 0] )
_lowerCAmelCase =tokenizer.decode(output_ids[0] , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =(
"""Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"""
)
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase ="""left"""
# use different length sentences to test batching
_lowerCAmelCase =[
"""This is an extremelly long sentence that only exists to test the ability of the model to cope with """
"""left-padding, such as in batched generation. The output for the sequence below should be the same """
"""regardless of whether left padding is applied or not. When""",
"""Hello, my dog is a little""",
]
_lowerCAmelCase =tokenizer(__UpperCAmelCase , return_tensors="""tf""" , padding=__UpperCAmelCase )
_lowerCAmelCase =inputs["""input_ids"""]
_lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 )
_lowerCAmelCase =tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids
_lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 )
_lowerCAmelCase =tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids
_lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 )
_lowerCAmelCase =tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =tokenizer.decode(output_non_padded[0] , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =tokenizer.decode(output_padded[0] , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =[
"""This is an extremelly long sentence that only exists to test the ability of the model to cope with """
"""left-padding, such as in batched generation. The output for the sequence below should be the same """
"""regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """
"""a single""",
"""Hello, my dog is a little bit of a shy one, but he is very friendly""",
]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , [non_padded_sentence, padded_sentence] )
| 341 | 1 |
"""simple docstring"""
import pytest
from datasets.parallel import ParallelBackendConfig, parallel_backend
from datasets.utils.py_utils import map_nested
from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows
def _lowerCamelCase(__UpperCamelCase ) -> List[Any]: # picklable for multiprocessing
return i + 1
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
def _lowerCamelCase() -> List[str]:
with parallel_backend("""spark""" ):
assert ParallelBackendConfig.backend_name == "spark"
_lowerCAmelCase =[1, 2, 3]
with pytest.raises(__UpperCamelCase ):
with parallel_backend("""unsupported backend""" ):
map_nested(__UpperCamelCase , __UpperCamelCase , num_proc=2 )
with pytest.raises(__UpperCamelCase ):
with parallel_backend("""unsupported backend""" ):
map_nested(__UpperCamelCase , __UpperCamelCase , num_proc=-1 )
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
@pytest.mark.parametrize("""num_proc""" , [2, -1] )
def _lowerCamelCase(__UpperCamelCase ) -> Tuple:
_lowerCAmelCase =[1, 2]
_lowerCAmelCase ={"""a""": 1, """b""": 2}
_lowerCAmelCase ={"""a""": [1, 2], """b""": [3, 4]}
_lowerCAmelCase ={"""a""": {"""1""": 1}, """b""": 2}
_lowerCAmelCase ={"""a""": 1, """b""": 2, """c""": 3, """d""": 4}
_lowerCAmelCase =[2, 3]
_lowerCAmelCase ={"""a""": 2, """b""": 3}
_lowerCAmelCase ={"""a""": [2, 3], """b""": [4, 5]}
_lowerCAmelCase ={"""a""": {"""1""": 2}, """b""": 3}
_lowerCAmelCase ={"""a""": 2, """b""": 3, """c""": 4, """d""": 5}
with parallel_backend("""spark""" ):
assert map_nested(__UpperCamelCase , __UpperCamelCase , num_proc=__UpperCamelCase ) == expected_map_nested_sa
assert map_nested(__UpperCamelCase , __UpperCamelCase , num_proc=__UpperCamelCase ) == expected_map_nested_sa
assert map_nested(__UpperCamelCase , __UpperCamelCase , num_proc=__UpperCamelCase ) == expected_map_nested_sa
assert map_nested(__UpperCamelCase , __UpperCamelCase , num_proc=__UpperCamelCase ) == expected_map_nested_sa
assert map_nested(__UpperCamelCase , __UpperCamelCase , num_proc=__UpperCamelCase ) == expected_map_nested_sa
| 341 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
__A = logging.get_logger(__name__)
__A = {'vocab_file': 'spiece.model'}
__A = {
'vocab_file': {
'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model',
'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model',
}
}
__A = {
'xlnet-base-cased': None,
'xlnet-large-cased': None,
}
# Segments (not really needed)
__A = 0
__A = 1
__A = 2
__A = 3
__A = 4
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = VOCAB_FILES_NAMES
lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase = '''left'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<sep>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<cls>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=["<eop>", "<eod>"] , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it
_lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
_lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , )
_lowerCAmelCase =3
_lowerCAmelCase =do_lower_case
_lowerCAmelCase =remove_space
_lowerCAmelCase =keep_accents
_lowerCAmelCase =vocab_file
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__UpperCAmelCase )
@property
def _lowerCAmelCase ( self ) -> str:
return len(self.sp_model )
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> Optional[int]:
_lowerCAmelCase =self.__dict__.copy()
_lowerCAmelCase =None
return state
def __setstate__( self , __UpperCAmelCase ) -> Tuple:
_lowerCAmelCase =d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_lowerCAmelCase ={}
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[Any]:
if self.remove_space:
_lowerCAmelCase =""" """.join(inputs.strip().split() )
else:
_lowerCAmelCase =inputs
_lowerCAmelCase =outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
_lowerCAmelCase =unicodedata.normalize("""NFKD""" , __UpperCAmelCase )
_lowerCAmelCase ="""""".join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] )
if self.do_lower_case:
_lowerCAmelCase =outputs.lower()
return outputs
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
_lowerCAmelCase =self.preprocess_text(__UpperCAmelCase )
_lowerCAmelCase =self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase )
_lowerCAmelCase =[]
for piece in pieces:
if len(__UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
_lowerCAmelCase =self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
_lowerCAmelCase =cur_pieces[1:]
else:
_lowerCAmelCase =cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(__UpperCAmelCase )
else:
new_pieces.append(__UpperCAmelCase )
return new_pieces
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]:
return self.sp_model.PieceToId(__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
return self.sp_model.IdToPiece(__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> str:
_lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip()
return out_string
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> str:
_lowerCAmelCase =kwargs.pop("""use_source_tokenizer""" , __UpperCAmelCase )
_lowerCAmelCase =self.convert_ids_to_tokens(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
_lowerCAmelCase =[]
_lowerCAmelCase =[]
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) )
_lowerCAmelCase =[]
sub_texts.append(__UpperCAmelCase )
else:
current_sub_text.append(__UpperCAmelCase )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) )
# Mimic the behavior of the Rust tokenizer:
# By default, there are no spaces between special tokens
_lowerCAmelCase ="""""".join(__UpperCAmelCase )
_lowerCAmelCase =(
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
_lowerCAmelCase =self.clean_up_tokenization(__UpperCAmelCase )
return clean_text
else:
return text
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_lowerCAmelCase =[self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase )
if token_ids_a is not None:
return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1]
return ([0] * len(__UpperCAmelCase )) + [1, 1]
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_lowerCAmelCase =[self.sep_token_id]
_lowerCAmelCase =[2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCAmelCase , """wb""" ) as fi:
_lowerCAmelCase =self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase )
return (out_vocab_file,)
| 341 | 1 |
"""simple docstring"""
import random
import timeit
from functools import wraps
from typing import Callable, Optional
from ..configuration_utils import PretrainedConfig
from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING
from ..utils import is_pyanvml_available, is_tf_available, logging
from .benchmark_utils import (
Benchmark,
Memory,
MemorySummary,
measure_peak_memory_cpu,
start_memory_tracing,
stop_memory_tracing,
)
if is_tf_available():
import tensorflow as tf
from tensorflow.python.framework.errors_impl import ResourceExhaustedError
from .benchmark_args_tf import TensorFlowBenchmarkArguments
if is_pyanvml_available():
import pyanvml.pyanvml as nvml
__A = logging.get_logger(__name__)
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Dict:
def run_func(__UpperCamelCase ):
@wraps(__UpperCamelCase )
def run_in_eager_mode(*__UpperCamelCase , **__UpperCamelCase ):
return func(*__UpperCamelCase , **__UpperCamelCase )
@wraps(__UpperCamelCase )
@tf.function(experimental_compile=__UpperCamelCase )
def run_in_graph_mode(*__UpperCamelCase , **__UpperCamelCase ):
return func(*__UpperCamelCase , **__UpperCamelCase )
if do_eager_mode is True:
if use_xla is not False:
raise ValueError(
"""Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" )
return run_in_eager_mode
else:
return run_in_graph_mode
return run_func
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> ["tf.Tensor"]:
_lowerCAmelCase =random.Random()
_lowerCAmelCase =[rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )]
return tf.constant(__UpperCamelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa )
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = 42
lowerCamelCase = 42
lowerCamelCase = "TensorFlow"
@property
def _lowerCAmelCase ( self ) -> int:
return tf.__version__
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> float:
# initialize GPU on separate process
_lowerCAmelCase =self.args.strategy
if strategy is None:
raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" )
_lowerCAmelCase =self._prepare_inference_func(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
return self._measure_speed(_inference )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> float:
_lowerCAmelCase =self.args.strategy
if strategy is None:
raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" )
_lowerCAmelCase =self._prepare_train_func(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
return self._measure_speed(_train )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> [Memory, Optional[MemorySummary]]:
# initialize GPU on separate process
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __UpperCAmelCase )
_lowerCAmelCase =self.args.strategy
if strategy is None:
raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" )
_lowerCAmelCase =self._prepare_inference_func(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
return self._measure_memory(_inference )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> [Memory, Optional[MemorySummary]]:
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __UpperCAmelCase )
_lowerCAmelCase =self.args.strategy
if strategy is None:
raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" )
_lowerCAmelCase =self._prepare_train_func(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
return self._measure_memory(_train )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Callable[[], None]:
_lowerCAmelCase =self.config_dict[model_name]
if self.args.fpaa:
raise NotImplementedError("""Mixed precision is currently not supported.""" )
_lowerCAmelCase =(
hasattr(__UpperCAmelCase , """architectures""" )
and isinstance(config.architectures , __UpperCAmelCase )
and len(config.architectures ) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
_lowerCAmelCase ="""TF""" + config.architectures[0] # prepend 'TF' for tensorflow model
_lowerCAmelCase =__import__("""transformers""" , fromlist=[model_class] )
_lowerCAmelCase =getattr(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =model_cls(__UpperCAmelCase )
except ImportError:
raise ImportError(
f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to'''
""" set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" )
else:
_lowerCAmelCase =TF_MODEL_MAPPING[config.__class__](__UpperCAmelCase )
# encoder-decoder has vocab size saved differently
_lowerCAmelCase =config.vocab_size if hasattr(__UpperCAmelCase , """vocab_size""" ) else config.encoder.vocab_size
_lowerCAmelCase =random_input_ids(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_decoder_forward():
return model(__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase , training=__UpperCAmelCase )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_forward():
return model(__UpperCAmelCase , training=__UpperCAmelCase )
_lowerCAmelCase =encoder_decoder_forward if config.is_encoder_decoder else encoder_forward
return _inference
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Callable[[], None]:
_lowerCAmelCase =self.config_dict[model_name]
if self.args.eager_mode is not False:
raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" )
if self.args.fpaa:
raise NotImplementedError("""Mixed precision is currently not supported.""" )
_lowerCAmelCase =(
hasattr(__UpperCAmelCase , """architectures""" )
and isinstance(config.architectures , __UpperCAmelCase )
and len(config.architectures ) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
_lowerCAmelCase ="""TF""" + config.architectures[0] # prepend 'TF' for tensorflow model
_lowerCAmelCase =__import__("""transformers""" , fromlist=[model_class] )
_lowerCAmelCase =getattr(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =model_cls(__UpperCAmelCase )
except ImportError:
raise ImportError(
f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to'''
""" set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" )
else:
_lowerCAmelCase =TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](__UpperCAmelCase )
# encoder-decoder has vocab size saved differently
_lowerCAmelCase =config.vocab_size if hasattr(__UpperCAmelCase , """vocab_size""" ) else config.encoder.vocab_size
_lowerCAmelCase =random_input_ids(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_decoder_train():
_lowerCAmelCase =model(__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase , labels=__UpperCAmelCase , training=__UpperCAmelCase )[0]
_lowerCAmelCase =tf.gradients(__UpperCAmelCase , model.trainable_variables )
return gradients
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_train():
_lowerCAmelCase =model(__UpperCAmelCase , labels=__UpperCAmelCase , training=__UpperCAmelCase )[0]
_lowerCAmelCase =tf.gradients(__UpperCAmelCase , model.trainable_variables )
return gradients
_lowerCAmelCase =encoder_decoder_train if config.is_encoder_decoder else encoder_train
return _train
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> float:
with self.args.strategy.scope():
try:
if self.args.is_tpu or self.args.use_xla:
# run additional 10 times to stabilize compilation for tpu
logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" )
timeit.repeat(__UpperCAmelCase , repeat=1 , number=5 )
# as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average
_lowerCAmelCase =timeit.repeat(
__UpperCAmelCase , repeat=self.args.repeat , number=10 , )
return min(__UpperCAmelCase ) / 1_0.0
except ResourceExhaustedError as e:
self.print_fn(f'''Doesn\'t fit on GPU. {e}''' )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> [Memory, MemorySummary]:
logger.info(
"""Note that TensorFlow allocates more memory than """
"""it might need to speed up computation. """
"""The memory reported here corresponds to the memory """
"""reported by `nvidia-smi`, which can vary depending """
"""on total available memory on the GPU that is used.""" )
with self.args.strategy.scope():
try:
if self.args.trace_memory_line_by_line:
if not self.args.eager_mode:
raise ValueError(
"""`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory"""
""" consumption line by line.""" )
_lowerCAmelCase =start_memory_tracing("""transformers""" )
if self.args.is_tpu:
# tpu
raise NotImplementedError(
"""Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking"""
""" with `args.memory=False`""" )
elif self.args.is_gpu:
# gpu
if not is_pyanvml_available():
logger.warning(
"""py3nvml not installed, we won't log GPU memory usage. """
"""Install py3nvml (pip install py3nvml) to log information about GPU.""" )
_lowerCAmelCase ="""N/A"""
else:
logger.info(
"""Measuring total GPU usage on GPU device. Make sure to not have additional processes"""
""" running on the same GPU.""" )
# init nvml
nvml.nvmlInit()
func()
_lowerCAmelCase =nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx )
_lowerCAmelCase =nvml.nvmlDeviceGetMemoryInfo(__UpperCAmelCase )
_lowerCAmelCase =meminfo.used
_lowerCAmelCase =Memory(__UpperCAmelCase )
# shutdown nvml
nvml.nvmlShutdown()
else:
# cpu
if self.args.trace_memory_line_by_line:
logger.info(
"""When enabling line by line tracing, the max peak memory for CPU is inaccurate in"""
""" TensorFlow.""" )
_lowerCAmelCase =None
else:
_lowerCAmelCase =measure_peak_memory_cpu(__UpperCAmelCase )
_lowerCAmelCase =Memory(__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else memory_bytes
if self.args.trace_memory_line_by_line:
_lowerCAmelCase =stop_memory_tracing(__UpperCAmelCase )
if memory is None:
_lowerCAmelCase =summary.total
else:
_lowerCAmelCase =None
return memory, summary
except ResourceExhaustedError as e:
self.print_fn(f'''Doesn\'t fit on GPU. {e}''' )
return "N/A", None
| 341 |
"""simple docstring"""
from __future__ import annotations
def _lowerCamelCase(__UpperCamelCase ) -> bool:
_lowerCAmelCase =str(__UpperCamelCase )
return n == n[::-1]
def _lowerCamelCase(__UpperCamelCase = 1000000 ) -> str:
_lowerCAmelCase =0
for i in range(1 , __UpperCamelCase ):
if is_palindrome(__UpperCamelCase ) and is_palindrome(bin(__UpperCamelCase ).split("""b""" )[1] ):
total += i
return total
if __name__ == "__main__":
print(solution(int(str(input().strip()))))
| 341 | 1 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import DebertaVaConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDebertaVaForMaskedLM,
TFDebertaVaForQuestionAnswering,
TFDebertaVaForSequenceClassification,
TFDebertaVaForTokenClassification,
TFDebertaVaModel,
)
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase="None" , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> List[Any]:
_lowerCAmelCase =parent
_lowerCAmelCase =batch_size
_lowerCAmelCase =seq_length
_lowerCAmelCase =is_training
_lowerCAmelCase =use_input_mask
_lowerCAmelCase =use_token_type_ids
_lowerCAmelCase =use_labels
_lowerCAmelCase =vocab_size
_lowerCAmelCase =hidden_size
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =intermediate_size
_lowerCAmelCase =hidden_act
_lowerCAmelCase =hidden_dropout_prob
_lowerCAmelCase =attention_probs_dropout_prob
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =type_vocab_size
_lowerCAmelCase =type_sequence_label_size
_lowerCAmelCase =initializer_range
_lowerCAmelCase =num_labels
_lowerCAmelCase =num_choices
_lowerCAmelCase =relative_attention
_lowerCAmelCase =position_biased_input
_lowerCAmelCase =pos_att_type
_lowerCAmelCase =scope
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowerCAmelCase =None
if self.use_input_mask:
_lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length] )
_lowerCAmelCase =None
if self.use_token_type_ids:
_lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_lowerCAmelCase =None
_lowerCAmelCase =None
_lowerCAmelCase =None
if self.use_labels:
_lowerCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_lowerCAmelCase =DebertaVaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=__UpperCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]:
_lowerCAmelCase =TFDebertaVaModel(config=__UpperCAmelCase )
_lowerCAmelCase ={"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
_lowerCAmelCase =[input_ids, input_mask]
_lowerCAmelCase =model(__UpperCAmelCase )
_lowerCAmelCase =model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
_lowerCAmelCase =TFDebertaVaForMaskedLM(config=__UpperCAmelCase )
_lowerCAmelCase ={
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
_lowerCAmelCase =model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
_lowerCAmelCase =self.num_labels
_lowerCAmelCase =TFDebertaVaForSequenceClassification(config=__UpperCAmelCase )
_lowerCAmelCase ={
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
_lowerCAmelCase =model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
_lowerCAmelCase =self.num_labels
_lowerCAmelCase =TFDebertaVaForTokenClassification(config=__UpperCAmelCase )
_lowerCAmelCase ={
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
_lowerCAmelCase =model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int:
_lowerCAmelCase =TFDebertaVaForQuestionAnswering(config=__UpperCAmelCase )
_lowerCAmelCase ={
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
_lowerCAmelCase =model(__UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =self.prepare_config_and_inputs()
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) =config_and_inputs
_lowerCAmelCase ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class lowerCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = (
(
TFDebertaVaModel,
TFDebertaVaForMaskedLM,
TFDebertaVaForQuestionAnswering,
TFDebertaVaForSequenceClassification,
TFDebertaVaForTokenClassification,
)
if is_tf_available()
else ()
)
lowerCamelCase = (
{
'''feature-extraction''': TFDebertaVaModel,
'''fill-mask''': TFDebertaVaForMaskedLM,
'''question-answering''': TFDebertaVaForQuestionAnswering,
'''text-classification''': TFDebertaVaForSequenceClassification,
'''token-classification''': TFDebertaVaForTokenClassification,
'''zero-shot''': TFDebertaVaForSequenceClassification,
}
if is_tf_available()
else {}
)
lowerCamelCase = False
lowerCamelCase = False
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =TFDebertaVaModelTester(self )
_lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def _lowerCAmelCase ( self ) -> str:
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" )
self.assertIsNotNone(__UpperCAmelCase )
@require_tf
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@unittest.skip(reason="""Model not available yet""" )
def _lowerCAmelCase ( self ) -> Optional[int]:
pass
@slow
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" )
_lowerCAmelCase =tf.constant([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] )
_lowerCAmelCase =tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
_lowerCAmelCase =model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0]
_lowerCAmelCase =tf.constant(
[[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] )
tf.debugging.assert_near(output[:, 1:4, 1:4] , __UpperCAmelCase , atol=1e-4 )
| 341 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = '''llama'''
lowerCamelCase = ['''past_key_values''']
def __init__( self , __UpperCAmelCase=3_20_00 , __UpperCAmelCase=40_96 , __UpperCAmelCase=1_10_08 , __UpperCAmelCase=32 , __UpperCAmelCase=32 , __UpperCAmelCase=None , __UpperCAmelCase="silu" , __UpperCAmelCase=20_48 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-6 , __UpperCAmelCase=True , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=False , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]:
_lowerCAmelCase =vocab_size
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =hidden_size
_lowerCAmelCase =intermediate_size
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =num_key_value_heads
_lowerCAmelCase =hidden_act
_lowerCAmelCase =initializer_range
_lowerCAmelCase =rms_norm_eps
_lowerCAmelCase =pretraining_tp
_lowerCAmelCase =use_cache
_lowerCAmelCase =rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase , )
def _lowerCAmelCase ( self ) -> str:
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2:
raise ValueError(
"""`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """
f'''got {self.rope_scaling}''' )
_lowerCAmelCase =self.rope_scaling.get("""type""" , __UpperCAmelCase )
_lowerCAmelCase =self.rope_scaling.get("""factor""" , __UpperCAmelCase )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' )
if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0:
raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
| 341 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json',
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = '''cvt'''
def __init__( self , __UpperCAmelCase=3 , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[64, 1_92, 3_84] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 10] , __UpperCAmelCase=[4.0, 4.0, 4.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.1] , __UpperCAmelCase=[True, True, True] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , __UpperCAmelCase=[3, 3, 3] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-12 , **__UpperCAmelCase , ) -> Optional[Any]:
super().__init__(**__UpperCAmelCase )
_lowerCAmelCase =num_channels
_lowerCAmelCase =patch_sizes
_lowerCAmelCase =patch_stride
_lowerCAmelCase =patch_padding
_lowerCAmelCase =embed_dim
_lowerCAmelCase =num_heads
_lowerCAmelCase =depth
_lowerCAmelCase =mlp_ratio
_lowerCAmelCase =attention_drop_rate
_lowerCAmelCase =drop_rate
_lowerCAmelCase =drop_path_rate
_lowerCAmelCase =qkv_bias
_lowerCAmelCase =cls_token
_lowerCAmelCase =qkv_projection_method
_lowerCAmelCase =kernel_qkv
_lowerCAmelCase =padding_kv
_lowerCAmelCase =stride_kv
_lowerCAmelCase =padding_q
_lowerCAmelCase =stride_q
_lowerCAmelCase =initializer_range
_lowerCAmelCase =layer_norm_eps
| 341 |
"""simple docstring"""
import warnings
from .generation import TFGenerationMixin
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
# warning at import time
warnings.warn(
'''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will '''
'''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''' , __magic_name__ , )
| 341 | 1 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__A = logging.get_logger(__name__)
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = ['''pixel_values''']
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PIL.Image.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = 1 / 2_55 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
super().__init__(**__UpperCAmelCase )
_lowerCAmelCase =size if size is not None else {"""height""": 2_56, """width""": 2_56}
_lowerCAmelCase =get_size_dict(__UpperCAmelCase )
_lowerCAmelCase =crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24}
_lowerCAmelCase =get_size_dict(__UpperCAmelCase , param_name="""crop_size""" )
_lowerCAmelCase =do_resize
_lowerCAmelCase =size
_lowerCAmelCase =resample
_lowerCAmelCase =do_center_crop
_lowerCAmelCase =crop_size
_lowerCAmelCase =do_rescale
_lowerCAmelCase =rescale_factor
_lowerCAmelCase =do_normalize
_lowerCAmelCase =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_lowerCAmelCase =image_std if image_std is not None else IMAGENET_STANDARD_STD
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PIL.Image.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
_lowerCAmelCase =get_size_dict(__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' )
return resize(
__UpperCAmelCase , size=(size["""height"""], size["""width"""]) , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
_lowerCAmelCase =get_size_dict(__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' )
return center_crop(__UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[Any]:
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase=None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image:
_lowerCAmelCase =do_resize if do_resize is not None else self.do_resize
_lowerCAmelCase =resample if resample is not None else self.resample
_lowerCAmelCase =do_center_crop if do_center_crop is not None else self.do_center_crop
_lowerCAmelCase =do_rescale if do_rescale is not None else self.do_rescale
_lowerCAmelCase =rescale_factor if rescale_factor is not None else self.rescale_factor
_lowerCAmelCase =do_normalize if do_normalize is not None else self.do_normalize
_lowerCAmelCase =image_mean if image_mean is not None else self.image_mean
_lowerCAmelCase =image_std if image_std is not None else self.image_std
_lowerCAmelCase =size if size is not None else self.size
_lowerCAmelCase =get_size_dict(__UpperCAmelCase )
_lowerCAmelCase =crop_size if crop_size is not None else self.crop_size
_lowerCAmelCase =get_size_dict(__UpperCAmelCase , param_name="""crop_size""" )
_lowerCAmelCase =make_list_of_images(__UpperCAmelCase )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
_lowerCAmelCase =[to_numpy_array(__UpperCAmelCase ) for image in images]
if do_resize:
_lowerCAmelCase =[self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images]
if do_center_crop:
_lowerCAmelCase =[self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images]
if do_rescale:
_lowerCAmelCase =[self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images]
if do_normalize:
_lowerCAmelCase =[self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images]
_lowerCAmelCase =[to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images]
_lowerCAmelCase ={"""pixel_values""": images}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 341 |
"""simple docstring"""
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=16 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=30 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=None , ) -> Any:
_lowerCAmelCase =parent
_lowerCAmelCase =batch_size
_lowerCAmelCase =decoder_seq_length
# For common tests
_lowerCAmelCase =self.decoder_seq_length
_lowerCAmelCase =is_training
_lowerCAmelCase =use_attention_mask
_lowerCAmelCase =use_labels
_lowerCAmelCase =vocab_size
_lowerCAmelCase =d_model
_lowerCAmelCase =d_model
_lowerCAmelCase =decoder_layers
_lowerCAmelCase =decoder_layers
_lowerCAmelCase =decoder_ffn_dim
_lowerCAmelCase =decoder_attention_heads
_lowerCAmelCase =decoder_attention_heads
_lowerCAmelCase =eos_token_id
_lowerCAmelCase =bos_token_id
_lowerCAmelCase =pad_token_id
_lowerCAmelCase =decoder_start_token_id
_lowerCAmelCase =use_cache
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =None
_lowerCAmelCase =decoder_seq_length
_lowerCAmelCase =2
_lowerCAmelCase =1
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
_lowerCAmelCase =None
if self.use_attention_mask:
_lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 )
_lowerCAmelCase =None
if self.use_labels:
_lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
_lowerCAmelCase =TrOCRConfig(
vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , )
return (config, input_ids, attention_mask, lm_labels)
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[Any]:
_lowerCAmelCase =True
_lowerCAmelCase =TrOCRDecoder(config=__UpperCAmelCase ).to(__UpperCAmelCase ).eval()
_lowerCAmelCase =input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
_lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
_lowerCAmelCase =model(__UpperCAmelCase )
_lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 )
_lowerCAmelCase =outputs["""past_key_values"""]
# create hypothetical next token and extent to next_input_ids
_lowerCAmelCase =ids_tensor((2, 1) , config.vocab_size - 1 ) + 1
# append to next input_ids and
_lowerCAmelCase =torch.cat([input_ids, next_tokens] , dim=-1 )
_lowerCAmelCase =model(__UpperCAmelCase )["""last_hidden_state"""]
_lowerCAmelCase =model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )["""last_hidden_state"""]
# select random slice
_lowerCAmelCase =ids_tensor((1,) , output_from_past.shape[-1] ).item()
_lowerCAmelCase =output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
_lowerCAmelCase =output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 )
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =self.prepare_config_and_inputs()
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs
_lowerCAmelCase ={"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
lowerCamelCase = (TrOCRForCausalLM,) if is_torch_available() else ()
lowerCamelCase = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {}
lowerCamelCase = True
lowerCamelCase = False
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =TrOCRStandaloneDecoderModelTester(self , is_training=__UpperCAmelCase )
_lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> List[str]:
pass
def _lowerCAmelCase ( self ) -> List[Any]:
pass
def _lowerCAmelCase ( self ) -> Any:
pass
def _lowerCAmelCase ( self ) -> Optional[Any]:
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Tuple:
return
@unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :)
def _lowerCAmelCase ( self ) -> str:
pass
| 341 | 1 |
"""simple docstring"""
import os
import sys
__A = os.path.join(os.path.dirname(__file__), 'src')
sys.path.append(SRC_DIR)
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoTokenizer,
add_start_docstrings,
)
__A = [
'torch',
'numpy',
'tokenizers',
'filelock',
'requests',
'tqdm',
'regex',
'sentencepiece',
'sacremoses',
'importlib_metadata',
'huggingface_hub',
]
@add_start_docstrings(AutoConfig.__doc__ )
def _lowerCamelCase(*__UpperCamelCase , **__UpperCamelCase ) -> str:
return AutoConfig.from_pretrained(*__UpperCamelCase , **__UpperCamelCase )
@add_start_docstrings(AutoTokenizer.__doc__ )
def _lowerCamelCase(*__UpperCamelCase , **__UpperCamelCase ) -> str:
return AutoTokenizer.from_pretrained(*__UpperCamelCase , **__UpperCamelCase )
@add_start_docstrings(AutoModel.__doc__ )
def _lowerCamelCase(*__UpperCamelCase , **__UpperCamelCase ) -> List[str]:
return AutoModel.from_pretrained(*__UpperCamelCase , **__UpperCamelCase )
@add_start_docstrings(AutoModelForCausalLM.__doc__ )
def _lowerCamelCase(*__UpperCamelCase , **__UpperCamelCase ) -> int:
return AutoModelForCausalLM.from_pretrained(*__UpperCamelCase , **__UpperCamelCase )
@add_start_docstrings(AutoModelForMaskedLM.__doc__ )
def _lowerCamelCase(*__UpperCamelCase , **__UpperCamelCase ) -> Dict:
return AutoModelForMaskedLM.from_pretrained(*__UpperCamelCase , **__UpperCamelCase )
@add_start_docstrings(AutoModelForSequenceClassification.__doc__ )
def _lowerCamelCase(*__UpperCamelCase , **__UpperCamelCase ) -> Optional[int]:
return AutoModelForSequenceClassification.from_pretrained(*__UpperCamelCase , **__UpperCamelCase )
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__ )
def _lowerCamelCase(*__UpperCamelCase , **__UpperCamelCase ) -> Any:
return AutoModelForQuestionAnswering.from_pretrained(*__UpperCamelCase , **__UpperCamelCase )
| 341 |
"""simple docstring"""
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = JukeboxTokenizer
lowerCamelCase = {
'''artist''': '''Zac Brown Band''',
'''genres''': '''Country''',
'''lyrics''': '''I met a traveller from an antique land,
Who said "Two vast and trunkless legs of stone
Stand in the desert. . . . Near them, on the sand,
Half sunk a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,
Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them, and the heart that fed;
And on the pedestal, these words appear:
My name is Ozymandias, King of Kings;
Look on my Works, ye Mighty, and despair!
Nothing beside remains. Round the decay
Of that colossal Wreck, boundless and bare
The lone and level sands stretch far away
''',
}
@require_torch
def _lowerCAmelCase ( self ) -> str:
import torch
_lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" )
_lowerCAmelCase =tokenizer(**self.metas )["""input_ids"""]
# fmt: off
_lowerCAmelCase =[
torch.tensor([[
0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 10_69, 11]] ),
torch.tensor([[0, 0, 0, 10_69, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def _lowerCAmelCase ( self ) -> Any:
import torch
_lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" )
_lowerCAmelCase =tokenizer(**self.metas )["""input_ids"""]
# fmt: off
_lowerCAmelCase =[
torch.tensor([[
0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 341 | 1 |
"""simple docstring"""
import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser
__A = logging.getLogger(__name__)
torch.set_grad_enabled(False)
__A = 'cuda' if torch.cuda.is_available() else 'cpu'
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=100 , __UpperCamelCase=" " ) -> List[str]:
_lowerCAmelCase =text.split(__UpperCamelCase )
return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__UpperCamelCase ) , __UpperCamelCase )]
def _lowerCamelCase(__UpperCamelCase ) -> dict:
_lowerCAmelCase , _lowerCAmelCase =[], []
for title, text in zip(documents["""title"""] , documents["""text"""] ):
if text is not None:
for passage in split_text(__UpperCamelCase ):
titles.append(title if title is not None else """""" )
texts.append(__UpperCamelCase )
return {"title": titles, "text": texts}
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> dict:
_lowerCAmelCase =ctx_tokenizer(
documents["""title"""] , documents["""text"""] , truncation=__UpperCamelCase , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""]
_lowerCAmelCase =ctx_encoder(input_ids.to(device=__UpperCamelCase ) , return_dict=__UpperCamelCase ).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> int:
######################################
logger.info("""Step 1 - Create the dataset""" )
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
_lowerCAmelCase =load_dataset(
"""csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] )
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
_lowerCAmelCase =dataset.map(__UpperCamelCase , batched=__UpperCamelCase , num_proc=processing_args.num_proc )
# And compute the embeddings
_lowerCAmelCase =DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__UpperCamelCase )
_lowerCAmelCase =DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name )
_lowerCAmelCase =Features(
{"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space
_lowerCAmelCase =dataset.map(
partial(__UpperCamelCase , ctx_encoder=__UpperCamelCase , ctx_tokenizer=__UpperCamelCase ) , batched=__UpperCamelCase , batch_size=processing_args.batch_size , features=__UpperCamelCase , )
# And finally save your dataset
_lowerCAmelCase =os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" )
dataset.save_to_disk(__UpperCamelCase )
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info("""Step 2 - Index the dataset""" )
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
_lowerCAmelCase =faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT )
dataset.add_faiss_index("""embeddings""" , custom_index=__UpperCamelCase )
# And save the index
_lowerCAmelCase =os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" )
dataset.get_index("""embeddings""" ).save(__UpperCamelCase )
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
@dataclass
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = field(
default=str(Path(__magic_name__ ).parent / '''test_run''' / '''dummy-kb''' / '''my_knowledge_dataset.csv''' ) , metadata={'''help''': '''Path to a tab-separated csv file with columns \'title\' and \'text\''''} , )
lowerCamelCase = field(
default=__magic_name__ , metadata={'''help''': '''Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'''} , )
lowerCamelCase = field(
default='''facebook/rag-sequence-nq''' , metadata={'''help''': '''The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''''} , )
lowerCamelCase = field(
default='''facebook/dpr-ctx_encoder-multiset-base''' , metadata={
'''help''': (
'''The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or'''
''' \'facebook/dpr-ctx_encoder-multiset-base\''''
)
} , )
lowerCamelCase = field(
default=str(Path(__magic_name__ ).parent / '''test_run''' / '''dummy-kb''' ) , metadata={'''help''': '''Path to a directory where the dataset passages and the index will be saved'''} , )
@dataclass
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = field(
default=__magic_name__ , metadata={
'''help''': '''The number of processes to use to split the documents into passages. Default is single process.'''
} , )
lowerCamelCase = field(
default=16 , metadata={
'''help''': '''The batch size to use when computing the passages embeddings using the DPR context encoder.'''
} , )
@dataclass
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = field(
default=768 , metadata={'''help''': '''The dimension of the embeddings to pass to the HNSW Faiss index.'''} , )
lowerCamelCase = field(
default=128 , metadata={
'''help''': (
'''The number of bi-directional links created for every new element during the HNSW index construction.'''
)
} , )
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
__A = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
__A , __A , __A = parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
__A = rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args)
| 341 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__A = logging.get_logger(__name__)
__A = '▁'
__A = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'}
__A = {
'vocab_file': {
'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model',
},
'monolingual_vocab_file': {
'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt',
},
}
__A = {'vinai/bartpho-syllable': 1024}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = VOCAB_FILES_NAMES
lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase = ['''input_ids''', '''attention_mask''']
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it
_lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
_lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , )
_lowerCAmelCase =vocab_file
_lowerCAmelCase =monolingual_vocab_file
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__UpperCAmelCase ) )
# Load the reduced vocab
# Keep order of special tokens for backward compatibility
_lowerCAmelCase ={}
_lowerCAmelCase =0
for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids:
_lowerCAmelCase =cnt
cnt += 1
with open(__UpperCAmelCase , """r""" , encoding="""utf-8""" ) as f:
for line in f.readlines():
_lowerCAmelCase =line.strip().split()[0]
_lowerCAmelCase =len(self.fairseq_tokens_to_ids )
if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids:
_lowerCAmelCase =len(self.fairseq_tokens_to_ids )
_lowerCAmelCase ={v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ) -> Dict:
_lowerCAmelCase =self.__dict__.copy()
_lowerCAmelCase =None
_lowerCAmelCase =self.sp_model.serialized_model_proto()
return state
def __setstate__( self , __UpperCAmelCase ) -> List[Any]:
_lowerCAmelCase =d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_lowerCAmelCase ={}
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
_lowerCAmelCase =[self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(__UpperCAmelCase )) + [1]
return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1]
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_lowerCAmelCase =[self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def _lowerCAmelCase ( self ) -> Union[str, Any]:
return len(self.fairseq_ids_to_tokens )
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
else:
return self.unk_token_id
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]:
return self.fairseq_ids_to_tokens[index]
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip()
return out_string
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCAmelCase , """wb""" ) as fi:
_lowerCAmelCase =self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase )
if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath(
__UpperCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ):
copyfile(self.monolingual_vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.monolingual_vocab_file ):
with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as fp:
for token in self.fairseq_tokens_to_ids:
if token not in self.all_special_tokens:
fp.write(f'''{str(__UpperCAmelCase )} \n''' )
return out_vocab_file, out_monolingual_vocab_file
| 341 | 1 |
"""simple docstring"""
import argparse
import shlex
import runhouse as rh
if __name__ == "__main__":
# Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access
# setup instructions, if using on-demand hardware
# If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster
# If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster
# Throw an error if user passes both BYO and on-demand cluster args
# Otherwise, use default values
__A = argparse.ArgumentParser()
parser.add_argument('--user', type=str, default='ubuntu')
parser.add_argument('--host', type=str, default='localhost')
parser.add_argument('--key_path', type=str, default=None)
parser.add_argument('--instance', type=str, default='V100:1')
parser.add_argument('--provider', type=str, default='cheapest')
parser.add_argument('--use_spot', type=bool, default=False)
parser.add_argument('--example', type=str, default='pytorch/text-generation/run_generation.py')
__A = parser.parse_known_args()
if args.host != "localhost":
if args.instance != "V100:1" or args.provider != "cheapest":
raise ValueError('Cannot specify both BYO and on-demand cluster args')
__A = rh.cluster(
name='rh-cluster', ips=[args.host], ssh_creds={'ssh_user': args.user, 'ssh_private_key': args.key_path}
)
else:
__A = rh.cluster(
name='rh-cluster', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot
)
__A = args.example.rsplit('/', 1)[0]
# Set up remote environment
cluster.install_packages(['pip:./']) # Installs transformers from local source
# Note transformers is copied into the home directory on the remote machine, so we can install from there
cluster.run([F"""pip install -r transformers/examples/{example_dir}/requirements.txt"""])
cluster.run(['pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117'])
# Run example. You can bypass the CLI wrapper and paste your own code here.
cluster.run([F"""python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}"""])
# Alternatively, we can just import and run a training function (especially if there's no wrapper CLI):
# from my_script... import train
# reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard']
# launch_train_gpu = rh.function(fn=train,
# system=gpu,
# reqs=reqs,
# name='train_bert_glue')
#
# We can pass in arguments just like we would to a function:
# launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16
# stream_logs=True)
| 350 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =1
_lowerCAmelCase =3
_lowerCAmelCase =(32, 32)
_lowerCAmelCase =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCAmelCase )
return image
@property
def _lowerCAmelCase ( self ) -> Tuple:
torch.manual_seed(0 )
_lowerCAmelCase =UNetaDConditionModel(
block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__UpperCAmelCase , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , )
return model
@property
def _lowerCAmelCase ( self ) -> Tuple:
torch.manual_seed(0 )
_lowerCAmelCase =AutoencoderKL(
block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def _lowerCAmelCase ( self ) -> Optional[Any]:
torch.manual_seed(0 )
_lowerCAmelCase =CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , )
return CLIPTextModel(__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase =self.dummy_cond_unet_upscale
_lowerCAmelCase =DDPMScheduler()
_lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" )
_lowerCAmelCase =self.dummy_vae
_lowerCAmelCase =self.dummy_text_encoder
_lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
_lowerCAmelCase =StableDiffusionUpscalePipeline(
unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , )
_lowerCAmelCase =sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase ="""A painting of a squirrel eating a burger"""
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
_lowerCAmelCase =output.images
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=__UpperCAmelCase , )[0]
_lowerCAmelCase =image[0, -3:, -3:, -1]
_lowerCAmelCase =image_from_tuple[0, -3:, -3:, -1]
_lowerCAmelCase =low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
_lowerCAmelCase =np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase =self.dummy_cond_unet_upscale
_lowerCAmelCase =DDPMScheduler()
_lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" )
_lowerCAmelCase =self.dummy_vae
_lowerCAmelCase =self.dummy_text_encoder
_lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
_lowerCAmelCase =StableDiffusionUpscalePipeline(
unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , )
_lowerCAmelCase =sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase ="""A painting of a squirrel eating a burger"""
_lowerCAmelCase =sd_pipe(
2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
_lowerCAmelCase =output.images
assert image.shape[0] == 2
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
_lowerCAmelCase =output.images
assert image.shape[0] == 2
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =self.dummy_cond_unet_upscale
_lowerCAmelCase =DDPMScheduler()
_lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" )
_lowerCAmelCase =self.dummy_vae
_lowerCAmelCase =self.dummy_text_encoder
_lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
# put models in fp16, except vae as it overflows in fp16
_lowerCAmelCase =unet.half()
_lowerCAmelCase =text_encoder.half()
# make sure here that pndm scheduler skips prk
_lowerCAmelCase =StableDiffusionUpscalePipeline(
unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , )
_lowerCAmelCase =sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase ="""A painting of a squirrel eating a burger"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type="""np""" , ).images
_lowerCAmelCase =low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
@slow
@require_torch_gpu
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> int:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_lowerCAmelCase =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"""
"""/upsampled_cat.npy""" )
_lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler"""
_lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing()
_lowerCAmelCase ="""a cat sitting on a park bench"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , )
_lowerCAmelCase =output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 1e-3
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_lowerCAmelCase =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"""
"""/upsampled_cat_fp16.npy""" )
_lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler"""
_lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(
__UpperCAmelCase , torch_dtype=torch.floataa , )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing()
_lowerCAmelCase ="""a cat sitting on a park bench"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , )
_lowerCAmelCase =output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 5e-1
def _lowerCAmelCase ( self ) -> Optional[Any]:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_lowerCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler"""
_lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(
__UpperCAmelCase , torch_dtype=torch.floataa , )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
_lowerCAmelCase ="""a cat sitting on a park bench"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , output_type="""np""" , )
_lowerCAmelCase =torch.cuda.max_memory_allocated()
# make sure that less than 2.9 GB is allocated
assert mem_bytes < 2.9 * 10**9
| 341 | 0 |
import copy
import tempfile
import unittest
from transformers import MaMaaaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from transformers.utils import cached_property
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer
from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , ) -> List[Any]:
if attention_mask is None:
_lowerCAmelCase =input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
_lowerCAmelCase =decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
_lowerCAmelCase =torch.ones(config.encoder_layers , config.encoder_attention_heads , device=lowercase__ )
if decoder_head_mask is None:
_lowerCAmelCase =torch.ones(config.decoder_layers , config.decoder_attention_heads , device=lowercase__ )
if cross_attn_head_mask is None:
_lowerCAmelCase =torch.ones(config.decoder_layers , config.decoder_attention_heads , device=lowercase__ )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=20 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , ) -> int:
_lowerCAmelCase =parent
_lowerCAmelCase =batch_size
_lowerCAmelCase =seq_length
_lowerCAmelCase =is_training
_lowerCAmelCase =use_labels
_lowerCAmelCase =vocab_size
_lowerCAmelCase =hidden_size
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =intermediate_size
_lowerCAmelCase =hidden_act
_lowerCAmelCase =hidden_dropout_prob
_lowerCAmelCase =attention_probs_dropout_prob
_lowerCAmelCase =encoder_layerdrop
_lowerCAmelCase =decoder_layerdrop
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =eos_token_id
_lowerCAmelCase =pad_token_id
_lowerCAmelCase =bos_token_id
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowerCAmelCase =self.eos_token_id # Eos Token
_lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for M2M100 the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
_lowerCAmelCase =input_ids.clamp(self.pad_token_id + 1 )
_lowerCAmelCase =decoder_input_ids.clamp(self.pad_token_id + 1 )
_lowerCAmelCase =self.get_config()
_lowerCAmelCase =prepare_mam_aaa_inputs_dict(__A , __A , __A )
return config, inputs_dict
def _lowerCAmelCase ( self ) -> int:
return MaMaaaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , )
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =self.prepare_config_and_inputs()
return config, inputs_dict
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
_lowerCAmelCase =MaMaaaModel(config=__A ).get_decoder().to(__A ).eval()
_lowerCAmelCase =inputs_dict["""input_ids"""]
_lowerCAmelCase =inputs_dict["""attention_mask"""]
_lowerCAmelCase =inputs_dict["""head_mask"""]
# first forward pass
_lowerCAmelCase =model(__A , attention_mask=__A , head_mask=__A , use_cache=__A )
_lowerCAmelCase =outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
_lowerCAmelCase =ids_tensor((self.batch_size, 3) , config.vocab_size )
_lowerCAmelCase =ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
_lowerCAmelCase =torch.cat([input_ids, next_tokens] , dim=-1 )
_lowerCAmelCase =torch.cat([attention_mask, next_attn_mask] , dim=-1 )
_lowerCAmelCase =model(__A , attention_mask=__A )["""last_hidden_state"""]
_lowerCAmelCase =model(__A , attention_mask=__A , past_key_values=__A )[
"""last_hidden_state"""
]
# select random slice
_lowerCAmelCase =ids_tensor((1,) , output_from_past.shape[-1] ).item()
_lowerCAmelCase =output_from_no_past[:, -3:, random_slice_idx].detach()
_lowerCAmelCase =output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__A , __A , atol=1e-2 ) )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> int:
_lowerCAmelCase =MaMaaaModel(config=__A ).to(__A ).eval()
_lowerCAmelCase =model(**__A )
_lowerCAmelCase =outputs.encoder_last_hidden_state
_lowerCAmelCase =outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
_lowerCAmelCase =model.get_encoder()
encoder.save_pretrained(__A )
_lowerCAmelCase =MaMaaaEncoder.from_pretrained(__A ).to(__A )
_lowerCAmelCase =encoder(inputs_dict["""input_ids"""] , attention_mask=inputs_dict["""attention_mask"""] )[
0
]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 )
with tempfile.TemporaryDirectory() as tmpdirname:
_lowerCAmelCase =model.get_decoder()
decoder.save_pretrained(__A )
_lowerCAmelCase =MaMaaaDecoder.from_pretrained(__A ).to(__A )
_lowerCAmelCase =decoder(
input_ids=inputs_dict["""decoder_input_ids"""] , attention_mask=inputs_dict["""decoder_attention_mask"""] , encoder_hidden_states=__A , encoder_attention_mask=inputs_dict["""attention_mask"""] , )[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 )
@require_torch
class lowerCamelCase__ ( A__ , A__ , A__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = (
(
MaMaaaModel,
MaMaaaForConditionalGeneration,
)
if is_torch_available()
else ()
)
lowerCamelCase = (MaMaaaForConditionalGeneration,) if is_torch_available() else ()
lowerCamelCase = (
{
"conversational": MaMaaaForConditionalGeneration,
"feature-extraction": MaMaaaModel,
"summarization": MaMaaaForConditionalGeneration,
"text2text-generation": MaMaaaForConditionalGeneration,
"translation": MaMaaaForConditionalGeneration,
}
if is_torch_available()
else {}
)
lowerCamelCase = True
lowerCamelCase = True
lowerCamelCase = False
lowerCamelCase = False
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
if pipeline_test_casse_name == "TranslationPipelineTests":
# Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`.
# `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer.
return True
return False
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase =MaMaaaModelTester(self )
_lowerCAmelCase =ConfigTester(self , config_class=__A )
def _lowerCAmelCase ( self ) -> List[Any]:
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
_lowerCAmelCase =model_class(__A )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__A )
_lowerCAmelCase =model_class.from_pretrained(__A , output_loading_info=__A )
self.assertEqual(info["""missing_keys"""] , [] )
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*__A )
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*__A )
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration):
_lowerCAmelCase =model_class(__A )
model.to(__A )
model.eval()
_lowerCAmelCase =copy.deepcopy(self._prepare_for_class(__A , __A ) )
if not self.is_encoder_decoder:
_lowerCAmelCase =inputs["""input_ids"""]
del inputs["input_ids"]
else:
_lowerCAmelCase =inputs["""input_ids"""]
_lowerCAmelCase =inputs.get("""decoder_input_ids""" , __A )
del inputs["input_ids"]
inputs.pop("""decoder_input_ids""" , __A )
_lowerCAmelCase =model.get_input_embeddings()
if not self.is_encoder_decoder:
_lowerCAmelCase =wte(__A )
else:
_lowerCAmelCase =wte(__A )
_lowerCAmelCase =wte(__A )
with torch.no_grad():
model(**__A )[0]
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
_lowerCAmelCase =input_dict["""input_ids"""]
_lowerCAmelCase =input_ids.ne(1 ).to(__A )
_lowerCAmelCase =MaMaaaForConditionalGeneration(__A ).eval().to(__A )
if torch_device == "cuda":
model.half()
model.generate(__A , attention_mask=__A )
model.generate(num_beams=4 , do_sample=__A , early_stopping=__A , num_return_sequences=3 )
def _lowerCamelCase(__UpperCamelCase ) -> List[str]:
return torch.tensor(lowercase__ , dtype=torch.long , device=lowercase__ )
__A = 1E-4
@require_torch
@require_sentencepiece
@require_tokenizers
@slow
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _lowerCAmelCase ( self ) -> Dict:
return MaMaaaTokenizer.from_pretrained("""facebook/m2m100_418M""" )
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =MaMaaaModel.from_pretrained("""facebook/m2m100_418M""" ).to(__A )
_lowerCAmelCase =_long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] )
_lowerCAmelCase =_long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] )
_lowerCAmelCase =prepare_mam_aaa_inputs_dict(model.config , __A , __A )
with torch.no_grad():
_lowerCAmelCase =model(**__A )[0]
_lowerCAmelCase =torch.Size((1, 11, 10_24) )
self.assertEqual(output.shape , __A )
# change to expected output here
_lowerCAmelCase =torch.tensor(
[[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=__A )
self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) )
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase =MaMaaaForConditionalGeneration.from_pretrained("""facebook/m2m100_418M""" ).to(__A )
# change to intended input
_lowerCAmelCase =_long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] )
_lowerCAmelCase =_long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] )
_lowerCAmelCase =prepare_mam_aaa_inputs_dict(model.config , __A , __A )
with torch.no_grad():
_lowerCAmelCase =model(**__A )[0]
_lowerCAmelCase =torch.Size((1, 11, model.config.vocab_size) )
self.assertEqual(output.shape , __A )
# change to expected output here
_lowerCAmelCase =torch.tensor(
[[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=__A )
self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) )
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =MaMaaaForConditionalGeneration.from_pretrained("""facebook/m2m100_418M""" ).to(__A )
_lowerCAmelCase =MaMaaaTokenizer.from_pretrained("""facebook/m2m100_418M""" , src_lang="""fr""" , tgt_lang="""en""" )
_lowerCAmelCase =[
"""L'affaire NSA souligne l'absence totale de débat sur le renseignement""",
"""Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""",
"""Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent"""
""" Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de"""
""" l'ampleur de la surveillance américaine sur l'ensemble des communications en France.""",
]
# The below article tests that we don't add any hypotheses outside of the top n_beams
_lowerCAmelCase =tokenizer(__A , padding=__A , return_tensors="""pt""" )
_lowerCAmelCase =model.generate(
input_ids=dct["""input_ids"""].to(__A ) , attention_mask=dct["""attention_mask"""].to(__A ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("""en""" ) , )
_lowerCAmelCase =[
"""The NSA case highlights the total absence of intelligence debate""",
"""I think there are two levels of response from the French government.""",
"""When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S."""
""" Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all"""
""" communications in France.""",
]
_lowerCAmelCase =tokenizer.batch_decode(
hypotheses_batch.tolist() , clean_up_tokenization_spaces=__A , skip_special_tokens=__A )
assert generated == expected_en
| 351 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json',
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = '''cvt'''
def __init__( self , __UpperCAmelCase=3 , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[64, 1_92, 3_84] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 10] , __UpperCAmelCase=[4.0, 4.0, 4.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.1] , __UpperCAmelCase=[True, True, True] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , __UpperCAmelCase=[3, 3, 3] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-12 , **__UpperCAmelCase , ) -> Optional[Any]:
super().__init__(**__UpperCAmelCase )
_lowerCAmelCase =num_channels
_lowerCAmelCase =patch_sizes
_lowerCAmelCase =patch_stride
_lowerCAmelCase =patch_padding
_lowerCAmelCase =embed_dim
_lowerCAmelCase =num_heads
_lowerCAmelCase =depth
_lowerCAmelCase =mlp_ratio
_lowerCAmelCase =attention_drop_rate
_lowerCAmelCase =drop_rate
_lowerCAmelCase =drop_path_rate
_lowerCAmelCase =qkv_bias
_lowerCAmelCase =cls_token
_lowerCAmelCase =qkv_projection_method
_lowerCAmelCase =kernel_qkv
_lowerCAmelCase =padding_kv
_lowerCAmelCase =stride_kv
_lowerCAmelCase =padding_q
_lowerCAmelCase =stride_q
_lowerCAmelCase =initializer_range
_lowerCAmelCase =layer_norm_eps
| 341 | 0 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowerCamelCase__ ( _UpperCAmelCase , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = ShapEImgaImgPipeline
lowerCamelCase = ["image"]
lowerCamelCase = ["image"]
lowerCamelCase = [
"num_images_per_prompt",
"num_inference_steps",
"generator",
"latents",
"guidance_scale",
"frame_size",
"output_type",
"return_dict",
]
lowerCamelCase = False
@property
def _lowerCAmelCase ( self ) -> Union[str, Any]:
return 32
@property
def _lowerCAmelCase ( self ) -> Optional[Any]:
return 32
@property
def _lowerCAmelCase ( self ) -> Union[str, Any]:
return self.time_input_dim * 4
@property
def _lowerCAmelCase ( self ) -> Optional[Any]:
return 8
@property
def _lowerCAmelCase ( self ) -> List[str]:
torch.manual_seed(0 )
_lowerCAmelCase =CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , )
_lowerCAmelCase =CLIPVisionModel(_UpperCAmelCase )
return model
@property
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =CLIPImageProcessor(
crop_size=2_24 , do_center_crop=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_resize=_UpperCAmelCase , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=2_24 , )
return image_processor
@property
def _lowerCAmelCase ( self ) -> Dict:
torch.manual_seed(0 )
_lowerCAmelCase ={
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''embedding_proj_norm_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
_lowerCAmelCase =PriorTransformer(**_UpperCAmelCase )
return model
@property
def _lowerCAmelCase ( self ) -> List[str]:
torch.manual_seed(0 )
_lowerCAmelCase ={
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
_lowerCAmelCase =ShapERenderer(**_UpperCAmelCase )
return model
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =self.dummy_prior
_lowerCAmelCase =self.dummy_image_encoder
_lowerCAmelCase =self.dummy_image_processor
_lowerCAmelCase =self.dummy_renderer
_lowerCAmelCase =HeunDiscreteScheduler(
beta_schedule="""exp""" , num_train_timesteps=10_24 , prediction_type="""sample""" , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , )
_lowerCAmelCase ={
'''prior''': prior,
'''image_encoder''': image_encoder,
'''image_processor''': image_processor,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> List[str]:
_lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase )
if str(_UpperCAmelCase ).startswith("""mps""" ):
_lowerCAmelCase =torch.manual_seed(_UpperCAmelCase )
else:
_lowerCAmelCase =torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase )
_lowerCAmelCase ={
'''image''': input_image,
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase ='''cpu'''
_lowerCAmelCase =self.get_dummy_components()
_lowerCAmelCase =self.pipeline_class(**_UpperCAmelCase )
_lowerCAmelCase =pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
_lowerCAmelCase =pipe(**self.get_dummy_inputs(_UpperCAmelCase ) )
_lowerCAmelCase =output.images[0]
_lowerCAmelCase =image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
_lowerCAmelCase =np.array(
[
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _lowerCAmelCase ( self ) -> Any:
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =torch_device == '''cpu'''
_lowerCAmelCase =True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , )
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =self.get_dummy_components()
_lowerCAmelCase =self.pipeline_class(**_UpperCAmelCase )
_lowerCAmelCase =pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
_lowerCAmelCase =1
_lowerCAmelCase =2
_lowerCAmelCase =self.get_dummy_inputs(_UpperCAmelCase )
for key in inputs.keys():
if key in self.batch_params:
_lowerCAmelCase =batch_size * [inputs[key]]
_lowerCAmelCase =pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> int:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCAmelCase ( self ) -> Optional[int]:
_lowerCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" )
_lowerCAmelCase =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/shap_e/test_shap_e_img2img_out.npy""" )
_lowerCAmelCase =ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" )
_lowerCAmelCase =pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
_lowerCAmelCase =torch.Generator(device=_UpperCAmelCase ).manual_seed(0 )
_lowerCAmelCase =pipe(
_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
| 352 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = ['''image_processor''', '''tokenizer''']
lowerCamelCase = '''CLIPImageProcessor'''
lowerCamelCase = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''')
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase =None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __UpperCAmelCase , )
_lowerCAmelCase =kwargs.pop("""feature_extractor""" )
_lowerCAmelCase =image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Optional[Any]:
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
_lowerCAmelCase =self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if images is not None:
_lowerCAmelCase =self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is not None and images is not None:
_lowerCAmelCase =image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase )
def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
@property
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =self.tokenizer.model_input_names
_lowerCAmelCase =self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 341 | 0 |
"""simple docstring"""
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import is_speech_available, is_vision_available
from transformers.testing_utils import require_torch
if is_vision_available():
from transformers import TvltImageProcessor
if is_speech_available():
from transformers import TvltFeatureExtractor
from transformers import TvltProcessor
@require_torch
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> Optional[int]:
_lowerCAmelCase ="""ZinengTang/tvlt-base"""
_lowerCAmelCase =tempfile.mkdtemp()
def _lowerCAmelCase ( self , **__UpperCAmelCase ) -> List[str]:
return TvltImageProcessor.from_pretrained(self.checkpoint , **__snake_case )
def _lowerCAmelCase ( self , **__UpperCAmelCase ) -> Union[str, Any]:
return TvltFeatureExtractor.from_pretrained(self.checkpoint , **__snake_case )
def _lowerCAmelCase ( self ) -> Dict:
shutil.rmtree(self.tmpdirname )
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =self.get_image_processor()
_lowerCAmelCase =self.get_feature_extractor()
_lowerCAmelCase =TvltProcessor(image_processor=__snake_case , feature_extractor=__snake_case )
processor.save_pretrained(self.tmpdirname )
_lowerCAmelCase =TvltProcessor.from_pretrained(self.tmpdirname )
self.assertIsInstance(processor.feature_extractor , __snake_case )
self.assertIsInstance(processor.image_processor , __snake_case )
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =self.get_image_processor()
_lowerCAmelCase =self.get_feature_extractor()
_lowerCAmelCase =TvltProcessor(image_processor=__snake_case , feature_extractor=__snake_case )
_lowerCAmelCase =np.ones([1_20_00] )
_lowerCAmelCase =feature_extractor(__snake_case , return_tensors="""np""" )
_lowerCAmelCase =processor(audio=__snake_case , return_tensors="""np""" )
for key in audio_dict.keys():
self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =self.get_image_processor()
_lowerCAmelCase =self.get_feature_extractor()
_lowerCAmelCase =TvltProcessor(image_processor=__snake_case , feature_extractor=__snake_case )
_lowerCAmelCase =np.ones([3, 2_24, 2_24] )
_lowerCAmelCase =image_processor(__snake_case , return_tensors="""np""" )
_lowerCAmelCase =processor(images=__snake_case , return_tensors="""np""" )
for key in image_dict.keys():
self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =self.get_image_processor()
_lowerCAmelCase =self.get_feature_extractor()
_lowerCAmelCase =TvltProcessor(image_processor=__snake_case , feature_extractor=__snake_case )
_lowerCAmelCase =np.ones([1_20_00] )
_lowerCAmelCase =np.ones([3, 2_24, 2_24] )
_lowerCAmelCase =processor(audio=__snake_case , images=__snake_case )
self.assertListEqual(list(inputs.keys() ) , ["""audio_values""", """audio_mask""", """pixel_values""", """pixel_mask"""] )
# test if it raises when no input is passed
with pytest.raises(__snake_case ):
processor()
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =self.get_image_processor()
_lowerCAmelCase =self.get_feature_extractor()
_lowerCAmelCase =TvltProcessor(image_processor=__snake_case , feature_extractor=__snake_case )
self.assertListEqual(
processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="""`processor` and `image_processor`+`feature_extractor` model input names do not match""" , )
| 353 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__A = {
'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'],
'tokenization_perceiver': ['PerceiverTokenizer'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ['PerceiverFeatureExtractor']
__A = ['PerceiverImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PerceiverForImageClassificationConvProcessing',
'PerceiverForImageClassificationFourier',
'PerceiverForImageClassificationLearned',
'PerceiverForMaskedLM',
'PerceiverForMultimodalAutoencoding',
'PerceiverForOpticalFlow',
'PerceiverForSequenceClassification',
'PerceiverLayer',
'PerceiverModel',
'PerceiverPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
'facebook/s2t-wav2vec2-large-en-de': (
'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json'
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech2text2
}
class lowerCamelCase__ ( a__ ):
'''simple docstring'''
lowerCamelCase = '''speech_to_text_2'''
lowerCamelCase = ['''past_key_values''']
lowerCamelCase = {'''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self , __UpperCAmelCase=1_00_00 , __UpperCAmelCase=6 , __UpperCAmelCase=20_48 , __UpperCAmelCase=4 , __UpperCAmelCase=0.0 , __UpperCAmelCase=True , __UpperCAmelCase="relu" , __UpperCAmelCase=2_56 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=10_24 , **__UpperCAmelCase , ) -> List[Any]:
_lowerCAmelCase =vocab_size
_lowerCAmelCase =d_model
_lowerCAmelCase =decoder_ffn_dim
_lowerCAmelCase =decoder_layers
_lowerCAmelCase =decoder_attention_heads
_lowerCAmelCase =dropout
_lowerCAmelCase =attention_dropout
_lowerCAmelCase =activation_dropout
_lowerCAmelCase =activation_function
_lowerCAmelCase =init_std
_lowerCAmelCase =decoder_layerdrop
_lowerCAmelCase =use_cache
_lowerCAmelCase =decoder_layers
_lowerCAmelCase =scale_embedding # scale factor will be sqrt(d_model) if True
_lowerCAmelCase =max_target_positions
super().__init__(
pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , **_lowerCamelCase , )
| 354 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A = {
'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST',
'Swinv2ForImageClassification',
'Swinv2ForMaskedImageModeling',
'Swinv2Model',
'Swinv2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 0 |
"""simple docstring"""
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 355 |
"""simple docstring"""
import argparse
import json
import torch
from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=1 ) -> Tuple:
if n_shave_prefix_segments >= 0:
return ".".join(path.split(""".""" )[n_shave_prefix_segments:] )
else:
return ".".join(path.split(""".""" )[:n_shave_prefix_segments] )
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=0 ) -> List[str]:
_lowerCAmelCase =[]
for old_item in old_list:
_lowerCAmelCase =old_item.replace("""in_layers.0""" , """norm1""" )
_lowerCAmelCase =new_item.replace("""in_layers.2""" , """conv1""" )
_lowerCAmelCase =new_item.replace("""out_layers.0""" , """norm2""" )
_lowerCAmelCase =new_item.replace("""out_layers.3""" , """conv2""" )
_lowerCAmelCase =new_item.replace("""emb_layers.1""" , """time_emb_proj""" )
_lowerCAmelCase =new_item.replace("""skip_connection""" , """conv_shortcut""" )
_lowerCAmelCase =shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=0 ) -> Tuple:
_lowerCAmelCase =[]
for old_item in old_list:
_lowerCAmelCase =old_item
_lowerCAmelCase =new_item.replace("""norm.weight""" , """group_norm.weight""" )
_lowerCAmelCase =new_item.replace("""norm.bias""" , """group_norm.bias""" )
_lowerCAmelCase =new_item.replace("""proj_out.weight""" , """proj_attn.weight""" )
_lowerCAmelCase =new_item.replace("""proj_out.bias""" , """proj_attn.bias""" )
_lowerCAmelCase =shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None ) -> Optional[int]:
assert isinstance(__UpperCamelCase , __UpperCamelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
_lowerCAmelCase =old_checkpoint[path]
_lowerCAmelCase =old_tensor.shape[0] // 3
_lowerCAmelCase =(-1, channels) if len(old_tensor.shape ) == 3 else (-1)
_lowerCAmelCase =old_tensor.shape[0] // config["""num_head_channels"""] // 3
_lowerCAmelCase =old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =old_tensor.split(channels // num_heads , dim=1 )
_lowerCAmelCase =query.reshape(__UpperCamelCase )
_lowerCAmelCase =key.reshape(__UpperCamelCase )
_lowerCAmelCase =value.reshape(__UpperCamelCase )
for path in paths:
_lowerCAmelCase =path["""new"""]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
_lowerCAmelCase =new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" )
_lowerCAmelCase =new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" )
_lowerCAmelCase =new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" )
if additional_replacements is not None:
for replacement in additional_replacements:
_lowerCAmelCase =new_path.replace(replacement["""old"""] , replacement["""new"""] )
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
_lowerCAmelCase =old_checkpoint[path["""old"""]][:, :, 0]
else:
_lowerCAmelCase =old_checkpoint[path["""old"""]]
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Optional[Any]:
_lowerCAmelCase ={}
_lowerCAmelCase =checkpoint["""time_embed.0.weight"""]
_lowerCAmelCase =checkpoint["""time_embed.0.bias"""]
_lowerCAmelCase =checkpoint["""time_embed.2.weight"""]
_lowerCAmelCase =checkpoint["""time_embed.2.bias"""]
_lowerCAmelCase =checkpoint["""input_blocks.0.0.weight"""]
_lowerCAmelCase =checkpoint["""input_blocks.0.0.bias"""]
_lowerCAmelCase =checkpoint["""out.0.weight"""]
_lowerCAmelCase =checkpoint["""out.0.bias"""]
_lowerCAmelCase =checkpoint["""out.2.weight"""]
_lowerCAmelCase =checkpoint["""out.2.bias"""]
# Retrieves the keys for the input blocks only
_lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} )
_lowerCAmelCase ={
layer_id: [key for key in checkpoint if F'''input_blocks.{layer_id}''' in key]
for layer_id in range(__UpperCamelCase )
}
# Retrieves the keys for the middle blocks only
_lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} )
_lowerCAmelCase ={
layer_id: [key for key in checkpoint if F'''middle_block.{layer_id}''' in key]
for layer_id in range(__UpperCamelCase )
}
# Retrieves the keys for the output blocks only
_lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} )
_lowerCAmelCase ={
layer_id: [key for key in checkpoint if F'''output_blocks.{layer_id}''' in key]
for layer_id in range(__UpperCamelCase )
}
for i in range(1 , __UpperCamelCase ):
_lowerCAmelCase =(i - 1) // (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =(i - 1) % (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =[key for key in input_blocks[i] if F'''input_blocks.{i}.0''' in key]
_lowerCAmelCase =[key for key in input_blocks[i] if F'''input_blocks.{i}.1''' in key]
if F'''input_blocks.{i}.0.op.weight''' in checkpoint:
_lowerCAmelCase =checkpoint[
F'''input_blocks.{i}.0.op.weight'''
]
_lowerCAmelCase =checkpoint[
F'''input_blocks.{i}.0.op.bias'''
]
continue
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
_lowerCAmelCase ={"""old""": F'''input_blocks.{i}.0''', """new""": F'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''}
_lowerCAmelCase ={"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path, resnet_op] , config=__UpperCamelCase )
if len(__UpperCamelCase ):
_lowerCAmelCase =renew_attention_paths(__UpperCamelCase )
_lowerCAmelCase ={
"""old""": F'''input_blocks.{i}.1''',
"""new""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}''',
}
_lowerCAmelCase ={
F'''input_blocks.{i}.1.qkv.bias''': {
"""key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''',
"""query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''',
"""value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''',
},
F'''input_blocks.{i}.1.qkv.weight''': {
"""key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''',
"""query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''',
"""value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''',
},
}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase , )
_lowerCAmelCase =middle_blocks[0]
_lowerCAmelCase =middle_blocks[1]
_lowerCAmelCase =middle_blocks[2]
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase )
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase )
_lowerCAmelCase =renew_attention_paths(__UpperCamelCase )
_lowerCAmelCase ={
"""middle_block.1.qkv.bias""": {
"""key""": """mid_block.attentions.0.key.bias""",
"""query""": """mid_block.attentions.0.query.bias""",
"""value""": """mid_block.attentions.0.value.bias""",
},
"""middle_block.1.qkv.weight""": {
"""key""": """mid_block.attentions.0.key.weight""",
"""query""": """mid_block.attentions.0.query.weight""",
"""value""": """mid_block.attentions.0.value.weight""",
},
}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase )
for i in range(__UpperCamelCase ):
_lowerCAmelCase =i // (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =i % (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =[shave_segments(__UpperCamelCase , 2 ) for name in output_blocks[i]]
_lowerCAmelCase ={}
for layer in output_block_layers:
_lowerCAmelCase , _lowerCAmelCase =layer.split(""".""" )[0], shave_segments(__UpperCamelCase , 1 )
if layer_id in output_block_list:
output_block_list[layer_id].append(__UpperCamelCase )
else:
_lowerCAmelCase =[layer_name]
if len(__UpperCamelCase ) > 1:
_lowerCAmelCase =[key for key in output_blocks[i] if F'''output_blocks.{i}.0''' in key]
_lowerCAmelCase =[key for key in output_blocks[i] if F'''output_blocks.{i}.1''' in key]
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
_lowerCAmelCase ={"""old""": F'''output_blocks.{i}.0''', """new""": F'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''}
assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase )
if ["conv.weight", "conv.bias"] in output_block_list.values():
_lowerCAmelCase =list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] )
_lowerCAmelCase =checkpoint[
F'''output_blocks.{i}.{index}.conv.weight'''
]
_lowerCAmelCase =checkpoint[
F'''output_blocks.{i}.{index}.conv.bias'''
]
# Clear attentions as they have been attributed above.
if len(__UpperCamelCase ) == 2:
_lowerCAmelCase =[]
if len(__UpperCamelCase ):
_lowerCAmelCase =renew_attention_paths(__UpperCamelCase )
_lowerCAmelCase ={
"""old""": F'''output_blocks.{i}.1''',
"""new""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}''',
}
_lowerCAmelCase ={
F'''output_blocks.{i}.1.qkv.bias''': {
"""key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''',
"""query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''',
"""value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''',
},
F'''output_blocks.{i}.1.qkv.weight''': {
"""key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''',
"""query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''',
"""value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''',
},
}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=__UpperCamelCase , )
else:
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase , n_shave_prefix_segments=1 )
for path in resnet_0_paths:
_lowerCAmelCase =""".""".join(["""output_blocks""", str(__UpperCamelCase ), path["""old"""]] )
_lowerCAmelCase =""".""".join(["""up_blocks""", str(__UpperCamelCase ), """resnets""", str(__UpperCamelCase ), path["""new"""]] )
_lowerCAmelCase =checkpoint[old_path]
return new_checkpoint
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the architecture.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
__A = parser.parse_args()
__A = torch.load(args.checkpoint_path)
with open(args.config_file) as f:
__A = json.loads(f.read())
__A = convert_ldm_checkpoint(checkpoint, config)
if "ldm" in config:
del config["ldm"]
__A = UNetaDModel(**config)
model.load_state_dict(converted_checkpoint)
try:
__A = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1]))
__A = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1]))
__A = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae)
pipe.save_pretrained(args.dump_path)
except: # noqa: E722
model.save_pretrained(args.dump_path)
| 341 | 0 |
"""simple docstring"""
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=lowerCamelCase__ )
class lowerCamelCase__ ( lowerCamelCase__ ):
'''simple docstring'''
lowerCamelCase = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} )
lowerCamelCase = Features({'''text''': Value('''string''' )} )
lowerCamelCase = Features({} )
lowerCamelCase = "text"
@property
def _lowerCAmelCase ( self ) -> Union[str, Any]:
return {self.text_column: "text"}
| 356 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase ) -> Optional[Any]:
_lowerCAmelCase =0
_lowerCAmelCase =len(__UpperCamelCase )
for i in range(n - 1 ):
for j in range(i + 1 , __UpperCamelCase ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def _lowerCamelCase(__UpperCamelCase ) -> List[Any]:
if len(__UpperCamelCase ) <= 1:
return arr, 0
_lowerCAmelCase =len(__UpperCamelCase ) // 2
_lowerCAmelCase =arr[0:mid]
_lowerCAmelCase =arr[mid:]
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =_count_cross_inversions(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =inversion_p + inversions_q + cross_inversions
return c, num_inversions
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Any:
_lowerCAmelCase =[]
_lowerCAmelCase =_lowerCAmelCase =_lowerCAmelCase =0
while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(__UpperCamelCase ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(__UpperCamelCase ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def _lowerCamelCase() -> str:
_lowerCAmelCase =[10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 8
print("""number of inversions = """ , __UpperCamelCase )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , __UpperCamelCase )
# an empty list should also have zero inversions
_lowerCAmelCase =[]
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , __UpperCamelCase )
if __name__ == "__main__":
main()
| 341 | 0 |
"""simple docstring"""
import numpy as np
from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> np.ndarray:
if (ksize % 2) == 0:
_lowerCAmelCase =ksize + 1
_lowerCAmelCase =np.zeros((ksize, ksize) , dtype=np.floataa )
# each value
for y in range(__A ):
for x in range(__A ):
# distance from center
_lowerCAmelCase =x - ksize // 2
_lowerCAmelCase =y - ksize // 2
# degree to radiant
_lowerCAmelCase =theta / 180 * np.pi
_lowerCAmelCase =np.cos(_theta )
_lowerCAmelCase =np.sin(_theta )
# get kernel x
_lowerCAmelCase =cos_theta * px + sin_theta * py
# get kernel y
_lowerCAmelCase =-sin_theta * px + cos_theta * py
# fill kernel
_lowerCAmelCase =np.exp(
-(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi )
return gabor
if __name__ == "__main__":
import doctest
doctest.testmod()
# read original image
__A = imread('../image_data/lena.jpg')
# turn image in gray scale value
__A = cvtColor(img, COLOR_BGR2GRAY)
# Apply multiple Kernel to detect edges
__A = np.zeros(gray.shape[:2])
for theta in [0, 30, 60, 90, 120, 150]:
__A = gabor_filter_kernel(10, 8, theta, 10, 0, 0)
out += filteraD(gray, CV_8UC3, kernel_aa)
__A = out / out.max() * 255
__A = out.astype(np.uinta)
imshow('Original', gray)
imshow('Gabor filter with 20x20 mask and 6 directions', out)
waitKey(0)
| 357 |
"""simple docstring"""
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = None
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = None
lowerCamelCase = None
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = True
lowerCamelCase = None
lowerCamelCase = 1
lowerCamelCase = None
lowerCamelCase = False
lowerCamelCase = None
lowerCamelCase = None
def _lowerCAmelCase ( self ) -> "DownloadConfig":
return self.__class__(**{k: copy.deepcopy(__UpperCAmelCase ) for k, v in self.__dict__.items()} )
| 341 | 0 |
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=[1, 2, 1] , __UpperCAmelCase=[2, 2, 4] , __UpperCAmelCase=2 , __UpperCAmelCase=2.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=8 , __UpperCAmelCase=["stage1", "stage2", "stage3"] , __UpperCAmelCase=[1, 2, 3] , ) -> List[Any]:
_lowerCAmelCase =parent
_lowerCAmelCase =batch_size
_lowerCAmelCase =image_size
_lowerCAmelCase =patch_size
_lowerCAmelCase =num_channels
_lowerCAmelCase =embed_dim
_lowerCAmelCase =depths
_lowerCAmelCase =num_heads
_lowerCAmelCase =window_size
_lowerCAmelCase =mlp_ratio
_lowerCAmelCase =qkv_bias
_lowerCAmelCase =hidden_dropout_prob
_lowerCAmelCase =attention_probs_dropout_prob
_lowerCAmelCase =drop_path_rate
_lowerCAmelCase =hidden_act
_lowerCAmelCase =use_absolute_embeddings
_lowerCAmelCase =patch_norm
_lowerCAmelCase =layer_norm_eps
_lowerCAmelCase =initializer_range
_lowerCAmelCase =is_training
_lowerCAmelCase =scope
_lowerCAmelCase =use_labels
_lowerCAmelCase =type_sequence_label_size
_lowerCAmelCase =encoder_stride
_lowerCAmelCase =out_features
_lowerCAmelCase =out_indices
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCAmelCase =None
if self.use_labels:
_lowerCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCAmelCase =self.get_config()
return config, pixel_values, labels
def _lowerCAmelCase ( self ) -> Tuple:
return MaskFormerSwinConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
_lowerCAmelCase =MaskFormerSwinModel(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
_lowerCAmelCase =model(_UpperCamelCase )
_lowerCAmelCase =((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
_lowerCAmelCase =int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase =MaskFormerSwinBackbone(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
_lowerCAmelCase =model(_UpperCamelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , [16, 32, 64] )
# verify ValueError
with self.parent.assertRaises(_UpperCamelCase ):
_lowerCAmelCase =["""stem"""]
_lowerCAmelCase =MaskFormerSwinBackbone(config=_UpperCamelCase )
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =self.prepare_config_and_inputs()
_lowerCAmelCase =config_and_inputs
_lowerCAmelCase ={"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowerCamelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
lowerCamelCase = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {}
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =MaskFormerSwinModelTester(self )
_lowerCAmelCase =ConfigTester(self , config_class=_UpperCamelCase , embed_dim=37 )
@require_torch_multi_gpu
@unittest.skip(
reason=(
"""`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with"""
""" `nn.DataParallel`"""
) )
def _lowerCAmelCase ( self ) -> List[str]:
pass
def _lowerCAmelCase ( self ) -> Union[str, Any]:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _lowerCAmelCase ( self ) -> List[str]:
return
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCamelCase )
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_UpperCamelCase )
@unittest.skip("""Swin does not use inputs_embeds""" )
def _lowerCAmelCase ( self ) -> List[Any]:
pass
@unittest.skip("""Swin does not support feedforward chunking""" )
def _lowerCAmelCase ( self ) -> Dict:
pass
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase =model_class(_UpperCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_lowerCAmelCase =model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear ) )
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase =model_class(_UpperCamelCase )
_lowerCAmelCase =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCAmelCase =[*signature.parameters.keys()]
_lowerCAmelCase =["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _UpperCamelCase )
@unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" )
def _lowerCAmelCase ( self ) -> Optional[Any]:
pass
@unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" )
def _lowerCAmelCase ( self ) -> Optional[int]:
pass
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
_lowerCAmelCase =model_class(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
with torch.no_grad():
_lowerCAmelCase =model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) )
_lowerCAmelCase =outputs.hidden_states
_lowerCAmelCase =getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase )
# Swin has a different seq_length
_lowerCAmelCase =(
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_lowerCAmelCase =(image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase =(
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
_lowerCAmelCase =True
self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCAmelCase =True
self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
def _lowerCAmelCase ( self ) -> Optional[int]:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase =3
_lowerCAmelCase =(
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
_lowerCAmelCase =(
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_lowerCAmelCase =image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
_lowerCAmelCase =image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
_lowerCAmelCase =True
self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCAmelCase =True
self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , (padded_height, padded_width) )
@unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" )
def _lowerCAmelCase ( self ) -> Tuple:
pass
@unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" )
def _lowerCAmelCase ( self ) -> Tuple:
pass
@unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" )
def _lowerCAmelCase ( self ) -> str:
pass
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(__UpperCAmelCase ):
_lowerCAmelCase =0
return t
def check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase={} ):
with torch.no_grad():
_lowerCAmelCase =model(**_UpperCamelCase , return_dict=_UpperCamelCase , **_UpperCamelCase )
_lowerCAmelCase =model(**_UpperCamelCase , return_dict=_UpperCamelCase , **_UpperCamelCase ).to_tuple()
def recursive_check(__UpperCAmelCase , __UpperCAmelCase ):
if isinstance(_UpperCamelCase , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(_UpperCamelCase , _UpperCamelCase ):
recursive_check(_UpperCamelCase , _UpperCamelCase )
elif isinstance(_UpperCamelCase , _UpperCamelCase ):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values() , dict_object.values() ):
recursive_check(_UpperCamelCase , _UpperCamelCase )
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(_UpperCamelCase ) , set_nan_tensor_to_zero(_UpperCamelCase ) , atol=1e-5 ) , msg=(
"""Tuple and dict output are not equal. Difference:"""
f''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:'''
f''' {torch.isnan(_UpperCamelCase ).any()} and `inf`: {torch.isinf(_UpperCamelCase )}. Dict has'''
f''' `nan`: {torch.isnan(_UpperCamelCase ).any()} and `inf`: {torch.isinf(_UpperCamelCase )}.'''
) , )
recursive_check(_UpperCamelCase , _UpperCamelCase )
for model_class in self.all_model_classes:
_lowerCAmelCase =model_class(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
_lowerCAmelCase =self._prepare_for_class(_UpperCamelCase , _UpperCamelCase )
_lowerCAmelCase =self._prepare_for_class(_UpperCamelCase , _UpperCamelCase )
check_equivalence(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
_lowerCAmelCase =self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase )
_lowerCAmelCase =self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase )
check_equivalence(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
_lowerCAmelCase =self._prepare_for_class(_UpperCamelCase , _UpperCamelCase )
_lowerCAmelCase =self._prepare_for_class(_UpperCamelCase , _UpperCamelCase )
check_equivalence(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , {"""output_hidden_states""": True} )
_lowerCAmelCase =self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase )
_lowerCAmelCase =self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase )
check_equivalence(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , {"""output_hidden_states""": True} )
@require_torch
class lowerCamelCase__ ( unittest.TestCase , lowercase__ ):
'''simple docstring'''
lowerCamelCase = (MaskFormerSwinBackbone,) if is_torch_available() else ()
lowerCamelCase = MaskFormerSwinConfig
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =MaskFormerSwinModelTester(self )
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase =inputs_dict["""pixel_values"""].shape[0]
for backbone_class in self.all_model_classes:
_lowerCAmelCase =backbone_class(_UpperCamelCase )
backbone.to(_UpperCamelCase )
backbone.eval()
_lowerCAmelCase =backbone(**_UpperCamelCase )
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps , _UpperCamelCase )
self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) )
for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ):
self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) )
self.assertIsNone(outputs.hidden_states )
self.assertIsNone(outputs.attentions )
# Test output_hidden_states=True
_lowerCAmelCase =backbone(**_UpperCamelCase , output_hidden_states=_UpperCamelCase )
self.assertIsNotNone(outputs.hidden_states )
self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) )
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
_lowerCAmelCase =hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) )
# Test output_attentions=True
if self.has_attentions:
_lowerCAmelCase =backbone(**_UpperCamelCase , output_attentions=_UpperCamelCase )
self.assertIsNotNone(outputs.attentions )
| 358 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> int:
return int((input_a, input_a).count(1 ) != 0 )
def _lowerCamelCase() -> None:
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 341 | 0 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from torch.backends.cuda import sdp_kernel
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNetaDModel,
)
from diffusers.utils import randn_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowerCamelCase__ ( __A , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = ConsistencyModelPipeline
lowerCamelCase = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
lowerCamelCase = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
# Override required_optional_params to remove num_images_per_prompt
lowerCamelCase = frozenset(
[
'''num_inference_steps''',
'''generator''',
'''latents''',
'''output_type''',
'''return_dict''',
'''callback''',
'''callback_steps''',
] )
@property
def _lowerCAmelCase ( self ) -> Optional[int]:
_lowerCAmelCase =UNetaDModel.from_pretrained(
"""diffusers/consistency-models-test""" , subfolder="""test_unet""" , )
return unet
@property
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =UNetaDModel.from_pretrained(
"""diffusers/consistency-models-test""" , subfolder="""test_unet_class_cond""" , )
return unet
def _lowerCAmelCase ( self , __UpperCAmelCase=False ) -> List[Any]:
if class_cond:
_lowerCAmelCase =self.dummy_cond_unet
else:
_lowerCAmelCase =self.dummy_uncond_unet
# Default to CM multistep sampler
_lowerCAmelCase =CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=80.0 , )
_lowerCAmelCase ={
"""unet""": unet,
"""scheduler""": scheduler,
}
return components
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Optional[int]:
if str(__lowercase ).startswith("""mps""" ):
_lowerCAmelCase =torch.manual_seed(__lowercase )
else:
_lowerCAmelCase =torch.Generator(device=__lowercase ).manual_seed(__lowercase )
_lowerCAmelCase ={
"""batch_size""": 1,
"""num_inference_steps""": None,
"""timesteps""": [22, 0],
"""generator""": generator,
"""output_type""": """np""",
}
return inputs
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase =self.get_dummy_components()
_lowerCAmelCase =ConsistencyModelPipeline(**__lowercase )
_lowerCAmelCase =pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
_lowerCAmelCase =self.get_dummy_inputs(__lowercase )
_lowerCAmelCase =pipe(**__lowercase ).images
assert image.shape == (1, 32, 32, 3)
_lowerCAmelCase =image[0, -3:, -3:, -1]
_lowerCAmelCase =np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase =self.get_dummy_components(class_cond=__lowercase )
_lowerCAmelCase =ConsistencyModelPipeline(**__lowercase )
_lowerCAmelCase =pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
_lowerCAmelCase =self.get_dummy_inputs(__lowercase )
_lowerCAmelCase =0
_lowerCAmelCase =pipe(**__lowercase ).images
assert image.shape == (1, 32, 32, 3)
_lowerCAmelCase =image[0, -3:, -3:, -1]
_lowerCAmelCase =np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase =self.get_dummy_components()
_lowerCAmelCase =ConsistencyModelPipeline(**__lowercase )
_lowerCAmelCase =pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
_lowerCAmelCase =self.get_dummy_inputs(__lowercase )
_lowerCAmelCase =1
_lowerCAmelCase =None
_lowerCAmelCase =pipe(**__lowercase ).images
assert image.shape == (1, 32, 32, 3)
_lowerCAmelCase =image[0, -3:, -3:, -1]
_lowerCAmelCase =np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase =self.get_dummy_components(class_cond=__lowercase )
_lowerCAmelCase =ConsistencyModelPipeline(**__lowercase )
_lowerCAmelCase =pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
_lowerCAmelCase =self.get_dummy_inputs(__lowercase )
_lowerCAmelCase =1
_lowerCAmelCase =None
_lowerCAmelCase =0
_lowerCAmelCase =pipe(**__lowercase ).images
assert image.shape == (1, 32, 32, 3)
_lowerCAmelCase =image[0, -3:, -3:, -1]
_lowerCAmelCase =np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
@slow
@require_torch_gpu
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> Optional[Any]:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCAmelCase ( self , __UpperCAmelCase=0 , __UpperCAmelCase=False , __UpperCAmelCase="cpu" , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=(1, 3, 64, 64) ) -> Optional[Any]:
_lowerCAmelCase =torch.manual_seed(__lowercase )
_lowerCAmelCase ={
"""num_inference_steps""": None,
"""timesteps""": [22, 0],
"""class_labels""": 0,
"""generator""": generator,
"""output_type""": """np""",
}
if get_fixed_latents:
_lowerCAmelCase =self.get_fixed_latents(seed=__lowercase , device=__lowercase , dtype=__lowercase , shape=__lowercase )
_lowerCAmelCase =latents
return inputs
def _lowerCAmelCase ( self , __UpperCAmelCase=0 , __UpperCAmelCase="cpu" , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=(1, 3, 64, 64) ) -> Dict:
if type(__lowercase ) == str:
_lowerCAmelCase =torch.device(__lowercase )
_lowerCAmelCase =torch.Generator(device=__lowercase ).manual_seed(__lowercase )
_lowerCAmelCase =randn_tensor(__lowercase , generator=__lowercase , device=__lowercase , dtype=__lowercase )
return latents
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" )
_lowerCAmelCase =CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=80.0 , )
_lowerCAmelCase =ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase )
pipe.to(torch_device=__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
_lowerCAmelCase =self.get_inputs()
_lowerCAmelCase =pipe(**__lowercase ).images
assert image.shape == (1, 64, 64, 3)
_lowerCAmelCase =image[0, -3:, -3:, -1]
_lowerCAmelCase =np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
def _lowerCAmelCase ( self ) -> Optional[int]:
_lowerCAmelCase =UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" )
_lowerCAmelCase =CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=80.0 , )
_lowerCAmelCase =ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase )
pipe.to(torch_device=__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
_lowerCAmelCase =self.get_inputs()
_lowerCAmelCase =1
_lowerCAmelCase =None
_lowerCAmelCase =pipe(**__lowercase ).images
assert image.shape == (1, 64, 64, 3)
_lowerCAmelCase =image[0, -3:, -3:, -1]
_lowerCAmelCase =np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
@require_torch_a
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" )
_lowerCAmelCase =CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=80.0 , )
_lowerCAmelCase =ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase )
pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa )
pipe.set_progress_bar_config(disable=__lowercase )
_lowerCAmelCase =self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase )
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ):
_lowerCAmelCase =pipe(**__lowercase ).images
assert image.shape == (1, 64, 64, 3)
_lowerCAmelCase =image[0, -3:, -3:, -1]
_lowerCAmelCase =np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
@require_torch_a
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" )
_lowerCAmelCase =CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=80.0 , )
_lowerCAmelCase =ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase )
pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa )
pipe.set_progress_bar_config(disable=__lowercase )
_lowerCAmelCase =self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase )
_lowerCAmelCase =1
_lowerCAmelCase =None
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ):
_lowerCAmelCase =pipe(**__lowercase ).images
assert image.shape == (1, 64, 64, 3)
_lowerCAmelCase =image[0, -3:, -3:, -1]
_lowerCAmelCase =np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
| 359 |
"""simple docstring"""
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
__A = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n'
__A = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n'
__A = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase__ ( datasets.Metric ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> Any:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ),
"""references""": datasets.Sequence(
datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/BLEU""",
"""https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""",
] , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=4 , __UpperCAmelCase=False ) -> Tuple:
_lowerCAmelCase =compute_bleu(
reference_corpus=__UpperCAmelCase , translation_corpus=__UpperCAmelCase , max_order=__UpperCAmelCase , smooth=__UpperCAmelCase )
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) =score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 341 | 0 |
"""simple docstring"""
import copy
import json
import os
import tempfile
from transformers import is_torch_available
from .test_configuration_utils import config_common_kwargs
class lowerCamelCase__ ( A_ ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Dict:
_lowerCAmelCase =parent
_lowerCAmelCase =config_class
_lowerCAmelCase =has_text_modality
_lowerCAmelCase =kwargs
_lowerCAmelCase =common_properties
def __UpperCAmelCase ( self ) -> Dict:
_lowerCAmelCase =self.config_class(**self.inputs_dict )
_lowerCAmelCase =(
["hidden_size", "num_attention_heads", "num_hidden_layers"]
if self.common_properties is None
else self.common_properties
)
# Add common fields for text models
if self.has_text_modality:
common_properties.extend(["""vocab_size"""] )
# Test that config has the common properties as getters
for prop in common_properties:
self.parent.assertTrue(hasattr(snake_case__ , snake_case__ ) , msg=f'''`{prop}` does not exist''' )
# Test that config has the common properties as setter
for idx, name in enumerate(snake_case__ ):
try:
setattr(snake_case__ , snake_case__ , snake_case__ )
self.parent.assertEqual(
getattr(snake_case__ , snake_case__ ) , snake_case__ , msg=f'''`{name} value {idx} expected, but was {getattr(snake_case__ , snake_case__ )}''' )
except NotImplementedError:
# Some models might not be able to implement setters for common_properties
# In that case, a NotImplementedError is raised
pass
# Test if config class can be called with Config(prop_name=..)
for idx, name in enumerate(snake_case__ ):
try:
_lowerCAmelCase =self.config_class(**{name: idx} )
self.parent.assertEqual(
getattr(snake_case__ , snake_case__ ) , snake_case__ , msg=f'''`{name} value {idx} expected, but was {getattr(snake_case__ , snake_case__ )}''' )
except NotImplementedError:
# Some models might not be able to implement setters for common_properties
# In that case, a NotImplementedError is raised
pass
def __UpperCAmelCase ( self ) -> Optional[int]:
_lowerCAmelCase =self.config_class(**self.inputs_dict )
_lowerCAmelCase =json.loads(config.to_json_string() )
for key, value in self.inputs_dict.items():
self.parent.assertEqual(obj[key] , snake_case__ )
def __UpperCAmelCase ( self ) -> Dict:
_lowerCAmelCase =self.config_class(**self.inputs_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
_lowerCAmelCase =os.path.join(snake_case__ , """config.json""" )
config_first.to_json_file(snake_case__ )
_lowerCAmelCase =self.config_class.from_json_file(snake_case__ )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def __UpperCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =self.config_class(**self.inputs_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
config_first.save_pretrained(snake_case__ )
_lowerCAmelCase =self.config_class.from_pretrained(snake_case__ )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def __UpperCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =self.config_class(**self.inputs_dict )
_lowerCAmelCase ="test"
with tempfile.TemporaryDirectory() as tmpdirname:
_lowerCAmelCase =os.path.join(snake_case__ , snake_case__ )
config_first.save_pretrained(snake_case__ )
_lowerCAmelCase =self.config_class.from_pretrained(snake_case__ , subfolder=snake_case__ )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def __UpperCAmelCase ( self ) -> int:
_lowerCAmelCase =self.config_class(**self.inputs_dict , num_labels=5 )
self.parent.assertEqual(len(config.idalabel ) , 5 )
self.parent.assertEqual(len(config.labelaid ) , 5 )
_lowerCAmelCase =3
self.parent.assertEqual(len(config.idalabel ) , 3 )
self.parent.assertEqual(len(config.labelaid ) , 3 )
def __UpperCAmelCase ( self ) -> List[Any]:
if self.config_class.is_composition:
return
_lowerCAmelCase =self.config_class()
self.parent.assertIsNotNone(snake_case__ )
def __UpperCAmelCase ( self ) -> Optional[int]:
_lowerCAmelCase =copy.deepcopy(snake_case__ )
_lowerCAmelCase =self.config_class(**snake_case__ )
_lowerCAmelCase =[]
for key, value in config_common_kwargs.items():
if key == "torch_dtype":
if not is_torch_available():
continue
else:
import torch
if config.torch_dtype != torch.floataa:
wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) )
elif getattr(snake_case__ , snake_case__ ) != value:
wrong_values.append((key, getattr(snake_case__ , snake_case__ ), value) )
if len(snake_case__ ) > 0:
_lowerCAmelCase ="\n".join([f'''- {v[0]}: got {v[1]} instead of {v[2]}''' for v in wrong_values] )
raise ValueError(f'''The following keys were not properly set in the config:\n{errors}''' )
def __UpperCAmelCase ( self ) -> List[Any]:
self.create_and_test_config_common_properties()
self.create_and_test_config_to_json_string()
self.create_and_test_config_to_json_file()
self.create_and_test_config_from_and_save_pretrained()
self.create_and_test_config_from_and_save_pretrained_subfolder()
self.create_and_test_config_with_num_labels()
self.check_config_can_be_init_without_params()
self.check_config_arguments_init()
| 360 |
"""simple docstring"""
import argparse
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
parser.add_argument(
'--original_config_file',
type=str,
required=True,
help='The YAML config file corresponding to the original architecture.',
)
parser.add_argument(
'--num_in_channels',
default=None,
type=int,
help='The number of input channels. If `None` number of input channels will be automatically inferred.',
)
parser.add_argument(
'--image_size',
default=512,
type=int,
help=(
'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2'
' Base. Use 768 for Stable Diffusion v2.'
),
)
parser.add_argument(
'--extract_ema',
action='store_true',
help=(
'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights'
' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield'
' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.'
),
)
parser.add_argument(
'--upcast_attention',
action='store_true',
help=(
'Whether the attention computation should always be upcasted. This is necessary when running stable'
' diffusion 2.1.'
),
)
parser.add_argument(
'--from_safetensors',
action='store_true',
help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.',
)
parser.add_argument(
'--to_safetensors',
action='store_true',
help='Whether to store pipeline in safetensors format or not.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)')
def _lowerCamelCase(__UpperCamelCase ) -> List[str]:
if string == "True":
return True
elif string == "False":
return False
else:
raise ValueError(F'''could not parse string as bool {string}''' )
parser.add_argument(
'--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool
)
parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int)
__A = parser.parse_args()
__A = download_controlnet_from_original_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
extract_ema=args.extract_ema,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
use_linear_projection=args.use_linear_projection,
cross_attention_dim=args.cross_attention_dim,
)
controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 341 | 0 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> float:
if mass < 0:
raise ValueError("""The mass of a body cannot be negative""" )
return 0.5 * mass * abs(lowerCAmelCase__ ) * abs(lowerCAmelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 361 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available
__A = {
'configuration_audio_spectrogram_transformer': [
'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'ASTConfig',
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'ASTForAudioClassification',
'ASTModel',
'ASTPreTrainedModel',
]
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ['ASTFeatureExtractor']
if TYPE_CHECKING:
from .configuration_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
ASTConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ASTForAudioClassification,
ASTModel,
ASTPreTrainedModel,
)
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 0 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase ) -> str:
if any(not isinstance(lowercase__ , lowercase__ ) or x < 0 for x in sequence ):
raise TypeError("""Sequence must be list of non-negative integers""" )
for _ in range(len(lowercase__ ) ):
for i, (rod_upper, rod_lower) in enumerate(zip(lowercase__ , sequence[1:] ) ):
if rod_upper > rod_lower:
sequence[i] -= rod_upper - rod_lower
sequence[i + 1] += rod_upper - rod_lower
return sequence
if __name__ == "__main__":
assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
| 362 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__A = {
'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'],
'tokenization_m2m_100': ['M2M100Tokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST',
'M2M100ForConditionalGeneration',
'M2M100Model',
'M2M100PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 0 |
"""simple docstring"""
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'}
# See all BART models at https://huggingface.co/models?filter=bart
__A = {
'vocab_file': {
'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json',
'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json',
'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json',
'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json',
'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json',
'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json',
},
'merges_file': {
'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt',
'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt',
'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt',
'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt',
'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt',
'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt',
},
}
__A = {
'facebook/bart-base': 1024,
'facebook/bart-large': 1024,
'facebook/bart-large-mnli': 1024,
'facebook/bart-large-cnn': 1024,
'facebook/bart-large-xsum': 1024,
'yjernite/bart_eli5': 1024,
}
@lru_cache()
def _lowerCamelCase() -> str:
_lowerCAmelCase =(
list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) )
)
_lowerCAmelCase =bs[:]
_lowerCAmelCase =0
for b in range(2**8 ):
if b not in bs:
bs.append(_lowerCamelCase )
cs.append(2**8 + n )
n += 1
_lowerCAmelCase =[chr(_lowerCamelCase ) for n in cs]
return dict(zip(_lowerCamelCase , _lowerCamelCase ) )
def _lowerCamelCase(__UpperCamelCase ) -> Tuple:
_lowerCAmelCase =set()
_lowerCAmelCase =word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
_lowerCAmelCase =char
return pairs
class lowerCamelCase__ ( __lowercase ):
'''simple docstring'''
lowerCamelCase = VOCAB_FILES_NAMES
lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase = ['''input_ids''', '''attention_mask''']
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="replace" , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> List[Any]:
_lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else bos_token
_lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else eos_token
_lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else sep_token
_lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else cls_token
_lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else unk_token
_lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
_lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
super().__init__(
errors=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , )
with open(__UpperCAmelCase , encoding="""utf-8""" ) as vocab_handle:
_lowerCAmelCase =json.load(__UpperCAmelCase )
_lowerCAmelCase ={v: k for k, v in self.encoder.items()}
_lowerCAmelCase =errors # how to handle errors in decoding
_lowerCAmelCase =bytes_to_unicode()
_lowerCAmelCase ={v: k for k, v in self.byte_encoder.items()}
with open(__UpperCAmelCase , encoding="""utf-8""" ) as merges_handle:
_lowerCAmelCase =merges_handle.read().split("""\n""" )[1:-1]
_lowerCAmelCase =[tuple(merge.split() ) for merge in bpe_merges]
_lowerCAmelCase =dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
_lowerCAmelCase ={}
_lowerCAmelCase =add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
_lowerCAmelCase =re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" )
@property
def _lowerCAmelCase ( self ) -> List[Any]:
return len(self.encoder )
def _lowerCAmelCase ( self ) -> str:
return dict(self.encoder , **self.added_tokens_encoder )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]:
if token in self.cache:
return self.cache[token]
_lowerCAmelCase =tuple(__UpperCAmelCase )
_lowerCAmelCase =get_pairs(__UpperCAmelCase )
if not pairs:
return token
while True:
_lowerCAmelCase =min(__UpperCAmelCase , key=lambda __UpperCAmelCase : self.bpe_ranks.get(__UpperCAmelCase , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
_lowerCAmelCase =bigram
_lowerCAmelCase =[]
_lowerCAmelCase =0
while i < len(__UpperCAmelCase ):
try:
_lowerCAmelCase =word.index(__UpperCAmelCase , __UpperCAmelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
_lowerCAmelCase =j
if word[i] == first and i < len(__UpperCAmelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
_lowerCAmelCase =tuple(__UpperCAmelCase )
_lowerCAmelCase =new_word
if len(__UpperCAmelCase ) == 1:
break
else:
_lowerCAmelCase =get_pairs(__UpperCAmelCase )
_lowerCAmelCase =""" """.join(__UpperCAmelCase )
_lowerCAmelCase =word
return word
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Dict:
_lowerCAmelCase =[]
for token in re.findall(self.pat , __UpperCAmelCase ):
_lowerCAmelCase ="""""".join(
self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__UpperCAmelCase ).split(""" """ ) )
return bpe_tokens
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> str:
return self.encoder.get(__UpperCAmelCase , self.encoder.get(self.unk_token ) )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Tuple:
return self.decoder.get(__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> int:
_lowerCAmelCase ="""""".join(__UpperCAmelCase )
_lowerCAmelCase =bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors )
return text
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCAmelCase , ensure_ascii=__UpperCAmelCase ) + """\n""" )
_lowerCAmelCase =0
with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as writer:
writer.write("""#version: 0.2\n""" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
""" Please check that the tokenizer is not corrupted!""" )
_lowerCAmelCase =token_index
writer.write(""" """.join(__UpperCAmelCase ) + """\n""" )
index += 1
return vocab_file, merge_file
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
_lowerCAmelCase =[self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(__UpperCAmelCase )) + [1]
return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1]
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_lowerCAmelCase =[self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False , **__UpperCAmelCase ) -> str:
_lowerCAmelCase =kwargs.pop("""add_prefix_space""" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__UpperCAmelCase ) > 0 and not text[0].isspace()):
_lowerCAmelCase =""" """ + text
return (text, kwargs)
| 363 |
"""simple docstring"""
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
__A = datasets.logging.get_logger(__name__)
__A = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n'
__A = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n'
__A = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n'
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase="dummy_doc" ) -> Dict:
_lowerCAmelCase ={doc: key_lines}
_lowerCAmelCase ={doc: sys_lines}
_lowerCAmelCase ={}
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase , _lowerCAmelCase =reader.get_doc_mentions(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase )
key_singletons_num += singletons_num
if NP_only or min_span:
_lowerCAmelCase =reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =reader.get_doc_mentions(__UpperCamelCase , sys_doc_lines[doc] , __UpperCamelCase )
sys_singletons_num += singletons_num
if NP_only or min_span:
_lowerCAmelCase =reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase )
if remove_nested:
_lowerCAmelCase , _lowerCAmelCase =reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
_lowerCAmelCase , _lowerCAmelCase =reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
_lowerCAmelCase =reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =(key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
"""Number of removed nested coreferring mentions in the key """
F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' )
logger.info(
"""Number of resulting singleton clusters in the key """
F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' )
if not keep_singletons:
logger.info(
F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system '''
"""files, respectively""" )
return doc_coref_infos
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int:
_lowerCAmelCase =get_coref_infos(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase ={}
_lowerCAmelCase =0
_lowerCAmelCase =0
for name, metric in metrics:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =evaluator.evaluate_documents(__UpperCamelCase , __UpperCamelCase , beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} )
logger.info(
name.ljust(10 ) , F'''Recall: {recall * 100:.2f}''' , F''' Precision: {precision * 100:.2f}''' , F''' F1: {fa * 100:.2f}''' , )
if conll_subparts_num == 3:
_lowerCAmelCase =(conll / 3) * 100
logger.info(F'''CoNLL score: {conll:.2f}''' )
output_scores.update({"""conll_score""": conll} )
return output_scores
def _lowerCamelCase(__UpperCamelCase ) -> Tuple:
_lowerCAmelCase =False
for line in key_lines:
if not line.startswith("""#""" ):
if len(line.split() ) > 6:
_lowerCAmelCase =line.split()[5]
if not parse_col == "-":
_lowerCAmelCase =True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase__ ( datasets.Metric ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> str:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Sequence(datasets.Value("""string""" ) ),
} ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[
"""https://github.com/ns-moosavi/coval""",
"""https://www.aclweb.org/anthology/P16-1060""",
"""http://www.conll.cemantix.org/2012/data.html""",
] , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False ) -> Optional[Any]:
_lowerCAmelCase =[
("""mentions""", evaluator.mentions),
("""muc""", evaluator.muc),
("""bcub""", evaluator.b_cubed),
("""ceafe""", evaluator.ceafe),
("""lea""", evaluator.lea),
]
if min_span:
_lowerCAmelCase =util.check_gold_parse_annotation(__UpperCAmelCase )
if not has_gold_parse:
raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" )
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
_lowerCAmelCase =evaluate(
key_lines=__UpperCAmelCase , sys_lines=__UpperCAmelCase , metrics=__UpperCAmelCase , NP_only=__UpperCAmelCase , remove_nested=__UpperCAmelCase , keep_singletons=__UpperCAmelCase , min_span=__UpperCAmelCase , )
return score
| 341 | 0 |
"""simple docstring"""
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotSmallConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
__A = 'platform'
import jax
import jax.numpy as jnp
from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
shift_tokens_right,
)
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , ) -> int:
if attention_mask is None:
_lowerCAmelCase =np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
_lowerCAmelCase =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
_lowerCAmelCase =np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_lowerCAmelCase =np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
_lowerCAmelCase =np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=0.0_2 , ) -> Dict:
_lowerCAmelCase =parent
_lowerCAmelCase =batch_size
_lowerCAmelCase =seq_length
_lowerCAmelCase =is_training
_lowerCAmelCase =use_labels
_lowerCAmelCase =vocab_size
_lowerCAmelCase =hidden_size
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =intermediate_size
_lowerCAmelCase =hidden_act
_lowerCAmelCase =hidden_dropout_prob
_lowerCAmelCase =attention_probs_dropout_prob
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =eos_token_id
_lowerCAmelCase =pad_token_id
_lowerCAmelCase =bos_token_id
_lowerCAmelCase =initializer_range
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size )
_lowerCAmelCase =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 )
_lowerCAmelCase =shift_tokens_right(lowercase_ , 1 , 2 )
_lowerCAmelCase =BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowercase_ , )
_lowerCAmelCase =prepare_blenderbot_inputs_dict(lowercase_ , lowercase_ , lowercase_ )
return config, inputs_dict
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase , _lowerCAmelCase =self.prepare_config_and_inputs()
return config, inputs_dict
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
_lowerCAmelCase =20
_lowerCAmelCase =model_class_name(lowercase_ )
_lowerCAmelCase =model.encode(inputs_dict["""input_ids"""] )
_lowerCAmelCase , _lowerCAmelCase =(
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_lowerCAmelCase =model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_ )
_lowerCAmelCase =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
_lowerCAmelCase =jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_lowerCAmelCase =model.decode(
decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , )
_lowerCAmelCase =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
_lowerCAmelCase =model.decode(
decoder_input_ids[:, -1:] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase_ , )
_lowerCAmelCase =model.decode(lowercase_ , lowercase_ )
_lowerCAmelCase =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
_lowerCAmelCase =20
_lowerCAmelCase =model_class_name(lowercase_ )
_lowerCAmelCase =model.encode(inputs_dict["""input_ids"""] )
_lowerCAmelCase , _lowerCAmelCase =(
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_lowerCAmelCase =jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
_lowerCAmelCase =model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_ )
_lowerCAmelCase =jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_lowerCAmelCase =model.decode(
decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , )
_lowerCAmelCase =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
_lowerCAmelCase =model.decode(
decoder_input_ids[:, -1:] , lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase_ , decoder_position_ids=lowercase_ , )
_lowerCAmelCase =model.decode(lowercase_ , lowercase_ , decoder_attention_mask=lowercase_ )
_lowerCAmelCase =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
@require_flax
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = 99
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase =np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
_lowerCAmelCase =input_ids.shape[0]
_lowerCAmelCase =BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._get_config_and_data()
_lowerCAmelCase =FlaxBlenderbotSmallForConditionalGeneration(lowercase_ )
_lowerCAmelCase =lm_model(input_ids=lowercase_ )
_lowerCAmelCase =(batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , lowercase_ )
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
_lowerCAmelCase =FlaxBlenderbotSmallForConditionalGeneration(lowercase_ )
_lowerCAmelCase =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa )
_lowerCAmelCase =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa )
_lowerCAmelCase =lm_model(input_ids=lowercase_ , decoder_input_ids=lowercase_ )
_lowerCAmelCase =(*summary.shape, config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , lowercase_ )
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa )
_lowerCAmelCase =shift_tokens_right(lowercase_ , 1 , 2 )
_lowerCAmelCase =np.equal(lowercase_ , 1 ).astype(np.floataa ).sum()
_lowerCAmelCase =np.equal(lowercase_ , 1 ).astype(np.floataa ).sum()
self.assertEqual(shifted.shape , input_ids.shape )
self.assertEqual(lowercase_ , n_pad_before - 1 )
self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() )
@require_flax
class lowerCamelCase__ ( a_ , unittest.TestCase , a_ ):
'''simple docstring'''
lowerCamelCase = True
lowerCamelCase = (
(
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallForConditionalGeneration,
)
if is_flax_available()
else ()
)
lowerCamelCase = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else ()
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =FlaxBlenderbotSmallModelTester(self )
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(lowercase_ , lowercase_ , lowercase_ )
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(lowercase_ , lowercase_ , lowercase_ )
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_lowerCAmelCase =self._prepare_for_class(lowercase_ , lowercase_ )
_lowerCAmelCase =model_class(lowercase_ )
@jax.jit
def encode_jitted(__UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ):
return model.encode(input_ids=lowercase_ , attention_mask=lowercase_ )
with self.subTest("""JIT Enabled""" ):
_lowerCAmelCase =encode_jitted(**lowercase_ ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
_lowerCAmelCase =encode_jitted(**lowercase_ ).to_tuple()
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) )
for jitted_output, output in zip(lowercase_ , lowercase_ ):
self.assertEqual(jitted_output.shape , output.shape )
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_lowerCAmelCase =model_class(lowercase_ )
_lowerCAmelCase =model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
_lowerCAmelCase ={
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
return model.decode(
decoder_input_ids=lowercase_ , decoder_attention_mask=lowercase_ , encoder_outputs=lowercase_ , )
with self.subTest("""JIT Enabled""" ):
_lowerCAmelCase =decode_jitted(**lowercase_ ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
_lowerCAmelCase =decode_jitted(**lowercase_ ).to_tuple()
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) )
for jitted_output, output in zip(lowercase_ , lowercase_ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def _lowerCAmelCase ( self ) -> Union[str, Any]:
for model_class_name in self.all_model_classes:
_lowerCAmelCase =model_class_name.from_pretrained("""facebook/blenderbot_small-90M""" )
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
_lowerCAmelCase =np.ones((1, 1) ) * model.config.eos_token_id
_lowerCAmelCase =model(lowercase_ )
self.assertIsNotNone(lowercase_ )
| 364 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = XGLMConfig
lowerCamelCase = {}
lowerCamelCase = '''gelu'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=0.0_2 , ) -> List[str]:
_lowerCAmelCase =parent
_lowerCAmelCase =batch_size
_lowerCAmelCase =seq_length
_lowerCAmelCase =is_training
_lowerCAmelCase =use_input_mask
_lowerCAmelCase =use_labels
_lowerCAmelCase =vocab_size
_lowerCAmelCase =d_model
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =ffn_dim
_lowerCAmelCase =activation_function
_lowerCAmelCase =activation_dropout
_lowerCAmelCase =attention_dropout
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =initializer_range
_lowerCAmelCase =None
_lowerCAmelCase =0
_lowerCAmelCase =2
_lowerCAmelCase =1
def _lowerCAmelCase ( self ) -> Dict:
return XGLMConfig.from_pretrained("""facebook/xglm-564M""" )
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
_lowerCAmelCase =None
if self.use_input_mask:
_lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length] )
_lowerCAmelCase =self.get_config()
_lowerCAmelCase =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowerCAmelCase ( self ) -> str:
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__UpperCAmelCase , )
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =self.prepare_config_and_inputs()
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) =config_and_inputs
_lowerCAmelCase ={
"""input_ids""": input_ids,
"""head_mask""": head_mask,
}
return config, inputs_dict
@require_tf
class lowerCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
lowerCamelCase = (TFXGLMForCausalLM,) if is_tf_available() else ()
lowerCamelCase = (
{'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {}
)
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =TFXGLMModelTester(self )
_lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase , n_embd=37 )
def _lowerCAmelCase ( self ) -> int:
self.config_tester.run_common_tests()
@slow
def _lowerCAmelCase ( self ) -> Union[str, Any]:
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase =TFXGLMModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" )
def _lowerCAmelCase ( self ) -> Union[str, Any]:
super().test_resize_token_embeddings()
@require_tf
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def _lowerCAmelCase ( self , __UpperCAmelCase=True ) -> str:
_lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase =tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
_lowerCAmelCase =[2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81]
# fmt: on
_lowerCAmelCase =model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , __UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
tf.random.set_seed(0 )
_lowerCAmelCase =tokenizer("""Today is a nice day and""" , return_tensors="""tf""" )
_lowerCAmelCase =tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(""":/CPU:0""" ):
_lowerCAmelCase =model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , seed=[7, 0] )
_lowerCAmelCase =tokenizer.decode(output_ids[0] , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =(
"""Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"""
)
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase ="""left"""
# use different length sentences to test batching
_lowerCAmelCase =[
"""This is an extremelly long sentence that only exists to test the ability of the model to cope with """
"""left-padding, such as in batched generation. The output for the sequence below should be the same """
"""regardless of whether left padding is applied or not. When""",
"""Hello, my dog is a little""",
]
_lowerCAmelCase =tokenizer(__UpperCAmelCase , return_tensors="""tf""" , padding=__UpperCAmelCase )
_lowerCAmelCase =inputs["""input_ids"""]
_lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 )
_lowerCAmelCase =tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids
_lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 )
_lowerCAmelCase =tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids
_lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 )
_lowerCAmelCase =tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =tokenizer.decode(output_non_padded[0] , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =tokenizer.decode(output_padded[0] , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =[
"""This is an extremelly long sentence that only exists to test the ability of the model to cope with """
"""left-padding, such as in batched generation. The output for the sequence below should be the same """
"""regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """
"""a single""",
"""Hello, my dog is a little bit of a shy one, but he is very friendly""",
]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , [non_padded_sentence, padded_sentence] )
| 341 | 0 |
"""simple docstring"""
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def _lowerCamelCase(__UpperCamelCase=None ) -> str:
if subparsers is not None:
_lowerCAmelCase =subparsers.add_parser("""test""" )
else:
_lowerCAmelCase =argparse.ArgumentParser("""Accelerate test command""" )
parser.add_argument(
"""--config_file""" , default=__a , help=(
"""The path to use to store the config file. Will default to a file named default_config.yaml in the cache """
"""location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have """
"""such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed """
"""with \'huggingface\'."""
) , )
if subparsers is not None:
parser.set_defaults(func=__a )
return parser
def _lowerCamelCase(__UpperCamelCase ) -> Union[str, Any]:
_lowerCAmelCase =os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["""test_utils""", """scripts""", """test_script.py"""] )
if args.config_file is None:
_lowerCAmelCase =script_name
else:
_lowerCAmelCase =F'''--config_file={args.config_file} {script_name}'''
_lowerCAmelCase =['''accelerate-launch'''] + test_args.split()
_lowerCAmelCase =execute_subprocess_async(__a , env=os.environ.copy() )
if result.returncode == 0:
print("""Test is a success! You are ready for your distributed training!""" )
def _lowerCamelCase() -> List[Any]:
_lowerCAmelCase =test_command_parser()
_lowerCAmelCase =parser.parse_args()
test_command(__a )
if __name__ == "__main__":
main()
| 365 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
__A = logging.get_logger(__name__)
__A = {'vocab_file': 'spiece.model'}
__A = {
'vocab_file': {
'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model',
'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model',
}
}
__A = {
'xlnet-base-cased': None,
'xlnet-large-cased': None,
}
# Segments (not really needed)
__A = 0
__A = 1
__A = 2
__A = 3
__A = 4
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = VOCAB_FILES_NAMES
lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase = '''left'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<sep>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<cls>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=["<eop>", "<eod>"] , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it
_lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
_lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , )
_lowerCAmelCase =3
_lowerCAmelCase =do_lower_case
_lowerCAmelCase =remove_space
_lowerCAmelCase =keep_accents
_lowerCAmelCase =vocab_file
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__UpperCAmelCase )
@property
def _lowerCAmelCase ( self ) -> str:
return len(self.sp_model )
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> Optional[int]:
_lowerCAmelCase =self.__dict__.copy()
_lowerCAmelCase =None
return state
def __setstate__( self , __UpperCAmelCase ) -> Tuple:
_lowerCAmelCase =d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_lowerCAmelCase ={}
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[Any]:
if self.remove_space:
_lowerCAmelCase =""" """.join(inputs.strip().split() )
else:
_lowerCAmelCase =inputs
_lowerCAmelCase =outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
_lowerCAmelCase =unicodedata.normalize("""NFKD""" , __UpperCAmelCase )
_lowerCAmelCase ="""""".join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] )
if self.do_lower_case:
_lowerCAmelCase =outputs.lower()
return outputs
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
_lowerCAmelCase =self.preprocess_text(__UpperCAmelCase )
_lowerCAmelCase =self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase )
_lowerCAmelCase =[]
for piece in pieces:
if len(__UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
_lowerCAmelCase =self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
_lowerCAmelCase =cur_pieces[1:]
else:
_lowerCAmelCase =cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(__UpperCAmelCase )
else:
new_pieces.append(__UpperCAmelCase )
return new_pieces
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]:
return self.sp_model.PieceToId(__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
return self.sp_model.IdToPiece(__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> str:
_lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip()
return out_string
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> str:
_lowerCAmelCase =kwargs.pop("""use_source_tokenizer""" , __UpperCAmelCase )
_lowerCAmelCase =self.convert_ids_to_tokens(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
_lowerCAmelCase =[]
_lowerCAmelCase =[]
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) )
_lowerCAmelCase =[]
sub_texts.append(__UpperCAmelCase )
else:
current_sub_text.append(__UpperCAmelCase )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) )
# Mimic the behavior of the Rust tokenizer:
# By default, there are no spaces between special tokens
_lowerCAmelCase ="""""".join(__UpperCAmelCase )
_lowerCAmelCase =(
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
_lowerCAmelCase =self.clean_up_tokenization(__UpperCAmelCase )
return clean_text
else:
return text
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_lowerCAmelCase =[self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase )
if token_ids_a is not None:
return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1]
return ([0] * len(__UpperCAmelCase )) + [1, 1]
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_lowerCAmelCase =[self.sep_token_id]
_lowerCAmelCase =[2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCAmelCase , """wb""" ) as fi:
_lowerCAmelCase =self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase )
return (out_vocab_file,)
| 341 | 0 |
"""simple docstring"""
from __future__ import annotations
import copy
import tempfile
import unittest
from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available
from transformers.testing_utils import (
DUMMY_UNKNOWN_IDENTIFIER,
SMALL_MODEL_IDENTIFIER,
RequestCounter,
require_tensorflow_probability,
require_tf,
slow,
)
from ..bert.test_modeling_bert import BertModelTester
if is_tf_available():
from transformers import (
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSequenceClassification,
TFAutoModelForTableQuestionAnswering,
TFAutoModelForTokenClassification,
TFAutoModelWithLMHead,
TFBertForMaskedLM,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertModel,
TFFunnelBaseModel,
TFFunnelModel,
TFGPTaLMHeadModel,
TFRobertaForMaskedLM,
TFTaForConditionalGeneration,
TFTapasForQuestionAnswering,
)
from transformers.models.auto.modeling_tf_auto import (
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_MAPPING,
)
from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCamelCase__ ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase = "new-model"
if is_tf_available():
class lowerCamelCase__ ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase = NewModelConfig
@require_tf
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase ="""bert-base-cased"""
_lowerCAmelCase =AutoConfig.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =TFAutoModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase ="""bert-base-cased"""
_lowerCAmelCase =AutoConfig.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =TFAutoModelForPreTraining.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> Tuple:
for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase =AutoConfig.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =TFAutoModelForCausalLM.from_pretrained(__UpperCAmelCase )
_lowerCAmelCase =TFAutoModelForCausalLM.from_pretrained(__UpperCAmelCase , output_loading_info=__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> Optional[int]:
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase =AutoConfig.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =TFAutoModelWithLMHead.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> List[Any]:
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase =AutoConfig.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =TFAutoModelForMaskedLM.from_pretrained(__UpperCAmelCase )
_lowerCAmelCase =TFAutoModelForMaskedLM.from_pretrained(__UpperCAmelCase , output_loading_info=__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> List[Any]:
for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase =AutoConfig.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =TFAutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase )
_lowerCAmelCase =TFAutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase , output_loading_info=__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> Dict:
# for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["bert-base-uncased"]:
_lowerCAmelCase =AutoConfig.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =TFAutoModelForSequenceClassification.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> Optional[int]:
# for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["bert-base-uncased"]:
_lowerCAmelCase =AutoConfig.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =TFAutoModelForQuestionAnswering.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
@slow
@require_tensorflow_probability
def _lowerCAmelCase ( self ) -> int:
for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]:
_lowerCAmelCase =AutoConfig.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =TFAutoModelForTableQuestionAnswering.from_pretrained(__UpperCAmelCase )
_lowerCAmelCase =TFAutoModelForTableQuestionAnswering.from_pretrained(
__UpperCAmelCase , output_loading_info=__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =TFAutoModelWithLMHead.from_pretrained(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual(model.num_parameters() , 1_44_10 )
self.assertEqual(model.num_parameters(only_trainable=__UpperCAmelCase ) , 1_44_10 )
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =TFAutoModelWithLMHead.from_pretrained(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual(model.num_parameters() , 1_44_10 )
self.assertEqual(model.num_parameters(only_trainable=__UpperCAmelCase ) , 1_44_10 )
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =TFAutoModel.from_pretrained("""sgugger/funnel-random-tiny""" )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
_lowerCAmelCase =copy.deepcopy(model.config )
_lowerCAmelCase =["""FunnelBaseModel"""]
_lowerCAmelCase =TFAutoModel.from_config(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(__UpperCAmelCase )
_lowerCAmelCase =TFAutoModel.from_pretrained(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
def _lowerCAmelCase ( self ) -> List[str]:
try:
AutoConfig.register("""new-model""" , __UpperCAmelCase )
_lowerCAmelCase =[
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSequenceClassification,
TFAutoModelForTokenClassification,
]
for auto_class in auto_classes:
with self.subTest(auto_class.__name__ ):
# Wrong config class will raise an error
with self.assertRaises(__UpperCAmelCase ):
auto_class.register(__UpperCAmelCase , __UpperCAmelCase )
auto_class.register(__UpperCAmelCase , __UpperCAmelCase )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__UpperCAmelCase ):
auto_class.register(__UpperCAmelCase , __UpperCAmelCase )
# Now that the config is registered, it can be used as any other config with the auto-API
_lowerCAmelCase =BertModelTester(self ).get_config()
_lowerCAmelCase =NewModelConfig(**tiny_config.to_dict() )
_lowerCAmelCase =auto_class.from_config(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(__UpperCAmelCase )
_lowerCAmelCase =auto_class.from_pretrained(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
finally:
if "new-model" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["new-model"]
for mapping in (
TF_MODEL_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
):
if NewModelConfig in mapping._extra_content:
del mapping._extra_content[NewModelConfig]
def _lowerCAmelCase ( self ) -> Tuple:
with self.assertRaisesRegex(
__UpperCAmelCase , """bert-base is not a local folder and is not a valid model identifier""" ):
_lowerCAmelCase =TFAutoModel.from_pretrained("""bert-base""" )
def _lowerCAmelCase ( self ) -> Dict:
with self.assertRaisesRegex(
__UpperCAmelCase , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
_lowerCAmelCase =TFAutoModel.from_pretrained(__UpperCAmelCase , revision="""aaaaaa""" )
def _lowerCAmelCase ( self ) -> List[str]:
with self.assertRaisesRegex(
__UpperCAmelCase , """hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin""" , ):
_lowerCAmelCase =TFAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" )
def _lowerCAmelCase ( self ) -> List[Any]:
with self.assertRaisesRegex(__UpperCAmelCase , """Use `from_pt=True` to load this model""" ):
_lowerCAmelCase =TFAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" )
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
with RequestCounter() as counter:
_lowerCAmelCase =TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 )
# With a sharded checkpoint
_lowerCAmelCase =TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" )
with RequestCounter() as counter:
_lowerCAmelCase =TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 )
| 366 |
"""simple docstring"""
from __future__ import annotations
def _lowerCamelCase(__UpperCamelCase ) -> bool:
_lowerCAmelCase =str(__UpperCamelCase )
return n == n[::-1]
def _lowerCamelCase(__UpperCamelCase = 1000000 ) -> str:
_lowerCAmelCase =0
for i in range(1 , __UpperCamelCase ):
if is_palindrome(__UpperCamelCase ) and is_palindrome(bin(__UpperCamelCase ).split("""b""" )[1] ):
total += i
return total
if __name__ == "__main__":
print(solution(int(str(input().strip()))))
| 341 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
__A = {
'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ['MobileViTFeatureExtractor']
__A = ['MobileViTImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MobileViTForImageClassification',
'MobileViTForSemanticSegmentation',
'MobileViTModel',
'MobileViTPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFMobileViTForImageClassification',
'TFMobileViTForSemanticSegmentation',
'TFMobileViTModel',
'TFMobileViTPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilevit import MobileViTFeatureExtractor
from .image_processing_mobilevit import MobileViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilevit import (
MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTModel,
MobileViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilevit import (
TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileViTForImageClassification,
TFMobileViTForSemanticSegmentation,
TFMobileViTModel,
TFMobileViTPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 367 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = '''llama'''
lowerCamelCase = ['''past_key_values''']
def __init__( self , __UpperCAmelCase=3_20_00 , __UpperCAmelCase=40_96 , __UpperCAmelCase=1_10_08 , __UpperCAmelCase=32 , __UpperCAmelCase=32 , __UpperCAmelCase=None , __UpperCAmelCase="silu" , __UpperCAmelCase=20_48 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-6 , __UpperCAmelCase=True , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=False , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]:
_lowerCAmelCase =vocab_size
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =hidden_size
_lowerCAmelCase =intermediate_size
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =num_key_value_heads
_lowerCAmelCase =hidden_act
_lowerCAmelCase =initializer_range
_lowerCAmelCase =rms_norm_eps
_lowerCAmelCase =pretraining_tp
_lowerCAmelCase =use_cache
_lowerCAmelCase =rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase , )
def _lowerCAmelCase ( self ) -> str:
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2:
raise ValueError(
"""`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """
f'''got {self.rope_scaling}''' )
_lowerCAmelCase =self.rope_scaling.get("""type""" , __UpperCAmelCase )
_lowerCAmelCase =self.rope_scaling.get("""factor""" , __UpperCAmelCase )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' )
if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0:
raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
| 341 | 0 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase ) -> Dict:
_lowerCAmelCase =1
_lowerCAmelCase =2
while i * i <= n:
_lowerCAmelCase =0
while n % i == 0:
n //= i
multiplicity += 1
n_divisors *= multiplicity + 1
i += 1
if n > 1:
n_divisors *= 2
return n_divisors
def _lowerCamelCase() -> Optional[int]:
_lowerCAmelCase =1
_lowerCAmelCase =1
while True:
i += 1
t_num += i
if count_divisors(_UpperCamelCase ) > 500:
break
return t_num
if __name__ == "__main__":
print(solution())
| 368 |
"""simple docstring"""
import warnings
from .generation import TFGenerationMixin
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
# warning at import time
warnings.warn(
'''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will '''
'''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''' , __magic_name__ , )
| 341 | 0 |
import inspect
import math
import tempfile
import unittest
import numpy as np
from transformers import ViTMAEConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMAEForPreTraining, ViTMAEModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=30 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=3 , __UpperCAmelCase=0.6 , __UpperCAmelCase=None , ) -> Optional[Any]:
_lowerCAmelCase =parent
_lowerCAmelCase =batch_size
_lowerCAmelCase =image_size
_lowerCAmelCase =patch_size
_lowerCAmelCase =num_channels
_lowerCAmelCase =is_training
_lowerCAmelCase =use_labels
_lowerCAmelCase =hidden_size
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =intermediate_size
_lowerCAmelCase =hidden_act
_lowerCAmelCase =hidden_dropout_prob
_lowerCAmelCase =attention_probs_dropout_prob
_lowerCAmelCase =type_sequence_label_size
_lowerCAmelCase =initializer_range
_lowerCAmelCase =mask_ratio
_lowerCAmelCase =scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
_lowerCAmelCase =(image_size // patch_size) ** 2
_lowerCAmelCase =int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCAmelCase =None
if self.use_labels:
_lowerCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCAmelCase =self.get_config()
return config, pixel_values, labels
def _lowerCAmelCase ( self ) -> Any:
return ViTMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
_lowerCAmelCase =ViTMAEModel(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
_lowerCAmelCase =model(_lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]:
_lowerCAmelCase =ViTMAEForPreTraining(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
_lowerCAmelCase =model(_lowerCamelCase )
_lowerCAmelCase =(self.image_size // self.patch_size) ** 2
_lowerCAmelCase =self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
_lowerCAmelCase =1
_lowerCAmelCase =ViTMAEForPreTraining(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
_lowerCAmelCase =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_lowerCAmelCase =model(_lowerCamelCase )
_lowerCAmelCase =self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
def _lowerCAmelCase ( self ) -> Optional[int]:
_lowerCAmelCase =self.prepare_config_and_inputs()
_lowerCAmelCase =config_and_inputs
_lowerCAmelCase ={'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class lowerCamelCase__ ( a__ , a__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else ()
lowerCamelCase = {'feature-extraction': ViTMAEModel} if is_torch_available() else {}
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =ViTMAEModelTester(self )
_lowerCAmelCase =ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 )
def _lowerCAmelCase ( self ) -> Tuple:
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViTMAE does not use inputs_embeds""" )
def _lowerCAmelCase ( self ) -> Tuple:
pass
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase =model_class(_lowerCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_lowerCAmelCase =model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) )
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase =model_class(_lowerCamelCase )
_lowerCAmelCase =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCAmelCase =[*signature.parameters.keys()]
_lowerCAmelCase =['''pixel_values''']
self.assertListEqual(arg_names[:1] , _lowerCamelCase )
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCamelCase )
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_lowerCamelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
# make masks reproducible
np.random.seed(2 )
_lowerCAmelCase =int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 )
_lowerCAmelCase =np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
_lowerCAmelCase =torch.from_numpy(_lowerCamelCase )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
_lowerCAmelCase =pt_noise
super().check_pt_tf_models(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase =model_class(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
_lowerCAmelCase =model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) )
_lowerCAmelCase =outputs[0].cpu().numpy()
_lowerCAmelCase =0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_lowerCamelCase )
_lowerCAmelCase =model_class.from_pretrained(_lowerCamelCase )
model.to(_lowerCamelCase )
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
_lowerCAmelCase =model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) )
# Make sure we don't have nans
_lowerCAmelCase =after_outputs[0].cpu().numpy()
_lowerCAmelCase =0
_lowerCAmelCase =np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(_lowerCamelCase , 1e-5 )
@unittest.skip(
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.""" )
def _lowerCAmelCase ( self ) -> Any:
pass
@unittest.skip(
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.""" )
def _lowerCAmelCase ( self ) -> Any:
pass
@unittest.skip(
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.""" )
def _lowerCAmelCase ( self ) -> Tuple:
pass
@unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" )
def _lowerCAmelCase ( self ) -> int:
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def _lowerCAmelCase ( self ) -> List[str]:
pass
@slow
def _lowerCAmelCase ( self ) -> Optional[Any]:
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase =ViTMAEModel.from_pretrained(_lowerCamelCase )
self.assertIsNotNone(_lowerCamelCase )
def _lowerCamelCase() -> Any:
_lowerCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _lowerCAmelCase ( self ) -> Tuple:
return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None
@slow
def _lowerCAmelCase ( self ) -> Union[str, Any]:
# make random mask reproducible across the PT and TF model
np.random.seed(2 )
_lowerCAmelCase =ViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ).to(_lowerCamelCase )
_lowerCAmelCase =self.default_image_processor
_lowerCAmelCase =prepare_img()
_lowerCAmelCase =image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
_lowerCAmelCase =ViTMAEConfig()
_lowerCAmelCase =int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
_lowerCAmelCase =np.random.uniform(size=(1, num_patches) )
# forward pass
with torch.no_grad():
_lowerCAmelCase =model(**_lowerCamelCase , noise=torch.from_numpy(_lowerCamelCase ).to(device=_lowerCamelCase ) )
# verify the logits
_lowerCAmelCase =torch.Size((1, 1_96, 7_68) )
self.assertEqual(outputs.logits.shape , _lowerCamelCase )
_lowerCAmelCase =torch.tensor(
[[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(_lowerCamelCase ) , atol=1e-4 ) )
| 369 |
"""simple docstring"""
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=16 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=30 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=None , ) -> Any:
_lowerCAmelCase =parent
_lowerCAmelCase =batch_size
_lowerCAmelCase =decoder_seq_length
# For common tests
_lowerCAmelCase =self.decoder_seq_length
_lowerCAmelCase =is_training
_lowerCAmelCase =use_attention_mask
_lowerCAmelCase =use_labels
_lowerCAmelCase =vocab_size
_lowerCAmelCase =d_model
_lowerCAmelCase =d_model
_lowerCAmelCase =decoder_layers
_lowerCAmelCase =decoder_layers
_lowerCAmelCase =decoder_ffn_dim
_lowerCAmelCase =decoder_attention_heads
_lowerCAmelCase =decoder_attention_heads
_lowerCAmelCase =eos_token_id
_lowerCAmelCase =bos_token_id
_lowerCAmelCase =pad_token_id
_lowerCAmelCase =decoder_start_token_id
_lowerCAmelCase =use_cache
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =None
_lowerCAmelCase =decoder_seq_length
_lowerCAmelCase =2
_lowerCAmelCase =1
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
_lowerCAmelCase =None
if self.use_attention_mask:
_lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 )
_lowerCAmelCase =None
if self.use_labels:
_lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
_lowerCAmelCase =TrOCRConfig(
vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , )
return (config, input_ids, attention_mask, lm_labels)
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[Any]:
_lowerCAmelCase =True
_lowerCAmelCase =TrOCRDecoder(config=__UpperCAmelCase ).to(__UpperCAmelCase ).eval()
_lowerCAmelCase =input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
_lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
_lowerCAmelCase =model(__UpperCAmelCase )
_lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 )
_lowerCAmelCase =outputs["""past_key_values"""]
# create hypothetical next token and extent to next_input_ids
_lowerCAmelCase =ids_tensor((2, 1) , config.vocab_size - 1 ) + 1
# append to next input_ids and
_lowerCAmelCase =torch.cat([input_ids, next_tokens] , dim=-1 )
_lowerCAmelCase =model(__UpperCAmelCase )["""last_hidden_state"""]
_lowerCAmelCase =model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )["""last_hidden_state"""]
# select random slice
_lowerCAmelCase =ids_tensor((1,) , output_from_past.shape[-1] ).item()
_lowerCAmelCase =output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
_lowerCAmelCase =output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 )
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =self.prepare_config_and_inputs()
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs
_lowerCAmelCase ={"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
lowerCamelCase = (TrOCRForCausalLM,) if is_torch_available() else ()
lowerCamelCase = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {}
lowerCamelCase = True
lowerCamelCase = False
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =TrOCRStandaloneDecoderModelTester(self , is_training=__UpperCAmelCase )
_lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> List[str]:
pass
def _lowerCAmelCase ( self ) -> List[Any]:
pass
def _lowerCAmelCase ( self ) -> Any:
pass
def _lowerCAmelCase ( self ) -> Optional[Any]:
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Tuple:
return
@unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :)
def _lowerCAmelCase ( self ) -> str:
pass
| 341 | 0 |
"""simple docstring"""
from __future__ import annotations
import math
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[str]:
if depth < 0:
raise ValueError("""Depth cannot be less than 0""" )
if len(__SCREAMING_SNAKE_CASE ) == 0:
raise ValueError("""Scores cannot be empty""" )
if depth == height:
return scores[node_index]
if is_max:
return max(
minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , )
return min(
minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , )
def _lowerCamelCase() -> List[str]:
_lowerCAmelCase =[90, 23, 6, 33, 21, 65, 123, 34423]
_lowerCAmelCase =math.log(len(__SCREAMING_SNAKE_CASE ) , 2 )
print("""Optimal value : """ , end="""""" )
print(minimax(0 , 0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 370 |
"""simple docstring"""
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = JukeboxTokenizer
lowerCamelCase = {
'''artist''': '''Zac Brown Band''',
'''genres''': '''Country''',
'''lyrics''': '''I met a traveller from an antique land,
Who said "Two vast and trunkless legs of stone
Stand in the desert. . . . Near them, on the sand,
Half sunk a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,
Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them, and the heart that fed;
And on the pedestal, these words appear:
My name is Ozymandias, King of Kings;
Look on my Works, ye Mighty, and despair!
Nothing beside remains. Round the decay
Of that colossal Wreck, boundless and bare
The lone and level sands stretch far away
''',
}
@require_torch
def _lowerCAmelCase ( self ) -> str:
import torch
_lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" )
_lowerCAmelCase =tokenizer(**self.metas )["""input_ids"""]
# fmt: off
_lowerCAmelCase =[
torch.tensor([[
0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 10_69, 11]] ),
torch.tensor([[0, 0, 0, 10_69, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def _lowerCAmelCase ( self ) -> Any:
import torch
_lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" )
_lowerCAmelCase =tokenizer(**self.metas )["""input_ids"""]
# fmt: off
_lowerCAmelCase =[
torch.tensor([[
0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 341 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
"xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json",
"xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json",
"xlm-roberta-large-finetuned-conll02-dutch": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json"
),
"xlm-roberta-large-finetuned-conll02-spanish": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json"
),
"xlm-roberta-large-finetuned-conll03-english": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json"
),
"xlm-roberta-large-finetuned-conll03-german": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json"
),
}
class lowerCamelCase__ ( _UpperCAmelCase ):
'''simple docstring'''
lowerCamelCase = '''xlm-roberta'''
def __init__( self , __UpperCAmelCase=3_05_22 , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-12 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> str:
super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
_lowerCAmelCase =vocab_size
_lowerCAmelCase =hidden_size
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =hidden_act
_lowerCAmelCase =intermediate_size
_lowerCAmelCase =hidden_dropout_prob
_lowerCAmelCase =attention_probs_dropout_prob
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =type_vocab_size
_lowerCAmelCase =initializer_range
_lowerCAmelCase =layer_norm_eps
_lowerCAmelCase =position_embedding_type
_lowerCAmelCase =use_cache
_lowerCAmelCase =classifier_dropout
class lowerCamelCase__ ( _UpperCAmelCase ):
'''simple docstring'''
@property
def _lowerCAmelCase ( self ) -> int:
if self.task == "multiple-choice":
_lowerCAmelCase ={0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_lowerCAmelCase ={0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 371 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__A = logging.get_logger(__name__)
__A = '▁'
__A = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'}
__A = {
'vocab_file': {
'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model',
},
'monolingual_vocab_file': {
'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt',
},
}
__A = {'vinai/bartpho-syllable': 1024}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = VOCAB_FILES_NAMES
lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase = ['''input_ids''', '''attention_mask''']
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it
_lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
_lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , )
_lowerCAmelCase =vocab_file
_lowerCAmelCase =monolingual_vocab_file
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__UpperCAmelCase ) )
# Load the reduced vocab
# Keep order of special tokens for backward compatibility
_lowerCAmelCase ={}
_lowerCAmelCase =0
for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids:
_lowerCAmelCase =cnt
cnt += 1
with open(__UpperCAmelCase , """r""" , encoding="""utf-8""" ) as f:
for line in f.readlines():
_lowerCAmelCase =line.strip().split()[0]
_lowerCAmelCase =len(self.fairseq_tokens_to_ids )
if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids:
_lowerCAmelCase =len(self.fairseq_tokens_to_ids )
_lowerCAmelCase ={v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ) -> Dict:
_lowerCAmelCase =self.__dict__.copy()
_lowerCAmelCase =None
_lowerCAmelCase =self.sp_model.serialized_model_proto()
return state
def __setstate__( self , __UpperCAmelCase ) -> List[Any]:
_lowerCAmelCase =d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_lowerCAmelCase ={}
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
_lowerCAmelCase =[self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(__UpperCAmelCase )) + [1]
return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1]
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_lowerCAmelCase =[self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def _lowerCAmelCase ( self ) -> Union[str, Any]:
return len(self.fairseq_ids_to_tokens )
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
else:
return self.unk_token_id
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]:
return self.fairseq_ids_to_tokens[index]
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip()
return out_string
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCAmelCase , """wb""" ) as fi:
_lowerCAmelCase =self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase )
if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath(
__UpperCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ):
copyfile(self.monolingual_vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.monolingual_vocab_file ):
with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as fp:
for token in self.fairseq_tokens_to_ids:
if token not in self.all_special_tokens:
fp.write(f'''{str(__UpperCAmelCase )} \n''' )
return out_vocab_file, out_monolingual_vocab_file
| 341 | 0 |
"""simple docstring"""
from torch import nn
def _lowerCamelCase(__UpperCamelCase ) -> Union[str, Any]:
if act_fn in ["swish", "silu"]:
return nn.SiLU()
elif act_fn == "mish":
return nn.Mish()
elif act_fn == "gelu":
return nn.GELU()
else:
raise ValueError(F'''Unsupported activation function: {act_fn}''' )
| 350 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =1
_lowerCAmelCase =3
_lowerCAmelCase =(32, 32)
_lowerCAmelCase =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCAmelCase )
return image
@property
def _lowerCAmelCase ( self ) -> Tuple:
torch.manual_seed(0 )
_lowerCAmelCase =UNetaDConditionModel(
block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__UpperCAmelCase , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , )
return model
@property
def _lowerCAmelCase ( self ) -> Tuple:
torch.manual_seed(0 )
_lowerCAmelCase =AutoencoderKL(
block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def _lowerCAmelCase ( self ) -> Optional[Any]:
torch.manual_seed(0 )
_lowerCAmelCase =CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , )
return CLIPTextModel(__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase =self.dummy_cond_unet_upscale
_lowerCAmelCase =DDPMScheduler()
_lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" )
_lowerCAmelCase =self.dummy_vae
_lowerCAmelCase =self.dummy_text_encoder
_lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
_lowerCAmelCase =StableDiffusionUpscalePipeline(
unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , )
_lowerCAmelCase =sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase ="""A painting of a squirrel eating a burger"""
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
_lowerCAmelCase =output.images
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=__UpperCAmelCase , )[0]
_lowerCAmelCase =image[0, -3:, -3:, -1]
_lowerCAmelCase =image_from_tuple[0, -3:, -3:, -1]
_lowerCAmelCase =low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
_lowerCAmelCase =np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase =self.dummy_cond_unet_upscale
_lowerCAmelCase =DDPMScheduler()
_lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" )
_lowerCAmelCase =self.dummy_vae
_lowerCAmelCase =self.dummy_text_encoder
_lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
_lowerCAmelCase =StableDiffusionUpscalePipeline(
unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , )
_lowerCAmelCase =sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase ="""A painting of a squirrel eating a burger"""
_lowerCAmelCase =sd_pipe(
2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
_lowerCAmelCase =output.images
assert image.shape[0] == 2
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
_lowerCAmelCase =output.images
assert image.shape[0] == 2
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =self.dummy_cond_unet_upscale
_lowerCAmelCase =DDPMScheduler()
_lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" )
_lowerCAmelCase =self.dummy_vae
_lowerCAmelCase =self.dummy_text_encoder
_lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
# put models in fp16, except vae as it overflows in fp16
_lowerCAmelCase =unet.half()
_lowerCAmelCase =text_encoder.half()
# make sure here that pndm scheduler skips prk
_lowerCAmelCase =StableDiffusionUpscalePipeline(
unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , )
_lowerCAmelCase =sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase ="""A painting of a squirrel eating a burger"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type="""np""" , ).images
_lowerCAmelCase =low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
@slow
@require_torch_gpu
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> int:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_lowerCAmelCase =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"""
"""/upsampled_cat.npy""" )
_lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler"""
_lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing()
_lowerCAmelCase ="""a cat sitting on a park bench"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , )
_lowerCAmelCase =output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 1e-3
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_lowerCAmelCase =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"""
"""/upsampled_cat_fp16.npy""" )
_lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler"""
_lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(
__UpperCAmelCase , torch_dtype=torch.floataa , )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing()
_lowerCAmelCase ="""a cat sitting on a park bench"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , )
_lowerCAmelCase =output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 5e-1
def _lowerCAmelCase ( self ) -> Optional[Any]:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_lowerCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler"""
_lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(
__UpperCAmelCase , torch_dtype=torch.floataa , )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
_lowerCAmelCase ="""a cat sitting on a park bench"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , output_type="""np""" , )
_lowerCAmelCase =torch.cuda.max_memory_allocated()
# make sure that less than 2.9 GB is allocated
assert mem_bytes < 2.9 * 10**9
| 341 | 0 |
from __future__ import annotations
from typing import Any
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self , __UpperCAmelCase ) -> List[Any]:
_lowerCAmelCase =num_of_nodes
_lowerCAmelCase =[]
_lowerCAmelCase ={}
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
self.m_edges.append([u_node, v_node, weight] )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Dict:
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> str:
if self.m_component[u_node] != u_node:
for k in self.m_component:
_lowerCAmelCase =self.find_component(lowercase_ )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int:
if component_size[u_node] <= component_size[v_node]:
_lowerCAmelCase =v_node
component_size[v_node] += component_size[u_node]
self.set_component(lowercase_ )
elif component_size[u_node] >= component_size[v_node]:
_lowerCAmelCase =self.find_component(lowercase_ )
component_size[u_node] += component_size[v_node]
self.set_component(lowercase_ )
def _lowerCAmelCase ( self ) -> Optional[int]:
_lowerCAmelCase =[]
_lowerCAmelCase =0
_lowerCAmelCase =[-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
_lowerCAmelCase =self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
_lowerCAmelCase =edge
_lowerCAmelCase =self.m_component[u]
_lowerCAmelCase =self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
_lowerCAmelCase =[u, v, w]
for edge in minimum_weight_edge:
if isinstance(lowercase_ , lowercase_ ):
_lowerCAmelCase =edge
_lowerCAmelCase =self.m_component[u]
_lowerCAmelCase =self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(lowercase_ , lowercase_ , lowercase_ )
print(f'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' )
num_of_components -= 1
_lowerCAmelCase =[-1] * self.m_num_of_nodes
print(f'''The total weight of the minimal spanning tree is: {mst_weight}''' )
def _lowerCamelCase() -> Tuple:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 351 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json',
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = '''cvt'''
def __init__( self , __UpperCAmelCase=3 , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[64, 1_92, 3_84] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 10] , __UpperCAmelCase=[4.0, 4.0, 4.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.1] , __UpperCAmelCase=[True, True, True] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , __UpperCAmelCase=[3, 3, 3] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-12 , **__UpperCAmelCase , ) -> Optional[Any]:
super().__init__(**__UpperCAmelCase )
_lowerCAmelCase =num_channels
_lowerCAmelCase =patch_sizes
_lowerCAmelCase =patch_stride
_lowerCAmelCase =patch_padding
_lowerCAmelCase =embed_dim
_lowerCAmelCase =num_heads
_lowerCAmelCase =depth
_lowerCAmelCase =mlp_ratio
_lowerCAmelCase =attention_drop_rate
_lowerCAmelCase =drop_rate
_lowerCAmelCase =drop_path_rate
_lowerCAmelCase =qkv_bias
_lowerCAmelCase =cls_token
_lowerCAmelCase =qkv_projection_method
_lowerCAmelCase =kernel_qkv
_lowerCAmelCase =padding_kv
_lowerCAmelCase =stride_kv
_lowerCAmelCase =padding_q
_lowerCAmelCase =stride_q
_lowerCAmelCase =initializer_range
_lowerCAmelCase =layer_norm_eps
| 341 | 0 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel
from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@property
def _lowerCAmelCase ( self ) -> Any:
torch.manual_seed(0 )
_lowerCAmelCase =UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , )
return model
@property
def _lowerCAmelCase ( self ) -> Tuple:
torch.manual_seed(0 )
_lowerCAmelCase =VQModel(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , )
return model
@property
def _lowerCAmelCase ( self ) -> Any:
torch.manual_seed(0 )
_lowerCAmelCase =CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
return CLIPTextModel(a_ )
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =self.dummy_uncond_unet
_lowerCAmelCase =DDIMScheduler()
_lowerCAmelCase =self.dummy_vq_model
_lowerCAmelCase =LDMPipeline(unet=a_ , vqvae=a_ , scheduler=a_ )
ldm.to(a_ )
ldm.set_progress_bar_config(disable=a_ )
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =ldm(generator=a_ , num_inference_steps=2 , output_type="""numpy""" ).images
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =ldm(generator=a_ , num_inference_steps=2 , output_type="""numpy""" , return_dict=a_ )[0]
_lowerCAmelCase =image[0, -3:, -3:, -1]
_lowerCAmelCase =image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_lowerCAmelCase =np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] )
_lowerCAmelCase =1e-2 if torch_device != '''mps''' else 3e-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance
@slow
@require_torch
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" )
ldm.to(a_ )
ldm.set_progress_bar_config(disable=a_ )
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =ldm(generator=a_ , num_inference_steps=5 , output_type="""numpy""" ).images
_lowerCAmelCase =image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
_lowerCAmelCase =np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] )
_lowerCAmelCase =1e-2 if torch_device != '''mps''' else 3e-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
| 352 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = ['''image_processor''', '''tokenizer''']
lowerCamelCase = '''CLIPImageProcessor'''
lowerCamelCase = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''')
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase =None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __UpperCAmelCase , )
_lowerCAmelCase =kwargs.pop("""feature_extractor""" )
_lowerCAmelCase =image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Optional[Any]:
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
_lowerCAmelCase =self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if images is not None:
_lowerCAmelCase =self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is not None and images is not None:
_lowerCAmelCase =image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase )
def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
@property
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =self.tokenizer.model_input_names
_lowerCAmelCase =self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 341 | 0 |
"""simple docstring"""
import argparse
import glob
import logging
import os
import sys
import time
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Tuple
import numpy as np
import pytorch_lightning as pl
import torch
from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback
from torch import nn
from torch.utils.data import DataLoader
from transformers import MBartTokenizer, TaForConditionalGeneration
from transformers.models.bart.modeling_bart import shift_tokens_right
from utils import (
ROUGE_KEYS,
LegacySeqaSeqDataset,
SeqaSeqDataset,
assert_all_frozen,
calculate_bleu,
calculate_rouge,
check_output_dir,
flatten_list,
freeze_embeds,
freeze_params,
get_git_info,
label_smoothed_nll_loss,
lmap,
pickle_save,
save_git_info,
save_json,
use_task_specific_params,
)
# need the parent dir module
sys.path.insert(2, str(Path(__file__).resolve().parents[1]))
from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa
__A = logging.getLogger(__name__)
class lowerCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
lowerCamelCase = '''summarization'''
lowerCamelCase = ['''loss''']
lowerCamelCase = ROUGE_KEYS
lowerCamelCase = '''rouge2'''
def __init__( self , __UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
if hparams.sortish_sampler and hparams.gpus > 1:
_lowerCAmelCase =False
elif hparams.max_tokens_per_batch is not None:
if hparams.gpus > 1:
raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" )
if hparams.sortish_sampler:
raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" )
super().__init__(snake_case__ , num_labels=snake_case__ , mode=self.mode , **snake_case__ )
use_task_specific_params(self.model , """summarization""" )
save_git_info(self.hparams.output_dir )
_lowerCAmelCase =Path(self.output_dir ) / 'metrics.json'
_lowerCAmelCase =Path(self.output_dir ) / 'hparams.pkl'
pickle_save(self.hparams , self.hparams_save_path )
_lowerCAmelCase =0
_lowerCAmelCase =defaultdict(snake_case__ )
_lowerCAmelCase =self.config.model_type
_lowerCAmelCase =self.config.tgt_vocab_size if self.model_type == 'fsmt' else self.config.vocab_size
_lowerCAmelCase ={
"data_dir": self.hparams.data_dir,
"max_source_length": self.hparams.max_source_length,
"prefix": self.model.config.prefix or "",
}
_lowerCAmelCase ={
'train': self.hparams.n_train,
'val': self.hparams.n_val,
'test': self.hparams.n_test,
}
_lowerCAmelCase ={k: v if v >= 0 else None for k, v in n_observations_per_split.items()}
_lowerCAmelCase ={
'train': self.hparams.max_target_length,
'val': self.hparams.val_max_target_length,
'test': self.hparams.test_max_target_length,
}
assert self.target_lens["train"] <= self.target_lens["val"], f'''target_lens: {self.target_lens}'''
assert self.target_lens["train"] <= self.target_lens["test"], f'''target_lens: {self.target_lens}'''
if self.hparams.freeze_embeds:
freeze_embeds(self.model )
if self.hparams.freeze_encoder:
freeze_params(self.model.get_encoder() )
assert_all_frozen(self.model.get_encoder() )
_lowerCAmelCase =get_git_info()['repo_sha']
_lowerCAmelCase =hparams.num_workers
_lowerCAmelCase =None # default to config
if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , snake_case__ ):
_lowerCAmelCase =self.tokenizer.lang_code_to_id[hparams.tgt_lang]
_lowerCAmelCase =self.decoder_start_token_id
_lowerCAmelCase =(
SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset
)
_lowerCAmelCase =False
_lowerCAmelCase =self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams
if self.hparams.eval_max_gen_length is not None:
_lowerCAmelCase =self.hparams.eval_max_gen_length
else:
_lowerCAmelCase =self.model.config.max_length
_lowerCAmelCase =self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase ={
k: self.tokenizer.batch_decode(v.tolist() ) if 'mask' not in k else v.shape for k, v in batch.items()
}
save_json(snake_case__ , Path(self.output_dir ) / """text_batch.json""" )
save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" )
_lowerCAmelCase =True
return readable_batch
def _lowerCAmelCase ( self , __UpperCAmelCase , **__UpperCAmelCase ) -> Any:
return self.model(snake_case__ , **snake_case__ )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]:
_lowerCAmelCase =self.tokenizer.batch_decode(
snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ )
return lmap(str.strip , snake_case__ )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Tuple:
_lowerCAmelCase =self.tokenizer.pad_token_id
_lowerCAmelCase =batch['input_ids'], batch['attention_mask']
_lowerCAmelCase =batch['labels']
if isinstance(self.model , snake_case__ ):
_lowerCAmelCase =self.model._shift_right(snake_case__ )
else:
_lowerCAmelCase =shift_tokens_right(snake_case__ , snake_case__ )
if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero
_lowerCAmelCase =decoder_input_ids
self.save_readable_batch(snake_case__ )
_lowerCAmelCase =self(snake_case__ , attention_mask=snake_case__ , decoder_input_ids=snake_case__ , use_cache=snake_case__ )
_lowerCAmelCase =outputs['logits']
if self.hparams.label_smoothing == 0:
# Same behavior as modeling_bart.py, besides ignoring pad_token_id
_lowerCAmelCase =nn.CrossEntropyLoss(ignore_index=snake_case__ )
assert lm_logits.shape[-1] == self.vocab_size
_lowerCAmelCase =ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) )
else:
_lowerCAmelCase =nn.functional.log_softmax(snake_case__ , dim=-1 )
_lowerCAmelCase =label_smoothed_nll_loss(
snake_case__ , snake_case__ , self.hparams.label_smoothing , ignore_index=snake_case__ )
return (loss,)
@property
def _lowerCAmelCase ( self ) -> List[Any]:
return self.tokenizer.pad_token_id
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> str:
_lowerCAmelCase =self._step(snake_case__ )
_lowerCAmelCase =dict(zip(self.loss_names , snake_case__ ) )
# tokens per batch
_lowerCAmelCase =batch['input_ids'].ne(self.pad ).sum() + batch['labels'].ne(self.pad ).sum()
_lowerCAmelCase =batch['input_ids'].shape[0]
_lowerCAmelCase =batch['input_ids'].eq(self.pad ).sum()
_lowerCAmelCase =batch['input_ids'].eq(self.pad ).float().mean()
# TODO(SS): make a wandb summary metric for this
return {"loss": loss_tensors[0], "log": logs}
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
return self._generative_step(snake_case__ )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase="val" ) -> Optional[Any]:
self.step_count += 1
_lowerCAmelCase ={k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names}
_lowerCAmelCase =losses['loss']
_lowerCAmelCase ={
k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['gen_time', 'gen_len']
}
_lowerCAmelCase =(
generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric]
)
_lowerCAmelCase =torch.tensor(snake_case__ ).type_as(snake_case__ )
generative_metrics.update({k: v.item() for k, v in losses.items()} )
losses.update(snake_case__ )
_lowerCAmelCase ={f'''{prefix}_avg_{k}''': x for k, x in losses.items()}
_lowerCAmelCase =self.step_count
self.metrics[prefix].append(snake_case__ ) # callback writes this to self.metrics_save_path
_lowerCAmelCase =flatten_list([x["""preds"""] for x in outputs] )
return {
"log": all_metrics,
"preds": preds,
f'''{prefix}_loss''': loss,
f'''{prefix}_{self.val_metric}''': metric_tensor,
}
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]:
return calculate_rouge(snake_case__ , snake_case__ )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]:
_lowerCAmelCase =time.time()
# parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens')
_lowerCAmelCase =self.model.generate(
batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=snake_case__ , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , )
_lowerCAmelCase =(time.time() - ta) / batch['input_ids'].shape[0]
_lowerCAmelCase =self.ids_to_clean_text(snake_case__ )
_lowerCAmelCase =self.ids_to_clean_text(batch["""labels"""] )
_lowerCAmelCase =self._step(snake_case__ )
_lowerCAmelCase =dict(zip(self.loss_names , snake_case__ ) )
_lowerCAmelCase =self.calc_generative_metrics(snake_case__ , snake_case__ )
_lowerCAmelCase =np.mean(lmap(snake_case__ , snake_case__ ) )
base_metrics.update(gen_time=snake_case__ , gen_len=snake_case__ , preds=snake_case__ , target=snake_case__ , **snake_case__ )
return base_metrics
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
return self._generative_step(snake_case__ )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Dict:
return self.validation_epoch_end(snake_case__ , prefix="""test""" )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Any:
_lowerCAmelCase =self.n_obs[type_path]
_lowerCAmelCase =self.target_lens[type_path]
_lowerCAmelCase =self.dataset_class(
self.tokenizer , type_path=snake_case__ , n_obs=snake_case__ , max_target_length=snake_case__ , **self.dataset_kwargs , )
return dataset
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ) -> List[str]:
_lowerCAmelCase =self.get_dataset(snake_case__ )
if self.hparams.sortish_sampler and type_path != "test" and type_path != "val":
_lowerCAmelCase =dataset.make_sortish_sampler(snake_case__ , distributed=self.hparams.gpus > 1 )
return DataLoader(
snake_case__ , batch_size=snake_case__ , collate_fn=dataset.collate_fn , shuffle=snake_case__ , num_workers=self.num_workers , sampler=snake_case__ , )
elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val":
_lowerCAmelCase =dataset.make_dynamic_sampler(
self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 )
return DataLoader(
snake_case__ , batch_sampler=snake_case__ , collate_fn=dataset.collate_fn , num_workers=self.num_workers , )
else:
return DataLoader(
snake_case__ , batch_size=snake_case__ , collate_fn=dataset.collate_fn , shuffle=snake_case__ , num_workers=self.num_workers , sampler=snake_case__ , )
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=snake_case__ )
return dataloader
def _lowerCAmelCase ( self ) -> Dict:
return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size )
def _lowerCAmelCase ( self ) -> List[str]:
return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size )
@staticmethod
def _lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]:
BaseTransformer.add_model_specific_args(snake_case__ , snake_case__ )
add_generic_args(snake_case__ , snake_case__ )
parser.add_argument(
"""--max_source_length""" , default=10_24 , type=snake_case__ , help=(
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
) , )
parser.add_argument(
"""--max_target_length""" , default=56 , type=snake_case__ , help=(
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
) , )
parser.add_argument(
"""--val_max_target_length""" , default=1_42 , type=snake_case__ , help=(
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
) , )
parser.add_argument(
"""--test_max_target_length""" , default=1_42 , type=snake_case__ , help=(
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
) , )
parser.add_argument("""--freeze_encoder""" , action="""store_true""" )
parser.add_argument("""--freeze_embeds""" , action="""store_true""" )
parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=snake_case__ )
parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=snake_case__ )
parser.add_argument("""--max_tokens_per_batch""" , type=snake_case__ , default=snake_case__ )
parser.add_argument("""--logger_name""" , type=snake_case__ , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" )
parser.add_argument("""--n_train""" , type=snake_case__ , default=-1 , required=snake_case__ , help="""# examples. -1 means use all.""" )
parser.add_argument("""--n_val""" , type=snake_case__ , default=5_00 , required=snake_case__ , help="""# examples. -1 means use all.""" )
parser.add_argument("""--n_test""" , type=snake_case__ , default=-1 , required=snake_case__ , help="""# examples. -1 means use all.""" )
parser.add_argument(
"""--task""" , type=snake_case__ , default="""summarization""" , required=snake_case__ , help="""# examples. -1 means use all.""" )
parser.add_argument("""--label_smoothing""" , type=snake_case__ , default=0.0 , required=snake_case__ )
parser.add_argument("""--src_lang""" , type=snake_case__ , default="""""" , required=snake_case__ )
parser.add_argument("""--tgt_lang""" , type=snake_case__ , default="""""" , required=snake_case__ )
parser.add_argument("""--eval_beams""" , type=snake_case__ , default=snake_case__ , required=snake_case__ )
parser.add_argument(
"""--val_metric""" , type=snake_case__ , default=snake_case__ , required=snake_case__ , choices=["""bleu""", """rouge2""", """loss""", None] )
parser.add_argument("""--eval_max_gen_length""" , type=snake_case__ , default=snake_case__ , help="""never generate more than n tokens""" )
parser.add_argument("""--save_top_k""" , type=snake_case__ , default=1 , required=snake_case__ , help="""How many checkpoints to save""" )
parser.add_argument(
"""--early_stopping_patience""" , type=snake_case__ , default=-1 , required=snake_case__ , help=(
"""-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So"""
""" val_check_interval will effect it."""
) , )
return parser
class lowerCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
lowerCamelCase = '''translation'''
lowerCamelCase = ['''loss''']
lowerCamelCase = ['''bleu''']
lowerCamelCase = '''bleu'''
def __init__( self , __UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
super().__init__(snake_case__ , **snake_case__ )
_lowerCAmelCase =hparams.src_lang
_lowerCAmelCase =hparams.tgt_lang
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
return calculate_bleu(snake_case__ , snake_case__ )
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=None ) -> Tuple:
Path(args.output_dir ).mkdir(exist_ok=_A )
check_output_dir(_A , expected_items=3 )
if model is None:
if "summarization" in args.task:
_lowerCAmelCase =SummarizationModule(_A )
else:
_lowerCAmelCase =TranslationModule(_A )
_lowerCAmelCase =Path(args.data_dir ).name
if (
args.logger_name == "default"
or args.fast_dev_run
or str(args.output_dir ).startswith("""/tmp""" )
or str(args.output_dir ).startswith("""/var""" )
):
_lowerCAmelCase =True # don't pollute wandb logs unnecessarily
elif args.logger_name == "wandb":
from pytorch_lightning.loggers import WandbLogger
_lowerCAmelCase =os.environ.get("""WANDB_PROJECT""" , _A )
_lowerCAmelCase =WandbLogger(name=model.output_dir.name , project=_A )
elif args.logger_name == "wandb_shared":
from pytorch_lightning.loggers import WandbLogger
_lowerCAmelCase =WandbLogger(name=model.output_dir.name , project=F'''hf_{dataset}''' )
if args.early_stopping_patience >= 0:
_lowerCAmelCase =get_early_stopping_callback(model.val_metric , args.early_stopping_patience )
else:
_lowerCAmelCase =False
_lowerCAmelCase =args.val_metric == 'loss'
_lowerCAmelCase =generic_train(
_A , _A , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback(
args.output_dir , model.val_metric , args.save_top_k , _A ) , early_stopping_callback=_A , logger=_A , )
pickle_save(model.hparams , model.output_dir / """hparams.pkl""" )
if not args.do_predict:
return model
_lowerCAmelCase =''
_lowerCAmelCase =sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=_A ) )
if checkpoints:
_lowerCAmelCase =checkpoints[-1]
_lowerCAmelCase =checkpoints[-1]
trainer.logger.log_hyperparams(model.hparams )
# test() without a model tests using the best checkpoint automatically
trainer.test()
return model
if __name__ == "__main__":
__A = argparse.ArgumentParser()
__A = pl.Trainer.add_argparse_args(parser)
__A = SummarizationModule.add_model_specific_args(parser, os.getcwd())
__A = parser.parse_args()
main(args)
| 353 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__A = {
'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'],
'tokenization_perceiver': ['PerceiverTokenizer'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ['PerceiverFeatureExtractor']
__A = ['PerceiverImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PerceiverForImageClassificationConvProcessing',
'PerceiverForImageClassificationFourier',
'PerceiverForImageClassificationLearned',
'PerceiverForMaskedLM',
'PerceiverForMultimodalAutoencoding',
'PerceiverForOpticalFlow',
'PerceiverForSequenceClassification',
'PerceiverLayer',
'PerceiverModel',
'PerceiverPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 0 |
from __future__ import annotations
import math
def _lowerCamelCase(__UpperCamelCase ) -> list[int]:
if num <= 0:
_lowerCAmelCase =F'''{num}: Invalid input, please enter a positive integer.'''
raise ValueError(__UpperCamelCase )
_lowerCAmelCase =[True] * (num + 1)
_lowerCAmelCase =[]
_lowerCAmelCase =2
_lowerCAmelCase =int(math.sqrt(__UpperCamelCase ) )
while start <= end:
# If start is a prime
if sieve[start] is True:
prime.append(__UpperCamelCase )
# Set multiples of start be False
for i in range(start * start , num + 1 , __UpperCamelCase ):
if sieve[i] is True:
_lowerCAmelCase =False
start += 1
for j in range(end + 1 , num + 1 ):
if sieve[j] is True:
prime.append(__UpperCamelCase )
return prime
if __name__ == "__main__":
print(prime_sieve(int(input('Enter a positive integer: ').strip())))
| 354 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A = {
'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST',
'Swinv2ForImageClassification',
'Swinv2ForMaskedImageModeling',
'Swinv2Model',
'Swinv2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 0 |
"""simple docstring"""
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all feature extractors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...feature_extraction_utils import FeatureExtractionMixin
from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
__A = logging.get_logger(__name__)
__A = OrderedDict(
[
('audio-spectrogram-transformer', 'ASTFeatureExtractor'),
('beit', 'BeitFeatureExtractor'),
('chinese_clip', 'ChineseCLIPFeatureExtractor'),
('clap', 'ClapFeatureExtractor'),
('clip', 'CLIPFeatureExtractor'),
('clipseg', 'ViTFeatureExtractor'),
('conditional_detr', 'ConditionalDetrFeatureExtractor'),
('convnext', 'ConvNextFeatureExtractor'),
('cvt', 'ConvNextFeatureExtractor'),
('data2vec-audio', 'Wav2Vec2FeatureExtractor'),
('data2vec-vision', 'BeitFeatureExtractor'),
('deformable_detr', 'DeformableDetrFeatureExtractor'),
('deit', 'DeiTFeatureExtractor'),
('detr', 'DetrFeatureExtractor'),
('dinat', 'ViTFeatureExtractor'),
('donut-swin', 'DonutFeatureExtractor'),
('dpt', 'DPTFeatureExtractor'),
('encodec', 'EncodecFeatureExtractor'),
('flava', 'FlavaFeatureExtractor'),
('glpn', 'GLPNFeatureExtractor'),
('groupvit', 'CLIPFeatureExtractor'),
('hubert', 'Wav2Vec2FeatureExtractor'),
('imagegpt', 'ImageGPTFeatureExtractor'),
('layoutlmv2', 'LayoutLMv2FeatureExtractor'),
('layoutlmv3', 'LayoutLMv3FeatureExtractor'),
('levit', 'LevitFeatureExtractor'),
('maskformer', 'MaskFormerFeatureExtractor'),
('mctct', 'MCTCTFeatureExtractor'),
('mobilenet_v1', 'MobileNetV1FeatureExtractor'),
('mobilenet_v2', 'MobileNetV2FeatureExtractor'),
('mobilevit', 'MobileViTFeatureExtractor'),
('nat', 'ViTFeatureExtractor'),
('owlvit', 'OwlViTFeatureExtractor'),
('perceiver', 'PerceiverFeatureExtractor'),
('poolformer', 'PoolFormerFeatureExtractor'),
('regnet', 'ConvNextFeatureExtractor'),
('resnet', 'ConvNextFeatureExtractor'),
('segformer', 'SegformerFeatureExtractor'),
('sew', 'Wav2Vec2FeatureExtractor'),
('sew-d', 'Wav2Vec2FeatureExtractor'),
('speech_to_text', 'Speech2TextFeatureExtractor'),
('speecht5', 'SpeechT5FeatureExtractor'),
('swiftformer', 'ViTFeatureExtractor'),
('swin', 'ViTFeatureExtractor'),
('swinv2', 'ViTFeatureExtractor'),
('table-transformer', 'DetrFeatureExtractor'),
('timesformer', 'VideoMAEFeatureExtractor'),
('tvlt', 'TvltFeatureExtractor'),
('unispeech', 'Wav2Vec2FeatureExtractor'),
('unispeech-sat', 'Wav2Vec2FeatureExtractor'),
('van', 'ConvNextFeatureExtractor'),
('videomae', 'VideoMAEFeatureExtractor'),
('vilt', 'ViltFeatureExtractor'),
('vit', 'ViTFeatureExtractor'),
('vit_mae', 'ViTFeatureExtractor'),
('vit_msn', 'ViTFeatureExtractor'),
('wav2vec2', 'Wav2Vec2FeatureExtractor'),
('wav2vec2-conformer', 'Wav2Vec2FeatureExtractor'),
('wavlm', 'Wav2Vec2FeatureExtractor'),
('whisper', 'WhisperFeatureExtractor'),
('xclip', 'CLIPFeatureExtractor'),
('yolos', 'YolosFeatureExtractor'),
]
)
__A = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES)
def _lowerCamelCase(__UpperCamelCase ) -> Optional[Any]:
for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items():
if class_name in extractors:
_lowerCAmelCase =model_type_to_module_name(snake_case_ )
_lowerCAmelCase =importlib.import_module(F'''.{module_name}''' , """transformers.models""" )
try:
return getattr(snake_case_ , snake_case_ )
except AttributeError:
continue
for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items():
if getattr(snake_case_ , """__name__""" , snake_case_ ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
_lowerCAmelCase =importlib.import_module("""transformers""" )
if hasattr(snake_case_ , snake_case_ ):
return getattr(snake_case_ , snake_case_ )
return None
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , **__UpperCamelCase , ) -> str:
_lowerCAmelCase =get_file_from_repo(
snake_case_ , snake_case_ , cache_dir=snake_case_ , force_download=snake_case_ , resume_download=snake_case_ , proxies=snake_case_ , use_auth_token=snake_case_ , revision=snake_case_ , local_files_only=snake_case_ , )
if resolved_config_file is None:
logger.info(
"""Could not locate the feature extractor configuration file, will try to use the model config instead.""" )
return {}
with open(snake_case_ , encoding="""utf-8""" ) as reader:
return json.load(snake_case_ )
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self ) -> List[Any]:
raise EnvironmentError(
"""AutoFeatureExtractor is designed to be instantiated """
"""using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.""" )
@classmethod
@replace_list_option_in_docstrings(SCREAMING_SNAKE_CASE_ )
def _lowerCAmelCase ( cls , __UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
_lowerCAmelCase =kwargs.pop("""config""" , SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase =kwargs.pop("""trust_remote_code""" , SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase =True
_lowerCAmelCase =FeatureExtractionMixin.get_feature_extractor_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase =config_dict.get("""feature_extractor_type""" , SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase =None
if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ):
_lowerCAmelCase =config_dict["""auto_map"""]["""AutoFeatureExtractor"""]
# If we don't find the feature extractor class in the feature extractor config, let's try the model config.
if feature_extractor_class is None and feature_extractor_auto_map is None:
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
_lowerCAmelCase =AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
# It could be in `config.feature_extractor_type``
_lowerCAmelCase =getattr(SCREAMING_SNAKE_CASE_ , """feature_extractor_type""" , SCREAMING_SNAKE_CASE_ )
if hasattr(SCREAMING_SNAKE_CASE_ , """auto_map""" ) and "AutoFeatureExtractor" in config.auto_map:
_lowerCAmelCase =config.auto_map["""AutoFeatureExtractor"""]
if feature_extractor_class is not None:
_lowerCAmelCase =feature_extractor_class_from_name(SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase =feature_extractor_auto_map is not None
_lowerCAmelCase =feature_extractor_class is not None or type(SCREAMING_SNAKE_CASE_ ) in FEATURE_EXTRACTOR_MAPPING
_lowerCAmelCase =resolve_trust_remote_code(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if has_remote_code and trust_remote_code:
_lowerCAmelCase =get_class_from_dynamic_module(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
_lowerCAmelCase =kwargs.pop("""code_revision""" , SCREAMING_SNAKE_CASE_ )
if os.path.isdir(SCREAMING_SNAKE_CASE_ ):
feature_extractor_class.register_for_auto_class()
return feature_extractor_class.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
elif feature_extractor_class is not None:
return feature_extractor_class.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
# Last try: we use the FEATURE_EXTRACTOR_MAPPING.
elif type(SCREAMING_SNAKE_CASE_ ) in FEATURE_EXTRACTOR_MAPPING:
_lowerCAmelCase =FEATURE_EXTRACTOR_MAPPING[type(SCREAMING_SNAKE_CASE_ )]
return feature_extractor_class.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
raise ValueError(
f'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a '''
f'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following '''
f'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' )
@staticmethod
def _lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
FEATURE_EXTRACTOR_MAPPING.register(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
| 355 |
"""simple docstring"""
import argparse
import json
import torch
from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=1 ) -> Tuple:
if n_shave_prefix_segments >= 0:
return ".".join(path.split(""".""" )[n_shave_prefix_segments:] )
else:
return ".".join(path.split(""".""" )[:n_shave_prefix_segments] )
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=0 ) -> List[str]:
_lowerCAmelCase =[]
for old_item in old_list:
_lowerCAmelCase =old_item.replace("""in_layers.0""" , """norm1""" )
_lowerCAmelCase =new_item.replace("""in_layers.2""" , """conv1""" )
_lowerCAmelCase =new_item.replace("""out_layers.0""" , """norm2""" )
_lowerCAmelCase =new_item.replace("""out_layers.3""" , """conv2""" )
_lowerCAmelCase =new_item.replace("""emb_layers.1""" , """time_emb_proj""" )
_lowerCAmelCase =new_item.replace("""skip_connection""" , """conv_shortcut""" )
_lowerCAmelCase =shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase=0 ) -> Tuple:
_lowerCAmelCase =[]
for old_item in old_list:
_lowerCAmelCase =old_item
_lowerCAmelCase =new_item.replace("""norm.weight""" , """group_norm.weight""" )
_lowerCAmelCase =new_item.replace("""norm.bias""" , """group_norm.bias""" )
_lowerCAmelCase =new_item.replace("""proj_out.weight""" , """proj_attn.weight""" )
_lowerCAmelCase =new_item.replace("""proj_out.bias""" , """proj_attn.bias""" )
_lowerCAmelCase =shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase )
mapping.append({"""old""": old_item, """new""": new_item} )
return mapping
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None ) -> Optional[int]:
assert isinstance(__UpperCamelCase , __UpperCamelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
_lowerCAmelCase =old_checkpoint[path]
_lowerCAmelCase =old_tensor.shape[0] // 3
_lowerCAmelCase =(-1, channels) if len(old_tensor.shape ) == 3 else (-1)
_lowerCAmelCase =old_tensor.shape[0] // config["""num_head_channels"""] // 3
_lowerCAmelCase =old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =old_tensor.split(channels // num_heads , dim=1 )
_lowerCAmelCase =query.reshape(__UpperCamelCase )
_lowerCAmelCase =key.reshape(__UpperCamelCase )
_lowerCAmelCase =value.reshape(__UpperCamelCase )
for path in paths:
_lowerCAmelCase =path["""new"""]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
_lowerCAmelCase =new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" )
_lowerCAmelCase =new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" )
_lowerCAmelCase =new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" )
if additional_replacements is not None:
for replacement in additional_replacements:
_lowerCAmelCase =new_path.replace(replacement["""old"""] , replacement["""new"""] )
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
_lowerCAmelCase =old_checkpoint[path["""old"""]][:, :, 0]
else:
_lowerCAmelCase =old_checkpoint[path["""old"""]]
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Optional[Any]:
_lowerCAmelCase ={}
_lowerCAmelCase =checkpoint["""time_embed.0.weight"""]
_lowerCAmelCase =checkpoint["""time_embed.0.bias"""]
_lowerCAmelCase =checkpoint["""time_embed.2.weight"""]
_lowerCAmelCase =checkpoint["""time_embed.2.bias"""]
_lowerCAmelCase =checkpoint["""input_blocks.0.0.weight"""]
_lowerCAmelCase =checkpoint["""input_blocks.0.0.bias"""]
_lowerCAmelCase =checkpoint["""out.0.weight"""]
_lowerCAmelCase =checkpoint["""out.0.bias"""]
_lowerCAmelCase =checkpoint["""out.2.weight"""]
_lowerCAmelCase =checkpoint["""out.2.bias"""]
# Retrieves the keys for the input blocks only
_lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} )
_lowerCAmelCase ={
layer_id: [key for key in checkpoint if F'''input_blocks.{layer_id}''' in key]
for layer_id in range(__UpperCamelCase )
}
# Retrieves the keys for the middle blocks only
_lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} )
_lowerCAmelCase ={
layer_id: [key for key in checkpoint if F'''middle_block.{layer_id}''' in key]
for layer_id in range(__UpperCamelCase )
}
# Retrieves the keys for the output blocks only
_lowerCAmelCase =len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} )
_lowerCAmelCase ={
layer_id: [key for key in checkpoint if F'''output_blocks.{layer_id}''' in key]
for layer_id in range(__UpperCamelCase )
}
for i in range(1 , __UpperCamelCase ):
_lowerCAmelCase =(i - 1) // (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =(i - 1) % (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =[key for key in input_blocks[i] if F'''input_blocks.{i}.0''' in key]
_lowerCAmelCase =[key for key in input_blocks[i] if F'''input_blocks.{i}.1''' in key]
if F'''input_blocks.{i}.0.op.weight''' in checkpoint:
_lowerCAmelCase =checkpoint[
F'''input_blocks.{i}.0.op.weight'''
]
_lowerCAmelCase =checkpoint[
F'''input_blocks.{i}.0.op.bias'''
]
continue
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
_lowerCAmelCase ={"""old""": F'''input_blocks.{i}.0''', """new""": F'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''}
_lowerCAmelCase ={"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path, resnet_op] , config=__UpperCamelCase )
if len(__UpperCamelCase ):
_lowerCAmelCase =renew_attention_paths(__UpperCamelCase )
_lowerCAmelCase ={
"""old""": F'''input_blocks.{i}.1''',
"""new""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}''',
}
_lowerCAmelCase ={
F'''input_blocks.{i}.1.qkv.bias''': {
"""key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''',
"""query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''',
"""value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''',
},
F'''input_blocks.{i}.1.qkv.weight''': {
"""key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''',
"""query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''',
"""value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''',
},
}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase , )
_lowerCAmelCase =middle_blocks[0]
_lowerCAmelCase =middle_blocks[1]
_lowerCAmelCase =middle_blocks[2]
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase )
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase )
_lowerCAmelCase =renew_attention_paths(__UpperCamelCase )
_lowerCAmelCase ={
"""middle_block.1.qkv.bias""": {
"""key""": """mid_block.attentions.0.key.bias""",
"""query""": """mid_block.attentions.0.query.bias""",
"""value""": """mid_block.attentions.0.value.bias""",
},
"""middle_block.1.qkv.weight""": {
"""key""": """mid_block.attentions.0.key.weight""",
"""query""": """mid_block.attentions.0.query.weight""",
"""value""": """mid_block.attentions.0.value.weight""",
},
}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase )
for i in range(__UpperCamelCase ):
_lowerCAmelCase =i // (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =i % (config["""num_res_blocks"""] + 1)
_lowerCAmelCase =[shave_segments(__UpperCamelCase , 2 ) for name in output_blocks[i]]
_lowerCAmelCase ={}
for layer in output_block_layers:
_lowerCAmelCase , _lowerCAmelCase =layer.split(""".""" )[0], shave_segments(__UpperCamelCase , 1 )
if layer_id in output_block_list:
output_block_list[layer_id].append(__UpperCamelCase )
else:
_lowerCAmelCase =[layer_name]
if len(__UpperCamelCase ) > 1:
_lowerCAmelCase =[key for key in output_blocks[i] if F'''output_blocks.{i}.0''' in key]
_lowerCAmelCase =[key for key in output_blocks[i] if F'''output_blocks.{i}.1''' in key]
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase )
_lowerCAmelCase ={"""old""": F'''output_blocks.{i}.0''', """new""": F'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''}
assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase )
if ["conv.weight", "conv.bias"] in output_block_list.values():
_lowerCAmelCase =list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] )
_lowerCAmelCase =checkpoint[
F'''output_blocks.{i}.{index}.conv.weight'''
]
_lowerCAmelCase =checkpoint[
F'''output_blocks.{i}.{index}.conv.bias'''
]
# Clear attentions as they have been attributed above.
if len(__UpperCamelCase ) == 2:
_lowerCAmelCase =[]
if len(__UpperCamelCase ):
_lowerCAmelCase =renew_attention_paths(__UpperCamelCase )
_lowerCAmelCase ={
"""old""": F'''output_blocks.{i}.1''',
"""new""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}''',
}
_lowerCAmelCase ={
F'''output_blocks.{i}.1.qkv.bias''': {
"""key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''',
"""query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''',
"""value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''',
},
F'''output_blocks.{i}.1.qkv.weight''': {
"""key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''',
"""query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''',
"""value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''',
},
}
assign_to_checkpoint(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=__UpperCamelCase , )
else:
_lowerCAmelCase =renew_resnet_paths(__UpperCamelCase , n_shave_prefix_segments=1 )
for path in resnet_0_paths:
_lowerCAmelCase =""".""".join(["""output_blocks""", str(__UpperCamelCase ), path["""old"""]] )
_lowerCAmelCase =""".""".join(["""up_blocks""", str(__UpperCamelCase ), """resnets""", str(__UpperCamelCase ), path["""new"""]] )
_lowerCAmelCase =checkpoint[old_path]
return new_checkpoint
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the architecture.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
__A = parser.parse_args()
__A = torch.load(args.checkpoint_path)
with open(args.config_file) as f:
__A = json.loads(f.read())
__A = convert_ldm_checkpoint(checkpoint, config)
if "ldm" in config:
del config["ldm"]
__A = UNetaDModel(**config)
model.load_state_dict(converted_checkpoint)
try:
__A = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1]))
__A = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1]))
__A = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae)
pipe.save_pretrained(args.dump_path)
except: # noqa: E722
model.save_pretrained(args.dump_path)
| 341 | 0 |
"""simple docstring"""
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
flip_channel_order,
get_resize_output_image_size,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging
if is_vision_available():
import PIL
if is_torch_available():
import torch
__A = logging.get_logger(__name__)
class lowerCamelCase__ ( __UpperCamelCase ):
'''simple docstring'''
lowerCamelCase = ["""pixel_values"""]
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 2_55 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> Optional[int]:
super().__init__(**__UpperCAmelCase )
_lowerCAmelCase =size if size is not None else {"""shortest_edge""": 2_24}
_lowerCAmelCase =get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
_lowerCAmelCase =crop_size if crop_size is not None else {"""height""": 2_56, """width""": 2_56}
_lowerCAmelCase =get_size_dict(__UpperCAmelCase , param_name="""crop_size""" )
_lowerCAmelCase =do_resize
_lowerCAmelCase =size
_lowerCAmelCase =resample
_lowerCAmelCase =do_rescale
_lowerCAmelCase =rescale_factor
_lowerCAmelCase =do_center_crop
_lowerCAmelCase =crop_size
_lowerCAmelCase =do_flip_channel_order
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PIL.Image.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Any:
_lowerCAmelCase =get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
if "shortest_edge" not in size:
raise ValueError(f'''The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}''' )
_lowerCAmelCase =get_resize_output_image_size(__UpperCAmelCase , size=size["""shortest_edge"""] , default_to_square=__UpperCAmelCase )
return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[Any]:
_lowerCAmelCase =get_size_dict(__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' )
return center_crop(__UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> int:
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Optional[int]:
return flip_channel_order(__UpperCAmelCase , data_format=__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> Optional[Any]:
_lowerCAmelCase =do_resize if do_resize is not None else self.do_resize
_lowerCAmelCase =resample if resample is not None else self.resample
_lowerCAmelCase =do_rescale if do_rescale is not None else self.do_rescale
_lowerCAmelCase =rescale_factor if rescale_factor is not None else self.rescale_factor
_lowerCAmelCase =do_center_crop if do_center_crop is not None else self.do_center_crop
_lowerCAmelCase =(
do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order
)
_lowerCAmelCase =size if size is not None else self.size
_lowerCAmelCase =get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
_lowerCAmelCase =crop_size if crop_size is not None else self.crop_size
_lowerCAmelCase =get_size_dict(__UpperCAmelCase , param_name="""crop_size""" )
_lowerCAmelCase =make_list_of_images(__UpperCAmelCase )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
# All transformations expect numpy arrays.
_lowerCAmelCase =[to_numpy_array(__UpperCAmelCase ) for image in images]
if do_resize:
_lowerCAmelCase =[self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images]
if do_center_crop:
_lowerCAmelCase =[self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images]
if do_rescale:
_lowerCAmelCase =[self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images]
# the pretrained checkpoints assume images are BGR, not RGB
if do_flip_channel_order:
_lowerCAmelCase =[self.flip_channel_order(image=__UpperCAmelCase ) for image in images]
_lowerCAmelCase =[to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images]
_lowerCAmelCase ={"""pixel_values""": images}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> str:
_lowerCAmelCase =outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(__UpperCAmelCase ) != len(__UpperCAmelCase ):
raise ValueError(
"""Make sure that you pass in as many target sizes as the batch dimension of the logits""" )
if is_torch_tensor(__UpperCAmelCase ):
_lowerCAmelCase =target_sizes.numpy()
_lowerCAmelCase =[]
for idx in range(len(__UpperCAmelCase ) ):
_lowerCAmelCase =torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=__UpperCAmelCase )
_lowerCAmelCase =resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(__UpperCAmelCase )
else:
_lowerCAmelCase =logits.argmax(dim=1 )
_lowerCAmelCase =[semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 356 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase ) -> Optional[Any]:
_lowerCAmelCase =0
_lowerCAmelCase =len(__UpperCamelCase )
for i in range(n - 1 ):
for j in range(i + 1 , __UpperCamelCase ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def _lowerCamelCase(__UpperCamelCase ) -> List[Any]:
if len(__UpperCamelCase ) <= 1:
return arr, 0
_lowerCAmelCase =len(__UpperCamelCase ) // 2
_lowerCAmelCase =arr[0:mid]
_lowerCAmelCase =arr[mid:]
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =_count_cross_inversions(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =inversion_p + inversions_q + cross_inversions
return c, num_inversions
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Any:
_lowerCAmelCase =[]
_lowerCAmelCase =_lowerCAmelCase =_lowerCAmelCase =0
while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(__UpperCamelCase ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(__UpperCamelCase ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def _lowerCamelCase() -> str:
_lowerCAmelCase =[10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 8
print("""number of inversions = """ , __UpperCamelCase )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , __UpperCamelCase )
# an empty list should also have zero inversions
_lowerCAmelCase =[]
_lowerCAmelCase =count_inversions_bf(__UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =count_inversions_recursive(__UpperCamelCase )
assert num_inversions_bf == num_inversions_recursive == 0
print("""number of inversions = """ , __UpperCamelCase )
if __name__ == "__main__":
main()
| 341 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'}
class lowerCamelCase__ ( __lowerCamelCase ):
'''simple docstring'''
lowerCamelCase = 'ctrl'
lowerCamelCase = ['past_key_values']
lowerCamelCase = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , __UpperCAmelCase=24_65_34 , __UpperCAmelCase=2_56 , __UpperCAmelCase=12_80 , __UpperCAmelCase=81_92 , __UpperCAmelCase=48 , __UpperCAmelCase=16 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1e-6 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=True , **__UpperCAmelCase , ) -> List[str]:
_lowerCAmelCase =vocab_size
_lowerCAmelCase =n_positions
_lowerCAmelCase =n_embd
_lowerCAmelCase =n_layer
_lowerCAmelCase =n_head
_lowerCAmelCase =dff
_lowerCAmelCase =resid_pdrop
_lowerCAmelCase =embd_pdrop
_lowerCAmelCase =layer_norm_epsilon
_lowerCAmelCase =initializer_range
_lowerCAmelCase =use_cache
super().__init__(**UpperCamelCase_ )
| 357 |
"""simple docstring"""
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = None
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = None
lowerCamelCase = None
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = True
lowerCamelCase = None
lowerCamelCase = 1
lowerCamelCase = None
lowerCamelCase = False
lowerCamelCase = None
lowerCamelCase = None
def _lowerCAmelCase ( self ) -> "DownloadConfig":
return self.__class__(**{k: copy.deepcopy(__UpperCAmelCase ) for k, v in self.__dict__.items()} )
| 341 | 0 |
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class lowerCamelCase__ :
'''simple docstring'''
@staticmethod
def _lowerCAmelCase ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
pass
@is_pipeline_test
@require_vision
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@require_torch
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =pipeline(
model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , )
_lowerCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
_lowerCAmelCase =image_classifier(__lowerCAmelCase , candidate_labels=["""a""", """b""", """c"""] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(__lowerCAmelCase ) , [
[{"""score""": 0.3_3_3, """label""": """a"""}, {"""score""": 0.3_3_3, """label""": """b"""}, {"""score""": 0.3_3_3, """label""": """c"""}],
[{"""score""": 0.3_3_3, """label""": """a"""}, {"""score""": 0.3_3_3, """label""": """c"""}, {"""score""": 0.3_3_3, """label""": """b"""}],
] , )
_lowerCAmelCase =image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCAmelCase ) , [
[
{"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )},
],
[
{"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )},
],
[
{"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )},
],
[
{"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )},
],
[
{"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )},
],
] , )
@require_tf
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =pipeline(
model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , framework="""tf""" )
_lowerCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
_lowerCAmelCase =image_classifier(__lowerCAmelCase , candidate_labels=["""a""", """b""", """c"""] )
self.assertEqual(
nested_simplify(__lowerCAmelCase ) , [{"""score""": 0.3_3_3, """label""": """a"""}, {"""score""": 0.3_3_3, """label""": """b"""}, {"""score""": 0.3_3_3, """label""": """c"""}] , )
_lowerCAmelCase =image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCAmelCase ) , [
[
{"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )},
],
[
{"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )},
],
[
{"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )},
],
[
{"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )},
],
[
{"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.3_3_3, """label""": ANY(__lowerCAmelCase )},
],
] , )
@slow
@require_torch
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =pipeline(
task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , )
# This is an image of 2 cats with remotes and no planes
_lowerCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
_lowerCAmelCase =image_classifier(__lowerCAmelCase , candidate_labels=["""cat""", """plane""", """remote"""] )
self.assertEqual(
nested_simplify(__lowerCAmelCase ) , [
{"""score""": 0.5_1_1, """label""": """remote"""},
{"""score""": 0.4_8_5, """label""": """cat"""},
{"""score""": 0.0_0_4, """label""": """plane"""},
] , )
_lowerCAmelCase =image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCAmelCase ) , [
[
{"""score""": 0.5_1_1, """label""": """remote"""},
{"""score""": 0.4_8_5, """label""": """cat"""},
{"""score""": 0.0_0_4, """label""": """plane"""},
],
]
* 5 , )
@slow
@require_tf
def _lowerCAmelCase ( self ) -> Optional[int]:
_lowerCAmelCase =pipeline(
task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , framework="""tf""" )
# This is an image of 2 cats with remotes and no planes
_lowerCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
_lowerCAmelCase =image_classifier(__lowerCAmelCase , candidate_labels=["""cat""", """plane""", """remote"""] )
self.assertEqual(
nested_simplify(__lowerCAmelCase ) , [
{"""score""": 0.5_1_1, """label""": """remote"""},
{"""score""": 0.4_8_5, """label""": """cat"""},
{"""score""": 0.0_0_4, """label""": """plane"""},
] , )
_lowerCAmelCase =image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCAmelCase ) , [
[
{"""score""": 0.5_1_1, """label""": """remote"""},
{"""score""": 0.4_8_5, """label""": """cat"""},
{"""score""": 0.0_0_4, """label""": """plane"""},
],
]
* 5 , )
| 358 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> int:
return int((input_a, input_a).count(1 ) != 0 )
def _lowerCamelCase() -> None:
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 341 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable
__A = {"configuration_gpt_neox": ["GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXConfig"]}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ["GPTNeoXTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST",
"GPTNeoXForCausalLM",
"GPTNeoXForQuestionAnswering",
"GPTNeoXForSequenceClassification",
"GPTNeoXForTokenClassification",
"GPTNeoXLayer",
"GPTNeoXModel",
"GPTNeoXPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neox import (
GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
GPTNeoXLayer,
GPTNeoXModel,
GPTNeoXPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 359 |
"""simple docstring"""
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
__A = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n'
__A = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n'
__A = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase__ ( datasets.Metric ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> Any:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ),
"""references""": datasets.Sequence(
datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/BLEU""",
"""https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""",
] , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=4 , __UpperCAmelCase=False ) -> Tuple:
_lowerCAmelCase =compute_bleu(
reference_corpus=__UpperCAmelCase , translation_corpus=__UpperCAmelCase , max_order=__UpperCAmelCase , smooth=__UpperCAmelCase )
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) =score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 341 | 0 |
"""simple docstring"""
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TextClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
__A = {"""LayoutLMv2Config""", """LayoutLMv3Config"""}
@is_pipeline_test
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
lowerCamelCase = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
lowerCamelCase = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
lowerCamelCase = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
@require_torch
def __UpperCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" )
_lowerCAmelCase =text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] )
_lowerCAmelCase =text_classifier("""This is great !""" , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}] )
_lowerCAmelCase =text_classifier(["""This is great !""", """This is bad"""] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCAmelCase ) , [
[{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}],
[{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}],
] , )
_lowerCAmelCase =text_classifier("""This is great !""" , top_k=1 )
self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] )
# Legacy behavior
_lowerCAmelCase =text_classifier("""This is great !""" , return_all_scores=__lowerCAmelCase )
self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] )
_lowerCAmelCase =text_classifier("""This is great !""" , return_all_scores=__lowerCAmelCase )
self.assertEqual(
nested_simplify(__lowerCAmelCase ) , [[{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}]] )
_lowerCAmelCase =text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__lowerCAmelCase )
self.assertEqual(
nested_simplify(__lowerCAmelCase ) , [
[{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}],
[{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}],
] , )
_lowerCAmelCase =text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__lowerCAmelCase )
self.assertEqual(
nested_simplify(__lowerCAmelCase ) , [
{"""label""": """LABEL_0""", """score""": 0.5_0_4},
{"""label""": """LABEL_0""", """score""": 0.5_0_4},
] , )
@require_torch
def __UpperCAmelCase ( self ) -> int:
import torch
_lowerCAmelCase =pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , )
_lowerCAmelCase =text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] )
@require_tf
def __UpperCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =pipeline(
task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" )
_lowerCAmelCase =text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] )
@slow
@require_torch
def __UpperCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =pipeline("""text-classification""" )
_lowerCAmelCase =text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
_lowerCAmelCase =text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
_lowerCAmelCase =text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.9_8_8}] )
@slow
@require_tf
def __UpperCAmelCase ( self ) -> Any:
_lowerCAmelCase =pipeline("""text-classification""" , framework="""tf""" )
_lowerCAmelCase =text_classifier("""This is great !""" )
self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] )
_lowerCAmelCase =text_classifier("""This is bad !""" )
self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] )
_lowerCAmelCase =text_classifier("""Birds are a type of animal""" )
self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.9_8_8}] )
def __UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]:
_lowerCAmelCase =TextClassificationPipeline(model=__lowerCAmelCase , tokenizer=__lowerCAmelCase )
return text_classifier, ["HuggingFace is in", "This is another test"]
def __UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
_lowerCAmelCase =text_classifier.model
# Small inputs because BartTokenizer tiny has maximum position embeddings = 22
_lowerCAmelCase ="""HuggingFace is in"""
_lowerCAmelCase =text_classifier(__lowerCAmelCase )
self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{"""label""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase )}] )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
_lowerCAmelCase =["""HuggingFace is in """, """Paris is in France"""]
_lowerCAmelCase =text_classifier(__lowerCAmelCase )
self.assertEqual(
nested_simplify(__lowerCAmelCase ) , [{"""label""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase )}, {"""label""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() )
# Forcing to get all results with `top_k=None`
# This is NOT the legacy format
_lowerCAmelCase =text_classifier(__lowerCAmelCase , top_k=__lowerCAmelCase )
_lowerCAmelCase =len(model.config.idalabel.values() )
self.assertEqual(
nested_simplify(__lowerCAmelCase ) , [[{"""label""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase )}] * N, [{"""label""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase )}] * N] , )
_lowerCAmelCase ={"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""}
_lowerCAmelCase =text_classifier(__lowerCAmelCase )
self.assertEqual(
nested_simplify(__lowerCAmelCase ) , {"""label""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase )} , )
self.assertTrue(outputs["""label"""] in model.config.idalabel.values() )
# This might be used a text pair, but tokenizer + pipe interaction
# makes it hard to understand that it's not using the pair properly
# https://github.com/huggingface/transformers/issues/17305
# We disabled this usage instead as it was outputting wrong outputs.
_lowerCAmelCase =[["""HuggingFace is in """, """Paris is in France"""]]
with self.assertRaises(__lowerCAmelCase ):
text_classifier(__lowerCAmelCase )
# This used to be valid for doing text pairs
# We're keeping it working because of backward compatibility
_lowerCAmelCase =text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] )
self.assertEqual(
nested_simplify(__lowerCAmelCase ) , [{"""label""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase )}] , )
self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
| 360 |
"""simple docstring"""
import argparse
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
parser.add_argument(
'--original_config_file',
type=str,
required=True,
help='The YAML config file corresponding to the original architecture.',
)
parser.add_argument(
'--num_in_channels',
default=None,
type=int,
help='The number of input channels. If `None` number of input channels will be automatically inferred.',
)
parser.add_argument(
'--image_size',
default=512,
type=int,
help=(
'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2'
' Base. Use 768 for Stable Diffusion v2.'
),
)
parser.add_argument(
'--extract_ema',
action='store_true',
help=(
'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights'
' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield'
' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.'
),
)
parser.add_argument(
'--upcast_attention',
action='store_true',
help=(
'Whether the attention computation should always be upcasted. This is necessary when running stable'
' diffusion 2.1.'
),
)
parser.add_argument(
'--from_safetensors',
action='store_true',
help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.',
)
parser.add_argument(
'--to_safetensors',
action='store_true',
help='Whether to store pipeline in safetensors format or not.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)')
def _lowerCamelCase(__UpperCamelCase ) -> List[str]:
if string == "True":
return True
elif string == "False":
return False
else:
raise ValueError(F'''could not parse string as bool {string}''' )
parser.add_argument(
'--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool
)
parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int)
__A = parser.parse_args()
__A = download_controlnet_from_original_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
extract_ema=args.extract_ema,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
use_linear_projection=args.use_linear_projection,
cross_attention_dim=args.cross_attention_dim,
)
controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 341 | 0 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_videomae import VideoMAEImageProcessor
__A = logging.get_logger(__name__)
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None:
warnings.warn(
"""The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use VideoMAEImageProcessor instead.""" , _snake_case , )
super().__init__(*_snake_case , **_snake_case )
| 361 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available
__A = {
'configuration_audio_spectrogram_transformer': [
'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'ASTConfig',
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'ASTForAudioClassification',
'ASTModel',
'ASTPreTrainedModel',
]
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ['ASTFeatureExtractor']
if TYPE_CHECKING:
from .configuration_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
ASTConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ASTForAudioClassification,
ASTModel,
ASTPreTrainedModel,
)
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 0 |
"""simple docstring"""
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import platform
import numpy as np
import psutil
import torch
from accelerate import __version__ as version
from accelerate.commands.config import default_config_file, load_config_from_file
from ..utils import is_npu_available, is_xpu_available
def _lowerCamelCase(__UpperCamelCase=None ) -> Any:
if subparsers is not None:
_lowerCAmelCase =subparsers.add_parser("""env""" )
else:
_lowerCAmelCase =argparse.ArgumentParser("""Accelerate env command""" )
parser.add_argument(
"""--config_file""" , default=lowercase_ , help="""The config file to use for the default values in the launching script.""" )
if subparsers is not None:
parser.set_defaults(func=lowercase_ )
return parser
def _lowerCamelCase(__UpperCamelCase ) -> List[str]:
_lowerCAmelCase =torch.__version__
_lowerCAmelCase =torch.cuda.is_available()
_lowerCAmelCase =is_xpu_available()
_lowerCAmelCase =is_npu_available()
_lowerCAmelCase ="""Not found"""
# Get the default from the config file.
if args.config_file is not None or os.path.isfile(lowercase_ ):
_lowerCAmelCase =load_config_from_file(args.config_file ).to_dict()
_lowerCAmelCase ={
"""`Accelerate` version""": version,
"""Platform""": platform.platform(),
"""Python version""": platform.python_version(),
"""Numpy version""": np.__version__,
"""PyTorch version (GPU?)""": F'''{pt_version} ({pt_cuda_available})''',
"""PyTorch XPU available""": str(lowercase_ ),
"""PyTorch NPU available""": str(lowercase_ ),
"""System RAM""": F'''{psutil.virtual_memory().total / 1024 ** 3:.2f} GB''',
}
if pt_cuda_available:
_lowerCAmelCase =torch.cuda.get_device_name()
print("""\nCopy-and-paste the text below in your GitHub issue\n""" )
print("""\n""".join([F'''- {prop}: {val}''' for prop, val in info.items()] ) )
print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" )
_lowerCAmelCase =(
"""\n""".join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] )
if isinstance(lowercase_ , lowercase_ )
else F'''\t{accelerate_config}'''
)
print(lowercase_ )
_lowerCAmelCase =accelerate_config
return info
def _lowerCamelCase() -> int:
_lowerCAmelCase =env_command_parser()
_lowerCAmelCase =parser.parse_args()
env_command(lowercase_ )
return 0
if __name__ == "__main__":
raise SystemExit(main())
| 362 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__A = {
'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'],
'tokenization_m2m_100': ['M2M100Tokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST',
'M2M100ForConditionalGeneration',
'M2M100Model',
'M2M100PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A = {
'configuration_jukebox': [
'JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP',
'JukeboxConfig',
'JukeboxPriorConfig',
'JukeboxVQVAEConfig',
],
'tokenization_jukebox': ['JukeboxTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST',
'JukeboxModel',
'JukeboxPreTrainedModel',
'JukeboxVQVAE',
'JukeboxPrior',
]
if TYPE_CHECKING:
from .configuration_jukebox import (
JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP,
JukeboxConfig,
JukeboxPriorConfig,
JukeboxVQVAEConfig,
)
from .tokenization_jukebox import JukeboxTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_jukebox import (
JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST,
JukeboxModel,
JukeboxPreTrainedModel,
JukeboxPrior,
JukeboxVQVAE,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 363 |
"""simple docstring"""
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
__A = datasets.logging.get_logger(__name__)
__A = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n'
__A = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n'
__A = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n'
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase="dummy_doc" ) -> Dict:
_lowerCAmelCase ={doc: key_lines}
_lowerCAmelCase ={doc: sys_lines}
_lowerCAmelCase ={}
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase =0
_lowerCAmelCase , _lowerCAmelCase =reader.get_doc_mentions(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase )
key_singletons_num += singletons_num
if NP_only or min_span:
_lowerCAmelCase =reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase , _lowerCAmelCase =reader.get_doc_mentions(__UpperCamelCase , sys_doc_lines[doc] , __UpperCamelCase )
sys_singletons_num += singletons_num
if NP_only or min_span:
_lowerCAmelCase =reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase )
if remove_nested:
_lowerCAmelCase , _lowerCAmelCase =reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
_lowerCAmelCase , _lowerCAmelCase =reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
_lowerCAmelCase =reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase =(key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
"""Number of removed nested coreferring mentions in the key """
F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' )
logger.info(
"""Number of resulting singleton clusters in the key """
F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' )
if not keep_singletons:
logger.info(
F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system '''
"""files, respectively""" )
return doc_coref_infos
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int:
_lowerCAmelCase =get_coref_infos(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
_lowerCAmelCase ={}
_lowerCAmelCase =0
_lowerCAmelCase =0
for name, metric in metrics:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =evaluator.evaluate_documents(__UpperCamelCase , __UpperCamelCase , beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} )
logger.info(
name.ljust(10 ) , F'''Recall: {recall * 100:.2f}''' , F''' Precision: {precision * 100:.2f}''' , F''' F1: {fa * 100:.2f}''' , )
if conll_subparts_num == 3:
_lowerCAmelCase =(conll / 3) * 100
logger.info(F'''CoNLL score: {conll:.2f}''' )
output_scores.update({"""conll_score""": conll} )
return output_scores
def _lowerCamelCase(__UpperCamelCase ) -> Tuple:
_lowerCAmelCase =False
for line in key_lines:
if not line.startswith("""#""" ):
if len(line.split() ) > 6:
_lowerCAmelCase =line.split()[5]
if not parse_col == "-":
_lowerCAmelCase =True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase__ ( datasets.Metric ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> str:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Sequence(datasets.Value("""string""" ) ),
} ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[
"""https://github.com/ns-moosavi/coval""",
"""https://www.aclweb.org/anthology/P16-1060""",
"""http://www.conll.cemantix.org/2012/data.html""",
] , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False ) -> Optional[Any]:
_lowerCAmelCase =[
("""mentions""", evaluator.mentions),
("""muc""", evaluator.muc),
("""bcub""", evaluator.b_cubed),
("""ceafe""", evaluator.ceafe),
("""lea""", evaluator.lea),
]
if min_span:
_lowerCAmelCase =util.check_gold_parse_annotation(__UpperCAmelCase )
if not has_gold_parse:
raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" )
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
_lowerCAmelCase =evaluate(
key_lines=__UpperCAmelCase , sys_lines=__UpperCAmelCase , metrics=__UpperCAmelCase , NP_only=__UpperCAmelCase , remove_nested=__UpperCAmelCase , keep_singletons=__UpperCAmelCase , min_span=__UpperCAmelCase , )
return score
| 341 | 0 |
"""simple docstring"""
from maths.prime_factors import prime_factors
def _lowerCamelCase(__UpperCamelCase ) -> List[Any]:
if not isinstance(_a , _a ):
_lowerCAmelCase =F'''Input value of [number={number}] must be an integer'''
raise TypeError(_a )
if number < 1:
raise ValueError("""Input must be a positive integer""" )
return -1 if len(prime_factors(_a ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 364 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class lowerCamelCase__ :
'''simple docstring'''
lowerCamelCase = XGLMConfig
lowerCamelCase = {}
lowerCamelCase = '''gelu'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=0.0_2 , ) -> List[str]:
_lowerCAmelCase =parent
_lowerCAmelCase =batch_size
_lowerCAmelCase =seq_length
_lowerCAmelCase =is_training
_lowerCAmelCase =use_input_mask
_lowerCAmelCase =use_labels
_lowerCAmelCase =vocab_size
_lowerCAmelCase =d_model
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =ffn_dim
_lowerCAmelCase =activation_function
_lowerCAmelCase =activation_dropout
_lowerCAmelCase =attention_dropout
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =initializer_range
_lowerCAmelCase =None
_lowerCAmelCase =0
_lowerCAmelCase =2
_lowerCAmelCase =1
def _lowerCAmelCase ( self ) -> Dict:
return XGLMConfig.from_pretrained("""facebook/xglm-564M""" )
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
_lowerCAmelCase =None
if self.use_input_mask:
_lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length] )
_lowerCAmelCase =self.get_config()
_lowerCAmelCase =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowerCAmelCase ( self ) -> str:
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__UpperCAmelCase , )
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =self.prepare_config_and_inputs()
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) =config_and_inputs
_lowerCAmelCase ={
"""input_ids""": input_ids,
"""head_mask""": head_mask,
}
return config, inputs_dict
@require_tf
class lowerCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
lowerCamelCase = (TFXGLMForCausalLM,) if is_tf_available() else ()
lowerCamelCase = (
{'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {}
)
lowerCamelCase = False
lowerCamelCase = False
lowerCamelCase = False
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =TFXGLMModelTester(self )
_lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase , n_embd=37 )
def _lowerCAmelCase ( self ) -> int:
self.config_tester.run_common_tests()
@slow
def _lowerCAmelCase ( self ) -> Union[str, Any]:
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase =TFXGLMModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" )
def _lowerCAmelCase ( self ) -> Union[str, Any]:
super().test_resize_token_embeddings()
@require_tf
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def _lowerCAmelCase ( self , __UpperCAmelCase=True ) -> str:
_lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase =tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
_lowerCAmelCase =[2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81]
# fmt: on
_lowerCAmelCase =model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , __UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
tf.random.set_seed(0 )
_lowerCAmelCase =tokenizer("""Today is a nice day and""" , return_tensors="""tf""" )
_lowerCAmelCase =tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(""":/CPU:0""" ):
_lowerCAmelCase =model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase , seed=[7, 0] )
_lowerCAmelCase =tokenizer.decode(output_ids[0] , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =(
"""Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"""
)
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
@slow
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase =XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" )
_lowerCAmelCase ="""left"""
# use different length sentences to test batching
_lowerCAmelCase =[
"""This is an extremelly long sentence that only exists to test the ability of the model to cope with """
"""left-padding, such as in batched generation. The output for the sequence below should be the same """
"""regardless of whether left padding is applied or not. When""",
"""Hello, my dog is a little""",
]
_lowerCAmelCase =tokenizer(__UpperCAmelCase , return_tensors="""tf""" , padding=__UpperCAmelCase )
_lowerCAmelCase =inputs["""input_ids"""]
_lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 )
_lowerCAmelCase =tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids
_lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 )
_lowerCAmelCase =tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids
_lowerCAmelCase =model.generate(input_ids=__UpperCAmelCase , max_new_tokens=12 )
_lowerCAmelCase =tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =tokenizer.decode(output_non_padded[0] , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =tokenizer.decode(output_padded[0] , skip_special_tokens=__UpperCAmelCase )
_lowerCAmelCase =[
"""This is an extremelly long sentence that only exists to test the ability of the model to cope with """
"""left-padding, such as in batched generation. The output for the sequence below should be the same """
"""regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """
"""a single""",
"""Hello, my dog is a little bit of a shy one, but he is very friendly""",
]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , [non_padded_sentence, padded_sentence] )
| 341 | 0 |
"""simple docstring"""
from random import randint
from tempfile import TemporaryFile
import numpy as np
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[int]:
_lowerCAmelCase =0
if start < end:
_lowerCAmelCase =randint(_UpperCAmelCase , _UpperCAmelCase )
_lowerCAmelCase =a[end]
_lowerCAmelCase =a[pivot]
_lowerCAmelCase =temp
_lowerCAmelCase =_in_place_partition(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
count += _in_place_quick_sort(_UpperCAmelCase , _UpperCAmelCase , p - 1 )
count += _in_place_quick_sort(_UpperCAmelCase , p + 1 , _UpperCAmelCase )
return count
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int:
_lowerCAmelCase =0
_lowerCAmelCase =randint(_UpperCAmelCase , _UpperCAmelCase )
_lowerCAmelCase =a[end]
_lowerCAmelCase =a[pivot]
_lowerCAmelCase =temp
_lowerCAmelCase =start - 1
for index in range(_UpperCAmelCase , _UpperCAmelCase ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
_lowerCAmelCase =new_pivot_index + 1
_lowerCAmelCase =a[new_pivot_index]
_lowerCAmelCase =a[index]
_lowerCAmelCase =temp
_lowerCAmelCase =a[new_pivot_index + 1]
_lowerCAmelCase =a[end]
_lowerCAmelCase =temp
return new_pivot_index + 1, count
__A = TemporaryFile()
__A = 100 # 1000 elements are to be sorted
__A = 0, 1 # mean and standard deviation
__A = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print('The array is')
print(X)
outfile.seek(0) # using the same array
__A = np.load(outfile)
__A = len(M) - 1
__A = _in_place_quick_sort(M, 0, r)
print(
'No of Comparisons for 100 elements selected from a standard normal distribution'
'is :'
)
print(z)
| 365 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
__A = logging.get_logger(__name__)
__A = {'vocab_file': 'spiece.model'}
__A = {
'vocab_file': {
'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model',
'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model',
}
}
__A = {
'xlnet-base-cased': None,
'xlnet-large-cased': None,
}
# Segments (not really needed)
__A = 0
__A = 1
__A = 2
__A = 3
__A = 4
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = VOCAB_FILES_NAMES
lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase = '''left'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<sep>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<cls>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=["<eop>", "<eod>"] , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it
_lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
_lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , )
_lowerCAmelCase =3
_lowerCAmelCase =do_lower_case
_lowerCAmelCase =remove_space
_lowerCAmelCase =keep_accents
_lowerCAmelCase =vocab_file
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__UpperCAmelCase )
@property
def _lowerCAmelCase ( self ) -> str:
return len(self.sp_model )
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> Optional[int]:
_lowerCAmelCase =self.__dict__.copy()
_lowerCAmelCase =None
return state
def __setstate__( self , __UpperCAmelCase ) -> Tuple:
_lowerCAmelCase =d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_lowerCAmelCase ={}
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[Any]:
if self.remove_space:
_lowerCAmelCase =""" """.join(inputs.strip().split() )
else:
_lowerCAmelCase =inputs
_lowerCAmelCase =outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
_lowerCAmelCase =unicodedata.normalize("""NFKD""" , __UpperCAmelCase )
_lowerCAmelCase ="""""".join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] )
if self.do_lower_case:
_lowerCAmelCase =outputs.lower()
return outputs
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
_lowerCAmelCase =self.preprocess_text(__UpperCAmelCase )
_lowerCAmelCase =self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase )
_lowerCAmelCase =[]
for piece in pieces:
if len(__UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
_lowerCAmelCase =self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
_lowerCAmelCase =cur_pieces[1:]
else:
_lowerCAmelCase =cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(__UpperCAmelCase )
else:
new_pieces.append(__UpperCAmelCase )
return new_pieces
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]:
return self.sp_model.PieceToId(__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
return self.sp_model.IdToPiece(__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> str:
_lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip()
return out_string
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> str:
_lowerCAmelCase =kwargs.pop("""use_source_tokenizer""" , __UpperCAmelCase )
_lowerCAmelCase =self.convert_ids_to_tokens(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
_lowerCAmelCase =[]
_lowerCAmelCase =[]
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) )
_lowerCAmelCase =[]
sub_texts.append(__UpperCAmelCase )
else:
current_sub_text.append(__UpperCAmelCase )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) )
# Mimic the behavior of the Rust tokenizer:
# By default, there are no spaces between special tokens
_lowerCAmelCase ="""""".join(__UpperCAmelCase )
_lowerCAmelCase =(
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
_lowerCAmelCase =self.clean_up_tokenization(__UpperCAmelCase )
return clean_text
else:
return text
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_lowerCAmelCase =[self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase )
if token_ids_a is not None:
return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1]
return ([0] * len(__UpperCAmelCase )) + [1, 1]
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_lowerCAmelCase =[self.sep_token_id]
_lowerCAmelCase =[2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCAmelCase , """wb""" ) as fi:
_lowerCAmelCase =self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase )
return (out_vocab_file,)
| 341 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A = {
'configuration_autoformer': [
'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'AutoformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'AutoformerForPrediction',
'AutoformerModel',
'AutoformerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 366 |
"""simple docstring"""
from __future__ import annotations
def _lowerCamelCase(__UpperCamelCase ) -> bool:
_lowerCAmelCase =str(__UpperCamelCase )
return n == n[::-1]
def _lowerCamelCase(__UpperCamelCase = 1000000 ) -> str:
_lowerCAmelCase =0
for i in range(1 , __UpperCamelCase ):
if is_palindrome(__UpperCamelCase ) and is_palindrome(bin(__UpperCamelCase ).split("""b""" )[1] ):
total += i
return total
if __name__ == "__main__":
print(solution(int(str(input().strip()))))
| 341 | 0 |
"""simple docstring"""
def _lowerCamelCase(__UpperCamelCase ) -> Optional[Any]:
_lowerCAmelCase =[]
_lowerCAmelCase =[]
_lowerCAmelCase ={
"""^""": 3,
"""*""": 2,
"""/""": 2,
"""%""": 2,
"""+""": 1,
"""-""": 1,
} # Priority of each operator
_lowerCAmelCase =len(UpperCamelCase__ ) if (len(UpperCamelCase__ ) > 7) else 7
# Print table header for output
print(
"""Symbol""".center(8 ) , """Stack""".center(UpperCamelCase__ ) , """Postfix""".center(UpperCamelCase__ ) , sep=""" | """ , )
print("""-""" * (print_width * 3 + 7) )
for x in infix:
if x.isalpha() or x.isdigit():
post_fix.append(UpperCamelCase__ ) # if x is Alphabet / Digit, add it to Postfix
elif x == "(":
stack.append(UpperCamelCase__ ) # if x is "(" push to Stack
elif x == ")": # if x is ")" pop stack until "(" is encountered
while stack[-1] != "(":
post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix
stack.pop()
else:
if len(UpperCamelCase__ ) == 0:
stack.append(UpperCamelCase__ ) # If stack is empty, push x to stack
else: # while priority of x is not > priority of element in the stack
while len(UpperCamelCase__ ) > 0 and priority[x] <= priority[stack[-1]]:
post_fix.append(stack.pop() ) # pop stack & add to Postfix
stack.append(UpperCamelCase__ ) # push x to stack
print(
x.center(8 ) , ("""""".join(UpperCamelCase__ )).ljust(UpperCamelCase__ ) , ("""""".join(UpperCamelCase__ )).ljust(UpperCamelCase__ ) , sep=""" | """ , ) # Output in tabular format
while len(UpperCamelCase__ ) > 0: # while stack is not empty
post_fix.append(stack.pop() ) # pop stack & add to Postfix
print(
""" """.center(8 ) , ("""""".join(UpperCamelCase__ )).ljust(UpperCamelCase__ ) , ("""""".join(UpperCamelCase__ )).ljust(UpperCamelCase__ ) , sep=""" | """ , ) # Output in tabular format
return "".join(UpperCamelCase__ ) # return Postfix as str
def _lowerCamelCase(__UpperCamelCase ) -> Dict:
_lowerCAmelCase =list(infix[::-1] ) # reverse the infix equation
for i in range(len(UpperCamelCase__ ) ):
if infix[i] == "(":
_lowerCAmelCase =""")""" # change "(" to ")"
elif infix[i] == ")":
_lowerCAmelCase ="""(""" # change ")" to "("
return (infix_2_postfix("""""".join(UpperCamelCase__ ) ))[
::-1
] # call infix_2_postfix on Infix, return reverse of Postfix
if __name__ == "__main__":
__A = input('\nEnter an Infix Equation = ') # Input an Infix equation
__A = ''.join(Infix.split()) # Remove spaces from the input
print('\n\t', Infix, '(Infix) -> ', infix_2_prefix(Infix), '(Prefix)')
| 367 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = '''llama'''
lowerCamelCase = ['''past_key_values''']
def __init__( self , __UpperCAmelCase=3_20_00 , __UpperCAmelCase=40_96 , __UpperCAmelCase=1_10_08 , __UpperCAmelCase=32 , __UpperCAmelCase=32 , __UpperCAmelCase=None , __UpperCAmelCase="silu" , __UpperCAmelCase=20_48 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-6 , __UpperCAmelCase=True , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=False , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]:
_lowerCAmelCase =vocab_size
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =hidden_size
_lowerCAmelCase =intermediate_size
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =num_key_value_heads
_lowerCAmelCase =hidden_act
_lowerCAmelCase =initializer_range
_lowerCAmelCase =rms_norm_eps
_lowerCAmelCase =pretraining_tp
_lowerCAmelCase =use_cache
_lowerCAmelCase =rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase , )
def _lowerCAmelCase ( self ) -> str:
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2:
raise ValueError(
"""`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """
f'''got {self.rope_scaling}''' )
_lowerCAmelCase =self.rope_scaling.get("""type""" , __UpperCAmelCase )
_lowerCAmelCase =self.rope_scaling.get("""factor""" , __UpperCAmelCase )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' )
if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0:
raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
| 341 | 0 |
"""simple docstring"""
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self , __UpperCAmelCase ) -> Optional[int]:
_lowerCAmelCase =val
_lowerCAmelCase =None
_lowerCAmelCase =None
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Tuple:
if self.val:
if val < self.val:
if self.left is None:
_lowerCAmelCase =Node(_lowerCamelCase )
else:
self.left.insert(_lowerCamelCase )
elif val > self.val:
if self.right is None:
_lowerCAmelCase =Node(_lowerCamelCase )
else:
self.right.insert(_lowerCamelCase )
else:
_lowerCAmelCase =val
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> List[str]:
# Recursive traversal
if root:
inorder(root.left , __lowerCamelCase )
res.append(root.val )
inorder(root.right , __lowerCamelCase )
def _lowerCamelCase(__UpperCamelCase ) -> str:
# Build BST
if len(__lowerCamelCase ) == 0:
return arr
_lowerCAmelCase =Node(arr[0] )
for i in range(1 , len(__lowerCamelCase ) ):
root.insert(arr[i] )
# Traverse BST in order.
_lowerCAmelCase =[]
inorder(__lowerCamelCase , __lowerCamelCase )
return res
if __name__ == "__main__":
print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
| 368 |
"""simple docstring"""
import warnings
from .generation import TFGenerationMixin
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
# warning at import time
warnings.warn(
'''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will '''
'''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''' , __magic_name__ , )
| 341 | 0 |
import datasets
from .evaluate import evaluate
__A = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n"
__A = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n"
__A = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase__ ( datasets.Metric ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> Optional[int]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )},
"""references""": {
"""id""": datasets.Value("""string""" ),
"""answers""": datasets.features.Sequence(
{
"""text""": datasets.Value("""string""" ),
"""answer_start""": datasets.Value("""int32""" ),
} ),
},
} ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> str:
_lowerCAmelCase ={prediction["id"]: prediction["prediction_text"] for prediction in predictions}
_lowerCAmelCase =[
{
"paragraphs": [
{
"qas": [
{
"answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]],
"id": ref["id"],
}
for ref in references
]
}
]
}
]
_lowerCAmelCase =evaluate(dataset=_a , predictions=_a )
return score
| 369 |
"""simple docstring"""
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=16 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=30 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=None , ) -> Any:
_lowerCAmelCase =parent
_lowerCAmelCase =batch_size
_lowerCAmelCase =decoder_seq_length
# For common tests
_lowerCAmelCase =self.decoder_seq_length
_lowerCAmelCase =is_training
_lowerCAmelCase =use_attention_mask
_lowerCAmelCase =use_labels
_lowerCAmelCase =vocab_size
_lowerCAmelCase =d_model
_lowerCAmelCase =d_model
_lowerCAmelCase =decoder_layers
_lowerCAmelCase =decoder_layers
_lowerCAmelCase =decoder_ffn_dim
_lowerCAmelCase =decoder_attention_heads
_lowerCAmelCase =decoder_attention_heads
_lowerCAmelCase =eos_token_id
_lowerCAmelCase =bos_token_id
_lowerCAmelCase =pad_token_id
_lowerCAmelCase =decoder_start_token_id
_lowerCAmelCase =use_cache
_lowerCAmelCase =max_position_embeddings
_lowerCAmelCase =None
_lowerCAmelCase =decoder_seq_length
_lowerCAmelCase =2
_lowerCAmelCase =1
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
_lowerCAmelCase =None
if self.use_attention_mask:
_lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 )
_lowerCAmelCase =None
if self.use_labels:
_lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
_lowerCAmelCase =TrOCRConfig(
vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , )
return (config, input_ids, attention_mask, lm_labels)
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[Any]:
_lowerCAmelCase =True
_lowerCAmelCase =TrOCRDecoder(config=__UpperCAmelCase ).to(__UpperCAmelCase ).eval()
_lowerCAmelCase =input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
_lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
_lowerCAmelCase =model(__UpperCAmelCase )
_lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 )
_lowerCAmelCase =outputs["""past_key_values"""]
# create hypothetical next token and extent to next_input_ids
_lowerCAmelCase =ids_tensor((2, 1) , config.vocab_size - 1 ) + 1
# append to next input_ids and
_lowerCAmelCase =torch.cat([input_ids, next_tokens] , dim=-1 )
_lowerCAmelCase =model(__UpperCAmelCase )["""last_hidden_state"""]
_lowerCAmelCase =model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )["""last_hidden_state"""]
# select random slice
_lowerCAmelCase =ids_tensor((1,) , output_from_past.shape[-1] ).item()
_lowerCAmelCase =output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
_lowerCAmelCase =output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 )
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =self.prepare_config_and_inputs()
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs
_lowerCAmelCase ={"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
lowerCamelCase = (TrOCRForCausalLM,) if is_torch_available() else ()
lowerCamelCase = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {}
lowerCamelCase = True
lowerCamelCase = False
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =TrOCRStandaloneDecoderModelTester(self , is_training=__UpperCAmelCase )
_lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> List[str]:
pass
def _lowerCAmelCase ( self ) -> List[Any]:
pass
def _lowerCAmelCase ( self ) -> Any:
pass
def _lowerCAmelCase ( self ) -> Optional[Any]:
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> Tuple:
return
@unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :)
def _lowerCAmelCase ( self ) -> str:
pass
| 341 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A = {
'configuration_blip_2': [
'BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP',
'Blip2Config',
'Blip2QFormerConfig',
'Blip2VisionConfig',
],
'processing_blip_2': ['Blip2Processor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST',
'Blip2Model',
'Blip2QFormerModel',
'Blip2PreTrainedModel',
'Blip2ForConditionalGeneration',
'Blip2VisionModel',
]
if TYPE_CHECKING:
from .configuration_blip_a import (
BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlipaConfig,
BlipaQFormerConfig,
BlipaVisionConfig,
)
from .processing_blip_a import BlipaProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip_a import (
BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipaForConditionalGeneration,
BlipaModel,
BlipaPreTrainedModel,
BlipaQFormerModel,
BlipaVisionModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 370 |
"""simple docstring"""
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = JukeboxTokenizer
lowerCamelCase = {
'''artist''': '''Zac Brown Band''',
'''genres''': '''Country''',
'''lyrics''': '''I met a traveller from an antique land,
Who said "Two vast and trunkless legs of stone
Stand in the desert. . . . Near them, on the sand,
Half sunk a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,
Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them, and the heart that fed;
And on the pedestal, these words appear:
My name is Ozymandias, King of Kings;
Look on my Works, ye Mighty, and despair!
Nothing beside remains. Round the decay
Of that colossal Wreck, boundless and bare
The lone and level sands stretch far away
''',
}
@require_torch
def _lowerCAmelCase ( self ) -> str:
import torch
_lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" )
_lowerCAmelCase =tokenizer(**self.metas )["""input_ids"""]
# fmt: off
_lowerCAmelCase =[
torch.tensor([[
0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 10_69, 11]] ),
torch.tensor([[0, 0, 0, 10_69, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def _lowerCAmelCase ( self ) -> Any:
import torch
_lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" )
_lowerCAmelCase =tokenizer(**self.metas )["""input_ids"""]
# fmt: off
_lowerCAmelCase =[
torch.tensor([[
0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 341 | 0 |
"""simple docstring"""
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self ) -> int:
_lowerCAmelCase =""""""
_lowerCAmelCase =""""""
_lowerCAmelCase =[]
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
if m == -1:
return n + 1
elif n == -1:
return m + 1
elif self.dp[m][n] > -1:
return self.dp[m][n]
else:
if self.worda[m] == self.worda[n]:
_lowerCAmelCase =self.__min_dist_top_down_dp(m - 1 , n - 1 )
else:
_lowerCAmelCase =self.__min_dist_top_down_dp(snake_case_ , n - 1 )
_lowerCAmelCase =self.__min_dist_top_down_dp(m - 1 , snake_case_ )
_lowerCAmelCase =self.__min_dist_top_down_dp(m - 1 , n - 1 )
_lowerCAmelCase =1 + min(snake_case_ , snake_case_ , snake_case_ )
return self.dp[m][n]
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
_lowerCAmelCase =worda
_lowerCAmelCase =worda
_lowerCAmelCase =[[-1 for _ in range(len(snake_case_ ) )] for _ in range(len(snake_case_ ) )]
return self.__min_dist_top_down_dp(len(snake_case_ ) - 1 , len(snake_case_ ) - 1 )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> str:
_lowerCAmelCase =worda
_lowerCAmelCase =worda
_lowerCAmelCase =len(snake_case_ )
_lowerCAmelCase =len(snake_case_ )
_lowerCAmelCase =[[0 for _ in range(n + 1 )] for _ in range(m + 1 )]
for i in range(m + 1 ):
for j in range(n + 1 ):
if i == 0: # first string is empty
_lowerCAmelCase =j
elif j == 0: # second string is empty
_lowerCAmelCase =i
elif worda[i - 1] == worda[j - 1]: # last characters are equal
_lowerCAmelCase =self.dp[i - 1][j - 1]
else:
_lowerCAmelCase =self.dp[i][j - 1]
_lowerCAmelCase =self.dp[i - 1][j]
_lowerCAmelCase =self.dp[i - 1][j - 1]
_lowerCAmelCase =1 + min(snake_case_ , snake_case_ , snake_case_ )
return self.dp[m][n]
if __name__ == "__main__":
__A = EditDistance()
print('****************** Testing Edit Distance DP Algorithm ******************')
print()
__A = input('Enter the first string: ').strip()
__A = input('Enter the second string: ').strip()
print()
print(F"""The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}""")
print(F"""The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}""")
print()
print('*************** End of Testing Edit Distance DP Algorithm ***************')
| 371 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__A = logging.get_logger(__name__)
__A = '▁'
__A = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'}
__A = {
'vocab_file': {
'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model',
},
'monolingual_vocab_file': {
'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt',
},
}
__A = {'vinai/bartpho-syllable': 1024}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = VOCAB_FILES_NAMES
lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase = ['''input_ids''', '''attention_mask''']
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it
_lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
_lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , )
_lowerCAmelCase =vocab_file
_lowerCAmelCase =monolingual_vocab_file
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__UpperCAmelCase ) )
# Load the reduced vocab
# Keep order of special tokens for backward compatibility
_lowerCAmelCase ={}
_lowerCAmelCase =0
for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids:
_lowerCAmelCase =cnt
cnt += 1
with open(__UpperCAmelCase , """r""" , encoding="""utf-8""" ) as f:
for line in f.readlines():
_lowerCAmelCase =line.strip().split()[0]
_lowerCAmelCase =len(self.fairseq_tokens_to_ids )
if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids:
_lowerCAmelCase =len(self.fairseq_tokens_to_ids )
_lowerCAmelCase ={v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ) -> Dict:
_lowerCAmelCase =self.__dict__.copy()
_lowerCAmelCase =None
_lowerCAmelCase =self.sp_model.serialized_model_proto()
return state
def __setstate__( self , __UpperCAmelCase ) -> List[Any]:
_lowerCAmelCase =d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_lowerCAmelCase ={}
_lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
_lowerCAmelCase =[self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(__UpperCAmelCase )) + [1]
return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1]
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_lowerCAmelCase =[self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def _lowerCAmelCase ( self ) -> Union[str, Any]:
return len(self.fairseq_ids_to_tokens )
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
else:
return self.unk_token_id
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]:
return self.fairseq_ids_to_tokens[index]
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip()
return out_string
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
_lowerCAmelCase =os.path.join(
__UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCAmelCase , """wb""" ) as fi:
_lowerCAmelCase =self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase )
if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath(
__UpperCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ):
copyfile(self.monolingual_vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.monolingual_vocab_file ):
with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as fp:
for token in self.fairseq_tokens_to_ids:
if token not in self.all_special_tokens:
fp.write(f'''{str(__UpperCAmelCase )} \n''' )
return out_vocab_file, out_monolingual_vocab_file
| 341 | 0 |
"""simple docstring"""
import os
import unittest
from transformers import BatchEncoding
from transformers.models.bert.tokenization_bert import (
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer
from transformers.testing_utils import require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowerCamelCase__ ( __lowerCamelCase , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase = ProphetNetTokenizer
lowerCamelCase = False
def _lowerCAmelCase ( self ) -> int:
super().setUp()
_lowerCAmelCase =[
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
_lowerCAmelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[Any]:
_lowerCAmelCase ='''UNwant\u00E9d,running'''
_lowerCAmelCase ='''unwanted, running'''
return input_text, output_text
def _lowerCAmelCase ( self ) -> Any:
_lowerCAmelCase =self.tokenizer_class(self.vocab_file )
_lowerCAmelCase =tokenizer.tokenize("""UNwant\u00E9d,running""" )
self.assertListEqual(__lowercase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , [9, 6, 7, 12, 10, 11] )
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =BasicTokenizer()
self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] )
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase =BasicTokenizer(do_lower_case=__lowercase )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] )
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =BasicTokenizer(do_lower_case=__lowercase , strip_accents=__lowercase )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] )
def _lowerCAmelCase ( self ) -> str:
_lowerCAmelCase =BasicTokenizer(do_lower_case=__lowercase , strip_accents=__lowercase )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] )
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =BasicTokenizer(do_lower_case=__lowercase )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] )
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =BasicTokenizer(do_lower_case=__lowercase )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def _lowerCAmelCase ( self ) -> List[str]:
_lowerCAmelCase =BasicTokenizer(do_lower_case=__lowercase , strip_accents=__lowercase )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =BasicTokenizer(do_lower_case=__lowercase , strip_accents=__lowercase )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def _lowerCAmelCase ( self ) -> Dict:
_lowerCAmelCase =BasicTokenizer(do_lower_case=__lowercase , never_split=["""[UNK]"""] )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] )
def _lowerCAmelCase ( self ) -> Optional[int]:
_lowerCAmelCase =['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
_lowerCAmelCase ={}
for i, token in enumerate(__lowercase ):
_lowerCAmelCase =i
_lowerCAmelCase =WordpieceTokenizer(vocab=__lowercase , unk_token="""[UNK]""" )
self.assertListEqual(tokenizer.tokenize("""""" ) , [] )
self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] )
@require_torch
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" )
_lowerCAmelCase =['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
_lowerCAmelCase =[10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02]
_lowerCAmelCase =tokenizer(__lowercase , padding=__lowercase , return_tensors="""pt""" )
self.assertIsInstance(__lowercase , __lowercase )
_lowerCAmelCase =list(batch.input_ids.numpy()[0] )
self.assertListEqual(__lowercase , __lowercase )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
def _lowerCAmelCase ( self ) -> Tuple:
self.assertTrue(_is_whitespace(""" """ ) )
self.assertTrue(_is_whitespace("""\t""" ) )
self.assertTrue(_is_whitespace("""\r""" ) )
self.assertTrue(_is_whitespace("""\n""" ) )
self.assertTrue(_is_whitespace("""\u00A0""" ) )
self.assertFalse(_is_whitespace("""A""" ) )
self.assertFalse(_is_whitespace("""-""" ) )
def _lowerCAmelCase ( self ) -> Union[str, Any]:
self.assertTrue(_is_control("""\u0005""" ) )
self.assertFalse(_is_control("""A""" ) )
self.assertFalse(_is_control(""" """ ) )
self.assertFalse(_is_control("""\t""" ) )
self.assertFalse(_is_control("""\r""" ) )
def _lowerCAmelCase ( self ) -> Dict:
self.assertTrue(_is_punctuation("""-""" ) )
self.assertTrue(_is_punctuation("""$""" ) )
self.assertTrue(_is_punctuation("""`""" ) )
self.assertTrue(_is_punctuation(""".""" ) )
self.assertFalse(_is_punctuation("""A""" ) )
self.assertFalse(_is_punctuation(""" """ ) )
@slow
def _lowerCAmelCase ( self ) -> List[Any]:
_lowerCAmelCase =self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" )
_lowerCAmelCase =tokenizer.encode("""sequence builders""" , add_special_tokens=__lowercase )
_lowerCAmelCase =tokenizer.encode("""multi-sequence build""" , add_special_tokens=__lowercase )
_lowerCAmelCase =tokenizer.build_inputs_with_special_tokens(__lowercase )
_lowerCAmelCase =tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase )
assert encoded_sentence == text + [1_02]
assert encoded_pair == text + [1_02] + text_a + [1_02]
| 350 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _lowerCAmelCase ( self ) -> Union[str, Any]:
_lowerCAmelCase =1
_lowerCAmelCase =3
_lowerCAmelCase =(32, 32)
_lowerCAmelCase =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCAmelCase )
return image
@property
def _lowerCAmelCase ( self ) -> Tuple:
torch.manual_seed(0 )
_lowerCAmelCase =UNetaDConditionModel(
block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__UpperCAmelCase , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , )
return model
@property
def _lowerCAmelCase ( self ) -> Tuple:
torch.manual_seed(0 )
_lowerCAmelCase =AutoencoderKL(
block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def _lowerCAmelCase ( self ) -> Optional[Any]:
torch.manual_seed(0 )
_lowerCAmelCase =CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , )
return CLIPTextModel(__UpperCAmelCase )
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase =self.dummy_cond_unet_upscale
_lowerCAmelCase =DDPMScheduler()
_lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" )
_lowerCAmelCase =self.dummy_vae
_lowerCAmelCase =self.dummy_text_encoder
_lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
_lowerCAmelCase =StableDiffusionUpscalePipeline(
unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , )
_lowerCAmelCase =sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase ="""A painting of a squirrel eating a burger"""
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
_lowerCAmelCase =output.images
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=__UpperCAmelCase , )[0]
_lowerCAmelCase =image[0, -3:, -3:, -1]
_lowerCAmelCase =image_from_tuple[0, -3:, -3:, -1]
_lowerCAmelCase =low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
_lowerCAmelCase =np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase =self.dummy_cond_unet_upscale
_lowerCAmelCase =DDPMScheduler()
_lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" )
_lowerCAmelCase =self.dummy_vae
_lowerCAmelCase =self.dummy_text_encoder
_lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
_lowerCAmelCase =StableDiffusionUpscalePipeline(
unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , )
_lowerCAmelCase =sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase ="""A painting of a squirrel eating a burger"""
_lowerCAmelCase =sd_pipe(
2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
_lowerCAmelCase =output.images
assert image.shape[0] == 2
_lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , )
_lowerCAmelCase =output.images
assert image.shape[0] == 2
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =self.dummy_cond_unet_upscale
_lowerCAmelCase =DDPMScheduler()
_lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" )
_lowerCAmelCase =self.dummy_vae
_lowerCAmelCase =self.dummy_text_encoder
_lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
# put models in fp16, except vae as it overflows in fp16
_lowerCAmelCase =unet.half()
_lowerCAmelCase =text_encoder.half()
# make sure here that pndm scheduler skips prk
_lowerCAmelCase =StableDiffusionUpscalePipeline(
unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , )
_lowerCAmelCase =sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_lowerCAmelCase ="""A painting of a squirrel eating a burger"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =sd_pipe(
[prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type="""np""" , ).images
_lowerCAmelCase =low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
@slow
@require_torch_gpu
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def _lowerCAmelCase ( self ) -> int:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCAmelCase ( self ) -> Optional[Any]:
_lowerCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_lowerCAmelCase =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"""
"""/upsampled_cat.npy""" )
_lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler"""
_lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing()
_lowerCAmelCase ="""a cat sitting on a park bench"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , )
_lowerCAmelCase =output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 1e-3
def _lowerCAmelCase ( self ) -> Tuple:
_lowerCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_lowerCAmelCase =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"""
"""/upsampled_cat_fp16.npy""" )
_lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler"""
_lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(
__UpperCAmelCase , torch_dtype=torch.floataa , )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing()
_lowerCAmelCase ="""a cat sitting on a park bench"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , )
_lowerCAmelCase =output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 5e-1
def _lowerCAmelCase ( self ) -> Optional[Any]:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_lowerCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-upscale/low_res_cat.png""" )
_lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler"""
_lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(
__UpperCAmelCase , torch_dtype=torch.floataa , )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
_lowerCAmelCase ="""a cat sitting on a park bench"""
_lowerCAmelCase =torch.manual_seed(0 )
_lowerCAmelCase =pipe(
prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , output_type="""np""" , )
_lowerCAmelCase =torch.cuda.max_memory_allocated()
# make sure that less than 2.9 GB is allocated
assert mem_bytes < 2.9 * 10**9
| 341 | 0 |
__A = {
"""meter""": """m""",
"""kilometer""": """km""",
"""megametre""": """Mm""",
"""gigametre""": """Gm""",
"""terametre""": """Tm""",
"""petametre""": """Pm""",
"""exametre""": """Em""",
"""zettametre""": """Zm""",
"""yottametre""": """Ym""",
}
# Exponent of the factor(meter)
__A = {
"""m""": 0,
"""km""": 3,
"""Mm""": 6,
"""Gm""": 9,
"""Tm""": 12,
"""Pm""": 15,
"""Em""": 18,
"""Zm""": 21,
"""Ym""": 24,
}
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> float:
_lowerCAmelCase =from_type.lower().strip("""s""" )
_lowerCAmelCase =to_type.lower().strip("""s""" )
_lowerCAmelCase =UNIT_SYMBOL.get(_UpperCAmelCase , _UpperCAmelCase )
_lowerCAmelCase =UNIT_SYMBOL.get(_UpperCAmelCase , _UpperCAmelCase )
if from_sanitized not in METRIC_CONVERSION:
_lowerCAmelCase =(
F'''Invalid \'from_type\' value: {from_type!r}.\n'''
F'''Conversion abbreviations are: {', '.join(_UpperCAmelCase )}'''
)
raise ValueError(_UpperCAmelCase )
if to_sanitized not in METRIC_CONVERSION:
_lowerCAmelCase =(
F'''Invalid \'to_type\' value: {to_type!r}.\n'''
F'''Conversion abbreviations are: {', '.join(_UpperCAmelCase )}'''
)
raise ValueError(_UpperCAmelCase )
_lowerCAmelCase =METRIC_CONVERSION[from_sanitized]
_lowerCAmelCase =METRIC_CONVERSION[to_sanitized]
_lowerCAmelCase =1
if from_exponent > to_exponent:
_lowerCAmelCase =from_exponent - to_exponent
else:
_lowerCAmelCase =-(to_exponent - from_exponent)
return value * pow(10 , _UpperCAmelCase )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 351 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json',
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = '''cvt'''
def __init__( self , __UpperCAmelCase=3 , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[64, 1_92, 3_84] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 10] , __UpperCAmelCase=[4.0, 4.0, 4.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.1] , __UpperCAmelCase=[True, True, True] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , __UpperCAmelCase=[3, 3, 3] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-12 , **__UpperCAmelCase , ) -> Optional[Any]:
super().__init__(**__UpperCAmelCase )
_lowerCAmelCase =num_channels
_lowerCAmelCase =patch_sizes
_lowerCAmelCase =patch_stride
_lowerCAmelCase =patch_padding
_lowerCAmelCase =embed_dim
_lowerCAmelCase =num_heads
_lowerCAmelCase =depth
_lowerCAmelCase =mlp_ratio
_lowerCAmelCase =attention_drop_rate
_lowerCAmelCase =drop_rate
_lowerCAmelCase =drop_path_rate
_lowerCAmelCase =qkv_bias
_lowerCAmelCase =cls_token
_lowerCAmelCase =qkv_projection_method
_lowerCAmelCase =kernel_qkv
_lowerCAmelCase =padding_kv
_lowerCAmelCase =stride_kv
_lowerCAmelCase =padding_q
_lowerCAmelCase =stride_q
_lowerCAmelCase =initializer_range
_lowerCAmelCase =layer_norm_eps
| 341 | 0 |
"""simple docstring"""
import sys
def _lowerCamelCase(__UpperCamelCase ) -> List[str]:
_lowerCAmelCase =len(__UpperCamelCase )
_lowerCAmelCase =[[0 for x in range(__UpperCamelCase )] for x in range(__UpperCamelCase )]
_lowerCAmelCase =[[0 for x in range(__UpperCamelCase )] for x in range(__UpperCamelCase )]
for chain_length in range(2 , __UpperCamelCase ):
for a in range(1 , n - chain_length + 1 ):
_lowerCAmelCase =a + chain_length - 1
_lowerCAmelCase =sys.maxsize
for c in range(__UpperCamelCase , __UpperCamelCase ):
_lowerCAmelCase =(
matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b]
)
if cost < matrix[a][b]:
_lowerCAmelCase =cost
_lowerCAmelCase =c
return matrix, sol
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]:
if i == j:
print("""A""" + str(__UpperCamelCase ) , end=""" """ )
else:
print("""(""" , end=""" """ )
print_optiomal_solution(__UpperCamelCase , __UpperCamelCase , optimal_solution[i][j] )
print_optiomal_solution(__UpperCamelCase , optimal_solution[i][j] + 1 , __UpperCamelCase )
print(""")""" , end=""" """ )
def _lowerCamelCase() -> Dict:
_lowerCAmelCase =[30, 35, 15, 5, 10, 20, 25]
_lowerCAmelCase =len(__UpperCamelCase )
# Size of matrix created from above array will be
# 30*35 35*15 15*5 5*10 10*20 20*25
_lowerCAmelCase , _lowerCAmelCase =matrix_chain_order(__UpperCamelCase )
print("""No. of Operation required: """ + str(matrix[1][n - 1] ) )
print_optiomal_solution(__UpperCamelCase , 1 , n - 1 )
if __name__ == "__main__":
main()
| 352 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCamelCase__ ( __magic_name__ ):
'''simple docstring'''
lowerCamelCase = ['''image_processor''', '''tokenizer''']
lowerCamelCase = '''CLIPImageProcessor'''
lowerCamelCase = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''')
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Union[str, Any]:
_lowerCAmelCase =None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __UpperCAmelCase , )
_lowerCAmelCase =kwargs.pop("""feature_extractor""" )
_lowerCAmelCase =image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Optional[Any]:
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
_lowerCAmelCase =self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if images is not None:
_lowerCAmelCase =self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is not None and images is not None:
_lowerCAmelCase =image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase )
def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
@property
def _lowerCAmelCase ( self ) -> int:
_lowerCAmelCase =self.tokenizer.model_input_names
_lowerCAmelCase =self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 341 | 0 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bart import BartTokenizer
__A = logging.get_logger(__name__)
__A = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
# See all BART models at https://huggingface.co/models?filter=bart
__A = {
'vocab_file': {
'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json',
'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json',
'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json',
'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json',
'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json',
'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json',
},
'merges_file': {
'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt',
'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt',
'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt',
'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt',
'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt',
'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt',
},
'tokenizer_file': {
'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json',
'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json',
'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json',
'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json',
'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json',
'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json',
},
}
__A = {
'facebook/bart-base': 1024,
'facebook/bart-large': 1024,
'facebook/bart-large-mnli': 1024,
'facebook/bart-large-cnn': 1024,
'facebook/bart-large-xsum': 1024,
'yjernite/bart_eli5': 1024,
}
class lowerCamelCase__ ( snake_case_ ):
'''simple docstring'''
lowerCamelCase = VOCAB_FILES_NAMES
lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase = ['''input_ids''', '''attention_mask''']
lowerCamelCase = BartTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="replace" , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=False , __UpperCAmelCase=True , **__UpperCAmelCase , ) -> str:
super().__init__(
__UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , errors=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase , **__UpperCAmelCase , )
_lowerCAmelCase =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("""add_prefix_space""" , __UpperCAmelCase ) != add_prefix_space:
_lowerCAmelCase =getattr(__UpperCAmelCase , pre_tok_state.pop("""type""" ) )
_lowerCAmelCase =add_prefix_space
_lowerCAmelCase =pre_tok_class(**__UpperCAmelCase )
_lowerCAmelCase =add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
_lowerCAmelCase ="""post_processor"""
_lowerCAmelCase =getattr(self.backend_tokenizer , __UpperCAmelCase , __UpperCAmelCase )
if tokenizer_component_instance:
_lowerCAmelCase =json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
_lowerCAmelCase =tuple(state["""sep"""] )
if "cls" in state:
_lowerCAmelCase =tuple(state["""cls"""] )
_lowerCAmelCase =False
if state.get("""add_prefix_space""" , __UpperCAmelCase ) != add_prefix_space:
_lowerCAmelCase =add_prefix_space
_lowerCAmelCase =True
if state.get("""trim_offsets""" , __UpperCAmelCase ) != trim_offsets:
_lowerCAmelCase =trim_offsets
_lowerCAmelCase =True
if changes_to_apply:
_lowerCAmelCase =getattr(__UpperCAmelCase , state.pop("""type""" ) )
_lowerCAmelCase =component_class(**__UpperCAmelCase )
setattr(self.backend_tokenizer , __UpperCAmelCase , __UpperCAmelCase )
@property
def _lowerCAmelCase ( self ) -> str:
if self._mask_token is None:
if self.verbose:
logger.error("""Using mask_token, but it is not set yet.""" )
return None
return str(self._mask_token )
@mask_token.setter
def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]:
_lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else value
_lowerCAmelCase =value
def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> BatchEncoding:
_lowerCAmelCase =kwargs.get("""is_split_into_words""" , __UpperCAmelCase )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""" )
return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase )
def _lowerCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> BatchEncoding:
_lowerCAmelCase =kwargs.get("""is_split_into_words""" , __UpperCAmelCase )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""" )
return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
_lowerCAmelCase =self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> Dict:
_lowerCAmelCase =[self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_lowerCAmelCase =[self.sep_token_id]
_lowerCAmelCase =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 353 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__A = {
'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'],
'tokenization_perceiver': ['PerceiverTokenizer'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ['PerceiverFeatureExtractor']
__A = ['PerceiverImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PerceiverForImageClassificationConvProcessing',
'PerceiverForImageClassificationFourier',
'PerceiverForImageClassificationLearned',
'PerceiverForMaskedLM',
'PerceiverForMultimodalAutoencoding',
'PerceiverForOpticalFlow',
'PerceiverForSequenceClassification',
'PerceiverLayer',
'PerceiverModel',
'PerceiverPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 0 |
import argparse
import torch
# Step 1. clone https://github.com/microsoft/unilm
# Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd
# Step 3. cd unilm
# Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink
# import classes
from unilm.wavlm.WavLM import WavLM as WavLMOrig
from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig
from transformers import WavLMConfig, WavLMModel, logging
logging.set_verbosity_info()
__A = logging.get_logger(__name__)
__A = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn.grep_linear': 'encoder.layers.*.attention.gru_rel_pos_linear',
'self_attn.relative_attention_bias': 'encoder.layers.*.attention.rel_attn_embed',
'self_attn.grep_a': 'encoder.layers.*.attention.gru_rel_pos_const',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'ctc_proj',
'mask_emb': 'masked_spec_embed',
}
__A = [
'ctc_proj',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
]
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Dict:
for attribute in key.split(""".""" ):
_lowerCAmelCase =getattr(_lowerCAmelCase , _lowerCAmelCase )
if weight_type is not None:
_lowerCAmelCase =getattr(_lowerCAmelCase , _lowerCAmelCase ).shape
else:
_lowerCAmelCase =hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
_lowerCAmelCase =value
elif weight_type == "weight_g":
_lowerCAmelCase =value
elif weight_type == "weight_v":
_lowerCAmelCase =value
elif weight_type == "bias":
_lowerCAmelCase =value
else:
_lowerCAmelCase =value
logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' )
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]:
_lowerCAmelCase =[]
_lowerCAmelCase =fairseq_model.state_dict()
_lowerCAmelCase =hf_model.feature_extractor
for name, value in fairseq_dict.items():
_lowerCAmelCase =False
if "conv_layers" in name:
load_conv_layer(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , )
_lowerCAmelCase =True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
_lowerCAmelCase =True
if "*" in mapped_key:
_lowerCAmelCase =name.split(_lowerCAmelCase )[0].split(""".""" )[-2]
_lowerCAmelCase =mapped_key.replace("""*""" , _lowerCAmelCase )
if "weight_g" in name:
_lowerCAmelCase ="""weight_g"""
elif "weight_v" in name:
_lowerCAmelCase ="""weight_v"""
elif "bias" in name and "relative_attention_bias" not in name:
_lowerCAmelCase ="""bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
_lowerCAmelCase ="""weight"""
else:
_lowerCAmelCase =None
set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
continue
if not is_used:
unused_weights.append(_lowerCAmelCase )
logger.warning(F'''Unused weights: {unused_weights}''' )
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> str:
_lowerCAmelCase =full_name.split("""conv_layers.""" )[-1]
_lowerCAmelCase =name.split(""".""" )
_lowerCAmelCase =int(items[0] )
_lowerCAmelCase =int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
_lowerCAmelCase =value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
_lowerCAmelCase =value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
_lowerCAmelCase =value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
_lowerCAmelCase =value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(_lowerCAmelCase )
@torch.no_grad()
def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None ) -> Any:
_lowerCAmelCase =torch.load(_lowerCAmelCase )
_lowerCAmelCase =WavLMConfigOrig(checkpoint["""cfg"""] )
_lowerCAmelCase =WavLMOrig(_lowerCAmelCase )
model.load_state_dict(checkpoint["""model"""] )
model.eval()
if config_path is not None:
_lowerCAmelCase =WavLMConfig.from_pretrained(_lowerCAmelCase )
else:
_lowerCAmelCase =WavLMConfig()
_lowerCAmelCase =WavLMModel(_lowerCAmelCase )
recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase )
hf_wavlm.save_pretrained(_lowerCAmelCase )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
__A = parser.parse_args()
convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 354 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A = {
'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST',
'Swinv2ForImageClassification',
'Swinv2ForMaskedImageModeling',
'Swinv2Model',
'Swinv2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 341 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.